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Abstract

By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of
approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple
uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing

formulas for this inductance.
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1 INTRODUCTION

The problem of field leakage through an array of cylinders is the basic canonical periodic shield [1].
Simple solutions can be found for this problem when the cylinder radius is small compared with the spacing
[2, 3, 4]. However because of the basic nature of the problem, it is of interest, not only to assess the
accuracy of these conformal mapping approximate solutions, but also to construct an easily used solution
which remains accurate over the entire range of radius to spacing ratios.

This paper considers the effects of line multipole additions to the simple filament approximation in
representing the elements of a one dimensional wire grid array. Here we look at the limit of small wire
radius a (and general ratios of wire radius to wire half spacing w) to determine which of the existing
approximations to the wire array inductance is most accurate. We also construct a simple and accurate
uniform fit using the simple filament approximation along with the decay factor from bipolar coordinates
[5].

2 MULTIPOLE CONFORMAL MAPPING REPRESENTATION

The array of wires is along the x axis (but a distance y = s→ 0 above) each carrying z directed current
I with wire spacing 2w and wire radius a. One wire is positioned at x = 0 and all wires are parallel with the
z axis. A uniform field Hx ∼ ∓I/ (4w) is generated by the wire currents as y → ±∞ and the asymptotic
form of the potential is Az ∼ ∓μ0I

4w y. A conformal mapping solution for the vector potential is [4]

Az = −
μ0I

2π
ln
¯̄̄
e−iπz/w − eπs/w

¯̄̄
+

μ0I

4w
(y + s) , (1)

where z = x+ iy. The multipole moments in this case can be written as

Azm = −
μ0
2π

pmRe
∙
∂m

∂sm

n
ln
³
e−iπz/w − eπs/w

´
− π

2w
(−iz + s)

o¸
s=0

, (2)

where the filament or monopole term is m = 0, the dipole term is m = 1, and the quadrupole term is
m = 2, etc. Therefore we can write

Az 2π/ (μ0I) = − ln
¯̄̄
e−iπz/w − 1

¯̄̄
+

π

2w
y +

p1π

Iw
Re
∙

1

e−iπz/w − 1 +
1

2

¸

+
p2π

2

Iw2
Re

"
e−iπz/w¡

e−iπz/w − 1
¢2
#
+ · · · , (3)

We now let p0m = pmπ
m/ (Iwm) and use the match points

z = −iaeimπ/M , m = 0, 1, ...,M , (4)
All odd moments vanish in this case because of the symmetry about the x axis. Thus we only use
m = 0, 1, ...,M/2. The case M = 2 thus gives

Az (z = −ia) 2π/ (μ0I) = − ln
³
1− e−πa/w

´
− πa

2w
+ p02

e−πa/w¡
e−πa/w − 1

¢2 , and
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Az (z = a) 2π/ (μ0I) = − ln
¯̄̄
e−iπa/w − 1

¯̄̄
+ p02Re

"
e−iπa/w¡

e−iπa/w − 1
¢2
#

. (5)

Taking the difference and setting the result to zero gives

p02 = −
1
2 ln

©
4 sin2

¡
πa
2w

¢ª
− ln

¡
1− e−πa/w

¢
− πa

2w
1

4 sin2( πa2w )
+ e−πa/w

(e−πa/w−1)2
=

1
2 ln

©
4 sinh2

¡
πa
2w

¢ª
− 1

2 ln
©
4 sin2

¡
πa
2w

¢ª
1

4 sin2( πa2w )
+ 1

4 sinh2( πa2w )

. (6)

Alternatively let us take I = 0 but

Az0 = μ0H0y (7)
representing a uniform field H0 in the x direction. Then we have

Az 2π/ (μ02wH0) = πy/w +
p1π

2wH0w
Re
∙

1

e−iπz/w − 1 +
1

2

¸

+
p2π

2

2wH0w2
Re

"
e−iπz/w¡

e−iπz/w − 1
¢2
#
+

p3π
3

Iw3
Re

"¡
e−iπz/w + 1

¢
e−iπz/w¡

e−iπz/w − 1
¢3

#
+ · · · . (8)

Again set p0m = pmπ
m/ (2wH0w

m) and let z = −iaeimπ/M , m = 0, 1, ...,M . All even moments vanish in
this case because of the odd symmetry about the x axis. Thus, we only use m = 0, 1, ..., (M − 1) /2. The
case M = 1 thus gives

Az (z = −ia) 2π/ (μ02wH0) = −πa/w + p01

∙
1

e−πa/w − 1 +
1

2

¸
. (9)

Setting this result to zero gives

p01 =
πa/w
1

e−πa/w−1 +
1
2

= −4
³πa
2w

´
tanh

³πa
2w

´
. (10)

Expanding the dipole and quadrupole coefficients for
¡
πa
2w

¢
→ 0 gives

p01 ∼ −4
³πa
2w

´2 ∙
1− 1

3

³πa
2w

´2
+ · · ·

¸
, and (11)

p02 ∼
2

3

³πa
2w

´4
+ · · · . (12)

We take the sum of these two problems to represent the situation when a uniform x directed field
H0, where 2wH0 = I, exists at a large distance below the x axis and zero field exists at a large distance
above the x axis. The single linear array of wires has been chosen to have the uniform x directed fields
2wH0 = ∓I/2 for y → ±∞. Thus the linear combination of the single array with current I (including
the filament and quadrupole terms) and one half of the uniform field solution (including uniform field and
dipole terms) gives the desired representation. The total potential is thus
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Az 2π/ (μ02wH0) = − ln
¯̄̄
e−iπz/w − 1

¯̄̄
+

π

2w
y + p02Re

"
e−iπz/w¡

e−iπz/w − 1
¢2
#
+ · · ·

+
1

2

π

w
y +

1

2
p01Re

∙
1

e−iπz/w − 1 +
1

2

¸
+ · · · . (13)

3 TRANSFER INDUCTANCE OF ARRAY

The transfer inductance of the grid can be defined by

L = Φ/H0 (14)
where Φ is the −x directed magnetic flux per unit length passing between the wires and the point y → +∞.
Thus, we can write

Φ = Az (z = ia)−Az (z → i∞) (15)
Therefore the inductance is

L

µ
π

μ0w

¶
= − ln

³
eπa/w − 1

´
+ πa/w +

1

2
p01

∙
1

eπa/w − 1 +
1

2

¸
+

p02e
πa/w¡

eπa/w − 1
¢2 + · · ·− 14p01 − · · · (16)

which can be rewritten as

L

µ
π

μ0w

¶
= − ln

n
2 sinh

³πa
2w

´o
+
³πa
2w

´
+
1

4
p01 coth

³πa
2w

´
+
1

4
p02csch

2
³ πa
2w

´
+ · · ·− 1

4
p01 − · · · . (17)

Inserting the coefficients gives

L

µ
π

μ0w

¶
= − ln

n
2 sinh

³πa
2w

´o
+

1
2 ln

©
sinh2

¡
πa
2w

¢
/ sin2

¡
πa
2w

¢ª
1 + sinh2

¡
πa
2w

¢
/ sin2

¡
πa
2w

¢ + · · ·+
³πa
2w

´
tanh

³πa
2w

´
− · · · . (18)

Expanding for
¡
πa
2w

¢
→ 0 gives

L

µ
π

μ0w

¶
∼ ln

³ w

πa

´
+
³πa
2w

´2
+ · · · . (19)

Therefore we see that the simple small radius a approximate formula

L

µ
π

μ0w

¶
≈ ln

³ w

πa

´
(20)

is more accurate than the commonly used filament result [2, 3]
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L

µ
π

μ0w

¶
≈ − ln

³
1− e−πa/w

´
∼ ln

³ w

πa

´
+
³πa
2w

´
− 1
6

³πa
2w

´2
(21)

in the
¡
πa
2w

¢
→ 0 limit.

Figure 1 shows the normalized transfer inductance as a function of a/w. The filament curve, labeled
with zeros, is (21) (without the small πa

2w expansion) which is also the result obtained if the multipole
expansions of the previous section are terminated without the dipole, quadrupole, etc., terms. The dipole
curve, labeled with ones, is the result obtained from the previous section if the expansions are terminated
without the quadrupole, etc., terms. Similarly, the quadrupole curve, labeled with twos, is (18), etc.
Finally, the small a approximation curve, labeled as thin wire, is (20). Thus, although (20) is more accurate
for small values of a/w, the filament approximation (21) provides a more uniform fit to the actual value of
the transfer inductance.

4 SMOOTHED CONFORMAL MAPPING SOLUTION

The attenuation resulting from the region between cylinders, when they are closely spaced, is difficult
to represent by means of the multipole expansion. Previously [4] a “smoothed” conformal transformation
has been used to treat this problem. This approximate solution is found by first finding the solution of the
transcendental equation

csc
hπa
2w

(1 + λ)
i
= coth

h πa

2wλ
(1 + λ)

i
(22)

and then finding

µ
π

μ0w

¶
L = ln

h
csc
n πa
2w

(1 + λ)
oi

. (23)

This result is shown as the dotted curve in Figure 1. However because the “smoothed” conductor solution
is a good approximation to the cylinder only when the conductors are not in close proximity, and also
because these results involve a transcendental equation, we will examine a simple fit in the next section.

5 BIPOLAR COORDINATES (TWO CYLINDERS)

Here we use the exponential decay from the bipolar system of coordinates (representing two cylinders)
times the array result to construct an accurate fit to the transfer inductance which holds for all ratios of
radius to spacing. The bipolar system [5] uses the description (note here that x+ w is the same coordinate
as x in previous sections)

x = a0
sinhu

coshu− cos v

y = a0
sin v

coshu− cos v (24)

or (x− a0 cothu)
2+y2 = a20csch

2u and x2+(y − a0 cot v)
2 = a20 csc

2 v, where −∞ < u <∞ and 0 < v < 2π.
We choose cylindrical coordinate surfaces u = ±u0, with radii a and center-to-center spacing 2w, by means
of a = a0csch(u0) and w = a0 coth (u0) or
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u0 = ln
h
w/a+

p
w2/a2 − 1

i
, and

a0 =
p
w2 − a2 . (25)

In this coordinate system Laplace’s equation becomes [5]

∇2Az =
1

a20
(coshu− cos v)2

µ
∂2Az

∂u2
+

∂2Az

∂v2

¶
+

∂2Az

∂z2
= 0 . (26)

In the two dimensional case the last term is zero and we have have the same solutions as in Cartesian
coordinates. We take the lowest order mode that is constant on the conducting surfaces

Az = A cos

µ
πu

2u0

¶
eπ(v−π)/(2u0) + C , (27)

where C is a constant. The difference potential between u = 0 and the surface u = ±u0 is thus

∆Az = Ae−π(π−v)/(2u0) = A exp

⎡⎣−π Arctan
¡
y/
√
w2 − a2

¢
ln
³
w/a+

p
w2/a2 − 1

´
⎤⎦ . (28)

There is thus a decay from the illuminated side y < 0 to the shadow side y > 0 of the array. If we assume
this decay takes place over the interval −h < y < h, we have an overall decay factor of the square of the
exponential in (28) with y = h.

6 FIT FOR TRANSFER INDUCTANCE

The fit to the transfer inductance will be taken as the standard filament result (21) times the decay
from bipolar coordinates (28). The distance h = O (a) = ca is taken to account for the missing decay in the
filament result µ

π

μ0w

¶
L ≈ − ln

³
1− e−πa/w

´
exp

⎡⎣−2πArctan
³
c/
p
w2/a2 − 1

´
ln
³
w/a+

p
w2/a2 − 1

´
⎤⎦ . (29)

If we take c to be a constant, the best choice seems to be c ≈ 0.71, resulting in relative errors of less than
12% when compared to the multipole results (over their range of validity). This can be improved by adding
variation with a/w (for example c ≈ 1/2 + a/ (3w) works well). A similar but slightly better choice is

c ≈ 1
2

r
1 +

πa

2w
. (30)

Figure 1 shows the line multipole moment results (labeled with the number included, from zero to eight)
for the sheet transfer inductance compared with this fit (dashed curve). Figure 2 shows the relative errors
between the multipole results and the fit.
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Figure 1. Multipole moment calculations for sheet transfer inductance. Numbers labeling the curves
indicate how many line multipole moments were included. The dashed black curve is a fit consisting of the
product of the filament solution (zero multipole moment) times the decay found from bipolar coordinates.
The dotted curve is the smoothed conformal mapping solution. The thin wire approximation is shown as
the dot-dash curve.
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Figure 2. Relative error between sheet inductance computed with multipole moments and fit.
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7 CONCLUSION

Line multipole moments have been used in conjunction with conformal mapping to describe the
magnetic field penetration of a periodic array of perfectly conducting cylinders (two-dimensional wire
mesh). This rigorous approach describes the transfer inductance of the array in closed form for small
radius to spacing ratios and can be used to obtain power series representations for this quantity. Numerical
summation of the multipole representation extends the range of validity to larger ratios. A simple fit to the
transfer inductance has been constructed by introducing exponential decay from the bipolar coordinate
system (representing the region between a pair of cylinders) into the typical filament result for the transfer
inductance of the array. This fit yields accurate results for all ratios of radius to spacing.
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