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Abstract

Many current and future modeling applications at Sandia including ASC milestones will critically
depend on the simultaneous solution of vastly different physical phenomena.

Issues due to code coupling are often not addressed, understood, or even recognized.

The objectives of the LDRD has been both in theory and in code development. We will show that
we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive
substitution strategy is needed. We have enabled the implementation of tighter coupling strategies
through additions to the NOX and Sierra code suites to make coupling strategies available now. We
have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to
handle fully coupled simulations from multiple codes, and we have also built into NOX the capability
to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this
capability may be accessed from within the Sierra Framework as well as from outside of Sierra.

The critical impact from this LDRD is that we have shown how and have delivered strategies for
enabling strong Newton-based coupling while respecting the modularity of existing codes. This will
facilitate the use of these codes in a coupled manner to solve multi-physic applications.
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Chapter 1

Introduction and Overview

It is important to begin a study and discussion of coupling strategies by defining some terminol-
ogy. Lack of precise definitions has often led to confusion in the literature and among working
communities.

First, there should be a recognizable distinction between coupled physics and coupled codes. It is
often the case that a single application code accounts for multiple interacting physics, e.g. an appli-
cation code developed to solve reacting flow typically consists of solving for vector-valued velocities,
a scalar pressure and various scalar species concentrations. Contrast this with the desire to augment
the coupled physics within an application by coupling to another code responsible for the added
physics, e.g. accounting for thermal effects in reacting flow by coupling a reacting flow code to a
separate code that solves a heat equation. This distinction is important given the large disparity in
algorithm development and understanding between the two. Much effort has gone into developing
and tuning algorithms for multi-physics within a single application code. However, little attention to
detail and implications has been given to multi-physics coupling across multiple application codes.
One goal of the current work is to elucidate and address the issues of the latter while preserving the
benefits of the former. for example, specialized solution techniques embodied within an application
code should not be abandoned in order to ”better” couple to another application code.

Given the recent and growing interest to enable multi-physics involving multiple application codes,
we must next define terminology that allows one choice of coupling algorithm to be compared to
another and possibly considered ”better.” We deem the ability to obtain a converged solution to
be of greater importance than the rate of convergence. Simply stated, it is better to be able to
obtain a solution than to not obtain one efficiently. We therefore define a coupling algorithm to
be better than another primarily if it is more robust and secondarily if it is more efficient. As
might be expected, algorithm robustness and efficiency is often related to the degree of mutual
dependence of the interacting physics. For example, a multi-physics problem may exhibit one-way
coupling in which one physics affects another but not vice-versa. Moreover, for mutually-dependent
multi-physics the degree of physical coupling can vary and is often reflected by one or more physical
parameters. We are naturally led then to consider and distinguish both the degree of coupling
among the various physics as well as how well a coupling algorithm and associated implementation
(i.e. software) account for this [(1)]. Taken together, these considerations lead to the terminology
summarized in Table 1.1. Intuitively, a good balance between robustness and efficiency should result

Physics Loose Tight
Algorithms

Weak
Strong

Table 1.1. Terminology describing degree of coupling of physics and
algorithms.
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along the diagonal of the table and be questionable off the diagonal. The goal of this work is to
generally provide and determine appropriate algorithms for various multi-physics scenarios.

1.1 Scope and Limitations of Work

The scope of the work represented by this LDRD aims ultimately to impact the complete field of
multi-physics coupling from algorithms to software implementation. We have found that attempts
at impacting one area, algorithms for example, while excluding other areas masks relevant issues
that must ultimately be addressed for a useful general coupling capability. So, Chapter 2 provides an
overview of coupling algorithms ranging from weak algorithms based on fixed-point implementations
to strong coupling embodied as a pure implementation of Newton’s method. Here we lay out a
general approach to intermediate coupling which seeks to leverage the simplicity of requirements
for weak coupling to achieve the performance of strong coupling. Chapter 3 describes results of
coupling algorithms applied to representative prototyping problems. Trade-offs among the choices
for strength of coupling algorithm are elucidated. We also discuss our software implementation
within the Trilinos solver library and NOX in particular that makes our coupling algorithms generally
available. Extending our work to real application environments is the subject of chapters 4-8 where
we show performance for real-world applications of importance to Sandia. Some analysis work is
presented in Chapter 5. Finally, Chapter 9 describes ongoing and future projects incorporating the
work of this LDRD to varying degrees.

Our work is limited in that it does not seek to address issues such as operator-splitting with regard
to temporal accuracy and stability, for example. However, we do touch on practical issues related
to these in chapter 7. In general for time-dependent problems, our work assumes an adequate time-
discretization method and seeks to better solve the resulting coupled nonlinear system of equations.
We acknowledge that there is an interplay between the mode of time stepping and the details of the
solution of the coupled system at a given time step, but a rigorous study of such is beyond the scope
of this work.

12



Chapter 2

Overview of Algorithms

This chapter provides an overview of coupling algorithms ranging from weak coupling based on fixed
point iterations to strong coupling represented at the extreme by a pure Newton method. Most of
the discussion will center around intermediate coupling strategies which seek to provide the benefits
of strong coupling but with little to no requirements imposed on applications codes beyond providing
weak coupling data. In all approaches, the object is to find a solution to the following nonlinear
system of equations:

R(x∗) = 0 (2.1)

where R is called the residual and x∗ is the solution to the nonlinear system when eq. (2.1) is
satisfied. Within the context of coupled multi-physics involving multiple applications, eq. (2.1)
can be partitioned to reflect contributions to the overall coupled problem arising from individual
applications, e.g. for multi-physics arising from two coupled applications A and B:

x =
[

xA

xB

]
, (2.2)

where xA are the unknowns for the A application and xB are the unknowns for the B application.
The partitioned residual equation corresponding to eq. (2.1) is:[

RA(x∗A,x
∗
B)

RB(x∗A,x
∗
B)

]
= 0 (2.3)

2.1 Strong coupling

In this work, we consider the strongest form of coupling algorithm to be that of a pure Newton
method. By pure, we mean a Newton method implemented without any approximations beyond
representing numbers with finite machine precision. This excludes variants of Newton’s method such
as implementations employing an iterative linear solver, Jacobian matrices filled numerically using
finite differences, secant updates to an approximate Jacobian matrix, etc. We consider all of these
and others to fall within the realm of intermediate coupling strategies to be discussed in section 2.3.

Newton’s method is derived by expanding eq. (2.1) about the solution to the coupled nonlinear
problem,

R(x∗) = R(x) + J(x)(x∗ − x) +O
(
‖x∗ − x‖2

)
(2.4)

where J is the Jacobian matrix that expresses the sensitivity of each equation to each unknown,

Jij ≡
∂Ri

∂xj
. (2.5)

Truncating second and higher order terms causes x∗ to not represent the true solution in general.
However, if we assume that it does, i.e. R(x∗) = 0, eq. (2.4) can be rearranged to give the classical
form for computing solution updates using Newton’s method,

J∆x = −R (2.6)

13



where both J and R are evaluated at the current nonlinear solution iterate xk. An iteration of
Newton’s method involves solving the linear problem of eq. (2.6) and using the result to update the
nonlinear solution iterate,

xk+1 = xk + ∆xk (2.7)

where superscript k represents the iteration number.

Eq. (2.6) is equally valid for solving a nonlinear system arising from coupled physics applications
as it is for standalone applications. It is instructive to write the equation in partitioned form
corresponding to eq. (2.3) as follows[

JAA JAB

JBA JBB

] [
∆xA

∆xB

]
= −

[
RA

RB

]
. (2.8)

Within the context of coupling multiple physics applications, a pure Newton algorithm suffers from
one paramount issue. Namely, it requires all sensitivities of equations to variables to be correctly
evaluated. With reference to eq. (2.8) application A must be able to supply correct sensitivities to
application B variables and vice-versa. These are reflected in the off-diagonal blocks of the Jacobian
matrix, i.e. JAB and JBA. In production application environments, such a requirement is excessively
stringent. For example, either or both applications A and B may be actively developed, proprietary,
or even without available source code. Moreover, not only sensitivities of how one application uses
another’s variables must be determined but also sensitivities to how the variables are transferred
between applications. Data transfers can be complicated and often comprise an active area of
research requiring rapid performance assessments of candidate methods. These and other factors
make a pure Newton algorithm prohibitive as a general coupling capability.

2.2 Weak coupling

From a software standpoint, the simplest means of coupling multiple application codes together
to achieve a multi-physics capability is based on some form of fixed-point iteration also known as
successive substitution. As opposed to a pure Newton algorithm, weak coupling represents the most
accommodating and general approach. Its appeal is its simplicity and the minimal requirements
placed upon application codes to participate. and may even be preferred over stronger coupling when
the inter-dependence among participating physics is loose. The idea is represented algorithmically
for coupling three physics applications in eqs. (2.9)-(2.15).

Do while ‖R(xA,xB ,xC)‖ > ε :
Solve for A: RA(xA, x̃B, x̃C) = 0 (2.9)

⇓ x̃A ← xA (2.10)
Solve for B: RB(x̃A,xB , x̃C) = 0 (2.11)

⇓ x̃B ← xB (2.12)
Solve for C: RC(x̃A, x̃B,xC) = 0 (2.13)

⇓ x̃C ← xC (2.14)
Evaluate : ‖R(xA,xB ,xC)‖ (2.15)

In words, fixed-point iteration consists of solving each physics in a sequence for its own problem
variables while holding all other physics applications’ variables fixed. Updated values are transferred
to the next physics application in the sequence which in turn computes a solution for its own variables
and so on. After the sequence has been been traversed, an overall coupled residual is evaluated
using the most current values for all physics application variables, and measures of convergence
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are tested to determine whether or not to repeat the sequence. This last step typically involves a
synchronization of all variables to all physics applications to ensure consistency of updated values.
A typical convergence criterion would be reduction of the L2-norm of the coupled problem residual
below some prescribed tolerance, for example. Eqs.(2.10), (2.12) and (2.14) represent transfers of
updated variables form a physics application to a form needed by the subsequent physics module.
These steps can be as simple as nodal interpolations of variables from one mesh to another (with
copying of values on conformal meshes being a special case) to complex mappings, not necessarily
one-to-one. An example of the latter would be the transfer of post-processed stresses across non-
conformal interfaces performed so as to conserve momentum.

More generally, the algorithm of eqs.(2.10)-(2.14) can be expressed as a nonlinear fixed-point vector
mapping for the entire set of coupled problem unknowns as follows:

xk+1 = F
(
xk
)

(2.16)

Fixed-point theory shows that iterates of eq.(2.16) convergence to a solution, x∗ if∣∣∣∣∣∣∣∣ ∂F∂x
∣∣∣∣
x∗

∣∣∣∣∣∣∣∣ < 1 (2.17)

Moreover, the rate of convergence is linear with a constant rate determined by eq.(2.16), i.e.∣∣∣∣xk+1 − x∗
∣∣∣∣ ≤ γ ∣∣∣∣xk − x∗

∣∣∣∣ (2.18)

with γ ≤ ||∂F/∂x|x∗ ||. As will be seen in both our prototyping studies and our experiences with
real-world applications, these theoretical predictions are observed and provide a foundation on which
to base expectations regarding the existence and efficiency of weak-coupling convergence.

We want to pause here to make an important point regarding classification of the overall coupling
algorithm compared to the algorithm(s) used by each physics application to update its own problem
variables, which could be different for each physics application in general. It is entirely possible
and even common to perform the updates represented by eqs.(2.9), (2.11) and (2.13) using a robust
method, e.g. Newton’s method. However, the overall coupling algorithm is classified as weak because
each physics application updates its own variables independent of any concurrent changes to other
application’s variables. It is therefore based on a fixed-point approach.

Because of simplicity and straightforward implementation, weak coupling is often the first and
sometimes only approach considered to enable multi-physics capability by coupling multiple physics
applications. As will be shown later, fixed-point algorithms can exhibit strongly problem dependent
convergence behavior that under-performs Newton algorithms in general. It would therefore be
very desirable to develop coupling algorithms that preserve the simplicity of weak coupling with the
performance of strong coupling. Such intermediate coupling algorithms are the focus of this work
and are discussed in the following section.

2.3 Intermediate Coupling

This section presents several strategies to obtain performance approaching that of strong coupling
with requirements approaching that of weak coupling. We do this by leveraging weak coupling
functionality to effect approximations to Newton’s method for the coupled problem. Our approach
permits a spectrum of algorithms. The more functionality applications can provide, the fewer the
approximations to a pure Newton algorithm.

15



2.3.1 Jacobian-Free Newton-Krylov (JFNK)

Perhaps the most important algorithm we consider for intermediate coupling is that of JFNK (2).
Simply stated, it is a Newton method that employs a Krylov-based iterative linear solver, e.g. GM-
RES, conjugate gradient, etc. Its utility lies in recognizing that the Krylov linear solver only requires
the action of the Jacobian on a vector. The Jacobian matrix does not have to be explicitly formed,
and in this way JFNK bypasses the paramount obstacle associated with a pure Newton algorithm.
It has other desirable properties as well such as significantly reduced memory requirements. JFNK
is derived as a variation of Newton’s method:

R(x + εp) = R(x) + J(x + εp− x) +O
(
‖εp‖2

)
. (2.19)

Truncating second and higher order terms and rearranging gives

Jp ≈ R(x + εp)−R(x)
ε

(2.20)

which provides the action of the Jacobian on a vector p accurate to first order. The parameter ε
is a perturbation parameter, and eq. (2.20) can be viewed as an approximation to the directional
derivative of the residual in direction p. Eq. (2.20) is ideally suited to our goal of providing strong
coupling convergence behavior with weak coupling functionality in that it captures sensitivities
of all equations to all variables with simple residual fills. Moreover, it has the added benefit of
reduced memory requirements and does not require determination of any sensitivities of equations
to variables, even its own. Compared to a pure Newton method, JFNK is an approximate Newton
method with approximations resulting from the inexact convergence of the iterative linear solves
and, most importantly, from the approximation error associated with the action of the Jacobian.
The latter source of approximation can represent the greatest disadvantage of this algorithm. The
approximation error is directly related to the selection of a value for ε which should represent a
meaningfully small perturbation for all variables of the coupled problem. This assumption breaks
down when variables associated with different physics applications being coupled differ by orders of
magnitude. The coupled problem is then said to be poorly scaled. Unless otherwise noted, values
for ε used in this work were computed using a heuristic expression that has proved to work well in
a variety of contexts,

ε = λ ∗
(
λ+
‖x‖
‖p‖

)
(2.21)

with λ = 10−6.

Another issue that is essential to the viability of JFNK is that of preconditioning. It is in this area
that the matrix-free appeal of eq.(2.20) must yield to some degree to the construction and use of
a preconditioning matrix and is the reason this algorithm is referred to as Jacobian-free instead of
matrix-free. As with any iterative linear solver, adequate preconditioning is a necessity for obtaining
converged linear solutions with reasonable effort. The preconditioned form of eq. (2.20) is

JM−1p ≈ R(x + εM−1p)−R(x)
ε

(2.22)

where M is a preconditioning matrix which has been applied as a right-preconditioner as shown.
In practice, right-preconditioning is applied in a two-step process that involves first solving for a
preconditioned form of the vector:

My = p (2.23)

and then using y in place of p in eq.(2.20). A good preconditioner should be relatively easy to
evaluate and apply while retaining as much of the character of the Jacobian as possible. In addition
to problem scaling, preconditioner effectiveness can also be highly problem-dependent. Of all issues
affecting the viability and performance of JFNK, preconditioning is often most important and the
most challenging. For this reason, much of this work has involved implementing various types of
preconditioning for JFNK and assessing their relative merits in a variety of contexts.
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2.3.2 Matrix Approximations

This section describes a variety of ways of constructing matrix approximations to the true Jacobian.
These can be used as either an approximate Jacobian or as a preconditioning matrix M for JFNK
as in eq. (2.22). As a point of reference, the partitioned Jacobian for the coupled problem in eqs.
(2.9)-(2.15) is represented as

J =


JAA JAB JAC

JBA JBB JBC

JCA JCB JCC .

 (2.24)

We next describe a variety of ways of forming approximations to this matrix.

2.3.2.1 Inexact Jacobian

For physics applications that employ a Newton method to update their own variables, a simple and
straightforward construction of an approximate Jacobian consists of combining each application’s
Jacobian matrix into a composite block-diagonal approximation, e.g.

J̃ =


JAA 0 0

0 JBB 0

0 0 JCC .

 (2.25)

If used in place of the true Jacobian, eq. (2.25) amounts to a weak coupling algorithm without
transfers of updated variables to the next problem in the sequence, i.e. solve eqs. (2.9), (2.11) and
(2.13) simultaneously without eqs. (2.10), (2.10) and (2.10). However, strong coupling behavior is
obtained by using eq. (2.25) as a preconditioning matrix M within the JFNK algorithm of eq. (2.22).
This is precisely our objective of achieving strong coupling performance by leveraging weak coupling
functionality.

2.3.2.2 Finite Differencing

Another means of evaluating Jacobian entries is to replace the continuous derivatives of eq. (2.5)
with discrete approximations as follows:

Jij ≈
Ri(x + δej)−Ri(x)

δ
. (2.26)

This approach has the advantage of selecting a meaningful perturbation size δ for each variable, i.e.

δ = α ∗ |xj |+ β (2.27)

where we have employed α = 10−4 and β = 10−6. The disadvantage of this approach is the enormous
cost. For a total problem size of N variables, forming a numerical approximation to the Jacobian
using eq. (2.26) would require N2 function evaluations, i.e. the entire residual vector R must be
filled for each variable xj . To mitigate this cost, variables can be grouped into colors such that each
equation Ri depends on at most one variable of a particular color. This allows all variables of a
given color to be perturbed simultaneously and reduces the cost for numerically approximating the
Jacobian to cN with c being the number of colors. For applications that solve discretized differential
equations over a mesh, the number of colors reflects the connectivity of the mesh and is typically
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c < 100 independent of mesh refinement. For static meshes, e.g. no mesh refinement, the coloring
algorithm is performed once on the structure or matrix graph of the Jacobian matrix and represents
a one-time overhead which is amortized over the course of the simulation. Application of matrix
coloring transforms eq. (2.26) into the following,

Jij(m) ≈
Ri(x + δm · cm)−Ri(x)

δm · ejm

, (2.28)

where cm is the mth coloring vector of length N with ones in positions associating a variable with this
color, and subscript j(m) reflects a mapping into the appropriate columns of the Jacobian matrix
for this color. For each variable in the set for a given color, a perturbation is computed using eq.
(2.27). In this work, we use a greedy coloring algorithm (3) implemented in the Trilinos nonlinear
solver package NOX.

2.3.2.3 Secant Approximation

A broad class of inexpensive methods to update approximate Jacobian matrices falls under the
category of secant or Broyden methods. Their use as approximate Jacobian matrices produces what
is commonly called quasi-Newton methods. In short, an existing approximation for the Jacobian
matrix is updated after each Newton iteration using a multi-dimensional secant evaluation. These
are inexpensive, recursive, rank-one updates given by the following:

J̃k+1 = J̃k +
(yk − J̃ksk)sT

k

sT s
(2.29)

where yk ≡ Rk+1 − Rk and sk ≡ xk+1 − xk. This is equivalent to a multi-dimensional secant
approximation to the Jacobian which preserves the following properties:

J̃k+1sk = J̃ksk (2.30)
J̃k+1q = J̃kq, ∀q : sT

k q = 0 (2.31)

As written, eq. (2.29) generates updated matrices that are dense in general. Within the context of
massively parallel multi-physics simulations, dense matrices lead to unacceptable memory require-
ments and poor scalability. Because of this, we employ a modified form of eq. (2.29) that preserves
the sparsity of the original Jacobian structure,

J̃k+1 = J̃k + PZ

[
D−1

(
yk − J̃ksk

)
sT
k

]
(2.32)

where PZ is a matrix projection operator that zeros elements of the update that lie outside the
sparsity pattern of the original Jacobian matrix graph, and D is a diagonal matrix with entries Dii =
sT
i si. This sparsity-preserving secant update produces approximate Jacobian matrices satisfying

J̃k+1sk = yk, but the matrices no longer exhibit properties of eqs. (2.30) and (2.31).

2.3.2.4 Hybrid Approximations

Here we wish to simply point out that some or all of the preceding techniques can be employed
together to produce a composite approximation to the Jacobian matrix which can then be used as
either the coupled problem Jacobian or as a preconditioning matrix with JFNK. As an example,
the blocks of the Jacobian in eq. (2.24) could be provided as follows: JAA and JCC taken as-is
from each respective application, JBB filled numerically using colored finite differences based on
structural information provided from the B application, and the remaining blocks filled using secant
updates to values in locations having nonzero sparsity in blocks JAB , JAC , JBA, JBC , JCA and
JCB . Moreover, some or all of these updates can be performed less frequently than every Newton
iteration.
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2.3.3 Nonlinear Elimination

All of the algorithms and variants described in Section 2.3.1 rely on one key piece of functionality,
formation of the nonlinear residual for each application. It is not uncommon for even this seemingly
simple requirement to be unavailable or overly burdensome. It is also possible that a certain applica-
tion’s solution technology embodies a significant investment in time and resources that would be lost
if forced into the context of JFNK. Together these and other considerations lead to the need for an
intermediate coupling approach that is as general as possible in that an application is not required
to fill a residual, and any specialized solution capabilities are preserved. Coupling algorithms based
on what we call nonlinear elimination do exactly this.

Nonlinear elimination involves simply eliminating one or more application’s variables from the cou-
pled problem at the appropriate time. Within the context of JFNK, each residual evaluation would
involve the elimination of any application variables targeted using nonlinear elimination. Choices
on which application(s) to treat in this manner are often problem-dependent. To see our use of this
mode of coupling, see Sections 7.1 and 8.4.2

2.4 Software Implementations

We have built our multi-physics coupling technology as extensions to existing algorithm capability
originally developed for solving nonlinear problems in single physics applications. As such, the
JFNK algorithm of Section 2.3.1 and the matrix approximations of Sections 2.3.2.2 and 2.3.2.3
were either present or added to the Trilinos nonlinear solver package NOX. We then added another
layer of abstraction via object-oriented extensions to handle the composition and decomposition of
vector and matrix objects utilized in the coupling algorithms. The extensions allow a monolithic
view of the coupled problem which delegates callback support to underlying individual NOX solvers
attached to each physics application being coupled. This allows construction of the complete coupled
problem residual, for example, from pieces obtained from callbacks to each physics application
followed by an assembly step. Moreover, any additional functionality an application can supply
can be readily used to enrich the coupling algorithms. For example, if an application can fill its
own Jacobian, these values can be used in a hybrid matrix approximation as described in Section
2.3.2.4. If only the structure of an application’s Jacobian is known, e.g. locations of non-zero
entries, this information can be used to numerically approximate its block matrix contribution
using either colored finite differences or secant updates of Sections 2.3.2.2 or 2.3.2.3, respectively. At
present, use of NOX represents a minimum requirement for an application to participate in a coupled
multi-physics simulation employing the intermediate coupling strategies described previously. We
anticipate working to relax this requirement as our coupling work becomes integrated into subsequent
efforts.
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Chapter 3

Prototyping Results

This chapter applies the coupling algorithms from the previous chapter to two canonical coupling
prototypes. We consider the canonical cases of coupling across an interface and coupling among
physics applications within a shared physical domain. Using these idealizations we assess perfor-
mance of coupling algorithms in the absence of complications arising from real applications.

3.1 Interfacial Coupling Prototype

We begin with what is perhaps the simplest coupling scenario involving two 1-dimensional problems
coupled at a single node. This problem allows us to identify the limitations inherent in weak coupling
approaches based on fixed-point analysis first presented in the literature (4). We then demonstrate
how our Intermediate coupling algorithms of Section 2.3 can use the same functionality employed in
weak coupling to effect dramatically more robust and efficient convergence.

3.1.1 Problem Description

The physical problem we consider was first presented in the literature (4) and consists of conjugate
heat transfer between two 1-dimensional domains shown in figure 3.1. Each physical domain involves

Figure 3.1. Schematic of the 1-dimensional interfacial coupling pro-
totype problem representing conjugate heat transfer.

conductive heat transfer governed by the equations,

d2T

dx2
− cdT

dx
= 0,∀x ∈ Ω1 (3.1)

κ
d2T

dx2
= 0,∀x ∈ Ω2 (3.2)
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with c a constant, and κ the ratio of thermal conductivity in Ω2 to that in Ω1. The temperature at
the far ends of each domain are specified via Dirichlet boundary conditions, i.e.

T |x=0 = T0 (3.3)
T |x=2 = T2 (3.4)

The problem is well-posed after specifying boundary conditions at x = 1 consistent with conjugate
heat transfer. Normally, these take the form of enforcing continuity of temperature, T |x=1− =
T |x=1+ , and of heat flux, q|x=1− = q|x=1+ , across the interface at x = 1. However, we enforce these
conditions in the same manner as (4) in which the two conditions are weighted by an arbitrary
fraction and combined. This produces two Robin-type boundary conditions at the shared interface,

α (T |x=1− − T |x=1+) + (1− α) (q|x=1− − q|x=1+) = 0 (3.5)

β (T |x=1− − T |x=1+) + (1− β) (q|x=1− − q|x=1+) = 0 (3.6)

where α ∈ [0, 1], β ∈ [0, 1] and α 6= β for well-posedness. The fractions α and β represent two
adjustable parameters that control how information is communicated across the shared interface.

In the domain Ω1, heat flux at the interface is governed by Fourier’s law of heat conduction, and
in Ω2 it is considered to involve conduction as well as radiation transport. Together, these are
expressed as,

q|x=1− = −dT
dx

∣∣∣∣
x=1−

(3.7)

q|x=1+ = −dT
dx

∣∣∣∣
x=1+

+R
(
T |4x=1+ − T 4

2

)
(3.8)

where R is a constant that reflects the amount of heat transfer due to radiation and represents the
only source of nonlinearity in the coupled problem. When R = 0 each problem in domains Ω1 and
Ω2 as well as the coupled problem is linear.

The 1-dimensional conjugate heat transfer prototype problem is perhaps the simplest canonical
coupling problem one could construct. As formulated, there are three adjustable parameters: α, β
and R, with R determining the nonlinearity of the coupled problem.

3.1.2 Results

3.1.2.1 Weak Coupling

We applied the weak coupling algorithm of Section 2.2 to the interfacial, conjugate heat transfer
problem just described and obtained results consistent with the literature and reproduced in Figure
3.2. By reproducing published results, we were able to verify our weak coupling implementation and
to establish a context in which to compare the merits of our intermediate coupling algorithms. The
results of figure 3.2 are revealing in that they show that the existence of weak coupling convergence
can be very problem-dependent. The values of α (x-axis) and β (y-axis) for which weak coupling
converges when the problem is linear, i.e. R = 0, is almost completely inverted when the problem
becomes markedly nonlinear, i.e. R = 5.67. In addition to the existence of convergence, the rate of
convergence for weak coupling is also very problem-dependent. Figure 3.3 shows the rate of conver-
gence as the norm of the coupled problem residual for each weak coupling algorithm iteration for the
case α = 0.5, R = 0.0 and three values of β approaching the critical value of β = α = 0.5 at which
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Figure 3.2. Weak coupling convergence behavior for 1-dimensional
conjugate heat transfer prototype. The x-axis and y-axis correspond to
values for α and β, respectively. Shaded regions indicate regions of non-
convergence. The R-values are used in eq.(3.8) and reflect the amount
of nonlinearity in the prototype problem.

weak coupling fails to converge. Similar dependence of convergence rate on problem parameters is
exhibited for the nonlinear problems, i.e. R > 0. To be consistent with the literature, we performed
weak coupling for the coupled problem by employing Newton’s method for each problem in Ω1 and
Ω2. This is common in real-world application environments that employ fixed-point based weak
coupling for multi-physics simulations.

3.1.2.2 JFNK Coupling

By performing weak coupling with each problem in Ω1 and Ω2 solved using Newton’s method, we were
able to construct an approximate preconditioning matrix for use with JFNK as described in Section
2.3.2.1. The existence of convergence and rate of convergence were dramatically improved over
weak coupling using essentially no additional application information, e.g. without a full Jacobian
matrix. A plot corresponding to Figure 3.2 is shown in Figure 3.4 for JFNK. Here, all R-values are
represented, and convergence is achieved for all values of α and β except the degenerate case β = α
for which no solution exists.

In addition to dramatically improved convergence, the rate of convergence is similarly improved
using JFNK. Table 3.1 shows the number of iterations required to converge the coupled problem for
weak coupling with R = 0 as well as for JFNK coupling with R = 0 and R = 5.67. When R = 0,

Coupling Iterations
α β Weak, R = 0 JFNK, R = 0 JFNK, R = 5.67
0.5 0.40 33 1 3
0.5 0.45 60 1 3
0.5 0.49 253 1 3
0.5 0.60 Fail 1 3

Table 3.1. Convergence rates for weak coupling with R = 0 and JFNK
coupling with R = 0 and R = 5.67.

both problems in Ω1 and Ω2 as well as the coupled problem are all linear. JFNK coupling recaptures
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Figure 3.3. Weak coupling convergence behavior for 1-dimensional
conjugate heat transfer prototype. The x-axis and y-axis correspond to
values for α and β, respectively. Shaded regions indicate regions of non-
convergence. The R-values are used in eq.(3.8) and reflect the amount
of nonlinearity in the prototype problem.

the linearity of the coupled problem as indicated by requiring only one nonlinear iteration. This is
consistent with the performance of a Newton-based method applied to linear problems. Moreover,
JFNK applied to the nonlinear coupled problem with R = 5.67 shows very good convergence rates
consistent with quadratic convergence characteristic of Newton-based methods.

3.2 Shared-Domain Coupling Prototype

We next consider a canonical coupling scenario involving coupled physics within the same physical
space. This coupling prototype consists of three physics representing temperature, species and
one-dimensional compressible flow. Each is time-dependent. The temperature and species physics
contain a diffusion term and are mutually coupled through a nonlinear source term present in
both. One-dimensional compressible flow is represented by a Burgers equation having a temperature
dependent viscosity. In addition to coupling within the same physical space, this problem also
coupled partial differential equations (PDEs) of differing characteristic type, i.e. temperature and
species being two parabolic PDEs and Burgers being a hyperbolic PDE. Temperature, species and
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Figure 3.4. JFNK coupling convergence behavior for 1-dimensional
conjugate heat transfer prototype. Axes are the same as in Figure 3.2.
The line β = α is a degenerate case for which no solution exists. All
R-values are represented.

compressible flow are represented by the following governing equations, respectively:

∂T

∂t
= D1

∂2T

∂x2
+ α+ T 2C − (1 + β)T (3.9)

∂C

∂t
= D2

∂2C

∂x2
− T 2C + βT (3.10)

∂U

∂t
= µ

∂2U

∂x2
− ∂

∂x

(
U2

2

)
(3.11)

where for this problem, α and β are constants and viscosity, µ represents a temperature-dependent
viscosity expressed as, µ = T 1.5. Dependent variables, T , C and U are all dimensionless. Equations
(3.9) and (3.10) together represent a well-studied coupled system known as a Brusselator problem
(5). Again, the Burgers equation of eq.(3.11) is added to the Brusselator system to provide a richer
prototype module for the coupled system in that it introduces some degree of hyperbolicity to the
system. We wish to test for limitations to our algorithms for coupling scenarios involving mixed
PDE types before launching into real-world applications environments. Boundary conditions for
each PDE are specified respectively as

T (t, 0) = T (t, 1) = α = 0.6 (3.12)
C(t, 0) = C(t, 1) = β/α = 2.0/0.6 (3.13)
U(t, 0) = 1.0
U(t, 1) = −1.0 (3.14)

Equations (3.9)-(3.11) are discretized spatially using a Galerkin finite-element approach with linear
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basis functions. This method is known to breakdown in the presence of solution discontinuities
such as resolving a shock in compressible flow. The Burgers equation of eq.(3.11) with boundary
conditions of eq.(3.14) can admit a shock depending on the value of viscosity µ. The range of
temperature-dependent viscosity values employed in this work avoid a shock but do lead to large
velocity gradients.

Temporal discretization is provided using the unconditionally stable backward Euler method. Time
steps of ∆t ≤ 1.0 are used and provide adequate accuracy for the purposes of our study.

3.2.1 Results

This section present results for the nonlinearly coupled temperature, species and flow prototype
problem obtained using the weak and strong coupling algorithms described in Chapter 2 and their
implementation in the NOX nonlinear solver library in Trilinos.

For both weak and JFNK coupling algorithms, linear solves were performed using GMRES with
incomplete LU factorization with no fill, i.e. ILU0, with a Krylov subspace of dimension 200, no
restarts, and convergence defined as a reduction of the linear residual norm by eight orders of
magnitude. Convergence for all nonlinear solves was defined to be ‖R‖ < 10−8.

3.2.1.1 Weak Coupling Results

Here, we establish a weak coupling baseline against which to compare performance of our Newton-
based coupling strategies. The time-dependent problem of section 3.2 was run for 50 time steps of
size ∆t = 0.50 corresponding to about two periods of the periodic system. Each time step involved
solution of the coupled nonlinear system. The weak coupling approach of section 2.2 required a total
of 533 fixed-point iterations and took 111 seconds to complete. Figures 3.5 and 3.6 show convergence
behavior for the weak coupling approach along with results for JFNK coupling using only problem
information employed in weak coupling.

3.2.1.2 Results for Lagged Inexact & Secant Approximations to J

This section provides performance comparisons for approximating the Jacobian matrix J using the
methods of Section 2.3.2 in addition to the extreme approximation of simply using the identity matrix
I to approximate J. Comparisons are also made for attempts at improving algorithm efficiency by
updating the approximation matrices less frequently than each nonlinear iteration. The frequency
of updating the approximation matrices are denoted in the table as follows: t0, occurring only
once for the entire simulation using the initial guess for the solution at the initial time step; ∆t,
occurring at the beginning of each time step using the initial guess for the solution and used for
all nonlinear iterations during this time step, and 1, occurring for each nonlinear iteration as is
traditionally done. The results of Table 3.2 show that a minimal amount of representation of the
Jacobian is required for convergence of the coupled nonlinear system. Using only the identity matrix
I in place of the Jacobian amounts to a plain Picard method and is clearly inadequate to converge
the problem. Filling the diagonal blocks once with J̃ evaluated at t = 0 and then updating the
off-diagonal blocks using the modified Broyden approach also proves inadequate. Recomputing the
matrices more frequently leads to convergence of all Jacobian approximations with performance of
the variations differing by little more than a factor of 3.
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Figure 3.5. Number of nonlinear iterations required to achieve ‖R‖ <
10−8 at each time step. Loose coupling is the weak coupling of Section
2.2, and Newton coupling is the JFNK algorithm using a block-diagonal
approximation to the Jacobian computed every nonlinear iteration as a
preconditioning matrix as described in Section 2.3.2.1.

Recompute
Frequency Jacobian NL iters LS iters Time (s)

t0 I Fail Fail Fail
t0 diag(I) Fail Fail Fail
t0 J̃ 1348 1348 77.4
t0 J̃B Fail Fail Fail
t0 J 1067 6238 103

∆t J̃ 783 783 48.2
∆t J̃B 455 3228 50.2
∆t J 190 1501 29.4

1 J̃ 777 777 91.6
1 J̃B 446 3174 75.3
1 J 151 1253 44.0

Table 3.2. Results for Newton-based coupling using Lagged Inexact
and Broyden matrix approximations to J. Simulations are for the cou-
pled T , C and U prototype problem with each physics discretized using
1000, 1000 and 2000 1-dimensional finite elements, respectively. 50 times
steps of size ∆t = 0.50 were taken.
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Figure 3.6. Representative nonlinear convergence behavior at a single
time step. Newton results are the same as in figure 3.5.

3.2.1.3 JFNK Results

We now use JFNK with each of the matrix approximations of the preceding section now used as
preconditioning matrices. Results are shown in Table 3.3. Here, all variants converge, even the
effectively unpreconditioned case using I. Whereas JFNK has recovered algorithm robustness, the
choice of constructing a preconditioning matrix is now seen to be crucial to algorithm efficiency. We
anticipate this comparison of results for a representative multi-physics prototype to provide insight
and guidance for tuning analogous real-world coupling scenarios for greater efficiency.

Recompute
Frequency Preconditioner NL iters LS iters Time (s)

t0 I 499 99,800 2420
t0 J̃ 151 2578 61.4
t0 J̃B 151 2582 71.0
t0 J 151 2666 66.5

∆t J̃ 151 1311 43.0
∆t J̃B 151 1390 52.8
∆t J 151 1371 54.3

1 J̃ 151 1206 46.6
1 J̃B 151 1316 55.9
1 J 151 1256 70.3

Table 3.3. Results for JFNK coupling using the matrices of Table 3.2
as preconditioners. The same spatial and temporal discretizations hold
as for Table 3.2.
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3.2.1.4 Coupling Comparison

As a means of comparing weak coupling with a Newton-based coupling using the same problem
information, figures 3.5 and 3.6 show convergence behavior of both approaches. The Newton ap-
proach uses the Jacobian-free Newton-Krylov operator along with preconditioner J̃ updated every
nonlinear iteration. Thus, the same Jacobian blocks used in weak coupling are now used to con-
struct a preconditioner for the strong coupling. Strong coupling shows improvement in efficiency
by more than halving the total time to solution. Robustness is seen in figure 3.5 which shows a
nearly constant number of nonlinear iterations for the Newton-based approach compared to weak
coupling which shows greater sensitivity to the point along the solution path. Improvements in both
robustness and efficiency are further borne out by the results of table 3.4. Increasing the coupled
problem size by a factor of 10 leads to a roughly proportional increase in the total time for both
weak and strong coupling approaches. Doubling the time step from ∆t = 0.5 to ∆t = 1.0 causes the
weak coupling approach to fail, whereas the strong Newton-based approach converges to a solution
without incurring any additional cost over that of the easier time step size.

Method Mesh (TxCxU) ∆t Time, s
Weak 1000x1000x2000 0.5 111
JFNK 1000x1000x2000 0.5 46.6
Weak 10000x10000x20000 0.5 911
JFNK 10000x10000x20000 0.5 482
Weak 1000x1000x2000 1.0 Fail
JFNK 1000x1000x2000 1.0 46.0

Table 3.4. Results comparing weak coupling to strong coupling
demonstrating improvements of the latter on both robustness and ef-
ficiency.

3.3 Prototyping Conclusions

The preceding results show that use of the same problem information used to perform straightforward
successive substitution (weak coupling) can be better used to effect strong Newton-based coupling.
Several variants of Newton-based coupling are enabled by object-oriented extensions to an existing
nonlinear solver library, making these strong coupling strategies generally available to any set of
codes or any physics simulation framework employing the library. The Newton variants allow for
performance tuning which the preliminary results presented here suggest can be problem dependent.
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Chapter 4

Sierra Multi-Physics

This chapter extends the prototyping studies to multi-physics scenarios involving production appli-
cations in the Sierra framework. Similar in presentation to the prototyping results, we begin with
a scenario involving interfacial coupling. In particular, we worked to enable coupled conjugate heat
transfer involving a compressible fluid modeled using Premo coupled to a thermally conducting body
modeled using Calore. We then investigated coupled multi-physics within the same physical domain
via multiple instances of Aria. In addition to assessing the performance of our coupling algorithms
relative to Sierra’s default mode of weak coupling, this part of our work allowed us to address
software challenges associated with deploying our coupling algorithms in a production applications
environment.

Briefly, the Sierra applications framework is a common applications development environment devel-
oped at Sandia to leverage basic services such as I/O, message-passing, element libraries, transfers of
mesh data, etc. that are common among physics applications. Application codes brought into this
environment can then send and receive data from other applications, thereby enabling multi-physics
simulations without requiring significant re-writing of code.

4.1 Interfacial Coupling via Premcal, Coupled Premo-Calore

Our first coupling study in Sierra required that we identify a relevant and realizable multi-physics
scenario. We decided to couple the thermal code Calore to the compressible flow code Premo to
enable conjugate heat transfer across a shared interface analogous to the prototype study of Section
3.1. Our first task, which turned out to be quite involved, was to create a new Sierra application,
Premcal, which supported both the default weak coupling as well as our new Newton-based coupling
algorithms.

4.1.1 Problem Description

In this section, we describe the physical problem we targeted with Premcal. As shown in figures 4.1
and 4.2 we consider external compressible flow over a solid body whose temperature is governed by
linear heat conduction. For both geometries, fluid flow external to the solid body is modeled as
viscous and compressible via the Navier-Stokes equations. These can be expressed in the following
form: ∫

V

∂W
∂t

dV +
∮

Γ

(Fc + Fv) · n dΓ = 0 (4.1)
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A

B

(a) Fluid domain and mesh having outer radius of
10.0.

D

C

(b) Solid domain surface mesh having radial dimen-
sion of 1.0.

Figure 4.1. Outer fluid and inner solid domains for external compress-
ible flow over a thermally conducting circular cylinder. A two-element
planar slab of thickness 1.0 is used.

(a) Blunt-wedge fluid geometry and mesh configured
to capture a shock at Ma = 3.0.

(b) Blunt-wedge conducting solid geometry.

Figure 4.2. Blunt-wedge geometry.
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where W = {ρ, ρu, ρv, ρw, ρE}T is the solution vector of conserved variables and

Fc · n =


(ρui)ni

(ρu1ui + pδi1)ni

(ρu2ui + pδi2)ni

(ρu3ui + pδi3)ni

((ρE + p)ui)ni


is the inviscid flux vector, and

Fv · n =


0

τi1ni

τi2ni

τi3ni

(−qi + ujτij)ni


is the viscous flux vector. In the above, ρ is the density; ui = u with u = u1, v = u2, and w = u3 are
the Cartesian velocity components; p is the pressure; E is the total energy defined by E = e+u ·u/2;
e is the specific internal energy defined by e = CvT ; Cv is the specific heat at constant volume; T
is the temperature defined for an ideal gas by p = ρRT ; R is the gas constant, ni = n is the surface
normal vector; and δij is the Kronecker delta. Corresponding to the conservative state vector W we
define a primitive state vector U = {ρ, u, v, w, p}T .

The viscous stress tensor is given by,

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
− 2

3
µ
∂uk

∂xk
δij (4.2)

where µ is the molecular viscosity coefficient. Heat fluxes q are assumed to obey Fourier’s Law,

q = −κ∇T . (4.3)

and a constant Prandtl number, Pr is used.

The solid body is shown as the red surfaces in figures 4.1 and 4.2 and is treated as impermeable to
fluid flow and having no-slip. The former condition implies

Fb = F · nb =


0
pnb

0
0

 ,

and the latter condition implies u = 0. Superscript b denotes enforcement at the fluid-body interface.
Far-field boundary conditions are depicted as blue surfaces in the figures and are specified via an
assumed infinity profile, u = U∞. The green surfaces correspond to symmetry planes involving no
flow across and no traction along them.

Heat transfer within the solid body is modeled as a balance of thermal transport governed by the
following equation,

ρC
∂T

∂t
−∇ · (K∇T )− q̇ = 0 (4.4)

where T is the unknown temperature field within the body, K is a thermal conductivity matrix, and q̇
is a volumetric source term. For the present work, K is treated as a scalar constant, e.g. K = κ, and
the source term is assumed to be zero. We also limit this work to steady-state conditions. Together,
these assumptions reduce eq.(4.4) to the Laplace equation governing linear heat conduction within
the solid body.
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Thermal boundary conditions at the fluid-body interface (red surfaces) represent the coupling be-
tween the fluid and solid domains. Conjugate heat transfer is modeled by requiring temperature
and heat flux normal to the interface to be continuous across the interface:

T b
f = T b

s (4.5)

n · qb
f = n · qb

s , (4.6)

where subscript f denotes the fluid phase, and subscript s denotes the solid body. Equation (4.5)
represents a Dirichlet boundary condition, while eq.(4.6) is of Neumann type.

4.1.2 Summary of Applications Codes

This section briefly describes the two codes Premo and Calore which solve the equations governing
compressible viscous fluid flow and heat transfer, respectively.

Premo is based on a node-centered, edge-based, finite-volume algorithm similar to the formulation
in Haselbacher and Blazek (6) and Luo et al. (7). More detail can be found in ref (8, 9). Calore is
a computational heat transfer application code based on galerkin finite elements that solves a wide
variety of both linear and nonlinear thermal physics models.

Premcal embodies the coupling of the two codes Premo and Calore via enforcement of the boundary
conditions of eqs.(4.5) and (4.6). The design of Premo and Calore is such that we were required to
enforce eq.(4.5) within Premo as a Dirichlet condition with values transferred from Calore. Con-
versely, eq.(4.6) is enforced by first having Premo compute a heat flux normal to the solid body
at each surface node on the fluid/solid interface, then compute a corresponding set of convective
heat transfer coefficients, and finally transfer these coefficients to Calore for use in its surface in-
tegration along the interface within the context of enforcing Neumann-type boundary conditions
using Galerkin finite elements. Hence, continuity of heat flux across the interface is enforced via the
expression:

− κn · ∇T = h
(
T b

s − Tref

)
(4.7)

where Premo computes the left expression, and then determines values for h using an arbitrary but
realistic value for Tref .

4.1.3 Coupling Considerations

Premcal seeks to find a solution to the residual equation,

R = R(W, T ) = (RW,RT ) = 0 (4.8)

with RW defined by eq.(4.1) and RT by eq.(4.4). The values W represent the vector degrees of
freedom for Premo (5 per node in the discretized fluid domain), and T is the dependent scalar field
within the solid body and represent the unknowns for Calore.

We applied both weak coupling and Newton-based coupling algorithms to effect solutions to eq.(4.8).
For weak coupling, we had two choices for initiating the algorithm that differ by which application
to solve first. This signifies yet another problem-dependent sensitivity of weak coupling performance
as will be seen in the results section. By way of example, weak coupling initiated by solving flow
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(Premo) first, leads to what we denote as W-T iterations corresponding to eq.(2.16):

Do while ‖R(W, T )‖ > ε :
Solve Premo for W: RW(W, T̃ ) = 0 (4.9)

⇓ W̃←W (4.10)
Solve Calore for T : RT (W̃, T ) = 0 (4.11)

⇓ T̃ ← T (4.12)
Evaluate : ‖R(W, T )‖ (4.13)

where over-tildes indicate values obtained from another application and treated as fixed data during
the solution step shown, and eqs.(4.10) and (4.12) represent a transfer of variables to a form needed
by the subsequent physics application. The transfers are handled by the Sierra framework. The norm
calculation of eq.(4.13) requires re-computation of all physics application residuals using updated
variable values. The entire weak coupling cycle is repeated until some measure of overall convergence
is attained, e.g. eq.(4.13). Solutions to eqs.(4.9) and (4.11) are obtained using Newton’s method for
each problem, e.g. for Calore’s nonlinear iteration k,

Jk
TT ∆T k = −Rk

T (4.14)
T k+1 = T k + ∆T (4.15)

Iterations are continued until the norm ‖RT ‖ < εT . For our study, the linear problems of eq.(4.14)
were solved iteratively using a Generalized Minimum Residual iterative method. Because one pri-
mary objective of our coupling strategies involves enabling coupled multi-physics while minimizing
additional requirements on any existing application, we evaluate the Jacobians JTT and JWW nu-
merically using finite-differencing with coloring of the matrix graphs. This feature is available in the
NOX nonlinear solver library.

We also applied our JFNK coupling algorithm to solve eq.(4.8). We leveraged the application data
used in weak coupling to construct a preconditioning matrix as described in Section 2.3.2.1 which
has the following form:

M =

 JWW

JTT

 (4.16)

Our implementation of JFNK coupling is consistent with our priority of minimizing requirements
for physics codes to participate in a coupled multi-physics simulation. The JFNK operator as well
as construction of the preconditioning matrix are all performed using only residual evaluations.

4.1.4 Coupling Results

In this section, we provide results for fluid-structural thermal coupling computed using both weak
and JFNK coupling strategies for external flows over both the circular cylinder and blunt-wedge
bodies.

4.1.4.1 Circular Cylinder

The fluid and solid material properties for the circular cylinder geometry are chosen to reflect a
somewhat facile problem in order to ensure converged solutions and thereby allow comparisons
between the coupling solution strategies to be made. Accordingly, the flow is characterized by
Re = 374, Ma = 0.3 and Pr = 120. The far-field flow is represented by U∞ = {ρ, u, v, w, p} = {
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(a) Fluid temperature along plane z = 0

(b) Surface temperature profile.

Figure 4.3. Temperature profiles for case with Tz=±0.5 = 100.0.

1.18 kg/m3, 104 m/s, 0 m/s, 0 m/s, 101325 Pa }. Assuming ideal gas gives T∞ = 300K. The solid
circular cylinder has thermal conductivity κ = 401. A Dirichlet temperature boundary condition
T = Tw is imposed on the faces of the circular cylinder at z = ±0.5. Three cases are considered:
Tw = 100, 300 and 500K. Results for the temperature profile on the cylinder surface as well as in
the fluid in the vicinity of the cylinder are shown in figures 4.3 - 4.5, respectively. Noteworthy
in figures 4.3 - 4.5 are that the temperatures on the fluid/solid interface from the fluid and the
solid temperature solutions agree to within the convergence tolerance as they should according to
eq.(4.5) and that the fluid solutions W differ markedly from those obtained using Premo with
either isothermal or adiabatic conditions applied to the cylinder surface. This indicates the physical
coupling is non-trivial and suggests improved model quality over the idealized boundary conditions
for solid walls available in Premo.

Comparison of the solution convergence behavior using weak and JFNK coupling strategies are shown
in figure 4.6 and are summarized with total required CPU times in table 4.1. Included in the figure
and table are results for weak coupling performed by starting the successive substitution using either
Premo (W-T cycle) or Calore (T-W cycle). For weak coupling the number of nonlinear iterations
corresponds to cumulative Premo nonlinear iterations. This choice was made because computational
cost is dominated by the Premo problem compared to the Calore problem which comprises only
4443 degrees of freedom out of a total of 53,643 and is linear. Clearly, the performance of weak
coupling depends critically on the order of solves within each coupling iteration. JFNK coupling
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(a) Fluid temperature along plane z = 0

(b) Surface temperature profile.

Figure 4.4. Temperature profiles for case with Tz=±0.5 = 300.0.
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(a) Fluid temperature along plane z = 0

(b) Surface temperature profile.

Figure 4.5. Temperature profiles for case with Tz=±0.5 = 500.0.
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consistently performs slightly better than weak coupling (T-W cycle) in terms of total time required
for convergence.

Table 4.1. Comparison of weak coupling and JFNK coupling for the
circular cylinder geometry.

Coupling Method Coupling Iters∗ Total Time (CPU s)
Tz=±0.5 = 100.0K

Weak (W-T cycle) 10 756
Weak (T-W cycle) 5 429
JFNK 9 421

Tz=±0.5 = 300.0K
Weak (W-T cycle) 8 543
Weak (T-W cycle) 3 276
JFNK 7 267

Tz=±0.5 = 500.0K
Weak (W-T cycle) 10 750
Weak (T-W cycle) 3 317
JFNK 8 299
∗ Total number of coupling iterations. For weak coupling, this

is the number of cycles of successive substitution and differs
from the number of Premo nonlinear iterations reported in
figure 4.6.

4.1.4.2 Blunt-wedge

The blunt-wedge geometry was tailored and meshed to capture a Ma = 3.0 shock. This problem was
made considerably more difficult than the circular cylinder problem by specifying Re = 2.4x105 and
Pr = 0.72. Rather than beginning with uniform initial conditions, we ran Premo with an isothermal
temperature of 300K on the blunt-wedge solid body to obtain a starting solution with the shock
qualitatively formed. Coupling to the solid body was then effected by setting the back face of the
body to 400K and all other surfaces except the fluid/solid interface to have no penetration and
slip. The temperature field in the fluid and solid is shown in figure 4.7, and convergence behavior is
compared in figure 4.8. For this problem, the quality of convergence is dramatically different with
weak coupling (T-W cycle) behaving about as well as for the easier circular cylinder problem but with
JFNK coupling exhibiting very poor behavior. Besides more challenging physics, this problem also
manifests a non-overlapping surface mesh at the interface, having a solid surface interface meshed
at twice the refinement level as the fluid mesh on the interface. This mismatch makes the transfer
of variables non-trivial, and the action of the Jacobian performed using directional derivatives now
captures the sensitivity of equations near the interface to the details of how the variable transfers
are done. Evidence that this may be a source of pollution is observed in the sharp upturns in
convergence behavior occurring at nonlinear iterations for which the iterative linear solver failed to
achieve the requested linear solve tolerance. This result reveals the importance of how transfers of
data are done across non-conforming discrete interfaces. We see further investigation of this within
the context of multi-physics coupling algorithms as a beneficial future study.
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(a) Convergence comparison for case with
Tz=±0.5 = 100.0K.
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(b) Convergence comparison for case with
Tz=±0.5 = 300.0K.
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(c) Convergence comparison for case with
Tz=±0.5 = 500.0K.

Figure 4.6. Comparison of convergence behavior for weak and JFNK
coupling methods represented as coupled residual norm ||R(W, T )|| vs
number of nonlinear iterations. Note that the number of nonlinear iter-
ations for weak coupling corresponds to those for the sequence of Premo
problems.
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(a) Fluid temperature profile.

(b) Surface temperature profile.

Figure 4.7. Temperature profiles for Blunt-wedge problem.
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Figure 4.8. Comparison of convergence behavior for weak and JFNK
coupling methods represented as coupled residual norm ||R(W, T )|| vs
number of nonlinear iterations for the Blunt-wedge problem. Note that
the number of nonlinear iterations for weak coupling corresponds to
those for the sequence of Premo problems.
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4.2 Shared Domain Coupling via Aria

Following the interfacial studies of the previous section, we next sought to impact coupled multi-
physics within the same physical domain. We selected Aria, a finite element analysis code for the
solution of coupled multi-physics problems, as an ideal target application for several reasons. First,
it supports a wide variety of multi-physics internally and can solve these using strong coupling via
a pure Newton algorithm as described in Section 2.1. We can then break the multi-physics problem
into separate physics each represented by an instance of Aria. This allows both weak coupling
and our intermediate coupling algorithms to be used and compared against each other as well as
against strong coupling. Also, Aria makes heavy use of Sierra’s Solution Control functionality which
provides the ideal place to incorporate our intermediate coupling algorithms in order to make them
generally available to any other applications using this Sierra functionality. Finally, Aria is actively
used by the analysis community to simulate important problems to Sandia’s mission.

4.2.1 Problem Description

As a rich and relevant coupled multi-physics problem, we selected a problem related to modeling the
micro-electrical-mechanical system (MEMS) shown in Figure 4.9. The device is an electro-thermo-
mechanical actuator or switch that utilizes a Silicon Carbide (SiC) material for fast response. The
geometry is such that an applied voltage load across the actuator will heat the SiC to produce a
thermal expansion which will eventually contact the shuttle with the plate to complete the signal
circuit. It represents coupled voltage, temperature and material displacement fields within the same

Figure 4.9. MEMS thermal actuator used as a switch.

physical domain. Voltage, V , is modeled by the electrostatic electrical current equation,

∇ · (σ∇V ) = 0, (4.17)
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where we have rewritten all current fluxes j in terms of voltages j = −σ∇V . The electrical conduc-
tivity σ depends on temperature as follows:

R =
1
σ

= 1.179× 10−10 exp(−7.976× 10−3T ). (4.18)

where R is the electrical resistance. This shows that resistance decreases as temperature increases
(conductivity increases with temperature), leading to a run-away temperature increase as the voltage
drop through the material is increased.

The scalar temperature field, T , is modeled by a steady-state energy transport equation, with a heat
source accounting for Joule heating,

∇ · (κ∇T ) = σ(∇V ·∇V ). (4.19)

κ, the thermal conductivity, is equal to 3.33 × 108 pW µM−1 K−1. The term on the right hand side
represents Joule heating equivalent to I2R, where I is the the current. This term exhibits an
exponential dependence on temperature and reflects the critical non-linearity in this problem.

Finally, the vector displacement field, d, is found by modeling the material as a linear elastic solid,
and solving the steady-state form of the solid momentum equation,

∇̂ · (λ tr(E)I + 2µE− β(T − Tref )I) = 0, (4.20)

where λ and µ are the Lame coefficients, E is the deformation tensor, β is the coefficient of thermal
stress, and Tref is the solid stress reference temperature and is set to 20 C. The operator ∇̂ is the
gradient operator in the undeformed state, e.g. d = 0. The relationships between these parameters
and the material properties is given by:

λ =
νE

(1 + ν)(1− 2ν)
(4.21)

µ =
E

2(1 + ν)
(4.22)

β =
αE

1− 2ν)
. (4.23)

The deformation tensor is defined as E = (∇̂d+ ∇̂dT)/2. The linear thermal stress causes material
deformation due to the temperature field. A summary of the dependencies between equations is as
follows:

a) The current equation, eq.(4.17), depends on the deformed state of the material d found by solving
the displacement equation, eq.(4.20). The current equation is otherwise linear.

b) The energy equation, eq.(4.19), depends on the deformed state of the material d found by solving
the displacement equation.

c) The energy equation depends on the voltage V via the Joule heating source term. Because the
electrical conductivity σ is exponentially dependent on temperature, the possibility of a runaway
temperature condition exists.

d) The energy equation, eq.(4.19), has a material property dependence on temperature T and rep-
resents another nonlinearity in the coupled problem.

e) The displacement equation, eq.(4.20), is dependent on the temperature T through the thermal
stress term.

f) Because all of the differential operators in the displacement equation are in the undeformed state,
it is linear in its variable and linear overall.
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(a) Aria 2D MEMS actuator mesh before voltage loading.

(b) Aria 2D MEMS actuator after voltage loading with V = 1.934V .

Figure 4.10. Aria 2D MEMS actuator after voltage loading with
V = 1.934V . Displacements have been amplified by a factor of 300 for
aiding visualization.

We consider a two-dimensional representation of the MEMS thermal actuator of Figure 4.9 and also
take advantage of the vertical symmetry that exists through the middle of the shuttle. The resulting
mesh colored by temperature before and after application of a voltage load is shown in figure 4.10

4.2.2 Coupling Results

Our selection of Aria for our coupling studies was partly due to its ability to perform strong coupling
via a pure Newton algorithm (cf Section 2.1). We consider this the gold standard coupling algorithm
and seek to approach its performance using our intermediate coupling algorithms with weak coupling
application data. Using Aria’s strong coupling for the MEMS actuator problem allows us to identify
limits to convergence arising from problem complexity. As shown in Figure 4.11, pure Newton
coupling achieves converged solutions up to a voltage loading of ∆V = 2.879 with increased difficulty
reflected in more nonlinear iterations as this limit is approached.

Given voltage loading as a means of tuning problem difficulty, we next compared weak coupling and
variations of our intermediate coupling algorithms. Table 4.2 shows a summary of our results. The
second and third bi-columns of Table 4.2, named ”Jacobi” and ”Broyden”, represent approximate
matrices described in Sections 2.3.2.1 and 2.3.2.3, respectively, used as the Jacobian matrix J. The
next two bi-columns, ”JFNK w/ Jacobi” and ”JFNK w/ Broyden”, employ the JFNK Jacobian
operator of eq.(2.22) with the approximate matrices used as a preconditioning matrix, M. The ”Ja-
cobi” matrix approximations have the structure shown in Figure 4.12a and consist of an aggregated
composite of stand-alone Jacobian matrices from each independent Aria physics. The upper-left
block has dimensions twice the other two blocks and represents the stand-alone mesh displacement
problem Jacobian, while the other two blocks correspond to the stand-alone temperature and cur-
rent problem Jacobians. We added the ability to augment the structure of the coupled problem
Jacobian to account for accommodate non-zero entries associated with inter-problem dependencies
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Figure 4.11. Convergence behavior for pure Newton coupling in Aria.
The plot shows the number of Newton iterations required to achieve
convergence for various applied voltage loads. Convergence failed for
∆V > 2.879.

Jacobi Broyden JFNK w/ Jacobi JFNK w/ Broyden Pure Newton

∆V NL iters Lin iters NL iters Lin iters NL iters Lin iters NL iters Lin iters NL iters Lin iters

1.000 12 800 18 1323 9 597 9 681 9 646

1.200 15 1023 14 993 8 521 8 607 8 576

1.400 16 1065 21 1498 11 777 11 791 11 825

1.600 19 1239 23 1779 11 707 11 865 12 915

1.800 30 2007 22 1578 9 572 9 711 10 775

1.900 36 2401 21 1467 11 729 11 811 12 903

2.000 FAIL 24 1673 12 847 12 995 13 1020

2.100 38 2704 13 814 13 887 15 1130

2.200 FAIL 16 1091 15 1100 16 1198

2.600 15 1019 15 1315 15 1124

2.800 20 1279 21 1574 21 1509

2.850 23 1676 22 1748 23 1754

2.878 24 1743 24 1915 23 1857

2.879 FAIL FAIL FAIL

Table 4.2. Number of nonlinear and total linear iterations required to
converge the MEMS actuator problem at various voltage loadings up to
the critical value of ∆V = 2.879.
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as shown in Figure 4.12b. The ”Broyden” matrix approximation fills only these augmented locations
using the approach described in Section 2.3.2.3 and fills the diagonal blocks with the stand-alone
Jacobian matrices as in the ”Jacobi” approximation. The problem is steady-state so that the num-
ber of nonlinear iterations is for a single solve and provides an indication of the robustness of the
coupling algorithm employed. The number of linear iterations is the cumulative total for all non-
linear iterations for a given voltage loading and coupling algorithm and provides an indication of
the computational cost of the algorithm. The results of Table 4.2 show that JFNK coupling using
either preconditioning matrix performs essentially on par with strong, pure Newton coupling. The
desirable qualities of both robustness and efficiency of the JFNK coupling algorithm are achieved
using only weak coupling application information.

Additional insight into the improvement our intermediate coupling algorithms over weak coupling
can be seen in the rate of convergence shown for each in Figure 4.13 Here again we see a linear
rate of convergence for weak coupling and a quadratic rate for our Newton-based JFNK coupling
algorithm.

In summary for our coupling studies in Aria, we have effectively enabled Newton-based coupling using
only weak coupling application data. We have approached the task of implementation with an eye
toward general usefulness and applicability by incorporating our intermediate coupling algorithms
into Solution Control in Sierra.

4.3 Conclusions

For non-trivial relevant multi-physics coupling scenarios encompassing the two canonical types of
problem coupling, i.e. coupling across a shared interface and coupling within a shared physical do-
main, we have shown that Newton-type convergence quality can be achieved while requiring little
to no additional application information beyond the minimal amount needed for weak coupling.
We have shown that our new coupling algorithms apply well to fundamentally different physics
represented by parabolic, elliptic and hyperbolic partial differential equations. Moreover, we have
shown the value-added benefits of our coupling algorithms in that any additional information ap-
plications can supply beyond that needed for weak coupling can be employed to construct a better,
less approximate preconditioning matrix.
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(a) Diagonal block structure of ”Jacobi” matrix approxima-
tion consisting of stand-alone Jacobian matrices from each Aria
physics.

(b) Complete block structure coupled multi-physics MEMS
problem. The additional non-zero entries beyond the ”Jacobi”
structure are filled using secant updates as in Section 2.3.2.3.

Figure 4.12. Non-zero structure of ”Jacobi” (top) and ”Broyden”
(bottom) matrix approximations.
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Figure 4.13. Convergence rate behavior for weak and JFNK coupling
in Aria for ∆V = 1.7V .
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Chapter 5

Analysis and Observations

5.1 Introduction and Setup of the Theory

Here we establish an approach for analyzing the performance of various coupling algorithms. Having
summarized various approaches to coupling in Chapter 2, we now wish to explore certain salient
features in greater detail.

For purposes of discussion, we consider finding a solution to a multi-physics problem consisting of
coupled A and B problems. As shown in Section 2.1, we may formulate Newton’s method for the
coupled problem as the solution of the following matrix equation.[

JAA JAB

JBA JBB

] [
xn

A − xn−1
A

xn
B − xn−1

B

]
= −

[
RA

RB

]
(5.1)

JAB and JBA represent coupling terms between the two A and B problems which typically cannot
be provided by either problem being coupled and are unavailable in general.

We begin by assuming that there exists efficient strategies for solution of the separate A and B
problems using Newton’s method or a variant of Newton’s method. In other words, the following
equations may be readily solved:

∆xn
A = −JAA

−1Rn−1
A (5.2)

∆xn
B = −JBB

−1Rn−1
B (5.3)

In contrast, solution of the coupled system of eq..(5.1) encounters severe difficulties arising from
such issues discussed in Chapter 2. Even when Newton-based coupling algorithms can be used, it
can still be more desirable to employ weak coupling. This can be the case if the loss of sparsity
of the coupled Jacobian due to the off-diagonal blocks is dramatic or if very specialized methods
have been developed to solve each application stand-alone. Then, forcing a Newton-based approach
can represent a loss of desirable capability or performance. Weak coupling can also be much more
efficient when the physics is only loosely coupled, e.g. one-way coupling in which case it makes
total sense to solve the upstream problem first followed by the downstream dependent problem next
without repeating the cycle.

When using weak coupling there are two modes of iterating. When applied as a Jacobi method, weak
coupling involves solving eqs.. (5.2) and (5.3) for the coupled A -B system, when they are applied
successively and with no intermediate transfer of updated variables until convergence is achieved.
The Gauss-Seidel mode of weak coupling for eqs. (5.4) and (5.5) involves first solving the A problem
variables and then the B problem after substituting in the just-updated solution from the A problem
and repeating until convergence is achieved. As predicted form fixed-point theory (cf Section 2.2)
and as observed in studies involving prototype and real applications problems, convergence rates for
both modes of weak coupling are only linear.

∆xn−1
A = −JAA

−1Rn−1
A (xn−1

A ,xn−1
B ) (5.4)
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∆xn
B = −JBB

−1Rn−1
B (xn

A,x
n−1
B ) (5.5)

As a means of analyzing weak coupling, the problem A part of eq. (5.1) may be formally solved in
terms of the delta unknowns in problem B, ∆xn

B . Then, plugging the results back into the problem
B part of eq. (5.1) results in the following reduced equation for the update vector, ∆xB .

SAA∆xB = −RB + JBAJAA
−1RA (5.6)

where
SAA = JBB − JBAJAA

−1JAB (5.7)

is the Schur complement of the A problem. Looking at eq. (5.6), we may think of the update to
∆xB in the coupled problem as being formed from two contributions. The first is from RB , while
the second is from JBAJAA

−1RA. Taking norms of the vectors and matrices may lead to a metric
for determining when coupling terms are important. SAA may be further interpreted. When there
is zero or one way coupling, SAA is the same as the uncoupled case, because either JAB or JBA is
zero. Only in the instance of two way coupling is SAA non-zero.

We may continue from eq. (5.6) to find an expression for the update to ∆xA, eq. (5.8), since we
now have an expression for ∆xB .

JAA∆xA = −RA + JABSAA
−1RB − JABSAA

−1JBAJAA
−1RA (5.8)

We may think of the update to ∆xA as being formed from three contributions. The first contribution
is from RA, while the second contribution is from JABSAA

−1RB . This is the direct effect that
residual errors in problem B have on unknowns in problem A. The third contribution is from the
completed cross-coupling effect. Errors in problem A affect the variables in problem B, which in
turn affect the variables in problem A. The third contribution is only active if both ‖JAB‖ > 0 and
‖JBA‖ > 0, and is only important if both of these off-diagonal matrices exhibit significant norms.
Taking norms of the vectors and matrices of the three contributions lead to a metric for when the
coupling terms are important.

It should also be noted here that the condition numbers of both individual problems A and B may
greatly influence the convergence results of the coupled problem. For example, eq.(5.6) demonstrates
that an ill-conditioned matrix for problem A will result in a large or even unbounded perturbation
to the solution of problem B through it’s influence on the rhs of eq.(5.6). The norm of the inverse
of JAA is proportional to the condition number, κAA, of the block-diagonal matrix JAA.∥∥J−1

AA

∥∥ =
κAA

‖JAA‖
(5.9)

From eq.(5.6) this implies that if JBA, i.e. the dependence of B on A, is of sufficient size, then the
accuracy in the solution of B will be dominated by the condition number for problem A. Generalizing,
the number of significant digits that may be accurately computed in a coupled problem will be a
function of the amount of ill-conditioning in the worst of the individual problems.

5.2 Analysis of Weak Coupling

We can analyze the successive substitution strategy in terms of related quantities used in the analysis
of the Schur components. We will start with Newton’s method, eq. (5.1). Newton’s method is
expressed in terms of updates to problem variables , i.e. ∆xA and ∆xB . Since we need a recursion
relation to understand successive substitution, Newton’s method must be rearranged into an equation
for the solution variables, xA and xB . This is easily done by expanding the definition of ∆xA =
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xn
A − xn−1

A and ∆xB = xn
B − xn−1

B , and then reformulating the problem and the rhs into a picard
factorization, eq.(5.10), where we have renamed the expanded rhs’s as Rp

A and Rp
B .[

JAA JAB

JBA JBB

] [
xn

A

xn
B

]
=
[
−RA − JAAxn−1

A − JABxn−1
B

−RB − JBAxn−1
A − JBBxn−1

B

]
=
[
−Rp

A

−Rp
B

]
(5.10)

Now, suppose it is necessary to solve eq.(5.10), which is a linear set of equations, via a successive
substitution strategy, where for now the non-linearity in the underlying problems is ignored, i.e. we
don’t recompute Rp

A and Rp
B . We begin by making an initial guess x0

B and substituting x0
B into the

problem A equation system. Then, we substitute the resulting expression for x1
A into the problem

B equation system to obtain x1
B .[

x1
A

x1
B

]
=
[

J−1
AA(−Rp

A − JABx0
B)

J−1
BB(−Rp

B − JBAx1
A)

]
(5.11)

We can rewrite the B equation as

x1
B = J−1

BB(−Rp
B − JBAx1

A) = −J−1
BBRp

B − J−1
BBJBAJ−1

AA(−Rp
A − JABx0

B) (5.12)
=
(
−J−1

BBRp
B + J−1

BBJBAJ−1
AARp

A

)
+
(
J−1

BBJBAJ−1
AAJAB

)
x0

B

= cB + GBBx0
B

where

GBB = J−1
BBJBAJ−1

AAJAB . (5.13)

If we apply the successive substitution algorithm recursively k times, eq. (5.14) results.

xk
B = Gk

BBx0
B +

(
k−1∑
i=0

Gi
BB

)
cB (5.14)

GBB is directly related to the modification of the Schur complement for problem B, SAA, from its
strictly block diagonal form, JBB , due to the interaction of the problem A equation system:

SAA = JBB − JBAJAA
−1JAB = JBB(I− J−1

BBJBAJAA
−1JAB) (5.15)

= JBB(I−GBB)

A sufficient condition for convergence of the successive substitution algorithm, eq.(5.14), for the
linearized coupled system, is that the spectral radius of GBB , a dimensionless quantity both row-
wise and column-wise, must be less than 1. What this means is that the all of the eigenvalues of
GBB must be within the unit circle on the complex plane. A sufficient but not necessary condition
is that the L2 matrix norm of GBB (or equivalently the maximum eigenvalue from the singular value
decomposition of GBB) be less than one. In Chapter 7, we will encounter a case where the former
is true, but the latter is not.

To see this, we may note that eq.(5.14) may be reduced to the following, when the spectral radius
condition is satisfied and therefore the sum in eq.(5.14) may be replaced by its limiting condition.

xk
B = Gk

BBx0
B + (I −GBB)−1 cB (5.16)

This theory may be numerically verified using Matlab, where calculation of the block matrices and
their norms may be carried out explicitly for small problems. The L2 matrix norm may be used
as a good, but not foolproof proxy for the calculation of the spectral radius, which requires the

53



calculation of all of the eigenvalues. Note that the L2 matrix norm being less than one is not in fact
a necessary condition for eq.(5.14) to be convergent. We will encounter such a case in Section 7.5.2,
where it turns out even though the L2 matrix norm is greater than one, all of the eigenvalues are
within the complex unit circle.

To verify that GBB is in fact the fixed-point iterative matrix for eq.(5.14), we shall next derive a
slightly different but equivalent form.

We may rewrite the successive substitution process via the following formulation.[
JAA 0
JBA JBB

] [
xn

A

xn
B

]
=
[
−Rp

A

−Rp
B

]
−
[

0 JAB

0 0

] [
xn−1

A

xn−1
B

]
(5.17)

We note that the eventual solution of the matrix problem is eq. (5.10) and then substitute it into
the equation above to yield,[

JAA 0
JBA JBB

] [
xn

A

xn
B

]
=
[

JAA JAB

JBA JBB

] [
xs

A

xs
B

]
−
[

0 JAB

0 0

] [
xn−1

A

xn−1
B

]
(5.18)

xs
A and xs

B is the steady state solutions for eq. (5.10). This may be rearranged to yield[
JAA 0
JBA JBB

] [
xn

A − xs
A

xn
B − xs

B

]
=
[

0 −JAB

0 0

] [
xn−1

A − xs
A

xn−1
B − xs

B

]
. (5.19)

This equation may be inverted to yield[
xn

A − xs
A

xn
B − xs

B

]
=
[

J−1
AA 0

−J−1
BBJBAJ−1

AA J−1
BB

] [
0 −JAB

0 0

] [
xn−1

A − xs
A

xn−1
B − xs

B

]
(5.20)

and then [
xn

A − xs
A

xn
B − xs

B

]
=
[

0 −J−1
AAJAB

0 GBB

] [
xn−1

A − xs
A

xn−1
B − xs

B

]
. (5.21)

Therefore, GBB is in fact the fixed-point iterative matrix for eq.(5.14). In the above formulation,
we assumed that problem A would be solved first and then problem B next. This created the above
situation where the convergence of the fixed point algorithm is expressed in terms of the convergence
of the B problem. The convergence of the A problem, however, is closely tied to the B problem.
Also, the order of operations could be reversed as well, and the analysis redone. In this case, a GAA

would be formulated which would be in all cases similar to GBB in terms of its convergence behavior.
In other words, we don’t change the convergence analysis in any significant way by assuming that
either the A or the B problem goes first. However, in practice the breakdown of our assumptions can
lead to dependence of convergence on the order of problems being solved as seen in Section 4.1.4.1.

5.3 Conclusion

This chapter has revisited weak coupling in greater detail and has identified some key quantities that
may provide cheap assessment metrics of degree of dependence among coupled physics applications
and accordingly suggest a ”best” choice coupling algorithm. As will be shown in the next few
chapters, these metrics can provide quantitative assessments of the feasibility of using weak coupling
and whether a stronger coupling algorithm should be used. As opportunities arise, we hope to
incorporate most or all of these into our coupling algorithms extensions to the NOX nonlinear solver
library.

54



Chapter 6

Numerical Analysis of Coupling
Using Matlab

Frequently, the choice of the most cost-effective strategy for solving nonlinear coupled multi-physics
problems hinges on how tight the coupling is among the participating physics. This gives rise to the
concept of “degree” of coupling between problems. In this chapter, we present an explicit analysis
on a sample problem using Matlab and Aria. The analysis will show that the spectral radius of
the matrix, GBB defined in eqn.(5.13) of Section 5.2 determines the convergence behavior of the
successive substitution strategy for solving the coupled problem.

To elucidate this point, we use the Aria MEMS thermal actuator problem described in Section 4.2.1.
Using Matlab, we explicitly calculate and manipulate the matrices that arise in the analysis presented
in Chapter 5. We show that the convergence of weak coupling may be completely determined from
within Matlab by finding the spectral radius of the matrix GBB. We also document the input files
used in several coupling strategies within Sierra. Examples of configuring Jacobi and Gauss-Seidel
modes of weak coupling as well as JFNK coupling using multiple Aria regions via Sierra’s Solution
Control capability are presented. We verify that the JFNK approach using a preconditioning matrix
based on the block diagonal Jacobians collected from each Aria problem being coupled is a robust
and efficient strategy for solving coupled multi-physics problems.

6.1 Matrix Calculations Using MATLAB

Our numerical analysis of convergence properties of various coupling algorithms is carried out by
extracting and writing to files the needed matrices from the Sierra and NOX environments and
then reading them in and analyzing them from within the Matlab environment. The required
matrix input-output functionality is provided through the Finite Element Interface (FEI) connecting
Sierra applications such as Aria to solvers in Trilinos. In particular, we employed the FEI option
“FEI OUTPUT LEVEL = matrix files” to output Jacobian matrices in matrix-market format to be
read into Matlab.

We used the option, “ FEI OUTPUT LEVEL”, to dump out the last newton iteration of an Aria
multi-physics problem using pure Newton coupling. This gave the correct complete and accurate
Jacobian matrix at the converged solution. We then extract the individual matrix blocks, JAA,
JAB , JBA, and JBB from the full coupling Jacobian matrix using Matlab scripts, which are based
on the assumption that there is a constant stride in the global solution vector between temperature,
voltage, and displacement unknowns.

Once in Matlab, the matrices can easily and quickly be manipulated and analyzed using a vast set
of utilities. For example, we explicitly calculate the matrix GBB given in eqn.(5.13), as well as
the norms and condition numbers for JAA, JAB , JBA, and JBB . We also calculate the norm, the
spectral radius, and the leading eigenvalues for the matrix GBB , results we will present in Section
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6.2.1.

In passing, we note that we explicitly calculated much more than GBB within Matlab. In particular
we calculated values and norms for SAA and for all three terms in eqn. (5.8). We will not belabor the
details other than to note that the estimation of the magnitude of these terms depended greatly upon
scaling issues. Both row and column scaling of eqn.(5.1) was attempted to get accurate estimates of
the relative magnitudes of terms in eqn.(5.8). Column scaling involves creating a right-hand scaling
vector based on the weighting function used to judge convergence in the solution unknowns (see
[(10)] for an example). Creating the column scaling matrix therefore involves importing the global
solution vector into Matlab. However, we encountered problems with this stemming from our use
of an experimental interface to NOX, which supported the option of dumping the solution vector
out in matrix market format. We therefore see the need to maintain closer concurrency between the
applications environment and the algorithms environment. We anticipate revisiting this issue in the
future and advocate maintenance and enhancement of capability such as this. The end result of the
analysis of norms for SAA is that the direct calculation of GBB produced the only acceptable test
for the efficiency of the weak coupling algorithm.

6.2 Example: A Coupled Voltage, Displacement, and Tem-
perature MEMS Problem

We performed our numerical experiments in Matlab using data generated from the MEMS thermal
actuator problem described in Section 4.2.1 and depicted in Figure 4.10. Figure (6.1) contains
the input deck to Aria. We have left the NOX solver block, named NOX Solver, out of Figure
(6.1) for space reasons. However, NOX Solver implements a GMRES iterative solver using an ILU
preconditioner with zero fill-in.

To analyze this MEMS thermal actuator problem, we have identified problem A as the temperature
equation, eqn.(4.19, and problem B as being the combined voltage and displacement equations,
eqs..(4.17) and (4.20).

6.2.1 Weak Coupling Results

In this section we report attempts to identify the onset of convergence failure for Jacobi and Gauss-
Seidel weak coupling algorithms using the voltage load as a dial for problem difficulty.

Gauss-Seidel and Jacobi weak coupling were driven at the Solution Control level of Sierra. Solution
Control supports script-based algorithms which include Gauss-Seidel and Jacobi weak coupling. The
steps needed to perform Jacobi weak coupling in the parlance of Solution control are shown in Figure
(6.2).

The solution control block, a transfer region, and the Aria region that handles the separate solution of
the temperature equation (with all other variables transfered in and not solved for) is shown. Regions
that solve separately for the voltage (the V Region) and for the displacement field (the D Region) and
transfer blocks that describe transfers of variables between other regions are completely analogous
and are not shown.

The solution block contains the Nonlinear block which creates a looping condition that must be com-
pleted with stopping criteria. The stopping criteria are supplied in the Parameters For Nonlinear
block where the convergence criteria for the loop is specified. The convergence criteria is based
either on the Sierra Global Variable named CURRENT STEP reaching 80 or the Sierra global variable
named Region Nonlinear Residual in the Global Norm Region region being less than 1.0× 10−3.
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# SiC (Silicon Carbide) material properties.
#
# Rho = {rho = 8.784e-15}
# YM = {YM = 4.50e5}
# PR = {PR = 0.16}
# Lambda = {lambda = PR*YM/((1+PR)*(1-2*PR))}
# Mu = {mu = YM /( 2*(1+PR) )}
# Alpha = {alpha = 4.6e-6}
# Beta = {beta = YM*alpha/(1-2*PR)}
#
# T_0 = {T_0 = 20} Celsius
# V_0 = {V_0 = 0} V
# DeltaV = {DeltaV = 1.0} V
#
Begin Sierra Aria_MEMS_Beam

Begin Aria Material SiC
Density = CONSTANT rho = {rho}
Mesh Stress = LINEAR_ELASTIC reference_frame = undeformed
Mesh Stress = THERMAL
Lambda = CONSTANT lambda = {lambda}
Two Mu = CONSTANT two_mu = {2 * mu}
Beta = CONSTANT beta = {beta}
Current Density = Ohms_Law
Electrical Resistance = EXPONENTIAL variable=temperature multiplier=1.179e-10 exponent=-7.976e-3
Electrical Conductivity = From_Resistance
Heat Conduction = Fouriers_Law
Specific Heat = EXPONENTIAL variable=temperature constant=1.5e+15 multiplier=7.625e+14 exponent=-1.167e-3
Thermal Conductivity = CONSTANT k=3.33e+8

End
Begin Finite Element Model The_Mesh

Database Name = tapered_mesh_2d_1000.e
Database Type = exodusII
Begin parameters for block block_1

Material SiC
End parameters for block block_1

End

Begin Procedure My_Procedure
Begin Solution Control Description

Use System main
Begin System main

Begin Sequential mysolveblk
Advance Global_Norm_Region

End
End

End
Begin Aria Region Global_Norm_Region

Use Finite Element Model The_Mesh
Nonlinear Solution Strategy = NOX
Use NOX Nonlinear Solver NOX_Solver

EQ current FOR voltage ON block_1 USING q1 WITH diff
BC const dirichlet AT surface_1 voltage = {V_0}
BC const dirichlet AT surface_3 voltage = {DeltaV}

EQ energy FOR temperature ON block_1 USING q1 WITH diff src
BC const dirichlet AT surface_1 Temperature = {T_0}
SOURCE FOR energy ON block_1 = joule_heating

EQ mesh FOR mesh_displacements ON block_1 USING q1 WITH diff
BC const dirichlet AT surface_1 mesh_displacements_x = 0.0
BC const dirichlet AT surface_1 mesh_displacements_y = 0.0
BC const dirichlet AT surface_3 mesh_displacements_x = 0.0

REFERENCE TEMPERATURE = {T_0}

POSTPROCESS Electrical_Conductivity ON block_1

Begin Results Output Label Aria MEMS Beam
Database Name = out_coupled.e
At Step 0, Increment = 1
Title Aria MEMS Beam
Nodal Variables = solution->Temperature as T
Nodal Variables = solution->Voltage as V
Nodal Variables = solution->Mesh_Displacements as D
Nodal Variables = pp->Electrical_Conductivity as Sigma

End
End

End
End

Figure 6.1. Aria Region and SiC Materials block, describing the
setup of the Aria problem
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Begin Solution Control Description
Use System main
Begin System main

Begin Sequential mysolveblk
Begin Nonlinear nonlinear_loop

Advance V_Region
Advance T_Region

Advance D_Region
Transfer VRegion_to_GNRegion_Transfer
Transfer TRegion_to_GNRegion_Transfer

Transfer DRegion_to_GNRegion_Transfer
Advance Global_Norm_Region
Transfer GNRegion_to_VRegion_Transfer
Transfer GNRegion_to_TRegion_Transfer

Transfer GNRegion_to_DRegion_Transfer
End

End
End
Begin Parameters For Nonlinear nonlinear_loop

Converged When "CURRENT_STEP==80 || Global_Norm_Region.Region_Nonlinear_Residual < 1.0e-3"
End

End

begin transfer TRegion_to_GNRegion_Transfer
copy volume nodes from T_Region to Global_Norm_Region
send field solution->TEMPERATURE state new to solution->TEMPERATURE state new

end

Begin Aria Region T_Region
Use Finite Element Model The_Mesh
Nonlinear Solution Strategy = NOX
Use NOX Nonlinear Solver NOX_Solver_T
EQ current FOR voltage ON block_1 USING q1 WITH xfer

IC const ON block_1 voltage = {V_0}
EQ energy FOR temperature ON block_1 USING q1 WITH diff src
IC const ON block_1 temperature = {T_0}
BC const dirichlet AT surface_1 Temperature = {T_0}
SOURCE FOR energy ON block_1 = joule_heating
EQ mesh FOR mesh_displacements ON block_1 USING q1 WITH xfer
IC const AT block_1 mesh_displacements_x = 0.0
IC const AT block_1 mesh_displacements_y = 0.0
REFERENCE TEMPERATURE = {T_0}

End

Figure 6.2. Solution control block, and a sample transfer block and
region block for the Jacobi solution method using Aria
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Begin Aria Region Global_Norm_Region
Use Finite Element Model The_Mesh

Use Linear Solver Iterative_global
Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 1
Nonlinear Residual Tolerance = 1.0e+100
Nonlinear Correction Tolerance = 1.0e+100
Nonlinear Relaxation Factor = 1.0

EQ current FOR voltage ON block_1 USING q1 WITH diff
BC const dirichlet AT surface_1 voltage = {V_0}
BC const dirichlet AT surface_3 voltage = {DeltaV}

EQ energy FOR temperature ON block_1 USING q1 WITH diff src
BC const dirichlet AT surface_1 Temperature = {T_0}
SOURCE FOR energy ON block_1 = joule_heating

EQ mesh FOR mesh_displacements ON block_1 USING q1 WITH diff
BC const dirichlet AT surface_1 mesh_displacements_x = 0.0
BC const dirichlet AT surface_1 mesh_displacements_y = 0.0
BC const dirichlet AT surface_3 mesh_displacements_x = 0.0

REFERENCE TEMPERATURE = {T_0}

POSTPROCESS Electrical_Conductivity ON block_1

Begin Results Output Label Aria MEMS Beam
Database Name = out_jacobi.e
At Step 0, Increment = 1
Title Aria MEMS Beam
Nodal Variables = solution->Voltage as V
Nodal Variables = solution->Temperature as T
Nodal Variables = solution->Mesh_Displacements as D
Nodal Variables = pp->Electrical_Conductivity as Sigma

End
End

Figure 6.3. Special region added to the calculation, whose only
purpose is to calculate the global norm. This block is used in the Gauss-
Seidel and Jacobi weak coupling algorithms.

Aria’s temperature region solves only for the temperature field. A source term for the temperature
is specified with the model name, joule heating; this source term implements the rhs of eqn.(4.19).

Figure (6.3) displays the Global Norm Region block referred to earlier. It’s only purpose is to
calculate a global norm of the entire residual for use as a stopping criteria at the Solution Control
level. A very cheap iterative strategy is specified in the block. However, it’s never needed, as the
Nonlinear Residual Tolerance parameter is set so high that the initial residual always passes
the convergence test. Therefore, this block never actually solves the fully coupled problem.

Figure 6.4 contains the results of this analysis. The convergence rates of the Jacobi and Gauss-Seidel
methods were compared (where they converged) to the spectral radius, calculated within Matlab.
Above a ∆V value of 2.021105 volts, the Gauss-Seidel and Jacobi algorithms failed to converge on
the problem. The fully coupled solution algorithm managed to find converged solutions up to a ∆V
value of 2.87 volts before its nonlinear solution algorithm failed.

Convergence rates, calculated by fitting a power law form to the global residual value for the last
couple of iterations of the Gauss-Seidel method followed the trend of the spectral radius calculation.
However, the actual convergence radius was always roughly a factor of 2 lower than the spectral
radius. The Jacobi calculations had a higher radius of convergence than both the Gauss-Seidel value
and the spectral radius value in almost all cases. The more robust convergence rates produced by
the Gauss-Seidel method can be understood and justified by noting that those rates were calculated
from the nonlinear problem, while the spectral radius values were calculated from the linear problem.
Therefore, as the calculation converged towards the actual value, the Jacobians in the Gauss-Seidel
calculation were getting progressively better, leading towards a greater convergence rate. As the
spectral radius predicted by Matlab crosses from below 1 to above 1 (actually just a little above
one), in all cases, both the Gauss-Seidel method and the Jacobi method no longer can be used to
converge to the steady state solution. As can be seen, the convergence of the Gauss-Seidel algorithm
can be understood and analyzed within Matlab by calculating the spectral radius of GBB . This
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Figure 6.4. Convergence rates of the Jacobi and Gauss Seidel meth-
ods compared with Matlab calculations of the spectral radius of G.

provides numerical confirmation of the theory from the previous chapter on a real-world application
in Sierra.

The next question involves how best to use these findings. One use is to assess whether we can
successfully use weak coupling. In order to do this efficiently we need to have a cheaply calculated
estimate of the spectral radius. It may be possible to make such cheap estimates from estimates of
the norms of the four individual matrices needed to form GBB .

‖GBB‖2 <=
∥∥JBB

−1
∥∥

2
‖JBA‖2

∥∥JAA
−1
∥∥

2
‖JAB‖2 (6.1)

However, because this involves estimating the condition number of both J−1
BB and J−1

AA, an operation
roughly equal in cost to actually carrying out the solution of one problem A and problem B step,
there probably is no cheaper way to gauge an accurate estimate of the spectral radius than to
actually carry out the Gauss-Seidel treatment algorithm itself and use the convergence rate of that
to estimate the spectral radius of GBB . In other words, by carrying out the weak coupling algorithm,
we have found a cheap way to determine the spectral radius of GBB , and not the other way round.
It may very well be that no cheaper assessment exists to determine when weak coupling should
converge than simply trying it out and calculating the convergence rate directly.

Additionally, because we have divided up a unity-ordered quantity in eqn.(6.1) into matrices, each
of which have units and implying physical scales, scaling becomes a necessity for the accurate
calculation of the estimate of ‖GBB‖2. We have tried both row-sum scaling and column scaling in
the evaluation of eqn.(6.1). However, the results were always never as satisfactory as the agreement
we achieved in Figure 6.4.
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Begin Nox Nonlinear Equation Solver my_nonlinear_solver_1
# Non-Linear solver parameters:
Nonlinear Solver Method = line search based
Nonlinear Direction Method = newton
Nonlinear Linesearch Method = full step
Rescue Bad Newton Solve = true
Nonlinear Absolute Residual Norm Tolerance = 1.0e-6
Nonlinear Relative Residual Norm Tolerance = 1.0e-8
Maximum Nonlinear Iterations = 40
# Linear solver parameters
Maximum Iterations = 300
Residual Norm Tolerance = 1.0e-4
Linear Solver Output Frequency = 5
Preconditioning Package = ifpack using myIfpack1
Begin Teuchos Parameter Block myIfpack1

Param-String "IfPack Preconditioner Choice" Value "ILU"
Param-Int "fact: level-of-fill" Value 0
Param-Int "partitioner: overlap" Value 0

End
Nox Output Level = high
# Jacobian operator type -- IGNORED B/C THIS IS NEWTON-KRYLOV.
Nonlinear Jacobian Operator = matrix free
# Preconditioner matrix -- CURRENTLY IGNORED B/C IT USES THE ANALYTIC BLOCK DIAGONAL ONE FROM ARIA.
Nox Nonlinear Preconditioning Method = Use Jacobian

End

Begin Procedure my_procedure
Begin solution control description

Use system main
Begin system main

Begin sequential mysolveblk
Begin matrix free nonlinear nonlinear_loop

Involve V_Region
Involve T_Region
Involve d_Region

Transfer VRegion_to_TRegion_Transfer
Transfer TRegion_to_VRegion_Transfer
Transfer VRegion_to_dRegion_Transfer
Transfer TRegion_to_dRegion_Transfer
Transfer dRegion_to_VRegion_Transfer
Transfer dRegion_to_TRegion_Transfer

Use coupler my_nonlinear_solver_1
End

End
End
Begin parameters for nonlinear nonlinear_loop

converged when "CURRENT_STEP==1"
End

End
. . .

End procedure

Figure 6.5. Sierra input blocks used for the implementation of NOX’s
JFNK method within Sierra. NOX’s input block for the setup of its
JFNK solution method is shown. The solution control block for setting
up NOX’s JFNK method on multiple regions is also shown.
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6.2.2 JFNK Coupling Results

Figure (6.5) contains an example of a Solution Control block that implements the JFNK coupling
algorithm in NOX. As before, the actual problem is divided into three Aria regions, V Region,
T Region, and d region, which solves the voltage problem, the energy equation, and the displacement
fields, respectively. The Sierra Solution Control block adds the three regions to the JFNK block
invoking the involve block on each region, within a matrix free nonlinear block. The key line
Use Coupler tells the solution control block to invoke the NOX JFNK coupling strategy, given in
the block named my nonlinear solver 1 to solve the problem. Convergence of the matrix free
nonlinear loop is handed off to NOX to determine. However, it still must be specified at the solution
control level. The parameters block with the converged when key-line satisfies this requirement.

NOX’s my nonlinear solver 1 parameter block uses a few special commands. The key-line Nonlinear
Jacobian Operator is set to matrix free instead of the more usual entries of user supplied
matrix or finite coloring to indicate that no Jacobian should be formed at the NOX level. How-
ever, storage for a preconditioner matrix is still needed here if sufficient convergence of the linear
problem is to be generated. The preconditioner is specified by the Nox Nonlinear Preconditioning
Method key-line with the value, Use Jacobian. In this context, the line means that the block-
diagonal Jacobian from the subproblems are used to populate the preconditioning matrix as de-
scribed in Section 2.3.2.1.

There are two NOX parameter blocks. One of the blocks is used as a dummy solver to signal each
Aria region to construct the appropriate solver objects needed to create the global problem.

Table (6.1) contains the results of the comparison between JFNK coupling and strong coupling via
pure Newton method. While there is a bit of scatter in the results, it’s readily seen that the number
of nonlinear iterations taken by the JFNK approach is very similar to the fully coupled approach,
verifying that the same basic nonlinear Newton’s method is being used in the two methods. Also,
the fact that the number of linear iterations is roughly equivalent in the two methods indicates
that the preconditioning strategy of using each subproblem’s block-diagonal Jacobian as input to
a block-diagonal ilu(0) preconditioner with zero fill-in is adequate for this application. Therefore,
we have achieved our goal of creating a coupling method in which the off-diagonal contributions to
the Jacobian don’t have to be explicitly calculated, but which behaves as though the off-diagonal
contributions are fully integrated into Newton’s method.

One drawback to the JFNK method is reflected in the timing results. The JFNK approach is
significantly slower than the fully coupled method by roughly a factor of 5. Therefore, JFNK
should only be used when necessary. While the nonlinear iterations and number of linear iterations
are roughly equivalent for the two methods, the matrix-free GMRES algorithm takes many more
residual evaluations during the linear solve that are not needed in the linear solve of the fully
coupled method. Note, both methods calculate analytical Jacobians. The JFNK method calculates
analytical Jacobians for the block diagonals, which are then used as inputs to the ilu preconditioner
of the coupled problem. The coupled approach calculates a full Jacobian, analytical contribution
using Aria’s built-in capabilities.
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∆ Volts JFNK Coupled
NonLin Its Lin Its NonLin Its Lin Its

0.5 6 (66) 6 (136)
(60) (64)
(44) (52)

1.0 9 (117) 9 (67)
(67) (68)
(66) (66)

1.5 11 (67) 10 (133)
(60) (66)
(68) (65)

2.0 11 (67) 10 (133)
(60) (66)
(68) (65)

2.5 12 (145) 16 (146)
(145) (135)
(67) (84)

2.75 16 (70) 12 (147)
(65) (119)
(65) (67)

2.85 23 (85) 19 (137)
(150) (147)
(150) (126)

2.87 21 (145) 20 (136)
(155) (149)
(95) (146)

Table 6.1. Nonlinear Iterations Counts for JFNK coupling vs. strong
coupling. The number of iterations in the linear solver taken by the last
three nonlinear iterations are also shown.
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Chapter 7

Nonlinear Elimination for
Circuit/Device Coupling

This chapter demonstrates the nonlinear elimination multi-physics coupling technique as applied to
a circuit/device simulation. The motivation stems from the qualification of circuits under hostile
(radiation) environments. Circuits are normally modeled using a network simulator that solves a
set of fully coupled lumped parameter models or what we term as the “low-fidelity” models. To
adequately capture the effects of radiation damage, lumped parameter models are not adequate.
High fidelity models of individual devices must be used.

The circuit simulator Xyce (11) is used to model large-scale networks of devices. The circuit is a set
of coupled device models that can be as small a a few devices or as large as millions of devices with
complicated interconnections. The devices are typically modeled with lumped parameter models
that generate a system of high index dynamic algebraic equations (DAEs). Solving such systems
can be difficult and Xyce employs such techniques as natural and artificial homotopy (12) and voltage
limiting (13) to attain convergence to the steady-state conditions.

The “high fidelity” device model is implemented in the Charon finite element code. An individual
device in Charon solves for the electric potential, density of holes and electrons, and defect species
from radiation damage via a fully coupled set of partial differential equations (PDEs). The dis-
cretization uses a variational multi-scale stabilized Galerkin finite element formulation. A typical
device will have on the order of 100’s of millions of degrees of freedom. Large-scale supercomputers
are needed to solve a single device, let alone the entire coupled system. Due to this size, it is impos-
sible to model all devices in the circuit at this level. We therefore couple a few high fidelity Charon
devices where the radiation damage occurs to the rest of the circuit that is described with the low
fidelity models in Xyce.

The first section describes the general theory and procedure for the nonlinear elimination, the second
section show results on simple test problems, and the third section summarizes the work.

7.1 Theory

The nonlinear elimination technique has been used in the past for circuit device coupling. Orig-
inally, it was called the “Two-level Newton” technique and was described specifically in terms of
circuit/device coupling (14, 15). In the 90’s, nonlinear elimination was put on a strong theoretical
footing with convergence proofs and analysis (16, 17). It was eventually extended to systems other
than circuits such as aerodynamics (18).

We begin by defining the notation. The equations for the network model equations are described
by the subscript c, representing the circuit equations. The PDE device equations are described by
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the subscript d for “device.” The fully coupled set of discretized nonlinear equations is:

F (x) =
[
Fc(xc, xd)
Fd(xc, xd)

]
= 0, (7.1)

where Fc and Fd are the equations corresponding to the circuit and device equations respectively.

We would like to achieve the q-quadratic convergence rate of a Newton-based solve where we would
normally solve the fully coupled system via Newton’s method:[

Jcc Jcd

Jdc Jdd

] [
∆xc

∆xd

]
=
[

Fc

Fd

]
, (7.2)

where Jij = ∂Fi

∂Fj
is the Jacobian matrix. Consistent with the common theme of our coupling studies,

solution of the overall coupled problem in this manner encounters some difficulties. First, if the
codes are written completely independent of one another, getting off-diagonal dependencies (the Jcd

and the Jcd blocks) may be prohibitively expensive if not impossible to compute. For example, a
finite difference Jacobian may be the only way to get Jacobian dependencies, and as the number of
equations increases, the computation becomes intractable.

A second issue that is extremely important to solving the multi-physics associated with device-
circuits is the is the need for and delicate nature of globalizations for Newtons method. Globalizations
typically include line search and trust region algorithms (19), homotopy methods (12, 20) and the
circuit specific voltage limiting (13). The difficulty is that globalization routines do not perform well
for all physics. For example, basic polynomial line search methods are extremely ineffective on certain
low fidelity simulations while they work extremely well on the PDE-based high fidelity models. The
explanation is that line searches scale the Newton direction, ∆x, to enforce a monotonic reduction
of the residual during the Newton iteration sequence. Circuit models typically have discontinuous
functions and/or derivatives causing the scale factor to be reduced to extremely small values to
enforce monotonicity thereby causing the method to stall out. For a device to switch states, it must
permit increases to the magnitude of the residual at some point in the iteration sequence. Most
globalization routines assume continuous functions, which does not hold for the on-off character of
certain device states. Thus, coupling the low and high fidelity models together can generate systems
that require different globalizations that are mutually incompatible. Nonlinear elimination can be
used a technique to preserve application specific globalizations while achieving a fully coupled solve.
Optimal solution algorithms including appropriate globalizations are utilized for each physics.

The objective of nonlinear elimination is to eliminate one or more sets of physics from the solve. In
this case we chose the device equations to be eliminated. This choice was made due to constraints
on the coupling. At the time this was undertaken, the quantities of interest could only be computed
via a one-way process. The high fidelity code could only accept voltages and return the currents.
The reverse process was not available and thereby dictated our choice of problem to be eliminated.

We begin by assuming that we can solve the stand alone system of device equations

Fd(xc,xd) = 0, (7.3)

for the device solution, xd. This is done by treating the circuit solution variables, xc, as “fixed”
parameters in the device simulation model. If such a solution exists, then we can define an implicit
function

xd = h(xc). (7.4)

If the solution to the implicit function exists, then Fd = 0 and we can rewrite equation 7.2 leveraging
the implicit function theorem as the following

F(x) = Fc(h(xc),xc) = F(xc). (7.5)
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The resulting Newton system is just the circuit Newton solve

Jcc∆xc
= F(xc). (7.6)

From this, we construct the following iterative Newton method for the nonlinear elimination tech-
nique:

While not converged: k = 0, 1, . . . N
compute Jc,Fc

solve Jk
c∆xk

c = −Fk
c

update xk+1
c = xk

c + ∆xk
c

The important step is the “compute” step. During the evaluation of the Jacobian and residual, a
complete nonlinear solve of the high fidelity equation set is required to evaluate the terms for the
assembly of the low fidelity Newton system. This is a two-stage solve. We have an “outer Newton
solve” of the low fidelity model, during which a complete nonlinear solve or “inner solve” of the
high fidelity model is required. This can be very inefficient compared to a fully coupled solve, but
is really dependent on the cost of evaluating the off-diagonal blocks versus the cost of full nonlinear
solves of the inner iteration.

7.2 Results

Here we show results from two test circuits. We discuss critical details required for the implementa-
tion of the nonlinear elimination technique. Issues we address include time integration error control,
convergence tolerance, convergence rates, and efficiency.

The first test circuit is a verification problem shown in Figure 7.1. The green inverted triangle is
the diode that is simulated with the high fidelity model. This problem is a diode rectifier taken
from (21). It is a transient problem where an oscillating current source is damped using a diode.
To begin the simulation, a steady state solve (called the DC Operating point solve) is performed to
determine the initial condition of the circuit. During the inner solve, a natural parameter homotopy
run was performed using the diode contact voltage as the parameter to achieve convergence of the
inner problem. Four continuation steps took the voltage from 0.1 to 0.5 volts. The outer problem
did not need a globalization and used Newton’s method directly.

Figure 7.1. Diode rectifier circuit test model.

Once the DC Operating point was attained, the transient simulation was started. An important
detail involves how to couple the time integrators between the physics. If the time scales vary widely,
one can apply operator splitting techniques. In this case, each of the physics was operating on nearly
the same time scales, and we chose to solve the system fully coupled. This lead to much work in
getting the time integrators to synchronize with each other. The time integrator in the outer loop
was directing the time step sizes for both physics problems, however the inner solve used it’s own
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time integrator to determine if the step sizes adequately controlled the requested error for the inner
problem. The voltage values on each end of the diode is shown as a function of time in figure 7.2.
Note that at 0.013 seconds the step size is reduced. This resulted from a failure of the inner iteration

Figure 7.2. Diode rectifier results: Plot of Voltage (V) vs. time (sec).

to achieve its relative tolerance. The inner solver converged to a solution, but the time step was
rejected since it failed to meet the relative error tolerance. It is critical in transient mode that the
time integrators communicate errors and convergence issues correctly.

For typical transient error tolerances, we observed that the outer solve averaged two Newton steps
while the inner solve averaged three Newton steps. This shows that the nonlinear elimination
techniques is not as inefficient as one would expect. Two outer iterations lead to only two nonlinear
solves of the inner problem.

The second test problem is a steady state npn bipolar junction transistor (BJT). Figure 7.3 depicts
the circuit. The BJT device with contacts at points E, C, and B is the high fidelity device simulated

Figure 7.3. npn BJT circuit test model.

by Charon (mesh shown in inset), while the rest of the circuit is simulated with the Xyce low fidelity
models. The problem converged in 10 Newton steps in the outer iteration. To achieve convergence, a
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Inner Tolerance Outer Tolerance Number of Time
Abs Rel Abs Rel Newton Steps (sec)

1.0e-12 1.0e-4 1.0e-8 1.0e-6 13 525
1.0e-8 1.0e-6 1.0e-8 1.0e-6 13 400
1.0e-4 1.0e-6 1.0e-8 1.0e-6 F F

Table 7.1. Convergence performance as a function of residual toler-
ances. F indicates a convergence failure of the outer iteration.

voltage limiting globalization is required on the outer iteration circuit. The inner iteration required
an initial guess generated by a nonlinear poisson solve.

A plot of the electric potential for the high fidelity BJT device is shown in Figure 7.4. Note the sharp

Figure 7.4. npn BJT: Plot of the electric potential.

gradients near the contacts on the top of the domain. An unstructured mesh with h-adaptivity is
typically required to resolve the features.

The first issue of importance is that the stopping criteria of the inner and outer problems can not be
chosen independently. The stopping criteria for our inner and outer solves was based on a weighted
root mean square norm defined as

1.0 ≤

√√√√∑
i

= 1N

(
xk

i − x
k−1
i

RelTol|xk−1
i |+ AbsTol

)2

, (7.7)

where N is the number of degrees of freedom in the solution vector and k is the Newton iterate. Table
7.1 shows the performance of the problem with various the inner and outer stopping tolerances. If
the norm of the residuals for the inner solve is less than the norm of the residuals for the outer solve,
then the Jacobian and residual contributions for the outer solve can be inconsistent. This typically
manifests as oscillations during the outer iteration sequence. This problem is due to the Jacobian
contributions from the inner solve. Given a circuit solution vector xc, the computed Jacobian from
the inner solve will be accurate to only so many digits based on both the inner solve convergence
tolerances and the initial guess. Each evaluation was not guaranteed to use the same initial guess,
so a loose inner tolerance will result in an inaccurate Jacobian for the outer problem.

A second issue to address is the problem of incompatible globalizations. In this test, the circuit
simulator required a voltage limiting globalization whereas the device simulator required a special-
ized nonlinear Poisson initial guess with a line search to converge. The linear search algorithm is
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incompatible with the voltage limiting algorithm if one were to attempt to solve the fully coupled
system. In this case, it is suspect as to whether convergence could be attained at all on the fully cou-
pled system (we did not attempt to demonstrate the fully coupled solve). As described previously,
nonlinear elimination can be used as a means to address conflicting globalizations. By separating
the solve, each physics can use the “best” globalization technique developed for that problem. We
cannot overemphasize this critical insight.

As mentioned earlier, nonlinear elimination should produce super-linear convergence rates. In figure
7.5, we verify that the method attains super-linear rates.

Figure 7.5. npn BJT: Norm of the error in the residual as a function
of outer iteration.

7.3 Summary

We have demonstrated the use of nonlinear elimination as a valuable addition to our suite of coupling
algorithms. Our unique contribution is that we are using the method to circumvent conflicting
globalization routines of the different physics. The advantages of nonlinear elimination are that
it produces a fully coupled solve that is robust since each physics can use the best globalization
technique for each individual physics. It is well suited to multi-physics simulation codes and is less
invasive than a fully coupled code. The disadvantages center around efficiency. Each Newton step of
the outer iteration requires a full nonlinear solve of the inner iteration which is much more expensive
than a fully coupled solve.

Future research directions on nonlinear elimination should target improving the efficiency of the
solve. Some promising techniques were proposed during the course of this study, but there was
insufficient time to implement and test the ideas.
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Chapter 8

Example of Coupled Heat
Conduction and Enclosure
Radiation

8.1 Overview

This chapter presents an in-depth study of coupling issues encountered in modeling various modes
of heat transfer, which is generally a problem of great importance in many engineering applications
both inside and outside Sandia . The model for heat transfer can be simple, taking into account
only a single mode of heat transfer, such as conduction, convection, or radiation, or it can include
combinations of these in a coupled system. In this section, we consider coupling of heat conduction
within a solid and thermal radiation between the surfaces of an enclosure, which is known as enclosure
radiation (ER). Coupled modeling of conduction and ER is important to many applications at Sandia
and within industry, where high temperatures induce significant heat transfer via ER.

Coupled conduction and ER is also a challenging coupling problem by which to test algorithms for
coupling nonlinear physical models. The conduction problem is solved within a solid domain, while
the ER problem is solved on a subset of the surface of the solid domain. The problems are coupled
on the enclosure surface in two ways. First, the surface temperature from the conduction problem
provides forcing data for the ER problem according to the Stefan-Boltzmann law

E ≡ ε σ u4, (8.1)

where u is the temperature, ε is the emissivity, and σ is the Stefan-Boltzmann constant. Second, the
ER problem provides a heat flux into the solid domain, which can be defined as the net difference
between emitted and incident thermal radiation

qn ≡ J −G, (8.2)

where qn is the outward normal heat flux, J is the emitted thermal radiation, called the radiosity,
and G is the incident thermal radiation.

At Sandia, the SIERRA Mechanics codes Calore, and now Aria, have handled this coupling through
weak coupling as described in Section 2.2. This approach was also the standard algorithm for
the previous thermal code Coyote. The basic approach is to compute the radiation heat flux by
passing the current temperature values on the enclosure surface to the ER solver Chaparral. These
temperature values are then used by Chaparral through the expression (8.1) to solve the linear
radiosity integral equations for J , compute G by postprocessing, and then to pass the net heat flux
in eq.(8.2) back to Calore/Aria.

Consistent with previous discussions in this report of weak coupling performance this approach to the
nonlinear conduction-radiation coupling exhibits only a linear convergence rate. For some problems,
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the nonlinear solver can converge very slowly or even fail to converge. Because of these issues, we
investigated stronger coupling algorithms in hopes of achieving the performance of full coupling via a
Newton-based coupling. We did this both by using the NOX Jacobian-Free Newton-Krylov (JFNK)
capability in Calore similar to our Aria multi-physics study described in Section 4.2 and Chapter 6
and by implementing a fully coupled Newton iteration directly in Calore.

The JFNK coupling via NOX is appealing in this case, since Calore eliminates the ER variables
during its residual fill, by calling Chaparral to compute the radiative heat flux. In the fully coupled
model, the Jacobian matrix for the temperature in the solid domain is augmented to include the
surface radiosity matrix and the off diagonal coupling terms.

8.2 Problem Formulation

In this section we present the mathematical model for coupled conduction and ER, beginning with
the decoupled models and concluding with the equations of the coupled model.

8.2.1 Thermal Conduction Problem

We consider a system containing a solid domain Ω in which the temperature u is the field of inter-
est. Within Ω we consider heat transfer arising from conduction only. The surface ∂Ω is divided
into several pieces upon which different boundary conditions are applied. On ΓD we specify the
temperature to be some environmental temperature

u = uD (8.3)

and on ΓR we pose a radiative flux boundary condition

−(k∇u) · n = ε σ u4 − αG. (8.4)

Here E ≡ ε σ u4 is the local emitted thermal radiation according to the Stefan-Boltzmann law of
eq.(8.1) and G is the local incident radiation. The coefficients are emissivity ε and absorptivity
α. The radiative heat flux is a nonlocal boundary condition, which is defined as a balance of heat
emitted locally (E) and absorbed from nonlocal sources (αG).

The above model can be described mathematically as a conduction–radiation heat transfer problem:
find the temperature u(x, t) satisfying:

ρ cp ∂tu−∇ · (k∇u) = Q, x ∈ Ω, t > 0, (8.5a)

−(k∇u) · n = ε σ u4 − αG, s ∈ ΓR, t > 0, (8.5b)
u = uD, s ∈ ΓD, t > 0, (8.5c)
u = u0, x ∈ Ω, t = 0. (8.5d)

Here Q is a volumetric heat source term, and k is the thermal conductivity. Thus the solution u is
determined by the data {Q,G, uD, u0}.

8.2.2 Enclosure Radiation Problem

We now describe the radiative transfer problem in greater detail, based on several references (22, 23,
24). We assume for simplicity that ΓR forms a complete enclosure with no holes, and consider the
problem of thermal radiative heat transfer between points on ΓR. At each point thermal radiation
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is emitted according to E = ε σ u4, absorbed according to αG, and reflected according to ρG, where
ρ is the local reflectivity. The coefficients are related by

ε = α = 1− ρ. (8.6)

A fundamental quantity for enclosure radiation is the radiosity or the total radiative flux leaving
ΓR, which is defined as

J ≡ E + ρG. (8.7)

We note that, using the definition of J in (8.7) and the energy balance in (8.4), the net flux can now
be described as in eq.(8.2)

−(k∇u) · n = J −G.

In order to solve for the radiosity J , an expression is needed that relates G and J . In fact the local
incident radiation G is nothing more than the total radiation coming from all other points. This
can be represented using an integral operator F , which is defined by

(F v)(s) ≡
∫

ΓR

K(r, s) v(r) dr. (8.8)

Here the kernel K(r, s) is the differential geometric view factor between any pair of points r, s ∈ ΓR

defined by

K(r, s) ≡ cos(θr) cos(θs)
cd |r − s|d−1

=
[nr · (r − s)] [ns · (s− r)]

cd |r − s|d+1
, (8.9)

where d is the spatial dimension, nr is the unit normal at r, θr is the angle between nr and the
vector (r − s), and θs is the angle between ns and the vector (s− r). The constant cd is equal to 2
for d = 2 and π for d = 3.

The equation that relates G and J is then

G = F J. (8.10)

We can now eliminate G and solve for J using the equation

J − (1− ε)F J = E. (8.11)

The solution J is thus determined solely by the data E.

The solvability of the enclosure radiation problem in (8.11) is discussed in (22, 24). The main
assumption on the emissivity ε is that it be bounded away from zero or

0 < ε0 ≤ ε(s) ≤ 1, s ∈ ΓR. (8.12)

It turns out that this condition is sufficient for the problem in (8.11) to have a unique solution and
to vary continuously with the data E (24).

8.2.3 Variational Form of the Coupled Problem

When the temperature u is solved using eq.(8.5), the enclosure radiation problem in eq.(8.11) is
coupled through the source data E. Likewise, when the incident radiative flux G is computed from
the solution J of eq.(8.11), then the conduction problem in eq.(8.5) is coupled through the data
G. Because of these couplings, the combined conduction-radiation problem is a two-way coupled
multi-physics problem. In this section we formulate a coupled variational form of the coupled system
for {u, J} in the steady state case (the extension to the transient case is straightforward).
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Multiplying by a test function v, and using eq.(8.10) to substitute for G in terms of J , the temper-
ature u solves the variational problem: find u satisfying (8.3):∫

Ω

k∇u · ∇v dx+
∫

ΓR

{ε σ u4 v − ε (F J) v} ds =
∫

Ω

Qv dx, ∀v, (8.13)

for all test functions v that vanish on ΓD. The equation for J in eq.(8.11) can be written in variational
form as: find J : ∫

ΓR

{J − (1− ε)F J} τ ds =
∫

ΓR

E τ, (8.14)

for all test functions τ . Combining these systems we have the variational problem: find (u, J)
satisfying eq.(8.3):∫

Ω

k∇u · ∇v dx+
∫

ΓR

ε σ u4 v ds−
∫

ΓR

ε (F J) v ds =
∫

Ω

Qv dx, ∀v, (8.15a)∫
ΓR

J τ ds−
∫

ΓR

(1− ε) (F J) τ ds−
∫

ΓR

ε σ u4 τ ds = 0, ∀τ. (8.15b)

8.3 Discrete Approximation of the Coupled Problem

We now turn to the discretization by finite elements. Let {Vh} be a family of finite dimensional
approximation spaces approximating the temperature field, and let {Xh} be another family approx-
imating the radiosity. We assume that the domain Ω has been partitioned into a mesh Ph such that
the set of faces of elements on ΓR forms a surface mesh Gh. For the space Vh, we choose the finite
element space to be based on continuous, piecewise polynomial shape functions of degree p on the
mesh Ph. For Xh we will only consider the space of discontinuous piecewise constant functions on
the surface mesh Gh.

The linear integral operator F is also discretized using the space Xh. We define a discrete linear
operator Fh : Xh → Xh by Galerkin project:∫

ΓR

(Fh τh)χh ds =
∫

ΓR

(F τh)χh ds =
∫

ΓR

∫
ΓR

K(r, s) τh(r) dr χh(s) ds, τh, χh ∈ Xh. (8.16)

We can define a basis for the space Xh given by {χi}, where χi is one on the face Ai and zero
elsewhere. Then the discrete operator Fh is represented in this basis by a matrix Fij , such that if
Jh =

∑
j Jj χj , then

Fh Jh =
∑

i

(
∑

j

Fij Jj)χi. (8.17)

The matrix Fij can be calculated from eq.(8.16) to be defined by

Fij ≡ |Ai|−1

∫
ΓR

∫
ΓR

F (r, s)χj(r)χi(s) drds = |Ai|−1

∫
Ai

∫
Aj

F (r, s) drds. (8.18)

The matrix Fij is not symmetric, but does satisfy the reciprocity formula

|Ai|Fij = |Aj |Fji. (8.19)

In Calore/Aria, the calculation of the discrete view-factor matrix Fij is handled by the library
Chaparral. This calculation is complex and expensive, especially when blocking surfaces are involved.
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The nonlinear system of equations is determined by finding (uh, Jh) ∈ Vh ×Xh such that∫
Ω

k∇uh · ∇vh dx+
∫

ΓR

ε σ u4
h vh ds−

∫
ΓR

ε (Fh Jh) vh ds =
∫

Ω

Qvh dx, vh ∈ Vh, (8.20a)∫
ΓR

Jh τh ds−
∫

ΓR

(1− ε) (Fh Jh) τh ds−
∫

ΓR

ε σ u4
h τh ds = 0, τh ∈ Xh. (8.20b)

We will abbreviate the system in eq.(8.20) using the abstract notation

Ru(uh, Jh) ≡ Auh + C Jh + F (uh)−Q = 0
RJ(uh, Jh) ≡ B Jh −G(uh) = 0 (8.21)

where

Aij ≡
∫

Ω

k∇vj · ∇vi dx,

Fi(uh) ≡
∫

Γ

ε σ u4
h vi ds,

Cik ≡ −
∫

Γ

ε (Fhχk) vi ds,

Qi ≡
∫

Ω

Qvi dx,

Blk ≡
∫

Γ

{χk τl − (1− ε)(Fh χk) τl} ds,

Gl(uh) ≡
∫

Γ

ε σ u4
h τl ds.

(8.22)

8.4 Coupling Strategies

In this section we discuss three different solution strategies to the discrete coupled nonlinear system in
eq.(8.20). These include weak coupling, full coupling, and JFNK coupling. We will use the abstract
form in eq.(8.21) in order to simplify the presentation. For convenience, we drop the subscripts h
on the discrete approximations uh and Jh.

8.4.1 Weak Coupling

This algorithm is the same as that in Section 2.2. For the problem at hand we proceed as follows.
Given the current temperature field un, the radiosity problem is solved with the temperature lagged.

B Jn+1 = G(un) (8.23)
This can be done using a radiosity solver that has been passed in the temperature field un or else
the source data G(un). Next, the new radiosity field Jn+1 is combined with the old temperature un

and substituted into the temperature equation.

Aun+1 = −C Jn+1 − F (un)−Q (8.24)

An alternate form is to linearize the source term F (u) around the old temperature un. If we perform
this partial linearization, we obtain a specialization of weak coupling which we will refer to in this
chapter as “Weak Coupling”.

B Jn+1 = G(un)

Aun+1 + F ′(un)un+1 = −C Jn+1 − F (un) + F ′(un)un −Q
(8.25)

This equation is iterated on until the convergence with respect to un+1 is achieved.
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8.4.2 Full Coupling

The full coupling strategy we consider in this study is nearly a pure Newton method as described in
Section 2.1 except that the linear solves are done approximately using an iterative linear solver in-
stead of a direct solver. Using the incremental formulation corresponding to eq.(8.21), this algorithm
takes the form of (

A + F ′(un) C
−G′(un) B

)(
δun+1

δJn+1

)
= −

(
Ru(un, Jn)
RJ(un, Jn)

)
(8.26)

We can contrast this strategy with the Weak Coupling strategy by rewriting eq.(8.25) in incremental
form (

A + F ′(un) C
0 B

)(
δun+1

δJn+1

)
= −

(
Ru(un, Jn)
RJ(un, Jn)

)
(8.27)

Thus the Weak Coupling strategy differs from the Full Coupling strategy by dropping the off-diagonal
operator −G′(un) from the full Jacobian operator.

We know that the Full Coupling algorithm, since it is based on Newton-Krylov iteration, has the
property of second order or quadratic convergence. The Weak Coupling algorithm has only formally
first order convergence. Moreover, the rate of convergence of Weak Coupling will be strongly problem
dependent, based on the physical parameters, geometry, and input data. Moreover, it may not even
be convergent for some parameter regimes. These pathologies have been observed even for the
prototyping studies in Chapter 3

We may analyze the convergence behavior of the Weak Coupled algorithm by applying the analysis
presented in Chapter 5 to the algorithm in eq.(8.25). We performed the analysis in Section 5.2 by
first linearizing the Jacobian and then transforming Newton’s method for a coupled A and B system
into a fixed point iteration system. We then found the iteration matrix for the fixed point scheme to
determine the convergence behavior of the linearized system. The same can be done here, starting
with eq.(8.26). We then obtain the result that a necessary condition for convergence of the Weak
Coupling system is that the spectral radius of the following matrix, GBB ,

GBB = J−1
BBJBAJ−1

AAJAB , (8.28)

is less than one. In the coupled radiation case, the elements of the Jacobian are given by the following
relations.

JAA = A+ F ′(un)
JAB = C

JBA = −G′(un)
JBB = B

The convergence behavior of the nonlinear system may then be related to the convergence behavior
of the linear system in the following manner. At the steady state solution, the convergence of the
linear system must be possible for convergence of the nonlinear system to be possible. This sets up
a sufficient condition on the convergence behavior of the nonlinear system that the spectral radius
of GBB be less than one.

Using a Taylor series expansion around the exact solution, we can in fact show that the linear
convergence rate of the Weak Coupling approach is bounded by the matrix operator norm of

I −
(
A+ F ′(un) C

0 B

)−1(
A+ F ′(un) C
−G′(un) B

)
=
(

(A+ F ′(un))−1 C B−1G′(un) 0
−B−1G′(un) 0

)
.

(8.29)
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We will use this result below in a simple conduction-radiation prototype example to show that this
rate is correct for the Weak Coupling case. This rate is also important for determining when the
Weak Coupling may fail, since the sufficient conditions for convergence of fixed-point iterations are
that the rate is less than one.

8.4.3 Jacobian-Free Newton-Krylov

Another alternative to the Weak Coupling strategy is JFNK coupling available in the NOX interface
in Sierra and described in detail in Section 2.3.1 and elsewhere in this report.

We could apply the JFNK algorithm to the pair of coupled residuals defined in eq.(8.21). However,
since the Full Coupling case can be easily obtained once the coupled residuals have been implemented,
we decided instead to apply this approach to the reduced residual that is computed by the Weak
Coupling implementation in Calore.

As we described in Section 8.1, Calore/Aria passes the current temperature values on the enclosure
surface into Chaparral, which then returns the net heat flux back to Calore. This is equivalent to
eliminating the radiosity variable J from the coupled system in eq.(8.21), resulting in the reduced
residual

R(u) ≡ Au+ C B−1G(u) + F (u)−Q = 0. (8.30)

For JFNK coupling, this residual can be formed and differenced without any explicit knowledge
of how the coupling works. Hence, we employ nonlinear elimination analogous to the approach
described in Section 7.1.

The remaining work associated with applying JFNK coupling is to define the preconditioner. De-
veloping an efficient preconditioner requires knowledge about how the discrete temperature solution
is coupled on the enclosure. In a convex enclosure, every temperature degree of freedom (dof) is
coupled to every other on the enclosure. However, when blocking surfaces exist in the enclosure,
some couplings may not exist. One possibility is to simply compute a preconditioner based on the
conduction matrix from Calore, which does not contain the full coupling information.

Another possibility is to assume all dofs on the enclosure are coupled and to augment the matrix
sparsity graph to reflect this. Then the full Jacobian matrix can be filled using finite coloring
algorithms in NOX. The drawback to this approach is that the resulting preconditioner can be very
expensive to compute due to the density of the additional coupling terms. We will demonstrate
these approaches in the numerical examples, but would like to emphasize that choosing optimal
preconditioners was beyond the scope of the work.

8.5 Numerical Examples

We now present results to illustrate effects of nonlinear coupling on time integration and spatial
mesh adaptivity. In addition, we describe a useful verification problem with analytic solution, for
which we verify that we can estimate the rate of convergence of weak coupling. Finally, we illustrate
the importance of the full Jacobian in the case of adjoint-based error estimation.
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8.5.1 3D Coupled Conduction/ER Problem

8.5.1.1 Problem description

Our first example is a three-dimensional brick containing two enclosures in the interior. The dimen-
sions are 1 × 1 × 2 with two hexagonal enclosures of length 1.0 placed symmetrically along the z
axis. The temperature solution at time t = 0.16 is shown in Figure 8.1, with part of the domain cut
away so that the enclosures are visible.

Figure 8.1. Cutaway of temperature solution at t = 0.16 for 3D
transient ER coupling problem.

The material properties are homogeneous and isotropic, and are defined in Table 8.5.1.1. The only

Property Value
k 2 W/m−K
ρ 1 kg/m3

cp 1 J/kg−K
ε 0.8
u0 300 K
uD 300 K
hc 10 W/m2

property not previously described is the convective heat transfer coefficient hc. This parameter is
used in a convective heat transfer boundary condition of the form

qn = hc (u− uref).

The reference temperature is defined by

uref(t) ≡
{

1300K, 0 < t < 0.2,
300K, 0.2 < t

The convective boundary condition is defined on the surface x = 1, and the Dirichlet boundary
condition is applied on the surface x = −1. The interior surfaces have the ER model applied, and
all other exterior surfaces are adiabatic.
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8.5.1.2 Coupling costs for time integration

In the transient case, the time integration algorithm is implicit Euler, which requires the solution
of a nonlinear coupled conduction/ER problem for each time step. In Calore this is coupled to a
forward Euler (explicit) predictor step. A baseline comparison between the three coupling strategies
is to estimate the average cost per time step, which should be essentially the cost of the nonlinear
solve. For the spatial discretization, we used linear Hex8 elements and solved the problem using
Calore. From the data in Table 8.1, we observe that in all cases, the most expensive nonlinear solver

time steps
8 15 60

elements WC NOX FC WC NOX FC WC NOX FC
1289 3.88 2.38 1.38 2.60 2.60 0.93 0.63 0.42 0.48
10312 23.38 15.88 13.75 15.27 12.47 10.33 6.87 6.37 5.23

Table 8.1. Comparison of average nonlinear solve times for 3D tran-
sient ER coupling problem.

was the weak coupling approach (WC). The fastest approach was almost always the full coupling
approach (FC), with NOX typically performing closer to the FC case than the WC case.

The implications of this experiment are the following. First, if the time step selection is constrained
to take many small implicit time steps, then weak coupling can be reliable and have comparable cost
as the full coupling (consider the case of 1289 elements and 60 time steps). However, if one wishes
to take much larger implicit time steps, then full coupling or JFNK coupling not only can be faster
(case of 10312 elements and 8 time steps), but may be more reliable because of the possibility of
failure of the weak coupling solver, even when the predictor is good.

8.5.1.3 Spatial adaptivity for the transient case

While failure of the weak coupling was not demonstrated in the previous example, failure was
observed in the case of spatial mesh adaptivity within each implicit time step.

The adaptivity is driven by a standard gradient recovery error indicator in Calore, that uses lack
of smoothness in the temperature gradients to compute local element error indicators. At each
time step, the mesh was adapted until the global error indicator was smaller than a fixed relative
tolerance. In Figure 8.2 we plot the global error indicator versus time for a uniform mesh, and for
two adaptive cases with different error tolerances. In all cases, the nonlinear solver is the Weak
Coupling case. For the larger tolerance of 0.08, the weak coupling converges and the problem runs
to completion. However, for the smaller tolerance of 0.04, the weak coupling strategy eventually
fails. We conjecture that the reason for the failure is that the adaptivity results in a tighter coupling
within the discrete system. Alternatively the problem could be that we need to reduce the time step
size when attempting to adapt the spatial mesh significantly.

8.5.1.4 Spatial adaptivity for the stationary case

In the last part of this example, we consider a stationary version of the previous problem. The
Dirichlet boundary condition at x = −1 is the same, but the convective flux boundary condition at
x = 1 is replaced by a Dirichlet boundary condition of u = 1300K. In this case the solution has
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Figure 8.2. Spatial adaptivity failure from weak coupling in a 3D
transient ER problem

larger gradients on the part of the domain and the enclosure nearer the surface x = 1, due to the
larger temperature values there.

Figure 8.3. Cutaway of temperature solution after five adaptive mesh
refinement steps for 3D stationary ER coupling problem.

In this case we would like to study the coupling performance under a sequence of adaptive mesh
refinements of the spatial mesh. As in the previous problem, we can use computational cost as a
metric by which to compare the coupling methods. In this case, we plot the global error indicator
versus cumulative CPU time in Figure 8.4. Because adaptivity is often described as a method to
optimize efficiency for a given error tolerance, such a comparison is natural. We could have chosen
another scale such as number of elements or dofs, but due to the differing costs from the nonlinear
solvers, this metric be less useful. We see in Figure 8.4 that in this case, weak coupling appears to be
more efficient, reducing the global error indicator with less computational cost than JFNK coupling.
This result may seem strange, since each JFNK solve typically requires only about 5–6 nonlinear
iterations compared to hundreds or even thousands of iterations for the weak coupling approach. In
addition, both nonlinear solvers use the same underlying linear solver (GMRES) and preconditioner
(multilevel ML).
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Figure 8.4. Comparison of global error indicator versus CPU time
for a stationary adaptive problem using either weak coupling or JFNK
coupling.

The difference is that the preconditioner for the conduction part of the weak coupling solver (Calore)
has the correct sparsity pattern from the conduction problem. Thus, the linear solver typically only
needs at most 10–20 iterations to converge, even on the adapted meshes. In contrast, the ML
preconditioner for JFNK uses the conduction sparsity pattern to precondition the reduced coupled
problem in eq.(8.30). The Jacobian for the reduced problem has many new non-zeros from the
temperature coupling within the enclosure, which are omitted from the conduction sparsity pattern.

An interesting final comment is that the weak coupling solver actually fails on the next adaptive
step, while JFNK coupling is able to solve it, although with a very large computational cost. This
indicates the need to develop nonlinear solvers that are both robust and efficient.

8.5.2 1D Verification Problem

Our next problem is a radially symmetric heat transfer problem with an steady state analytic
solution. The problem consists of a (infinite) cylinder inside of a cylindrical shell. Within the cylinder
is a uniform heat generation source that drives the heat transfer. Heat is conducted through the
cylinder, radiated to the outer shell, and conducted to the outer surface where a Dirichlet boundary
condition is applied. The temperature profile computed by Calore using a fine mesh of linear triangle
elements is shown in Figure 8.5.

8.5.2.1 Problem description

The one-dimensional analytic solution can be defined in terms of the radial coordinate r. Let the
domain be Ω = Ω1 ∪ Ω2 with Ω1 ≡ (0, r1) and Ω2 ≡ (r2, r3) with 0 < r1 < r2 < r3. We define the
heat flux by

q(r) ≡ −k du
dr

(r). (8.31)

Within Ω the steady state heat conduction problem is

1
r

d

dr
(r q) = Q, r ∈ Ω. (8.32)
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Figure 8.5. Temperature solution using a fine spatial grid for ER
verification problem.

The source term Q is a positive constant in Ω1 and zero in Ω2. The left (inner) boundary condition
is the standard zero flux condition

q(0) = 0, (8.33)

and the right (outer) boundary condition is constant temperature

u(r3) = u3. (8.34)

To close the problem, we need to specify the nonlinear radiative boundary conditions on the enclosure
surfaces at r = r1 and r = r2. If Gi is the incident flux to ri, for i = 1, 2, then the first set of
conditions are

q1 = ε1 σ u
4
1 − ε1G1,

−q2 = ε2 σ u
4
2 − ε2G2,

(8.35)

where the subscripts denote evaluation at the point ri. The incident radiation is defined in terms of
the radiosity variable Ji by

G1 = F11 J1 + F12 J2

G2 = F21 J1 + F22 J2
(8.36)

The final equation couples the radiosities to the surface temperatures

J1 − (1− ε1)F11J1 − (1− ε1)F12J2 = ε1σu
4
1

J2 − (1− ε1)F21J1 − (1− ε2)F22J2 = ε2σu
4
2

(8.37)

The view factors can be found in many textbooks (23) and are defined as

F11 = 0, F12 = 1, F22 = 1− r1/r2, F21 = r1/r2. (8.38)

This nonlinear problem can for solved analytically for the temperature field u(r) in Ω, the incident
fluxes Gi and the radiosities Ji in terms of the data ri, ki, εi, Q, u3. The solution to eqs.(8.31)-(8.34)
can be written in terms of the unknowns u1 ≡ u(r1) and u2 ≡ u(r2) as

u(r) =

{
u1 + Q

4 k1
(r21 − r2), 0 < r < r1,

u3 + (u2 − u3)
ln(r/r3)
ln(r2/r3)

, r2 < r < r3
. (8.39)

with the associated fluxes on the enclosure

q1 ≡
Qr1

2
> 0, q2(u2) ≡

k2

r2

(u2 − u3)
ln(r3/r2)

> 0. (8.40)
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The analytical expressions for u1 and u2 can then be computed as

u2 ≡ u3 +
Qr21
2 k2

ln(r3/r2), u1 ≡
(
u4

2 + (ρ2 (r1/r2) + ε2/ε1) q1/(ε2 σ)
)1/4

(8.41)

Using these values we can also solve for the radiosity variables

J1 ≡ σ u4
1 + (1− 1/ε1) q1, J2 ≡ J1 − q1. (8.42)

In order to study this problem numerically, we select a set of nominal parameters, given in Table 8.2

Parameter nominal value
r1 1 m
r2 2 m
r3 3 m
k1 0.1 W/m−K
k2 0.08 W/m−K
ε1 0.8
ε2 0.7
Q 100 W/m3

u3 300 K

Table 8.2. Nominal parameter values for verification problem.

8.5.2.2 Weak Coupling Convergence using Analytical Solution

A convenient feature of this problem is that we have the exact coupled analytic solution. One way
to study the coupling is to use the analytic solutions to the weak coupled problem to study the
convergence of the coupling algorithms in the absence of numerical discretization error. To this end,
we wrote a Matlab script in order to iterate on the analytic temperature solution using the same
weak coupling algorithm employed by Calore/Aria. In this case, we pass the current temperature
values on the enclosure {u1, u2} to the ER “solver,” which solves the 2 by 2 system for the radiosities
{J1, J2} and returns the net fluxes

εi σ u
4
i − εiGi, i = 1, 2.

Then the thermal conduction “solver” computes a new temperature from these fluxes including a
linearization of the nonlinear u4

i terms. This new temperature is a function only of the previous
choice of parameters {u1, u2}.

We analyzed the weak coupling error as was done in eq.(8.29) and derived an analytical expression
for a bound on the linear error rate, defined in terms of the operator blocks of the Jacobian in
eq.(8.26)

|(A+ F ′(un))−1 C B−1G′(un)|. (8.43)

Because the analytic model only iterates on the two temperature values {u1, u2}, this product
is computed as the operator norm of a 2 by 2 matrix. In Table 8.3 we report the results of a
simple parametric study obtained by varying the heat source Q while keeping the other parameters
in Table 8.2 constant. The estimated rate was computed using eq.(8.29) evaluated at the exact
solution, while the measured rate was computed by taking the ratio of the last two errors in the
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Q estimated rate = ‖GBB‖ measured rate error in rate iterations
10 0.988701923052248 0.988701850821153 7.223e-08 985
50 0.994947114469730 0.994947039953165 7.451e-08 2202
100 0.997674723966611 0.997674655519477 6.844e-08 4504
250 0.999514293801377 0.999514218102668 7.569e-08 18429
500 0.999897259132588 0.999897176360744 8.277e-08 72062

Table 8.3. Verification of weak coupling analytic rate estimate. In all
cases, the nonlinear tolerance was 1E−8.

nonlinear iteration sequence. We see that the estimated rate is exact up to the error in the nonlinear
convergence.

As a final test, we compute the approximate finite element solutions from Calore for the same
problem as in Table 8.3. Using a sequence of successively finer meshes of linear triangular elements,
we compare both the nonlinear convergence rates and the number of iterations to the weak coupling
analytic results. In Table 8.4 we see that as the mesh is refined (increasing DOFS), the nonlinear
convergence rate approaches the same rate as we observed in Table 8.3 for the analytic coupled
model. Interestingly, the trend is for the convergence rate to be smaller for the coarser meshes,
suggesting that they exhibit faster convergence than for the finer meshes.

We also compare the total number of iterations for convergence to the tolerance of 1E−8 in Fig-
ure 8.5. Here we see that the approximate solution typically requires more nonlinear iterations,
with fewer iterations needed for finer meshes. This reasons for this trend are not clear, since the
larger rates for the finer meshes would suggest that the finer meshes would require greater, not fewer
nonlinear iterations.

Source term Q
DOFS 10 50 100 250 500

22 0.987952 0.994008 0.996979 0.999249 0.999120
39 0.987923 0.993918 0.996933 0.999264 0.999601
121 0.988544 0.994745 0.997534 0.999465 0.999832
382 0.988655 0.994890 0.997636 0.999502 0.999900
1501 0.988691 0.994933 0.997665 0.999512 0.999897
5799 0.988699 0.994944 0.997672 0.999514 0.999897

Analytic 0.988702 0.994947 0.997675 0.999514 0.999897

Table 8.4. Convergence rates of weak coupling computed using 2D
finite element code Calore compared to rates for the weak coupling an-
alytic model.
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Source term Q
DOFS 10 50 100 250 500

22 1421 3047 6233 27369 123823
39 1349 2866 5811 25179 112983
121 1304 3053 6666 32159 154277
382 1188 2853 6328 31215 151887
1501 1042 2540 5674 28274 138581
5799 893 2210 4963 24911 122814

Analytic 985 2202 4504 18429 72062

Table 8.5. Nonlinear iterations for weak coupling computed using 2D
finite element code Calore compared to iterations for the weak coupling
analytic model.

8.5.3 Adjoint-based Error Estimator and Coupling

In our final example, we illustrate the importance of including all coupling effects into the Jacobian
matrix, in the context of adjoint-based error estimation. For this type of error estimator, a linearized
adjoint solve is needed, in order to compute the adjoint solution, which measures the local sensitivity
of the solution to a given global quantity. While the adjoint Jacobian could be computed either by
via NOX, or by directly implementing the fully coupled Jacobian, we chose the latter approach for
simplicity.

8.5.3.1 Formulation of the error estimator

In this section we use the same notation as in eq.(8.26), abusing it to represent the continuum
differential and integral operators and residuals.

Suppose that we are interested in the error for a global quantity that depends on the temperature
u. For simplicity, we will assume that the quantity is represented by a weighted integral∫

Ω

ψ udx.

The associated adjoint problem is the solution to linearized coupled PDE: find (z,Φ):(
A + F ′(uh) −G′(uh)∗

C∗ B∗

)(
z
Φ

)
=
(
ψ
0

)
(8.44)

The solution to this problem provides an error estimate for the error in the quantity of interest that
is accurate up to higher order linearization error∫

Ω

ψ (u− uh) dx ≈ 〈Ru(uh, Jh), z − zh〉+
〈
RJ(uh, Jh),Φ− Φh

〉
.

Here zh and Φh are finite element approximations computed from the same spaces as uh and Jh.

Because eq.(8.44) is infinite dimensional, we approximate it using the same finite element spaces as
the original coupled problem. As a first implementation, the weighted residual of the ER problem
RJ(uh, Jh) is ignored. Next, the weighted temperature residual Ru(uh, Jh) is replaced by the en-
ergy inner product of the primal and adjoint temperature errors. Finally the exact primal/adjoint
temperature gradients are approximated by applying a gradient recovery operator G to the finite
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element gradients. The resulting computable error estimator is then

η ≡
∫

Ω

k(G(∇uh)−∇uh) · (G(∇zh)−∇zh) dx (8.45)

8.5.3.2 Application of the error estimator

In this example, we illustrate the dramatic improvement in the error estimator computed using the
coupled adjoint system (8.44) over solving the single-physics decoupled adjoint problem given by

(A + F ′(uh))∗ z = ψ. (8.46)

The 2D problem consists of a square domain within a hollow square, similar to the previous example
problem. On the right exterior boundary, a heat flux is applied, and on the remaining boundary the
temperature is held constant. As a result of the heat flux, the outer domain heats up and radiates
energy to the inner domain, causing it to heat up. The steady state temperature distribution is
shown in Figure 8.6. The strong coupling between the outer an inner domains by means of the ER

Figure 8.6. Temperature solution for the adjoint ER problem.

physics is clearly evident in Figure 8.6.

We choose the quantity of interest to be the average temperature on the inner domain, represented
by a simple piecewise constant function ψ.

In Figure 8.7 we compare the temperature component of the fully coupled adjoint problem of
eq.(8.44) with the adjoint temperature obtained from the decoupled adjoint problem of eq.(8.46).
There are clear differences in the solutions within the inner block, with the fully coupled adjoint
solution having its maximum near the right side of the inner domain. More striking is the difference
between the adjoint solutions in the outer domain. The weak coupled adjoint solution is zero in the
outer block, since there is no coupling between the blocks in eq.(8.46). In contrast, the fully coupled
adjoint solution has a nonzero component in the outer block that determines the effect of local
temperature values, and corresponding local errors, in the outer block on the average temperature
in the inner block.

In Figure 8.8 we plot the corresponding temperature solutions on meshes that have been adapted
using the error indicator in eq.(8.45) defined using either the full coupling or weak coupling adjoint
solve. The estimator using full coupling adjoint solves produces dramatically different mesh adap-
tivity, that properly adapts the mesh to resolve the error that has been propagated from the outer
block into the inner block via the ER coupling.
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Figure 8.7. Adjoint temperature field. (left) fully coupled adjoint
(right) weak coupled adjoint.

Figure 8.8. Temperature field. (left) fully coupled adjoint (right)
weak coupled adjoint.

8.6 Conclusions

Based on the results in this chapter, we make the following conclusions:

1. JFNK coupling can be very efficient when compared to weak coupling and can approach the
performance of full Newton coupling.

2. Efficient and appropriate preconditioners are essential for NOX, especially in the context of
spatial adaptive mesh refinement.

3. When using large implicit time steps, efficient nonlinear solvers such as NOX or a full Newton
coupled approach can perform much faster than successive substitution.

4. We have identified a good verification test problem that has a 1D analytic solution, suitable
for testing coupling algorithms.

5. Finally, we have demonstrated the importance of a fully coupling adjoint Jacobian operator
to the success of adjoint-based error estimators.
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Chapter 9

Project Summary and Future
Work

We feel the stated goals of this project have been met by our development, deployment and demon-
stration of stronger Newton-based coupling algorithms which require no application data beyond
weak coupling but which can make use of any additional data to improve algorithm performance.

Our work in Chapter 8 is continuing into the areas of Uncertainty Quantification (UQ) and Error
Estimation, the success of which is intimately connected to the quality of coupled multi-physics
solves. Moreover, our ability to numerically compute quantities such as complete Jacobian matrices
will prove invaluable to the quality of this ongoing work.

Our interactions with other communities at Sandia interested in robust coupled multi-physics sim-
ulations has led to the adoption of our algorithms by the Burner Reactor Integrated Safety Code
(BRISC) LDRD. We are actively involved in the BRISC project, providing guidance from lessons
learned as well as tuning and specializing our core Newton-based coupling algorithms.

Our presence in the Sierra applications framework is beginning to be utilized more, and we anticipate
this to increase.

Our work on this project also identified valuable future studies in the areas of mathematically smooth
and physically conservative data transfers across shared interfaces, improved software practices, and
the beginnings of cheap metrics to assess and guide the selection of coupling algorithms. We could
easily envision the latter functionality comprising the core of adaptive coupling algorithms that
change during the simulation to optimize the overall algorithm efficiency, robustness, or some user
defined weighting of each.

Finally, we recognize that weak coupling is inherently ill-suited to advanced Verification and Vali-
dation of coupled multi-physics simulation capabilities. This is due largely to the inability to treat
the coupled problem as a whole which makes characteristics such spatial and temporal order of
accuracy ambiguous and methods such as manufactured solutions difficult or impossible to apply at
the coupled problem level. We anticipate our Newton-based coupling algorithms, which recover a
complete view of the coupled problem using weak coupling data, to prove valuable in future V&V
activities.
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