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Abstract

Bayesian statistics provides a foundation for inference from noisy and incomplete
data, a natural mechanism for regularization in the form of prior information, and
a quantitative assessment of uncertainty in the inferred results. Inverse problems—
representing indirect estimation of model parameters, inputs, or structural components—
can be fruitfully cast in this framework. Complex and computationally intensive for-
ward models arising in physical applications, however, can render a Bayesian approach
prohibitive. This difficulty is compounded by high-dimensional model spaces, as when
the unknown is a spatiotemporal field.

We present new algorithmic developments for Bayesian inference in this context,
showing strong connections with the forward propagation of uncertainty. In partic-
ular, we introduce a stochastic spectral formulation that dramatically accelerates the
Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We
also explore dimensionality reduction for the inference of spatiotemporal fields, using
truncated spectral representations of Gaussian process priors. These new approaches
are demonstrated on scalar transport problems arising in contaminant source inversion
and in the inference of inhomogeneous material or transport properties.

We also present a Bayesian framework for parameter estimation in stochastic mod-
els, where intrinsic stochasticity may be intermingled with observational noise. Eval-
uation of a likelihood function may not be analytically tractable in these cases, and
thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on
the product space of the observations and the parameters, are introduced.
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1 Stochastic spectral methods for Bayesian inference in
inverse problems

1.1 Introduction

Inverse problems, broadly defined, arise from indirect observations of a quantity of interest
[26, 50]. A physical system may be described by a forward model, which predicts some
measurable features of the system given a set of parameters. The corresponding inverse
problem consists of inferring these parameters from a set of observations of the features.

The simplicity of this definition belies many fundamental challenges. In realistic applica-
tions, data is almost always noisy or uncertain. Also, the forward model may have limita-
tions on its predictive value; i.e, it may be an imperfect or imprecise model of the physical
system. Furthermore, as highlighted in [50], inverse problems are often non-local and/or
non-causal. In a forward model, solution values usually depend only on neighboring re-
gions of space and affect only future values in time. Inverting these models, however, may
(implicitly) require time-reversal or deconvolution. In mathematical terms, these proper-
ties render inverse problems ill-posed. No feasible parameters may match the observed
data (existence), or a multiplicity of model parameters may fit the data (uniqueness). Small
errors in measurement can lead to enormous changes in the estimated model (stability).

The Bayesian setting for inverse problems offers a rigorous foundation for inference from
noisy data and uncertain forward models, a natural mechanism for incorporating prior in-
formation, and a quantitative assessment of uncertainty in the inferred results [74, 89].
Indeed, the output of Bayesian inference is not a single value for the model parameters, but
a probability distribution that summarizes all available information about the parameters.
From this posterior distribution, one may estimate means, modes, and higher-order mo-
ments, compute marginal distributions, or make additional predictions by averaging over
the posterior.

Bayesian approaches to inverse problems have seen much recent interest [74, 7, 50], with
applications ranging from geophysics [43, 69] and climate modeling [49] to heat transfer
[97, 98]. In all of these applications, the primary computational challenge remains one of
extracting information from the posterior density [66, 75]. Most estimates take the form of
integrals over the posterior, which may be computed with asymptotic methods, determinis-
tic methods, or sampling. Deterministic quadrature or cubature [25, 17] may be attractive
alternatives to Monte Carlo at low to moderate dimensions, but Markov chain Monte Carlo
(MCMC) [91, 11, 42] remains the most general and flexible method for complex and high-
dimensional distributions. All of these methods, however, require evaluation of the like-
lihood or posterior at many values of the model parameters m. In this setting, evaluating
the likelihood requires solving the forward problem. With complex forward models, such
as those described by partial differential equations, each single evaluation can be a com-
putationally expensive undertaking [46]. For Monte Carlo simulations requiring 103–105

samples, the total cost of these forward evaluations quickly becomes prohibitive.
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This report presents a new formulation designed to accelerate evaluation of Bayesian in-
tegrals and other characterizations of the posterior. We develop methods to substantially
reduce the cost of evaluating the posterior density, based on a stochastic spectral reformu-
lation of the forward problem. These methods have their roots in uncertainty quantification
(UQ) using polynomial chaos (PC) expansions [40, 59, 21].

The efficient forward propagation of uncertainty—i.e., from model parameters to model
predictions—is a central challenge of uncertainty quantification. A simple approach is
Monte Carlo simulation: sampling known distributions of the model parameters to ob-
tain statistics or density estimates of the model predictions. Again, each sample requires
a solution of the forward model, and with complex models, this sampling approach is
computationally intensive. A useful alternative is to employ spectral representations of un-
certain parameters and field quantities, specifically polynomial chaos (PC) expansions for
random variables and stochastic processes. The polynomial chaos [100, 14, 70, 73, 15, 40]
was first defined by Wiener [100]; successive polynomial chaoses give rise to a functional
basis consisting of Hermite polynomials of Gaussian random variables [13]. Ghanem &
Spanos [40] describe the implementation of polynomial chaos in a finite element context.
These stochastic finite element approaches have found numerous modeling applications,
including transport in porous media [36], and solid [37, 38] or structural [39] mechan-
ics. Le Maı̂tre et al. [59, 61] extended these techniques to thermo-fluid systems. Xiu et
al. [104] used generalized polynomial chaos [103] for uncertainty quantification in fluid-
structure interactions and in diffusion problems [102], while Debusschere et al. [20] used
polynomial chaos to characterize uncertainty in electrochemical microfluid systems.

We will show that Bayesian estimation is intimately related to the forward propagation of
uncertainty. In particular, using PC to propagate a wide range of uncertainty—e.g., prior
uncertainty—through the forward problem and sampling the resulting spectral expansion
enables a substantially more efficient Bayesian solution of the inverse problem. To this end,
we employ an “intrusive” stochastic spectral methodology, in which polynomial chaos rep-
resentations of the unknown parameters lead to a reformulation of the governing equations
of the forward model. This process involves: (1) constructing PC expansions g(ξ) for each
unknown parameter, according to probability distributions that include the support of the
prior; (2) substituting these expansions into the governing equations and using Galerkin
projection to obtain a coupled system of equations for the PC mode strengths; (3) solving
this system; and (4) forming an expression for the posterior density based on the resulting
PC expansions of forward model predictions, then exploring this posterior density with an
appropriate sampling strategy. In this scheme, sampling can have negligible cost; nearly all
the computational time is spent solving the system in step 3. Depending on model nonlin-
earities and the necessary size of the PC basis, this computational effort may be orders of
magnitude less costly than exploring the posterior via direct sampling.

Other attempts at accelerating Bayesian inference in computationally intensive inverse
problems have relied on reductions of the forward model. Wang & Zabaras [98] use proper
orthogonal decomposition (POD) [10] and Galerkin projection to speed forward model cal-
culations in a radiative source inversion problem. The empirical basis [86] used for model
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reduction is pre-constructed using full forward problem simulations. The choice of in-
puts to these simulations—in particular, how closely the inputs must resemble the inverse
solution—can be important [98]. Balakrishnan et al. [8] introduce a PC representation of
the forward model in a groundwater transport parameter identification problem, but obtain
the PC coefficients by collocation; again, this process depends on a series of “snapshots”
obtained from repeated forward simulations.

In the statistical literature, under the headline of “Bayesian parameter calibration,” Gaus-
sian processes have been used extensively as surrogates for complex computational models
[55]. These approaches treat the forward model as a black box, and thus require careful
attention to experimental design and to modeling choices that specify the mean and covari-
ance of the surrogate Gaussian process. A different set of approaches retain the full forward
model but use reduced models to guide and improve the efficiency of MCMC. Christen &
Fox [16] use a local linear approximation of the forward model to improve the acceptance
probability of proposed moves, reducing the number of times the likelihood must be evalu-
ated with the full forward model. This “approximate MCMC” algorithm is shown to yield
the same stationary distribution as a standard Metropolis-Hastings chain. Higdon et al. [46]
focus on the estimation of spatially-distributed inputs to a complex forward model. They
introduce coarsened representations of the inputs and apply a Metropolis-coupled MCMC
scheme [34] in which “swap proposals” allow information from the coarse-scale formu-
lation, which may be computed more quickly, to influence the fine-scale chain. Efendiev
et al. [24] also develop a two-stage MCMC algorithm, using a coarse-scale model based
on multiscale finite volume methods to improve the acceptance rate of MCMC proposals.
In contrast to the present formulation, however, all of the approaches cited above require
repeated solutions of the full-scale deterministic forward model.

We will demonstrate our new formulation on a transient diffusion problem arising in con-
taminant source inversion, and compare the efficiency of the method and the accuracy of
posterior estimates to direct evaluation of the posterior.

1.2 Formulation

1.2.1 Bayesian inference for inverse problems

Consider a forward problem defined as follows:

d ≈ G(m) (1)

Here m is a vector of model parameters and d is a vector of observable quantities, or data.
The forward model G yields predictions of the data as a function of the parameters. In
the Bayesian setting, both m and d are random variables, and for the remainder of this
chapter we will take these random variables to be real-valued. We use Bayes’ rule to define
a posterior probability density for the model parameters m, given an observation of the data
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d:

p(m|d) =
p(d|m)pm(m)R

p(d|m)pm(m)dm
(2)

In the Bayesian setting, probability is used to express knowledge about the true values of
the parameters. In other words, prior and posterior probabilities represent degrees of belief
about possible values of m, before and after observing the data d.

Data thus enters the formulation through the likelihood p(d|m), which may be viewed as
a function of m: L(m) ≡ p(d|m). A simple model for the likelihood assumes that inde-
pendent additive errors account for the deviation between predicted and observed values of
d:

d = G(m)+η (3)

where components of η are i.i.d. random variables with density pη. A typical assumption
is ηi ∼ N(0,σ2), in which case p(d|m) becomes N(G(m),σ2I). The likelihood is thus

L(m) = ∏
i

pη (di−Gi(m)) (4)

In this simple model, η may encompass both measurement error (e.g., sensor noise) and
model error—the extent to which forward model predictions may differ from “true” values
because of some unmodeled physics of the system.

Any additional information on the model parameters may enter the formulation through a
suitably-defined prior density, pm(m). Prior models may embody simple constraints on m
such as a range of feasible values, or may reflect more detailed knowledge about the pa-
rameters (shapes, correlations, smoothness, etc). In the absence of additional information,
one may simply choose a prior that is uninformative.

Bayesian estimation typically gives rise to integrals over the posterior density:

I[ f ] =
Z

f (m)L(m)pm(m)dm (5)

The posterior expectation of a function f , for instance, is Eπ f = I[ f ]/I[1]. Though more
sophisticated means of estimating such integrals will be discussed later, we note here that
a conceptually simple method of obtaining posterior estimates is Monte Carlo sampling. If
independent samples m( j) can be drawn from the prior, then a Monte Carlo estimate of (5)
is

În[ f ] =
1
n

n

∑
j=1

[
f
(

m( j)
)
∏

i
pη

(
di−Gi(m( j))

)]
(6)

If parameters φm of the prior density pm(m|φm) or parameters φη of the error model
pη(ηi|φη) are not known a priori, they may become additional objects for Bayesian in-
ference. In other words, these hyperparameters may themselves be endowed with priors
and estimated from data [74]:

p(m,φm,φη|d) ∝ p(d|m,φη)pm(m|φm)p(φη)p(φm) (7)
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The resulting joint posterior over model parameters and hyperparameters may then be
interrogated in various ways—e.g., by marginalizing over the hyperparameters to obtain
p(m|d); or first marginalizing over m and using the maximizer of this density as an es-
timate of the hyperparameters; or by seeking the joint maximum a posteriori estimate or
posterior mean of m, φm, and φη [68, 74].

1.2.2 Polynomial chaos expansions

Let (Ω,U,P) be a probability space, where Ω is a sample space, U is a σ-algebra over Ω,
and P is a probability measure on U. Also, let {ξi(ω)}∞

i=1 be a set of orthonormal standard
Gaussian random variables on Ω. Then any square-integrable random variable X : Ω → R
has the following representation:

X(ω) = a0Γ0 +
∞

∑
i1=1

ai1Γ1(ξi1)+
∞

∑
i1=1

i1

∑
i2=1

ai1i2Γ2(ξi1,ξi2)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3Γ3(ξi1,ξi2,ξi3)+ · · · (8)

where Γp is the Wiener polynomial chaos of order p [100, 40, 53] This expansion may be
re-written in a more compact form

X(ω) =
∞

∑
k=0

âkΨk(ξ1,ξ2, . . .) (9)

where there is a one-to-one correspondence between the coefficients and functionals in (8)
and in (9) [40]. For the standard normal random variables ξi chosen above, orthogonality
of successive Γp requires that the Γp be multivariate Hermite polynomials; both these and
the corresponding Ψk may be generated from univariate Hermite polynomials by taking
tensor products.

Of course, in computations it is not useful to represent a random variable with an infinite
summation, and one truncates the expansion both in order p and in dimension n—i.e., by
choosing a subset ξ = {ξλi}

n
i=1 of the infinite set {ξi}, λi ∈ N. The total number of terms

P in the finite polynomial chaos expansion

X(ω) =
P

∑
k=0

xkΨk(ξ1,ξ2, . . . ,ξn) (10)

is:

P+1 =
(n+ p)!

n!p!
. (11)

Polynomial chaos (PC) expansions have been generalized to broader classes of orthogonal
polynomials in the Askey scheme, each family resulting from a different choice of distribu-
tion for the ξi [103, 83]. For each of these choices, orthogonality of the polynomials Ψk(ξ)
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with respect to the inner product on L2(Ω) is guaranteed:

〈ΨiΨ j〉 =
Z

Ψi (ξ(ω))Ψ j (ξ(ω))dP(ω)

=
Z

Ψi (ξ)Ψ j (ξ)w(ξ)dξ

= δi j〈Ψ2
i 〉 (12)

where, in the second (Riemann) integral, w(ξ) denotes the probability density of ξ. This
property can be used to calculate the truncated PC representation of a random variable
f ∈ L2(Ω) by projecting onto the PC basis:

f̃ (ω) =
P

∑
k=0

fkΨk(ξ), fk =
〈 f (X)Ψk〉
〈Ψ2

k〉
(13)

This orthogonal projection minimizes the error ‖ f − f̃‖ on the space spanned by {Ψk}P
k=0,

where ‖ · ‖ is the inner-product norm on L2(Ω).

Suppose that the behavior of f can be expressed as O ( f ,X) = 0, where O is some deter-
ministic operator and X(ω) is a random variable with a known PC expansion X = ∑

P
i xiΨi.

Substituting PC expansions for f and X into this operator and requiring the residual to be
orthogonal to Ψ j for j = 0 . . .P yields a set of coupled, deterministic equations for the PC
coefficients fk: 〈

O

(
P

∑
k

fkΨk,
P

∑
i

xiΨi

)
Ψ j

〉
= 0, j = 0 . . .P (14)

This Galerkin approach is known as “intrusive” spectral projection [61], in contrast to “non-
intrusive” approaches in which the inner product 〈 f (X)Ψk〉 is evaluated by sampling or
quadrature, thus requiring repeated evaluations of f (X) corresponding to different realiza-
tions of ξ [80].

In practice, we employ a pseudospectral construction to perform intrusive projections effi-
ciently for higher powers of random variables, e.g. f (X) = X j, j ≥ 3, and have developed
additional techniques for nonpolynomial functions f . These operations are incorporated
into a library for “stochastic arithmetic,” detailed in [21].

1.2.3 Efficient evaluation of the posterior: Sampling from the prior

We now connect ideas introduced in the two preceding sections to formulate a computa-
tionally efficient scheme for Bayesian inference. Suppose the model parameters have been
endowed with a prior density pm(m). Knowing this density, one can construct a corre-
sponding polynomial chaos expansion for each component mi of the random vector m:

mi(ξ) =
P

∑
k=0

mikΨk(ξ) (15)
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where the dimension of ξ is at least equal to the dimension of m.

Next, we introduce these PC expansions into the forward model and use Galerkin projection
to obtain a PC representation for each component of the predicted data Gi(m). Here Gi(m)
denotes the i-th component of G(m) and G̃i(ξ) is its (approximate) PC representation:

G̃i(ξ) =
P

∑
k=0

dikΨk(ξ) (16)

Now consider a generic integral over the unnormalized posterior density, given in (5).
Drawing samples ξ( j) from the distribution of ξ will yield samples of m from the prior,
calculated according to (15). But the corresponding forward model prediction, G(m), can
now be computed very cheaply, simply by substituting the same ξ( j) into (16). In general,
evaluating this (P+1)-term expansion will be significantly faster than solving the forward
model for each sample. The prediction G̃(ξ) obtained in this fashion then replaces G(m) in
the likelihood L(m). For the simple likelihood proposed in (4), an n-sample Monte Carlo
estimate of the integral becomes:

În[ f ] =
1
n

n

∑
j=1

[
f
(

m(ξ( j))
)
∏

i
pη

(
di− G̃i(ξ( j))

)]
(17)

1.2.4 Efficient evaluation of the posterior: Sampling from alternate distributions

Polynomial chaos reformulations of a Bayesian estimate need not be limited to expansions
for which m has density pm, as specified in (15), however. Consider a different set of PC
expansions, m = g(ξ), where each component mi = gi is given by

mi = gi(ξ) =
P

∑
k=0

gikΨk(ξ) (18)

Let the gik be chosen such that g(ξ) has probability density q, where the support of q
includes the support of the prior. Drawing samples ξ( j) from the distribution of ξ will
now yield samples of m drawn from q. A Monte Carlo estimate of the integral in (5) now
becomes:

În[ f ] =
1
n

n

∑
j=1

 f
(

g(ξ( j))
)
∏

i
pη

(
di− G̃i(ξ( j))

) pm

(
g(ξ( j))

)
q
(
g(ξ( j))

)
 (19)

If q is chosen to sample from regions where | f (m)|L(m)pm(m) is relatively large, then the
estimate in (19) amounts to importance sampling [5, 27]. The variance of f (m)L(m)pm(m)/q(m),
where m ∼ q, will be reduced by this sampling strategy and consequently the variance of
the estimator În[ f ] will be reduced as well. In the present context, of course, evaluating the
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likelihood of each sample via PC expansions is already inexpensive, so importance sam-
pling may not yield significant gain. However, freedom in the choice of g(ξ) has a more
immediate utility. If the prior distribution is such that it is difficult or inconvenient to write
a PC expansion for m with density pm, the ability to choose a density q that may be simpler
than pm ensures flexiblity in prior modeling.

1.2.5 Efficient evaluation of the posterior: Change of variables and MCMC

The essence of the two sampling schemes presented above is that the likelihood, when com-
puted using PC expansions, becomes a function of ξ rather than of m. Thus we sample ξ to
generate samples of m from a specified distribution and simultaneously use ξ to compute
the likelihood of each sample. Implicit in these schemes is a change of variables from m to
ξ, and it is fruitful to consider this change explicitly, as follows:

I[ f ] =
Z

M
f (m)L(m)pm(m)dm

=
Z

Ξm

f (g(ξ))L(g(ξ)) pm (g(ξ)) |detDg(ξ)|dξ (20)

Here, Dg denotes the Jacobian of g. Making this change of variables explicit imposes
certain constraints on the transformation g, namely (1) that Ξm = g−1(M ), the inverse
image of the support of the prior, be contained within the range of ξ, and (2) that g be a
differentiable transformation from Ξm to M with a differentiable inverse (i.e., that g be a
diffeomorphism from Ξm to M ). The first constraint is not new; indeed, in the preceding
two sections, it is necessarily satisfied by a PC expansion that reproduces samples of m
from the desired distribution, pm or q. The latter constraint, however, limits g to rather
simple PC expansions—for instance, linear transformations of ξ. ∗ But this limitation is
not a great liability, as the transformed integral in (20) can now be evaluated by any suitable
sampling scheme in ξ-space—in particular, by Markov chain Monte Carlo (MCMC).

MCMC encompasses a broad class of methods that simulate drawing samples from the
posterior [42, 29, 5], and thus can be used to directly estimate the posterior expectation of
f :

Eπm f =
Z

f (m)πm (m)dm (21)

where πm denotes the normalized posterior density of m

πm(m) ∝ Lm(m)pm(m) (22)

∗This condition is not required by the sampling schemes in §§1.2.3–1.2.4. If, however, it is satisfied by g
in §1.2.3 then we have

pm (g(ξ)) |detDg(ξ)|= w(ξ)

where w is defined in (12). An analogous condition holds true for q in §1.2.4, again when g is a diffeomor-
phism from Ξq to M .
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The subscript on Lm emphasizes that the likelihood is here a function of m. The change of
variables from m to ξ can be expressed compactly as

Eπm f = Eπξ
( f ◦g) (23)

where πξ is the posterior density in ξ-space:

πξ(ξ) ∝ Lm (g(ξ)) pm (g(ξ)) |detDg(ξ)| (24)

As before, we would like to use the PC representation of G to accelerate evaluations of the
posterior. We first introduce the following notational convention: any quantity computed
by projection onto a finite PC basis—whether a forward model prediction, likelihood, or
posterior density—is distinguished from its “direct” counterpart with a tilde. Thus, we seek
samples from the surrogate posterior π̃ξ:

π̃ξ(ξ) ∝ L̃ξ (ξ) pm (g(ξ)) |detDg(ξ)|

∝ ∏i pη

(
di− G̃i(ξ)

)
pm (g(ξ)) |detDg(ξ)| (25)

The likelihood is now a function of ξ. Since Metropolis-Hastings algorithms require knowl-
edge only of the unnormalized posterior density, (25) is sufficient to simulate samples ξ( j)

from the posterior on ξ-space. Eliminating b burn-in samples, the posterior expectation of
f is estimated by an ergodic average:

Eπm f ≈ 1
n−b

n

∑
j=b+1

( f ◦g)
(
ξ( j)
)

(26)

Note that an MCMC chain could just as easily be run on m-space, simulating samples
from the surrogate posterior π̃m ∝ (L̃ξ ◦ g−1) · pm. But this expression emphasizes why an
invertible g must be used with MCMC; otherwise the argument to L̃ξ corresponding to a
given chain position m( j) would be ill-defined.

Advantages of MCMC over the simple Monte Carlo schemes in §§1.2.3–1.2.4 are several.
In many applications, a well-designed MCMC algorithm can offer far better sampling effi-
ciency than sampling from the prior or from some alternate distribution q 6= πm, despite the
fact that MCMC samples are serially correlated [82]. In the present context, however, the
value of improved sampling efficiency is tempered by the fact that samples are rendered
inexpensive by the PC reformulation. However, MCMC offers additional benefits. Be-
cause MCMC directly simulates the posterior, it is simple to extract marginal densities for
individual components of m with the aid of kernel density estimation [30]. Also, MCMC
eliminates the need to calculate the posterior normalization factor I[1]. Using (25) to eval-
uate the posterior, further particulars of the MCMC algorithm we adopt are essentially
independent of the PC formulation and thus we reserve their presention for §1.3.5.
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The choice of g and of the PC basis {Ψk(ξ)}P
k=0, on the other hand, will have a crucial

impact on the accuracy and cost of PC-reformulated posterior estimates and predictions.
Because it is the initial PC representation of m—its distribution defining the stochastic for-
ward problem—g(ξ) will directly affect G̃, as will the order and stochastic dimension of
the PC basis used in Galerkin projections. The “surrogate” posterior π̃, obtained by replac-
ing direct evaluation of the likelihood L(m) with a likelihood written in terms of G̃(ξ), is
then at the heart of any PC-induced errors in the three sampling schemes discussed above.
Whether we write this posterior in terms of ξ (e.g., π̃ξ) or m (e.g., π̃m, if g is invertible),
the difference between π and π̃ completely captures the impact of the polynomial chaos
representation of forward model predictions on the inverse solution. We will explore the
dependence of this posterior error on g, p, and the distribution of ξ—i.e., the type of PC
basis—in §§1.3.3 and 1.3.6.

1.2.6 Decomposition of parameter space

When a component of the forward solution depends very steeply on an uncertain parameter,
a PC basis of smooth, global polynomials may require increasingly high order to provide an
accurate solution of the stochastic forward problem. In the diffusion-driven forward prob-
lem to be considered here, many terms will be required to represent a sharply-localized
source with broad prior uncertainty in its location. In the limit, when solutions are discon-
tinuous with respect to an uncertain parameter, e.g., in the neighborhood of a critical point,
a global PC basis may be unsuitable [58].

Several methods have been proposed to address this difficulty [58, 60, 95] A PC basis of
Haar wavelets was constructed in [58], then generalized to a multi-wavelet basis in [60];
both of these methods effectively resolved stochastic systems with multiple bifurcations.
Computational efficiency of the latter scheme was improved by block-partitioning of the
uncertain parameter space. We adopt a similar, but non-adaptive, partitioning scheme here.
The support M of the prior, or equivalently the range of m, is decomposed into Nb non-
overlapping domains

M =
Nb[
b

M b, M b∩M b′ = /0 if b 6= b′ (27)

We seek a corresponding decomposition of the prior density pm(m), and thus of the Bayesian
integral I[ f ] in (5), as follows:

pb(m) =
{

pm(m) m ∈ M b

0 m /∈ M b

pm(m) =
Nb

∑
b

pb(m) (28)
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Note that the densities pb(m) are unnormalized on each domain M b, so that

I[ f ] =
Nb

∑
b

Ib[ f ] =
Nb

∑
b

Z
f (m)L(m)pb(m)dm (29)

This partitioning allows the construction of a separate polynomial expansion gb(ξ) for m
on each block, and thus a different version of the likelihood L̃ξ in each integral Ib[ f ] con-
tributing to (5). What does this imply for gb? Again, we identify three cases, corresponding
to the sampling schemes in §§1.2.3–1.2.5. When sampling from the prior, we seek gb so
that m has density proportional to pb(m). Sampling ξ will then yield samples from the
prior on each block. When sampling from an alternate distribution, e.g., from Nb densi-
ties qb(m), we simply require that the support of each qb contain M b. In particular, the
supports of each qb need not be disjoint; the definition of pb(m) above ensures zero poste-
rior density outside of each domain. Finally, in an MCMC scheme, we work directly with
the partition of Ξ and allow the chain to transition from block to block according to the
proposal distribution.

Le Maı̂tre et al. [60] provide criteria for adaptively refining the partitions based on the local
variance of the solution. Here, because the inverse problem to be considered has a simple
symmetry in both its priors and its computational domain, we will take a fixed partition of
M = [0,1]× [0,1] into four equal quadrants.

1.3 Results

We demonstrate the stochastic spectral formulation of Bayesian inference by inverting for
the source field in a transient diffusion problem.

One practical context of this inverse problem lies in contaminant source inversion [3].
Given a sparse set of concentration measurements—from sensors scattered throughout
some space, for instance—one would like to find the sources of a toxin that has spread
through the ambient medium. Specific parameters to infer include the number of sources
and their possibly time-dependent strengths and locations. Though convective transport
can play a role in many practical source inversion problems, we will limit our attention
here to a purely diffusion-driven inverse problem in order to focus on the demonstration
and analysis of the new formulation. Diffusive source inversion problems themselves arise
in the context of porous media flows [85] and heat conduction [9, 4, 57, 54, 96].

1.3.1 Source inversion under diffusive transport

We begin by defining the deterministic forward problem G(m), since this is the basis for the
general Bayesian approach to inverse problems described in §1.2.1 and for the stochastic
forward problem described in §1.2.5.
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Consider a dimensionless diffusion equation on a square domain S = [0,1]× [0,1] with
adiabatic boundaries:

∂u
∂t

= ∇
2u+

N

∑
l=1

sl

2πσ2
l

exp
(
−|χl −x|2

2σ2
l

)
[1−H(t−Tl)] (30)

∇u · n̂ = 0 on ∂S

u(x,0) = 0

The source term in (30) describes N localized sources, each one active on the interval
t ∈ [0,Tl] and centered at χl ∈ S with strength sl and width σl . Note that the location, size,
and shutoff time of each source enter the problem nonlinearly.

For the purposes of an initial demonstration and to allow direct visualization of the poste-
rior, we restrict our attention to an inverse problem in two dimensions. Thus we fix N = 1;
prescribe T , s, and σ; and leave the source location χ = (m0,m1) unknown. For any given
value of m, we solve the PDE in (30) using a finite difference method. The u-field is de-
scribed on a uniform grid with spacing h = 0.025. Second-order centered differences are
used to discretize the diffusion terms. Time integration is via an explicit, second-order-
accurate, Runge-Kutta-Chebyshev (RKC) scheme [88] with ∆t = 0.002. The number of
substeps in the RKC scheme is automatically determined by stability constraints upon set-
ting ε, the damping parameter that controls the extent of the stability region, to 2/13 [93].
Numerical resolution studies were conducted to validate the present choices of h and ∆t.

The forward model G(m) predicts the value of the field u(x, t) at specific locations and
times. Below, unless otherwise specified, G will provide predictions on a uniform 3×3 grid
covering the domain S at two successive times, t = 0.05 and t = 0.15. The inverse problem
thus consists of inferring the source position from noisy measurements at these locations
and times. We let independent zero-mean Gaussian random variables ηi ∼N(0,ς2) express
the difference between “real-world” measurements and model predictions, as specified in
(3). In the examples below, we choose ς = 0.4 unless otherwise specified. Priors simply
constrain the source to lie in the domain S, i.e., mi ∼ U(0,1). Again, in the interest of
simplicity, we make no attempt at hyperparameter estimation for either the noise model or
the prior distribution.

Figure 1 shows the u-field resulting from a representative value of m: (m0,m1)= (0.25,0.75),
with T = 0.05, s = 0.5, and σ = 0.1. Though the solution is initially peaked around the
source, note that it flattens at the later time once the source is no longer active. As the
measurement time (t > T )→∞, the inverse problem becomes increasingly ill-conditioned.
Measurement noise will overwhelm any residual variation in the u-field resulting from the
particular location of the source.
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1.3.2 Stochastic spectral solution of the forward problem

The accuracy, and computational expense, of the stochastic spectral solution of the for-
ward problem depend on the order of the PC basis used. For computational efficiency, the
requisite PC order can be reduced by partitioning the domain and solving an independent
forward problem, with a smaller range of input uncertainty, on each subdomain. Because
the present problem has a simple symmetry in both its priors and its computational domain,
we take a fixed partition of the prior support M = [0,1]× [0,1] into four equal quadrants
M b. On each of these quadrants, we prescribe a PC expansion m = gb(ξ) consisting of
multivariate Legendre polynomials and uniformly distributed ξi ∼U(−1,1). In particular,
we choose PC coefficients such that each gb(ξ) has a uniform probability density on M b

and zero probability density elsewhere. On each quadrant, m is thus distributed according
to the (normalized) prior density pb(m) given in (28), e.g.,

gb=1(ξ) =
(

1/4
1/4

)
+
(

1/4 0
0 1/4

)(
ξ1
ξ2

)
(31)

and so on for b = 2 . . .4.

The stochastic forward problem is then solved four times, once for each block of the prior
support. On each block, we introduce the PC expansion χ = m = gb(ξ) into (30) with
N = 1 and, using Galerkin projections and the same finite-difference/RKC scheme as in
the deterministic problem, obtain a PC expansion for each prediction of the scalar field,
G̃b

i (ξ). These predictions are random variables u(xi, ti,ξ(ω)), giving the value of the scalar
field at each measurement location and time (xi, ti).

Note that the source term in (30) may be factored into a time-dependent component and a
stationary component:

N

∑
l=1

sl

2πσ2
l

exp
(
−|χl −x|2

2σ2
l

)
[1−H(t−Tl)] =

N

∑
l=1

q(x,χl)s(t,Tl) (32)

The stationary component q(x,χ) contains the exponential of a random variable, and its
PC representation is thus expensive to compute. In the interest of efficiency, we evaluate
this term once at each grid point xmn and store the resulting array of PC expansions for
use at each subsequent timestep. So that comparisons of computational cost remain fair,
we also factor the source term when solving the deterministic forward problem, again pre-
computing the stationary part; in other words, the Gaussian source profile is evaluated only
once during time integration of (30) for a given source location.

Solutions of the stochastic forward problem may be interrogated in several ways. Figure 2
shows the predicted value of the scalar field at a particular measurement location and time,
u(xi=3=0.0, yi=3=0.5, ti=3=0.15), as a function of ξ. This surface is a single component of
the stochastic forward problem solution, G̃i(ξ) for i = 3, and is obtained with PC bases of
increasing order (p=3, 6, and 9). Partition of the prior support into quadrants b = 1 . . .4
is indicated on each plot. Convergence is observed with increasing p. While there is no
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guarantee of continuity or smoothness of the solution between neighboring blocks, both
seem to be achieved at sufficient order. The pointwise error in these forward solutions is
shown in Figure 3, again for i = 3. Here, error is defined as the difference between the
PC expansion of the forward solution and the exact solution of the deterministic forward
model G(m), with argument m corresponding to the appropriate quadrant b and value of
ξ:

errb
i (ξ) = G̃b

i (ξ)−Gi(gb(ξ)) (33)

Once again, the error becomes negligible at sufficient order.

Since the input m = g(ξ) to the forward model is a random variable, any forward model
output Gi(m) is also a random variable. The density of these forward model outputs is a
useful diagnostic and may be estimated in one of two ways. A direct (and computationally
expensive) method is to sample m and solve the forward problem for each sample, forming
a normalized histogram from the resulting collection of forward model outputs. Alterna-
tively, one can sample ξ and substitute it into the PC expansion G̃i(ξ), again forming a
histogram of the resulting values. This process essentially weighs the surface response in
Figure 2 according to the probability distribution of ξ. The resulting density estimates for
G3 are shown in Figure 4. While a lower-order PC basis (p = 3) results in a poor den-
sity estimate, the probability density converges to its true shape—obtained by the direct
method—as p increases.

The probability densities computed above represent the propagation of prior uncertainty
through the forward problem. Accordingly, we may endow them with an additional inter-
pretation. Figure 5 shows the probability density of u at a single measurement location
(x=0.0, y=0.0) but at two successive times: t=0.05 and t=0.15. As in Figure 4, we observe
convergence of the PC-obtained density to its “direct” counterpart with increasing order.
But we also observe that the probability density in Figure 5(a) is significantly broader than
in Figure 5(b). Under the prior uncertainty, the earlier-time measurement takes a wider
range of values than the later-time measurement, and in this sense, the earlier measurement
is more informative; it will allow the likelihood to discriminate more clearly among possi-
ble values of m. In the inverse problem setting, this information may be useful in choosing
when and where to collect data.

1.3.3 Posterior densities

We now examine solutions of the inverse problem using polynomial chaos. A noisy data
vector d is generated by solving the deterministic forward problem for a “true” model m =
(0.25,0.75), then perturbing the value of u at each sensor location/time with independent
samples of Gaussian noise ηi ∼ N(0,ς2).

Figure 6 shows contours of the posterior density conditioned on d. Solid lines are ob-
tained via direct evaluations of the forward problem—i.e., they represent the posterior πm
in (22)—while dashed lines represent the posterior density computed with PC expansions
on four partitions of the support of the prior. These are computed on ξ-space, using (24),
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but since g is invertible it is simple to transform them back to m-space: π̃m ∝ (L̃ξ ◦g−1)pm.
Very close agreement between πm and π̃m is observed with increasing order.

A quantitative assessment of the error in the posterior density is obtained by considering
the Kullback-Leibler (KL) divergence of πm from π̃m:

D(π̃‖π) =
Z

M
π̃(m) log

π̃(m)
π(m)

dm (34)

Figure 7 plots D(π̃m‖πm) for PC bases of increasing order p. In terms of KL divergence,
we observe an exponential rate of convergence of the surrogate posterior π̃m to the true
posterior.

1.3.4 Posterior sampling and speedup

Practical Bayesian computations must explore the posterior by sampling, and it is here
that we expect the PC approach to achieve significant speedup over its direct counterpart.
Figure 8 shows the computational time for Monte Carlo estimation of the posterior mean
as a function of the number of samples n. Since gb(ξ) is chosen to have density propor-
tional to pb(m), our Monte Carlo estimator uses samples from the prior, as described in
§1.2.3. In other words, the posterior mean is evaluated using (17), with Eπm = În[m]/În[1].
We use a 6th-order PC basis for the stochastic spectral forward solution and compare the
computational cost to that of direct sampling.

Speedup over the direct method is quite dramatic. The initial cost of the PC approach
is offset by the computation of stochastic forward solutions, but then grows very slowly.
Indeed, the per-sample cost is three orders of magnitude smaller for PC evaluations than for
direct evaluations, and thus for even a moderate number of samples the gain in efficiency
is significant. The cost of the initial stochastic forward solutions is recouped for n ≈ 200,
and thereafter the computational time of direct sampling rapidly eclipses that of the PC
approach. For more complex forward models, the ratio of these per-sample costs may
widen and the cost of the stochastic forward solutions may be recouped at even smaller n.

Another measure of speedup is to compare the computational times required to achieve
a certain error in the Monte Carlo estimate of I[m]. The estimate În[ f (m)] is a random
variable with variance

σ
2 (În[ f (m)]

)
=

1
n

Varm∼pm [ f (m)L(m)] (35)

where the subscript m ∼ pm reflects the drawing of samples from the prior distribution. In
practice, we estimate the variance of În from the Monte Carlo samples using the recursive
formula given in [27]. The Monte Carlo “standard error” is then simply σ(În[m]). Figure 9
shows the error thus computed and normalized by În[m], versus computational time, for
both the direct and PC approaches. Since error decreases as n−1/2, the number of samples
required to reduce the error grows rapidly. Because PC-obtained samples are inexpensive,
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however, very small relative errors are achievable at negligible cost. This certainly is not
true for direct sampling, as the solid line in Figure 9 indicates.

1.3.5 Markov chain Monte Carlo

Next we demonstrate the use of MCMC to simulate samples from the surrogate posterior
π̃ξ given in (25). Since the gb chosen above are invertible linear transformations from Ξ

to M b, the conditions following the change of variables in (20) are satisfied. Therefore,
the posterior expectation of any function f of m can be computed in ξ-space, with samples
from π̃ξ, according to (23) and (26).

We employ a random-walk Metropolis algorithm [42] for MCMC, in which the proposal
distribution q(·|·) is a bivariate normal centered on the current position of the chain. The
standard deviation of the proposal distribution is σq = 0.4. Results showing the chain po-
sition over 10000 iterations are in Figure 10. Visual inspection suggests that the chain
mixes—i.e., moves within the support of π̃ξ—rapidly. The two-dimensional view in Fig-
ure 10(a) is reminiscent of the posterior contours in Figure 6; this is not surprising, as ξ is
just a diagonal linear transformation of m.

A Metropolis-Hastings algorithm, such as the random-walk Metropolis sampler used here,
provides for the construction of a Markov chain with stationary distribution π̃ξ. Under
certain additional conditions [91, 92, 82], one can establish a central limit theorem for
ergodic averages f̄n [35]: †

f̄n =
1
n

n

∑
j=1

( f ◦g)
(
ξ( j)
)

(36)

√
n
(

f̄n−Eπξ
( f ◦g)

)
i.d.−→ N(0,σ2

f ) (37)

where i.d.−→ denotes convergence in distribution and

σ
2
f = Varπξ

( f ◦g)+2
∞

∑
s=1

Covπξ

[
( f ◦g)(ξ(0)),( f ◦g)(ξ(s))

]
(38)

The asymptotic variance in (38) thus reflects the correlation between successive samples.
Even if a central limit theorem does not strictly hold in the form of (37), stronger corre-
lations lead to larger variance of the MCMC estimate at a given n and thus less efficient
sampling. We plot γ(s), the empirical autocovariance at lag s, in Figure 11 for several

†For chains on continuous state spaces, uniform or geometric ergodicity provide for central limit theorems
[91, 29]. Weaker conditions are sufficient to establish a law of large numbers. While uniform or geometric
ergodicity have not been shown for Metropolis-Hastings samplers on general state spaces, many of these
samplers are conjectured to be geometrically ergodic. The chain resulting from an independence sampler
with bounded π/q is known to be uniformly ergodic [92].
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random-walk Metropolis samplers, varying the scale parameter of the proposal distribution
σq. If σq is too large, a great proportion of the proposed moves will be rejected, and the
chain will not move very often. If σq is too small, most proposed moves will be accepted
but the chain will move very slowly through the posterior support. Both of these situations
are reflected in long correlations and poor mixing. With σq = 0.4, however, we observe that
autocovariance decays relatively quickly with lag along the chain, consistent with the good
mixing in Figure 10. We also show, in black, the autocovariance of a chain resulting from
an independence sampler [91], using the prior as a proposal distribution. This sampler also
appears to be relatively efficient at exploring the simple posterior here.

A useful feature of MCMC estimation is the ease of extracting marginal distributions for
components of m or ξ. This is performed with kernel density estimation:

π(ξi) =
1

n−b

n

∑
j=b+1

K
(

ξi|ξ( j)
)

(39)

where K
(

ξi|ξ( j)
)

is a density concentrated around ξ
( j)
i [42]. Here we use a one-dimensional

Gaussian kernel, K = N(ξ( j)
i ,σ2

k) with bandwidth σk = 0.01. Marginal distributions for the
source coordinates, transformed back into m-space, are shown in Figure 12. The kernel
centers are points at the bottom of the figure.

1.3.6 Choice of transformation and PC basis

Using MCMC to explore the posterior offers seemingly considerable freedom in the choice
of g, and further, in the choice of PC basis. All that is required is that g be a diffeomorphism
from a set Ξm to the support of the prior, where Ξm ⊆ Ξ and Ξ is the range of ξ. Then g(ξ)
is used to solve the stochastic forward problem on the chosen PC basis and an expression
for the surrogate posterior density π̃ is formed.

It is reasonable, however, to expect that these choices will influence the accuracy and cost of
evaluating the posterior distribution. Increasing the order of the PC basis certainly improves
the accuracy of forward problem solutions and reduces errors in the surrogate posterior, as
we observed in §§1.3.2–1.3.3. But we must also address the larger question—essentially,
what is the uncertainty that one should propagate through the forward problem?

We explore the impact of different transformations g and PC bases using the two-dimensional
source inversion problem as before. We consider three “true” source locations, rang-
ing from the center to the edge of the domain: m = (0.50,0.50); m = (0.25,0.75); and
m = (0.10,0.90). For each of these sources, we solve the deterministic forward problem,
then perturb the value of u at each sensor with independent samples of Gaussian noise
ηi ∼ N(0,ς2), thus generating three noisy data vectors d for inference. The sensor loca-
tions/times, the source strength and shutoff time, and the prior pm are unchanged from
previous sections.
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For simplicity, we do not partition the prior support; i.e., we choose b = 1. To solve the
inverse problem with polynomial chaos, we thus prescribe a single set of PC expansions
m = g(ξ). First, consider a Gauss-Hermite PC basis: bivariate Hermite polynomials Ψk(ξ)
with ξi ∼ N(0,1). We prescribe a PC expansion centered on m = (0.5,0.5):

gi(ξ) = 0.5+σξi; i = 1,2 (40)

Since Ξ = R2, the inverse image of the support of the prior will be contained in Ξ for any
σ.

Contours of the surrogate posterior density π̃m are shown in Figure 13 for σ = 10−2 and a
6th-order PC basis. These are compared to the “direct” posterior πm for each source loca-
tion. While agreement of the posteriors is relatively good for a source in the center of the
domain (Figure 13(a)), the accuracy of the surrogate posterior deteriorates rapidly as the
source moves towards the upper-left corner. For mtrue = (0.10,0.90), the surrogate poste-
rior is centered on an entirely different area of M than the direct posterior. This disagree-
ment explicitly reflects errors in the forward problem solution G̃(ξ) for ξ corresponding to
values of m that are close to the boundary—i.e., for |ξ|= O(1/σ).

Widening the density of g(ξ) improves agreements significantly. Figure 14 shows poste-
rior contours for σ = 10−1 and a 6th-order PC basis. Once again, the best agreement is
obtained when the source is in the center of the domain, but reasonable overlap of the pos-
teriors is achieved even for mtrue = (0.25,0.75). The mean of the surrogate posterior for
mtrue = (0.10,0.90), while still misplaced, shows some improvement over the σ = 10−2

case. Increasing the order of the PC basis to p = 9 sharpens agreement for all three source
locations, as observed in Figure 15. However, the key trend—deteriorating agreement as
the source moves closer to the boundary—is preserved.

It is instructive to compare these results to those obtained with a uniform-Legendre PC
basis. We again use a single partition of the prior support, with a PC expansion centered
on m = (0.5,0.5): gi = 0.5 + 0.5ξi, ξi ∼ U(−1,1). Results with p = 9 are shown in
Figure 16. Compared to the Gauss-Hermite basis at the same order, we observe slightly
poorer agreement for sources in the center of the domain, but a more consistent level of
error as the source is moved towards the boundary. Agreement of the surrogate and direct
posteriors for mtrue = (0.10,0.90) is substantially better with uniform-Legendre PC than
with any of the Gauss-Hermite bases.

An explanation for these results may be found in the distribution of ξ, which is of course
a defining property of the PC basis. As noted above, error in the surrogate posterior at
a particular value of m reflects error in the stochastic forward problem solution for ξ =
g−1(m). Where is this error likely to occur? If, for simplicity, one ignores aliasing errors
resulting from the pseudospectral construction [21], Galerkin projection of the forward
problem outputs onto the PC basis minimizes ‖G(g(ξ))− G̃(ξ)‖L2(Ω), where this inner-
product norm is defined by the probability measure P on (Ω,U). Let ξ and P induce a
probability distribution on Rn. The Gaussian distribution weighs errors near the origin
much more strongly than errors at large |ξ|, whereas the uniform distribution weighs errors
equally over the entire (finite) range of ξ.
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This weighing is consistent with the error trends in Figures 13–16, and its impact is de-
scribed more extensively in Figure 17. Here we compute the Kullback-Leibler divergence
of π from π̃ for Gauss-Hermite bases of order p = 6 and 9, while varying the scale parame-
ter σ in (40). Since gi(ξ)∼ N(0.5,σ2), the scale parameter controls the standard deviation
of the input uncertainty to the forward problem. The Gauss-Hermite results exhibit a com-
mon dependence on σ for all three source locations. Posterior errors increase at small σ

and large σ, but are minimized at intermediate values of σ, e.g., σ = 10−1. If σ is very
small, the input distribution is narrowly centered on (0.5,0.5) and the posterior distribution
favors values of m = g(ξ) that lie on the edges of this input distribution. Errors in the for-
ward solution at these values of ξ receive little weight in the L2(Ω) norm and thus lead to
errors in the posterior. On the other hand, with large σ (e.g., σ > 0.1) the input distribution
of g(ξ) broadens to include appreciable tails outside the square domain. While values of
χ = m outside the unit square S are perfectly feasible according to (30), the L2(Ω) norm
then penalizes errors in the stochastic forward solution for these values at the expense of
errors inside the domain. As a result, posterior errors again increase.

In general, p = 9 results show smaller errors than those at p = 6. The errors at p = 9 and
small σ with mtrue = (0.50,0.50) appear to be an exception, reflecting errors at very large
|ξ|. We find that the ratio of the p = 9 and p = 6 posterior divergences at a given σ varies
with the realization of the measurement noise, and thus the trends in Figure 17 should be
generalized to other data in a qualitative sense.

Figure 17 also compares Gauss-Hermite posterior divergences to those obtained with uniform-
Legendre bases of the same order—shown as horizontal lines, since we fix gi(ξ)∼U(0,1)
in the uniform-Legendre case. Again, these results show strong dependence on the source
location. For a source (and thus a posterior density) in the center of the domain, it is possi-
ble to obtain lower posterior divergences with Gauss-Hermite PC at a given order than with
uniform-Legendre PC. With an appropriately-chosen scale parameter, this is again possible
for mtrue = (0.25,0.75) at p = 6, but the uniform-Legendre basis proves more accurate at
higher order (p = 9). And for a source near the edge of the domain, the uniform-Legendre
basis provides better accuracy than the Gauss-Hermite basis at all values of the scale pa-
rameter and both orders.

Implications of this exercise on the choice of transformation g(ξ) and on the choice of PC
basis are as follows. One should avoid transformations or bases for which “true” value(s) of
m correspond to values of ξ that have small probability. The true values of m are of course
unknown a priori, so a useful guideline is to ensure that g(ξ) has distribution equal to the
prior, approximately equal to the prior, or with longer tails than the prior. Then the posterior
probability mass is likely to fall within regions where forward problem errors are penalized
with sufficient weight in the L2(Ω) norm. Of course, it is possible for very large quantities
of data to overwhelm the prior. In this case, if it is apparent that the posterior is tending
towards regions of ξ that have been accorded small probability—as in Figures 13–14(c),
for instance—a new choice of g or PC basis would be indicated.
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1.4 Conclusions

Bayesian inference provides an attractive setting for the solution of inverse problems. Mea-
surement errors, forward model uncertainties, and complex prior information can all be
combined to yield a rigorous and quantitative assessment of uncertainty in the inverse so-
lution. Obtaining useful information from this posterior density—e.g., computing expec-
tations or marginal distributions of the unknown parameters—may be a computationally
expensive undertaking, however. For complex forward models, such as those that arise
in inverting systems of PDEs, the cost of likelihood evaluations may render the Bayesian
approach prohibitive.

The theoretical developments in this report fundamentally accelerate Bayesian inference in
computationally intensive inverse problems. We present a reformulation of the Bayesian
approach based on polynomial chaos representations of random variables and associated
spectral methods for efficient uncertainty propagation. Uncertain inputs that span the range
of the prior define a stochastic forward problem; a Galerkin solution of this problem with
the PC basis yields a spectral representation of uncertain forward model predictions. Eval-
uation of integrals over the unknown parameter space is then recast as sampling of the
random variables ξ underlying the PC expansion, with significant speedup. In particular,
we introduce three schemes for exploring the posterior: Monte Carlo sampling from the
prior distribution, Monte Carlo sampling from an alternate distribution that includes the
support of the prior, and Markov chain Monte Carlo in ξ-space. Each of these schemes is
compatible with partitioning of the prior support.

The new approach is demonstrated on a transient diffusion problem arising in contami-
nant source inversion. Spectral representation is found to reduce the cost of each posterior
evaluation by three orders of magnitude, so that sampling of the PC-reformulated problem
has nearly negligible cost. Error in the surrogate posterior decreases rapidly with increas-
ing order of the PC basis; in the present case, convergence is exponentially fast. MCMC
sampling of the posterior offers considerable freedom in choosing the PC basis and the
initial transformation defining the stochastic forward problem, but a detailed exploration of
posterior errors suggests guidelines for ensuring accuracy and computational efficiency.

Ongoing work will extend the polynomial chaos approach to more complex inverse prob-
lems. For instance, forward models with additional parametric uncertainty—parameters
that may be marginalized in the posterior—should be quite amenable to PC acceleration.
We also plan to explore stochastic spectral approaches to significantly higher-dimensional
inverse problems, e.g., with spatially-extended input parameters. A further extension in-
volves convective source inversion problems, with the associated challenges of spectral
uncertainty propagation in nonlinear advection equations.
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Figure 1. Scalar field u in the deterministic forward problem, for
(m0,m1) = (0.25,0.75).
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Figure 2. A single component of the stochastic forward problem
solution, G̃3(ξ), shown as a surface response on four quadrants of
prior support.
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Figure 2. (cont.) Surface response.
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Figure 3. Pointwise error in the solution to the stochastic forward
problem, defined in (33).
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order; compared to direct method.
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Figure 6. Contours of the posterior density of source location,
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Figure 6. (cont.) Contours of the posterior density of source lo-
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Figure 12. Marginal distributions obtained with kernel density
estimation.

40

xxxx



m
0

m
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) mtrue = (0.50,0.50)

m
0

m
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) mtrue = (0.25,0.75)

Figure 13. Contours of posterior density. Gauss-Hermite PC,
p = 6; σ = 10−2. Solid lines are obtained with direct evaluations
of the forward problem; dashed lines are obtained with polynomial
chaos expansions.
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Figure 13. (cont.) Contours of posterior density. Gauss-Hermite
PC, p = 6; σ = 10−2. Solid lines are obtained with direct eval-
uations of the forward problem; dashed lines are obtained with
polynomial chaos expansions.
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Figure 14. Contours of posterior density. Gauss-Hermite PC,
p = 6; σ = 10−1. Solid lines are obtained with direct evaluations
of the forward problem; dashed lines are obtained with polynomial
chaos expansions.
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Figure 14. (cont.) Contours of posterior density. Gauss-Hermite
PC, p = 6; σ = 10−1. Solid lines are obtained with direct eval-
uations of the forward problem; dashed lines are obtained with
polynomial chaos expansions.
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Figure 15. Contours of posterior density. Gauss-Hermite PC,
p = 9; σ = 10−1. Solid lines are obtained with direct evaluations
of the forward problem; dashed lines are obtained with polynomial
chaos expansions.
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Figure 15. (cont.) Contours of posterior density. Gauss-Hermite
PC, p = 9; σ = 10−1. Solid lines are obtained with direct eval-
uations of the forward problem; dashed lines are obtained with
polynomial chaos expansions.
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Figure 16. Contours of posterior density. Uniform-Legendre PC,
p = 9. Solid lines are obtained with direct evaluations of the for-
ward problem; dashed lines are obtained with polynomial chaos
expansions.
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Figure 16. (cont.) Contours of posterior density. Uniform-
Legendre PC, p = 9. Solid lines are obtained with direct eval-
uations of the forward problem; dashed lines are obtained with
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Figure 17. D(π̃‖π) with Gauss-Hermite and uniform-Legendre
PC at varying orders and source locations. Scale parameter σ is
the standard deviation of input uncertainty to the forward problem
in the Gauss-Hermite case.
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Figure 17. (cont.) D(π̃‖π) with Gauss-Hermite and uniform-
Legendre PC at varying orders and source locations. Scale param-
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2 Bayesian inference of spatial fields with Gaussian
process priors

2.1 Introduction

This chapter extends the the stochastic spectral methodology of §1 to inverse problems
whose solutions are unknown functions—i.e., spatial or temporal fields. In doing so, we
also explore dimensionality reduction in the Bayesian formulation of inverse problems,
and the dependence of dimensionality on both the prior and the data. Inverse problems
involving fields are vital to applications ranging from geophysics to medical imaging. Spa-
tial fields may correspond to inhomogeneous material properties, such as permeabilities,
diffusivities, or densities, or may represent distributed source terms in transport equations.

Estimating fields rather than parameters typically increases the ill-posedness of the inverse
problem, since one is recovering an infinite-dimensional object from finite data. Obtaining
physically meaningful results requires the injection of additional information on the un-
known field—i.e., regularization [90]. A standard Bayesian approach is to employ Gaus-
sian process (GP) or Markov random field (MRF) priors [62, 50, 99]. Most studies then
explore the value of the field on a finite set of grid points [51]; the dimension of the poste-
rior is tied to the discretization of the field. This recipe presents difficulties for stochastic
spectral approaches, however, as the size of a PC basis does not scale favorably with di-
mension [40]. Moreover, with any degree of smoothness, the value of the field at each grid
point hardly represents an independent direction.

Ideally, one should employ a representation that reflects how much information is truly
required to capture variation among realizations of the unknown field. To this end, we
introduce a Karhunen-Loève (K-L) expansion based on the prior random process, trans-
forming the inverse problem to inference on a truncated sequence of weights of the K-L
modes. Other recent work has also employed K-L expansions in the context of statistical
inverse problems. Li & Cirpka [64] emphasize the role of K-L expansions in enabling
geostatistical inversion on unstructured grids. Efendiev et al. [24] use K-L expansions to
parameterize the log-permeability field in their two-stage MCMC scheme, and introduce
constraints among the weights in order to match known values of the permeability at se-
lected spatial locations. In contrast to [64], we use a fully Bayesian approach, generating
exact conditional realizations from a non-Gaussian posterior.

A more fundamental distinction of the present work is that we combine a K-L representa-
tion of the prior process with spectral methods for uncertainty propagation. In particular,
the Karhunen-Loève representation of a scaled Gaussian process prior defines the uncer-
tainty that is propagated through the forward model with a stochastic Galerkin scheme.
The deterministic forward model, originally specified by a (system of) partial differential
equations, is thus replaced by stochastic PDEs; numerical approaches to such systems, in
which random fields appear as boundary conditions or coefficients, have seen extensive
development [61, 28]. Uncertainty propagation yields a polynomial approximation of the
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forward operator over the support of the prior. This approximation then enters a reduced-
dimensionality surrogate posterior, which we explore with MCMC. The overall scheme
avoids repeated forward simulations, and the computational cost per MCMC iteration be-
comes negligible compared to the cost of a full forward solution.

We demonstrate our scheme with a nonlinear forward model, and develop a fully Bayesian
treatment of the problem in which hyperparameters describing the prior covariance are es-
timated simultaneously with the unknown field in a joint posterior distribution. We explore
convergence both with respect to the number of K-L modes and the order of the PC basis.
We also examine the efficiency of MCMC, quantify the limiting distribution of the K-L
modes, and explore the impact of data resolution on the approach to this distribution. To
place the present Bayesian formulation in broader context, we recall connections between
the K-L expansion and regularization penalties in the reproducing kernel Hilbert space
(RKHS) norm corresponding to the prior covariance.

2.2 Formulation

2.2.1 Gaussian processes

Let (Ω,U,P) be a probability space, where Ω is a sample space, U is a σ-algebra over
Ω, and P is a probability measure on U. Also, let D ⊂ Rn be a bounded spatial domain.
If M(x) : Ω → R is a U-measurable mapping for every x ∈ D, then M : Ω×D → R is a
random field. M(x,ω), for ω ∈ Ω, can thus be seen as a collection of real-valued random
variables indexed by x ∈ D. Alternatively, one can view M(·) as a random variable taking
values in RD, the space of all real-valued functions on D. Though our presentation will
focus on ‘random fields’ (typically signifying processes indexed by a spatial coordinate),
the developments below are applicable to processes indexed by time or by both time and
space.

If, for any n ≥ 1 we have

(M(x1), . . . ,M(xn))
i.d.= (M(x1 + s), . . . ,M(xn + s)) (41)

where i.d.= denotes equality in distribution, s is a spatial shift, and {xi,xi + s}n
i=1 ∈ D, then

M is said to be stationary [45]. If in addition, all finite-dimensional distributions of M are
multivariate normal, then M is a stationary Gaussian random field, or simply a stationary
Gaussian process (GP). Let M(n) = (M(x1), . . . ,M(xn)) denote the restriction of M to a
finite set of indices. Then the characteristic function of M(n) is [45]

φM(λ)≡ E
[
exp
(
iλT M(n)

)]
= exp

(
iλT µ− 1

2
λTΣλ

)
, λ ∈ Rn (42)

where the mean is spatially invariant, µ≡ µ1n, and entries of Σ are values of the covariance
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function C:

Σi j = C(xi,x j)

≡ Cov
[
M(xi),M(x j)

]
= E

[
(M(xi)−µ)

(
M(x j)−µ

)]
(43)

= C̃(xi−x j) (44)

Gaussian processes have finite second moments; that is, M(x) ∈ L2(Ω) for every x [47]. If
Σ is invertible, the finite-dimensional density of order n of the Gaussian process is then

p(m|µ,Σ) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(m−µ)T Σ−1 (m−µ)

)
(45)

where m = (m(x1), . . . ,m(xn)). If we further restrict C to depend only on the distance
between xi and x j, that is we put C̃(d) = f (‖d‖), then the stationary GP is called isotropic
[84]. It is common to specify the covariance function with scale and range parameters θ1
and θ2 respectively [62]:

C̃(d) = θ1ρ

(
‖d‖
θ2

)
(46)

Here ρ(·) is a correlation function, positive definite with ρ(0) = 1 [46], e.g., ρ(d) = e−d or
ρ(d) = e−d2

.

Gaussian processes are extensively employed as priors in Bayesian inference [84]. In par-
ticular, conceiving of the GP as a prior over functions motivates Gaussian process regres-
sion [101], also known as kriging in spatial statistics [19]; further applications include
classification, with ties to support vector machines and other kernel methods [78]. De-
pending on the covariance kernel, realizations of a Gaussian process may be smooth or
periodic, or for non-stationary kernels, capture certain trends [33]. Gaussian process priors
can thus inject regularity by assigning low probability to fields with undesirable properties.
See §2.2.6 for a more formal discussion of Gaussian process priors and regularization.

2.2.2 Karhunen-Loève expansion

Let M(x,ω) be a real-valued random field with finite second moments, mean µ(x), and a
covariance function that is continuous on D×D, with D bounded. Then M has the following
representation, termed a Karhunen-Loève (K-L) expansion [65]:

M(x,ω) = µ(x)+
∞

∑
k=1

√
λkck(ω)φk(x) (47)

In general, this equality holds pointwise and in the mean square sense; that is, convergence
is in L2(Ω) for each x ∈ D. If M is Gaussian and almost surely continuous, then con-
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vergence is uniform over D with probability one [2].‡ λk and φk(x) are eigenvalues and
eigenfunctions of the linear operator corresponding to the covariance kernel C:Z

D
C(x1,x2)φk(x2)dx2 = λkφk(x1) (48)

By the assumptions on M, the covariance kernel is symmetric and positive semidefinite,
and thus by Mercer’s theorem we have [45, 18]

C(x1,x2) =
∞

∑
k=1

λkφk(x1)φk(x2) (49)

where the eigenfunctions φk(x) are continuous and form a complete orthonormal system in
L2(D). The random variables ck(ω) are uncorrelated with zero mean and unit variance:

Eck = 0, E
[
c jck

]
= δ jk (50)

These variables are in general non-Gaussian

ck(ω) =
1√
λk

Z
D

(M(x,ω)−µ(x))φk(x)dx (51)

but if M is also a Gaussian process, the ck are Gaussian and independent, ck ∼ N(0,1).

The K-L expansion is optimal in the following sense. Of all possible orthonormal bases
for L2(D), the {φk(x)} satisfying (48) minimize the mean-squared error in a finite linear
representation of M(·) [40]. That is, they minimize

Z
Ω×D

(
M(x,ω)−µ(x)−

K

∑
k=1

√
λkck(ω)φk(x)

)2

dP(ω)dx (52)

for any K ≥ 1. As a result, the K-L expansion is an extremely useful tool for the concise
representation of stochastic processes. It has close analogues in data reduction (i.e., prin-
cipal components analysis), model reduction (proper orthogonal decomposition) [86], and
linear algebra (SVD). If M(·) is approximated by a K-term K-L expansion,

MK(x,ω) = µ(x)+
K

∑
k=1

√
λkck(ω)φk(x) (53)

the covariance function of MK is simply

CK(x1,x2) =
K

∑
k=1

λkφk(x1)φk(x2) (54)

‡Sufficient conditions for the continuity of Gaussian processes are detailed in Adler [2]. Abrahamsen
[1] suggests that any Gaussian process on compact D ∈ Rn with a continuous mean and a continuous and
“reasonable” covariance function will satisfy these conditions. Covariance functions that provably yield a.s.
continuous Gaussian processes include Gaussian, exponential, spherical, Matérn, spline, and polynomial
kernels, along with numerous others [2, 84].
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which converges uniformly to (49) as K → ∞ [2]. In particular, the total variance or “en-
ergy” of MK is Z

D
E [MK(x,ω)−µ(x)]2 dx =

Z
D

CK(x,x)dx =
K

∑
k=1

λk (55)

following from the orthonormality of the {φk(x)}.

2.2.3 Bayesian approach to inverse problems

Bayesian approaches to inverse problems have seen much recent interest [74, 7, 50], with
applications ranging from geophysics [43, 69] and climate modeling [49] to heat transfer
[97, 98]. We review this approach briefly below; for more extensive introductions, see
[50, 89, 74].

Consider a forward problem defined as follows:

d ≈ G(m) (56)

Here m is a vector of model parameters or inputs and d is a vector of observable quantities,
or data; for simplicity, we let both be real-valued and finite-dimensional. The forward
model G yields predictions of the data as a function of the parameters. In the Bayesian
setting, m and d are random variables. We use Bayes’ rule to define a posterior probability
density for m, given an observation of the data d:

p(m|d) ∝ p(d|m)pm(m) (57)

In the Bayesian paradigm, probability is used to express knowledge about the true values of
the parameters. In other words, prior and posterior probabilities represent degrees of belief
about possible values of m, before and after observing the data d.

Data thus enters the formulation through the likelihood function p(d|m), which may be
viewed as a function of m: L(m) ≡ p(d|m). A simple model for the likelihood assumes
that independent additive errors account for the deviation between predicted and observed
values of d:

d = G(m)+η (58)

where components of η are i.i.d. random variables with density pη. The likelihood then
takes the form

L(m) = pη (d−G(m)) = ∏
i

pη (di−Gi(m)) . (59)

Additional information on the model parameters may enter the formulation through the
prior density, pm(m). Prior models may embody simple constraints on m, such as a range
of feasible values, or may reflect more detailed knowledge about the parameters, such as
correlations or smoothness. In the absence of additional information, one may choose a
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prior that is uninformative. Here we will focus on Gaussian process priors, which for
finite-dimensional m take the form of (45).

If parameters φm of the prior density pm(m|φm) or parameters φη of the error model
pη(ηi|φη) are not known a priori, they may become additional objects for Bayesian in-
ference. In other words, these hyperparameters may themselves be endowed with priors
and estimated from data [74]:

p(m,φm,φη|d) ∝ p(d|m,φη)pm(m|φm)p(φη)p(φm) (60)

The resulting joint posterior over model parameters and hyperparameters may then be
interrogated in various ways—e.g., by marginalizing over the hyperparameters to obtain
p(m|d); or first marginalizing over m and using the maximizer of this density as an es-
timate of the hyperparameters; or by seeking the joint maximum a posteriori estimate or
posterior mean of m, φm, and φη [68, 74]. In the present study, we will introduce hyper-
parameters to describe aspects of the prior covariance.

2.2.4 Dimensionality reduction in inverse problems

Now consider an inverse problem in which the unknown quantities comprise a real-valued
field M(x). In a computational setting, this field and the forward model must be discretized.
If M(x) can be adequately represented on a finite collection of points {xi}n

i=1 ∈D, then we
can write both the prior and posterior densities in terms of m = (M(x1), . . . ,M(xn)). That
is, we can directly apply the Bayesian formulation described in the preceding section and
explore the posterior density of m with Markov chain Monte Carlo (MCMC) [42]. The
vector m will likely be high-dimensional, however. High dimensionality not only renders
MCMC exploration of the posterior more challenging and costly, but taxes the polynomial
chaos formulation we introduce below to accelerate evaluations of the posterior density
[72].

Instead of exploring the value of M(x) on each of n index points, we appeal to the K-L
expansion. Let M(x) be endowed with a Gaussian process prior with mean µ(x) and co-
variance kernel C(x1,x2); we denote this as M ∼ GP (µ,C). Introduce the corresponding
K-term K-L representation of M(x) (53), with eigenvalues λk and eigenfunctions φk(x)
satisfying (48). In general, M(x,ω) is approached pointwise in mean square (and there-
fore in distribution) by MK(x,ω) as K → ∞. For M a.s. continuous (see §2.2.2), re-
alizations M(x,ω) can be uniformly approximated as closely as desired by MK(x,ω)—
implying a corresponding realization c(ω) ≡ (c1(ω), . . . ,cK(ω))—with probability one.
Updating distributions of M, by conditioning on the data, is thus equivalent to updating
the joint distribution of the mode strengths ck. We emphasize this viewpoint by writing
MK(x,ω) = MK(x,c(ω)) = MK(c), parameterizing M by the vector of weights c. Com-
ponents ck are independent under the Gaussian process prior, with ck ∼ N(0,1). We thus
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truncate the K-L expansion at K terms and write a posterior density for c:

p(c|d) ∝ p(d|c)
K

∏
k=1

p(ck)

∝ pη (d−G(MK(c)))
K

∏
k=1

exp
(
−c2

k/2
)

(61)

The inverse problem has been transformed to an inference problem on the weights ck of
a finite number of K-L modes. Note that the spatial discretization of M(x) and of the
forward model is now independent of the dimension of the posterior distribution. Here we
have assumed the prior covariance to be completely known, thus ignoring hyperparameters
in the expression for the posterior; we will relax this assumption in §2.3.

Truncating the K-L expansion in this context amounts to using a “modified” prior covari-
ance kernel given by (54). Since the eigenvalues λk decay—exponentially fast for a smooth
covariance kernel [28], algebraically fast in other cases—a small number of terms may be
sufficient to capture almost all of the prior covariance. The linear operator corresponding
to the modified covariance kernel now has finite rank; φk(x) that are not eigenfunctions of
this operator (48) cannot contribute to the inverse solution. The impact of this truncation
will be explored in §2.3.3.

2.2.5 Polynomial chaos acceleration

MCMC exploration of the reduced-dimensionality posterior (61) still requires repeated so-
lutions of the forward model, once for each proposed move of the Markov chain. While
dimensionality reduction may reduce the number of such evaluations, depending on the de-
tails of the MCMC sampler, it is desirable to avoid repeated forward solutions altogether.

Our previous work [72] introduced methods for accelerating Bayesian inference in this
context, by using stochastic spectral methods to propagate prior uncertainty through the
forward problem. These methods effectively create a “surrogate” posterior containing
polynomial chaos (PC) representations of the forward model outputs. This density may
be evaluated orders of magnitude more quickly than the “direct” posterior containing the
full forward problem. Here, we will use the Gaussian process prior on M (and thus the
prior distribution on c) to define an appropriate stochastic forward problem. The K-L ex-
pansion of M ensures that we have chosen a concise representation of the prior uncertainty
that is yet suitable for reconstructing inverse solutions. Beginning with polynomial chaos
expansions, elements of this approach are described below.

Forward propagation of uncertainty:

Once again let (Ω,U,P) be a probability space on which we define a random process
X : Ω →RD with index set D ⊆RN . Also, let {ξi(ω)}∞

i=1 be i.i.d. standard normal random
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variables on Ω. Then any square-integrable X has the following representation:

X(ω) = a0Γ0 +
∞

∑
i1=1

ai1Γ1(ξi1)+
∞

∑
i1=1

i1

∑
i2=1

ai1i2Γ2(ξi1,ξi2)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3Γ3(ξi1,ξi2,ξi3)+ · · · (62)

where Γp is the Wiener polynomial chaos of order p [100, 40, 53] and the ai1i2... may be
functions on D. This expansion can be re-written in a more compact form

X(ω) =
∞

∑
k=0

âkΨk(ξ1,ξ2, . . .) (63)

where there is a one-to-one correspondence between the coefficients and functionals in (62)
and in (63) [40]. For the standard normal ξi chosen above, orthogonality of successive Γp
requires that the Γp be multivariate Hermite polynomials; both these and the corresponding
Ψk may be generated from univariate Hermite polynomials by taking tensor products.

Of course, in computations it is not useful to retain infinite summations, and one truncates
the expansion both in order p and in dimension n—i.e., by choosing a subset ξ = {ξλi}

n
i=1

of the infinite set {ξi}, λi ∈ N. The total number of terms P in the finite polynomial chaos
expansion

X(ω) =
P

∑
k=0

xkΨk(ξ1,ξ2, . . . ,ξn) (64)

is:

P+1 =
(n+ p)!

n!p!
. (65)

Polynomial chaos (PC) expansions have been generalized to broader classes of orthogonal
polynomials in the Askey scheme, each family resulting from a different choice of distribu-
tion for the ξi [103, 83]. For each of these choices, orthogonality of the polynomials Ψk(ξ)
with respect to the inner product on L2(Ω) is maintained:

〈ΨiΨ j〉 =
Z

Ψi (ξ(ω))Ψ j (ξ(ω))dP(ω)

=
Z

Ψi (ξ)Ψ j (ξ)ρ(ξ)dξ

= δi j〈Ψ2
i 〉 (66)

where ρ(ξ) denotes the probability density of ξ. This property can be used to calculate
the truncated PC representation of a random variable f ∈ L2(Ω) by projecting onto the PC
basis:

f̃ (ω) =
P

∑
k=0

fkΨk(ξ), fk =
〈 f (X)Ψk〉
〈Ψ2

k〉
(67)
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This orthogonal projection minimizes the error ‖ f − f̃‖2 on the space spanned by {Ψk}P
k=0,

where ‖ · ‖2 is the inner-product norm on L2(Ω).

Suppose that the behavior of f can be expressed as O ( f ,X) = 0, where O is some de-
terministic operator and X is a random variable or process with a known PC expansion
X = ∑

P
i=0 xiΨi(ξ). Substituting PC expansions for f and X into this operator and requiring

the residual to be orthogonal to Ψ j for j = 0 . . .P yields a set of coupled, deterministic
equations for the PC coefficients fk:〈

O

(
P

∑
k

fkΨk,
P

∑
i

xiΨi

)
Ψ j

〉
= 0, j = 0 . . .P (68)

This Galerkin approach is known as “intrusive” spectral projection [40, 61], in contrast
to “non-intrusive” approaches in which the inner product 〈 f (X)Ψk〉 is evaluated by sam-
pling or quadrature, thus requiring repeated evaluations of f (X) corresponding to different
realizations of ξ [39, 80].

In practice, we employ a pseudospectral construction to perform intrusive projections effi-
ciently for higher powers of random variables, e.g. f (X) = X j, j ≥ 3, and have developed
additional techniques for nonpolynomial functions f . These operations are incorporated
into a library for “stochastic arithmetic,” detailed in [21].

Stochastic spectral formulation of Bayesian inference:

In [72] we described three accelerated schemes for computing posterior estimates, all based
on spectral solutions of a stochastic forward problem: Monte Carlo sampling from the
prior distribution, importance sampling, and MCMC. Here we focus on the latter case. The
essential idea is to construct a stochastic forward problem whose solution approximates the
deterministic forward model over the support of the prior.

Let us begin with (i) a finite-dimensional representation of the unknown quantity that is the
object of inference, and (ii) a prior distribution on the parameters of this representation. For
instance, if the unknown quantity is a field M(x) endowed with a Gaussian process prior,
the finite representation may be a truncated K-L expansion with mode strengths c and priors
ci ∼ N(0,1). The Bayesian formulation in §2.2.4 describes the inverse solution in terms of
the posterior density of c, which includes evaluations of the forward model G(MK(·)). For
simplicity, we shall abbreviate G◦MK as Gc; inputs to this model are parameterized by c.
Also, let C denote the support of the prior.

Now define a random vector č = g(ξ̌), each component of which is given by a PC expansion

či = gi(ξ̌) =
P

∑
k=0

gikΨk(ξ̌) (69)

This vector will serve as input to Gc, thus specifying a stochastic forward problem. Re-
call that the distribution of ξ̌ (e.g., standard normal) and the polynomial form of Ψ (e.g.,
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multivariate Hermite) are intrinsic properties of the PC basis. We do not require that g be
chosen such that č is distributed according to the prior on c. Rather, we require only (1) that
Ξc = g−1(C ), the inverse image of the support of the prior, be contained within the range
of ξ̌, and (2) that g be a diffeomorphism from Ξc to C .

Next, using Galerkin projection to solve the stochastic forward problem, we obtain a PC
representation for each component of the model output. Here Gi is the i-th component of
Gc, and G̃i(ξ̌) is its PC representation:

G̃i(ξ̌) =
P

∑
k=0

dikΨk(ξ̌) (70)

The forward prediction G̃ obtained in this fashion is a function of ξ̌, and is a polynomial
chaos approximation of Gc(g(ξ̌)). Note that both of these quantities are random variables,
since ξ̌ is a random variable. But G̃ can also be evaluated with a deterministic argument§;
in this sense, G̃ is a polynomial approximation of the deterministic forward model Gc ◦g.

We would like to use this approximation to replace Gc in the likelihood function L(c) ≡
pη (d−Gc(c)):

L(g(ξ))≈ L̃(ξ)≡ pη

(
d− G̃(ξ)

)
(71)

Implicit in this substitution is the change of variables c = g(ξ), i.e., from the input param-
eterization of Gc to the input parameterization of G̃, enabled because g satisfies conditions
(1) and (2) above.

We write the change of variables in terms of the posterior expectation of an arbitrary func-
tion f :

Eπc f = Eπξ
( f ◦g) (72)

where πc ≡ p(c|d) is the posterior density on c-space, and πξ is the corresponding posterior
density on ξ-space:

πξ(ξ) ∝ L(g(ξ)) pc (g(ξ)) |detDg(ξ)| (73)

Here, Dg denotes the Jacobian of g and pc is the prior density of c. Eliminating the forward
model from the likelihood function via (71) finally yields the “surrogate” posterior density
π̃ξ:

π̃ξ(ξ) ∝ L̃(ξ) pc (g(ξ)) |detDg(ξ)|

∝ pη

(
d− G̃(ξ)

)
pc (g(ξ)) |detDg(ξ)| (74)

This distribution may be explored with any suitable sampling strategy, in particular MCMC.
Evaluating the density for purposes of sampling may have negligible cost; nearly all the

§In this exposition we have used ˇ to identify the random variables č and ξ̌ in order to avoid confusion
with deterministic arguments to probability density functions, e.g., c and ξ below. Elsewhere, we will revert
to the usual notational convention and let context make clear the distinction between the two.
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computational time may be spent in intrusive spectral projection, obtaining the PC ex-
pansions in (70). Depending on model nonlinearities, the necessary size of the PC basis,
and the number of posterior samples required, this computational effort may be orders of
magnitude less costly than exploring the posterior via direct sampling. Accuracy of the sur-
rogate posterior depends the order and family of the PC basis, as well as on the choice of
transformation g—for instance, whether the distribution of č assigns sufficient probability
to regions of C favored by the posterior on c. A detailed discussion of these issues can be
found in [72].

2.2.6 Gaussian processes, K-L expansions, RKHS, and regularization

There are important connections between Gaussian process priors and regularization penal-
ties in the corresponding reproducing kernel Hilbert space (RKHS) norm. These connec-
tions can be understood in terms of the spectral expansion of the covariance kernel, and it
is useful to review these relationships in the present context.

The definition and properties of reproducing kernel Hilbert spaces are briefly recalled in the
Appendix. It is natural to think of a positive definite reproducing kernel K as a covariance
kernel, and indeed any Gaussian process can be associated with a RKHS. Let X(t), t ∈ T be
a centered Gaussian process with covariance kernel K. If K has more than a finite number
of non-zero eigenvalues, realizations of X(t) are almost surely not in the corresponding
RKHS H(K) [94].¶ However, there exists an isometry between the two. In particular,
let H be the Hilbert space spanned by X(t): H = span{Xt , t ∈ T } with inner product〈
Zi,Z j

〉
= E[ZiZ j] for Zi,Z j ∈ H . It can be shown that H is isometrically isomorphic to

H(K) [94, 2].

Bayesian estimates with Gaussian process priors may lie in the corresponding RKHS,
however [94, 56]. Consider the case of an inverse problem with Gaussian process prior
GP (0,K) on the unknown function f . Details of the likelihood function and forward model
are unimportant here. For simplicity, we assume that the prior covariance is completely
known. Let fi denote the projection of f onto the i-th eigenfunction ψi:

fi =
Z

D
f (s)ψi(s)ds (75)

where ψi and λi are, as usual, eigenfunctions and eigenvalues of the linear operator corre-
sponding to K. According to (51), the prior distribution on each fi is N(0,λi). Then the
posterior probability of the function f , π( f ), has the form:

J =− logπ( f ) = log-likelihood+
∞

∑
i

f 2
i

2λi
+ const

= . . .+
1
2
‖ f‖2

H(K) + . . . (76)

¶As an example of a GP whose realizations are not in the RKHS, consider standard Brownian motion.
Sample paths are nowhere differentiable with probability one, but members of the RKHS are differentiable
almost everywhere, with square-integrable derivatives.
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J is thus a RKHS-norm penalized cost functional, in which the Gaussian process prior pro-
vides the regularization penalty. Minimizing J to obtain the MAP estimate of f is equiv-
alent to finding a Tikhonov-regularized solution to the inverse problem, with argminJ =
fMAP ∈H(K). Changing the prior covariance kernel amounts to changing the RKHS norm
and thus the nature of the regularization penalty.

Moreover, there is an equivalence between the RKHS regularization functional ‖ f‖H(K)
and a standard L2(D)-norm penalty ‖L f‖2 containing the differential operator L: the re-
producing kernel K is the Green’s function of the operator L∗L, where L∗ denotes the ad-
joint of L [89, 84]. Thus a Gaussian kernel leads to a penalty on derivatives of all orders;
the exponential covariance kernel penalizes the square of the function value f (s) and its
derivative ḟ (s) (i.e., a Sobolev H1 norm); and the covariance kernel of Brownian motion,
K(s, t) = min(s, t), leads to a penalty on the MAP estimate’s squared derivatives.

Finally, we note that the present scheme of K-L based inversion (§2.2.4) recalls the “weight
space” view of Gaussian process regression, in that we find weights on the set of feature
vectors φk [78] implied by the Gaussian process prior. Truncation to a finite subset of these
features might seem at odds with the usual use of Gaussian processes in nonparametric
statistical models. However, some features are more important than others. More precisely,
results in §2.3.3 will show that the weights of feature vectors beyond some limit k > k?

are unchanged by conditioning on the data—suggesting that it is reasonable, in the present
inverse problem context, to limit conditioning on the data to a finite subset of weights. The
remaining features are still “active” in the sense that they too may be seen as contributing
to the posterior, but their contributions do not change from the prior.

2.3 Numerical implementations and results

We explore the accuracy and efficiency of our dimensionality reduction approach by esti-
mating inhomogeneous diffusivity fields in a transient diffusion problem. We pursue these
inverse problems both with and without the added step of solving the stochastic forward
problem to construct a surrogate posterior (§2.2.5). In particular, we consider a diffusion
equation on the unit interval D = [0,1] with adiabatic boundaries:

∂u
∂t

=
∂

∂x

(
ν(x)

∂u
∂x

)
+

N

∑
i=1

si√
2πσi

exp
(
−|li− x|2

2σ2
i

)
[1−H(t−Ti)] (77)

∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=1

= 0

u(x, t = 0) = 0

The source term in (77) involves N localized sources, each active on the interval t ∈ [0,Ti]
and centered at li ∈ D with strength si and width σi, i = 1 . . .N. Source parameters are
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prescribed, and we infer ν(x) from noisy measurements of the u-field at a finite set of
locations and times. This problem can be considered a prototype for the inverse estimation
of an inhomogeneous conductivity field or any analogous material or transport property,
such as the permeability field in a porous medium [62, 76].

2.3.1 Inverse problem setup

The transient diffusion equation above may be cast as a forward model that predicts the
value of the field at specific locations and times. Taking the diffusivity to be uniformly
bounded away from zero, ν(x) > ν0 > 0 with ν0 ≡ 0.1, we define the log-diffusivity M(x)≡
log[ν(x)−ν0]; this function is the input to the forward model. We evaluate the field at mn
points {u(xi, t j) : 1 ≤ i ≤ m,1 ≤ j ≤ n}. The “sensor locations” {x1 . . .xm} are uniformly
spaced on D, including the endpoints, and the measurement times {t1 . . . tn} are uniformly
spaced on an arbitrary time interval. Below, unless otherwise specified, we will use m = 13
sensors, n = 9 measurement times, and N = 3 sources. The source locations are staggered
with respect to the sensors; i.e., they are placed at li ∈ {0.25,0.50,0.75}. We prescribe
identical strengths si = 100, shutoff times Ti = 0.01, and widths σ2

i = 10−2 for all three
sources. Measurements take place over the time interval t ∈ [0.01,0.03].

The u-field is described on a uniform grid with spacing h = 1/48. Second-order centered
differences are used to discretize the diffusion terms. Time integration is via an explicit,
second-order-accurate, Runge-Kutta-Chebyshev (RKC) scheme [88] with ∆t = 10−4. For
any input ν(x), the number of substeps in the RKC scheme is automatically determined by
stability constraints upon setting ε, the damping parameter that controls the extent of the
stability region, to 2/13 [93]. Numerical resolution studies were conducted to validate the
present choices of h and ∆t.

Note that the forward model is nonlinear in ν(x). Consider the simple case of a uniform
diffusivity, ν(x) = ν̄. Figure 18 shows the resulting forward maps, from log[ν̄−ν0] to u, at
a single measurement location and two successive times. The measurement location, x∗ =
1/6, is adjacent to a source at x = 1/4. For very small diffusivities, the scalar introduced
by the source does not diffuse towards the sensor in appreciable quantity, and hence u is
small; in this regime, the magnitude of the scalar field rises with t and with ν̄. At very
large diffusivities, the scalar introduced by all N sources rapidly diffuses towards all the
sensors and the u-field quickly becomes uniform, approaching u = ∑i siTi = 3 as ν̄t → ∞.
For intermediate diffusivities, the measured value of u may decrease with rising ν̄: the
scalar field, locally peaked at the nearby source, flattens as the diffusivity increases, until
the influence of the remaining sources is felt at sufficiently high ν̄, raising the local value
of u once again. The behavior of analogous forward maps in the case of nonuniform ν(x)
is expected to be even more complicated.

The inverse problem thus consists of inferring M(x)≡ log[ν(x)−ν0] from noisy measure-
ments of u(xi, t j). In the Bayesian setting, we provide statistical information about the
measurement process and about our prior knowledge of M(x). We let independent zero-
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mean Gaussian random variables ηi ∼N(0,ς2) express the difference between “real-world”
measurements and model predictions, as specified in (3). In the examples below, we choose
ς = 0.1. We endow M(x) with a zero-mean Gaussian process prior M ∼ GP (0,C), where
C is a stationary Gaussian covariance kernel:

Cθ(x1,x2) = C̃θ(|x1− x2|) = θexp
(
|x1− x2|2

2L2

)
. (78)

For simplicity, we assume that the correlation length L is known; in practical applications,
an estimate of L will often be available [62, 76]. We do not, on the other hand, presume to
know the scale θ of the prior covariance. Adopting a fully Bayesian approach, we let θ be
a hyperparameter endowed with a conjugate inverse gamma hyperprior, θ ∼ IG(α,β) [32,
31]:

p(θ) =
βα

Γ(α)
θ
−α−1 exp

(
−β

θ

)
. (79)

In the examples below, we fix the shape parameter α = 1 and the scale parameter β = 1.
This yields a proper but long-tailed prior for θ, with undefined mean and variance. The
magnitude of the prior covariance θ joins the remaining parameters describing M(x) in the
joint posterior density; we can then marginalize over θ to obtain a posterior describing M(x)
alone (see §1.2.1). Note that when considering MAP estimates of M conditioned on θ, the
ratio ς2/θ is akin to the regularization parameter appearing in deterministic inversion; thus
we are effectively estimating the strength of the regularization when conditioning on the
data [50].

We will solve the inverse problem for four different “target profiles” M(x): a simple linear
profile, a sinusoidal profile, a profile randomly drawn from the Gaussian process prior with
L = 0.3,θ = 1.0, and a well-shaped profile. Plots of these target M(x) are provided in the
next section. For each profile, a noisy data vector d is generated by solving the deterministic
forward problem with the target log-diffusivity, then perturbing the resulting value of u at
each sensor location/time with independent samples of Gaussian noise ηi ∼ N(0,ς2). To
avoid an “inverse crime” [50], we generate the mn values of u(xi, t j) by solving the forward
problem at a much higher resolution than that used in the inversion, i.e., with h = 1/408
and a correspondingly finer ∆t.

2.3.2 Grid-based inversion

We begin with a straightforward full-dimensional Bayesian approach to the inverse prob-
lem, as described at the start of §2.2.4. Let M(x) be represented on a finite collection
of points {xi}n

i=1 ∈ D; an obvious choice with adequate resolution is the collection of
grid points used to discretize the forward model, uniformly spaced on the unit interval
with xi+1 − xi = h. Then we can write both the prior and posterior densities in terms of
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m = (M(x1), . . . ,M(xn)):

p(m,θ|d) ∝ p(d|m)× p(m|θ)× p(θ)

∝ pη (d−G(m))×θ
− n

2 exp
(
−1

2
mTΣ−1

θ
m
)
× p(θ)

∝ exp

(
− [d−G(m)]T [d−G(m)]

2ς2

)

×θ
− n

2 exp
(
−1

2
mTΣ−1

θ
m
)
×θ

−α−1 exp
(
−β

θ

)
(80)

where (Σθ)i j ≡Cθ(xi,x j).

Directly applying a Metropolis-Hastings algorithm to this posterior is not likely to be suc-
cessful, however. Simple proposal distributions for m, such as normal distributions cen-
tered at the current position of the chain, generate candidate points with very low accep-
tance probabilities—even when applied component-at-a-time [76]. These proposals do not
account for correlations among neighboring components of m. We surmount this issue
with a change of variables, using the Cholesky factorization of the prior covariance matrix,
using θ = 1: Σ(θ=1) = LLT . If z is vector of n i.i.d. standard normal random variables,
then ∀θ,

m =
√

θLz (81)

will have a zero-mean multivariate normal distribution with covariance Σθ. (Multiplication
by L is analogous to, in the continuous case, generating samples of a Gaussian process by
convolution with white noise [63].) Thus the N(0,Σθ) prior distribution on m reduces to a
Gaussian prior on z with diagonal covariance, N(0,I). Equivalently, we can write m = Lz
and let the scale parameter θ control the prior variance of z∼ N(0,θI), thus reparameteriz-
ing the posterior density as follows:

p(z,θ|d) ∝ exp

(
− [d−G(Lz)]T [d−G(Lz)]

2ς2

)

×θ
− n

2 exp
(
−zT z

2θ

)
×θ

−α−1 exp
(
−β

θ

)
(82)

We use a Metropolis-Hastings algorithm to simulate samples from this distribution [42].
For the scale parameter θ, we apply Gibbs updates: the full conditional p(θ|z,d) is pro-
portional to IG(α+n/2,β+(∑n

i=1 z2
i )/2) [32], so we sample directly from this distribution

with acceptance probability 1. For the remaining parameters z, we use single-component
random-walk Metropolis updates: each proposal distribution q(·|·) is a univariate normal
centered on the current position of the chain. It may be possible to increase the efficiency
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of this sampler by using single-component updating for the first few components of z and
block updating for the higher-index, less important components [62], but we do not pursue
such fine-tuning here. MCMC yields a series of samples {(z(s),θ(s))}, which are easily
transformed to {(m(s),θ(s))}. From these samples, we can estimate posterior expectations
(e.g., means, variances, higher moments), extract marginal densities p(M(xi)|d), and esti-
mate quantiles of the marginal distributions.

Figures 19–22 show the results of grid-based inversion with each of the four target profiles.
In each case, we have assumed a value for the prior correlation length appropriate to the
target: L = 1.0 for the linear profile, L = 0.2 for the sinusoidal profile, L = 0.1 for the
well-shaped profile, and L = 0.3 for the profile corresponding to a random draw from the
GP prior. Figures 19(a)–22(a) show the posterior mean and standard deviation, along with
five samples from each posterior distribution. In part (b) of these figures, we extract one-
dimensional marginal distributions of M(x) at each grid point xi, then plot the median and
5% and 95% quantiles of the distributions. Even though statistical dependence among
different spatial locations has been marginalized away, these profiles reflect an envelope
of uncertainty in the inverse solution. In all four cases, uncertainty in the log-diffusivity
is greatest near the boundaries, with some additional rise near the center of the domain.
Unsurprisingly, shorter prior correlation lengths result in larger uncertainties overall. All of
the results presented here are based on 6×105 MCMC samples; we find negligible change
in the estimated moments and quantiles with further iterations.

In three of the four cases (the linear, sinusoidal, and random-draw targets), the posterior
mean and median are good estimates of the true profile; the true log-diffusivity is generally
contained within the credibility intervals bounded by the marginal quantiles. Mismatch
with the true profile may be ascribed to limited sensor resolution (in space and in time),
noise in the data, and the interaction of these conditions with the physics of the forward
model. In the fourth case (Figure 22, i.e., the well-shaped target), the inferred profile is
smoother than the true profile. While the location of the well (0.4 < x < 0.7) may be
surmised from the posterior, the true profile does not fall entirely within the marginal quan-
tiles. Here, information encoded in the prior is actually inconsistent with the well-shaped
log-diffusivity. Even with a small correlation length, a GP prior with a Gaussian covari-
ance encodes significant smoothness, assigning very small probability to sharp variations.
The posterior distribution reflects this belief in the character of the log-diffusivity profile.
To obtain more accurate reconstructions and credibility intervals in this case, the prior dis-
tribution must be chosen more carefully. Tarantola [89] suggests that if discontinuities
are expected, their geometric properties should enter explicitly into the parameterization
of the inverse problem. One may also construct structural priors, typically Gaussian but
not isotropic or stationary, that encode the location and geometry of non-smooth features
[50, 52, 12].

Since the full posterior is a distribution on n+1-dimensional space, it contains much more
information than can be shown in Figures 19–22. Consider, for instance, the change in the
covariance of M(x) from the prior to the posterior. Computing Var[m] = Cov

[
M(xi),M(x j)

]
requires marginalizing over the hyperparameter θ. The prior marginal, with density p(m) =
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∞

0 p(m|θ)p(θ)dθ, is a multivariate t-distribution; its covariance can be obtained analyti-
cally as βΣ/(α−1) for α > 1. The posterior covariance is estimated numerically from the
MCMC samples. Figure 23(a) shows the prior covariance with L = 0.3; in this case only,
we put α = 3 and β = 2 so the magnitude of the marginal prior covariance is well-defined.
Figure 23(b) shows the corresponding posterior covariance, again with α = 3 and β = 2,
conditioned on the noisy data vector used to infer the random-draw target in Figure 20. The
posterior covariance clearly reflects a nonstationary process, and its overall scale is more
than an order of magnitude smaller than the prior covariance. The diagonal of the posterior
covariance is analogous to the square of the standard deviation in Figure 20(a). Decay of
the covariance away from the diagonal reflects the character of spatial variation (around the
mean, up to second order) in the log-diffusivity profiles comprising the inverse solution.

It is important to note that, because the forward operator G is nonlinear, the posterior dis-
tributions shown here (whether 1-D marginals or full joint distributions) are not in general
Gaussian or even symmetric.

2.3.3 Reduced-dimensionality inversion

Now we pursue a reduced-dimensionality solution of the inverse problem by exploring the
posterior distribution of the weights ck of a finite number of K-L modes, as described in
§2.2.4. First, we must determine the eigenfunctions and eigenvalues appearing in the K-L
expansions. For the Gaussian covariance kernel (78) on D = [0,1], there is no analytical
solution for the spectral decomposition of the corresponding integral operator. Instead, we
solve the integral equation (48) numerically, using the Nystrom method [77] with a Gauss-
Legendre quadrature rule and a LAPACK solver for the first K eigenvalues and eigenvectors
of the resulting real symmetric matrix.

The hyperparameter θ is treated as in the previous section. The scale of the covariance
kernel does not affect the eigenfunctions φk(x); it simply multiplies the eigenvalues λk.
Thus, we can compute the K-L expansion of M(x)∼ GP (0,Cθ) while fixing θ = 1, and let
the hyperparameter control the prior variance of the random variables ck, c∼N(0,θI). The
posterior density in (61) is re-written as follows:

p(c,θ|d) ∝ p(d|c)p(c|θ)p(θ)

∝ exp
(
− (d−G(MK(c)))T (d−G(MK(c)))

2ς2

)
×θ

−K
2 exp

(
−cT c

2θ

)
×θ−α−1 exp

(
−β

θ

)
(83)

where the forward model G now maps functions M : D→R, representing the log-diffusivity,
to Rmn. MK(c) denotes the K-term K-L expansion (53) evaluated at c:

MK(x;c) =
K

∑
k=1

√
λkckφk(x) (84)
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Figures 24–30 show the results of K-L-based inversion with each of the four target profiles.
As in the previous section, part (a) of each figure shows the posterior mean and standard
deviation along with randomly-chosen posterior realizations, while part (b) overlays the
1-D posterior median and quantiles with the true log-diffusivity. Results obtained with a
sufficiently large number of K-L modes K become indistinguishable from the grid-based
inverse solutions. As expected, shorter prior correlation lengths require a larger number
of K-L modes for accurate inverse solutions. Consider the remainder of the total prior
variance integrated over the domain D (55), i.e., 1−∑

K
k=1 λk, shown in Figure 31. This

quantity decays exponentially fast with increasing K, reflecting the decay of the eigen-
values of the Gaussian covariance kernel (78), but eigenvalues corresponding to large-L
kernels decay more quickly than those corresponding to small L. Since the distributions
of ck are altered by conditioning on d, the relative importance of the K-L modes changes
in the posterior, but still decays at larger index. Figure 32 compares MCMC estimates of
the posterior moments of M(x), obtained via grid-based inversion, to MCMC-estimated
posterior moments of MK(x) obtained via K-L-based inversion with varying numbers of
modes. In particular, we compute the L2 distance between estimates of the posterior
mean, ‖µ̂(MK(x))− µ̂(M(x))‖2 =

(R
D |µ̂(MK(x))− µ̂(M(x)) |2dx

)1/2, and the L2 distance
between estimates of the posterior standard deviation, ‖σ̂(MK(x))− σ̂(M(x))‖2. Differ-
ences between these posterior estimates at first fall rapidly with increasing K, but then
plateau. The plateau region appears at smaller K for the large-L cases (e.g., the line profile)
and at larger K for the small-L cases (e.g., the well profile), and reflects the fact that dif-
ferences between moments of the grid and K-L-based inverse solutions eventually become
comparable to the variability of the MCMC estimates themselves. Indeed, each realization
of a Markov chain yields slightly different estimates of the posterior mean and standard
deviation, and differences among these realizations account for continued “jitter” in the
plateau regions. To illustrate the spread in these estimates, we have plotted results from
additional realizations of the MCMC chain at K = 6, 8, and 10, for the random-draw target.
(Each realization corresponds to a distinct choice of random seed.) Differences in the mag-
nitude of the plateau region associated with each target profile reflect the fact that variance
of an MCMC estimate is dependent on the variance of the actual quantity being estimated
[81]; the posterior associated with the well-shaped target, for instance, shows much larger
variances than the posterior associated with the linear target.

Further insight into the contribution of each K-L mode to the inverse solution is obtained
by examining boxplots of the posterior marginals of the mode strengths. In particular, we
consider marginal densities of

√
λkck, the scaled contribution of each K-L mode. The K-

L eigenfunctions multiplied by these factors each have an L2 norm of unity, and thus the
relative importance of each eigenfunction—e.g., each mode’s contribution to the mean and
spread of the posterior—is captured by the boxplots in Figure 33. Results are reported for
the random-draw and well-shaped targets. The horizontal line at the center of each box
marks the median of the posterior marginal p(

√
λkck|d); the extent of each box marks the

25% and 75% quantiles of the posterior marginal; and the vertical lines span the entire
range of the MCMC samples. The importance of each mode does not decrease strictly with
k. For instance, K-L mode φL=0.3

4 (x) contributes more to the posterior of the random-draw
target than φL=0.3

2 (x) and φL=0.3
3 (x); with the well-shaped target, mode φL=0.1

9 (x) contributes
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more to the posterior than φL=0.1
7 (x). At sufficiently large index, however, the [exponential]

decrease of the λk takes over: variances of the mode strengths decrease and the medians
tend towards zero.

Spatial correlations are also well-reproduced by the reduced-dimensionality inverse so-
lution. Consider contours of the posterior covariance Cov [M(x1),M(x2)], shown in Fig-
ure 34. Solid lines are obtained via the grid-based inversion described in §2.3.3, while
dashed lines represent the posterior covariance computed with K K-L modes. Very close
agreement is observed with increasing K. This result may be somewhat surprising, as φk(x)
are not eigenfunctions of the posterior covariance and thus not an optimal basis for poste-
rior in the sense of a K-L representation. Nonetheless, a modest number of these modes is
able to capture the posterior covariance.

Eigenfunctions aside, the ability to reproduce the posterior covariance also depends on the
emergence of correlations in the joint posterior of the K-L mode strengths ck. Figure 35
shows all of the one- and two-dimensional posterior marginals of (θ,c) conditioned on the
random-draw target. Significant correlations are apparent among the lower-indexed modes,
and between these modes and the hyperparameter θ. Higher-indexed modes, on the other
hand, appear uncorrelated—and based on the shape of their 2-D marginals, mutually inde-
pendent. We examine the 1-D marginals of these modes more closely in Figure 36. The
solid lines are conditional densities p(ck|d,θ) extracted from the posterior via kernel den-
sity estimation and plotted for different values of θ. The dashed lines are the corresponding
conditional prior densities p(ck|θ); recall that these are simply ck ∼ N(0,θ). The poste-
rior densities of c6, shown in Figure 36(a), are shifted and somewhat narrower than their
priors. (Much more dramatic changes from the prior are observed for c1 through c5.) Con-
ditional posteriors of c8 in Figure 36(b), on the other hand, match the prior conditionals
quite closely. Similarly close matching is observed for modes c9, c10, and so on. This
pattern leads us to conjecture that, at sufficiently large m, the posterior distribution of K-L
modes ck≥m approaches the prior:

p(cm,cm+1, . . . |d,θ)→ ∏
k≥m

p(ck|θ) (85)

This conjecture is consistent with the decay of λk at large k; since higher-index modes have
smaller λk, these modes should have less impact on the predicted u(x, t) and on the data d.
Absent conditioning on the data, these modes revert to being independent and conditionally
Gaussian. §2.3.5 revisits this issue in the case of coarser data.

A practical benefit of using K-L modes to compute the inverse solution is more efficient
MCMC sampling. Figure 37(a) plots γ(s)/γ(0), the empirical autocorrelation at lag s, for
several components of the Markov chain used to explore p(z,θ|d) (i.e., grid-based inver-
sion) and several components of the chain exploring p(c,θ|d) (K-L-based inversion). In
both cases, the noisy data vector d is obtained from the random-draw target. With the grid-
based posterior, lower-index zi multiply columns nearer the left side of the Cholesky factor
L, which contain a larger number of non-zero entries (specifically, n− i+1). These modes
mix less efficiently than their larger-k counterparts, even though we have individually tuned
the proposal width of each single-component Metropolis update. Mode strengths ck and the
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hyperparameter θ of the K-L-based posterior show much more rapid decay of their auto-
correlations, reflecting improved mixing. In Figure 37(b), we transform the ck and zi into
realizations of M(x) and compare the chain autocorrelations at particular spatial locations.
With the grid-based posterior, mixing improves toward the right side of the physical do-
main D, as the value of the solution at larger x is influenced by a larger number of modes
zi—and in particular, better-mixing modes. The autocorrelations of K-L-based M(xi) still
decay more rapidly, however.

2.3.4 Reduced-dimensionality inversion with polynomial chaos acceleration

We now construct a stochastic forward problem whose solution captures the output of the
deterministic forward model over the support of the prior distribution, and use this solu-
tion to formulate a surrogate posterior distribution. The resulting scheme is intended to
achieve an accelerated, reduced-dimensionality Bayesian solution of the inverse problem,
as described in §2.2.5.

We begin with the K-L representation of the log-diffusivity field and the hierarchical priors
on ck derived in the previous section. Following the notation in §2.2.5, introduce the scaling
transformation

c = g(ξ) = ϖξ. (86)

This transformation is equivalently a first-order Gauss-Hermite PC expansion, where ξ is a
K-vector of i.i.d. standard normal random variables; the expansion defines the uncertainty
that we propagate through the forward model. Since the prior distribution of each ck has
support over the entire real line, as does the N(0,1) distribution of each ξk, we have con-
siderable freedom in choosing ϖ > 0; any choice of ϖ will map the range of ξ onto the
range of c [72]. The choice is particularly open since θ, the prior variance of ck, is itself
unknown. Here we will fix ϖ2 = 0.5, which is the mode of the hyperprior p(θ).

Together, (77), (84), and (86) define a stochastic forward problem. The input is the Gaus-
sian random field M(x) ≡ log[ν(x,ξ(ω))− ν0] represented with a truncated K-L expan-
sion, and the outputs are random variables u(xi, t j,ω) giving the value of the scalar field
at each measurement location and time. We write these random variables in terms of
their PC expansions u(xi, t j,ω) = ∑l ui j

l Ψl(ξ(ω)), and collect them in a vector G̃(ξ) ≡
(u(x1, t1;ξ), . . . ,u(xm, tn;ξ)). Solving the stochastic forward problem—i.e., using Galerkin
projection to compute the coefficients ui j

l —requires transforming the input log-diffusivity
into an actual diffusivity ν(x,ω). The Gauss-Hermite PC representation of this log-normal
process may be evaluated analytically [40, 67]. Recall that the multivariate polynomial
functionals comprising the PC basis are given by the tensor product of one-dimensional
polynomials ψi(ξ), here Hermite polynomials of order i. Each multivariate polynomial Ψl
is associated with a multi-index αl = (αl

1, . . . ,α
l
K) ∈ NK , where ∑

K
k=1 αk ≤ p:

Ψl(ξ) =
K

∏
k=1

ψ
αl

k
(ξk) (87)
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The diffusivity ν(x,ω) = ν0 + exp(MK(x,ξ(ω)) then has PC coefficients

ν(l=0)(x) = ν0 + eσ2(x)/2

ν(l≥1)(x) = eσ2(x)/2
K

∏
k=1

[
ϖ
√

λkφk(x)
]αl

k√
αl

k!
(88)

with‖

σ
2(x) = ϖ

2
K

∑
k=1

λkφ
2
k(x) (89)

This PC expansion (88) is introduced into the transient diffusion equation (77). Using a
pseudospectral stochastic Galerkin scheme coupled with the same finite-difference spatial
discretization and RKC time integrator as in the deterministic problem, we obtain PC ex-
pansions for the outputs of interest G̃(ξ).

The surrogate posterior density may then be written in terms of ξ:

p(ξ,θ|d) ∝ L̃(ξ)pc|θ (g(ξ)|θ) |det(Dg(ξ))| p(θ) (90)

∝ p(d|ξ)pξ|θ(ξ|θ)p(θ)

∝ exp
(
−(d−G̃(ξ))T(d−G̃(ξ))

2ς2

)
×
(

θ

ϖ2

)−K
2 exp

(
− ξT ξ

2θ/ϖ2

)
×θ−α−1 exp

(
−β

θ

)
(91)

MCMC sampling from this posterior proceeds as in the previous two sections, except that
the full conditional p(θ|ξ,d) used for Gibbs updates is now IG(α+K/2,β+ϖ2(∑K

k=1 ξ2
k)/2).

A useful diagnostic of the stochastic forward solution’s fidelity is the probability density of
the forward model outputs u(xi, t j,ξ). Fixing the number of terms K in the K-L expansion
of M(x), these densities may be estimated in one of two ways. A direct (and computa-
tionally expensive) method is to sample c and solve the forward problem for each sample,
forming a histogram or kernel density estimate from the resulting collection of forward
model outputs. Alternatively, one can sample ξ and substitute it into the PC expansion
G̃(ξ), again forming a histogram of the resulting values. Figure 38 shows such estimates
at two measurement locations and times. While a lower-order PC basis (p = 2) produces
a somewhat poor density estimate, the probability density quickly converges to its true
shape—obtained by the direct method—as p increases. Reasonable agreement is obtained

‖Note that as K → ∞, we have σ2(x)/ϖ2 → 1.
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even at p = 4. Also, note that these densities are not log-normal; their shapes reflect the
nonlinearity of the forward maps from ν(x) to u(xi, t j).

Figures 39–41 show inverse solutions corresponding to the random-draw target profile.
We fix the number of K-L modes to K = 6, since this value provided accurate results in
§2.3.3, and vary the order p of the PC basis used to solve the stochastic forward problem.
Each of these figures represents MCMC samples from the surrogate posterior (91) that are
transformed into realizations of M(x). Even at low order, the posterior mean, standard de-
viation, and quantiles are not far from their direct counterparts; at p = 4 and p = 6 these
summaries of the posterior distribution are visually indistinguishable from the profiles in
Figure 26. Figure 42 quantifies differences between the posterior means/standard devia-
tions obtained with 6 K-L modes and direct forward problem solutions, and those obtained
with 6 K-L modes and sampling of the surrogate posterior. Again, we plot the L2 norm of
the differences between MCMC estimates of these quantities: ‖µ̂

(
Mp

K(x)
)
− µ̂(MK(x))‖2

and ‖σ̂
(
Mp

K(x)
)
− σ̂(MK(x))‖2. The difference in posterior mean estimates drops more

than an order of magnitude from p = 2 to p = 4 and continues to fall towards p = 6. At
both p = 4 and p = 6, we plot results from four separate realizations of the MCMC chain
on π̃ξ (corresponding to different random seeds) in order to illustrate the variability of the
MCMC estimates. In this regime, as in the case of K-convergence in §2.3.3, the distance
between estimated means of the direct and surrogate posteriors becomes comparable to the
standard deviations of the MCMC estimates themselves. (Both Figure 42 and 32(a) show
plateaus around 10−3 for the random-draw target.) Differences between the estimates of
posterior standard deviation show similar dependence on p.

The surrogate posterior accurately captures spatial correlations among possible values of
the inverse solution. Figure 43 shows contours of the posterior covariance with varying
p: solid lines correspond to the direct posterior, while dashed lines represent the surrogate
posterior. Very close agreement is observed at p = 4, and this agreement improves further
at p = 6.

Of course, the ultimate goal of introducing the stochastic forward problem and surrogate
posterior is greater computational efficiency. Significant speedups were obtained with a
similar approach in [72] for inverse estimation of parameters in PDEs. In the present con-
text, even though the inverse solution is a spatial field, the pattern of computational costs is
the same as in [72]. The initial cost of the scheme is offset by the computation of stochas-
tic forward solutions, but then grows very slowly, because the cost per MCMC iteration is
orders of magnitude smaller for the surrogate posterior (91) than for direct solutions of the
transient diffusion equation (83). Table 1 summarizes the cost at each stage of three repre-
sentative calculations: inferring the random-draw target by the methods of §2.3.2, §2.3.3,
and §2.3.4. For a fixed number of MCMC iterations, K-L based inversion with K = 6
is approximately one order of magnitude faster than grid-based inversion, because fewer
posterior evaluations are required per MCMC iteration in the former case (using the single-
component MCMC sampler). It may be possible to design more efficient MCMC methods
for both cases, perhaps updating blocks of components at a time with suitably-shaped pro-
posals, but reducing the chain dimension will inevitably enable greater efficiency [23] and
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reduce the number of posterior evaluations required. We also note that comparing the grid-
based and K-L based solutions at a fixed number of MCMC iterations is not truly fair to the
K-L parameterization, since the (c,θ) chain mixes more rapidly than the (z,θ) chain (see
Figure 37). The Monte Carlo error obtained with 2×105 MCMC samples from p(c,θ|d) is
thus matched at a larger number of MCMC samples from p(m,θ|d).

The third row of Table 1 shows even greater speedups, entirely independent of the MCMC
implementation. The majority of the computational time in this case is spent on the stochas-
tic forward solve. Yet we emphasize that, because it depends only on the prior and forward
model, the stochastic forward solve may be performed “offline” before introducing any
data. Afterwards, sampling is inexpensive. Here, the cost per posterior evaluation and per
MCMC iteration is 1.8 orders of magnitude smaller than for the direct K-L based posterior.
Including the time for the stochastic forward solve, inference via exploration of the surro-
gate reduced-dimensionality posterior is 2.3 orders of magnitude faster than exploration of
the direct full-dimensional posterior, with negligible loss of accuracy.

2.3.5 Data length scales

It is useful to consider the behavior of the inverse solution as one coarsens the length scale
on which data is collected. For instance, what if observations of the scalar field u(x, t)
were limited to the boundaries of the domain, x = 0.0 and x = 1.0? We still take noisy
measurements at 9 successive times, spaced uniformly over the interval t ∈ [0.01,0.03].
Figure 44 shows the inverse solution corresponding to the sinusoidal target, obtained with
a larger number of K-L modes (K = 10) and direct forward problem solutions as described
in §2.3.3. Contrast these results with those in Figure 28 or 21. The two-sensor results show
much greater variability, particularly in the center of the domain, compared to their 13-
sensor counterparts. The posterior mean and median still appear sinusoidal, along with the
majority of the posterior realizations. All of these profiles are closest to the true solution
near the domain boundaries. Asymmetry in the standard deviation profile may be ascribed
to asymmetry in the realizations of the sensor noise perturbing observations of u(x, t).

Examining the posterior distribution of M(x) does not complete the story, however. In par-
ticular, the posterior distributions of the K-L mode strengths ck exhibit interesting features
when conditioned on coarser data. Figure 45 shows boxplots of the marginal posteriors
of ck and θ, contrasting 13-sensor and 2-sensor inference of the sinusoidal target. First,
we note that the hyperparameter θ and the mode strengths ck—particularly the lower-index
ck—have narrower posterior distributions in the data-rich case. As discussed in §2.3.3,
higher-index modes approach a zero-mean limiting distribution, but crucially, this tendency
is observed at much lower k in the 2-sensor case. To further elucidate this point, consider
the matrix of one- and two-dimensional posterior marginals, shown in Figure 46 for two
sensors. The marginal distributions of c6,c7, . . . do indeed appear quite similar in shape
and range, and moreover, correlations among the modes weaken at larger k, becoming
quite negligible for k > 6. We examine the limiting distributions quantitatively as in §2.3.3,
plotting posterior conditionals p(c6|d,θ) in Figure 47. The posterior conditionals of c6 in
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the 13-sensor case are far from the corresponding Gaussian prior conditionals p(c|θ), but
in the the 2-sensor case p(c6|d,θ) matches the Gaussian prior N(0,θ) quite closely for var-
ious values of θ. Even closer matching is observed at higher k. These observations lead
us to expand upon the conjecture of (85), by suggesting that the posterior distribution of
K-L modes ck≥m approaches the prior at smaller index m as the length scale of the data is
coarsened.

Implications of this statement are numerous. One possibility is that when the data is
scarce relative to the complexity of the model (understood here as the spatial complex-
ity of logν(x) as constrained by the prior), dimensionality reduction based on the prior
may be improved upon. For instance, in the present case of 2-sensor inversion of the
sinusoidal profile, the fraction of the posterior standard deviation contained in modes 6
and higher (integrated over D) is 14.1%. These modes are thus important to the posterior
distribution, but if their joint distribution is essentially unchanged by conditioning on the
data, the corresponding ck could be removed from the inference process. Adding uncon-
ditioned realizations of ∑

∞
k=6

√
λkckφk(x) to posterior realizations of MK=5(x) would then

yield samples from the full posterior.
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time for
stochastic
forward

solve

time per
posterior

evaluation

time per
MCMC
iteration

TOTAL time for
inversion (2×105

samples)

grid-based; n = 49 · 5.05×10−3 2.48×10−1 49542

K-L; K = 6 · 5.21×10−3 3.43×10−2 6863

K-L and polynomial
chaos; K = 6, p = 4

137 9.2×10−5 5.50×10−4 248

Table 1. Computational times, in seconds, for inference of the
“random-draw” target profile (e.g., Figure 20) by three different
methods.
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x=1/6, t=0.02

Figure 18. Simple forward map, from a uniform diffusivity ν̄

to the value of the scalar field u(ν̄;x, t) at two successive times.
Source parameters are given in §2.3.1.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 19. Grid-based inversion of a linear log-diffusivity profile.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 20. Grid-based inversion of a log-diffusivity profile ran-
domly drawn from a Gaussian process with L = 0.3 and scale pa-
rameter θ = 1.0.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 21. Grid-based inversion of a sinusoidal log-diffusivity
profile.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 22. Grid-based inversion of a well-shaped log-diffusivity
profile.
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(b) Posterior covariance with the random-draw profile.

Figure 23. Change in the covariance of M(x) from the prior to
the posterior, for inference of the random-draw target. Both (a)
and (b) reflect marginalization over the scale parameter θ. In this
example only, the hyperprior is θ ∼ IG(3,2).
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 24. K-L-based inversion of the linear log-diffusivity pro-
file, K = 4.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 25. K-L-based inversion of the random-draw log-
diffusivity profile, K = 4.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 26. K-L-based inversion of the random-draw log-
diffusivity profile, K = 6.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 27. K-L-based inversion of the sinusoidal log-diffusivity
profile, K = 4.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 28. K-L-based inversion of the sinusoidal log-diffusivity
profile, K = 10.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 29. K-L-based inversion of the well-shaped log-
diffusivity profile, K = 7.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 30. K-L-based inversion of the well-shaped log-
diffusivity profile, K = 15.
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Figure 31. Decay of K-L eigenvalues with different prior corre-
lation lengths L. Vertical axis shows the missing fraction of the
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i λi, versus K.
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Figure 32. Differences in posterior moments computed via grid-
based inversion and K-L based inversion, versus K. At K = 6,
8, and 10, repeated symbols (•) correspond to multiple MCMC
simulations from the posterior of the random-draw target.
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Figure 33. Boxplot of the posterior marginals of the K-L mode
strengths ci, scaled by

√
λi.
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Figure 34. Contours of the posterior covariance,
Cov [M(x1),M(x2)]. Solid lines are obtained via grid-based
inversion; dashed lines are obtained via reduced-dimensionality
inversion with K K-L modes. All are for inference of the
random-draw target.

91

xxxx



x
1

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) K = 8

Figure 34. (cont.) Contours of the posterior covariance,
Cov [M(x1),M(x2)]. Solid lines are obtained via grid-based inver-
sion; dashed lines are obtained via reduced-dimensionality inver-
sion with K K-L modes.
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Figure 35. 1-D and 2-D posterior marginals of the K-L mode
strengths ci and the hyperparameter θ, for inference of the random-
draw target.
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Figure 36. Limiting distributions of K-L modes, 13 sensors; in-
ference of the random-draw target.
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Figure 37. Autocorrelation at lag s of components of the MCMC
chain, and of field values M(x) parameterized by the MCMC chain
variables.
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Figure 38. Probability density of the scalar u(x, t) at two mea-
surement locations and times, given input uncertainty in the diffu-
sivity field. Here, ν(x) is the log-normal random field defined in
§2.3.4.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 39. Inversion of the random-draw log-diffusivity profile
using K-L and polynomial chaos, K = 6, p = 2.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 40. Inversion of the random-draw log-diffusivity profile
using K-L and polynomial chaos, K = 6, p = 4.
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(a) Mean, standard deviation, and five posterior realizations.
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(b) Median, 1-D credibility intervals, and true profile.

Figure 41. Inversion of the random-draw log-diffusivity profile
using K-L and polynomial chaos, K = 6, p = 6.
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Figure 42. Differences between means/standard deviations of
M(x) computed via the “direct” posterior (83) and via the surro-
gate posterior (91), versus p. All results are for inversion of the
random-draw target with 6 K-L modes. At p = 4 and p = 6, re-
peated symbols correspond to multiple MCMC simulations from
the surrogate posterior.
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Figure 43. Contours of the posterior covariance,
Cov [M(x1),M(x2)]. Solid lines are obtained via direct for-
ward problem solutions; dashed lines are obtained via evaluation
of the surrogate posterior. All are for inference of the random-draw
target with 6 K-L modes. 101
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Figure 43. (cont.) Contours of the posterior covariance,
Cov [M(x1),M(x2)]. Solid lines are obtained via direct forward
problem solutions; dashed lines are obtained via evaluation of the
surrogate posterior.
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Figure 44. Inversion of the sinusoidal log-diffusivity profile with
only 2 sensors (at x = 0.0 and x = 1.0).
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Figure 45. Boxplot of the posterior marginals of the K-L mode
strengths ci, sinusoidal target.
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Figure 46. 1-D and 2-D posterior marginals of the K-L mode
strengths ci and the hyperparameter θ; sinusoidal target profile
with 2 sensors.
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Figure 47. Prior and posterior conditional distributions of K-L
mode c6; inference of the sinusoidal target.
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3 MCMC schemes for parameter estimation in stochastic
models

Stochastic models describe many natural phenomena and engineered systems. Often one
would like to estimate parameters of these models from a few realizations of the model
output, perhaps observed incompletely and with noise.

A simple example is a polynomial chaos expansion X = ∑k xkΨk(ξ), whose coefficients xk
are to be estimated from realizations of the random variable X . A more complex example
is a stochastic reaction network, where chemical interactions between limited populations
of molecules result in intrinsic variability. Species populations comprise a continuous-time
Markov process on a discrete state space, exactly simulated with Gillespie’s stochastic
simulation algorithm. A subset of the interacting chemical species may be observed at a
finite set of times and with noise; from these observations, we seek estimates of the reaction
propensities and associated uncertainties.

Bayesian statistics, in principle, provides a means of parameter estimation in these models.
Exploring the posterior distribution of the model parameters, conditioned on the data, re-
quires repeated evaluations of the likelihood function. Yet in many stochastic models, the
likelihood is not available analytically. One may obtain samples of the model outputs for
a fixed value of the parameters m, but evaluating the probability density p(d|m), e.g., via
kernel density estimation [44], requires a large number of model realizations d(i). At each
candidate value of m, a new set of forward realizations must be computed. In the context
of MCMC, this approach nests a density estimation problem within each calculation of the
transition probability, resulting in a scheme that may be feasible only for simple stochastic
models that are inexpensive to sample [41]. This chapter explores some more elegant and
efficient alternatives.

3.1 Forms of the posterior density

Tarantola [89] (see in particular §1.5) formulates very general expressions for the likelihood
function in inverse problems, distinguishing the contribution of observational uncertainty
from that of uncertainty or inherent variability in model predictions. We review his ex-
position here. For simplicity, let the model parameters m and the outputs or observations
d be real-valued and finite-dimensional: m ∈ M = Rm and d,dobs ∈ D = Rd . With this
assumption, we will avoid some of the idiosyncratic language in [89] (e.g., “conjunctions”
and “disjunctions” of probabilities) and place the present formulation in a more traditional
Bayesian setting.

First, introduce some notation. Let pM(m) denote the prior density of m, encapsulating
any information on the model parameters that is obtained independently of the present
measurements. Let the density pD(d) represent information about the model outputs d
obtained through the measurement process. That is, we don’t just have data points; any
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measurement yields a “state of information” about what the corresponding model output
might be, and this information is encapsulated in pD. A few examples will make this clear.
Suppose that d is observed through an instrument that introduces additive errors ε

dobs = d+ε (92)

and these errors are independent of the actual value of d. If ε has a density pε, then

pD(d) = pε(dobs−d) (93)

In particular, if ε is normally distributed, ε ∼ N(0,C), then pD will give d ∼ N(dobs,C).
Alternatively, consider the case of perfect measurements: observation of d through a perfect
instrument always yields the exact value of the model output. Then

pD(d) = δ(d−dobs) (94)

In general, the statistics of the measurement process may be expressed with a conditional
density p(dobs|d).

Tarantola suggests that forward models, whether deterministic or stochastic, can be ex-
pressed in a very general way—as a joint probability density ϕ(d,m). This is perhaps too
general; the physical law or model itself may not say much about the marginal distribution
of m. So we can rewrite the forward model as ϕ(d,m) = ϕ(d|m)µM(m) where µM is the
homogeneous probability density on Rm—i.e., a constant. The forward model thus is a con-
ditional density; for any value of the model parameters m, we predict some density for d.
Deterministic forward models d = G(m) are a special case, with ϕ(d|m) = δ(d−G(m)).

Now we combine (i) prior information on m, (ii) observational information on d, and (iii)
the probabilistic model relating m to d, to obtain a posteriori information on m. Tarantola
expresses this information as a joint density on the model parameters and outputs:∗∗

π(m,d) ∝ ϕ(d|m)pD(d)pM(m) (95)

We then marginalize over d to obtain the posterior density of m alone:

π(m) ∝ pM(m)
Z

D
ϕ(d|m)pD(d)dd (96)

∝ pM(m)L(m) (97)

where L(m) is the likelihood function. Consider a few special cases. If the forward model
is deterministic, we have π(m) ∝ pD(G(m))pM(m), which is the usual expression used in
Bayesian approaches to inverse problems [72]. If the forward model remains stochastic but
the measurements are perfect, we have π(m) ∝ ϕ(dobs|m)pM(m), which is, for example,
the posterior expression used to estimate parameters of a disease model in [79] and to
identify polynomial chaos coefficients in [41].

∗∗Compared to equation (1.89) in [89], we have assumed the homogeneous probability density on the data
space, µD(d), to be constant since D = Rd .
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Note that Tarantola’s expression (96) may also be derived in a more typically Bayesian way.
First, recognize that π(m) in (96) is really p(m|dobs); similarly, pD(d) is really p(d|dobs).
Then

p(m|dobs) =
Z

p(m,d|dobs)dd (98)

=
Z

p(m|d)p(d|dobs)dd (99)

∝

Z
ϕ(d|m)p(m)p(d|dobs)dd (100)

∝ pM(m)
Z

ϕ(d|m)pD(d)dd (101)

where in (100) we have applied Bayes’ rule and in (101) we have just removed the prior
from the integral and reverted to the original notation.

3.2 Markov chain Monte Carlo

The parameter inference problem now reduces to a computational question: how to effi-
ciently sample from (96) when the forward model ϕ(d|m) cannot be expressed analyti-
cally?

Consider a Markov chain on the product space M ×D . We would like to construct a
chain whose stationary distribution is given by π(m,d) ∝ pM(m)ϕ(d|m)pD(d). A marginal
distribution of this chain will be π(m) = p(m|dobs). We employ a standard Metropolis-
Hastings construction. (See [42] for an excellent review of MCMC methods.) A Metropolis-
Hastings algorithm involves the specification of a proposal distribution q(m′,d′|m,d). The
proposed “move” from (m,d) to (m′,d′) is then accepted with probability

α = min
(

1,
π(m′,d′)q(m,d|m′,d′)
π(m,d)q(m′,d′|m,d)

)
= min

(
1,

ϕ(d′|m′)pD(d′)pM(m′)q(m,d|m′,d′)
ϕ(d|m)pD(d)pM(m)q(m′,d′|m,d)

)
. (102)

Let the proposal distribution q be specified as follows:

q(m′,d′|m,d) = q1(d′|m′,m,d)q2(m′|m,d)
= qD(d′|m′)qM(m′|m)
= ϕ(d′|m′)qM(m′|m) (103)

In other words, we have factored the joint proposal into a conditional q1 and a marginal
q2, then chosen particular forms for these factors. The proposal for the observable, qD,
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is simply the stochastic forward model. The proposal for the model parameters, qM, can
be chosen quite flexibly. For instance, one could choose a random walk proposal: m′ ∼
N(m,σ). Alternately, choosing qM(m′|m) = qM(m′) yields the independence sampler.
Assume that we are at least using a symmetric proposal: qM(m′|m) = qM(m|m′). (This
assumption is not particularly restrictive, and is easily removed from the expression below.)
Plugging the proposal distribution (103) into (102) gives the acceptance probability:

α = min
(

1,
pD(d′)pM(m′)
pD(d)pM(m)

)
(104)

The Metropolis-Hastings scheme based on proposal distribution (103) and acceptance prob-
ability (104) yields a correlated sequence of samples from π(m,d) (95). The density of the
forward model ϕ(d|m) is never explicitly computed; we simply need to draw a sample
from this distribution at each step of the MCMC chain. The steps comprising the scheme
are summarized as follows:

1. If at (m(t),d(t)), propose a move to m′ according to qM.

2. Sample the observable d′ from the stochastic forward model ϕ(d′|m′).

3. Calculate α(m′,d′,m(t),d(t)) according to (104).

4. Accept (m(t+1),d(t+1))= (m′,d′) with probability α; otherwise put (m(t+1),d(t+1))=
(m(t),d(t)). Return to step #1.

3.3 Discussion and comparison to other schemes

A similar MCMC scheme, relying only on the ability to draw samples from the stochastic
model, was proposed by Marjoram et al. [71]. The algorithms discussed therein (and the
associated posterior distributions) do not account for measurement noise or uncertainty; in
effect, they assume that pD(d) = δ(d−dobs). These MCMC schemes thus define Markov
chains only on M , not on M ×D . However, [71] provides a simple proof that these
methods satisfy the detailed balance condition, and this proof appears adaptable to the
MCMC scheme given here.

Even though the posterior π(m,d) (95) may be the stationary and limiting distribution
of the Markov chain defined by our scheme, important practical considerations remain.
In particular, the chain should mix rapidly within the support of the posterior, and thus
the acceptance probabilities α should not be too low. (Nor should they be too high; see
[42]!) This issue is discussed by Marjoram et al. [71]. In the basic MCMC method of
that paper, moves are accepted only if d′ = dobs, and in a high-dimensional or continuous
state space this will occur very rarely. One solution then proposed is to accept any d′ for
which ρ(d′,dobs) < ε, where ρ is some suitably defined metric and ε is a small constant;
this effectively samples the posterior p(m |ρ(d,dobs) < ε). A further alternative proposed
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in [71] is to condition not on the data, but on summary statistics of the data that are close to
being a sufficient statistic for m. (Recall that a sufficient statistic S for m is one for which
p(d|m,S) = p(d|S). In practice S may be difficult to identify.) Such methods fall under
the headline of “approximate Bayesian computation.”

In the present MCMC scheme, the introduction of pD and a Markov process on the data
space ensures that our acceptance probability is not so stringent; in effect, we may pit the
variability of the model against the precision of the measurements. So it is unclear whether
low acceptance probabilities will be an issue here, and if so, under what circumstances.
Numerical explorations will be useful.

3.4 An alternative robust scheme

If acceptance rates are too small under the MCMC scheme of §3.2, a more robust—though
less efficient—alternative may be useful. As before, we would like to explore the posterior
p(m,d|dobs). With a generic proposal distribution q(m′,d′|m,d), the resulting acceptance
probability is given in (102). Now let

q(m′,d′|m,d) = qM(m′|m)pD(d′) = qM(m′|m)p(d′|dobs) (105)

In other words, we propose values for the model outputs from the observational density
pD, independent of the current state of d. Assuming a symmetric qM(·|·), the acceptance
probability then reduces to:

α = min
(

1,
ϕ(d′|m′)pM(m′)
ϕ(d|m)pM(m)

)
(106)

The “likelihood” term ϕ(d′|m′) can be evaluated via kernel density estimation [44, 48],
which entails simulating from the forward model to obtain a large set of realizations for
any proposed m′. As noted in the introduction, this approach is most suitable for stochastic
forward models that are inexpensive to simulate. The Metropolis-Hasting scheme based
on (105) and (106) should be understood as an extension of [41] to include observational
errors.

This MCMC scheme could also modified in order to employ single-component or block
updates of m, for better mixing. Many variations are possible, one of which is as follows:

1. At the start of MCMC iteration t, propose a new set of model outputs d′ from pD(·)

2. Accept this move with probability α = min
(

1, ϕ(d′|m(t))
ϕ(d(t)|m(t))

)
. Upon acceptance or re-

jection, put d(t+1) = d′ or d(t+1) = d(t).

3. Beginning with i = 1, propose a move for component or block mi of m, from a
symmetric proposal qi

M(m′
i|m

(t)
i ).
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4. Accept or reject this move with probability

α = min

(
1,

ϕ(d(t+1)|m′
i,m−i) pM(m′

i,m−i)

ϕ(d(t+1)|m(t)
i ,m−i) pM(m(t)

i ,m−i)

)
(107)

where m−i ≡ (m(t+1)
1 , . . . ,m(t+1)

i−1 ,m(t)
i+1, . . .). Since we are really interested in the ratio

of full conditionals of mi, the above expression for the acceptance probability could
be simplified, depending on the form of the prior and the forward model. Put m(t+1)

i

equal to m′
i or m(t)

i , upon acceptance or rejection.

5. Repeat the previous two steps for successive i until every component of m has been
updated.

6. Return to step #1.

In closing, we note several further ideas that may improve the state of the art beyond the
parameter estimation schemes considered here:

• How to construct approximations of ϕ(d|m), or of ratios such as ϕ(d′|m)/ϕ(d|m)
or ϕ(d|m′)/ϕ(d|m)? In particular, can we seek approximations based on the actual
details/physics/structure of the forward model?

• How best to use these approximations, for instance, in two-stage MCMC schemes
[81] that still occasionally appeal to the exact forward model?

• What about single-component MCMC schemes that use only small portions of the
data at each iteration, thus rendering acceptances based on pD less restrictive?

• In a similar vein, could greater efficiency be obtained via sequential Monte Carlo
schemes (e.g., Bayesian filtering) [87, 22], that recursively condition on increasing
amounts of data?
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Appendix: Reproducing kernel Hilbert space

Here we briefly review properties of reproducing kernel Hilbert spaces (RKHS). Useful
connections among RKHS, Gaussian process priors, regularization, and the Karhunen-
Loève expansion are discussed in §2.2.6. Much more detailed expositions of RKHS may
be found in [6, 94, 84, 2].

A RKHS is a Hilbert space H of functions for which pointwise evaluation is a bounded
linear functional. Let Lt : H → R denote such a functional, where elements of H are real-
valued functions defined on some domain D; for f ∈ H, Lt( f ) = f (t). By the Riesz rep-
resentation theorem, there exists a unique Kt ∈ H called the representer of evaluation at t,
such that

Lt f = 〈 f ,Kt〉H = f (t) (108)

for all f ∈ H, where 〈·, ·〉H is the inner product in H. The function K(t,s)≡ Kt(s) is called
the reproducing kernel, since the reproducing property〈

K(t, ·),K(t ′, ·)
〉

H = K(t, t ′) (109)

follows directly from (108). Now consider two elements f and g of H, with f ≡∑i αiK(ti, ·)
and g ≡ ∑ j β jK(t j, ·). Their inner product 〈 f ,g〉 is〈

∑
i

αiKti,∑
j

β jKt j

〉
= ∑

i, j
αiβ j

〈
Kti,Kt j

〉
= ∑

i, j
αiβ jK(ti, t j) (110)

From the properties of the inner product, it is straightforward to show that K(t,s) : D×D→
R is symmetric and positive definite. Conversely, it can be shown that for every positive
definite function K on D×D there exists a unique RKHS H(K) with K as its reproducing
kernel [6]. In fact, H(K) is the completion of the space spanned by { f (·) = K(x, ·)}x∈D
with respect to the inner product (110).

An intuitive appreciation of RKHS may come by contrasting (108) with the situation in
L2(D). In L2(D), the representer of evaluation is a delta function:Z

D
f (s)δ(s− t)ds = f (t) (111)

but the delta function is not in L2(D), and thus L2 is not a RKHS. (Indeed, L2(D) has
no bounded linear evaluation functional.) In a RKHS, the existence of the representer
Kt ∈H(K) implies a relationship between a function value at t and its value at other points
t ′ ∈ D [84]. The Gaussian kernel, for instance, captures the notion that “close is relevant.”
Other kernels may capture periodicity in f , polynomial trends, and other features.

If the reproducing kernel K is also a Mercer kernel, we can alternatively construct the
RKHS H(K) ⊂ L2(D) from eigenfunctions of the integral operator defined by the kernel.
The eigenfunctions ψi and eigenvalues λi are given byZ

D
K(s, t)ψi(t)dt = λiψi(s) (112)
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The kernel K can then be expanded in terms of the orthonormal sequence of eigenfunctions
{ψi}:

K(s, t) =
∞

∑
i=1

λiψi(s)ψi(t) (113)

Now consider two functions f ,g : D → R, with projections

fi =
Z

D
f (s)ψi(s)ds (114)

and similarly for g. We define their inner product as:

〈 f ,g〉K =

〈
∑

i
fiψi,∑

j
g jψ j

〉
≡∑

i

figi

λi
(115)

which induces the norm

‖ f‖2
K =

〈
∑

i
fiψi,∑

j
fiψi

〉
≡∑

i

f 2
i

λi
(116)

It can be shown [94] that f ∈ H(K) if and only if ‖ f‖2
K < ∞, that is, iff:

∑
i

f 2
i
λ

< ∞ (117)

Requiring the RKHS norm to be finite in effect enforces some “smoothness” on members
of H(K), in contrast to L2(D); since we divide by λi in (116), the Fourier coefficients fi
must decay quickly enough for the sum to be finite. The representer property (108) is, of
course, preserved under the definition of inner product in (115). In fact the inner products
(110) and (115) are equivalent [94].
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