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Abstract

To effectively integrate nanotechnology into functional devices, fundamental aspects of
material behavior at the nanometer scale must be understood. Stresses generated during
thin film growth strongly influence component lifetime and performance; stress has also
been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the
intrinsic connections between the evolving morphology of supported nanostructures and
stress generation are still a matter of debate. This report presents results from a combined
experiment and modeling approach to study stress evolution during thin film growth. Fully
atomistic simulations are presented predicting stress generation mechanisms and magni-
tudes during all growth stages, from island nucleation to coalescence and film thickening.
Simulations are validated by electrodeposition growth experiments, which establish the
dependence of microstructure and growth stresses on process conditions and deposition
geometry. Sandia is one of the few facilities with the resources to combine experiments
and modeling/theory in this close a fashion. Experiments predicted an ongoing coales-
cence process that generates signficant tensile stress. Data from deposition experiments
also supports the existence of a kinetically limited compressive stress generation mech-
anism. Atomistic simulations explored island coalescence and deposition onto surfaces
intersected by grain boundary structures to permit investigation of stress evolution during
later growth stages, e.g. continual island coalescence and adatom incorporation into grain
boundaries. The predictive capabilities of simulation permit direct determination of funda-
mental processes active in stress generation at the nanometer scale while connecting those
processes, via new theory, to continuum models for much larger island and film structures.
Our combined experiment and simulation results reveal the necessary materials science
to tailor stress, and therefore performance, in nanostructures and, eventually, integrated
nanocomponents.
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wide EAM Metal slabs. Inset: close up of energy for separations nearly
equal to the initial gap. (b) Same slab geometry except that the initial gap
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Chapter 1

Introduction

Principal Authors: Edmund B. Webb III

“Worry and stress affects the circulation, the heart, the glands, the whole ner-
vous system, and profoundly affects heart action.”

Charles W. Mayo, M.D.

It would seem that the human condition and materials science have something in common
in the deleterious effects of stress on system performance. Indeed, if stress is broadly de-
fined as a perturbation from some ideal state, this analogy is complete. Not surprisingly, in
both realms, efforts exist to understand and control stress evolution so as to mitigate - or
even benefit from - its effects. The evolution of internal stresses during growth profoundly
influences properties, performance, and lifetime for materials in many technological ap-
plications. Because of inherently smaller dimensions, effects of stress evolution in thin
films and small supported structures (e.g. islands on surfaces) are often greatly magnified.
Figure 1.1 shows examples of material failure due to residual stress in thin film and small
structure geometries. This is a small set of examples but this problem emerges across ma-
terial systems and growth techniques. The structure of growing islands or grains, and the
film surface morphology determine local stress throughout the film; these stresses can be
extremely large and lead to significant deformation and mass transport. Unfortunately, the
complex interplay between various competing stress generation and relaxation mechanisms
during the different stages of film growth make the stress evolution process extremely diffi-
cult to understand. These issues become even more critical in applications employing very
small, including nanoscale, materials.

Figure 1.2 shows an example of an array of SiGe islands on a Si substrate. The islands have
edge length of order a few hundred nm. It is well appreciated in the materials growth com-
munity that the stress state induced when growing islands such as those shown in Fig. 1.2
greatly influences the size and arrangement of islands. Furthermore, the response of such
systems depends on stress; for example, optical quantum dot arrays fabricated from III-V
seminconductor compounds show a direct dependence of fluorescence on stress magni-
tude. Thus, understanding stress evolution during growth can advance Sandia towards it
mission in Materials Science and Technology to develop predictive nanoscale fabrication

17



TAPS - ‘Current Challenges in Mechanics and Materials’

University of Colorado at Boulder; August 2007

Bending of Ni

cantilevers

‘Phonecord’ delamination

of Au on Saphire Sn whisker formation

100 um

Delamination

of Si3N4/SiO2 bilayer

Figure 1.1. Examples of material failures due to residual stress:
(upper left) bending of Ni cantilevers in a MEMS device; (up-
per right) delamination of a structural ceramic thin film material
(Si3N4) from an amorphous silica substrate; (lower left) delamina-
tion of Au deposited on saphire; (lower right) whisker formation
in Sn.

techniques. Another example of application bound devices fall into the class of nanoelec-
tromechanical systems (NEMS). These promise unique mechanical, electrical, optical, and
magnetic properties but to reap these benefits, fabrication at the nanometer scale must be
highly controllable and guided by a thorough understanding of how growth conditions con-
trol resultant structure, stress, and properties. Experiments can accurately measure volume-
average stress during thin film growth, even when the film consists of isolated nanoscale
structures, but establishing connections between macro stress, local stress, and associated
atomistic behavior demands incorporation of novel modeling methods.

Work presented herein investigates stress generation mechanisms during three growth stages
in thin films that grow by the Volmer-Weber mechanism: at early time, discrete islands
grow on a surface; at intermediate time, growing islands impinge and coalesce, and at late
time, the growing film becomes continuous and thickens. These systems show rich behav-
ior in stress evolution as they pass through these growth stages: high mobility materials
show compression for discrete islands, tension during coalescence, and compression again
during late stage film thickening. Low mobility materials do not typically show a return to
compression during the late stage but, instead, demonstrate persistent tension. Significant
debate and questions exist regarding stress generation in each stage. Experiments wherein
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500 nm

Figure 1.2. A scanning electron microscope image of an array of
SiGe islands on a Si substrate. The field of view is ∼ 2000 nm on
edge.

growth is interrupted show stress evolution with time that further challenges interpretation.
We document our combined experimental and atomic simulation research into stress gener-
ation mechanisms during thin film growth and illustrate success addressing all three stages
of growth.

The plan of this report is as follows. In the next chapter, work is presented using simula-
tions to examine the energy of Ge islands on Si. Structural quantities, such as the island
edge energy, are critical for theory to describe island separation (due to overlapping stress
fields in the substrate). Results presented demonstrate atomic scale simulations can reveal
such energetic quantities. Focus is then turned to the intermediate stage of growth where is-
lands grow together and coalesce. In Chapter 3 we describe results from experimental work
investigating stress generation during electrodeposition of Ni. A primary result from this
is the significant role played by ongoing versus intial island coalescence mechanisms. A
scenario is described by experiments where ongoing coalescence generates tension in com-
petition with a kinetically limited compressive stress generation mechanism. Data support
the existing, albeit unobserved, mechanism of deposited adatoms entering grain bound-
aries and generating compressive stress. In the following chapter, an analytical model is
presented describing initial coalescence in terms of the energetic pathway traversed. This
model exhibits predictions for initial coalescence stress in good agreement with experimen-
tal observations. Late stages of thin film growth are explored in Chapter 5 where simula-
tion results are presented investigating interactions between adatoms and grain boundaries
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that intersect free surfaces. The stress generation mechanism proposed to explain existing
experimental data is observed in simulations. Simulation results guide development of a
model that quantitatively connects adatom/grain boundary behavior to stress generation.
The ability to characterize stress gradients or fields during material growth provides an
unprecedented understanding of relations between defect generation and stress evolution.
Chapter 6 presents atomic scale results describing the stress field around an edge disloction
in FCC Al. Local elastic theory predicts stress divergence near the core in this case; how-
ever, data from simulations do not exhibit stress singularities. Atomic scale data are are
used to parameterize a non-local elastic theory that avoids stress divergence and provides
more sound physical interpretation into stress near defects. The report is concluded with
a discussion of potential applications on which tools developed under this project can be
brought to bear.

Nanotechnology promises great benefit to national security in the form of highly sensitive
chemical sensors, switches that operate in extreme environments, and embedded infiltra-
tion sensors for property protection. To minimize the time from design to device, predic-
tive models that accurately describe materials growth processes are essential. The work
presented herein establishes a body of knowledge to enable this, thereby addressing this
need in developing unique national security technologies.
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Chapter 2

Edge Energetics of Ge Islands on Si:
Atomistic Calculations 1

Principal Authors: C. M. Retforda, M. Astaa, M. J. Miksisb, P. W. Voorheesc, and E.
B. Webb III

a - Present Address: Department of Chemical Engineering and Material Sciences, Univer-
sity of California, Davis, CA 95616
b - Department of Engineering Sciences and Applied Mathematics, Northwestern Univer-
sity, Evanston, IL 60208
c - Department of Materials Science and Engineering, Northwestern University, Evanston,
IL 60208

Heteroepitaxial growth in the Ge/Si (001) system is known to lead to the formation of
pyramid-like “hut” islands with {105}-oriented facets. Recent calculations of island for-
mation energies in this system have suggested that edge energies lead to an important con-
tribution to the barrier to island formation at small sizes. Here we provide an independent
calculation of the magnitude of the average edge energy for Ge/Si(001) by matching the
results of atomistic simulations to continuum theory for the energy of faceted surfaces. We
consider an infinitely long Ge island, or wire, bounded by {105} facets with the recently
proposed rebonded-step-model reconstruction, on a (001) wetting-layer terrace with the
2×8 dimer-vacancy-line reconstruction. To perform these calculations we derive models
for edge structures between {105} facets and between {105} and (001) facets, leading in
both cases to atomic coordinations with no more than one dangling bond per atom. For
these model edge structures we obtain an average value for the edge energy on the order of
10 meV / Å.

2.1 Introduction

In the heteroepitaxial growth of Ge on Si (001), pyramid “hut” islands are observed to form
with {105}-oriented side facets for islands sizes on the order of 10 nm [1, 2]. Recently,

1Work presented in this chapter is a result of a collaborative study with Northwestern University supported
by this project.
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the solution of the “rebonded-step-model” (RSM) reconstruction for Ge and Si {105} sur-
faces [3–5] has led to a number of first-principles studies examining the stability of this
facet orientation relative to {001}, and the associated balance of surface and bulk energies
underlying the formation of Ge “hut” islands on Si (001) [6–11]. In these first-principles
studies it has been found that the Ge (105) facet has a considerably lower surface energy
than (001) under the levels of compressive strain characterizing Ge heteroepitaxy on Si
(≈ 4 %). While these results were originally obtained by comparing surface energies for
RSM-(105) and tilted-dimer reconstructed (001) surfaces [6, 7], they were extended in later
work [8, 9, 11] to consider the more complex dimer-vacancy-line (DVL) reconstructions
that are observed to form on strained Ge (001) wetting layers [12–14]. In the most recent
calculations [8, 9, 11] it is found that the (105) orientation has a zero-temperature surface
energy which is a few meV/Å2 lower than that for DVL-reconstructed (001) surface for
biaxial compressive strains beyond a few percent.

Using first-principles calculated surface energies in continuum calculations, Shklyaev et al.
[8] estimated that the strain dependence of the surface energies give rise to a pronounced
lowering of the surface contribution to hut-island formation energies and suggested that the
contribution of edge energies, with a magnitude on the order of 10 meV/Å, were essential
to obtain critical island sizes in the nanometer-scale range. The purpose of the present work
is to employ atomistic calculations, analyzed within the framework of a continuum theory
for the energies of faceted thin films [15, 16], to derive an independent estimate of the
magnitude of edge energies and their contribution to the formation energy of {105}-faceted
islands in Ge/Si(001). For simplicity, we will consider a two-dimensional geometry, of the
type illustrated in Fig. 2.1, consisting of a {105}-faceted triangular nanowire of Ge on top
of a wetting layer on Si(001). The approach used in the present work shares many features
in common with previous atomistic studies of strained islands in the InAs/GaAs(001) [17]
and Ge/Si(001) [18] systems, but with a focus here on performing a detailed analysis of
edge contributions to island formation energies. While the magnitudes of edge energies
have been discussed in a number of studies for isolated, faceted nanoparticles [19–22],
the current analysis is relatively more complicated due to the presence of epitaxial strain
energy and associated strain-induced interactions between facet edges.

In the continuum theory of faceted surfaces, the formation energy per unit length (∆E) of
an isolated nanowire of the type shown in Fig. 2.1 can be written as follows:

∆E = a0 +b0 ln(L/2L0)+a1L+a2L2, (2.1)

where L represents the cross-sectional width of the nanowire (see Figure 2.5), and ∆E is
the difference in energy (per unit length along the nanowire axis) of the nanowire and an
equivalent amount of material in a coherent flat film. In (2.1) the first two terms represent
the contribution from the facet edges, the third is the contribution from surface energy,
while the fourth is the volume-dependent elastic relaxation energy. The edge contribu-
tion consists of a short-range and long-range contribution, the former (a0) representing the
“broken-bond” energy, and the latter (b0 ln(L/2L0)) the contribution to the elastic energy
associated with the interactions of the strain fields generated by the surface-stress discon-
tinuities at the edges. In what follows, we will derive estimates of the magnitude of the
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Figure 2.1. Rendering of a Ge {105}-faceted quantum wire with
base length L on a Ge (001) terrace with 2×8 reconstruction. The
Ge wetting layer (blue atoms) is 4 ML thick and sits on an Si (001)
substrate (red atoms). The black solid lines outline the wetting
layer and pyramid structure, while the dashed lines indicate the
edges. The regions A, B, and C bounded by white lines highlight
important features of the reconstruction that are shown in more
detail in Figures 2, 3, and 4, respectively.

edge energy a0 by fitting (2.1) to the results of direct atomistic calculations of nanowire
formation energies performed using the inter-atomic potential of Tersoff [23, 24]. A diffi-
culty encountered in performing such fits is the interdependency between the coefficients
a0 and b0, since changes in the unknown cutoff parameter L0 lead to compensating changes
in the edge energy a0. To get around this inherent problem, we derive estimates of the edge
energy based on two fits. In the first, we neglect the contribution of the second term in
(2.1), while in the second set of fits we derive an independent estimate of b0 employing
anisotropic elasticity theory within the small slope approximation. In these fits, we vary
the values of L0 over a physically-reasonable range. Due to the intrinsically small value of
b0 derived from the continuum analysis, both classes of fits give rise to very similar values
for the edge energy, on the order of 10 meV/Å.

The remainder of this chapter is organized as follows. In the next section the details of the
atomistic calculations will be described, and it will be discussed how the formation energy
of an isolated pyramid is obtained from an analysis of the energies resulting from simula-
tions employing periodic boundary conditions with varying periodic lengths and substrate
depths. The results and estimates for the magnitudes of the edge energies are given in the
third section. The results are summarized in the final section.
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Figure 2.2. Schematic of the Ge (001) terrace with 2× 8 re-
construction. Dark blue atoms represent surface dimers, light blue
atoms are one layer down. The dimers along the dashed line have
been removed, leaving a dimer vacancy at every eighth dimer in the
row. Atoms in the bottom layer have re-bonded across the dashed
line.

2.2 Method

2.2.1 Surface and Edge Structures

As illustrated in Figure 2.1, the simulation cell is composed mostly of bulk Si with a (001)
oriented surface. On top of this surface is a coherent epitaxial wetting layer of Ge, four
monolayers deep. The surface of the wetting layer (WL) has two regions, the (001) terrace
and the {105}-faceted wire. For the (001) WL terrace with dimer vacancy lines we use
the 2× 8 reconstruction shown in Figure 2.2. This surface is similar to the 2× 1 dimer
reconstruction, except that every eighth dimer row is removed, creating a dimer vacancy
line running in the [110] direction. The atoms beneath the removed dimers re-bond across
the vacancy line. While the 2×8 reconstruction is just one of many possible reconstructions
with DVLs, it is found to have a lower surface energy than the 2×1 reconstruction based
on first principles calculations (e.g., [9]), and it represents a minimum in the surface energy
with respect to DVL spacing (N) in 2×N reconsructions for the Tersoff potential [25].
The wire is bound by two RSM-reconstructed {105} facets with a triangular-shaped cross
section.

An important feature of the island structure is the edge reconstruction. There are three
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Figure 2.3. Schematic of the intersection of two Ge {105} facets
on the top of the pyramid. Dark blue atoms represent dimers, light
blue atoms are one layer down in the (105) plane. The purple
atoms are dimers bisected by the dashed line which form the top
“edge”.

edges – two where the (001) and {105} planes intersect and one where the {105} facets in-
tersect. The intersection of the {105} planes at the top of the island is shown in Figure 2.3,
viewed from the top. Note that the (105) RSM-reconstructed surface exhibits triples of ad-
jacent dimers in a characteristic “horseshoe” shape. The upper dimers of these horseshoes
sit next to each other along the edge. The edge has a dimer row on top, which is consistent
with experimental images of {105}-faceted islands [2, 26]. The other two edges occur at
the intersection of the {105} facets and the (001) terrace, one of which is shown in Figure
2.4. At the intersection of these surfaces, our model has the end of the dimer rows in the
2×8 reconstruction becoming one of the dimers in the “horseshoe” reconstructions along
the bottom of the (105) surface. In our model for the edge structure, each atom contains at
least three nearest-neighbor bonds.

It is important to note that the edge structures described in the previous paragraph are used
as the initial configuration in our calculations. The bulk atoms were positioned at the Si
lattice constant, and all rebonded atoms were initially set at the equilibrium dimer bond
length for a 2× 8 pure Ge surface. While these initial conditions were found to yield
stable local minima in our energy relaxations, no attempt was made to perturb these edge
geometries to search for a global minimum structure. While the magnitude of the edge
energies derived in this work are thus dependent on the edge-structure models, we believe
that these models are reasonable given that they give rise to surface atoms with no more
than one dangling bond at any given site.

In order to calculate island formation energies, we employ the inter-atomic-potential model
due to Tersoff [23, 24]. The simulation cell (shown in Figure 2.5) is periodic in the [100]
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Figure 2.4. Schematic of the intersection of the Ge {105} facet
and the Ge (001) 2×8 terrace along the base of the pyramid. Dark
blue atoms represent dimers, light blue atoms are one layer down
in the (105) plane to the left of the dashed line, and one layer down
in the (001) plane to the right of the dashed line. The purple atoms
along the dotted line are re-bonded at the bottom of the dimer va-
cancy line.

and [010] directions, with the bottom 2 monolayers of the cell frozen at the bulk lattice
positions for diamond-cubic Si. We relax the positions of all other atoms in the simulation
cell using the L-BFGS conjugate-gradient algorithm [27] for energy minimization.

2.2.2 Island Formation Energies

Our simulation runs require several steps. First, a pyramid of fixed base width L (in the
[100] direction) is chosen. For all runs the length d (in the [010] direction) is set to include
one 2× 8 surface unit cell (43.44Å). Then the inter-pyramid spacing p is increased in
increments of the 2×8 surface unit cell from 43.44Å up to 434.4Å (equivalently, from one
to ten 2× 8 surface unit cells). For a given periodic length in the direction normal to the
nanowire axis, the energy of the system is calculated as a function of the thickness h of
the Si substrate in units of 16 up to 288 interplanar spacings. In the limit as the substrate
becomes thicker, the excess energy of an island relative to a 2× 8 reconstructed wetting
layer (see (2.4)) was found to decay in a manner consistent with an exponential decay of
the strain fields away from the surface (see Figure 2.6 for a typical fit). We fit the calculated
excess energies as a function of thickness to the following exponential function:

∆E(h) = h0 +h1 exp(−kh), (2.2)

where k is the decay constant and h0 corresponds to an infinitely thick substrate. In this
manner we obtain the excess energy of a periodic array of nanowires on an infinitely thick
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Figure 2.5. Diagram of the simulation cell. The pyramid has
base length L and inter-pyramid spacing p. The cell is periodic
with depth d into the page and periodic width L+ p, and a substrate
height of h monolayers in addition to the 4 monolayers from the
WL.

substrate. To determine the value of the formation energy of an isolated pyramid, it is
necessary to subtract out the interaction energy between the pyramids. This was done by
noting that at large spacings, the pyramids are found to repel each other with an interaction
energy that decays in a dipolar fashion:

∆E(p) = c0 + c1
1

(p+L)2 . (2.3)

By fitting the excess energy to this function, we can extrapolate to obtain the energy of iso-
lated (i.e., infinitely spaced) nanowires (see Figure 2.7 for a typical fit). It is possible to fit
either of these two equations to the values of h0 and c0 generated by the other, independent
of which fit is performed first. The resulting values are then used to estimate the formation
energy of an isolated island on an infinitely thick substrate.

This process described in the previous paragraph is repeated for several values of the
nanowire width (L), giving us the formation energy ∆E as a function of L. The excess
energy of a 2× 8 terrace with nanowire relative to a 2× 8 terrace with no nanowire is
obtained from the total energy E by the following equation:

∆E(L) = [(E(L)−NSiµSi−NGeµGe)−A(L)(γ2×8 + I2×8)]/d. (2.4)

The first three terms in (2.4) are the excess energy of a system with the nanowire present.
Here NSi and NGe are the number of Si and Ge atoms respectively, while µSi and µGe are
the per-atom bulk energies given by the Tersoff potential at the Si lattice constant. That is,
for Si, µSi is the equilibrium energy per atom in the bulk diamond-cubic structure. For Ge,
µGe is the energy of a Ge crystal biaxially strained to the Si lattice constant and relaxed in
the dimension perpendicular. The last term in (2.4) is the excess energy of a system with
no nanowire, and is found by multiplying the total area of the cell in the (001) plane A(L)

27



0 50 100 150 200 250 300
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

Substrate Depth (ML)

F
or

m
at

io
n 

E
ne

rg
y 

(e
V

 / 
  )

 

 

Å

∆ E (Calculated)
Exponential Fit

Figure 2.6. Exponential decay of the excess energy for a typical
nanowire (L = 217.2Å, p = 173.76Å).
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with the sum of the surface energy γ2×8 per unit area and I2×8 representing the interface
and interface/surface interaction energy of the wetting layer thin film. Here we define the
interface to be the area of contact between the Ge wetting layer and the Si substrate. Finally
this energy is scaled by the periodic depth d in the [010] direction to obtain a formation
energy per unit length of the nanowire. Values for µSi, µGe, γ2×8 and I2×8 were obtained
from calculations of the energy of systems with flat 2×8 terminated Ge epitaxial films on
Si(001) 2.

One technical difficulty with the preceding description of the formation energy is the am-
biguity of the location of the edge. In the continuum model the edge must be located at a
specific point (thus fixing L), however it is not clear from the crystal structure which atoms
must be included in the nanowire and which are outside of it. A simple choice is to set L
equal the number of unit cells in a {105}-faceted pyramid, giving L in multiples of 10aSi
(where aSi = 5.43Å is the lattice constant of bulk Si for the Tersoff potential). However we
cannot be sure if this is a good choice. In a very recent atomistic study of edge energies for
faceted nanoparticles, Hamilton [22] has discussed in detail the sensitivity of the results to
the choice of the edge location, identifying a prescription based on the use of an equimolar
dividing surface. In the present work Hamilton’s prescription amounts to a choice of edge
location as follows. We define ∆N to be the difference between the number of Ge atoms in
the system with the nanowire present and the number of Ge atoms in a flat system with no
nanowire. We then choose L such that the volume of the nanowire times the atomic density
is equal to ∆N, resulting in the following formula for L:

L =

√
2 ·10∆N

ρd
(2.5)

where ρ = 8/a3
Si is the atomic density of a diamond crystal lattice, and the factor of 10 is

the ratio of length to height for a {105}-faceted pyramid. We find that the resulting values
for L are multiples of 10aSi plus a small correction of 0.0624aSi (this correction is used in
the fitting procedure discussed below to extract edge energies).

Once the formation energies are calculated as a function of L, the edge energy is obtained
from a fit to (2.1). Two fits are performed, one neglecting the second term and the other
including an estimate for the magnitude of the coefficient b0 derived from anisotropic elas-
ticity theory within the small-slope approximation. To perform this estimate it is necessary
to compute the surface stresses τ001 and τ105 associated with deforming the Ge (001) and
(105) surfaces uniaxially in a direction perpendicular to the nanowire edges. These calcu-
lations were performed by uniaxially straining simulation cells of bulk Ge with a 2×8 or
(105) RSM-reconstructed surface. The slope of the surface energy with respect to varying
strain gives the surface stress 3. As discussed below, the two fits of the island formation
energies, including or excluding the contribution from the second term in (2.1), are found
to give rise to very similar values for the edge energy a0.

2µSi = −4.62955 eV / atom, µGe = −3.813303 eV / atom, γ2×8 = 82.4496 meV / Å2, I2×8 = 20.1372
meV / Å2

3τ001 = 0.118 eV / Å2, τ105 = 0.156 eV / Å2
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Figure 2.8. Formation energy per unit length of a Ge (105)
nanowire, as a function of its cross-sectional width (L). The circles
represent extrapolations from our simulation data. The curve is a
least-squares fit to (2.1) neglecting the second term arising from
the interactions of the edge-induced strain fields.

Figure 2.9. Schematic of the surface-stress discontinuities for
a {105}-faceted island of size L with angle θ ≈ 11◦. The vectors
represent the surface stresses located at x = −L/2, x = L/2, and
x = 0.

2.3 Results

Figure 2.8 represents the main results of the simulation work. The open symbols plot
the calculated nanowire formation energies, per unit length, as a function of the cross-
sectional width L. The solid line in the figure represents a fit of the atomistic data using
(2.1) neglecting the second term arising from the interactions of the edge-induced strain
fields. The fit yields the following values for the remaining coefficients: a0 = 24 meV /
Å, a1 = 0.24 meV / Å2, a2 = −0.0177 meV / Å3. The parameter a0 represents the total
contribution from the three edges of the nanowire. If we divide the fitted value of a0 by
three, we obtain an average value for the edge energy of 7.9 meV / Å. We note that this is
an average for the entire nanowire – there is no reason to assume that the top edge provides
the same contribution as either bottom edge, although it is reasonable based on their atomic
geometries (and densities of dangling bonds) to assume that the different edge energies are
comparable in magnitude.
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Figure 2.10. Small-slope approximation of the {105}-faceted
island and resultant surface stress forces. Surface 1 is the film-
vapor interface, while surface 2 is the substrate-film interface.

To complete the analysis, we estimate the magnitude of the second term in (2.1) using
anisotropic continuum elasticity theory with the edges acting as line forces due to the
surface-stress discontinuities. We are interested in the interaction energy between edges
arising from these discontinuities in surface stress. The origin of this term is the component
of the strain due to the surface-stress discontinuity, rather than the misfit strain [16, 28].

In this analysis, the wetting layer is neglected and the substrate is modeled as an elastic
half-space. The island is represented by an isosceles triangle with base length L and height
q at the origin. Then the edge forces F1 and F2 in contact with the half space are located at
x =−L/2 and x = L/2 respectively, with the edge force F3 at the top of the triangle located
at x = 0 (see Figures 2.9 and 2.10). The base angle θ = arctan(q/L) is approximately 11◦

in the case of a {105}-faceted island, so we make a small-slope approximation and place
F3 at the surface. Then the surface stress contributions to the line forces can be written as
follows:

F1 = {[τ105 cos(θ)− τ001]i− [τ105 sin(θ)]j}δ (x+L/2),
F2 = {−[τ105 cos(θ)− τ001]i− [τ105 sin(θ)]j}δ (x−L/2),
F3 = 2[τ105 sin(θ)]jδ (x). (2.6)

Here i and j are unit vectors in the x = [100] and y = [001] directions, τ105 and τ001 are
the surface stresses calculated using the Tersoff potential, and δ is the Dirac delta function.
The elastic energy of two interacting forces r and s can be written as:

Ers =−1
2

∫
∞

−∞

dx
∫

∞

−∞

dx′Fα
r (x)Gαβ (x− x′)Fβ

s (x′), (2.7)

where the integrals are over the surface, G is the elastic Green’s function evaluated at
y = 0, and the upper indices α,β represent the Cartesian coordinates and are summed over
repeated indices. The stresses have units of eV / Å2, the delta function has units of 1/Å,
and Ers has units of eV / Å. This implies that the Green’s function must have units of Å3 /
eV.

We note that the elastic energy in (2.7) can be written in an alternate form:

Ers =−1
2

∫
∞

−∞

dxFα
r (x)uα

s (x), (2.8)
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where uα
s (x) is the α component of the displacement at position x due to the force at edge

s. This follows from
uα

s (x) =
∫

∞

−∞

dx′Gαβ (x− x′)Fβ
s (x′). (2.9)

Note that there is an implied sum in equation (8) over the α components of the energy,
hence this sum could be written as Exx

rs + Eyy
rs , i.e., the sum of the xx and yy component

of energy. The total force is the sum of all forces in (2.6), and from (2.9) we can write
the total displacement as the sum of the displacements from all forces. Consequently, the
elastic energy can be written as:

Etotal = E11 +E22 +E33 +E12 +E21 +E13 +E31 +E23 +E32, (2.10)

where the first three terms denote self energies, and the remaining six terms are the inter-
action energies. These six terms are the contribution we are interested in.

The following form of the elastic Green’s function [29] is used:

Gαβ =


−
[

1
π
(ln |x− x′|)δαβ − 1

2Sαβ (π)
]
[L−1(π)]αβ ,

x− x′ > 0,

−
[

1
π
(ln |x− x′|)δαβ + 1

2Sαβ (π)
]
[L−1(π)]αβ ,

x− x′ < 0,

(2.11)

where δ is now the Kronecker delta tensor, and the Barnett-Lothe tensors L and S are
defined in Ref. [30], using the formalism developed by Stroh [31]. For the geometry we
consider here, S(π) = 0, and L(π) is diagonal with the following form:

L(π)xx = L(π)yy =
C44(C11−C12)[(

4 C11C44
C11+C12

+H
)(

C11C44
C11+C12

)]1/2 , (2.12)

where H = C11−C12−2C44 and the Ci j are the elastic constants for a cubic material.

We note that the only non-zero contributions to the six interaction energies in Etotal are the
xx contributions from the first two forces and the yy contributions from all three forces.
After incorporating this simplification and integrating, we define the components of the
elastic energy as:

Eαα
rs =

1
2

f α
r f α

s
1

πL(π)αα
ln
(

L
2L0

)
, (2.13)

where f is the component of F with the delta function integrated out, the factor 2L0 denotes
a local cutoff distance needed to normalize the units of length, and there is no implied sum.
Hence the total interaction energy in (2.10) is just the sum over α in (2.13). Summing over
the non-zero contributions we find:

Exx
12 +Exx

21 =− 1
π

(τ105 cos(θ)− τ100)2

L(π)xx ln
(

L
2L0

)
, (2.14)

Eyy
12 +Eyy

21 +Eyy
13 +Eyy

31 +Eyy
23 +Eyy

32 =

− 3
π

(τ105 sin(θ))2

L(π)yy ln
(

L
2L0

)
. (2.15)
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Since the interaction energy is the sum of (2.14) and (2.15), we now have an expression for
the coefficient b0 multiplying the natural-logarithm term in (2.1). We obtain the estimated
value of b0 =−3.1 meV / Å by summing the coefficients in (2.14) and (2.15) together with
the Tersoff potential elastic constants given in [32], 4.

With the above estimate for the value of b0, we can refit the parameters a0, a1, and a2 in
(2.1). We thus performed a series of fits holding both b0 and L0 fixed. The value for b0
in all such fits was fixed at -3.1 meV/Å, as given above. For each fit we used a different
fixed value of L0 spanning a physically reasonable range from one-half the lattice constant
(2.72Å) to up to twice the lattice constant (10.9Å). The resulting fits gave rise to values
for the average edge energy ranging between 7.9 and 9.4 meV / Å. This range of values
is close to the average edge energy quoted in the first paragraph of this section (7.9 meV
/ Å), derived from a fit neglecting the second term in (2.1) entirely. The consistency of
the values for a0 derived from these different fits (especially given the free parameter L0)
indicates that we have been able to derive a robust value for the average edge energy of
approximately 8 to 9 meV / Å.

One of the conclusions reached in the present work is that the term b0 in the formation
energy, scaling as the log of the island size, gives rise to a negligible contribution to the
formation energies of strained Ge islands with sizes larger than a few nanometers. In light
of the fact that this analysis was based on surface-stress values derived from the classical
Tersoff potential, it is interesting to assess the accuracy of the predictions in light of re-
cently published values of the {105} and {001} surface stresses for pure Ge ([9, 11]). The
coefficient b0 in front of the log term is composed of two contributions. The first (2.15)
scales with the square of the magnitude of τ105, i.e., the surface stress for a (015) surface
corresponding to uniaxial strains along the [05̄1] direction. The second (2.14) scales with
the square of the difference between τ105 cos(θ) and τ100, the stress of the (001)-2× 8
surface corresponding to uniaxial strains along [010]. In terms of contribution (2.15), the
value of τ105 derived in the present work agrees with first-principles calculations [9] to
within 15%, with the first-principles numbers being higher. This suggests that the present
estimate of this contribution to the log-term coefficient is underestimated by roughly 30%.
Concerning contribution (2.14), a direct comparison between the present calculations and
first-principles results is not possible since the uniaxial surface stress values for the (001)-
2×8 surface of pure Ge have not been reported based on ab-initio calculations. However,
a comparison between the numbers derived in the present work and first principles cal-
culations can be made at the level of the trace of the surface stress tensor for {105} and
{001} surfaces. The squared difference between the traces of the (projected) {105} and
{001} surface-stress tensors in the present work is approximately a factor of 4 larger than
those obtained from first-principles calculations published by Refs. [11] and [9]. Thus,
it is expected that the present calculations most likely lead to a significant overestimate
of contribution (2.14) and thus a combined overestimate of the magnitude of the log-term
coefficient b0. Overall, the present calculations suggest that the log-term coefficient plays
a negligible role in governing the energetics of strained Ge islands with sizes larger than
a few nanometers, a conclusion that is in agreement with a recent first-principles based

4C11 = 0.811,C12 = 0.306,C44 = 0.418,Lxx(π) = Lyy(π) = 0.408 eV / Å3 (elastic constants given in [32])
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analysis of the formation energies of 3-D islands by Liu et al. [10].

Finally, we note that experiments have shown that the wetting layer is not pure Ge due to
intermixing, and that the surface energy and surface stress depend on the degree of inter-
mixing [13]. To gain insight into the effects of intermixing would require a full kinetic
model that is beyond the scope of the present work. It is reasonable to expect island forma-
tion energy to decrease with thermodynamically favorable intermxing. However, without
details about the segregation pattern, it is unclear what the effect would be on the edge
energy alone.

2.4 Summary

Atomistic calculations were employed to estimate the magnitude of the edge energy of
islands in the Ge/Si(001) system. A surface reconstruction with {105} facets and 2× 8
terrace was used for the Ge wetting layer. Continuum theory for faceted surfaces was then
used to estimate the edge energy from these calculations. We have also established that
neglecting the logarithmic term in (2.1) which accounts for the long-range elastic relaxation
of the edges, does not change the order-of-magnitude estimate of the edge energy, since its
contribution is shown to be relatively small.
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Chapter 3

Stress Creation During Constrained
Thin Film Island Coalescence 1

Principal Authors: Abhinav Bhandaria, Sean J. Hearne and Brian W. Sheldonb

a - Present Address: PPG Industries, One PPG Place, Pittsburgh, PA 15272
b - Division of Engineering, Brown University, 182 Hope Street, Box D, Providence, RI
02912

Various analytical models have been proposed to predict the tensile stress created when dis-
crete islands contact during Volmer-Weber thin film growth. Past efforts to experimentally
validate these models have been hindered by the stochastic nucleation of islands, which
results in coalescence over a large distribution of times and length scales. To avoid this
we systematically varied island geometries using electrodeposition of Ni islands on litho-
graphically patterned conductive substrates (Au film on Si), which allowed for independent
control of island size and growth rate. Using this technique, we previously demonstrated
that most of the coalescence stress occurred after the initial contact of the neighboring is-
lands, reaching a steady state when the film surface became nearly planar. In this work,
we expand on these initial results to examine the kinetics of the coalescence process and
to systematically evaluate the stress transition from discrete islands to a planar film. The
steady state stress in planar films increased with growth rate, but asymptotically approached
a limiting value for higher growth rates that depended on the island size. We attribute this
to the competition between the kinetically limited compressive stress generation and tensile
coalescence stress processes. The interaction of these mechanisms is consistent with both
the observed transient stress evolution during the initial stages of island coalescence, and
the steady state stress evolution later in the process. The instantaneous stress at both the
initial contact and at longer times decreased with increasing island size, as predicted in the
literature. However, the existing models predict significantly larger grain size effects than
those observed in these experiments. Likely reasons for this discrepancy will be presented,
with more detailed analysis left for future work.

1Work presented in this chapter is a result of a collaborative study with Brown University supported by
this project.
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3.1 Introduction

Polycrystalline thin films and coatings are used in a wide variety of applications, includ-
ing microelectronic devices, micro-electro-mechanical systems (MEMS), and surface coat-
ings. Regardless of the method of film preparation, e.g. vapor deposition, sputtering, or
electrodeposition, the films develop an intrinsic stress (sometimes referred to as growth
stress) during deposition. The intrinsic stress can impose significant technological limita-
tions by inducing fracture and / or dislocation mediated yielding. Therefore, understanding
the mechanisms creating intrinsic stress can help improve the quality and reliability of these
films through the development of predictable performance models.

Most polycrystalline films grow via a Volmer-Weber (VW) mode, where the growth pro-
cess can be divided into three stages of evolution; discrete island nucleation and growth,
coalescence and percolation of the island network, and planar film growth. Each of these
regions has a distinct stress profile, with the stress typically going through a compressive,
tensile, compressive evolution during the respective phases [33–35]. This work focused on
the second and third phases, i.e. stress created during island coalescence and the subse-
quent planar film growth. Stress evolution during the first region has been addressed by
others, notably Cammarata et al. [36] and Friesen and Thompson [37].

Various models have been proposed in the literature [38–44] to explain the observed tensile
stress during island coalescence with Hoffmann being the first to hypothesize that closing
the gaps between two adjacent islands induces a tensile stress [38]. He proposed that the
reduction in surface energy associated with the creation of a grain-boundary could induce
stress. Most subsequent models are based on this idea of converting surface energy to
elastic strain, with the most notable example being the work of Nix and Clemens [40].
Nix and Clemens developed a crack-closure or zipping model, where the grain boundary
is created from the healing of a crack initiated at the triple junction of two neighboring
islands and the substrate. Using a modified Hertzian contact model, Freund and Chason
[39] obtained a more general expression for the stress due to initial coalescence that was
dependent on island geometry:

σ = A
[

∆γ

ER

]N

, (3.1)

where E is the orientation and loading dependent modulus of the film material, R is the
grain size, and A and N are geometry dependant constants. The term ∆γ is the driving
force for the mechanism and equals 2γs − γi, where γi is the interfacial energy per unit
area of grain boundary formed and γs is the surface energy per unit area of the solid/vapor
surfaces prior to coalescence. Different values for A and N have been solved for analytically
depending on the specific model and assumed island geometry [38–40]. The logical way to
measure these values is to vary the grain size, and only one attempt to do this experimentally
has been reported previously [45]. Another issue is that Eq. (4.1) and most other previous
models are based upon the premise that stress are created solely at the initial moment of
contact, and are thus not directly applicable to the continued growth of the grain-boundary
height and evolution of stress as the films transition from discrete islands to a planar film
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[43, 44, 46].

With respect to the third growth regime, Abermann and coworkers experimentally mea-
sured compressive stresses in films with high adatom mobilities and tensile stresses under
low adatom mobility growth conditions [47, 48]. Koch first showed that the stress in this
region was dependent on growth rate and temperature with compressive stress at low rates
(high temperature) and tension at high rates (or low temperature) [49]. It is generally ac-
cepted that both tensile and compressive stress [50–53] generating mechanisms are operat-
ing simultaneously in this regime, such that the resulting competition dictates the observed
stress [35, 54]. The magnitude of the incremental stress in this regime typically approaches
a constant, steady state value. In many cases, the average stress decreases continually
from the initial tensile peak in the second regime, to net compression (see Figure 1 in ref.
[48]). As pointed out elsewhere [55], the volume average stress can only undergo a transi-
tion from net tension to net compression if both tensile and compressive stress generation
mechanisms are operating (i.e., as opposed to a relaxation mechanism).

In this study we quantify the tensile stress creation mechanism in the second and third
stages of VW film growth, and study its dependence on various growth parameters to
examine the active kinetic process. A key feature of this work is the previously demon-
strated technique of restricting island geometry by electroplating Ni islands through a non-
conductive mask [45]. This allows the independent variation of the growth rate and island
geometry, which facilitates the discrete study of the tensile and compressive mechanisms.
The observed steady state coalescence stress does not have the same grain size dependence
as predicted by the Freund and Chason model for the initial coalescence stress [39]. Also,
the steady state compressive stress increases with the growth rate at low deposition rates,
while at high rates the compressive stress was constant. Possible sources for these obser-
vations are discussed in section 3.4.

3.2 Experimental Techniques

3.2.1 Substrate preparation

The Ni films were potentiostatically electrodeposited on patterned Au coated 100 microns
thick Si (001) substrates shown schematically in Figure 4.1(a). A seed layer of 150 nm
thick Au and 15 nm thick Ti was deposited using electron beam evaporation, where the Au
film served as a nucleation layer for the Ni, and Ti served as an adhesion layer between
Si and Au. The Au surface was cleaned using Piranha etch (H2SO4: H2O2 = 2:1) for 10
seconds followed by a 5 minutes rinse in de-ionized water. Futurrex NR7-1000P photoresist
was used to create a periodic array of trenches on top of the Au for later through-mask
plating. The feature dimensions were of the order of microns and photoresist patterning
parameters such as spin rate, UV exposure time, hard-bake temperature and development
time were optimized to create perpendicular sidewall profiles. Unpatterned Ni films were
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Figure 9: A schematic to explain the variation in the grain boundary creation velocity and 

dihedral cusp angle with the evolution of film profile. 
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Figure 1 

 

 

 

 

 

Figure 3.1. Schematics of (a) a patterned Si substrate used to
deposit Ni films; (b) island geometry during initial deposition; (c)
evolution of island morphology on further deposition.
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Figure 2 

 

 

 

 

 

 

 

Figure 3.2. A cross section FIB image of a patterned Ni film near
the thickness that island coalescence occurs.

also deposited on Ti/Au coated Si (001) substrates for every growth rate corresponding to
patterned Ni films for comparison.

Deposition on the patterned substrates produced a controlled island geometry, with the
island size determined by varying the trench spacing at a constant pitch-to-width ratio of.
The basic microstructural evolution process is depicted in Figures 4.1(b) and (c). For this
study, films were grown at seven different growth rates ranging from 2 - 53 Å/s and for
three different island spacings (5.6, 10.6, and 26.5 µm). A cross-sectional focused ion
beam (x-FIB) image of a 10.6 µm island size is shown in Figure 4.2. Hearne et al. [45]
reported the variation of the relative surface roughness of Ni films with island sizes and
observed that the relative roughness did not change significantly for films thicker than one
micron. Hence, in these experiments the island sizes were restricted to larger than 5 µm to
minimize roughness effect.

3.2.2 Electrodeposition technique

Electrodeposition is a low cost method to grow films at or near room temperature. In this
study the Ni films were electrodeposited potentiostatically because it allowed for a nomi-
nally constant deposition rate independent of the changes in island size and geometry that
occur when the islands grow out from the trenches in the photoresist. Electrodeposition was
accomplished using a three-probe technique with a Nb grid counter electrode and saturated
Hg/HgSO4 reference electrode.

A bath containing 1.36 M/l of nickel sulphamate and 0.72 M/l of boric acid was used for
electrodeposition. This is a common chemistry used for Ni electrodeposition that results
in smooth films with low intrinsic stresses. The bath was conditioned at 10 mA/cm2 for 4
hours to improve the purity of the films by removing ionic contaminants such as Fe and Co.
N2 was purged for 24 hours to remove O2 before it was used for the experiments. Whenever
the bath was not in use it was continuously pumped through a 0.5-micron filter and N2 was
bubbled through it to improve the reproducibility of results. The bath was maintained at a
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constant temperature of 400◦C to hinder the formation of boric acid precipitates.

3.2.3 Stress measurements

The stress was measured using an in-situ multibeam optical stress sensor (MOSS) [56]. A
schematic of the electroplating cell with the integrated MOSS system used in this study can
be found elsewhere [45]. The measured curvature of the cantilever substrate is related to
the stress in the deposited film with the modified Stoneys equation [57]:

κ =
6σ f h f

Ēsh2
s

(
1+

h f

hs

)[
1+4

h f

hs

Ē f

Ēs
+6

h2
f

h2
s

Ē f

Ēs
+4

h3
f

h3
s

Ē f

Ēs
+

h4
f

h4
s

Ē2
f

Ē2
s

]−1

, (3.2)

where κ , σ , h and Ē are the curvature, stress, height, and the plane strain modulus respec-
tively, and the subscripts f and s denote the film and substrate. For our calculations the
moduli were taken to be Ēs =140 GPa and Ē f = 200 GPa [45].

3.2.4 Film thickness measurements for patterned films

In electrodeposition the growth flux generally operates parallel to the surface normal of the
island (similar to chemical vapor deposition). Thus, the electrodeposited islands exhibit a
constant radial growth rate (Fig. 4.1(b)), rather than a constant growth rate normal to the
film-substrate interface (the latter is more typical of physical vapor deposition techniques
that are conducted in vacuum). In considering Eq. (4.2), h f refers to the average thickness
of the film and is not equivalent to the radius r of the islands. In other words a constant
dr/dt does not translate into a constant dh f /dt, although at longer times these two quan-
tities asymptotically converge. In order to accurately determine the average thickness as a
function of time we rely on the current evolution profile for patterned Ni film deposition.
The current passing in the cell can be measured during potentiostatic deposition as shown
in Figure 4.4. The amount of total charge, q, passed through the electrode can be calcu-
lated by integrating the measured current over the growth time, q =

∫ t
0 idt. Because there

are secondary processes occurring, the entire charge, q, does not lead to the reduction of
Ni ions

(
Ni2+ +2e−→ Ni

)
. To account for these secondary effects, an efficiency factor,

dq/dV , was also determined by dividing the total charge, q, by the total volume, V , of the
material deposited. This volume was measured using cross-sectional scanning electron mi-
croscopy (x-SEM) imaging. No “taffy pull” smearing was observed in the cold mount SEM
samples, and for additional confirmation the thickness was also determined using X-Ray
Florescence (XRF). The volume and hence the average thickness, h f , at any intermediate
time, t, was calculated by taking the product of the efficiency factor and the total charge
passed until that time.
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Figure 3.3. (a): A general stress-thickness curve and current
evolution profile and (b) instantaneous stress and stress-thickness
variation curve for a patterned Ni film deposited at 53 Å/s (corre-
sponding to an overpotential of -1.31V) for an island size of 5.3
µm.

3.3 Results

Figure 4.3(a) shows the general stress-thickness and plating current behavior for a patterned
Ni film deposited at 53 Å/s. To understand the stress evolution profile, it is convenient to
consider the derivative of the stress thickness data:

σIS =
d 〈σh〉

dh
. (3.3)

The value of σIS is often referred to as the instantaneous stress. For a planar growth surface,
this quantity is the sum of the stress in the topmost layer of the film (i.e., the material
being deposited at that point in time) and the stress change in the underlying bulk film
(i.e., due to relaxation mechanisms, grain growth, etc). For electrodeposited Ni there is
no measurable change in the stress during growth interrupts, and hence the instantaneous
stress value can be interpreted as the stress of the incremental material deposited on the
growth surface [55]. Figure 4.3(b) shows the instantaneous stress derived from Fig. 4.3(a).
These curves are divided into three regions that correlate to the different stages of evolution.
Schematics of developing island morphologies during these stages of film growth are shown
in Figure 4.3(a). In Region I discrete islands form in the trenches and grow out towards
the neighboring islands. Region II corresponds to the coalescence of these islands into a
continuous film. In Region III the growth surface asymptotically approaches a constant
surface roughness (i.e., a nearly planar geometry), and the instantaneous stress reaches an
essentially constant steady state value.
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(a) (b)
  

Figure 3.4. (a) General stress-thickness and current evolution
curve and (b) instantaneous stress curve for an unpatterned Ni film
deposition at 32 Å/s (corresponding to overpotential of -1.27 V).

3.3.1 Region I

As stated above, Region I corresponds to material being deposited in the trenches, leading
to the evolution of semi-cylindrical islands. In electrodeposition the growth flux is normal
to the growth surface, so that once the trenches were filled a semi-cylindrical morphology
evolves, with a flat region above the trench bounded by 1

4 cylinders on either side. The
stress in this region was always observed to be initially tensile, consistent with the behav-
ior observed in the unpatterned films ([55] and Figure 4.4 (a)), but then asymptotically
approach zero stress. This relaxation to zero stress is consistent with geometric relaxation
as the discrete islands can move unconstrained in plane.

3.3.2 Region II

In Region II adjacent islands coalesce to form a grain boundary, which we will refer to
as the island boundary to distinguish it from the other grain boundaries that occur inside
of the polycrystalline islands. This geometry is shown schematically in Figure 4.3(a). In
potentiostatic electrodeposition the current density is constant, such that the total measured
current is directly proportional to the surface area. Therefore the maximum island surface
area that occurs at the moment of initial coalescence (see schematic) corresponds to a
maximum in the current. Hence the difference between the small initial stress to the stress
at the maximum current corresponds to the initial coalescence event between the adjacent
islands [45] due the formation of island boundaries. This well-defined coalescence signal
in the current curve is absent during unpatterned film deposition because of the stochastic
nature of island growth (see Figure 4.4(a)).
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Figure 3.5. Variation of initial coalescence stress with growth
rate for patterned Ni films for different island sizes. The straight
lines are linear regression fits for each island size.

An important observation from the unpatterned films is that the stress stabilizes within the
first 200nm of film growth, as seen in Figure 4.4(a) when the slope becomes constant. This
indicates that the films microstructure has also stabilized. Thus, the microstructure within
the patterned islands should also stabilize within the first few hundred nm of deposition
(i.e., prior to island coalescence). This demonstrates that the large tensile rise observed in
Region II (Figure 4.3(a)) is primarily caused by the creation of the island boundaries. This
conclusion is also consistent with microscopy observations that the large tensile rise occurs
at the time that island coalescence is occurring [45]. Based on these arguments, the present
analysis neglects the possible effects of the grain boundaries inside of the islands. The
possible impact of these grain boundaries on stress evolution will be considered further in
a future publication.

Hearne et al. [45] studied the initial coalescence stress as a function of island size and
observed behavior similar to that predicted by the Freund-Chason model [39] and a finite
element model for coalescence [42]. In this work, we expand on these results to study the
initial coalescence stress as a function of growth rate (Figure 4.5). We observed that in-
creasing the growth rate from 10 Å/s to 50 Å/s resulted in a linear increase in the stress of
15 MPa. This dependence demonstrates that a kinetically limited process must be active,
in addition to the previously observed geometrically controlled coalescence stress [45]. As
suggested in the literature, a possible kinetically limited compressive stress creating mech-
anism is the insertion of adatoms at grain boundaries or other trapping sites on the surface
[50, 53]. Recent molecular dynamics calculations have also support the idea that adatom
insertion can generate substantial compressive stresses [58]. These models also predict
that slower growth rates should increase the number of adatoms insertions per volume of
material deposited, which is consistent with our observation of more compression at low
rates. Note that earlier we had mentioned that there was no stress relaxation observed dur-
ing growth interrupts. This does not refute the argument that there are kinetically limited
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compressive stresses acting, as strain in each layer can get effectively locked in for films
with low adatom mobility [53].

In region II, the instantaneous stress rises to a maxima and then decreases to a steady
state value, as seen in Figure 4.3(b). The observation that tensile coalescence stress is cre-
ated after initial contact has been observed in other films, such as diamond deposited by
chemical vapor deposition (CVD) and AlN deposited by Molecular Beam Epitaxy (MBE)
[46, 59]. However, the behavior seen in Figure 4.3(b) is generally not observable with
random polycrystalline microstructures, and was thus absent in the unpatterned Ni film de-
position (Figure 4.4(b)). This difference presumably occurs because stochastic nucleation
in unpatterned films leads to initial coalescence events that are spread over a much broader
range of times. Further analysis of the instantaneous stress behavior for patterned films has
been presented in section 3.4.

In all of the patterned films grown in a Ni-sulphamate bath the maximum in occurred af-
ter the peak in the current (for example, the divergence corresponded to a film thickness
difference of around 250 ± 60 Å for 5.3 microns island size patterned films). We believe
that most of this difference is due to the microscopic surface roughness that causes the full
coalescence of the boundary to occur slightly later than that of perfectly smooth islands.
To test this hypothesis patterned Ni film deposition was also done using a Watts bath that
is known to produce smoother films than Ni-sulphamate. In these smoother films the peak
in the instantaneous stress is much closer to the maximum in the current. This validates the
idea that the surface roughness of the islands has a significant impact on the position of the
maximum instantaneous stress.

3.3.3 Region III

In Region III the instantaneous stress reaches a steady state value. This value varied with
both the island size (Figure 4.6(a)) and deposition rate (Figure 4.7), with higher deposition
rates or smaller island sizes resulting in a larger stress. We propose that these steady state
effects and the transient behavior observed in Region II can be explained by the competition
between tensile and compressive mechanisms. This interpretation is presented in the next
section.

In addition to growing patterned films at a constant rate, we also performed a set of ex-
periments where the growth rate of a patterned film was dynamically varied in Region III.
An example of this type of result is shown in Figure 4.8. Here, the deposition rate was
varied between 42 Å/s and 8 Å/s with a resulting change in the stress of 104 ± 4 MPa to
42 ± 2 MPa, which is similar to the values of 100 ± 4 MPa for 42 Å/s and 40 ± 3 MPa
for 8 Å/s measured when a single growth rate was used with a nominally identical island
size. If the tensile stress contribution is constant and independent of the growth rate (for a
fixed identical island size), then the results in Figure 4.8 suggest that the compressive stress
contribution can be varied independently of the tensile coalescence stress. Conversely, the
results obtained by holding the deposition rate constant and varying the island size provide

44



25 

 

    (a) 

 

 

 

 

 

 

 

 

 

    (b) 

 

 

 

 

 

 

 

    (c) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. (a): Variation of steady state instantaneous stress
with island size for different growth rates; (b) Log-log plot of the
variation of steady state instantaneous stress versus island size for
patterned films deposited at 24 Å/s. The dashed line is a nonlinear
regression exponential curve fit to the data set; (c) Log-Log of the
variation of initial coalescence stress with island size. The dashed
line is a nonlinear regression power law curve fit to the data set
with an exponent of ∼0.60.
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Figure 3.7. Variation of steady state instantaneous stress with
growth rates for patterned films for different island sizes. The dot-
ted lines are polynomial regression fits to the data sets.

 

Figure 3.8. Variation in stress-thickness by altering the growth
rate between 42 Å/s (corresponding to overpotential of -1.29 V)
and 8 Å/s (-1.21V overpotential) for a patterned Ni film of 10.6
µm island size.
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the basis for a more focused study of the tensile stress generation mechanism.

3.4 Discussion

It is generally easier to compare the steady state stress data (Region III) with existing mod-
els, because the surface roughness is essentially constant during this part of the process.
Based on the argument put forth at the end of section 3.3, our discussion of the steady
state stress is further divided into two sub-topics namely the geometrically limited tensile
stress and the kinetically limited compressive stress. Some of the insights obtained from
these steady state considerations are then applied to the initial instantaneous stress behav-
ior. Note here that we use the term steady state stress to describe the instantaneous stress
during Region III, where this quantity is essentially independent of time. This is generally
valid as the average steady state stress approaches instantaneous stress for films that are
sufficiently thick [34].

3.4.1 Geometrically limited tensile stress

For a given growth rate, the steady state stress reaches a limiting value at smaller island
sizes, as shown in Figure 4.6(a). This variation in the steady state tensile stress with island
size does not agree with the Freund and Chason (FC) model that predicts for the analogous
initial coalescence geometry (i.e., parallel half-cylinders) [39]. To better see this discrep-
ancy, Figure 4.6(b) shows a log-log plot of steady state instantaneous stress versus island
size. According to the predicted FC behavior (see Eq. (4.1)), a log-log plot of the type
shown in Figure 4.6(b) should be linear, with a slope equal to the exponent, N. Clearly the
FC model cannot be implemented to predict steady state tensile behavior. Figure 4.6(c)
shows the initial coalescence stress dependence on island size for experiments correspond-
ing to Figure 4.6(b). Here, the dashed line is a nonlinear regression power law fit to the
values with an exponent of around 0.6 that is in good agreement with the FC model (0.67)
and the previous experimental work [45]. One possible source for the difference between
the initial and steady state coalescence stress is the changing cusp geometry near the region
of coalescence, from the sharper initial contact to the shallower contact at later during the
growth. The FC model and most other recent models are based on a sharp initial contact, in
contrast to the smoother contacts that are prevalent during the later stages of film growth.
Barenblatt [60] and Dugdale [61] developed the cohesive zone method (CZM) to deal with
such geometries in fracture mechanics. In other work, we use this type of CZM in con-
junction with a finite element analysis (FEA) to predict the stress evolution during the later
stages of island coalescence [62]. This approach predicts a maximum tensile stress with a
less severe dependence on the island size, in contrast to FC and other previous models for
initial island coalescence. The weaker island size dependence observed in Figure 4.6(b)
may also be due, in part, to the competition between the tensile and compressive mecha-
nisms [54].
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In Figure 4.7, the limiting stress observed with increasing growth rate has been predicted
by several models which describe the competition between tensile and compressive mech-
anisms [50, 53]. These previous descriptions assume that the driving force for coalescence,
∆γ , causes this maximum tensile stress. Approximate calculations using these models give
the value maximum tensile stress to be around 3 GPa for Ni films studied here (average
grain size ∼ 150 nm [63]). This prediction is almost a magnitude higher than the limiting
stress observed here, which is close to the yield stress of Ni films [64]. Because of the
stress concentration at the island boundary cusps, the stress at the tops of these boundaries
will be even higher. This strongly suggests that the maximum stress may be limited by
the yield stress at the cusp. The threshold imposed by plastic yielding at the top of the
island boundary may also influence the island size effects in Figure 4.6(a), since the stress
concentration at these cusps should be expected to increase with decreasing island size.

3.4.2 Kinetically limited compressive stress

Figure 4.7 shows the variation of steady state stress with growth rate for different island
sizes. For all island sizes studied the steady state stress went from compressive at lower
growth rates to an asymptotically limited tensile stress at higher growth rates. As previously
stated, holding the island size constant while varying the growth rate is believed to result in
a constant tensile coalescence stress from the grain boundaries, with the contribution from
the compressive mechanism decreasing as the growth rate increases.

The observed trend in the steady state stress with growth rate for a constant island size
is qualitatively similar to the variation predicted by the kinetically limited adatom capture
model [53, 54]. Here, Sheldon et al. proposed compressive stress generation that does not
require long-range grain boundary diffusion, which is consistent with Ni films deposited
at 400◦C. In this model the surface adatom super saturation, ss, is the key thermodynamic
driving force for compressive stress generation by excess adatom insertion into the grain
boundaries or other surface capture sites. The value of ss determines the steady state com-
pressive value in the film and the effect of varying ss diminishes at high growth rates.
This in part explains why the compressive stress values should reach an asymptotic sat-
uration point. Atomistically the compressive stresses would have a higher magnitude at
lower growth rates because the adatoms do not have enough time to be incorporated (i.e.,
as interstitials, at grain boundary sites, etc). This may explain why the compressive stress
mechanism is more prevalent at low growth rates, while a tensile limiting value occurs at
higher growth rates.

3.4.3 Instantaneous Stress Profile

In Region II, the initial maximum in the instantaneous stress in Figure 4.3(b) was observed
in all of our experiments. As noted above, the use of a patterned array of islands made
it possible to observe this behavior due to the initial coalescence event. Immediately af-
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Figure 3.9. A schematic to explain the variation in the grain
boundary creation velocity and dihedral cusp angle with the evo-
lution of film profile.

ter coalescence, the dihedral cusp angle at the top of the island boundaries (in Figure 3.9)
decreases continually until reaching a steady state profile (in Region III), as noted in our
discussion of geometrically limited tensile stresses. The stress concentration at the top of
boundary will thus decrease after the initial coalescence as the dihedral angle decreases.
However, these changes in the stress field due to geometric affects do not entirely explain
the observed asymptotic decrease from the initial peak instantaneous stress to the steady
state value. A possible explanation for this result is the decrease in the rate at which the is-
land boundary is created as the film evolves. This is shown schematically in Figure 3.9. At
the point where the islands first come together the boundary formation velocity, uboundary,
is at a maximum. It then decreases asymptotically towards a value that is equal to the sur-
face velocity, usur f ace (i.e, the film growth rate). These two velocities will be equal when
the film reaches a steady state evolution profile. This corresponds to the constant value in
the current curve for the electrodeposited patterned Ni films (Figure 4.3(a)), and also to the
steady state stress value that constitutes Region III. This variation of grain boundary ve-
locity explains the instantaneous stress profile observed in our experiments, as incremental
tensile stress should have the same variation as the grain boundary velocity. Higher value of
uboundary creates more tensile stress and therefore the initial maximum stress should occur
at the initial island contact point and then decrease as the relative grain boundary velocity
decreases, ultimately reaching a steady state. The proposed correlation between the ve-
locity at the triple junction and the observed instantaneous stress behavior appears to be
consistent with the steady state experiments which show that a faster overall growth rate
(i.e., usur f ace) leads to more tensile stress (e.g., Figure 4.7). However, further investigation
of all of this process is clearly warranted. This includes ongoing efforts to quantitatively
model this process, which will be reported at a later date.

3.5 Conclusions

In this work we have independently studied the compressive and tensile stress generation
mechanisms active during Ni electrodeposition by controlling the deposition rate and island
size of films grown on patterned substrates. Net tensile stress was observed in all of the
films studied, and the measured growth rate effects were generally consistent with recent
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models of stress evolution. Decreasing grain size produced some increase in the observed
stresses, which is also qualitatively consistent with most models of tensile stress. However,
the observed grain size effects are much weaker than these predictions. Following other
recent work, the competing tensile stress and compressive stress mechanisms in Ni films
were attributed to geometrically controlled island coalescence and a kinetically limited
compressive stress generation mechanism which may be induced by adatom insertion at
grain boundary and/or other surface trapping sites. This interpretation is consistent with the
stress values observed both during the initial stages of island coalescence, and the steady
state evolution that is prevalent later in the process.
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Chapter 4

Modeling metallic island coalescence
stress via adhesive contact between
surfaces

Principal Authors: Stephen C. Seel, Jeffrey J. Hoyt, Edmund B. Webb III, and Jonathan
A. Zimmerman

Tensile stress generation associated with island coalescence is almost universally observed
in thin films that grow via the Volmer-Weber mode. The commonly accepted mechanism
for the origin of this tensile stress is a process driven by the reduction in surface energy
at the expense of the strain energy associated with the deformation of coalescing islands
during grain boundary formation. In the present work, we have performed molecular stat-
ics calculations using an embedded atom interatomic potential to obtain a functional form
of the interfacial energy vs distance between two closely spaced free surfaces. The sum
of interfacial energy plus strain energy provides a measure of the total system energy as
a function of island separation. Depending on the initial separation between islands, we
find that in cases where coalescence is thermodynamically favored, gap closure can occur
either spontaneously or be kinetically limited due to an energetic barrier. Atomistic sim-
ulations of island coalescence using conjugate gradient energy minimization calculations
agree well with the predicted stress as a function of island size from our model of spon-
taneous coalescence. Molecular dynamics simulations of island coalescence demonstrate
that only modest barriers to coalescence can be overcome at room temperature. A compar-
ison with thermally activated coalescence results at room temperature reveals that existing
coalescence models significantly overestimate the magnitude of the stress resulting from
island coalescence.

4.1 Introduction

Stresses generated during thin film growth strongly influence component lifetime and per-
formance in applications ranging from microelectronics to mechanical coatings and mi-
croelectromechanical systems. These residual stresses can result in failure due to film
delamination, cracking at interfaces, and hillock formation. In contrast to their deleterious
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effects, thin film stresses can also drive strain mediated self assembly of nanostructures
such as quantum dots. However, the intrinsic connections between an evolving thin film
morphology during growth and the corresponding stress generation mechanisms are still a
matter of debate.[65, 66]

For films that grow via the Volmer-Weber mode such as metals deposited on oxides, crys-
tallites of critical size nucleate on the substrate surface as isolated islands. With contin-
ued deposition, the growing islands impinge and coalesce to eventually form a continuous
polycrystalline film. Transmission electron microscopy observations coupled with stress
measurements indicate that tensile stress generation during the early stages of film growth
is associated with the process of island coalescence.[33, 67, 68] Hoffman postulated that
during the island impingement stage of growth, neighboring islands will stretch towards
each other and coalesce in order to reduce surface energy at the expense of an associated
strain energy.[69, 70]

Although Hoffman suggested that tensile stress generation is driven by a reduction in sur-
face energy during island coalescence, he did not use this idea to estimate the associated
stress. Instead, he assumed that as atoms are deposited on an island surface near the point
of impingement, they are more likely to arrive in the attractive region of the asymmetric
potential well describing atomic interactions, thereby resulting in a net tensile attraction
between coalesced islands.[69, 70] Hoffman interpreted this process as a “constrained re-
laxation” due to local atomic rearrangement within the grain boundary and not as a uniform
stretching of the islands. The resulting “distortion” ∆ of the boundary can be estimated to
be slightly less than 1 Å (independent of island size and surface energy) so that the associ-
ated average biaxial tensile stress in the film is:

σ = M
∆

w
, (4.1)

where M = E/(1− ν) is the biaxial modulus of the film with Youngs modulus E and
Poisson ratio ν , and w is the island diameter.[70, 71]

Nix and Clemens (NC) were the first to reinterpret Hoffmans original argument and cal-
culated the stress resulting from the energy balance associated with uniformly stretching
the islands as they coalesce and the energy decrease due to the elimination of the free
surfaces.[40] NC modeled the coalescence of hexagonal islands with vertical side faces,
while others have subsequently considered the simpler geometry of an array of square
islands[39, 46] as shown in Fig. 4.1(a). Consider a periodic array of square islands of
lateral dimension w and height h on a thick substrate. The lateral gap α between neigh-
boring islands is imagined to decrease as a consequence of island growth. At some critical
gap size, the islands strain equibiaxially by an amount α/w to eliminate two free surfaces
of energy 2γs for every new interface of energy γ0. Ignoring traction of the islands with
the underlying substrate, the resulting increase in elastic strain energy for each island is
∆Eε = M(α/w)2(hw2), while the corresponding change in the surface and interface en-
ergy is ∆Eγ = −4wh(γs − 1

2γ0), where each new interface is shared between two islands.
The critical gap size αcrit for which these two energetic contributions are balanced, i.e.,
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Figure 4.1. (a) Schematic diagram of a periodic array of square
islands of thickness h and width w separated from each other by
gap α . (b) Schematic of an infinite slab of width w and lateral
dimension l with periodic boundaries indicated by dashed lines to
represent a simplified island geometry.
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∆Eε +∆Eγ = 0, is given by:
αcrit = 2

√
∆γ ·w/M, (4.2)

where ∆γ = (γs− 1
2γ0) > 0, which is a necessary condition for coalescence to occur. Using

Eq. (4.1) and substituting ∆ = αcrit, the corresponding biaxial tensile stress is:

σ = 2

√
∆γ ·M

w
. (4.3)

Equations (4.2) and (4.3) were first derived by NC but in deference to the original motiva-
tion for the calculation, we will refer to the results as the Hoffman model. With reasonable
values for M= 100 GPa (assuming E= 67 GPa and ν = 0.33), ∆γ = 1 J/m2 and w= 100
nm the Hoffman model predicts a critical island gap of 20 Å and coalescence stress of 2
GPa. However from stress measurements during deposition of the noble metals Ag, Cu,
and Au, the maximum tensile stresses rarely exceed 100 MPa.[33–35] Even for refractory
materials such as Ti and Cr that grow with much smaller island sizes (e.g., w= 5 nm yields
a prediected stress of almost 9 GPa), the maximum measured tensile stress is only about 1
GPa.[72, 73]

For comparison with results later in the chapter, a uniaxial-strain geometry is also consid-
ered and modeled as an infinite slab of width w as shown in Fig. 4.1(b). The slab config-
uration is more amenable to molecular dynamics calculations because there are no edges
or corners (which tend to round off or facet), and thus will allow more direct comparisons
between analytical and simulation results. In this configuration, the coalescence strain is
uniaxial along the x-direction and zero in the orthogonal directions. A similar energy bal-
ance calculation, as described above, for the geometry depicted in Fig. 4.1(b) results in
exactly the same expressions for the critical gap in Eq. (4.2) and coalescence stress in Eq.
(4.3), except that the biaxial modulus is replaced by M = E(1−ν)/(1−ν − 2ν2), which
equals 99 GPa using E= 67 GPa and ν = 0.33. This slab geometry is assumed in further
model calculations unless otherwise indicated.

It should be noted that NC implemented the Hoffman model to derive an upper bound
estimate of the magnitude of coalescence stresses and to motivate an alternative model of
coalescence stress generation via grain boundary zipping of elliptical grains via a crack-
closure mechanism[40]. In addition, they recognized that the energetic balance argument
in the Hoffman model was limited in that is does not predict how much smaller the gap
between islands must become for coalescence to occur. However the upper bound estimate
derived by NC is often quoted in the literature despite the fact that it is considerably larger
than experimental observations.

In this chapter, we follow the same underlying mechanism suggested by Hoffman and
NC but consider the energetics of coalescence during gap closure. We first examine how
the interfacial energy between two closely spaced metallic surfaces varies with separation
based upon molecular statics calculations using embedded atom method potentials. The
interfacial energy plus strain energy provides a measure of the total system energy during
the coalescence process. We will show that depending on the initial spacing between island
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surfaces, coalescence can be thermodynamically favored and, in these cases where the
energy of the coalesced islands is lower in energy than the separated islands, gap closure
can occur either spontaneously or be kinetically limited due to an energetic barrier. In
addition, we examine via molecular dynamics simulations of island coalescence how large
of an energetic barrier can be overcome at room temperature and compare our result with
the Hoffman model.

4.2 Energetic Analysis of Island Coalescence

The NC interpretation of the Hoffman model derived from the energy balance arguments
are thermodynamic, and not kinetic, in origin. Coalescence is assumed to occur if the
energy of the final state consisting of a single joined interface is lower than the initial state
of two separated surfaces. The Hoffman model predicts that coalescence can take place
between island separated by more than 50 Å (for w = 500 nm). Since this distance is much
greater than the range of atomic interactions for metals, the model implies coalescence can
occur for two surfaces that are essentially non-interacting. Improvements in the Hoffman
model can be made by considering not just the energy of the final and initial states, but the
energy of the system as it transitions between the two state points. In other words, we wish
to examine the energetics during the coalescence process. We first examine how the energy
between two closely spaced metallic surfaces varies as a function of separation, where the
elimination of these free surfaces is the driving force for the coalescence process.

4.2.1 Interfacial energy vs separation between closely spaced surfaces

When closely spaced metallic surfaces approach each other, the nature of their metallic
bonds is such that an attractive force develops between them. Therefore the energy between
these two surfaces, which we will refer to as the interfacial energy, must also vary with
separation. Ab initio calculations of interfacial energy vs separation support the theory of
a universal binding energy relation (UBER) that appears to be valid for range of metallic
and even covalent materials.[74–76] The UBER has been applied to problems ranging from
adhesive avalanche issues in scanning probe microscopy[77, 78] to crack propagation.[79]

In this method, unrelaxed rigid surfaces are brought incrementally closer together, starting
from an initially large separation, and the change in energy is calculated at each separation.
The resulting excess energy density, which we will refer to as the interfacial energy γi, vs
separation δ for two neighboring surfaces can be well fit to a Rydberg function:

γi (δ ) = 2γs− (2γs− γ0)
[

1+
δ

δinfl

]
exp
[
− δ

δinfl

]
(4.4)

where γs is the unrelaxed surface energy at infinite separation, γ0 is the interfacial energy at
δ = 0 (if the neighboring surfaces have different crystallographic orientations then γ0 is the

55



Dimension — T E ν γs
lattice struct.a [K] [GPa]b []c [J/m2]d

3D — fcc 0 96.42 0.4031 1.58
2D — hex 300 489.32 0.4490 2.75

Table 4.1. Material properties of EAM Metal with rcut = 7.5 Å.

a The stable lattice phase is face-centered-cubic (fcc) in three dimensions and hexagonal
(hex) in two dimensions.
b Young’s modulus.
c Poissson’s ratio.
d Unrelaxed surface energy.

grain boundary energy), and γinfl is the inflection point of the interfacial energy curve. Since
no relaxation is allowed in the bulk or surface, δ = 0 is defined as the separation at which
the distance between surfaces equals the equilibrium interplanar spacing. The magnitude
of δinfl is related to the Thomas-Fermi screening length.[74] The derivative of γi (δ ) is the
traction T acting on the surface (expressed as a force per unit area) due to the presence of a
nearby surface and reaches a maximum value at δinfl. Our goal is fit the Rydberg function
to interfacial energies vs separation calculated from molecular statics using interatomic
potentials. The Rydberg function fit provides an analytical form for the interfacial energies
that will be used for analytical solutions related to island coalescence.

The embedded atom method (EAM)[80, 81] is a widely accepted technique for describing
the interatomic potentials for metals. Conventional EAM potentials describing transition
metals[82, 83] such as Au, Cu, and Ni have cutoff radii rcut (i.e., the maximum distance
between atoms included in the calculation of interatomic interactions) that include up to
3rd nearest neighbors such that rcut is typically about 5 Å. Because coalescence gaps are
expected to be larger than 5 Å, we have created, using the general method of Voter and
Chen,[83]potentials with longer cutoffs. Although the potentials are based loosely upon
the properties of Au, in the results to follow we will refer to the material as EAM Metal.. It
should be stressed that our goal is not to create an accurate potential for Au, but to be able to
study the influence of a larger rcut on surface interactions and coalescence phenomena. The
material properties for our EAM Metal potential with rcut = 7.5 Å are summarized in Table
4.1 (the properties with rcut = 15 Å are very similar). Following the UBER methodology,
the calculated interfacial energy vs separation γi (δ ) for EAM Metal with a (100) surface
normal at 0 K is shown in Fig. 4.2(a). The associated surface traction vs separation T (δ )
reaches a maximum value of 22.35 GPa, as shown in Fig. 4.2(b). The interfacial energy
and surface traction data are well fit by Eq. (4.4) with δinfl = 0.52 Å. Note that γ0 = 0
at δ = 0 because the interface that forms between the opposing (100) surfaces is fully
coherent. We find that δinfl does not change appreciably for potentials with longer cutoffs
(e.g., δinfl = 0.53 Å for rcut = 15 Å). It should be noted that EAM potentials are fit to the

56



Figure 4.2. (a) Interfacial energy vs separation γi (δ ) from molec-
ular statics calculations of (100) surfaces of EAM Metal with rcut

= 7.5 Å and material properties listed in Table 4.1. (b) The surface
traction T (δ ) equals the derivative of γi (δ ) from (a). The fit of the
Rydberg function described by Eq. (4.4) yields δinfl = 0.52 Å, as
shown in both (a) and (b).
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cohesive energy as a function of lattice constant via the universal binding curve.[80] The
universal binding curve is the foundation on which Rose proposed the UBER to describe
interfacial energies vs separation.[74] Therefore, the dependence of the interfacial energy
on separation calculated using the EAM potential should be fairly realistic

4.2.2 Thermodynamic analysis of slab coalescence

Now that the interfacial energy is known as functions of separation, we can examine the
energetic landscape during coalescence. For the slab geometry in Fig. 4.1(b) and as a
consequence of the periodic boundary conditions, coalescence of a one dimensional array
of islands is equivalent to coalescence between the two free surfaces on a single slab. For a
slab at an initial separation α and under zero initial stress, the increase in strain energy per
unit area due to stretching the slab to a closer separation δ is ∆Eε = 1

2Mw [(α −δ )/w]2,
and the corresponding decrease in interfacial energy is ∆Eγ = γi (δ )− γi (α), where γi is
described by the Rydberg function of Eq. (4.4). Therefore the total change in energy
∆E = ∆Eε + ∆Eγ for an initially unstrained slab (i.e., ε = 0) as a function of separation
during coalescence is:

∆Eε=0 (δ ) =
1
2

Mw
(

α −δ

w

)2

+2γs

[[
1+

δ

δinfl

]
exp
[
− δ

δinfl

]
−
[

1+
α

δinfl

]
exp
[
− α

δinfl

]]
,

(4.5)

where it is assumed that a coherent boundary is formed at δ = 0 so that γ0 = 0.

Ideally, we would now solve Eq. (4.5) analytically to determine the critical initial spacings
for the following two limiting cases: (1) ∆Eε=0 (δ = 0) = 0, which corresponds to the
energy balance solution similar to the Hoffman model in that the final coalesced state at
δ = 0 has the same energy as the starting condition at δ = α and, (2) d (∆Eε=0)/dδ <
0 over (0 < δ < α), which corresponds to spontaneous coalescence since the process of
closing the gap is energetically favored at all times. Unfortunately, analytical solutions
for these critical initial separations are difficult to obtain because of the linear-exponential
nature of Eq. (4.5). Instead, we will obtain numerical solutions to further explore the
energetics of the coalescence process. As will be shown, Eq. (4.5) does not fully capture
the energetics of the problem because of the assumption of an initially unstrained slab.
Modifications must be made to include the strain energy contribution due to stresses that
result from interfacial forces prior to coalescence.

4.2.3 Kinetically limited coalescence

Consider an unstrained 10 nm-wide slab of EAM Metal with some initial separation α

between the surfaces. Using Eq. (4.5) and the materials properties shown in Table 4.1, we
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can numerically solve for the initial spacing for which ∆Eε=0 (δ = 0) = 0 and find that α =
5.52 Å. The change in the combined energy ∆Eε +∆Eγ as a function of separation for a gap
of 5.52 Å is shown in Fig. 4.3(a). Here, the energy of the fully coalesced slab is equal to
the starting energy, i.e., coalescence is thermodynamically favored. The result is identical
to the Hoffman prediction (αcrit = 5.54 Å from Eq. (4.2)). However as can be seen in Fig.
4.3(a), a large barrier exists in the energetic pathway to fully close the gap and therefore
coalescence is kinetically limited. As discussed later in the chapter, energetic barriers to
coalescence can potentially be overcome at finite temperature due to thermal fluctuations,
where the magnitude of the fluctuations will dictate how large of an energetic barrier can
be breached.

Closer inspection of the energy vs separation curve in Fig. 4.3(a) reveals two additional
regions of interest. At nearly the initial separation (see inset), it is energetically favorable
for the slab to stretch to a slightly closer separation resulting in a stress prior to coalescence
(assuming the large energetic barrier is not overcome). By taking the derivative of ∆Eε +
∆Eγ and determining the position of the shallow local minimum, this pre-coalescence stress
σpre is found to equal the surface traction T (see Fig. 4.2(b)) evaluated at the position of
the local minimum (δ slightly less than α) and to be independent of the slab width:

σpre = 2γs
δ

δ 2
infl

exp
[
− δ

δinfl

]
. (4.6)

This result follows intuitively from the observation that the traction T represents a force
acting over the area of the interface, which is by definition a stress. If an increment of
growth moves the now pre-stressed slabs closer together, σpre will continue to exactly equal
T provided that the increments of growth are infinitesimal. In reality the spacing between
islands changes in discrete atomic-spacing increments, however a continuum description of
growth is convenient and still accurately represents the relevant phenomena. By including
the strain energy contribution of the pre-coalescence stress from Eq. (4.6) with the previous
expression in Eq. (4.5) for the energy change of an unstrained system, we arrive at the total
change in energy per unit area during coalescence of a slab:

∆E (δ ) =
1
2

Mw
(

α −δ

w

)2

+2γs

[[
1+

δ

δinfl

]
exp
[
− δ

δinfl

]
−
[

1+
α (α − (δ −δinfl))

δ 2
infl

]
exp
[
− α

δinfl

]]
.

(4.7)

If we now use Eq. (4.7) to solve for the initial spacing for which ∆E (δ = 0) = 0, we find
that α = 5.51 Å for the 10 nm-wide EAM Metal slab. The solution is only fraction of an
Å smaller than that from Eq. (4.5) because σpre is very small (∼ 15 MPa) at this relatively
large separation.

The second point of interest in Fig. 4.3(a) occurs at nearly zero separation (δ ∼ 0.1 Å)
where there exists an energy minimum. The driving force for coalescence, which is the
decrease in interfacial energy with decreasing separation, approaches zero as δ nears zero
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Figure 4.3. (a) Calculated change in energy by closing a gap of
5.52 Å between 10 nm-wide EAM Metal slabs. Inset: close up
of energy for separations nearly equal to the initial gap. (b) Same
slab geometry except that the initial gap is now only 2.89 Å.
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as can be seen in Fig. 4.2(a). In contrast, the change in strain energy increases linearly
with decreasing separation (i.e., the derivative of strain energy is linear with separation).
Therefore the calculated change in total energy during coalescence will always exhibit a
minimum near zero separation. Later in the chapter, we examine if this calculated minimum
near zero separation is observed during atomistic simulations of coalescence and discuss
the origins of any discrepancies between the simulated and calculated results.

4.2.4 Spontaneous coalescence

As the separation between slabs continues to decrease due to growth, the magnitude of the
energetic barrier also decreases until finally at some critical separation the process has zero
barrier and can occur spontaneously. This critical separation for spontaneous coalescence
αspont can be found numerically using Eq. (4.7) by determining the largest separation for
which d (∆Eε = 0)/dδ < 0 over (0.1 Å < δ < α). As shown in Fig. 4.3(b) for a 10
nm-wide EAM Metal slab, the critical separation for spontaneous coalescence is 2.89 Å.
The inset in Fig. 4.3(b) shows that there is neither a shallow local minimum near the
initial separation nor an energetic barrier to coalescence; hence coalescence can proceed
energetically downhill (ignoring the shallow minimum near δ ∼ 0.1 Å). The total stress
resulting from spontaneous coalescence is therefore M(αspont/w) + σpre, where the pre-
coalescence stress is given by Eq. (4.6) and evaluated at δ = αspont.

For EAM Metal slabs with (100) surfaces and material properties listed in Table 4.1, the
coalescence gap vs slab width was calculated for the kinetically limited and spontaneous
coalescence solutions, as shown in Fig. 4.4(a), while the corresponding coalescence stress
vs slab width is shown in Fig. 4.4(b). As mentioned previously, the kinetically limited
solutions yield almost identical results when compared to the Hoffman model, as indicated
in the legends of the plots in Fig. 4.4. Note that the spontaneous coalescence model displays
a stronger size dependence to the coalescence stress (w−0.9) than the w−0.5 dependence of
the kinetically limited (Hoffman) model. The stronger w dependence for the spontaneous
coalescence model is a consequence of its weaker w dependence on coalescence gap since
to first order the coalescence stress goes as α/w (where α ∝ wn with n < 1). The weak w
dependence to the spontaneous coalescence gap is a consequence of the limited range of
interaction between surfaces (see Fig. 4.2(b)) that drives the coalescence process.

To test the predictions of the analytical models, we have performed atomistic simulations
of slab coalescence using conjugate gradient energy minimization (CGEM) calculations.
EAM Metal slabs with widths w ranging from 5 to 100 nm are created with (100) free
surfaces. The directions orthogonal to the width (i.e., in the y and z directions) are periodic
in order to emulate an infinite slab, as in Fig. 4.1(b). Varying the lateral dimensions of the
slab l (see Fig. 4.1(b)) did not have any influence on the CGEM results. After equilibration
at very large separation, the free surfaces are brought to just within the cutoff distance of
the potential by decreasing the simulation box dimension along the periodic x-direction.
Subsequently, the surfaces are moved closer together in 0.01 Å increments and CGEM
is performed until the energy converges to within 10-6 eV tolerance of the total energy.
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Figure 4.4. (a) Coalescence gap vs slab width comparing the
kinetically limited solution (similar to the Hoffman model), the
spontaneous coalescence model, and conjugate gradient energy
minimization simulation results of slab coalescence for EAM
Metal with (100) surfaces. (b) Coalescence stress vs slab width
comparing the same models.
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Figure 4.5. Approach curve for 10 nm-wide slab of EAM Metal
as the (100) free surfaces get gradually closer together until coales-
cence occurs. The stress prior to gap closure is the pre-coalescence
stress, given by Eq. (4.6), while the discontinuous jump in stress
occurs when the spontaneous coalescence gap is reached.

The slab separation and the volume averaged virial stress are recorded after each step until
coalescence occurs. The resulting approach curve (i.e., stress vs separation) for a 10 nm-
wide EAM Metal slab is shown in Fig. 4.5, along with a comparison of the predictions
from the spontaneous coalescence model. The stress prior to gap closure (from 5.5 to
about 2.9 Å) is the pre-coalescence stress and reaches a maximum value of 1.1 GPa. The
discontinuous jump in stress occurs when the spontaneous coalescence gap is reached and
results in a final stress of 6.5 GPa in the CGEM simulation of coalescence.

The CGEM simulation results for several different slab widths are overlaid with the model
predictions in Fig. 4.4. Because the spontaneous coalescence model requires that gap
closure proceeds energetically downhill, the CGEM simulations are expected to give very
similar results because of the nature of the conjugate gradient energy minimization scheme.
The slight discrepancy in coalescence stresses between the spontaneous coalescence model
and the CGEM results, especially for small slab widths, is primarily due to non-linear elas-
tic behavior of the EAM Metal potential. For example, the spontaneous coalescence gap for
the 10 nm slab is 2.9 Å, which corresponds to a strain of 2.9%. At 2.9% strain, the modulus
M = E(1−ν)/(1−ν − 2ν2) for the EAM Metal potential is softened by 10% compared
to the modulus in the small-strain limit. The stresses from the spontaneous coalescence
model are calculated using the small-strain limit modulus and therefore overestimate the
coalescence stress for the 10 nm slab by about 10%, as can be seen in both Figs. 4.4 and
4.5.

Any remaining differences between the spontaneous coalescence model and the CGEM
simulation results are likely due to the use of the UBER function to describe the interfacial
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energy in the model. In the molecular statics calculation of the interfacial energy in Fig.
4.2(a), the surfaces are assumed to be bulk-terminated and are not allowed to relax (or
else coalescence would occur). In the CGEM simulations at large separations, the free
surfaces can relax and experience a ∼0.1 Å inward contraction[82] resulting in a slight
decrease in surface energy. As the coalescing surfaces move closer together, the surface
atoms slightly adjust their positions as they begin to interact with the adjacent surface. In
addition, the UBER calculation does not account for any effects that the pre-coalescence
stress could have on the interfacial energy. Although we do not take surface relaxation
or stress into account in our interfacial energy vs separation calculations, more detailed
UBER treatments have been considered in the literature.[84] Finally, it should be noted
that the CGEM simulations do not show any indications of the shallow minimum near
zero separation, as shown in the model calculations in Fig. 4.3, which may indicate that
more careful interfacial energy calculations are required. However, we feel that these slight
discrepancies between model and simulation do not significantly alter the conclusions.

4.2.5 Thermally activated coalescence due to thermal fluctuations

The position of a free surface at finite temperature will fluctuate over time resulting in a
varying separation between opposing slab surfaces. These thermal fluctuations can po-
tentially provide the activation energy necessary to overcome the energetic barrier to co-
alescence. However, the magnitude and temporal/spatial frequency of these fluctuations
along with their dependencies on temperature and system size are not known. Because of
the expectation of long run times (several ns) and relatively large dimensions (up to 100
nm), we restrict our finite temperature MD calculations to two-dimensions (2D) using the
same EAM Metal potential. As a consequence of using a 2D system, the properties of the
EAM Metal change significantly as shown in Table 4.1. Also, the NC solutions for the
coalescence gap and stress from the Hoffman model, given by Eqs. (4.2) and (4.3) respec-
tively, remain the same except that the modulus for the 2D solutions is M = E/(1− ν2).
Even with these differences, the general conclusions to be drawn from this analysis are still
comparable to the results already shown.

Two-dimensional EAM Metal slabs are created with widths w ranging from 5 to 100 nm
and lateral dimensions (i.e., in both the y and z directions) of either l = 5 nm or l = w, where
coalescence occurs along the width direction as in Fig. 4.1(b). The lateral dimensions of
slab 1 were varied to determine how the surface fluctuations depend on system size. At a
very large surface separation, the different size systems are run for 10 ns (i.e., 107 timesteps
of 1 fs) under constant NVT integration at 300 K using a Nose-Hoover thermostat. The
positions of all surface atoms are recorded every 0.5 ps and used to calculate the local slab
width as a function of the distance y along the interface. From w(y, t) the maximum local
width wmax(t) can be determined for that time step. We are interested in the maximum local
width because we propose that these local perturbations are the regions where coalescence
will initiate. For example, wmax(t)−w for an EAM Metal slab at 300 K with w = 20 nm
and l = 5 nm is shown in Fig. 4.6(a), along with the average stress in the width direction,
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w l tfluc wfluc
[nm] [nm] [ps]a [Å]b

10 5 4.6 0.609
10 10 4.6 0.610
20 5 9.5 0.757
20 20 9.5 0.778
50 5 23.8 1.05
50 50 23.8 1.09

100 5 47.6 1.52
100 100 47.6 1.57

Table 4.2. Slab width fluctuations from MD simulations of 2D
EAM Metal at 300 K for 10 ns.

a Period of the surface oscillations.
b Slab width fluctuations are set equal to µ +3s from Gaussian distribution fits to the
probability distribution function of wmax(t)−w.

σx. Note that the nominal slab width is w = 20 nm but the actual time-averaged slab width
is w= 19.901 nm. The strong correlation between the variations in the slab width and the
stress means that the dimensional changes are due to elastic deformation rather than as a
result of thermal expansion. The period of the fluctuations tfluc = 9.5 ps is almost an order
of magnitude greater than the temperature oscillations from the thermostat (∼1 ps) and the
two quantities do not appear to be correlated. In addition, the period of the fluctuations is
independent of the NVT thermostat time constant and is no different if run under constant
NVE conditions.

Provided sufficiently long simulations are performed, wmax(t)−w is well fit by a Gaussian
distribution. For the same EAM Metal slab (w = 20 nm and l = 5 nm), the Gaussian fit to
wmax(t)−w in Fig. 4.6(b) yields a mean µ = 0.24 Å and standard deviation s = 0.17 Å.
Note that µ does not equal zero because we are examining the maximum slab thickness
which will always be greater than the average slab thickness. A statistically significant
perturbation in the slab thickness is therefore wfluc = µ +3s, which should capture 99.74%
of observed events. Table 4.2 is a compilation of wfluc and tfluc for all slab geometries run
for 10 ns at 300K. Somewhat surprisingly, wfluc does not change significantly with l for
constant w. The systems with the larger l should support modes with longer wavelengths
and therefore larger amplitudes, but perhaps these modes are not sampled even with the
relatively long MD timescales. However, the trend of increasing wfluc with increasing w
clearly indicates that larger fluctuation exist for the wider slabs. Finally, it should be noted
that these results do not change significantly when calculated with smaller separations (but
still prior to coalescence).

Now that we have a good estimate of the magnitude of slab separation fluctuations wfluc,
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FIG 6.  Molecular dynamics calculation under constant NVT integration at 300 K of a 

2D EAM Metal slab (w= 20 nm and l= 5 nm) with (100) free surfaces.  (a) Deviation in 

the maximum slab width wmax and stress in the width direction !x during the 10ns run 

and, (b) the probability distribution function of wmax.  

 

Figure 4.6. Molecular dynamics calculation under constant NVT
integration at 300 K of a 2D EAM Metal slab (w = 20 nm and l= 5
nm) with (100) free surfaces. (a) Deviation in the maximum slab
width wmax and stress in the width direction, σx, during the 10ns
run and, (b) the probability distribution function of wmax.
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Figure 4.7. Calculated change in energy using Eq. (4.7) during
closure of a 2.85 Å gap between 10 nm-wide slabs of 2D EAM
Metal at 300K. Inset: close up showing the distance to the crest of
the energetic barrier is 0.6 Å, which is equal to the magnitude of
the maximum width fluctuation wfluc determined from MD calcu-
lations.

we can examine how large of an energetic barrier to coalescence can be overcome. Because
the results in Table 4.2 are statistical in nature, we choose to simply round off the values
so that the following (w, wfluc) pairs are assumed independent of l: (10 nm, 0.6 Å), (20
nm, 0.8 Å), (50 nm, 1.1 Å), (100 nm, 1.5 Å). As a reminder, these fluctuations are local
perturbations and do not represent the entire slab surface achieving a closer separation.
However, we will assume as much in order to use Eq. (4.7) to calculate the energetic
barrier to coalescence as a function of initial separation. By making this allowance, we
are presuming that a small region of a larger surface can locally coalesce based upon the
same energetic analysis without significant error. An additional assumption is that once
a local region coalesces, it will proceed laterally resulting in gap closure across the entire
surface. Later in the chapter, we examine MD simulations of coalescing slabs with varying
dimensions to try to validate these assumptions.

For a 2D 10 nm-wide slab of EAM Metal at 300 K, the energy as a function of separation
for an initial gap of 2.85 Å is shown in Fig. 4.7, as calculated using Eq. (4.7) and the 2D
material properties listed in Table 4.1. The distance necessary to crest the energetic barrier
is about 0.6 Å, which is approximately equal to wfluc for a 10 nm slab as determined
from the MD calculations. Therefore, the 10 nm slab is predicted to close a 2.85 Å gap
based upon this thermally activated coalescence model, which is larger than the calculated
spontaneous coalescence gap of 2.53 Å. However, this gap is still much smaller than the
kinetically limited solution of 4.19 Å. Also note that the energetic barrier shown in Fig.
4.7 is 20 times smaller than the barrier that exists for the kinetically limited solution (i.e.,
Hoffman model). Similar thermally activated coalescence solutions are calculated for the
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other slab widths using the values of wfluc determined previously, and are compared to the
spontaneous coalescence and kinetically limited results in Fig 4.8.

To compare against the predictions from the thermally activated coalescence model, MD
simulations of slab coalescence for 2D EAM Metal at 300 K are performed for the slab
geometries listed in Table 4.2. The free surfaces of a slab are brought closer together in
0.01 Å increments and allowed to anneal for 1 ns (i.e., 106 timesteps of 1 fs) after each
change in separation. The slab separation and volume averaged virial stress are recorded
every 0.5 ps to determine when coalescence occurs. The MD simulation results for all slab
geometries are overlaid with the model predictions in Fig. 4.8. From the MD simulations,
coalescence for a given w is independent of l so only one set of MD results is shown in Fig.
4.8. Upon closer inspection of the simulation results for which l = w, coalescence occurs
as a result of a two-step process. A small, stable perturbation forms that eventually results
in local coalescence over a surface region of approximately 5 nm in lateral dimension. Gap
closure then proceeds laterally along the remainder of the interface at a rate of approxi-
mately 1000 m/s, which is similar to the speed of crack propagation in metals.[85] The
agreement between the MD results and the predictions from the thermally activated coales-
cence model supports the assumptions made in the energetic analysis. The small deviation
in comparing the stresses at smaller slab widths is again due to non-linear elastic behavior
of the EAM Metal potential. The relatively small difference between the MD simulation
results and the spontaneous coalescence model indicates that 300 K provides only modest
thermal activation and that only small energetic barriers can be surmounted. Therefore, the
large energetic barrier present in the kinetically limited model cannot be easily overcome
at modest temperatures and consequently the Hoffman model dramatically overestimates
the magnitude of coalescence stresses.

Admittedly, the slab geometries assumed in this chapter are extremely idealized since ac-
tual discontinuous Volmer-Weber films consist of islands with hemispherical cap shapes
and some degree of adhesion with the substrate. In addition, we have not considered any
stress relief mechanisms that may mitigate the magnitude of the stresses resulting from coa-
lescence. Consequently, further computational work assuming more realistic island shapes
and varying degrees of adhesion with the substrate is being explored to determine how they
affect island coalescence and if inelastic phenomena are prevalent enough to modify those
predictions.

4.3 Conclusion

We have analyzed island coalescence stress generation following an argument suggested
by Hoffman that the mechanism is a trade off between strain energy generation due to
stretching of the islands and the energy decrease associated with the elimination of surface
energy. However in contrast to a simple energy balance calculation, we have considered
the total energy of the coalescing island during entire gap closure process. The interfacial
energy between two closely spaced metallic surfaces was calculated from molecular statics
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Figure 4.8. (a) Coalescence gap vs slab width for 2D slabs of
EAM Metal with (100) surfaces at 300 K, comparing MD results
of coalescing slabs with model predictions. (b) Coalescence stress
vs slab width comparing the same models. Note that coalescence
for a given width w was found to be independent of the lateral
dimension l so only one set of MD simulation results is shown.
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using embedded energy method potentials and shown to fit an analytical form derived in
previous studies from ab initio calculations. We derived an analytical expression for the
sum of the interfacial energy plus strain energy, given by Eq. (4.7), which allowed us to
calculate the energy of impinging islands during coalescence. Depending on the initial
spacing between island surfaces, gap closure, in cases where coalescence was found to be
thermodynamically favored, can occur either spontaneously or be kinetically limited due
to an energetic barrier. Conjugate gradient energy minimization calculations of simulated
coalescence agree extremely well with the predictions from the spontaneous coalescence
model. Molecular dynamics simulations at room temperature demonstrate that thermal
fluctuations can reduce the local gap between impinging surface by as much as 1 Å. By
comparing these fluctuations in separation to the width of the energetic barrier to coales-
cence, we were able to calculate the expected coalescence gap and stress resulting from this
thermally activated process. The relatively modest energetic barrier that could be overcome
in the thermally activated coalescence process at room temperature indicates that the gen-
erally accepted Hoffman model overestimates the magnitude of the stress resulting from
island coalescence.
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Chapter 5

Atomistic simulations of stress and
microstructure evolution during
polycrystalline Ni film growth 1

Principal Authors: C. Paoa, S. M. Foiles, E. B. Webb III, D. J. Srolovitzb, and J. A.
Floro

a - Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,
New Jersey 08544
b - Department of Physics, Yeshiva University, New York, NY 10033

Film stress and microstructure evolution during growth of a Ni bi-crystal film are inves-
tigated by molecular dynamics simulations; the (111) film surface is intersected by two
Σ79 symmetrical tilt grain boundaries. The growth mode is layer-by-layer; 2-D islands
nucleate, grow, and coalesce into complete layers. Grain boundary migration near the free
surface is observed as boundaries are dragged by step edges of growing 2-D islands. Sim-
ilar to what is observed by in situ growth stress experiments, film stress-thickness product
calculated during deposition is compressive; however, simulations differ from experiment
in that stress-thickness product is oscillatory with period equal to one monolayer. Adatoms
are observed to incorporate into grain boundaries and exert compressive strain on neigh-
boring grains. Theoretical modeling demonstrates incorporated atoms are a primary source
of compressive stress during growth and gives predictions in very good agreement with
simulation results.

5.1 Introduction

Morphology evolution during Volmer-Weber (VW) growth has three different regimes: at
the early stage of growth, islands nucleate and grow. During an intermediate stage, grow-
ing islands impinge on each other and form grain boundaries (or fill channels, if islands are
amorphous instead of crystalline). In the final stage of growth, a continuous polycrystalline

1Work presented in this chapter is a result of a collaborative study with Princeton University supported by
this project.
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(or amorphous) film thickens. In situ wafer curvature experiments [86] measure substrate
curvature during growth and, from this, calculate the film stress-thickness product, or the
film stress; such experiments show film stress evolution during VW growth exhibits very
similar characteristics for various different materials [33–35, 47, 48, 52, 72, 73, 87]. At the
early stage (island nucleation/growth), compressive film stresses are observed. As islands
impinge upon each other, film stress becomes tensile. When the film becomes a continu-
ous polycrystalline (amorphous) film, depending on atomic mobility of the film material,
film stress can be either tensile or compressive. Tensile stress is commonly observed for
low mobility atoms [34, 72, 73], whereas film stress becomes compressive once again for
high mobility materials [33, 35, 47, 48]. During the final stage of VW growth, film stress
changes are observed during growth interrupt experiments wherein deposition is stopped at
a given point for a period of time and then resumed. For high mobility materials, growth in-
terruption causes significant tensile stress evolution (compressive stress relaxation). When
growth is resumed, film stress-thickness quickly returns to the level present before growth
interrupt. For low mobility materials, growth interrupt has less influence on film stress. In
this chapter, focus is on understanding the stress generation mechanism for high mobility
materials.

There have been a number of mechanisms proposed to explain experimental observations.
The effect of surface stress on an island in mechanical equilibrium with the substrate was
proposed to explain the compressive film stress generated during isolated island growth
[88, 89]. Other arguments invoke the combination of Laplace pressure with islands being
bound to the underlying substrate as a mechanism for compressive stress evolution [36].
The mechanism driving tensile film stress evolution during island impingement is generally
well explained by the Hoffmann-Nix model [40, 70] and models motivated by Hoffmann-
Nix [39, 90], which propose that island impingement reduces surface energy by forming
grain boundaries, introducing tensile stress. On the other hand, mechanisms driving film
stress evolution during the final stage of VW growth (when continuous polycrystalline
films thicken) are not as well understood. Several mechanisms have been proposed. One
model advances that as polycrystalline films thicken, grains size increases, and therefore
the lattice parameter of film atoms inside grains should expand. However, because the
film is bounded by the subsrate, the lattice parameter of film atoms cannot expand freely,
introducing compressive stress [36, 91]. This model is promising for both the initial and
final stages of VW growth. However, there exists no direct evidence demonstrating the
lattice parameter of film atoms is locked during growth. In addition, this model cannot
explain tensile relaxation during growth interrupt. Another model considers the surface
stress decrease due to the presence of a high density of surface defects such as surface
steps, adatoms,... etc. [51, 52, 92] Though this model can explain growth stress generation
and tensile relaxation during interrupt, recent atomistic calculations suggest that effects of
these surface defects on surface stress are too small compared with magnitudes observed
in experiments [93].

Chason et al. [50] proposed a model based on adatoms diffusing in and out of grain bound-
aries during growth and interrupt, respectively. In this model, the direction of adatom
diffusion is determined by differences in chemical potential between film surface and grain
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boundaries. During growth atomic flux makes the chemical potential of the growing sur-
face higher than grain boundaries, which is the driving force for surface adatoms to diffuse
into grain boundaries. As adatoms diffuse into grain boundaries, they strain neighboring
grains, giving compressive film stress. During growth interrupt, the chemical potential of
grain boundaries becomes higher than the surface because of the removal of growth flux
and the compressive strain introduced during growth; therefore, atoms diffuse from grain
boundaries back to the film surface, relieving compressive film stress. This model can also
explain tensile film stress during late stage of VW growth for low mobility materials by
considering the competition between tensile stress generation (grain boundary formation)
and compressive stress generation (atomic diffuse between grain boundaries and growth
surface) [94]. However, this model depends upon grain boundary diffusion, which, until
recently [95, 96], was considered too slow compared with the time scale for stress re-
laxation in experiments [97]. Thus, another model assuming negligible grain boundary
diffusion has been proposed [53]. Nevertheless, mechanisms leading to compressive film
stress generation during the final stage of VW growth of high mobility materials are still
unclear.

In the present manuscript, stress generation mechanisms leading to compressive film stress
during late stage VW growth are investigated using molecular dynamics simulations. Atomic
deposition onto a polycrystalline Ni film is modeled, monitoring film stress evolution,
atomic behavior, and morphology development. In the next section we describe simula-
tion methods employed. This is followed by a discussion of grain boundary migration due
to film growth. Then, we present data for evolution of the stress-thickness product during
simulated deposition followed by a discussion of relations between film stress and adatom
incorporation into grain boundaries. We conclude with a summary and briefly address
additional implications of model predictions.

5.2 Simulation Methods

To simulate growth of a polycrystalline film, we deposited adatoms at random locations on
the surface of a Ni bi-crystal film. The surface was intersected by two Σ79[111] symmetric
tilt grain boundaries with misorientation θ = 33.99 (as shown in Fig. 5.1); periodic bound-
ary conditions were applied along X and Y directions. Note that the system dimension in
Z was 18 nm but only part of this is rendered in Fig. 5.1. Details of grain boundary forma-
tion and equilibration are available elsewhere [98]. We ran molecular dynamics at constant
temperature (0.5 Tm of Ni, 782.5 K) prior to deposition to relax the system; all subsequent
deposition simulations were run under these same conditions but the thermostat algorithm
was not applied to the atom currently being deposited. To describe the interaction between
atoms, the Voter-Chen embedded atom method potential for Ni was used [99, 100]. Three
deposition simulations were performed: the first with grain size 5.5 nm and relaxation time
between successive deposition 25 ps is system A; the second simulation with grain size 11
nm and relaxation time 50 ps is system B; the third simulation with grain size 11 nm and
relaxation time 12 ps is system C. Note that the first and third deposition simulations (i.e.
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systems A and C) had the same deposition rate. For 5.5 nm grain size the total deposited
film thickness t f was three monolayers (ML) (system A) while for 11 nm cases the total
deposited film thickness t f was two monolayers (system B and C).

The stress-thickness product was obtained from simulations via a method used previously
[88, 89]. We calculated the difference in the average force in X across a series of imaginary
cutting planes normal along X before and after deposition. That is, ∆σxxh = (Fx−F0

x )/Ly,
where ∆σxxh is the change in stress-thickness product compared with the initial continuous
film (an absolute value of stress-thickness product cannot be given since we don’t have an
absolute zero starting point, i.e. a clean substrate surface before deposition), Fx (F0

x ) is the
force in X after (before) deposition and Ly is the simulation cell width along Y.

5.3 Surface Morphologies and Grain Boundary Migration

Figure 5.1 shows surface morphology evolution of system B and C. In Fig. 5.1, atoms
are colored according to their centro-symmetry parameter and only atoms with centro-
symmetry greater than 6.0 are displayed (centro-symmetry equals zero for atoms in an
ideal, bulk FCC environment). Atoms at grain boundaries are colored dark gray while
atoms on the surface are light gray. From Fig. 5.1 it can be observed that growth is layer-
by-layer, which is due to significant atomic mobility on the {111} surface at the high sim-
ulation temperature. By comparing Figs. 5.1(a) and (b) it can be seen that the surface for
system B is smoother (i.e. smaller step density) than system C because higher deposition
rate means adatoms have less time to sample the surface before the next adatom arrives. As
such, the probability for new 2-D islands and steps to nucleate is higher for increased de-
position rate. Examination of Figs. 5.1(a) and (b) also shows that grain boundaries near the
surface migrate. As 2-D surface islands grow island step edges drag grain boundaries near
the surface along with advancing step edges. This observation is similar to what was seen
experimentally by Ling et al. [101] and it shows a possible mechanism for grain growth
during polycrystalline film growth.

In our model, steps edges drag grain boundaries along with their advance because a surface
2-D island with a grain boundary cutting through it has higher energy than an island with
grain boundary cutting through the island steps edges (i.e. it is energetically favorable
for islands to remain ‘single-crystal’). Thus, grain boundaries are attracted to step edges
and repelled by step interiors; as a result, boundaries try to remain physically near island
step edges and, as islands grow, grain boundaries are dragged with advancing step edges.
However, there is also an energetic penalty from bending initially straight grain boundaries.
This is proportional to the boundary curvature and so its magnitude, especially local to the
surface, may become significant for the degree of bending observed in simulations. It
should be noted that, during deposition kinetic effects in conjunction with the penalty for
boundary bending can override thermodynamic effects such that we sometimes observe
islands with grain boundaries cutting through them.
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Figure 5.1. Snapshots during deposition simulations on 11 nm
grain systems for varying coverage. Only surface atoms (colored
in light gray) and grain boundaries atoms (dark gray) are presented
(a)relaxation time ∆t = 50 ps (system B); (b) relaxation time ∆t =
12 ps (system C). Axes below show the coordinate system of the
simulations.

5.4 Stress Evolution

Figure 5.2 shows the change in stress-thickness product ∆σxxh as a function of deposited
film thickness t f for systems A, B, and C. Though there are oscillations in the stress-
thickness curves for all three simulations, the general trend is still negative (i.e. com-
pressive film stress); this is consistent with wafer curvature experiment results for high
mobility materials. Further examination of the stress-thickness curves shows oscillations
have a periodicity roughly equal to one monolayer; as discussed further below, this is re-
lated to the layer-by-layer growth mode in our simulations. To compare magnitudes in
compressive film stress obtained in the present study with experiments, the incremental
film stress (the derivative of the stress-thickness curve) σ inc

xx , can be written approximately
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Figure 5.2. The change in film stress-thickness product ∆σxxh
with respect to the deposited film thickness t f

as σ inc
xx ≈ [∆σxxh(t f = 2.0ML)−∆σxxh(t f = 1.0ML)]/∆t f . Using this the approximate in-

cremental stress for all three simulations are obtained: in system A σ inc
xx ≈ −3.14 GPa, in

system B σ inc
xx ≈ −3.23 GPa, and in system C σ inc

xx ≈ −3.11 GPa. Comparing systems B
and C, it is shown that slower deposition rate yields larger compressive stress, which is
consistent with experimental observations. Incremental film stress observed in the present
study ( -3 GPa) is much larger than observed in experiments (less than -1 GPa). We at-
tribute this to differences in surface growth morphologies between our simulations and real
experiments and address this further below.

To elucidate the source of compressive film stress, the average displacement field of film
atoms between t f = 0.09 ML and t f = 0 ML was calculated. Results are shown for system
B in Fig. 5.3 wherein one can see that both grains are subjected to compressive strain. The
grain boundary on the right of Fig. 5.3 exerts significant compressive strain on neighboring
grains, while the grain boundary on the left exerts a relatively smaller compressive strain.
Effects of strain are mainly localized to atomic layers near the free surface. The displace-
ment field suggests the possibility that adatoms incorporating into grain boundaries produce
compression observed in Figs. 5.2 and 5.3. To address this, atomistic configurations of the
sub-surface atomic layer of the right grain boundary shown in Fig. 5.1(a) and Fig. 5.3 are
shown in Figure 5.4. White atoms show the configuration at t f = 0 ML while gray atoms
show t f = 0.09 ML. Figure 5.4 shows that extra atoms are inside the grain boundary (ex-
tra atoms are highlighted by circles and ovals). Furthermore, the displacement of atoms
outside the grain boundary clearly demonstrates both grains are subjected to compressive
strain due to the incorporation of these extra atoms.
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Figure 5.3. The average displacement field of film atoms at
t f = 0.09 ML with respect to t f = 0 ML. Each vector represents av-
eraged atomic displacement within a volume cell with size 4 x Ly

x 4Å3 (Ly is the cell length along Y). Two arrows below highlight
the location of grain boundaries.

5.5 Grain Boundary Atom Incorporation

To quantitatively assess atom incorporation into grain boundaries, the number of atoms
along the thickness of the film was computed by counting the number of atoms per (111)
atomic layer, N, as a function of depth from the surface, D. Figures 5.5-5.7 show results
of these analyses for all three simulation systems at different t f ; in all figures the distri-
bution at t f = 0 ML, N0(D), is also plotted for comparison. Note that D = 0 corresponds
to the free surface position; growing surface layer atoms are excluded from this analysis.
Figures 5.5-5.7 show that near the surface there are excess atoms compared with prior to
deposition. This is further evidence of adatom incorporation into grain boundaries since we
almost never observe bulk self-interstitials in our simulations. By comparing distributions
between t f = 0.64 and 0.85 ML in Figs. 5.6 and 5.7 and between t f = 0.14 and 0.72 ML
in Fig. 5.5, one can see that the number of atoms incorporated into grain boundaries de-
creases. That is, during deposition some atoms that have incorporated into grain boundaries
escape back to the surface. By comparing these figures with Fig. 5.2 it can be seen that
stress-thickness becomes less compressive when the number of extra atoms inside grain
boundaries decreases. Figures 5.5 - 5.7 show the penetration depth of extra atoms is about
10 Å for system A, while extra atoms penetrate 25 Å for system B and 20 Å for system C.
It is worth noting that significant compressive stress is observed though extra atoms only
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Figure 5.4. A view along Z of atomic positions one layer below
the surface in the vicinity of the grain boundary shown on the right
in Fig. 5.3; atoms are rendered for t f = 0 ML (white) and t f = 0.09
ML (gray). Regions with extra atoms are highlighted with black
circles and ovals.
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Figure 5.5. Number of atoms distribution N along the thickness
of the film for system A with t f = 0, 0.64, and 0.89 ML. D denotes
depth from the free surface and D = 0 refers to the free surface.

penetrate into grain boundaries a relatively small depth.

For a given t f , we compute the total number of extra atoms incorporated into grain bound-
aries by integrating the difference between N(D) and N0(D); that is, NX = ΣD(N(D)−
N0(D)), where NX is the total number of extra atoms inside the film. As mentioned above,
bulk self-interstitials are rarely observed in our simulations so we attribute all NX atoms to
grain boundary incorporation. Figure 5.8 shows NX as a function of t f for all three sim-
ulations. This figure shows that NX gradually increases though oscillations are observed,
emphasizing that incorporated atoms sometimes migrate back to the surface. By compar-
ing Figs. 5.2 and 5.8 one can note an apparent inverse relation between ∆σxxh and NX . We
explore this further in the following section.

5.6 Relation Between Stress Evolution and Atom Incorpo-
ration

To better understand the inverse relation between ∆σxxh and NX , we write the stress induced
by extra atoms inside grain boundaries approximately as

σxx ≈−E
a−d
L+d

NX

(
πa2

4
2hLy

)
, (5.1)

where E is the elastic modulus, d the ‘width’ of the grain boundary, L the grain size, a the
diameter of an atom, and Ly the simulation cell size in Y. Note that d is related to the free
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Figure 5.6. Number of atoms distribution N along the thickness
of the film for system B with t f = 0, 0.64, and 0.89 ML. D denotes
depth from the free surface and D = 0 refers to the free surface.

volume of a grain boundary via v = Lyhd and therefore is a characteristic of grain boundary
type; it is a physically sound assumption that d is a fraction of a. In equation 5.1, the term
inside the bracket on the right hand side is the fraction of grain boundary area occupied by
one incorporated atom. Assuming L � d, we can simplify this equation as

σxx ≈−E
a(1− d

a )
L

NX

(
πa2

8hLy

)
. (5.2)

Thus, we have the stress-thickness product

σxxh ≈−E
πa3(1− d

a )
4LxLy

NX . (5.3)

Note that 2L = Lx, where Lx is the simulation cell length along X direction. In Eq. 5.3 the
parameter (π(1−d/a))/4 is the same as the geometrical parameter α in the grain boundary
insertion model [50]. Thus, we can interpret α as a parameter inversely related to the free
volume of a grain boundary. Smaller grain boundary free volume means smaller width d,
and therefore higher α . From Eq. 5.3 it can be seen that the stress-thickness product is a
linear function of NX with slope −Eπa3(1− d/a)/4LxLy. In addition, for a given grain
size L the slope will be the same regardless of deposition rate. Conversely, for a given NX ,
smaller grain size will yield larger compressive film stress. Figure 5.9 shows the stress-
thickness product as a function of NX from simulations. Consistent with the prediction in
Eq. 5.3, the stress-thckness product is a linear function of NX . Simlarly, data for systems
B and C show that deposition rate does not affect the slope whereas smaller grain size in
system A (L = 5.5 nm) gives a larger slope than systems B and C (L = 11 nm).
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Figure 5.7. Number of atoms distribution N along the thickness
of the film for system C with t f = 0, 0.64, and 0.89 ML. D denotes
depth from the free surface and D = 0 refers to the free surface.

Equation 5.3 can be further simplified by introducing the quantity ρX = NX/LxLy, which
has the physical meaning of the density of extra atoms per unit film surface area. Therefore
Eq. 5.3 can be rewritten as

σxxh ≈−E
πa3

4
(1− d

a
)ρX , (5.4)

showing that stress-thickness product will be a linear function of ρX regardless of grain size
and deposition rate. To verify this prediction, stress-thickness product ∆σxxh is plotted as
a function of ρX for the three simulations in Fig. 5.10 and it can be seen that data from all
three simulations collapse onto a single line, verifying the prediction in Eq. 5.4.

We further explore quantitative effects of atom incorporation by solving Eq. 5.4 using rel-
evant system parameters. From separate atomistic simulations, our model gives a = 2.51Å
and E = 191.6 GPa. To estimate (1−d/a), we need the grain boundary width d, obtained
from the grain boundary free volume v = dLyh. To compute v, we compare the volume at
zero pressure for a system containing grain boundaries (but no free surfaces) to the volume
of the same number of atoms but in an ideal bulk FCC crystal. In this fashion, d obtained
is 0.31 Å giving a theoretical prediction for the slope in Fig. 5.10 of -2099 GPa-Å3; this
compares to a best fit slope for data in Fig. 5.10 of -1817 GPa-Å3. The prediction of the
theoretical model is 16% greater than the best fit to data; given approximations made in
the strain acting on the grains, this is very good agreement. Thus, we have found a quan-
titative connection between extra atoms incorporated into grain boundaries and significant
compressive film stress evolution.
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Figure 5.8. Number of extra atoms inside the film bulk (or, at the
grain boundaries) NX vs. deposited film thickness t f for all three
simulations.

5.7 Discussion

We return to the oscillation behavior in the number of extra atoms incorporated at grain
boundaries, NX (i.e. extra atoms entering and exiting grain boundaries). This behavior is
directly related to the oscillatory feature of the stress-thickness product so it is of interest to
more thoroughly understand why extra atoms sometimes escape back to the surface from
grain boundaries. We explain this as follows: the chemical potential for atoms in a 2-D
island µi can be written as (assuming a circular island)

µi = µ
0
i +

γiΩ

R
, (5.5)

where µ0
i is the chemical potential of surface atoms, γi is the surface energy of the edge

of the 2-D island, Ω is the atomic volume, and R is the island radius. From this it can be
seen that the chemical potential of atoms in a 2-D island decreases as the island grows. The
chemical potential of extra atoms in a grain boundary can be written as

µgb = µ
0
gb−σxxΩ = µ

0
gb +E

πa3(1− d
a )Ω

8LLyh
NX , (5.6)

where µ0
gb is the chemical potential of atoms inside the grain boundary without straining

neighboring grains and Ω refers to the atomic volume of the extra atom. We can see µgb
increases with NX . Note that µ0

i > µ0
gb is often satisfied because atoms at the surface have

fewer neighbors than inside grain boundaries. Consider, for instance, when deposition
starts: 2-D islands are very small, initially single adatoms, so the chemical potential of
island atoms will be higher than that of grain boundaries atoms, i.e. µi > µgb. Therefore
adatoms diffuse into grain boundaries. However, as NX increases µgb also increases due to
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Figure 5.9. ∆σxxh vs. NX for all three simulations.

increasing strain energy. As 2-D islands increase in size R this drives a decrease in µi. Thus
when a growing 2-D island edge approaches a grain boundary, the proper combination of
NX and R can give µi < µgb, such that atoms will diffuse from the grain boundary back to
the surface and attach to surface 2-D islands. The combination of layer by layer growth and
the attraction between step edges and grain boundaries gives that growing 2-D island edges
typically impinge on grain boundaries as a monolayer becomes complete; thus, minima in
oscillations in Fig. 5.8 occur near integer values of t f .

From our estimate of incremental film stress σ inc
xx we find these simulations give magnitudes

of σ inc
xx at least three times larger than those measured in deposition experiments. This

discrepancy is due to surface morphologies in simulations. To demonstrate this, we first
take the derivative with respect to film thickness of both sides of Eq. 5.4 and obtain an
expression for the incremental film stress σ inc

xx from our model

σ
inc
xx =

dσxxh
dt f

=−E
πa3

4
(1− d

a
)
dρX

dt f
. (5.7)

Thus incremental film stress is linearly proportional to the rate of incorporation of extra
atoms into grain boundaries dρX/dt f . Any effects due to grain size and deposition rate are
captured by dρX

dt f
; therefore, this expression should be suitable for any growth condition.

Figure 5.1 shows system C has higher surface step density than system B and Fig. 5.8
shows lower NX in system C than in system B; consequently, lower incremental film stress
is observed for system C. Surface steps are a sink for surface adatoms. Thus higher surface
step density means adatoms are less likely to find grain boundaries before being ‘trapped’
by a step. This means a lower rate of incorporation and smaller incremental film stress.
This comparison of morphology for systems C and B can be extended to more realistic
polycrystalline film growth. In this case, the surface has a much higher step density (e.g.
‘wedding cake’ morphology) [102]. If grain boundary grooves exist on the surface of a
polycrystalline film, these consist of a series of atomic steps, which introduce even higher
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Figure 5.10. ∆σxxh vs. the density of extra atoms inside the film
bulk ρX for all three simulations.

step density. Thus, it is much less likely that adatoms will find a grain boundary before
attaching to a step during more realistic growth. The resulting smaller rate of incorporation
gives significantly lower incremental film stress from experiments.

It is expected that, if adatom incorporation into grain boundaries is an acting mechanism
during real polycrystalline film growth, then it should also play a role during compressive
stress relaxation during growth interrupt experiments. During steady state compressive
stress evolution in VW growth, each layer of deposited material should have a steady state
density of incorporated atoms ρX . Though local variations in ρX may exist across the sur-
face (e.g. for different types of grain boundaries), average ρX should directly correspond
to the observed incremental compressive stress. According to the mechanism proposed by
Chason et al., compressive film stress relaxation during growth interrupt is due to extra
atoms at grain boundaries diffusing back to the surface and thereby relaxing compressive
stress acting on neighboring grains [50]. A primary criticism of this mechanism is that
grain boundary diffusion is not fast enough to explain the time scale of relaxation observed
in experiments. In order to explore this with atomic scale simulations, an appropriate start-
ing state and time scale must be considered. The appropriate starting state for a growth
interrupt simulation is one where grain boundaries are populated all along the film thick-
ness with a steady state ρX , corresponding to the steady state compressive stress. This is
different from current simulations where a significant percentage of grain boundary area is
unoccupied (unstrained). Furthermore, though relaxation is observed on a time scale that
is considered ‘fast’ to experiments (seconds to minutes), it is sufficiently slow to greatly
challenge time scale constraints for molecular dynamics simulations. We verified these no-
tions by performing relaxation (or interrupt) simulations on system A for several different
t f (i.e. magnitudes of ρX and compressive stress) with relaxation time up to 10 ns and saw
no notable change in the system. Though current resources permit us to study an order or
magnitude or more increase in simulation time, we refrain due to an improper starting state.
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Instead we consider Figs. 5.5-5.7 which show extra atoms diffuse 20 to 30Å into grain
boundaries during simulations of order tens of ns. Also, data in Fig. ?? demonstrate that
modest decreases in ρX give significant reduction in compressive stress; thus, it must be
acknowledged that some portion of incorporated atoms may remain in grain boundaries
after compressive relaxation is complete. Further insight into this can be obtained by con-
sidering recent calculations demonstrating that the formation energy for self-interstitials at
metal grain boundaries is significantly reduced from bulk values such that, in many cases,
it is less than the formation energy for a single atom on the surface [95, 103]. If a source of
interstitials exists (say, from surface deposition onto a growing grain boundary), then the
energy calculations by Mishin’s group highlight that an equilibrium composition of ‘ther-
mal interstitials’ may exist in grain boundaries, after deposition is halted and any relaxation
is complete. Data in [95, 96] also illustrate how self-interstitials at grain boundaries exhibit
fairly large diffusivities including complex multiple atom (i.e. collective) jump mecha-
nisms. Thus, these calculations might provide guidance for understanding atomic migration
along grain boundaries during growth interrupt. Because the grain boundary is uniformly
populated with incorporated atoms upon interrupt, collective diffusive mechanisms activate
to provide rapid atomic depletion effectively all along the grain boundary. Depletion need
not be complete, though, so these same collective atomic transport mechanisms provide for
rapid re-population of the grain boundary (and, therefore, resumption of stress level) upon
continuation of growth.

5.8 Conclusion

We performed molecular dynamics simulations, depositing Ni adatoms onto bi-crystal Ni
film surfaces intersected by two Σ79 symmetrical tilt grain boundaries. We observed grain
boundary migration near the free surface coupled with the advance of step edges due to the
growth of surface 2-D islands. This is similar to what was observed in previous experiments
(Ling et al. [101]) and provides a new mechanism of grain growth during polycrystalline
film growth. Consistent with experiments that measure in situ film growth stress, the stress-
thickness product was compressive in all simulations. However, stress-thickness data did
not monotonically decrease as oscillations were observed for all simulations with period
roughly equal to one monolayer. This was associated with highly ideal, layer-by-layer
growth morphology in our simulations. Compressive stress in the simulations was the re-
sult of extra atoms incorporated into grain boundaries. Guided by simulation observations,
we formulated a theoretical model in which stress-thickness product is a linear function of
ρX , the density of extra atoms incorporated. Our study confirms the grain boundary inser-
tion mechanism proposed by Chason et al. and provides additional insight into how the
structure of a grain boundary - via its free volume - influences stress generated from atom
incorporation. We also highlighted related calculations by Mishin’s group ([95, 96, 103])
that indicate collective diffusive mechanisms may provide for rapid atomic depletion and
re-population of grain boundaries during growth interrupt and resumption. Thus, strong
evidence is presented that extra atoms incorporating at grain boundaries is a primary mech-
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anism leading to compressive film stress evolution during continuous polycrystalline film
growth.
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Chapter 6

Atomic Scale Calculation of Stress Near
Defects

Principal Authors: E. B. Webb III, J. A. Zimmerman, S. C. Seel

As motivation builds to consider mechanics of nanometer scale objects, it is increasingly
advantageous to implement models with finer resolution than standard continuum approaches.
For such exercises to prove fruitful, these models must be able to quantify continuum ther-
momechanical quantities such as stress; furthermore, it may be necessary to do so on a
sub-system level in order to assess gradients or distributions in a given property. Herein we
review the calculation of stress in atomic scale numerical simulations such as the molecular
dynamics method.

6.1 Introduction

Decades of successful application of continuum theory to understanding and predicting
the mechanics of materials and structures has provided deterministic engineering of robust
items as diverse as airplanes to prosthetics. The success of continuum mechanics in such
realms cannot be overstated. Existing and emergent technologies continue to reduce feature
sizes, creating, for example, electronic commodities of decreasing size, weight, and energy
consumption. Economic considerations will drive manufacturing to continue this trend. A
natural path is to extend continuum mechanics concepts to describe the mechanical and
thermomechanical properties of such small features. However, phenomena that are not ad-
dressed in standard continuum calculations, such as the influence of free surfaces, buried
interfaces, internal material defects, and nonlocal interactions become dominant for struc-
tures with very small feature sizes [52, 104, 105]. This presents the situation where contin-
uum mechanics theory, employing constitutive laws developed from macroscale property
measurements, may fail to properly describe the mechanics of such features.

Consider, for instance, an array of nanometer scale islands assembled on the surface of a
substrate. Constructing this from specific materials and with appropriate islands sizes re-
sults in quantum dot arrays - structures possessing unique optical, electonic, and magnetic
properties. Perhaps not surprisingly, these properties depend critically on the stress state in
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the islands. For such a geometry, the role of free surfaces and interfaces must be included
to properly describe the mechanics of the array. Crystallographic defects, if present, will
significantly affect stress in the island array. These influences are not captured in traditional
continuum approaches and, while material constitutive laws may be developed to address
such situations, experiments do not exist with sufficient resolution to measure needed quan-
tities for such laws. One example of such a quantity is the thermodynamic surface stress:
as the two dimensional analog to stress, it represents the energetic penalty associated with
increasing free surface area via elastic distortion [104, 106]. For very small structures,
the magnitude of surface stress, which can vary significantly for different crystallographic
surfaces, will greatly influence mechanical response. Surface stress has been measured for
some thin film systems [34, 107, 108] but how such properties manifest for very small
feature sizes remains unclear. Facing such obstacles, continuum mechanics approaches ap-
pear to be intractable at this scale. However, by using models with finer resolution than
continuum (e.g. atomic scale modeling) one may be able to guide new constitutive law
development and restore continuum validity at the nanometer scale. Even in the absence of
this, developing robust means to communicate relevant thermomechanical quantities and
behavior from atomic scale models to continuum can provide needed solutions. This can be
done in a sequential fashion; for example, atomistic models have been used to develop new
material force laws that were input to a continuum framework [109–111]. Alternatively,
there exist efforts to couple multiple length scale simulations concurrently such that com-
munication of properties from an atomic scale model to a continuum model occurs on the
fly [112–116]. Peridynamics is a novel continuum method that considers groups of atoms
as discrete entities in a coarse-graining fashion [117, 118]; properties from these groups are
used in a nonlocal continuum theory capable of reproducing dispersion relations obtained
from atomic scale calculations. A common theme that emerges, regardless of the method
by which length scales are bridged, is that models resolved at a fine scale must be able to
communicate relevant quantities to the accompanying continuum scale theory.

In order to achieve this, atomic scale models must be able to define and quantify relevant
thermomechanical quantities. To focus our discussion, we consider the classical molecular
dynamics (MD) method. ‘Classical’ MD means atoms are explicitly resolved, but elec-
tronic degrees of freedom are not; this aproximation makes calculations including millions
of atoms possible on today’s fairly standard high performance computing clusters. Models
that address electronic degrees of freedom (e.g. methods considered as ab initio, such as
density functional theory) are computationally expensive such that system sizes are typi-
cally limited to a few hundred atoms. Considering that a cube, 10 nm on edge, is comprised
of tens of thousands of atoms, it is easy to see that methods resolving electronic degrees
of freedom cannot address such length scales. Nonetheless, ab initio and related methods
are critical for understanding reactivity, bonding energy and structure, and other funda-
mental aspects of atomic interaction. The accuracy of classical MD is often assessed (in
the absence of experimental data) by comparing to more rigorous predictions from some
level of quantum mechanics theory. While discussion here focuses on classical simula-
tions, corresponding expressions can be derived for ab initio methods and an example for
calculating surface stress is presented in Reference [119]. Classical MD (hereafter referred
to as MD) is well suited to model structures with nanometer length scale features. As a
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result, in recent years, practitioners of mechanics have increasingly used MD techniques
as models for exploring mechanical behavior of very small objects. Implicit in this pursuit
is the desire to calculate stress and other thermomechanical quantities in such models. A
key challenge is to compute meaningful quantities in sub-system volume elements in or-
der to address gradients or distributions in thermomechanical quantities. This latter point
bears further discussion since, as will be demonstrated herein, the validity of typically used
expressions for thermomechanical quantities in atomic simulations, such as the virial theo-
rem (VT) expression for stress, become suspect when calculated over a sub-set of an entire
atomic ensemble. Not surprisingly, a number of authors have tried to rectify discrepancies
in such definitions and restore the validity of obtaining local averages of thermomechanical
properties.

This chapter reviews calculation of local thermomechanical quantities from MD simula-
tions. In the following section, the MD method is discussed with focus on computing stress
σ , heat flux q, and temperature T in atomic ensembles. This is followed in Section 6.3 with
a review of prior research efforts, which attempted to resolve continuum scale definitions
of thermomechanical quantities with the atomic scale. We elaborate on both the methods
of Min Zhou and Robert J. Hardy and co-workers since these were developed within the
context of applying their derived expressions in atomic scale calculations. Prior literature
comparing Hardy’s expression for stress to the VT expression for stress in an atomic en-
semble is reviewed in Section 6.4. In addition, Section 6.4 presents previously unpublished
comparisons of these expressions to evaluate stress fields for an edge dislocation in Al. Dis-
cussion of stress calculation is concluded with a brief comparison to results from nonlocal
continuum theory due to Eringen. Atomic scale results are used to parameterize nonlocal
expressions and very good agreement between the two is achieved.

6.2 Molecular Dynamics Simulation

Classical molecular dynamics (MD) simulations are widely used to study atomic and molec-
ular scale phenomena and a number of excellent books on the subject and method have been
published [120–123]. We provide only a brief review here necessary to support a discus-
sion regarding the calculation of thermomechanical quantities from MD simulation data. In
MD, the total force on each atom is computed and Newton’s classical equations of motion
are used to compute a new position for each atom. The duration over which atomic dis-
placements are computed (i.e. the time step) is typically around δ t = 1 fs; this is made small
enough to resolve atomic oscillations at finite temperature such that 0.001τ . δ t . 0.01τ ,
where τ is some characteristic time constant for the atomic or molecular system being sim-
ulated. Discussions herein will generally use real units; for discussion of simulations in
reduced units, see [120]. After atoms have been moved to their new position, the updated
system information is used to repeat the process. With successive iterations, a time/space
trajectory for all atoms in the ensemble is established. An atomic ensemble is contained
within a finite size simulation volume and periodic boundary conditions are typically em-
ployed. This implies that images of the system are periodically reproduced throughout
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space and atoms inside the simulation space interact with image atoms across boundaries,
modeling an infinite medium. If an atom in the simulation crosses over a boundary and out
of the simulation volume, this is equivalent to an image atom crossing over the opposite
boundary and into the simulation volume.

The force on each atom is obtained from a spatial derivative of the potential energy fi =
−∇riU. One primary input to MD then is an expression or set of expressions that can be
used to calculate U and fi. For energy minimization in molecular statics calculations, ther-
mal effects are not included so atomic velocities need not be specified. MD simulations
are performed at finite temperature T such that information about the atomic velocities is
provided as an initial condition. For example, this can be achieved by assigning velocities
to atoms according to a Maxwell-Boltzmann distribution subject to an overall constraint
of net zero momentum for the simulation ensemble. The thermal kinetic energy corre-
sponds to the desired T and the translational kinetic energy is identically zero. This latter
condition provides conformance with equilibrium thermodynamic ensembles. In this re-
view, atomic kinetic energy associated with temperature is referred to as thermal energy;
though this is not a rigorous definition, it is a system energy component directly related
to the system temperature. For solids, this can be interpreted as the kinetic energy repre-
sented by atomic vibrations about their equilibrium locations. Note that non-equilibrium
MD simulations are often performed wherein some external perturbation is made to act on
atoms. For instance, one periodic dimension may be extended at a constant rate to mimic
a constant displacement rate tensile test. In non-equilibrium conditions, it is possible that
the atomic ensemble possesses finite momentum and this has important implications on
thermomechanical quantity calculation, as detailed further in Section 6.3.

Expressions for U, or interatomic potential energy functions (for simplicity, potentials), can
be characterized based on the number of atoms considered in order to calculate a discrete
contribution to the total system energy. Pair potentials are perhaps the most prevalent and
involve only the position of two atoms to compute a discrete contribution; the earliest forms
of pair potentials were derived to model the physics of inert gas solids. Many three body, or
three atom, potentials consider two bonds where a bond exists between the first and second
atoms as well as between the first and third atoms; in this way, the interatomic potential
acts to penalize deviations from a prescribed bond angle. Such potentials have been used to
model covalent semiconductor materials such as Si. There also exist multibody potentials
where the energy of a given atom is a function of the total bonding environment surrounding
it (typically considered out to some interaction cut-off in the model). The embedded atom
method (EAM) is an example of such a model where U of a system of N atoms is given by
[124–126],

U =
N

∑
i=1

[
Pi(ρi)+

1
2 ∑

j 6=i
Vi j(R)

]
. (6.1)

Here, Pi(ρi) is the energy associated with embedding atom i into a charge or electron den-
sity ρi. The quantity ρi is evaluated at atom i’s position by,

ρi = ∑
j 6=i

ρ j
a(R), (6.2)
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where ρ j
a(R) is the spherically symmetric electron density contributed by atom j, a dis-

tance R from i. Vi j(R) is a pair potential between atoms i and j; in the original derivation of
the EAM, it is Coulombic, terminated at a finite distance, and purely repulsive, representing
screened interaction between two atomic nuclei. The dependence of ρi upon a summation
over its neighbor environment represents a many-body nature to the model. This corrects
for shortcomings in purely pair potentials that make them unsuitable for accurately simu-
lating metals, particularly near free surfaces. The EAM has been widely used to study bulk,
surface, point defect, and alloy behavior in metal systems, particularly face centered cubic
(FCC) late transition metals [99].

MD simulation trajectories describe the positions, velocities, forces, etc on every atom for
every time step. From this information, collective analyses of atomic properties allows one
to extract macroscale thermodynamic quantities. This was already alluded to above in the
description of atomic velocity assignment when initializing a MD simulation. Assuming
there is zero net system momentum or, more generally that the system is in thermodynamic
equilibrium, then the atomic kinetic energy can be directly related to the system tempera-
ture according to Maxwell-Boltzmann statistics. That is, at any instant in time t during a
simulation, the atomic velocities give the system T via,

T(t) =
1

3NkB

N

∑
α=1

mα (vα)2. (6.3)

In this expression, kB is Boltzmann’s constant, mα is the mass of atom α and vα is the
magnitude of atom α’s velocity. MD simulation is inherently associated with properties
of discrete atoms and the expression from statistical mechanics above is readily calcula-
ble in such a model. In this review, we generally restrict discussion to thermomechanical
property definitions which are calculable from quantities inherent to MD simulation. The
virial theorem (VT) permits determination of the stress field applied to the surface of a
fixed volume V containing interacting particles [127–129]. Extension of VT to MD sim-
ulations provides that the instantaneous ensemble stress is given by (again, assuming zero
net system momentum),

σ(t) =− 1
V

{
1
2

N

∑
α=1

N

∑
β 6=α

xαβ ⊗Fαβ +
N

∑
α=1

mαvα ⊗vα

}
, (6.4)

where xαβ and Fαβ are the separation and force vectors, respectively, between atoms α

and β , and vα is atom α’s velocity vector. For a molecular statics calculation, the non-
translational kinetic energy term on the right hand side of Equation (6.4) (i.e. the thermal
energy term) goes to zero. Note that finite T equilibrium simulations demonstrate fluc-
tuations in system properties about the equilibrium average. For an infinite system, the
macroscale thermodynamic quantities equal the system averages at every instant in time,
by definition. However, for finite size systems - such as MD ensembles - the definitions for
temperature and stress above must typically be averaged over some window of simulation
time (i.e. some duration of ensemble trajectory) in order to obtain a good description of
the system equilibrium average. With time averaging over the right hand side of Equation
(6.4), the VT expression for stress is recovered. Fluctuations in thermomechanical quanti-
ties contain useful information about the system and they can be used to compute transport
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coefficients. For instance, the Green-Kubo method demonstrates that thermal conductivity
κ is related to the decay of equilibrium fluctuations of the microscopic heat current q [130],

κ =
V

kBT 2

∫
∞

0
〈qx(t)qx(0)〉dt. (6.5)

For a classical system of point masses, Irving and Kirkwood derived an expression for the
microscopic heat flux as,

q(t) =
1
V

{
1
2

N

∑
α=1

[
N

∑
β 6=α

Fαβ ⊗xαβ

]
·vα +

N

∑
α=1

{
1
2

mα (vα)2 +φ
α

}
vα

}
, (6.6)

where φ α is the contribution to the system potential energy associated with atom α [131].
While Irving and Kirkwood derived this for point masses interacting via pairwise-additive
forces, it can be extended to more complex interatomic potential systems by properly for-
mulating the terms for force and site energy.

Note that the definitions for T , σ , and q above assume summation over a properly bounded
atomic ensemble but it is a straightforward exercise to consider calculating them using only
a sub-set of an atomic ensemble. This becomes particularly desirable for systems in which
gradients in properties are anticipated. The idea is to define some known volume analysis
region(s) and, in computing one of the quantities above, only include contributions from
atoms inside the analysis volume. Consider, however, both σ and q; these are calculated
by considering vector quantities associated with two (or more) atomic positions. Questions
regarding thermodynamic definitions and mathematical rigor aside, from the view of a MD
simulation practitioner, this poses a simple methodology question as to what degree a pair
force should contribute to a calculation if, say, one atom lies outside the analysis region
and the other is inside. The typical approach is to assign half and depend upon cancellation
of errors but this is not robust. Regarding atomic scale velocities, it is not clear how one
distinguishes between thermal velocity and translational velocity, a point thoroughly inves-
tigated by Zhou [132]. More rigorously, the expression for T above assumes a system is in
equilibrium or local equilibrium. Knowing this condition is met for a given sub-set of an
ensemble a priori is not possible. These ambiguities pose limitations on the accuracy with
which a given thermomechanical property may be calculated for a simulation ensemble or
sub-ensemble. As will be presented in the following section, some useful solutions emerge
by starting from continuum thermodynamic definitions for these quantities and extending
continuum notions into the realm of discrete atomistics.

6.3 Continuum Approaches to Atomic Scale Properties

Statistical mechanics establishes ties between atomic scale behavior and thermodynamic
properties observed at continuum scales. Based on the notion of ensembles, rigorous paths
are defined mathematically connecting collective atomic behavior to thermodynamic equi-
librium. An underlying notion behind equilibrium MD is that one establishes a well de-
scribed ensemble (i.e. which state variables are held constant) and allows the finite collec-
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tion of atoms to sample accessible microstates. With sufficient sampling, thermodynamic
averages can be obtained with good accuracy (statistical mechanics also proves equivalence
between ensemble descriptions in the thermodynamic limit). Though based on the same
underlying physics, continuum theory does not address discrete atomic behavior and so a
significant body of research has been applied to understanding connections between contin-
uum thermomechanical quantities and the corresponding atomic quantities that, manifest
as an ensemble, define macroscale equilibrium. The crux of the challenge is to establish
quantities calculable in an atomic ensemble (or sub-ensemble) that accurately map to the
corresponding continuum quantity. In recent years such efforts have been driven signif-
icantly by desires to execute multiple length and time scale simulations in a concurrent
fashion. This means some region of a simulation domain is resolved at the atomic scale
to permit a localized, short duration MD simulation to update the thermodynamic informa-
tion in that region (for instance, if bond rupture is expected based on strain levels). Some
information exchange (or ‘handshake’) must then occur between the MD simulation and
the surrounding continuum simulation. This handshake represents some sort of averaging
or removal of degrees of freedom from the MD simulation data to convey one or a few
thermomechanical properties to the continuum simulation. Thus, two questions emerge:
how does one ensure the correct calculation is being performed to map to the correspond-
ing continuum quantity and how much spatial and time averaging is required to be sure
reasonable accuracy is obtained in the property so calculated?

Many attempts to answer, in particular, the first question have been made and a thorough re-
view of this work was provided in [133] and more recently in [134]. Avoiding redundancy,
we provide a very brief review here. Not surprisingly, most prior work has been aimed at
understanding stress computed at the atomic scale. The virial theorem (VT) definition for
stress was defined as an ensemble average yet many authors have used computations of
this variety on volume elements contained within a simulation (i.e. sub-ensembles). Do-
ing so establishes boundaries (i.e. the analysis volume bounds) and these do not behave
in the same fashion as periodic boundaries. As a result, an ambiguity develops as to how
one accurately applies the VT definition of stress (hereafter VT stress) to a sub-ensemble.
Irving and Kirkwood addressed this but their seminal result is difficult to implement in
particle simulations [131]. Later, Tsai [135] and Cheung and Yip [136] explored this for
one dimensional examples but their approach is, again, not directly amenable to point-wise
calculations. Lutsko [137] attempted to work from the original approach of Irving and
Kirkwood and subsequent work by Cormier et al. [138] built on Lutsko’s efforts to give
an expression for stress readily calculable in particle simulations. However, as originally
pointed out by Zhou and McDowell [139] and elaborated upon by Zimmerman et al. [133],
problems exist in Lutsko’s original formulation. Zhou [132] has made important advances
beyond this and his results warrant further discussion.

The (strictly mechanical) equivalent continuum theory [139] and the more recent thermo-
mechanical equivalent continuum (TMEC) theory [132] represent important strides in con-
necting atomic scale calculations to continuum variables. Whereas the former does not
delineate between thermal behavior and structural deformation for atomic scale systems,
the TMEC does, permitting scale-dependent continuum descriptions of stress, temperature,
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and heat flux from atomic scale calculations. One key advancement in TMEC theory is a
separation of low from high frequency varying velocities attributable to structural defor-
mation and thermal energy (i.e. temperature), respectively. The evolution of these two
energy contributions communicate with one another via inertial force terms in their re-
spective equations. In this fashion, Zhou provides an alternate interpretation to traditional
statistical mechanics that, in principle, is applicable in highly non-equilibrium situations for
sub-ensembles as small as a single atom. That is, in the limit of a single atom in a highly
dynamic environment, Zhou argues that TMEC theory definitions for thermomechanical
quantities retain their physical significance. This is clearly an important advancement in
theoretical mechanics; however, some comments regarding its application in MD simula-
tions are warranted. Zhou acknowledges that properties computed from TMEC theory will
exhibit scale dependent fluctuations; he relegates thermodynamic limit convergence stud-
ies to future work [132]. Such research would be analogous to what we present herein
for Hardy’s methods (along with what was presented in [133]). Implementing TMEC
theory analysis tools in arbitrary MD simulations is a non-trivial exercise so future work
must establish when this level of theory is required to accurately capture thermomechani-
cal properties. For example, many finite temperature simulations model conditions where
separation of structural and thermal velocity components is reasonably well achieved via
averaging schemes. This is because the frequency of data acquisition in atomic scale sim-
ulations (δ t ∼ 1 fs so ν ∼ 1 PHz) is made to be able to resolve atomic oscillations. Thus,
for many applications of interest, structural velocity associated with material deformation
can be calculated and separated from the thermal velocity with appropriate temporal av-
eraging. A simple order of magnitude analysis shows that, for many finite temperature
calculations (particularly room temperature and above), errors introduced by temporal av-
eraging schemes are relatively insignificant. As such, calculating thermal properties (via
the thermal velocity component) is straightforward. However, for non-linear, high strain
rate deformation such as is observed for super sonic shock waves, this may no longer be
the case. In such instances, TMEC theory may provide a path to robust description of
highly dynamic thermomechanical properties. Future work analyzing TMEC predictions
of thermomechanical variables must therefore examine low and high strain rate situations
to identify when the added computational considerations inherent in TMEC theory are nec-
essary to achieve required accuracy.

An alternate approach to thermomechanical property calculation in atomic scale systems
was adopted by Hardy et al. [140–142]. They replaced Dirac delta functions in Irving and
Kirkwood’s approach with finite valued and finite ranged localization functions to establish
a self-consistent manner of distributing discrete atomic contributions to thermomechanical
properties throughout space. Hardy’s approach was originally presented in the references
above and was recently reviewed [133, 134] so only a brief presentation is provided here.
Hardy derived expressions for continuum variables of mechanical stress σ and heat flux q
by defining continuum fields for mass density (ρ), linear momentum density (p) and inter-
nal energy density (e) that are based on atomic properties. He then used field expressions
within the spatial forms of the balance of mass, linear momentum and energy for a dynamic
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continuum [143]. For example, the balance of energy is

∂e
∂ t

= ∂x · (σ ·v− ev−q) , (6.7)

where σ is the Cauchy stress tensor and v is the material point velocity (v ≡ p/ρ). In
this manner, Hardy developed the following expressions for stress and heat flux at a spatial
point x in a system of N atoms,

σ(x, t) =−

{
1
2

N

∑
α=1

N

∑
β 6=α

xαβ ⊗Fαβ Bαβ(x)+
N

∑
α=1

mαuα ⊗uα
ψ(xα −x)

}
(6.8)

q(x, t) =−
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xαβ ⊗xαβ

xαβ
Bαβ(x)

]
·uα +
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∑
α=1
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2

mα (uα)2 +φ
α

}
uα

ψ(xα −x). (6.9)

In this relation, Fαβ is the interatomic force exerted on atom α by atom β , Bαβ(x) is
the bond function defined by the expression Bαβ(x) =

∫ 1
0 ψ

(
λxαβ +xβ −x

)
dλ , ψ is a

localization function (discussed further below), mα is the mass of atom α , uα ≡ vα − v,
and φ α is the potential energy of atom α . Hardy and colleagues recently derived [144] an
expression for temperature by considering the equipartition theorem and the kinetic energy
associated with atomic velocities relative to the velocity of the continuum at a spatial point

T(x, t) =
1

3kB

∑
N
α=1 mα (uα)2

ψ(xα −x)
∑

N
α=1 ψ(xα −x)

, (6.10)

where kB is Boltzman’s constant. This expression was not rigorously defined within the
context of the same balance laws as was done for σ and q; nonetheless, it offers an ability
to calculate T at an arbitrary location in an atomistic simulation similar to what is done for
σ and q.

The functions Bαβ and ψ are defined such that they are non-zero only within a limited-
sized volume centered at the spatial point x; both have units of inverse volume. ψ(r) is
a normalized function, thus

∫
R3 ψ(r)d3r = 1; additional rules governing the form and be-

havior of ψ have been described previously [140]. When ψ is defined as a constant for
the entire volume of the atomic system, Equation (6.8) reproduces the previous expres-
sion for stress (Equation (6.4)), Equation (6.9) yields the previous expression for heat flux
(Equation (6.6)), and Equation (6.10) gives the previous expression for temperature (Equa-
tion (6.3)). When ψ is constant within a sub-system analysis volume element (i.e. ψ is a
step function), results from Equation (6.3) and Equation (6.10) for T are identical; however,
this is not true for stress or heat flux due to the role of the bond function Bαβ in Hardy’s ex-
pressions. It has been shown previously that computing stress via Hardy’s expression gave
more smoothly convergent results when a more smoothly varying form of localization func-
tion was used [133]. In that work (and herein), a cubic function was used for ψ where both
the function and its derivative go smoothly to zero at the analysis volume boundary. An ad-
ditional distinction between thermomechanical expressions should be noted. Expressions
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presented in Section 6.2 for VT stress, heat flux, and temperature were derived assuming
an equilibrium thermodynamic ensemble wherein, by definition, p = 0 such that uα = vα .
In order to apply Equations (6.3), (6.4) and (6.6) in arbitrary simulation scenarios, vα in
those expressions should be replaced with uα . This alludes to the separation of velocities
discussed above in the presentation of Zhou’s work and will be further addressed below.

A general observation is that Hardy expressions effectively spread out or distribute the dis-
crete nature of matter implied by dealing with a finite number of interacting point masses.
In Equations (6.8), (6.9), and (6.10) above, reasonable physical interpretations of Bαβ(x)
and ψ(xα −x) can be made to illustrate this observation. Recalling both quantities have
units of inverse volume, Bαβ(x) can be interpreted as the percent of the bond between
atoms α and β that resides in the characteristic volume around material point x; similarly,
ψ(xα −x) can be interpreted as the percent of atom α that resides in the characteristic vol-
ume. Conversely, expressions for VT stress, temperature, and heat flux typically used in
MD simulation are tied to the discrete nature of an atomic scale model as they sum over
individual atoms without localization functions. That is, contributions to these expressions
due to a single bond are either 100% (if both atoms reside in the characteristic volume),
50% (if only one atom resides inside), or 0% (if neither atom resides inside). Similarly, for
single atom contributions an atom is either fully in or out of the analysis volume. For this
reason, we will hereafter refer to expressions in Equations (6.3), (6.4), and (6.6) as discrete
calculations of temperature T , stress σ , and heat flux q, respectively. In the remaining
sections, we present evaluations of thermomechanical property calculation for discrete and
Hardy sets of expressions. Both methods of computation remain subject to property fluctu-
ations around equilibrium or, in non-equilibrium scenarios, steady-state values. This may
also be the case in transient scenarios although defining the ‘true’ answer in such instances
is not possible within equilibrium thermodynamics. For static calculations, temporal fluc-
tuations do not exist but issues of sampling volume may emerge. Simply stated, regardless
of the method of computation adopted, some form of averaging is needed to establish a de-
gree of confidence in the calculated property. An alternate interpretation is that any larger
length scale perspective or method which will utilize an atomic scale calculation will need
degrees of freedom to be removed from the atomic scale results. For an analysis region
defined by a sphere with radius 1 nm in a typical cubic lattice, a few hundred atoms each
contribute thousands of data points over 10 ps of MD simulation; such data sets need to be
condensed to a small number of property calculations. This motivates discussion of spatial
and temporal averaging in MD simulation sub-ensembles. A practical question, then, is
how much sampling volume and/or time (i.e. how much ensemble trajectory) is needed in
order to achieve some designated degree of accuracy in calculating a given property. In
what follows we address the accuracy and statistical convergence behavior for discrete and
Hardy expressions for stress, temperature, and heat flux.
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6.4 Calculating Stress in Atomic Simulations

6.4.1 Review

In a prior article, statistical behavior of Hardy’s expression for σ , Equation (6.8), was
evaluated with regard to the averaging volume and/or time required to achieve a desired
level of convergence on a known expectation value [133]. This was done for a collection
of simulation settings (e.g. zero T , finite T , near free surfaces) and results were compared
to similar evaluations employing the discrete expression for VT stress. In that work, it was
demonstrated that, for a static simulation at finite strain, the Hardy expression converged
on the expectation value more rapidly with increasing averaging volume than the discrete
expression. This was interpreted in terms of reducing the surface to volume ratio of the
analysis region. Errors or ambiguities that emerge for the discrete expression are from
atoms near the surface of an analysis volume since those atoms interact with atoms outside
the analysis volume. Reducing the surface to volume ratio thereby reduces error in the
discrete expression for stress. While this is also true for the Hardy expression for stress,
it was concluded that surface contributions are accounted for in a more physically sound
way, minimizing error in computing such contributions. As a result, errors in Hardy’s
expression decrease more rapidly with surface to volume ratio. It should be pointed out
that both methods gave very good estimates using analysis volume elements (spheres) with
radius 1 nm and reasonable estimates with analysis radius 0.3 to 0.4 nm.

An additional result presented in [133] was for modeling free surfaces. As originally noted
by Cheung and Yip [136], the discrete expression for VT stress shows oscillations in the
surface normal stress component for atomic layers near the free (zero traction) surface.
This is an oft quoted criticism of the discrete expression in such environments. The Hardy
expression was shown in [133] to significantly reduce this effect. Recall that Hardy’s ap-
proach effectively spreads interactions and atomic mass in space. This makes it such that,
for an analysis point positioned near the atomic free surface, it senses a more global en-
vironment and more accurately predicts the zero normal stress state. Zimmerman et al.
[133] acknowledged that it remained as future work to execute similar comparisons for
more complex interatomic potential energy functions, such as those including three body
interactions. In recent articles, Delph [145] and, separately, Chen [134] derived thermo-
mechanical expressions following Hardy’s formalism but assuming a three-body potential.
Subsequent to that work, Delph [146] utilized similar expressions to evaluate surface stress
distribution for reconstructed Si surfaces. In that work, the effect of a surface step on stress
was quantitatively analyzed. These efforts bear out that the Hardy method is quite use-
ful in computing stress for arbitrarily complex interatomic potential energy models near
inhomogenous structures such as free surfaces.
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6.4.2 Edge Dislocation in Al

To further demonstrate the utility of Hardy’s expression for stress, we analyzed its quanti-
tative performance for describing stress around the core of an edge dislocation in an elastic
medium. The stress fields surrounding the core of an edge dislocation were examined
utilizing an EAM model for Al [147]. An atomistic system of cylindrical shape was used
where the radius of the cylinder was 40 nm, its thickness (along the cylinder axis) was 4 nm,
and the orientation of the face centered cubic crystal was such that x (Burgers vector), y
(cylinder axis) and z directions were 〈100〉 directions. Boundary conditions consistent with
the displacement field for an edge dislocation in an anisotropic crystal were used for the
outer surface of the cylinder while a periodic boundary condition was used along the cylin-
der axis. This method of atomic scale dislocation analysis was presented previously [148].
Conjugate gradient energy minimization calculations within the computer code LAMMPS
[149, 150] were performed with tolerance 1e-10. To analyze stress fields surrounding the
relaxed defect, cylindrical analysis volume elements were defined with cylinder axes par-
allel to the simulation cylinder axis (y). The analysis volume elements spanned the simu-
lation domain in y and were evenly distributed on a 40 x 40 square grid that spanned from
−10 nm to +10 nm, relative to the dislocation core, in x and z. As such, volume elements
were spaced every 0.5 nm. To compute the discrete expression for VT stress in a given
analysis volume element (Equation (6.4)), summations were performed only over atoms
within the element; that is, contributions from forces that cross the surface of the analysis
volume element were included 50% (this is the typical method in which this calculation is
performed for sub-ensembles). Note that the cylindrical simulation cell and the boundary
conditions applied in x and z avoided complex issues with dislocation image interactions
across periodic boundaries and the corresponding concerns with convergence. Such issues
have been addressed and the interested reader is directed to [151, 152].

Data for varying analysis cylinder radius Ra were computed and visualized using the code
Ensight [153]. Figure 6.1 shows σxx results for Ra = 0.3 nm, 0.5 nm, and 0.7 nm from the
discrete expression for VT stress and Hardy’s expression. It is acknowledged that this pro-
vides only a qualitative comparison since we used a separate visualization code to compute
the variance of stress between computation points. Nonetheless, some interesting observa-
tions can be made. Both methods show peculiar oscillations in computed stress fields for
Ra = 0.3 nm and 0.5 nm. For Ra = 0.7 nm, particularly for Hardy data, computed stress
fields vary smoothly and the result is intuitively in line with what is expected from local
elasticity theory. Comparing results for Ra = 0.5 nm and 0.7 nm, the observation can again
be made (at least qualitatively) that the Hardy method converges on expected behavior
more quickly with increasing Ra than the discrete method for stress calculation. Another
observation is that it seems good practice to define a minimum Ra & Rc, where Rc is the
cut-off distance in the interatomic potential model adopted. For the EAM Al model used
here, Rc = 0.55 nm and very good results are obtained for Ra = 0.7 nm. While results such
as those in Figure 6.1 are of a qualitative nature, they provide useful insight into the resolu-
tion and accuracy with which linear elastic behavior is modeled in well parameterized MD
simulations.
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Figure 6.1. Stress fields (σ xx) surrounding the core of an edge
dislocation in EAM Al calculated using the discrete (top) and
Hardy (bottom) expressions for σ . Color contour maps were com-
puted as detailed in the text; peak tension (red) plotted is 5 GPa and
peak compression (blue) is −5 GPa; x (Burgers vector direction)
is horizontal in the page. Data used to form maps are from cylin-
drical analysis elements with radius Ra = 0.3 nm (left), 0.5 nm
(middle), and 0.7 nm (right).

A more quantitative evaluation can be made by comparing σ xx data from analysis volume
elements along a given line in x or z through the simulation cell. From data in Figure 6.1,
we present this comparison for Ra = 0.7 nm. Furthermore, stress fields were compared
with solutions from isotropic, local elasticity theory. To compute the local elasticity result,
elastic constants µ , λ (Lamé’s constants) and ν (Poisson’s ratio) were determined using
the relations:

µ = C66−
2C66− (C11−C12)

5
(6.11)

λ = C12−
2C66− (C11−C12)

5
(6.12)

ν =
λ

2(λ + µ)
(6.13)

For the EAM Al potential used [147], C11 = 118.1 GPa, C12 = 62.3 GPa, and C66 = 36.7 GPa.
Hence, µ = 33.18 GPa, λ = 58.78 GPa and ν = 0.32. Results obtained for σxx along a line
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in z passing through the dislocation core are presented in Figure 6.2. As one expects from
the stress field plots in Figure 6.1, results for σxx calculated with the Hardy and discrete
expressions agree very well with both each other and the local elasticity solution far away
from the dislocation core, at distances of 1.5− 2 nm and beyond. However, closer to the
core, there is some disagreement in values. In particular, the Hardy and discrete fields do
not exhibit the classical stress singularity at distances very close to the core. Rather, these
fields exhibited peak values of ∼ 5 GPa at distances in the range of 0.3−1 Å, then decrease
rapidly to go through zero at the core itself. While some of the disagreement in values can
be attributed to the isotropic assumption, it is known that anisotropic, local elastic fields
also possess a stress singularity. Analyses were also performed for other components of
the stress tensor and comparable results were found. Note that the Hardy method predicts a
sharper transition through the core than the discrete expression but it is difficult to conclude
if this difference is significant.
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- 10

- 5

5

10

Figure 6.2. Stress field (σxx) as a function of distance (in z)
from an edge dislocation core in EAM Al (Burgers vector in x
direction). Curves are plotted for the discrete expression (grey),
Hardy’s expression (light), and the result from local elasticity the-
ory (black). Data for the former two are from cylindrical analysis
elements with radius Ra = 0.7 nm. Stress (vertical axis) is in units
of GPa and distance (horizontal axis) is in units of nm.

Further understanding of the Hardy and discrete stress measures can be gained by examin-
ing solutions obtained through nonlocal elasticity theory. Eringen used such an approach
to treat this very problem of an edge dislocation in an isotropic elastic medium and derived
analytic expressions for the stress fields [154]. His solution, given in cylindrical coordi-
nates and variables, was transformed into a cartesian solution for comparison with Hardy
and Virial stress values calculated on our atomistic grid. All three sets of data are shown
in Figure 6.3. One feature of the nonlocal solution by Eringen is the incorporation of two
parameters not present in the local elasticity solution. The first, k, is a dimensionless pa-
rameters usually of value ∼ 1; k is set to 1 for this analysis. The second, a, is a parameter
with dimensions of length, i.e.nm in this analysis. This parameter represents the size of
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Figure 6.3. Stress fields (a) σxx, (b) σzz, and (c) σxz as a function
of distance (in z) from an edge dislocation in Al. Data are shown
for the Hardy (light) and discrete (grey) stress expressions com-
pared with nonlocal elasticity solutions by Eringen (black). Stress
values (vertical axes) are in units of GPa and distances (horizontal
axes) are in units of nm.

the region that governs nonlocal behavior, i.e.the characteristic region associated with the
determined stress value. For our analysis, we logically set a to the same value used for
the localization volume radius, 0.7 nm. Examination of the fields in Figure 6.3 show re-
markable agreement in both a quantitative and qualitative sense. This analysis leads one
to conclude that the Hardy and discrete VT stress measures calculated here indicate that
an atomistic analysis is describing a nonlocal medium (elastic in the limit of small defor-
mations) and as such requires metrics from a nonlocal continuum theory to characterize
deformation fields surrounding material defects. This conclusion is not surprising as the
multi-neighbor cutoff distance of the inter-atomic potential itself has an inherently nonlo-
cal nature. Nevertheless, it is useful to realize that Hardy and discrete stress expressions
provide accurate metrics of fields for such a material.

6.5 Summary

Atomic scale calculations can provide needed input to larger length scale models when the
latter are challenged by a need to resolve physics not typically embodied in continuum con-
stitutive relations. Herein, methods for computing sub-ensemble averages in atomic scale
calculations were reviewed and it was demonstrated that very accurate thermomechanical
properties can be calculated for appropriate sampling practices. Due to the thermodynamic
nature of various quantities, it was shown that temporal and spatial requirements to achieve
accurate predictions of heat flux in a simulation sub-ensemble were more stringent than
for either temperature or stress. It is important to note that results presented here should
be representative of many atomic solids modeled with pair and three body interactions.
However, for liquid state simulations or models of molecular solids, such as polymeric or
biopolymer systems, sampling volume and time requirements may shift dramatically. In
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the case of liquids, much shorter analysis times may be needed to resolve dynamic liquid
state motion. For polymeric systems, needed sampling volume may scale in some fashion
with molecular size. This may also be true in some way for sampling time. Nonetheless,
examples outlined here provide an illustration of how such parameters can be evaluated for
any given atomic scale model to achieve robust thermomechanical property evaluation.

It was also proposed that spatial distribution of contributions to thermomechanical prop-
erties implicit in the method due to Hardy and co-workers makes it well suited to model-
ing efforts where quantitatively accurate sub-volume average properties must be conveyed
to continuum constitutive descriptions. The Hardy method effectively removes the dis-
crete nature of matter implied in a particle simulation, providing a consistent accounting
for interactions that span the boundary of a sub-system analysis volume. Over a wide
range of strain conditions, proper application of Hardy’s method gives accurate predic-
tions of thermomechanical properties. Other theories, particularly the thermomechanical
equivalent continuum (TMEC) theory of Zhou, were also reviewed herein. It should be
highlighted that the TMEC offers a promising alternative to traditional statistical mechan-
ics (and continuum) theory, particularly for non-linear, high strain rate simulations. For
the non-equilibrium, constant heat flux ensemble presented here, a well described steady
state was achieved. Despite an absence of equilibrium, it was possible to consider a sub-
ensemble of the system to be in local equilibrium. As such, concepts such as temperature
and heat flux were fairly well defined. This would not be true for highly dynamic scenarios.
Future work should examine under what conditions the added complexity of calculations
within, e.g., TMEC theory are warranted over, say, Hardy’s method. Furthermore, such
work should evaluate necessary sampling volume and time for desired statistical conver-
gence and provide a measure of the computational requirements of TMEC theory evalua-
tions compared to Hardy’s method.
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Chapter 7

Conclusion

Principal Authors: Edmund B. Webb III

7.1 Summary

This LDRD project was successful in combining simulations and experiments to examine
stress evolution mechanisms at the atomic and nanometer scale. New tools, in the form of
models that establish quantitative connections between fundamental atomic behavior and
stress evolution, were created. Materials that grow in the Volmer-Weber growth mode (met-
als on oxides, semiconductors) served as excellent systems to examine given the richness
of their stress evolution behavior. Studies examined behavior in all three regimes of growth
and revealed new information regarding stress evolution for each.

Hut shaped Ge islands on Si were studied via atomic scale simulations to explore the energy
and stress fields of these structures. A key result of this work was that specific energetic
contributions can be calculated. In addition, the decay of the stress fields between neigh-
boring islands was explored. Such work demonstrates the ability of atomic scale simulation
to communicate needed information to theory aimed at predicting surface structure forma-
tion. Additional work performed to study islands on surfaces examined the dependence of
stress on the interaction between island and substrate. For arbitrary growth conditions and
material systems, a non-trivial challenge was identified that introduces new opportunity for
this component of atomic scale simulation research. This topic is addressed further below
as it represents potential future advancement of (and business for) capabilities developed
herein.

Success in establishing overlap between experiments and models was best achieved for
the second and third growth stages (island coalescence and film thickening, respectively).
Experiments showed that a significant degree of coalescence stress emerges after initial
coalescence events are complete. Evidence was presented for an ongoing coalescence
process that generates tensile stress in competition with a kinetically limited compressive
stress generation mechanism. Though experiments were unable to resolve specific atomic
behavior, data could be explained by invoking a mechanism where adatoms enter grain
boundaries that intersect free, growing film surfaces. This compressive mechanism com-
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petes against tensile stress generation due to ongoing coalescence at grain boundaries as
they grow in length (i.e. as the film thickens). Simulations demonstrated that the grain
boundary entering mechanism was indeed a primary contributor to compressive stress evo-
lution during the third stage of Volmer-Weber thin film growth. Results were used to guide
formulation of a new model that quantitatively connects adatom occupation in grain bound-
aries with corresponding compressive stress magnitude and distribution. The simulations
performed under this study were the first to show this mechanism and quantify its stress
evolution effect.

7.2 Future Business Opportunities

Fabrication of discrete, supported structures such as islands or lines on surfaces pushes the
envelope of nanoscale engineering. This is particularly true as extreme ultraviolet litho-
graphic techniques begin to be brought online. Understanding the behavior of such small
features is a standing challenge to the material science community. Work presented herein
for Ge islands on Si gave an example of success against this challenge. However, a number
of opportunities for modeling were identified associated with discrete structures.

Figure 7.1 shows an example of stress fields calculated from an atomic scale model of a
line of hemispherical (R = 10 nm) metal islands on a crystalline substrate (two islands are
shown but periodic boundary conditions in the horizontal direction model an infinite line of
islands). The island spacing in this case is beyond the interaction range for the model used;
in other words, islands are positioned far enough apart that atoms on one island surface do
not interact with atoms on adjacent island surfaces. Nonetheless, it is not surprising that
stress fields created by the islands in the substrate overlap; this means an elastic interac-
tion exists between islands. The goal with this calculation was not to establish quantitative
relations for a specific material system. Rather, it was to demonstrate the richness that
emerges for this system. If the interaction energy (i.e. the attraction) between the islands
and the substrate is changed, this stress distribution changes as well. Furthermore, if the is-
land is assumed to form at its equilibrium versus non-equilibrium contact angle, significant
differences in stress fields emerge. It was of interest to study this quantitatively for spe-
cific material systems germane to Sandia mission interests. Indeed, accurate models exist
for this to be done for a collection of material systems related to MEMS, sensors, optical
systems, magnetics, etc. However, a major computational challenge acknowledged from
the start of this project was in modeling growth at the atomic scale over macroscopic time
scales.

For this project, an approach was designed to address stress evolution without having to
model equilibrated structures on surfaces. Results presented herein exhibit good success
was achieved with the designed approach, particularly for addressing stress evolution after
a continuous film has percolated. Such success is promising and demonstrates how ex-
periments and models can be combined to guide predictive engineering practices for thin
film growth. However, to understand stress for discrete structures of specific material sys-
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equilibrium

• Laplace pressure and interface
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• Overlap of stress fields in substrate

cause islands to repel each other

(penalty for island coalescence)

Stress in Non-Interacting Islands

Atomic scale models can resolve quantitative effects of interface and

surface stress on observed stress evolution.

Discrete (not Isolated!) Islands

Figure 7.1. Cross-section showing stress field (σxx, x is hori-
zontal in page) calculated from an atomic scale model of a line of
hemispherical (R = 10 nm) metal islands on a crystalline substrate.
Maximum tension (red) shown is 3 GPa and maximum compres-
sion (blue) is -3 GPa. Black curves show the aproximate position
of the island free surfaces.

tems, predicting structure as a function of growth conditions over macroscopic time scales
is paramount. This requires a new computational tool to be developed; at the start of this
project, a tool for addressing macroscopic time scales with atomic scale spatial resolution
did not exist at SNL. The PI on this project (EBW) is now participating in a new LDRD
project to develop a massively parallel kinetic Monte Carlo simulation tool. Such a tool di-
rectly addresses this need. Expertise developed under this LDRD project is benefiting that
project and, in combination, they set the stage for modeling to directly impact engineering
of very small discrete structures on surfaces.

Work presented herein demonstrates that any process at Sandia, which uses material growth
techniques and is challenged by residual stress evolution, should be connected to methods
we have developed. New expertise can be brought to bear such that, as required, appropriate
experiments, modeling, and theory are formulated. By applying relationships developed
herein to specific material systems, predictions can be made to alter the growth process
and, in turn, effect the desired change in stress evolution. Given the very large number
of material growth processes employed in various Sandia missions and the critical role
residual stress plays in determining performance, it is clear that potential for future business
exists for these newly developed capabilities.
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