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Abstract 
Wide baseline matching is the state of the art for object recognition and 
image registration problems in computer vision.  Though effective, the 
computational expense of these algorithms limits their application to many 
real-world problems.  The performance of wide baseline matching 
algorithms may be improved by using a graphical processing unit as a fast 
multithreaded co-processor.  In this paper, we present an implementation 
of the difference of Gaussian feature extractor, based on the CUDA 
system of GPU programming developed by NVIDIA, and implemented on 
their hardware.  For a 2000x2000 pixel image, the GPU-based method 
executes nearly thirteen times faster than a comparable CPU-based 
method, with no significant loss of accuracy. 
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1. Introduction 
Wide baseline matching (WBM), based on abstract local features, is the state of the art 
paradigm in computer vision for object recognition and image registration.  While highly 
effective across a wide array of problems, these methods tend to be very computationally 
expensive.  Recently a multitude of work has emerged using the graphics processing unit 
(GPU) for scientific computing.  Specifically, a new technology called CUDA (compute 
unified device architecture), available on NVIDIA GPUs, provides a C programming 
interface that greatly simplifies implementing software on the GPU.   
 
In this paper, we present a CUDA implementation of the difference of Gaussian (DoG) 
feature selector used in WBM.  We will give a brief overview of WBM, DoG feature 
selection, and the CUDA architecture.  Then we will detail our CUDA implementation of 
DoG and compare the performance on two different NVIDIA GPUs to that of an existing 
CPU based implementation.  Finally, we will discuss further performance enhancements 
and the implementation of the rest of the WBM algorithm. 

2. Wide Baseline Matching 
Wide baseline matching is a paradigm of algorithms which find matching features among 
a set of images and solve for the geometric transformations between them.  These 
algorithms have applications in object recognition, image registration, robot navigation, 
and many other image processing problems.  While varying widely in design, WBM 
algorithms share three essential steps: 
 

1. Feature Extraction – Individual features are selected within the image that are 
mathematically stable and can be reliably extracted from multiple images of the 
same target even with variations in scale and illumination intensity.  These 
features tend to be abstract and based on object attributes such as variations in 
gradients or areas of common contrast. 

 
2. Descriptor Creation – The local area around each extracted feature is described 

by a feature vector, called a descriptor.  Descriptors are generated in a way that 
removes the effects of rotation and illumination variation.   

 
3. Geometric Matching – Candidate matching features are chosen by comparing the 

similarity between their descriptors.  The locations of a set of candidate matches 
are then geometrically tested to determine if they share a common transformation.   
Combining appearance (descriptors) and geometry based matching leads to very 
low false positive rates.   

 
For the purpose of this paper, we focus on the WBM algorithm presented by David Lowe 
in 2004 [1].  Specifically, we work with the DoG feature extraction algorithm, detailed in 
the next section. 
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3. Difference of Gaussian Feature Extraction 
The DoG feature extractor searches for locations in an image which are scale invariant.  
To achieve scale invariance, features must be found in the image across all possible scale 
changes (scale space).  The Gaussian function is used as a kernel to search through scale 
space through convolution with an input image.  The Gaussian function, G, is defined as 
follows:  
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where x, y is the position, relative to a pixel,  and σ is standard deviation.  Lowe proposed 
that stable features across scales can be found by locating peaks in the differences 
between convolutions of an image with a varying Gaussian kernel [1].  Each of these 
difference images is called a difference of Gaussians. 
 
Peaks are identified by creating a set of Gaussian convolutions of an image at regular 
intervals of σ.  The resulting ordered set of images is called a Gaussian pyramid.  DoGs 
are produced for each pair of adjacent images in the Gaussian pyramid, creating a 
pyramid of DoGs.  Starting with the second image in the DoG pyramid, each pixel is 
compared with the eight neighboring pixels in the same image and the nine 
corresponding pixels in the DoG images above and below it in the pyramid.  If the pixel 
value is either the maximum or minimum value, it is a potential peak.  Figure 1 displays 
the feature selection process.   
 

 
Figure 1:  DoG feature selection:  Gaussian pyramid, DoG pyramid, peak discovery 
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To increase the sampling of scales, the base image is down-sampled to half its size and 
the same process is repeated.  Each time this processing is repeated it is called an octave.  
The number of octaves created is usually logarithmic with respect to the size of the 
original image. 
 
The set of potential scale-invariant features are examined to ensure they are well defined.  
First, potential features with very low intensity values are discarded.  These features are 
unstable with respect to lighting changes.  Second, DoGs create strong responses along 
edges and many of these points are poorly defined and sensitive to noise.  A measure of 
principle curvature is used to discard these poorly defined potential features. Finally, a 
3D quadratic fitting function is used to interpolate the sub-pixel and sub-scale location of 
the remaining features.  At this point, feature selection is complete.  Figure 2 shows an 
image with its selected features.  Each feature sits at the center of the circle, with the 
radius representing the scale at which the feature was detected. 
 

 
Figure 2: Location and scale of features found by DoG feature extractor 

 
After extraction each feature is assigned a characteristic orientation and a descriptor is 
built for the local area location around the feature.  These steps are not part of our GPU 
implementation and, therefore, are not described further in this paper.  For a detailed 
description, see [1].   

4. CUDA Architecture 
CUDA is an application programming interface (API) that enables general purpose 
computation on NVIDIA GPUs.  The CUDA interface uses the C programming language, 
making scientific computing on GPUs more accessible than previous OpenGL based 
technologies.  Currently, the CUDA SDK is only available for NVIDIA’s G80 family of 
GPUs, but NVIDIA promises that the technology will be supported on all its future 
hardware. 
 
The CUDA programming model uses the GPU as a coprocessor, capable of supporting 
the execution of applications on the host CPU.  Functions executed on the GPU – called 
kernels – are called from programs running on the host CPU.  The GPU maintains its 
own DRAM, and values can be exchanged between the device and host memories with 
calls to special memory-management functions in the CUDA API. 
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As a coprocessor, the GPU executes a large number of threads in parallel.  Much of the 
challenge of CUDA programming revolves around finding implementations of 
algorithms that take advantage of this parallelism.  CUDA groups its threads into thread 
blocks.  Each block is a collection of threads that share access to a block of device 
memory.  This allows threads within a block to cooperate and solve problems more 
efficiently.   
 
Conceptually, blocks are organized into a grid of two or three dimensions, with each 
block having unique indices.  Likewise, the threads within a block are also grouped into a 
grid, with their own indices.  The combination of block and thread indices uniquely 
identifies each thread in an executing kernel program.  The dimensions of the block grid 
and thread grid are specified when the kernel function is invoked, as follows: 

 
      dim3 threads(16, 16);  

     dim3 blocks(12, 12); 
 sampleKernelGPU<<<blocks, threads>>>(); 
 

This example creates an 12x12 grid of blocks, with each block having a 16x16 grid of 
threads.  CUDA allows a maximum of 512 threads per block.  There can be at most 
216x216x216 blocks.  NVIDIA recommends using at least twice as many blocks as there 
are processors on the device to reduce idle time during execution. 
 
When a kernel program is invoked, all the created threads execute the kernel in parallel.  
Threads may access values stored in global device memory, and threads within the same 
block have access to shared memory, but the threads may execute in arbitrary order.   

5. Processing Images 
The block-based structure provides a convenient way of performing kernel operations on 
images.  This section explains the basic concepts used in the GPU-DoG image processing 
kernels.  There are many other ways of implementing image operations in CUDA, but 
this method is arguably the simplest and illustrates many of the practical details of CUDA 
programming.   
 
We assign one dedicated thread to each pixel in the image.  Each thread executes the 
kernel program to process its pixel.  When all threads have executed, every pixel in the 
image will be successfully processed.  Because there is an upper limit of 512 threads per 
block, this requires multiple blocks for any image with more than 512 pixels. Let each 
block be a square grid of threads, and all blocks the same size.  Since the size of the 
image is known and the block dimensions are constant, we can compute the size of the 
block grid required to tile the image and create one thread per pixel.  Figure 3 gives a 
graphical depiction of this approach. 
 
The kernel program is written so that each thread can effectively process its pixel in 
parallel, without any information from other threads.  First, the kernel program uses 
CUDA API calls to determine the indices of the currently executing thread and the 
indices of its block.  Combined with the known constant block dimensions, these indices 
identify the pixel location in the image corresponding to the current thread.  The thread 
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then performs processing for its pixel and stores the results in the appropriate location in 
an output image.  It is important to remember that all threads execute the same kernel 
program in parallel.  Therefore, the kernel must be written so that all threads will execute 
correctly, regardless of their position in the image tiling.  

 

 
Figure 3: Image C is tiled with blocks of constant size [2] 

 

6. GPU-DoG Algorithm 
This section covers the major parts of our GPU-DoG implementation.  Our 
implementation has the following major steps: 
 

1) Allocation of device memory 
2) Gaussian blurring of images 
3) Difference of Gaussians computation 
4) Threshold masking 
5) Comparison of DoG images to find interest points 
6) Refinement of interest point locations 
7) Down-sampling and preparation for next octave 

 
Though the basic steps of the algorithm are the same as other DoG implementations, we 
have made changes to take advantage of GPU processing.  In particular, graphics 
hardware excels at rapid parallel execution of relatively short programs.  This leads us to 
divide our algorithm into several small kernels, and execute them sequentially over the 
entire image, as opposed to performing in-depth processing on one pixel at a time. 
 
The most unique aspect of our algorithm is the use of multiple masking operations to 
streamline execution.  As discussed in section 3, there are several tests in the algorithm to 
reject pixels that cannot be features:  threshold, curvature, and neighborhood comparison.  
In order to reduce the number of unused threads on the GPU, we maintain a list of 
working pixels and process only those that have passed previous tests.  After each new 
test, the list of working pixels is filtered to remove any rejected points.  This change 



 14

greatly accelerates execution on the GPU by ensuring that every thread is working on a 
pixel that still has the potential to be a true feature.   
 
Before executing any other steps, we first allocate memory on the GPU for all 
intermediate copies of the image required during execution.  This is done with the 
createSpaceOnDevice() function, which takes image height and width as inputs, and 
returns a pointer.  These pointers refer to locations in GPU memory, and are passed to 
kernel functions.  The allocation step is done once at the beginning of execution. 
 
After allocation is complete, Gaussian blurring of the images is performed using the 
convolutionSeperable() method.  This is an NVIDIA program for implementing 
efficient separable convolutions on the GPU.  A full explanation of the algorithm is 
beyond the scope of this paper.  Consult the documentation for further information [3].  
This algorithm requires a Gaussian kernel of fixed width as an input.  This prevents us 
from using variable-width kernels during the blurring process, which can affect the 
quality of the final interest points.  In future implementations we will modify this 
program to take advantage of variable-width kernels. 
 
The DoG images are produced using the kernel defined in 
imageDifference_kernel.cu.  This function takes two blurred images as input and 
creates one thread per image pixel location.  Each thread computes the difference 
between the input images at its assigned pixel location and stores the result in the output.  
The resulting DoG images are stored in the pre-allocated device memory.  The host keeps 
a pointer to the location of each DoG image.  Interest point extraction begins after the 
blurred and DoG images have been computed.  
 
As discussed above, we use a series of masking operations to identify pixels that cannot 
possibly be interest points.  In later steps, these pixels are ignored.  The first mask is 
based on a simple threshold check, and computed by threshold_kernel.cu.  One thread 
is created per pixel in the DoG image.  Each thread checks the pixel value against a 
threshold.  The output of this kernel is a binary image, where pixels that pass the 
threshold test are assigned true and all other pixels are false. 
 
To simplify computations with the mask we use a special data structure: the 
locationArray.  The locationArray stores the locations of possible interest points in 
the image.  When the location of a possible interest point is found, its index (calculated 
using the one-dimensional representation of the image) is stored in the locationArray.  
To populate the locationArray, the threshold mask is read back to the CPU from the 
GPU and examined.  The indices of pixels with a true mask value are stored in the 
locationArray in sequential order.  A counter records the total number of true values 
found in the mask image.  In general, transferring data between the GPU and CPU is an 
expensive operation and should be avoided, but in this case, the operation executes more 
efficiently on the CPU. 
 
The locationArray is used to simplify the next step: difference of Gaussian comparison.  
Three DoG images are input to comparison_kernel.cu: the central image and the two 
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DoG images above and below it in the pyramid.  One thread is created for each element 
of locationArray.  This thread compares the pixel value at the stored location to its 
eight neighbors in the central image and to the nine neighbors in both the upper and lower 
DoG images.  If the pixel value is greater than or less than all of its neighbors, the point is 
a potential feature.  The curvature at the pixel is computed in order to reject inherently 
unstable interest points positioned on edges.  If a pixel value passes both tests, its position 
remains stored in the locationArray.  If it fails either test, its position in the array is set 
to false signifying that the pixel is no longer a candidate interest point.  After the 
comparison is complete, the locationArray is read back to the CPU, and rebuilt so the 
only the surviving candidate locations remain.  The count is updated to reflect any 
changes in the number of candidate points. 
 
The final step is point refinement, performed by refinePos_kernel.cu.  This kernel 
accepts the final locationArray and the three difference of Gaussian images as input, 
and creates one thread for each interest point location in the locationArray.  The 
position refinement method solves a linear system to determine the sub-pixel location of 
the interest point peak.  The refined location and interpolated peak value are returned.   
 
After processing all the DoG images for an octave, we use down-sampling by a factor of 
two to reduce the work required at the next octave. The final image of the Gaussian 
pyramid from the last octave is down-sampled to become the first image of the Gaussian 
pyramid in the next.   The final two DoG images from the last octave are down-sampled 
and become the first two DoG images in the next.  The down-sampling kernel, called 
decimate_kernel.cu, creates one thread for each pixel (x, y) in the down-sampled 
image.  The thread obtains the pixel value for the down-sampled image from the pixel at 
position (2x, 2y) in the original image.  As described earlier, these steps (except for 
memory allocation) are repeated until a number of octaves, logarithmic to the size of the 
base image, have been processed. 

7. Experimental Results 
We tested the performance of our GPU-DoG implementation in two ways.  First, we used 
a standard test for repeatability to show that the algorithm produces correct features.  
Secondly, we measured execution time to quantify performance improvement over a 
common CPU based implementation.  
  
For our first test, we evaluated the repeatability of points produced by GPU-DoG.  Given 
two images of the same scene with a known homography between them, repeatability 
measures an algorithm’s ability to find the same features in both images.  High 
repeatability is a desirable characteristic for any WBM technique.  We use the test to 
verify that GPU-DoG’s results are both correct and also competitive with other versions 
of DoG feature extraction. 
 
We tested GPU-DoG against the CPU-based DoG feature extraction implementation 
contained in the FL image processing library, written by Fred Rothganger (Org. 6341). 
FL has proven effective at solving many image processing problems at Sandia.  To 
evaluate the repeatability of extracted feature points, we used Krystian Mikolajczyk’s 
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region detector performance evaluation software, the standard test for algorithms of this 
type [4].   
 
The software takes six views of the same image with progressive projective rotations of 
20% to 60%.  The feature extractor is run on each image and all the extracted points from 
each rotated image are transformed into the base image.  Each feature is assigned a circle 
denoting its local neighborhood, based on the scale where it was extracted.  The 
repeatability measurement is calculated as the percentage of points from different images 
that lie in the same location and have a neighborhood overlap of at least 60%.  If an 
algorithm has high repeatability, its results are robust in the presence of scene 
transformations.  Figure 4 summarizes the results. 

 
Figure 4: Repeatability for the two algorithms 

 
FL slightly outperforms GPU-DoG on repeatability, though the results are reasonable, 
and demonstrate that GPU-DoG is producing correct results.  The difference in 
repeatability between GPU-DoG and FL is acceptable given the timing results presented 
below.  We believe that FL’s superior performance is due to the use of variable-width 
Gaussian kernels; GPU-DoG uses a fixed-width kernel.  We plan to include variable-
width kernels in future implementations of GPU-DoG.   
 
For our second test, we compared execution times of GPU-DoG and FL.  We evaluated 
the execution time using a satellite image of Florida (shown in Figure 5) scaled to five 
different sizes: 250x250, 500x500, 1000x1000, 1500x1500, and 2000x2000.   
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Figure 5: The satellite image of Florida used for timing analysis  

 
The timing tests used two different machines. The first is equipped with an NVIDIA 
8500 GTS video graphics card (2 processors), a 3.2 GHz Pentium D CPU, and 3.5 GB 
RAM.  The second machine has a higher-end NVIDIA 8800 Ultra (16 processors), dual 
Xeon 3.73GHz CPUs, and 3GB of RAM.  Each of the 8800 Ultra’s processors is 1.5 
times as fast as the processors on the 8500 GTS.  The timing results for each image, 
machine, and algorithm (in seconds) are summarized in Table 1 and Figure 6. 
 
 

Image 
Size 

CPU:  
Pentium D 
3.20 GHz 

CPU: 
Dual Xeon 3.73 

GHz 

CUDA:  
 GeForce 8500 

GTS 

CUDA:  
GeForce 8800 

Ultra 
     

250 0.0744 0.0640 0.0774 0.0578 
500 0.2972 0.2560 0.1063 0.0717 
1000 1.1932 1.0388 0.2398 0.1251 
1500 2.6802 2.3401 0.5048 0.2194 
2000 4.7776 4.1547 0.7390 0.3221 

Table 1: Timing data (in seconds) for GPU-DoG and FL on the 8500 and 8800 machines 
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Figure 6: Execution Time vs. Image Size 

 

For the 250x250 image, there is little difference between the different methods and 
machines; in fact, FL is slightly faster.  This is due to the fixed overhead cost of copying 
data to the GPU and allocating device memory.  As image size increases, this start-up 
cost becomes insignificant and GPU-DoG performance significantly exceeds that of FL.   
 
Table 2 shows the speedup obtained by switching from the CPU-based FL algorithm to 
GPU-DoG on each of the two machines. 
 

Image Size 

Speedup:   
GeForce 8500 GTS vs. 

Pentium D 3.2 GHz 

Speedup:   
GeForce 8800 Ultra vs. 

Dual Xeon 3.73 GHz  
   

250 0.9615 1.1064 
500 2.7951 3.5720 
1000 4.9765 8.3031 
1500 5.3092 10.6637 
2000 6.4645 12.9005 

Table 2: GPU vs. CPU speedup for both machines 
 

Though the execution time of GPU-DoG is clearly superior to FL, we can also compare 
the performance of the two NVIDIA graphics cards.  The 8800 Ultra card has 16 
processors, each 1.5 times as fast as the 2 in the 8500 GTS processor, so we expect 
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computational power roughly equal to twelve 8500 GTS GPUs.  If our implementation is 
efficient, we expect GPU-DoG to execute approximately twelve times as fast on the 8800 
Ultra. 
 
From the raw times in Table 1, the 8800 Ultra is approximately 2.3 times faster than the 
8500 GTS, far below our prediction.  Table 3 shows a breakdown of execution times for 
each GPU-DoG step, and the speedup gained by using the faster 8800 card.  Note that 
“Non-GPU Time” includes all time required for memory allocation, data transfer, and 
CPU control code. 
 

Operation GeForce 8500 GTS 
GeForce 8800 

Ultra 

Speedup: 
GeForce 8800 

Ultra 
    

Convolution 0.2943 0.0259 11.3483 
Refinement 0.0113 0.0052 2.1718 
Compare 0.0289 0.0037 7.7535 
Decimate 0.0239 0.0036 6.6428 
Threshold 0.0209 0.0021 9.9764 
Difference 0.0399 0.0040 9.9529 

Non-GPU Time 0.3198 0.2775 1.1524 
Table 3: Per method execution times and speedup: 8500 vs. 8800  

 
For the first six tasks, which are performed on the GPU, the 8800 has a cumulative time 
of .0446 seconds.  The 8500 performs the same tasks in .4193 seconds, giving a speedup 
ratio of 9.4, much closer to the expected speedup of 12.  Based on this analysis, we can 
conclude that the 8800 Ultra GPU is significantly faster than the 8500 GTS when 
performing GPU tasks, but the overall performance improvement is lessened by factors 
unrelated to the processing speed of the GPU.  Most of the non-GPU time is taken up by 
I/O operations: reading and writing data to and from the card.  Because this cost is not 
improved by changing to the 8800 card, it limits the overall speedup, despite the fact that 
GPU tasks execute significantly faster on the higher-end card.  Figure 7 illustrates this 
fact. 
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Figure 7: Per method execution times for 8500 and 8800 cards 

 
 

8. Future Work 
The present work shows great promise for future development.  Compared to the CPU-
based FL implementation, GPU-DoG produces features of competitive quality, and is 
significantly faster for large images.  There are several possible directions for future 
work. 
 
First, this test implemented only the first step of the wide baseline matching: feature 
extraction.  Future work will focus on implementing descriptor creation and feature 
matching on the GPU.  Second, we would like to implement some of the many other 
feature extraction algorithms other than DoG.  In particular, we would like to develop a 
GPU-enabled version of the Maximally Stable Extremal Regions algorithm [5]. 
 
The combination of computational power and relatively low cost makes general-purpose 
GPU technology a key performance enhancer, applicable to a wide variety of scientific 
computing problems. 
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