
SANDIA REPORT
SAND2007-6301
Unlimited Release
Printed October 2007

Implementing Wide Baseline Matching
Algorithms on a Graphics Processing
Unit

Daniel S. Myers, Antonio I. Gonzales, Fredrick H. Rothganger, and Kurt W. Larson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-
0#online

 3

SAND2007-6301
Unlimited Release

Printed October 2007

Implementing Wide Baseline
Matching Algorithms on a Graphics

Processing Unit

Daniel S. Myers, Antonio I. Gonzales, Fredrick H. Rothganger, and Kurt W. Larson

Advanced Information Systems
Sandia National Laboratories

P.O Box 5800
Albuquerque, NM 87185-0576

Abstract
Wide baseline matching is the state of the art for object recognition and
image registration problems in computer vision. Though effective, the
computational expense of these algorithms limits their application to many
real-world problems. The performance of wide baseline matching
algorithms may be improved by using a graphical processing unit as a fast
multithreaded co-processor. In this paper, we present an implementation
of the difference of Gaussian feature extractor, based on the CUDA
system of GPU programming developed by NVIDIA, and implemented on
their hardware. For a 2000x2000 pixel image, the GPU-based method
executes nearly thirteen times faster than a comparable CPU-based
method, with no significant loss of accuracy.

 4

This page intentionally left blank.

 5

Contents
1. Introduction ..9

2. Wide Baseline Matching...9

3. Difference of Gaussian Feature Extraction...10

4. CUDA Architecture ..11

5. Processing Images ..12

6. GPU-DoG Algorithm ..13

7. Experimental Results ..15

8. Future Work ..20

9. References ..21

 6

This page intentionally left blank.

 7

Figures
Figure 1. DoG feature selection: Gaussian pyramid, DoG

pyramid, peak discovery..10
Figure 2. Location and scale of features found by DoG feature

extractor ...11
Figure 3. Image C is tiled with blocks of constant size13
Figure 4. Repeatability for the three algorithms..16
Figure 5. Satellite image of Florida used for timing analysis.........................17
Figure 6. Execution time vs. Image size ...18
Figure 7. Per method execution times for 8500 and 8800 cards20

Tables
Table 1. Timing data (in seconds) for GPU-DoG and FL on the

8500 and 8800 machines ..17
Table 2. GPU vs. CPU speedup for both machines18
Table 3. Per method execution times and speedup: 8800 vs.

8500 ...19

 8

This page intentionally left blank.

 9

1. Introduction
Wide baseline matching (WBM), based on abstract local features, is the state of the art
paradigm in computer vision for object recognition and image registration. While highly
effective across a wide array of problems, these methods tend to be very computationally
expensive. Recently a multitude of work has emerged using the graphics processing unit
(GPU) for scientific computing. Specifically, a new technology called CUDA (compute
unified device architecture), available on NVIDIA GPUs, provides a C programming
interface that greatly simplifies implementing software on the GPU.

In this paper, we present a CUDA implementation of the difference of Gaussian (DoG)
feature selector used in WBM. We will give a brief overview of WBM, DoG feature
selection, and the CUDA architecture. Then we will detail our CUDA implementation of
DoG and compare the performance on two different NVIDIA GPUs to that of an existing
CPU based implementation. Finally, we will discuss further performance enhancements
and the implementation of the rest of the WBM algorithm.

2. Wide Baseline Matching
Wide baseline matching is a paradigm of algorithms which find matching features among
a set of images and solve for the geometric transformations between them. These
algorithms have applications in object recognition, image registration, robot navigation,
and many other image processing problems. While varying widely in design, WBM
algorithms share three essential steps:

1. Feature Extraction – Individual features are selected within the image that are
mathematically stable and can be reliably extracted from multiple images of the
same target even with variations in scale and illumination intensity. These
features tend to be abstract and based on object attributes such as variations in
gradients or areas of common contrast.

2. Descriptor Creation – The local area around each extracted feature is described

by a feature vector, called a descriptor. Descriptors are generated in a way that
removes the effects of rotation and illumination variation.

3. Geometric Matching – Candidate matching features are chosen by comparing the

similarity between their descriptors. The locations of a set of candidate matches
are then geometrically tested to determine if they share a common transformation.
Combining appearance (descriptors) and geometry based matching leads to very
low false positive rates.

For the purpose of this paper, we focus on the WBM algorithm presented by David Lowe
in 2004 [1]. Specifically, we work with the DoG feature extraction algorithm, detailed in
the next section.

 10

3. Difference of Gaussian Feature Extraction
The DoG feature extractor searches for locations in an image which are scale invariant.
To achieve scale invariance, features must be found in the image across all possible scale
changes (scale space). The Gaussian function is used as a kernel to search through scale
space through convolution with an input image. The Gaussian function, G, is defined as
follows:

2

22

2
)(

22
1),,(σ

πσ
σ

yx

eyxG
+−

=

where x, y is the position, relative to a pixel, and σ is standard deviation. Lowe proposed
that stable features across scales can be found by locating peaks in the differences
between convolutions of an image with a varying Gaussian kernel [1]. Each of these
difference images is called a difference of Gaussians.

Peaks are identified by creating a set of Gaussian convolutions of an image at regular
intervals of σ. The resulting ordered set of images is called a Gaussian pyramid. DoGs
are produced for each pair of adjacent images in the Gaussian pyramid, creating a
pyramid of DoGs. Starting with the second image in the DoG pyramid, each pixel is
compared with the eight neighboring pixels in the same image and the nine
corresponding pixels in the DoG images above and below it in the pyramid. If the pixel
value is either the maximum or minimum value, it is a potential peak. Figure 1 displays
the feature selection process.

Figure 1: DoG feature selection: Gaussian pyramid, DoG pyramid, peak discovery

 11

To increase the sampling of scales, the base image is down-sampled to half its size and
the same process is repeated. Each time this processing is repeated it is called an octave.
The number of octaves created is usually logarithmic with respect to the size of the
original image.

The set of potential scale-invariant features are examined to ensure they are well defined.
First, potential features with very low intensity values are discarded. These features are
unstable with respect to lighting changes. Second, DoGs create strong responses along
edges and many of these points are poorly defined and sensitive to noise. A measure of
principle curvature is used to discard these poorly defined potential features. Finally, a
3D quadratic fitting function is used to interpolate the sub-pixel and sub-scale location of
the remaining features. At this point, feature selection is complete. Figure 2 shows an
image with its selected features. Each feature sits at the center of the circle, with the
radius representing the scale at which the feature was detected.

Figure 2: Location and scale of features found by DoG feature extractor

After extraction each feature is assigned a characteristic orientation and a descriptor is
built for the local area location around the feature. These steps are not part of our GPU
implementation and, therefore, are not described further in this paper. For a detailed
description, see [1].

4. CUDA Architecture
CUDA is an application programming interface (API) that enables general purpose
computation on NVIDIA GPUs. The CUDA interface uses the C programming language,
making scientific computing on GPUs more accessible than previous OpenGL based
technologies. Currently, the CUDA SDK is only available for NVIDIA’s G80 family of
GPUs, but NVIDIA promises that the technology will be supported on all its future
hardware.

The CUDA programming model uses the GPU as a coprocessor, capable of supporting
the execution of applications on the host CPU. Functions executed on the GPU – called
kernels – are called from programs running on the host CPU. The GPU maintains its
own DRAM, and values can be exchanged between the device and host memories with
calls to special memory-management functions in the CUDA API.

 12

As a coprocessor, the GPU executes a large number of threads in parallel. Much of the
challenge of CUDA programming revolves around finding implementations of
algorithms that take advantage of this parallelism. CUDA groups its threads into thread
blocks. Each block is a collection of threads that share access to a block of device
memory. This allows threads within a block to cooperate and solve problems more
efficiently.

Conceptually, blocks are organized into a grid of two or three dimensions, with each
block having unique indices. Likewise, the threads within a block are also grouped into a
grid, with their own indices. The combination of block and thread indices uniquely
identifies each thread in an executing kernel program. The dimensions of the block grid
and thread grid are specified when the kernel function is invoked, as follows:

 dim3 threads(16, 16);

 dim3 blocks(12, 12);
 sampleKernelGPU<<<blocks, threads>>>();

This example creates an 12x12 grid of blocks, with each block having a 16x16 grid of
threads. CUDA allows a maximum of 512 threads per block. There can be at most
216x216x216 blocks. NVIDIA recommends using at least twice as many blocks as there
are processors on the device to reduce idle time during execution.

When a kernel program is invoked, all the created threads execute the kernel in parallel.
Threads may access values stored in global device memory, and threads within the same
block have access to shared memory, but the threads may execute in arbitrary order.

5. Processing Images
The block-based structure provides a convenient way of performing kernel operations on
images. This section explains the basic concepts used in the GPU-DoG image processing
kernels. There are many other ways of implementing image operations in CUDA, but
this method is arguably the simplest and illustrates many of the practical details of CUDA
programming.

We assign one dedicated thread to each pixel in the image. Each thread executes the
kernel program to process its pixel. When all threads have executed, every pixel in the
image will be successfully processed. Because there is an upper limit of 512 threads per
block, this requires multiple blocks for any image with more than 512 pixels. Let each
block be a square grid of threads, and all blocks the same size. Since the size of the
image is known and the block dimensions are constant, we can compute the size of the
block grid required to tile the image and create one thread per pixel. Figure 3 gives a
graphical depiction of this approach.

The kernel program is written so that each thread can effectively process its pixel in
parallel, without any information from other threads. First, the kernel program uses
CUDA API calls to determine the indices of the currently executing thread and the
indices of its block. Combined with the known constant block dimensions, these indices
identify the pixel location in the image corresponding to the current thread. The thread

 13

then performs processing for its pixel and stores the results in the appropriate location in
an output image. It is important to remember that all threads execute the same kernel
program in parallel. Therefore, the kernel must be written so that all threads will execute
correctly, regardless of their position in the image tiling.

Figure 3: Image C is tiled with blocks of constant size [2]

6. GPU-DoG Algorithm
This section covers the major parts of our GPU-DoG implementation. Our
implementation has the following major steps:

1) Allocation of device memory
2) Gaussian blurring of images
3) Difference of Gaussians computation
4) Threshold masking
5) Comparison of DoG images to find interest points
6) Refinement of interest point locations
7) Down-sampling and preparation for next octave

Though the basic steps of the algorithm are the same as other DoG implementations, we
have made changes to take advantage of GPU processing. In particular, graphics
hardware excels at rapid parallel execution of relatively short programs. This leads us to
divide our algorithm into several small kernels, and execute them sequentially over the
entire image, as opposed to performing in-depth processing on one pixel at a time.

The most unique aspect of our algorithm is the use of multiple masking operations to
streamline execution. As discussed in section 3, there are several tests in the algorithm to
reject pixels that cannot be features: threshold, curvature, and neighborhood comparison.
In order to reduce the number of unused threads on the GPU, we maintain a list of
working pixels and process only those that have passed previous tests. After each new
test, the list of working pixels is filtered to remove any rejected points. This change

 14

greatly accelerates execution on the GPU by ensuring that every thread is working on a
pixel that still has the potential to be a true feature.

Before executing any other steps, we first allocate memory on the GPU for all
intermediate copies of the image required during execution. This is done with the
createSpaceOnDevice() function, which takes image height and width as inputs, and
returns a pointer. These pointers refer to locations in GPU memory, and are passed to
kernel functions. The allocation step is done once at the beginning of execution.

After allocation is complete, Gaussian blurring of the images is performed using the
convolutionSeperable() method. This is an NVIDIA program for implementing
efficient separable convolutions on the GPU. A full explanation of the algorithm is
beyond the scope of this paper. Consult the documentation for further information [3].
This algorithm requires a Gaussian kernel of fixed width as an input. This prevents us
from using variable-width kernels during the blurring process, which can affect the
quality of the final interest points. In future implementations we will modify this
program to take advantage of variable-width kernels.

The DoG images are produced using the kernel defined in
imageDifference_kernel.cu. This function takes two blurred images as input and
creates one thread per image pixel location. Each thread computes the difference
between the input images at its assigned pixel location and stores the result in the output.
The resulting DoG images are stored in the pre-allocated device memory. The host keeps
a pointer to the location of each DoG image. Interest point extraction begins after the
blurred and DoG images have been computed.

As discussed above, we use a series of masking operations to identify pixels that cannot
possibly be interest points. In later steps, these pixels are ignored. The first mask is
based on a simple threshold check, and computed by threshold_kernel.cu. One thread
is created per pixel in the DoG image. Each thread checks the pixel value against a
threshold. The output of this kernel is a binary image, where pixels that pass the
threshold test are assigned true and all other pixels are false.

To simplify computations with the mask we use a special data structure: the
locationArray. The locationArray stores the locations of possible interest points in
the image. When the location of a possible interest point is found, its index (calculated
using the one-dimensional representation of the image) is stored in the locationArray.
To populate the locationArray, the threshold mask is read back to the CPU from the
GPU and examined. The indices of pixels with a true mask value are stored in the
locationArray in sequential order. A counter records the total number of true values
found in the mask image. In general, transferring data between the GPU and CPU is an
expensive operation and should be avoided, but in this case, the operation executes more
efficiently on the CPU.

The locationArray is used to simplify the next step: difference of Gaussian comparison.
Three DoG images are input to comparison_kernel.cu: the central image and the two

 15

DoG images above and below it in the pyramid. One thread is created for each element
of locationArray. This thread compares the pixel value at the stored location to its
eight neighbors in the central image and to the nine neighbors in both the upper and lower
DoG images. If the pixel value is greater than or less than all of its neighbors, the point is
a potential feature. The curvature at the pixel is computed in order to reject inherently
unstable interest points positioned on edges. If a pixel value passes both tests, its position
remains stored in the locationArray. If it fails either test, its position in the array is set
to false signifying that the pixel is no longer a candidate interest point. After the
comparison is complete, the locationArray is read back to the CPU, and rebuilt so the
only the surviving candidate locations remain. The count is updated to reflect any
changes in the number of candidate points.

The final step is point refinement, performed by refinePos_kernel.cu. This kernel
accepts the final locationArray and the three difference of Gaussian images as input,
and creates one thread for each interest point location in the locationArray. The
position refinement method solves a linear system to determine the sub-pixel location of
the interest point peak. The refined location and interpolated peak value are returned.

After processing all the DoG images for an octave, we use down-sampling by a factor of
two to reduce the work required at the next octave. The final image of the Gaussian
pyramid from the last octave is down-sampled to become the first image of the Gaussian
pyramid in the next. The final two DoG images from the last octave are down-sampled
and become the first two DoG images in the next. The down-sampling kernel, called
decimate_kernel.cu, creates one thread for each pixel (x, y) in the down-sampled
image. The thread obtains the pixel value for the down-sampled image from the pixel at
position (2x, 2y) in the original image. As described earlier, these steps (except for
memory allocation) are repeated until a number of octaves, logarithmic to the size of the
base image, have been processed.

7. Experimental Results
We tested the performance of our GPU-DoG implementation in two ways. First, we used
a standard test for repeatability to show that the algorithm produces correct features.
Secondly, we measured execution time to quantify performance improvement over a
common CPU based implementation.

For our first test, we evaluated the repeatability of points produced by GPU-DoG. Given
two images of the same scene with a known homography between them, repeatability
measures an algorithm’s ability to find the same features in both images. High
repeatability is a desirable characteristic for any WBM technique. We use the test to
verify that GPU-DoG’s results are both correct and also competitive with other versions
of DoG feature extraction.

We tested GPU-DoG against the CPU-based DoG feature extraction implementation
contained in the FL image processing library, written by Fred Rothganger (Org. 6341).
FL has proven effective at solving many image processing problems at Sandia. To
evaluate the repeatability of extracted feature points, we used Krystian Mikolajczyk’s

 16

region detector performance evaluation software, the standard test for algorithms of this
type [4].

The software takes six views of the same image with progressive projective rotations of
20% to 60%. The feature extractor is run on each image and all the extracted points from
each rotated image are transformed into the base image. Each feature is assigned a circle
denoting its local neighborhood, based on the scale where it was extracted. The
repeatability measurement is calculated as the percentage of points from different images
that lie in the same location and have a neighborhood overlap of at least 60%. If an
algorithm has high repeatability, its results are robust in the presence of scene
transformations. Figure 4 summarizes the results.

Figure 4: Repeatability for the two algorithms

FL slightly outperforms GPU-DoG on repeatability, though the results are reasonable,
and demonstrate that GPU-DoG is producing correct results. The difference in
repeatability between GPU-DoG and FL is acceptable given the timing results presented
below. We believe that FL’s superior performance is due to the use of variable-width
Gaussian kernels; GPU-DoG uses a fixed-width kernel. We plan to include variable-
width kernels in future implementations of GPU-DoG.

For our second test, we compared execution times of GPU-DoG and FL. We evaluated
the execution time using a satellite image of Florida (shown in Figure 5) scaled to five
different sizes: 250x250, 500x500, 1000x1000, 1500x1500, and 2000x2000.

 17

Figure 5: The satellite image of Florida used for timing analysis

The timing tests used two different machines. The first is equipped with an NVIDIA
8500 GTS video graphics card (2 processors), a 3.2 GHz Pentium D CPU, and 3.5 GB
RAM. The second machine has a higher-end NVIDIA 8800 Ultra (16 processors), dual
Xeon 3.73GHz CPUs, and 3GB of RAM. Each of the 8800 Ultra’s processors is 1.5
times as fast as the processors on the 8500 GTS. The timing results for each image,
machine, and algorithm (in seconds) are summarized in Table 1 and Figure 6.

Image
Size

CPU:
Pentium D
3.20 GHz

CPU:
Dual Xeon 3.73

GHz

CUDA:
 GeForce 8500

GTS

CUDA:
GeForce 8800

Ultra

250 0.0744 0.0640 0.0774 0.0578
500 0.2972 0.2560 0.1063 0.0717
1000 1.1932 1.0388 0.2398 0.1251
1500 2.6802 2.3401 0.5048 0.2194
2000 4.7776 4.1547 0.7390 0.3221

Table 1: Timing data (in seconds) for GPU-DoG and FL on the 8500 and 8800 machines

 18

Figure 6: Execution Time vs. Image Size

For the 250x250 image, there is little difference between the different methods and
machines; in fact, FL is slightly faster. This is due to the fixed overhead cost of copying
data to the GPU and allocating device memory. As image size increases, this start-up
cost becomes insignificant and GPU-DoG performance significantly exceeds that of FL.

Table 2 shows the speedup obtained by switching from the CPU-based FL algorithm to
GPU-DoG on each of the two machines.

Image Size

Speedup:
GeForce 8500 GTS vs.

Pentium D 3.2 GHz

Speedup:
GeForce 8800 Ultra vs.

Dual Xeon 3.73 GHz

250 0.9615 1.1064
500 2.7951 3.5720
1000 4.9765 8.3031
1500 5.3092 10.6637
2000 6.4645 12.9005

Table 2: GPU vs. CPU speedup for both machines

Though the execution time of GPU-DoG is clearly superior to FL, we can also compare
the performance of the two NVIDIA graphics cards. The 8800 Ultra card has 16
processors, each 1.5 times as fast as the 2 in the 8500 GTS processor, so we expect

 19

computational power roughly equal to twelve 8500 GTS GPUs. If our implementation is
efficient, we expect GPU-DoG to execute approximately twelve times as fast on the 8800
Ultra.

From the raw times in Table 1, the 8800 Ultra is approximately 2.3 times faster than the
8500 GTS, far below our prediction. Table 3 shows a breakdown of execution times for
each GPU-DoG step, and the speedup gained by using the faster 8800 card. Note that
“Non-GPU Time” includes all time required for memory allocation, data transfer, and
CPU control code.

Operation GeForce 8500 GTS
GeForce 8800

Ultra

Speedup:
GeForce 8800

Ultra

Convolution 0.2943 0.0259 11.3483
Refinement 0.0113 0.0052 2.1718
Compare 0.0289 0.0037 7.7535
Decimate 0.0239 0.0036 6.6428
Threshold 0.0209 0.0021 9.9764
Difference 0.0399 0.0040 9.9529

Non-GPU Time 0.3198 0.2775 1.1524
Table 3: Per method execution times and speedup: 8500 vs. 8800

For the first six tasks, which are performed on the GPU, the 8800 has a cumulative time
of .0446 seconds. The 8500 performs the same tasks in .4193 seconds, giving a speedup
ratio of 9.4, much closer to the expected speedup of 12. Based on this analysis, we can
conclude that the 8800 Ultra GPU is significantly faster than the 8500 GTS when
performing GPU tasks, but the overall performance improvement is lessened by factors
unrelated to the processing speed of the GPU. Most of the non-GPU time is taken up by
I/O operations: reading and writing data to and from the card. Because this cost is not
improved by changing to the 8800 card, it limits the overall speedup, despite the fact that
GPU tasks execute significantly faster on the higher-end card. Figure 7 illustrates this
fact.

 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

GeForce 8500 GTS GeForce 8800 Ultra

GPU

E
xe

cu
tio

n
Ti

m
e

Non-GPU Time
Difference
Threshold
Decimate
Compare
Refinement
Convolution

Figure 7: Per method execution times for 8500 and 8800 cards

8. Future Work
The present work shows great promise for future development. Compared to the CPU-
based FL implementation, GPU-DoG produces features of competitive quality, and is
significantly faster for large images. There are several possible directions for future
work.

First, this test implemented only the first step of the wide baseline matching: feature
extraction. Future work will focus on implementing descriptor creation and feature
matching on the GPU. Second, we would like to implement some of the many other
feature extraction algorithms other than DoG. In particular, we would like to develop a
GPU-enabled version of the Maximally Stable Extremal Regions algorithm [5].

The combination of computational power and relatively low cost makes general-purpose
GPU technology a key performance enhancer, applicable to a wide variety of scientific
computing problems.

 21

9. References
[1] Lowe, D.G. “Object recognition from local scale-invariant features”. In Proc.

International Conference on Computer Vision, pp.1150-1157, 2004.

[2] NVIDIA CUDA Compute Unified Device Architecture Programming Guide.

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Progr
amming_Guide_1.0.pdf, Accessed September 24, 2007.

[3] Podlozhnyuk, V. Image Convolution with CUDA.

http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convol
utionSeparable/doc/convolutionSeparable.pdf, Accessed September 24, 2007.

[4] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,

T. Kadir and L. Van Gool. “A comparison of affine region detectors”. In IJCV
65(1/2):43-72, 2005.

[5] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust wide baseline stereo from

maximally stable extremal regions”. In Proceedings of the British Machine Vision
Conference, pages 384–393, 2002.

 22

Distribution

5 MS 0576 Daniel Myers, 5534
1 0661 Joselyne Gallegos, 5530
1 1009 Fred Rothganger, 6341
1 1243 Kurt Larson, 5534
5 1243 Antonio Gonzales, 5534
1 1243 Carol Harrison, 5534
1 1243 Steve Kempka, 5555

 9018 Central Technical Files, 8944
1 0899 Technical Library, 9536 (electronic copy)

(electronic copy)1

	Implementing Wide Baseline Matching Algorithms on a Graphics Processing Unit
	Abstract
	Contents
	Figures
	Tables
	1. Introduction
	2. Wide Baseline Matching
	3. Difference of Gaussian Feature Extraction
	4. CUDA Architecture
	5. Processing Images
	6. GPU-DoG Algorithm
	7. Experimental Results
	8. Future Work
	9. References
	Distribution

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

