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Abstract 
 

Gait or an individual’s manner of walking, is one approach for recognizing people at 
a distance. Studies in psychophysics and medicine indicate that humans can recognize 
people by their gait and have found twenty-four different components to gait that 
taken together make it a unique signature.  Besides not requiring close sensor contact, 
gait also does not necessarily require a cooperative subject.  
 
Using video data of people walking in different scenarios and environmental 
conditions we develop and test an algorithm that uses shape and motion to identify 
people from their gait.  The algorithm uses dynamic time warping to match stored 
templates against an unknown sequence of silhouettes extracted from a person 
walking.  While results under similar constraints and conditions are very good, the 
algorithm quickly degrades with varying conditions such as surface and clothing. 
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1. RECOGNITION USING GAIT 
 
One approach for recognizing people from a distance (~300 m) is to use a gait biometric. Here, 
we use the shape and motion of a walking person to determine their identity. To design and test 
gait recognition algorithms, we use data from the HumanID Gait Challenge Problem [1]. The 
data contain multiple sequences of people walking under various scenarios and conditions. From 
these video sequences Sakar et. al. [1] have detected and extracted silhouettes of the people 
walking. The silhouettes are scaled to a standard size and centered in a chip (small image) of size 
128 x 88. Figure 1 shows a subset of silhouettes from a video sequence. From the figure, one can 
see that the silhouettes are crude and extremely noisily with missing and extra information. 

 
Figure 1.  Example silhouettes of one gait cycle. 

 
The gait challenge data set contains a gallery size of 122 people with 10 probe experiments.  The 
probe experiments have only people from the gallery and do not necessarily have every gallery 
person. The probe sets have been designed to measure the performance of algorithms under 
various conditions such as camera angle (left or right), surface (grass or concrete), shoe type 
(shoe A or B), briefcase (yes or no), and time of collection (May or November). The gallery data 
set uses camera angle of right, surface of grass, shoe type A, no briefcase, and collection time of 
either May or November. The alternatives, concrete surface, shoe type B, direction from the left, 
carrying a briefcase, and collection time (6 months difference) are varied for the different probe 
experiments. Table 1 shows different probe experiments, and the x’s indicate what has changed 
from the gallery to the probe. For example, probe G has data from a different camera angle 
(right), shoe (type B) and surface (concrete), but no briefcase and no change in collection time or 
clothing.  
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Table 1. The probe experiments and the differences from the gallery. 
Exp Camera Angle Shoe Surface Briefcase Time Clothing 

A x      
B  x     
C x x     
D   x    
E  x     
F x  x    
G x x x    
H    x   
I  x  x   
J x   x   
K  x  x x x 
L  x x x x x 

 
 

2. APPROACH 
Our approach is to first create an ordered set of templates for each person. The templates 
represent the shape of the person at key points in the gait cycle and their order gives the 
sequential states that the person goes through for their gait sequence. Next, we match all 
templates to all the silhouettes using binary correlation. Finally, dynamic time warping is used to 
find the best set of template to silhouette matches (total smallest distance) while keeping the 
correct time ordering of the templates. 
 
2.1 Template Creation 
To create templates of each gallery sequence, we first determine the period of the gait sequence. 
The period is estimated by computing the area of the silhouette in the lower half of the image 
chip. Figure 2 shows an example of how the lower silhouette area changes with frame number 
(time). The figure shows that signal is periodic, but noisy. 

 
Figure 2.  Estimating the gait period: lower silhouette area versus frame number. 

 
Next, we band pass filter the lower silhouette area using short time Fourier transforms and use 
the median distance between the peaks and the valleys as an estimate of the period. Figure 3 
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shows the filtered signal from Figure 2. The algorithm estimates the period of the signal as 19 
frames. 

 
Figure 3.  Band pass filtered lower-area signal.  Gait period estimate is 19 frames. 

 
Using the period estimate, we form an initial set of clusters for a gallery sequence. We use the 
period as a rough guide to determine which silhouette chips belong to which cluster, but it does 
not necessarily drive the number of clusters we create. Figure 4 shows an initial set of clusters 
found for a gallery sequence. Note that the clusters are smoother than the original silhouettes and 
are time ordered. 

 
Figure 4.  Initial set of clusters for a gallery sequence. 

 
To get the final clusters, we use hierarchal clustering. Figure 5a shows the clustering tree. By 
cutting the tree at different spots, we can get the required number of final clusters. The 
assignment of the silhouettes to clusters is shown in Figure 5b. Figure 6 shows the final time 
ordered templates after averaging and applying a threshold. 
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Figure 5. a) Hierarchical clustering tree for determining the final clustering. b) 
Assignment of silhouettes to final clusters. 
 
 

 
Figure 6.  Final templates for a gallery sequence. 

 
2.2 Template Matching 
 
To match the templates to a sequence of silhouette chips we create a distance matrix.  The 
distance matrix represents the distance between every template and all the silhouette chips in the 
probe sequence. To determine which silhouette chip matches which template, we use dynamic 
time warping (DTW) [2].  The DTW algorithm determines the smallest cost path through 
distance matrix using dynamic programming.  Figure 7 shows a distance matrix represented as a 
gray level image.  The probe chips are along the columns and the templates are along the rows.  
Here, the templates and probe come from the same person. The smaller costs are black and the 
larger costs are white.  The green line shows the optimal path giving smallest total average cost. 
Note the standard DTW algorithm has been modified to account for the periodic nature of gait. 
Also, the DTW algorithms force each template to match in sequence.  Thus, the templates 
account for the shape of a person, and DTW provides constraints for the person’s motion. 
 
Figure 8 shows a distance matrix where the templates and probe chips come from a different 
person.  Here, DTW forces the matches of templates 3 and 4 even though they do not match very 
well.  If we allowed the algorithm to match just templates 1 and 2, then we would not be 
correctly accounting for the motion of a gallery template sequence. 

a b
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Figure 7.   Image representation of a distance matrix that results from matching a set of  
        templates to all the probe chips for the same person. The green line represents  
 the optimal lowest cost path through the distance matrix using dynamic time 
 warping.  
 
 

 
Figure 8.  Distance matrix where the templates and chip sequence come from a different 
 person. 
 

3. RESULTS 
 
To show our results, we create cumulative match characteristic (CMC) curves for the different 
probe experiments (Table 1).  For CMC plots, the x-axis represents a rank threshold, and the y-
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axis shows the fraction of experiments that yield a correct match at ranks equal to or lower than 
the rank threshold.  Figure 9 shows a CMC for the different probe experiments using 9 templates 
per gallery person. Camera angle and shoe have the smallest effect on the results (probe 
experiments A, B, and C).  Surface has a significant effect (D-G, and L).  This indicates people 
modified their gait for walking on difference surfaces. Time and clothing have the largest effect 
on the results. 

 
Figure 9. CMC plot for the different probe experiments. 
 

4. CONCLUSIONS 
 
We have developed algorithms to recognize a person by their gait. The algorithms are based on 
silhouette sequences extracted from video clips of people walking. The algorithms uses DTW to 
match stored templates against an unknown sequence of silhouettes extracted from a video clip. 
Here, the templates account for the shape of a person and DTW provides constraints for the 
person’s motion. 
 
We test our algorithms using video data of people walking in different scenarios and 
environmental conditions. While results under similar constraints and conditions are very good 
the algorithm quickly degrades with varying conditions such as walking surface and clothing. 
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