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Abstract 

The reliability of thin film systems is important to the continued development of 

microelectronic and micro-electro-mechanical systems (MEMS).  The reliability of these 

systems is often tied to the ability of the films to remain adhered to its substrate.  By measuring 

the amount of energy to separate the film from the substrate, researchers can predicts film 

lifetimes.  Recent work has resulted in several different testing techniques to measure this energy 

including spontaneous buckling, indentation induced delamination and four point bending.  

 

This report focuses on developing quantifiable adhesion measurements for multiple thin 

film systems used in MEMS and other thin film systems of interest to Sandia programs.  First, 

methods of accurately assessing interfacial toughness using stressed overlayer methods are 

demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs 

along the interface, such as Au/Si, the calculated fracture energies between different tests are 

identical if the energy put into the system is kept near the needed strain energy to cause 

delamination.  When the energy in the system is greater than needed to cause delamination, 

calculated adhesion energies can increase by a factor of three due to plastic deformation.  

 

Dependence of calculated adhesion energies on applied energy in the system was also 

shown when comparisons of four point bending and stressed overlayer test methods were 

completed on Pt/Si systems.  The fracture energies of Pt/Ti/SiO2 were studied using four-point 

bending and compressive overlayers.  Varying the thickness of the Ti film from 2 to 17 nm in a 

Pt/Ti/SiO2 system, both test methods showed an increase of adhesion energy until the nominal Ti 

thickness was 12nm.  Then the adhesion energy began to decrease. While the trends in toughness 

are similar, the magnitude of the toughness values measured between the test methods is not the 

same, demonstrating the difficulty in extracting mode I toughness as mixed mode loading 

approaches  mode II conditions. 
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1 Introduction 
 

 Studies have shown that two types of fracture occur in systems with strong bonds: 

fracture along the interfaces and those that fracture through the layered material.  When systems 

have strong bonds, the fracture behavior is dictated by the bulk properties of the adjoining 

materials.  In weakly bonded materials, fracture occurs along the interface accompanied by 

plasticity in the adjoining metal.  For ideally brittle fracture, there is a rupture of atomic bonds.   

 

In response to this need for reliability, there have been over 200 different methods developed 

to measure adhesion strengths [1].  Many of these methods can only be used for specific 

specimen geometries, such as the particle-filled composites tensile test developed by Bai [2]. 

Although this test measures interface adhesion, it can only be used with rigid particles enveloped 

in non-viscoelastic polymers.  For solid thin films on rigid substrates, the number of adhesion 

tests drops significantly and is further divided into tests that either qualitatively or quantitatively 

measure adhesion.  Qualitative or semi quantitative tests, including the scotch tape test and the 

peel tests, give a general indication of how hard it is to separate the film from the substrate.  

Researchers estimate adhesion strength from the maximum external load before failure.  These 

tests are often used in industry due to their ease of use [1], but do not actually measure the 

adhesion strength of the system since the energy being used to separate the interface can not be 

separated from the external applied load.  Quantitative tests measure adhesion in terms of the 

energy needed to separate a specific interface area and were developed from Linear Elastic 

Fracture Mechanics (LEFM) principles.   

 

In the following sections, we will examine adhesion and residual stresses in thin film 

systems.  In addition, their importance to device reliability will be further explained.  

 

1.1  Adhesion Energy 
 

The term adhesion has been loosely used to define interfaces, leading to a general 

misnomer about what it means.  Typically, adhesion is defined as good or bad where “good” is a 

film sticking to a substrate and “bad” is when a film does not remain fixed to the substrate.  

Although this works to give a general idea, the term adhesion actually refers to the amount of 

energy per unit area required to separate a film from its substrate along the dividing interface.  

As we further define adhesion, a delineation will need to be made between the true adhesion and 

practical adhesion of a material system. 

 

The true work of adhesion, A, is the thermodynamic work required to create two new 

surfaces at the expense of the interface and is an intrinsic property of a given system that 

depends on the type of chemical bonding between the film and substrate. A can be calculated 

from 

 

 
  A = f + s fs  (1.1) 
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where f is the surface energy of the film, s is the surface energy of the substrate and fs is 

interfacial energy of the two materials in contact.  This true work of adhesion is a function of the 

types of bonds along the interface and is an intrinsic property of a film-substrate pair [1].   

 

The first measurements of true adhesion were done for liquid-solid interfaces using 

contact angle methods.  In this measurement system, a small liquid droplet is put on a solid and 

the contact angle is measured.  The Young-Dupré equation relates the true work of adhesion to 

the contact angle, , by   

 

 
  A = f 1+ cos( )   (1.2) 

 

as shown in Figure 1.1.   

  
Figure 1.1:  For liquid-solid interfaces, the contact angle between the droplet and solid surface 

may be used to calculate the adhesion energy. 

 

 

For solid-solid systems, however, it is impossible to measure only a true work of adhesion.   

During the debonding process, there is typically an additional contribution due to the inelastic 

damage that occurs during the separation process [1, 3].  This inelastic damage, including 

plasticity and micro-cracking occurring in the regions of the substrate and film near the interface, 

increases the total energy needed to separate a film and substrate.  This additional inelastic 

contribution is taken into account as follows 

 

 
  P

= A + inelastic (1.3) 

 

where P is the total fracture energy, A is the true adhesion energy, inelastic is the energy per unit 

area required for the inelastic deformation. inelastic is actually a parameter dependent on A .  This 

will be discussed further in chapter 3.   

 

1.2 Surface Tension and Surface Energy 
 

The relationship between surface tension and surface energy is described by Somorjai for 

one component systems [4].  When a surface is created, work is done to break bonds and remove 
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neighboring atoms.  The reversible surface work, W
s
, needed to increase the surface area A by 

the amount dA under constant temperature and pressure is given by 

 

 
  

WT,P
S

= dA (1.4) 

 

where  is the surface tension, which can be considered a pressure along the surface plane that 

opposes the creation of more surface.  In the absence of any irreversible work, the fracture 

energy is equal to the total free energy of the surface.  The total surface energy is equal to the 

specific free energy times the surface energy as shown by 

 

 
  

WT,P
S

= d GSA
 

 
 

 

 
   (1.5) 

 

By assuming that new surface is created, the specific free energy, if independent of the surface 

area and the surface work, is then given by  

 

 
  

WT,P
S

= GSdA   (1.6) 

 

This happens when the surface is cleaved and shows that the surface tension is equal to the 

specific surface energy for a one-component system.   

 

Since the true work of adhesion depends only on the types of bonds across an interface, 

the idealized fracture of an interface should be equal to the Griffith fracture energy.  Using this 

link, models have been made of the decohesion of interfaces.  This approach takes into account 

the strain energy release rate, G.  When this release rate is equal to or greater than the resistance 

to crack propagation, R, then a crack will grow along the interface [3].    

 

   G R  (1.7) 

 

The resistance to crack growth is the interfacial fracture toughness of mixed mode crack growth, 

( ) [1].   

 

This relation between the strain energy release rate and the fracture toughness defines the 

two considerations for interface reliability.  For an interface to be reliable, the film needs to 

remain adhered to the substrate.  This means that the stored strain energy within the film system 

must be less than the fracture energy, or adhesion energy. 
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2. Test Methods 
 

2.1 Delamination Based Adhesion Tests 
 

To predict the performance of film systems, industrial research groups initially developed 

qualitative measurement methods.  These test methods, such as the tape test [1], gave engineers 

an idea of the relative strength of interfaces but did not give an adhesion value.  Often these tests 

would be used to rate a film system with a pass/fail rating.  

 

The need for quantitative methods arose from the desire to predict film adhesion under a 

variety of externally applied stresses and also directly compare different film systems.  These 

quantitative measuring techniques can be subdivided into two different groups.  The first group 

induces fracture along an interface and then estimates the adhesion energy by modeling the 

delamination morphology.The second group measures the crack growth rate as a function of 

applied load.  Delamination based methods include spontaneous blisters, stressed overlayers, 

nanoindentation induced delamination, and scratch testing.  These are discussed in section (2.2).  

Four-point bending, based on the rate of crack growth, will be explained in section (2.3).   

 

2.2 Delamination Morphology Based Test Methods  
 

2.2.1 Spontaneous Buckles and Blisters 
 
 Spontaneous blisters and buckles can be formed from compressive residual stresses in the 

film.  The interfacial crack is driven by the stored elastic energy (residual stress).  This stored 

energy is released when the film buckles [2].  Typical delamination morphologies include 

circular blisters (Figure 2.1), and straight sided  (Figure 2.2) and wavy or “telephone cord” 

buckles (Figure 2.3). Prior work has used the models developed by Hutchinson and Suo [3] to 

calculate the interfacial fracture energies based on the delamination morphologies [4, 5].  

 

The calculation of the interfacial fracture energies of the spontaneous blisters can be done 

using the work of Hutchinson and Suo [3] .  These buckles initiate from interfacial defects and 

then propagate by the internal stresses in the film.  Since the film has delaminated, the strain 

energy release rate must be equal to or greater than the fracture toughness of the interface.  The 

interfacial fracture toughness can be calculated from estimations of the buckling stress and 

residual stresses of the system.  These calculations are slightly different for each morphology 

type, but the basic process is similar.  For an example, the calculations for a spontaneous blister 

will be shown.   
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Figure 2.1:  Circular blisters formed in an Au/Si system.  The residual stress in the Au film was 

approximately 60 MPa compressive. 

 

  

Figure 2.2:  Relatively straight sided Euler buckle formed in a W/Si system.  

 

  

Figure 2.3:  On this Figure, telephone cord blisters are evident on the upper right side.  These 

blisters were formed on an Au/Si system.   
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There are two types of stresses that influence the growth of a spontaneous buckle: the 

critical buckling stress and the driving stress.  The buckling stress is the stress required to 

generate delamination and the driving stress is the stress available to push out of plane 

deflection.  

 

The buckling stress of a circular blister, b, can be described by  

 

 

  

b =
2E

12 1 2 

 
 

 

 
 

h

b

 

 
 

 

 
 

2

 (2.1) 

 

where h is the thickness of the film, b is the radius of the induced blister, E is the elastic modulus 

of the film and  is Poisson’s ratio for the film.  The delamination height, width or radius of the 

blister and film thickness are shown schematically on Figure 2.4 below.  These dimensions are 

measured by atomic force microscopy (AFM) or optical microscopy.   

 

 

  
 

Figure 2.4: A cross sectional schematic of the dimensions of a buckle or blister.   

 

 

The stress driving the delamination, d, in this case the residual stress in the film, can be 

determined from the buckle shape.  Since film delamination already occurred the driving stress is 

given by  

 

 

  

d = b c1 h

 

 
 

 

 
 

2

+1

 

 

 
 

 

 

 
 
  (2.2) 

 

where  is the height of the film delamination, h is again the thickness of the film, and c1 is a 

constant depending on Poisson’s ratio, given by  

 

 
  
c1 = 0.2473 1+( ) + 0.2231 1 2 

 
 

 

 
   (2.3)  

 

Both equation 2.1 and 2.2 are only applicable when the ratio of thickness to blister width, h/b, is 

much less than 1. 

 

From the buckling and driving stresses, the fracture energies can be determined. The 

practical work of adhesion, ( ), describes the amount of the energy needed for the side walls of 

h

2b
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the buckle to arrest.  The steady state fracture energy, SS, is the energy to propagate the buckle 

forward.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  There are two fracture energies that describe the growth of a blister.  The practical 

work of adhesion and the steady state fracture energy [6].   

 

 

The practical work of adhesion is calculated from  

 

 

  

( ) =
1 2 
 
  

 
 )h

2E

 

 

 
 
 

 

 

 
 
 

d b( ) d + 3 b( ) (2.5) 

 

and the steady state energy is  

 

 

  

ss =

1 2 
 
  

 
 )h r

2

2E

 

 

 
 
 

 

 

 
 
 

1 b

d

 

 
 

 

 
 

2

  (2.6) 

 

where the contributing factors are as described in equations (2.1) to (2.3).   

 

 Various research groups have been working on methods to explain the formation of 

different delamination morphologies and to determine the best methods for adhesion 

calculations.  Although many groups agree on the film stress state to form circular blisters (equal 

biaxial stresses), they do not agree on the stresses required to form wavy buckles.  Cleymand [7] 

monitored 304L stainless steel films on polycarbonate films and saw the evolution from pre-

existing straight buckles to wavy buckles.  During the transition, the buckles increased in width.  

This growth in width was shown to correlate with the release of stress in the transverse direction 

and indicates that this is energetically favorable for stresses along the length of the buckles.  This 

has been put forward as the reason for the greater number of delaminations with waves versus 

straight sides[8].  These slight changes in stress states, however, are minimal and the models for 

straight-sided blisters can be applied to determine the interfacial fracture energies [5].  This work 

modeled Pt telephone cord blisters as both straight-sided blisters (when measured through the 

inflection point) and circular blisters (when measured at the curve peak) which had been 

( ) 

 ss 
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developed by Moon et al. [9].  Both models came within 15%, which is well within typical 

standard deviations for interfacial fracture measurements.   

 

 Normally, researchers change the residual stress in their metallic films by changing the 

processing pressures to increase the magnitude of compressive stress since this method has been 

well defined in the literature [10].  Thornton [10] showed that changing the processing pressures 

could also change grain size and texture.  Since these changes can lead to alterations in bonding 

along the interface, several research groups are increasing stress though hydrogen implantation 

[11-13].   

 

2.2.2 Stressed Overlayers 
 

If a film system does not have enough compressive residual stress to delaminate, the 

simplest method to apply energy to the system is to add an overlayer film with a uniform 

compressive stress.  This method enables buckle morphologies to be used to determine the 

adhesion energy for films under a tensile stress.  Like spontaneous buckles, the adhesion energy 

is a function of both the driving stress and the buckling stress. The buckling stress, b, is a 

function of the moment of inertia, IT, for the multi film system and is given by  

 

 

  

b =
μ2

ahb2

E1

1 1
2 

 
 

 

 
 

 

 

 
 
 

 

 

 
 
 
IT( ) (2.7) 

 
where h is the thickness of the film of interest and the overlayer film, b is the radius of the 
induced blister, E is the elastic modulus of the film,  is Poisson’s ratio for the film, and a is a 
geometric constant.  The geometric constant drops out when evaluated with IT. [14, 15]  
 

 IT is determined by treating the film and overlayer as a composite beam, with moduli E1 

and E2 and equal length.  Once the composite beam is bent, the top layer elongates by factor 

equal to E2/E1.  The moment of inertia of the new section, Figure 2.6, is considered to revolve 

around the neutral axis of the system.  It is determined from the height of the neutral axis and the 

applications of the parallel axis theorem [14, 15].  

 

The composite centroid Y  is  

 

 

  

Y = kAkyk

k Ak( )
=

y1A1 + y2A2

A1 + A2

 (2.8) 

 

and the total transformed moment of inertia for the system is 

 

 
  
IT =

1

12
Bh1

3 + A1 Y y 1( )
2

+
1

12
naBh2

3 + A2 Y y 2( )
2

 (2.9) 
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when the areas and centroids of the component beams are calculated as  

 

 Material 1 Material 2 

Area A1=Bh1 A2=nBh2 

Centroid   y 1 = h1 2    y 2 = h1 + h2 2  

 

B in these equations if the unit width, which later cancels in the critical buckling stress in when 

multiplied by the total transformed moment of inertia. The elastic constants are 

 

  
E2 1 2

2 
 
  

 
 = naE1 1 1

2 
 
  

 
  and 

  
E2 1 2( ) = nbE1 1 1( ). 

 

  

Figure 2.6: A schematic of a composite beam before (1eft) and after bending (right) [14].   

 

 

 The moment of inertia converges to the single layer value for one film, meaning a multi-

layer film system can easily be treated as a single layer film system [14, 15].  For calculations of 

interfacial fracture toughness, ( ), the modulus and Poisson’s ratio values are weighted 

averages of the component films. Poisson’s ratio is calculated as  

 

 

  

 = 1h1 + 2h2
h1 + h2

 (2.10) 

 

where is thickness weighted Poisson’s ratio, h1,2 are thicknesses of each beam and 1,2 are the 

Poisson ratios for each material.  The weighted elastic modulus,  E  is 

 

 

  

E =
E1h1 + E2h2

h1 + h2

 (2.11) 

 

and E1,2 is the elastic modulus for material 1 and 2.   
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2.2.3 Indentation Induced Delamination  
 

Inducing delamination with an indenter was shown to be an efficient way to induce 

delamination by Marshall [16] when there is not enough driving energy from residual stresses or 

overlayers.  A conical indenter is driven perpendicularly into the film causing a radial expansion 

of the film that can initiate cracking along the interface and also drive propagation of that crack.   

To relieve the strain energy, the film can either buckle as the indenter tip is being driven into the 

film during loading or as the tip is being removed from the sample.  Marshall [16] used these 

steps to determine the interfacial fracture toughness of a film using indentation techniques as 

shown in Figure 2.7.    

 

Figure 2.7: Marshall and Evans [16] used these steps to determine the interfacial fracture 

toughness of a film using indentation techniques.  

 

 

To determine the interfacial fracture energy, the crack is assumed to form directly under 

the indenter tip [17].  The total strain energy to create a blister in the film above the interfacial 

crack is modeled by assuming the fracture is a clamped circular plate, where the indent is kept 

within the film.  Like the stressed overlayer method, the fracture energy, ( ), takes into account 

the critical buckling stress, b, the driving stress, d, and the indentation stress, I.  The 

indentation stress, the stress required to recompress the section, can be calculated with the 

following equation 

 

 

  

I =
VIE

2 hb2 1( )
  (2.12) 

 
where VI is the volume of the residual indentation.  The volume is estimated from the indentation 
depth and the area function of the indenter tip.  The buckling stress, b,is given by  
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b =
μ2h2Ef

12a2 1 f( )
  (2.13) 

 

where μ is depends on the boundary conditions of the delamination.  

 

The interfacial fracture energy, ( ), is then given by 

 

 
  

( ) =

h I
2 1 2 

 
 

 

 
 

2E
+ 1( )

h d
2 1( )

E
+ 1( )

h I b( )
2

1( )
E

 (2.14) 

 

where , is the slope of the buckling load versus the edge displacement  defined as 
 

 =1/[1+0.902(1 )] (2.15) 

 

This test has been modified by adding a stressed overlayer to the system of interest before 

delamination by Kriese [14].  The overlayer was able to prevent plastic flow of the underlying 

film in the verticle direction and provide extra driving force for delamination.   

 

2.2.4 Scratch Testing 
 

Another way of applying energy is through scratch testing were the load is applied both 

laterally as well as the normally with an indenter tip.  The vertical load is continually increased 

until delamination of the film.   

 

There are several ways of determining the adhesion energy.  When the delamination is 

uniform on both sides of the scratch, Moody et al. [18M] have shown that a circular blister 

analysis can be used.  The test consists of drawing a stylus or indenter with a known radius of 

curvature over a film or coating under increasing vertical loads.  Resultant scratches are then 

observed under an optical or scanning electron microscope in order to estimate the minimum or 

critical load required delaminating the film.  Circular film delaminations are modeled like 

circular blisters.   

 

2.3 Four-point Bending 
 

Using specific sample geometry and loading configurations, the four-point bending test 

technique measures the critical load sufficient for crack growth along an interface that can then 

be used to calculate the sample’s strain energy release rate required for crack growth.  At this 

critical load where crack growth occurs, the strain energy release rate equals the interfacial 

fracture energy.  This experimental technique was derived by originally Charalambides for 

laminate composites [19, 20] and then further developed to measure the adhesion of thin films 

for microelectronics by Dauskardt et al. [21-37].   

 



 

 21

In this test, the interface of interest is bonded between two elastic substrates.  The load 

then is applied to the bulk material sandwiching the interface, making it easy to control the 

interface crack growth.  The sample is loaded as shown in Figure 2.8. 

 

The bending moment increases with load, and a pre-crack initiates from the notch to the 

interface of interest.  During testing; the load is monitored while the displacement rate of the 

crosshead is kept constant, Figure 2.9.  The initial linear part of the load-displacement results 

from elastic loading of the composite beam, storing strain energy in the massive elastic 

substrates.  At the critical load, the strain energy available for fracture becomes larger than the 

fracture resistance of the interface and results in a load plateau and debond extension.  By using 

beam mechanics, and determining the critical load at which a displacement plateau is seen, the 

critical strain energy release rate can be determined. The resulting interface fracture energy is a 

function of the critical value of the applied strain energy release rate (G) as follows 

 

 

  

G =
21(1 2)M2

4Eb2h3
=

21(1 2)P2l2

16Eb2h3
 (2.16) 

 
where the bending moment is given by M=Pl/2, with P being the load and l the spacing between 
the inner and the outer loading lines, b is the beam width, h is the half thickness, and E and v are 
the elastic modulus and Poisson's ratio of the bulk substrate respectively.   
 

 It is important to note that only when the crack tip is sufficiently away from the vertical 

precrack (a>2h), the strain energy release rate is independent of the crack length.   

   
Figure 2.8:  Four-point bend specimen with a crack length of 2a. [38] 

 

 

Unlike spontaneous, stressed overlayer or indentation-induced delamination, the mode mixity of 

the loading is constant, ~43°.  This is an attractive technique since the loading mode mixity 

represents an almost equal amount of shear to normal stresses. Elastic curvature due to the 

residual stress in the film will only make a small contribution to the measured strain energy 

release rate.     
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Figure 2.9:  A load displacement curve showing typical trends during a four-point bend test [37].  
 

 

 The precision of four-point bend test results is highly dependant on sample preparation.  

Parameters such as substrate material, bond type and thickness, notch depth and polishing all 

influence the calculated interfacial fracture energy. 

 

2.4 Comparing Adhesion Values Between Tests 
 

Films may fail under a variety of stresses ranging from all normal stresses, to a 

combination of shear and normal stresses, to pure shear stresses.  Each test technique measures 

the adhesion energy corresponding to a different ratio of shear to normal stresses and is 

described by the phase angle of loading or mode mixity, .  The phase angle of loading is a ratio 

of the mode II to mode I stress intensities as follows 

 

 

  

= tan 1 kII
kI

 

 
  

 

 
   (2.17) 

 

where kII and kI are the stress intensity factors for mode II and mode I respectively.  As shown in 

Figure 2.10, this ratio of stresses influences the magnitude of energy dissipation needed for 

fracture. When the mode mixity is 0
o
 , fracture is caused by all normal forces and is often 

referred to as the mode I fracture energy.  When the fracture is caused by pure shear forces, ±90
o
, 

it is a mode II failure. Most measured values consist of mixed mode I normal and mode II shear 

contributions. The mode I contribution is the value that is of interest because it is a measure of 

adhesion and toughness. The criterion most often used to determine the normal mode I 

contributions from measured mixed mode values is, 

 

 

  

I =
( )

1+ tan2 1( )( )
 

  
 

  

  (2.18) 
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where  is an empirical material constant that adjusts the influence of the mode II contribution 

[3].  The values of  range from 0 to 1 with 0 depending on only mode I component and 1 being 

ideally brittle.  For most all of the systems used in this study,  will be approximately 0.3. 

 

 

  

Figure 2.10:  This shows the relationship between the mode mixity and the interfacial adhesion 

energy [6]. 

 

 

2.5 References 
 
[1] Goh LLN, Toh SL, Chooi SYM, Tay TE. Adhesion measurement of thin films to a 
porous low dielectric constant film using a modified tape test. Journal of Adhesion Science and 
Technology 2002;16:729. 
[2] Thouless MD, Hutchinson JW, Liniger EG. Plane-strain, buckling-driven delamination of 
thin films: model experiments and mode-II fracture. Acta Metallurgica et Materialia 
1992;40:2639. 
[3] Hutchinson JW, Suo Z. Mixed-Mode Cracking in Layered Materials. Advances in 
Applied Mechanics, Vol 29 1992;29:63. 
[4] Branger V, Coupeau C, Goudeau P, Boubeker B, Badawi KF, Grilhe J. Atomic force 
microscopy analysis of buckling phenomena in metallic thin films on substrates. Journal of 
Materials Science Letters 2000;19:353. 



 

 24

[5] Cordill MJ, Bahr DF, Moody NR, Gerberich WW. Adhesion measurements using 
telephone cord buckles. Materials Science & Engineering A (Structural Materials: Properties, 
Microstructure and Processing) 2007;443:150. 
[6] Volinsky AA, DF Bahr, MD Kriese, NR Moody, W Gerberich. Comprehensive Structural 
Integrity  vol. 8.13. p.453. 
[7] Colin J, Cleymand F, Coupeau C, Grilhe J. Worm-like delamination patterns of thin 
stainless steel films on polycarbonate substrates. Philosophical Magazine A: Physics of 
Condensed Matter, Structure, Defects and Mechanical Properties 2000;80:2559. 
[8] Cleymand F, Coupeau C, Grilhe J. Atomic force microscopy investigation of buckling 
patterns of nickel thin films on polycarbonate substrates. Philosophical Magazine Letters 
2002;82:477. 
[9] Moon MW, Jensen HM, Hutchinson JW, Oh KH, Evans AG. The characterization of 
telephone cord buckling of compressed thin films on substrates. Journal of the Mechanics and 
Physics of Solids 2002;50:2355. 
[10] Thornton JA, Hoffman DW. Stress-related effects in thin films. Thin Solid Films 
1989;171:5. 
[11] Pundt A, Pekarski P. Buckling of thin niobium-films on polycarbonate substrates upon 
hydrogen loading. Scripta Materialia 2003;48:419. 
[12] Pundt A, Nikitin E, Pekarski P, Kirchheim R. Adhesion energy between metal films and 
polymers obtained by studying buckling induced by hydrogen. Acta Materialia 2004;52:1579. 
[13] Nikitin E, Kirchheim R, Pundt A. Determination of adhesion energies by means of 
hydrogen loading. Journal of Alloys and Compounds 2005;404-406:477. 
[14] Kriese MD, Gerberich WW, Moody NR. Quantitative adhesion measures of multilayer 
films: Part I. Indentation mechanics. Journal of Materials Research 1999;14:3007. 
[15] Kriese MD, Gerberich WW, Moody NR. Quantitative adhesion measures of multilayer 
films: Part II. Indentation of W/Cu, W/W, Cr/W. Journal of Materials Research 1999;14:3019. 
[16] Marshall DB, Evans AG. Measurement od Adherence of Residually stressed Thin Films 
by Indentation: I. Mechanics of Interface Delamination  Journal of Applied Physics 
1984;56:2632. 
[17] Volinsky AA, Tymiak NI, Kriese MD, Gerberich WW, Hutchinson JW. Quantitative 
modeling and measurement of copper thin film adhesion. Materials Research Society 
Symposium - Proceedings 1999;539:277. 
[18] Moody NR, Hwang RQ, Venkataraman S, Angelo JE, Gerberich WW, Adhesion and 
Fracture of Tantalum Nitride Thin Films, Acta Materialia 1998;46:585. 
[19] Charalambides PG, Evans AG. Debonding properties of residually stressed brittle-matrix 
composites. Journal of the American Ceramic Society 1989;72:746. 
[20] Sbaizero O, Charalambides PG, Evans AG. Delamination cracking in a laminated 
ceramic-matrix composite. Journal of the American Ceramic Society 1990;73:1936. 
[21] Zhenjiang C, Dixit G, Li-Qun X, Demos A, Kim BH, Witty D, M'Saad H, Dauskardt RH. 
Benchmarking four point bend adhesion testing: the effect of test parameters on adhesion energy. 
AIP Conference Proceedings 2005:507. 
[22] Gage DM, Kyunghoon K, Litteken CS, Dauskardt RH. Effects of friction and loading 
parameters on four-point bend adhesion measurements of low-k thin film interconnect structures. 
Proceedings of the IEEE 2005 International Interconnect Technology Conference (IEEE Cat. No. 
05TH8780) 2005:42. 
[23] Litteken CS, Strohband S, Dauskardt RH. Residual stress effects on plastic deformation 
and interfacial fracture in thin-film structures. Acta Materialia 2005;53:1955. 



 

 25

[24] Lee A, Litteken CS, Dauskardt RH, Nix WD. Comparison of the telephone cord 
delamination method for measuring interfacial adhesion with the four-point bending method. 
Acta Materialia 2005;53:609. 
[25] Guyer EP, Dauskardt RH. Effect of aqueous solution chemistry on the accelerated 
cracking of lithographically patterned arrays of copper and nanoporous thin-films. Materials, 
Technology and Reliability for Advanced Interconnects and Low-k Dielectrics-2004 (Materials 
Research Society Symposium Vol.812) 2004:303. 
[26] Renuart ED, Fitzgerald AM, Kenny TW, Dauskardt RH. Fatigue crack growth in micro-
machined single-crystal silicon. Journal of Materials Research 2004;19:2635. 
[27] Sharratt BM, Dauskardt RH. Debonding under fatigue loading at polymer/inorganic 
interfaces. Nanoscale Materials and Modeling-Relations Among Processing, Microstructure and 
Mechanical Properties (Materials Research Society Symposium Proceedings Vol.821) 2004:363. 
[28] Guyer EP, Dauskardt RH. Electrical technique for monitoring crack growth in thin-film 
fracture mechanics specimens. Journal of Materials Research 2004;19:3139. 
[29] Litteken C, Dauskardt R, Scherban T, Xu G, Leu J, Gracias D, Sun B. Interfacial 
adhesion of thin-film patterned interconnect structures. Proceedings of the IEEE 2003 
International Interconnect Technology Conference (Cat. No.03TH8695) 2003:168. 
[30] Nagarajan K, Dauskardt RH. Adhesion and reliability of underfill/substrate interfaces in 
flipchip BGA packages: metrology and characterization. Seventh Annual 2002 Proceedings. Pan 
Pacific Microelectronics Symposium 2002:251. 
[31] Strohband S, Dauskardt RH. Interface separation in residually-stressed thin-film 
structures. Interface Science 2003;11:309. 
[32] Wang LC, Dauskardt RH. Effect of moisture and graded-layer mechanical properties on 
deformation and interfacial adhesion. Mechanical Properties Derived from Nanostructuring 
Materials. Symposium. (Mater. Res. Soc. Symposium Proceedings Vol. 778) 2003:227. 
[33] Strohband S, Dauskardt RH. Multi-scale simulations of interfacial fracture of nanoscale 
thin-film structures: effect of length scales and residual stresses. Mechanical Properties Derived 
from Nanostructuring Materials. Symposium. (Mater. Res. Soc. Symposium Proceedings Vol. 
778) 2003:303. 
[34] Litteken CS, Dauskardt RH. Adhesion of polymer thin-films and patterned lines. 
International Journal of Fracture 2003;120:475. 
[35] Snodgrass JM, Pantelidis D, Jenkins ML, Bravman JC, Dauskardt RH. Subcritical 
debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Materialia 
2002;50:2395. 
[36] Ma Q, Bumgarner J, Fujimoto H, Lane M, Dauskardt RH. Adhesion measurement of 
interfaces in multilayer interconnect structures. Materials Reliability in Microelectronics VII. 
Symposium 1997:3. 
[37] Dauskardt RH, Lane M, Ma Q, Krishna N. Adhesion and debonding of multi-layer thin 
film structures. Engineering Fracture Mechanics 1998;61:141. 
[38] Volinsky AA, Moody NR, Gerberich WW. Interfacial toughness measurements for thin 
films on substrates. Acta Materialia 2002;50:441. 
  

 

 



 

 26

 

3. Comparison of Delamination Test Methods 
 

3.1 Measurement Consistency 
 
 The fracture test systems outlined in section 2 can be used to measure the adhesion 
energy of films with either compressive or tensile residual stresses.  Each test system has 
limitations and can not be used on all film systems.  For compressive films that have already 
started to delaminate, four-point bending is unable to measure the film’s adhesion since 
subsequent processing would lift the film off completely.  The stressed overlayer method only 
works on film systems where the adhesion strength of the overlayer-film is greater than the film-
substrate.  Since no universal method can be used for all films, a comparison of these methods 
for identical systems is desired.  This would allow researchers to directly compare the Mode I 
values for a variety of test systems using the most appropriate fracture technique. 
 

This chapter will focus on determining adhesion energy using different delamination 
techniques including scratch, indentation and spontaneous overlayers.  As explained in the 
previous chapter, the measured adhesion energy can be affected by contributions including 
chemistry, texture, plasticity and roughness.  Of these parameters, plasticity can be controlled 
through optimization of the test method.  Often, only one of these test techniques is used.  In 
addition, there is a need to understand the constraints and applicability of each method to metal-
dielectric systems.  Comparisons of the delamination based test methods will be focused upon in 
this chapter.  These techniques will be applied and compared in two systems: W/Si and Au/Si.   
 

3.2 W/Si Fracture Energies 
 

W/SiO2 was used to study the sensitivity of measurement techniques to additional 

inelastic deformation.  This system was chosen since it has been well characterized [1-3] and can 

easily be deposited with DC magnetron sputtering to have high compressive stresses.  This study 

deposited compressive W films and compared the resulting fracture energies from spontaneous 

blisters, scratch testing and indentation induced delamination. 

 

3.2.1 Experimental Procedures 
 

A thin 250 nm compressive W film was deposited using DC magnetron sputtering onto 

native oxide formed on a (100) Si wafer.  The (100) Si was cleaned before film deposition using 

an acetone/IPA/H2O/acetone/IPA rinse process.  A Nanoindenter XP system with a 1μm radius 

of curvature conical indenter tip (with an included angle of 90º) was used to apply a loads of 25 

mN, 50 mN, 100 mN, and 200 mN each for 10 indentations.  Scratch tests were done at a rate of 

0.5 μm/sec along a 200 μm length in the lateral direction to a maximum normal load of 100mN .  

Delamination morphologies were measured with an Autoprobe CP Scanning Probe Microscope 

in the atomic force microscopy (AFM) mode.  
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3.2.2 Results 
 

Delamination morphologies formed from these tests are shown in Figure 3.1. This optical 

image shows the delamination morphologies after indention and scratch testing as well as 

spontaneous buckling of the film.  Optical examination indicate that both the scratch and 

indentation tests exhibit through-thickness radial cracking in the film.  AFM images, Figure 3.2, 

show that only the scratch tests exhibit cracking.    

 

The adhesion energies given in Table 1, show that energies for the indentation induced 

blisters and scratch blisters are lower than for spontaneous buckles.  All of these calculations 

were made using the equations described in section 2 and the following values: film= 0.39, Efilm= 

400 GPa.  

 

The differences between these calculated energies is due to inelastic deformation not 

accounted for in the models.  Cracking occurred during scratch testing and pile up during 

indentation.  Although cracking should theoretically raise the calculated adhesion energy, the 

pile-up exaggerates the height of the film delamination, making the calculated adhesion energy 

lower.  Radial cracking is suspected to reduce the hoop stress and constraint in the film.  This 

then allows the film to curl away from the substrate.  

 

Another area for errors in measurement of the adhesion energy is associated with the ratio 

of the blister to indentation radius.  A small ratio indicates a large contribution of indentation 

stress to the stress for buckle formation and an overestimation of adhesion energy. 

 
 

  
 

Figure 3.1:  Delamination of W/SiO2 by scratch testing, indentation and residual stresses in the 

deposited film.   

  

 

Scratch Tests 

Indentation Induced Blisters 

 

Spontaneous Buckles 
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(a)  (b) 

(c) 

Figure 3.2 (a-c):  AFM images of delamination morphologies from testing of W/SiO2 by scratch 

testing (c), indentation (b) and residual stresses (a) in the deposited film.   

 

 

 

 

 

 

 

 

 

 

 

Table 3.1:  The calculated mode I adhesion energies for W/SiO2.  The standard deviations were 

calculated using a sample set of ten tests for both the spontaneous and indentation induced 

blisters. 

 

3.3 Au/Si Fracture Energies  
 

The most common Au film system studied is Au/sapphire [4] as the Au/sapphire system 

does not form any interphase regions.  On the otherhand, the Au/SiO2 is frequently used in 

MEMS devices, such as MEMS mirrors.  However, it is also noted for diffusion between the Au 

and Si. For this reason we chose to study the Au/SiO2 system. 

 

  

Interfacial Fracture 

Energy (J/m
2
) 

Spontaneous Euler Buckles 0.63±0.17 

Indentation Induced Blisters 0.17±0.02 

Scratch Tests 0.24 
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3.3.1 Experimental Procedures 
 

150nm Au films were deposited onto native SiO2 on (100) Si wafers by DC magnetron 

sputtering at Sandia National Laboratories.  The wafers were then diced into small sections and 

W overlayers with varying thickness (220 nm, 250 nm, and 330 nm) were deposited on the diced 

substrates.  The Au films were cleaned before film deposition using an 

acetone/IPA/H2O/acetone/IPA rinse process.  Circular blister delamination morphologies were 

measured with an Autoprobe CP Scanning Probe Microscope in the atomic force microscopy 

(AFM) mode.  

 

3.3.2 Results 
 

The interfacial energies for the Au/native SiO2 driven by different W overlayers are 

shown in Table 3.2.  In section 2, several studies had shown a correlation between film thickness 

and measured fracture energies.  This study does not show the same trend.  This may be due to 

the different deposition conditions of the W, resulting in different film textures.  

 

 

 

Table 3.2:  This table shows both the mode I and the practical interfacial fracture energies for 

three different W/Au/SiO2 systems.  

 

 

3.4 Conclusions 
 
 Cracking within the film and substrate can lead to errors in the calculation of fracture 

energies.  This generally results in an overestimation of energies.  On the other hand, our results 

with the W/ SiO2 system show that pile-up exaggerates buckle height and can lead to an 

underestimation of fracture energies. When both cracking and pile up are minimized, the 

calculated fracture energies using different delamination models were similar as shown with the 

Au/SiO2 system. These limited studies clearly show that the calculated fracture energies can vary 

significantly for identical systems depending on test mode or the magnitude of driving stresses: 

Au/SiO2: .09-.40 J/m
2
 and W/SiO2: 0.17-0.63 J/m

2
.  This variation indicates the range in values 

which may be expected when selecting different test methods. 

 

 Sample 

Practical  

(J/m
2
) 

Mode I   

(J/m
2
) 

Residual Stress 

in the System 

(MPa) 

Phase Angle 

(Degrees) 

W 

Thickness 

(nm) 

Au with W 1.1 0.2 1600 -85 250 

Au with W 2.0 0.4 1300 -75 400 

Au with W 0.24 0.09 600 -70 330 
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4. Stressed Overlayers and Four Point Bending 
 
4.1 Pt-Ti-SiO2 System 
 

Most adhesion studies have examined the interfacial fracture energies of systems with 

uniform dimension, interfacial chemistries and stresses.  There is also a need to characterize the 

interfacial fracture energies of non-uniform systems created by contamination or deposition of 

discontinuous films. Schneider et al. showed that the interfacial toughness between Al and 

sapphire decreases when 5-20 nm of carbon is sputtered on the sapphire substrate prior to 

deposition of Al [1]. Kennedy et al. [2] have shown that altering surface chemistry through 

discontinuous polymer patterning significantly weakens the tungsten-SiO2 interface. Pt films are 

of particular interest as they have often been used as bottom electrodes for PZT (lead zirconate 

titanate) films because of their stability in high-temperature oxidizing atmospheres.  The addition 

of a Ti interlayer has been used to improve the adhesion of the Pt to oxides [3].  This layer is 

susceptible to changes in chemistry during high temperature processing.  When a critical 

temperature and time combination is reached, evolution of the Pt/Ti interface typically turns into 

a Pt/TiO2, with the O diffusing into the titanium layer from the substrate [4].  Although a few 

isolated measurements of the interfacial fracture energy have been made of fully aged Pt/TiO2 

systems, no study has looked at the progression of interfacial fracture energy with respect to non 

uniform changes in interface chemistry.  Another reason for studying non-uniform interfaces is 

to look at growth mechanisms of the thin films.  As many films deposit, they form islands prior 

to complete coverage [5, 6]. The coverage of the Ti has been shown to be non uniform on oxides 

in previous studies [7, 8]. In order to predict the evolution of an interface’s fracture energy over a 

device lifetime, a better understanding of non-uniform interface fracture energy must be made.  

This study uses DC magnetron sputtering to deposit a non uniform Ti interlayer in a Pt/Ti/SiO2 

system to explore the interface fracture energy with increasing Ti thickness.   

 
4.2  Buckling Measurements of Interfacial Toughness in Pt-Ti-SiO2 

 

As the deposition time of Ti is increased to deposit nominal thicknesses of 1, 3, 6, 12 and 

17 nm Ti layers, two results can occur.  If the Ti forms layer by layer, there should be a sharp 

transition between measured adhesion energies with no titanium interlayer, i.e. the Pt/SiO2 

system, to values nearing a known uniform coverage of the Ti in the Pt/Ti/SiO2 system.  If island 

growth occurs, however, there will not be a sharp transition between adhesion values once the Ti 

interlayer is deposited.  Instead, a gradual increase of adhesion values typical for the Pt/SiO2 to 

values typical of the Pt/Ti/SiO2 system was observed, similar to the rule of mixtures behavior 

exhibited by the W/SiO2 system.   

 

A typical sample set up for each of the Ti interlayers is shown in Figure 4.1, where the 

silicon wafer was sectioned into four quadrants:  SiO2 (lower right), W/SiO2 (lower left), 

Pt/Ti/SiO2 (upper left), and W/Pt/Ti/SiO2 (upper right).  This setup allowed for ease of measuring 

film thicknesses and quick measurement of W residual stress.  It should be noted that this 
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patterning of the samples did not impose a new mechanism of delamination growth.  

Delamination only occurred when the residual stress in the W was large enough to cause 

delamination at the interface containing the SiO2.  Figure 4.2 shows that the buckles stopped 

along the interface between the W/SiO2 and W/Pt/Ti/SiO2 systems when the residual stress of the 

W was not large enough to cause crack growth between the Ti and SiO2.  If the residual stress 

was high enough to cause delaminations in both systems to occur, a noted transition in the size 

and shape of the buckles formed between the regions of high adhesion, Ti/SiO2, and poor 

adhesion, Pt/SiO2.  A typical image showing this transition is shown in Figure 4.3. 

 

  
 

Figure 4.1:  A typical sample design for measuring the film thickness and interfacial energy of 

Pt/Ti/SiO2.   

  
 

Figure 4.2:  Film delamination only occurred once the W compressive residual stress was enough 

to delaminate a film system.  
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Figure 4.3:  In this film system, the W had a high enough stress to delaminate both the Ti/SiO2 

and Pt/SiO2 systems.   

 

Using the equations described in section 2, the buckling stress, driving stress, phase angle 

of loading, and practical and mode I values of adhesion energies for these systems were found.  

The driving stress for each system was slightly different due to increases in W thicknesses and 

also tensile stresses within the Pt films.  For all delaminations, however, the phase angle was 

around -89°. This makes direct comparison of the practical work of adhesion possible.  The 

averages and standard deviations were calculated from the interfacial fracture energies of six 

different buckles.  The measured practical work of adhesion for mixed mode failure of the 

Pt/SiO2 interface was 10 J/m
2
 and the measured value of the Pt/17 nmTi/SiO2 interface was 41 

J/m
2
.  These values were both within previously reported ranges.  The measured values for Ti at 

1, 3 and 6 nm were 26, 40 and 62 J/m
2
 respectively, and are plotted with standard deviation of 

the measurements in Figure 4.4.  Films with 12nm Ti layers never delaminated using this 

method. 
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Figure 4.4:  As the percentage of the interface is covered by Ti, the interfacial fracture energy 

increases.   

 

4.3 Four Point Bend Tests of the Pt-Ti-SiO2 System 
 
4.3.1 Substrate Preparation 
 

For four-point bend samples, a silicon dioxide passivation layer was grown to a thickness 

of 1μm on both sides of polished (100) Si wafers by a wet thermal process.  The original Si 

wafers had a thickness of 420μm.  To etch dice lines, the oxide on the front side of the wafer was 

first patterned by positive photolithography.  The oxidized wafer was spin coated with 

hexamethyldisilazane (HMDS), which served as an adhesion promoter at 3000 rpm for 30 

seconds.  Then, photoresist AZ5214-EIR was spun at the same conditions and underwent a soft 

bake on a hot plate at 110
o
C.  The mask, shown in Figure 4.8, and wafer are then aligned and 

exposed to a UV light source for 12 seconds.  The exposed regions were dissolved away using a 

4:1 mixture of DI water and AZ400K developer.  Once the oxide was etched away in BOE 

(buffered oxide etchant), the AZ400K developer was rinsed off using acetone.  The remaining 

oxide acted as etch stop for the anisotropic wet etch EDP (ethylene–diamine–pyrocatechol).  

After etching dice lines, the wet oxide was stripped off the entire wafer using BOE and then 

regrown to a thickness of 250 nm.  

 

The specimens for four-point bend experiments were 3.81 mm wide and the spans used 

for experiments were 25mm and 40mm.  Film systems were bonded with a low-temperature 

epoxy (Allied High Tech EpoxyBond 100) and cured at 150°C for 45 minutes. Notches were 

scribed into the sample and notched by EDP etching. 
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The four-point bend test system was fabricated at Washington State University, and is 

described in the PhD thesis of M.S. Kennedy (2007).  Complete schematics of the system are 

beyond the scope of this report. The displacement rate of the crosshead was 0.1 μm/s.  The 

interfacial debonds from five different beams were propagated along the selected interfaces.  

Since a thick thermal oxide was grown, a visual inspection of the surface was made to determine 

that the cracks grew along the metal/SiO2 interfaces and not the metal/epoxy interfaces. 

 

4.3.2 Four-Point Bend Results 
 

Most four-point bend studies use wafer saws to dice Si beams [9-12].  Following their 

example, beams were diced and the edges mechanically polished.   For these samples, notching 

was either done using a diamond scribe or a diamond saw.  However, all samples failed 

catastrophically at low loads.  An example of this catastrophic failure is shown in Figure 4.9.  

This was caused by the surface damage of the Si during cutting with wafer saw, shown in Figure 

4.10.  To decrease the surface damage, a new technique of etching dice lines and notches using 

EDP was developed.  This method resulted in smooth sidewalls, Figure 4.11.   

 

 Five samples of each specimen were loaded until plateaus occurred.  Identification of the 
interface through which the crack propagated was verified using optical microscopy since the 
coloration of each layer was distinct.  Figure 4.12 shows that the critical load at which crack 
extension occurred increased when the Ti interlayer thickness increased from 6nm to 12nm, then 

Figure 4.5a:  Mask pattern to fabricate the 

top Si beams that sandwich the interface of 

interest during four-point bending.  Each 

beam is 3.81 mm wide and the notches are 

2um deep.   

 

Figure 4.5b:  Mask pattern to fabricate the 

back Si beams that sandwich the interface 

of interest during four-point bending.   
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decreased as thickness increased to 20nm.  The load-displacement curves varied between 
samples of the same compositions, Figure 4.13. The initial plateau loads were first averaged over 
the first 20μm for each sample.  The average of five samples was then used to calculate the 
fracture energy using equation 2.13.   
 

  

Figure 4.6: Catastrophic failure of Pt sandwich specimen.  This failure was due to roughening of 

the Si surface and introduction of flaws during dicing.   
 

  

Figure 4.7:  During initial beam fabrication, the induced surface flaws caused catastrophic failure 
before load plateaus.   
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Figure 4.8:  Cross section of the Si beam after etching.   

 

  
 

Figure 4.9:  The load-displacement curves for 6nm, 12nm and 20nm Ti interlayers are shown.  
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Figure 4.10:  The load-displacement curves for five samples having a 12 nm thick Ti interlayer 

are shown. The initial plateau was averaged over 20 μm.    

 
 

4.4 Stressed Overlayer Four Point Bend Comparison 
 
The practical fracture energies are shown in Figure 4.14 and the mode I fracture energies for 
these two techniques are shown in Figure 4.15.  Both measurement techniques showed an 
increase in adhesion energy until a film thickness of 12nm was reached and then a reduction in 
fracture energy as the thickness increased to 20nm. Due to the differences in phase angle of 
loading, one would expect a higher practical toughness for the buckles than the four point 
bending tests, as is observed in Figure 4.14.  The differences between the two test methods are 
most likely due to the differences in phase angles of testing. (these are the inferred mode one 
toughness values calculated using eq. 2.18).  The factor of  two to three difference between the 
mode I values are due to the high phase angle of testing for the buckles.  As eq. 2.18 
demonstrates, the practical work of adhesion increases dramatically as the phase angle 
approaches 90º.  Therefore, small errors in the technique will be amplified when a mode I value 
is extracted.  Similarly, the assumptions used in the empirical experimental analysis of eq. 2.18 
are not certain.  When eq. 2.18 was developed, it was for one set of brittle materials, and we have 
extended it’s use to materials which do exhibit plastic deformation.  Therefore, while the 
difference between mode I toughness values is relatively large, the similarity in trends suggests 
both methods are viable methods for evaluating toughness within material systems with similar 
properties (i.e. plastically deforming metals on dielectric substrates). 
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Figure 4.11:  Mixed mode fracture energies taken by buckle and four-point bend methods as a 

function of nominal Ti interlayer thickness are shown. 
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Figure 4.12:  Mode I fracture energies as a function of nominal Ti interlayer thickness. 
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5.0 Conclusions 
 
Adhesion and fracture of thin films and interfaces affects the performance and reliability of 

macro and micro devices.  For design of new MEMs and microelectronic devices, there is a need 

for uniform measurement of adhesion and increased understanding of contribution factors to 

adhesion.  There are several techniques for quantitatively measuring the adhesion energies of 

film systems, including indentation induced, residual stress driven, scratch induced and four 

point bending.  All of these methods can only be used for some film systems, depending on a 

range of factors including the initial strength of the interface.  Initial comparisons suggested that 

plasticity of the film and substrate and also fracture within these components led to both 

underestimations and overestimations in the calculated fracture energies since current models do 

not account for plasticity and fracture within the film.  

 

For systems where fracture only occurs along the interface, such as Au/Si, the calculated 

fracture energies are identical if the energy put into the system is kept near the needed strain 

energy release rate to cause delamination.  Overlayers of different stresses and thickness on 

Au/Si showed that the calculated adhesion energies could change by a factor of four when high 

stresses lead to much higher strain energies than needed for delamination.  The Pt film system 

was used to compare four point bending and spontaneous buckles showed similar trends but not 

identical adhesion values.  The reason for the variation of Mode I values was the use of an 

empirical formula that causes in accuracies in extrapolating from mixed mode to mode I values.  

 

The benefit of the four point bend test is that the phase angle is well controlled and 

therefore likely provides a more accurate value of toughness.  However, several wafers of 

materials must be fabricated and extreme care is required to perform these tests.  Also, the 

toughness of the interface, if too great, may not allow fracture at the appropriate interface, and 

instead the epoxy bonds used in the sample fabrication may mail.   With limited sample material 

conditions (for instance in many MEMS or with samples from the field) the overlayer tests 

provide a reasonable measurement of toughness.  Most importantly, the trends in measuring 

toughness appear to track between the two methods, suggesting if two material conditions are to 

be evaluated (i.e. exposure to different hydrogen exposures), the test method most appropriate 

for the sample geometry can be used with confidence to predict trends in changes in adhesion in 

thin film systems. 
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