
SANDIA REPORT
SAND2007-5992
Unlimited Release
Printed September 2007

GNEMRE DBTools: A Suite of Tools for
Access, Maintenance, and Manipulation
of Data in a Relational Database

Jennifer E. Lewis & Sanford Ballard

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2007-5992
Unlimited Release

Printed September 2007

GNEMRE DBTools: A Suite of Tools for Access,
Maintenance, and Manipulation of Seismic Data

Jennifer E. Lewis & Sanford Ballard
Next Generation Monitoring Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-0401

Abstract

DBTools is comprised of a suite of applications for manipulating data in a database.
While loading data into a database is a relatively simple operation, loading data
intelligently is deceptively difficult. Loading data intelligently means: not
duplicating information already in the database, associating new information with
related information already in the database, and maintaining a mapping of
identification numbers in the input data to existing or new identification numbers in
the database to prevent conflicts between the input data and the existing data.

Most DBTools applications utilize DBUtilLib - a Java library with functionality
supporting database, flatfile, and XML data formats. DBUtilLib is written in a
completely generic manner. No schema specific information is embedded within the
code; all such information comes from external sources. This approach makes the
DBTools applications immune to most schema changes such as addition/deletion of
columns from a table or changes to the size of a particular data element.

ACKNOWLEDGMENTS

We thank all of the DBTools users who have helped us to debug and improve the software,
especially our colleagues at Los Alamos National Laboratories and Lawrence Livermore
National Laboratories. In particular, we are grateful to Richard Stead for his development of the
schema schema.

CONTENTS

1. Introduction.. 1
2. Key Technical Concepts .. 3

2.1 Table Definition Table... 3
2.2 RowGraph.. 5

2.2.1 RowGraph Example... 7
2.3 User-Defined Equality ... 10
2.4 Merging ... 11
2.5 Undo Capability... 12

3. DBTools Applications ... 13
3.1 EvLoader ... 13
3.2 DTX ... 13
3.3 Remap.. 14
3.4 WFMerge... 15
3.5 Unloader .. 15
3.6 Parallelyze ... 15
3.7 DBCompare ... 16
3.8 EventTable... 16
3.9 DatabaseViewer... 16
3.10 TableCreator .. 16

4. System Requirements... 17
4.1 Java .. 17
4.2 Platform ... 17
4.3 Table Definition Table... 17
4.4 Data Source (Database tables, Flat files, XML).. 17
4.5 Parameter Files and Environment Settings.. 17
4.6 Size .. 18

5. Future Development... 19
6. References.. 21
Glossary .. 23
Distribution ... 27

FIGURES

Figure 1. Example of a Simple Directed Graph... 5
Figure 2. NNSA Core Schema ERD.. 6
Figure 3. In-Memory ERD for Data from Tables 3-7.. 9
Figure 4. RowGraph for Sample Data in Tables 3-7 ... 10

TABLES

Table 1. Table Definition Table Columns ... 4
Table 2. Sample Table Definition Table Data ... 5
Table 3. Sample Origin Data ... 8
Table 4. Sample Event Data... 8
Table 5. Sample Assoc Data .. 8
Table 6. Sample Arrival Data .. 8
Table 7. Sample Sitechan Data .. 8
Table 8. Rows from an UndoSQL Table ... 12

 1

1. INTRODUCTION

DBTools was initially developed for two reasons. First, because the database content required to
be integrated into the Ground-based Nuclear Explosion Monitoring Research & Engineering
(GNEMRE) Knowledge Base (KB) had become too large and the associated schema too
complex to be handled with simple SQL scripts. Second, because many of the custom software
tools in use at the National Nuclear Security Administration (NNSA) laboratories did not have
the capability to insert the results of the calculations they perform back into the relational
database where data is stored. This was primarily due to the fact that inserting data into a
relational database is non-trivial; consequently, many application developers avoid inserting data
altogether rather than risk doing it incorrectly. Incorrectly inserting data can make the new data
difficult to access, may corrupt existing data in the database, and may result in data duplication.

After researching existing software to assess if any existing software vendors had already
implemented solutions to these issues, we developed DBTools. DBTools consists of an
assortment of applications that perform a range of data manipulation functions (insertion,
deletion, extraction, format conversion, merging) for data in a database, flat files, or XML
format.

All of the DBTools applications build upon the functionality in DBUtilLib. DBUtilLib is a
library of software utilities that facilitates:

• Proper insertion of new information into a relational database
• Proper removal of existing information from a relational database
• Proper merging of information into an existing relational database

DBUtilLib is written in Java [1] and can be included in software applications. It allows
applications to insert, update, and delete rows of information in the database while ensuring that:

• New IDs (identification numbers) do not conflict with existing IDs
• Foreign key relationships are honored even when foreign key constraints are not enabled

in the database
• Unique key constraints are honored even when unique key constraints are not enabled in

the database

Throughout this document, database table names will be in bold and column names will be in
italics.

The intent of this document is to describe what functionality the DBTools software provides.
The intended audience is those who are interested in learning about this functionality. DBTools
was primarily developed for seismologists and those performing research in the field of
seismology. A User’s Manual and sample parameters files are provided with the DBTools
software.

 2

This page intentionally left blank.

 3

2. KEY TECHNICAL CONCEPTS

2.1 Table Definition Table

DBTools applications make use of a table definition table in order to obtain information about
tables being processed. A table definition table is a collection of metadata about tables that is
stored independently of the tables themselves and the code. For those that are familiar with the
set of GNEMRE database schema tables known as the schema schema, the table definition table
is a view created from two of these schema schema tables – coldesdcript and colassoc.

Having this table metadata information available externally prevents the code from needing any
information (e.g. column names, column formats, primary key constraints, unique key
constraints, etc.) about the tables embedded within the code itself. This allows the code to be
highly flexible when table formats change. For example, when a column type changes from an
i8 to an i9, no code needs modification and recompilation. The only change needed is within the
table definition table for that column. After that change is made, the code will read in the
updated metadata from the table definition table and handle the new format accordingly.

Table definition tables also contain information that can be used when parsing table data from a
flat file. Thus, if the number of characters defined for a particular column within a particular
type of flat file changes, no flat file parsing code must be changed. The change is instead made
within the table definition table, which is used by the code when parsing flat files.

Another benefit to having this externally defined table definition table is that database tables can
be created using the information in the table definition table. Typically, tables exist in the
database and software acquires metadata about those tables from the database’s data dictionaries.
Using table definition table information, tables can be created with the correct column names,
column formats, primary key constraints, and unique key constraints. Again, this makes the
DBTools applications highly flexible in what they are able to achieve within the database.

Table 1 lists the columns in a database table definition table.

 4

Table 1. Table Definition Table Columns

TABLE_NAME Name of the type of table being defined.

COLUMN_NAME Name of a column within the table defined in TABLE_NAME.

COLUMN_POSITION Numerical “position” of the column within the table; (i.e., if
COLUMN_POSITION is 1, then the column defined in
COLUMN_NAME is the 1st column in the table defined in
TABLE_NAME).

KEY If the column defined in COLUMN_NAME is a foreign key, the
KEY column contains the name of the column in some other table
that the column defined in COLUMN_NAME refers to. If the
column defined in COLUMN_NAME is the table’s owned ID, the
KEY column contains the value ownedid!.

EXTERNAL_FORMAT The column defined in COLUMN_NAME’s external format. This
is the formatting applied to the column’s value when writing that
value to a flat file. Note that if this is a date, that date’s
formatting information must be a format that adheres to Oracle’s
standard for date formatting.

EXTERNAL_WIDTH The field width of the flat file format for the column defined in
COLUMN_NAME.

INTERNAL_FORMAT The format for the column in the database for the column
defined in COLUMN_NAME.

SCHEMA The schema that table and column information is being defined
for. (Different schemas may have different table and column
information.)

NA_ALLOWED A Boolean (y or n) to indicate whether or not an NA (not
available) value is allowed for the column defined in
COLUMN_NAME within the table defined in TABLE_NAME.

NA_VALUE The NA Value for the column defined in COLUMN_NAME if an
NA Value is allowed. NA values are used to indicate that
information is not available for a column.

COLUMN_TYPE The type for the column defined in COLUMN_NAME. This must
be one of the following 6 values: primary key, unique key,
foreign key, descriptive data, measurement data, administrative
data.

EXTERNAL_TYPE The external type for the column defined in COLUMN_NAME.
This is how this column will be represented within memory by
Java code.

 5

Table 2 contains some sample data from a table definition table.

Table 2. Sample Table Definition Table Data

TABLE
_NAME

COLUMN
_NAME

COLUMN_
POSITION

KEY EXTERNAL
_FORMAT

EXTERNAL
_WIDTH

INTERNAL
_FORMAT

SCHEMA NA_
ALLOWED

NA_
VALUE

COLUMN_TYPE EXTERNAL
_TYPE

event evid 1 ownedid
!

i9 9 number(9) NNSA KB
Core

n -1 primary key long

event evname 2 - a32 32 varchar2
(32)

NNSA KB
Core

y - descriptive
data

string

event prefor 3 orid i9 9 number(9) NNSA KB
Core

n -1 unique key long

event auth 4 - a15 15 varchar2
(15)

NNSA KB
Core

y - administrativ
e data

string

event commid 5 commid i9 9 number(9) NNSA KB
Core

y -1 administrativ
e data

long

event lddate 6 - a17:YY/MM/D
D
HH24:MI:SS

17 date NNSA KB
Core

n - administrativ
e data

date

2.2 RowGraph

DBUtilLib, the library used by all of the DBTools applications, uses concepts from graph theory
[2] to build a directed graph of related Rows in memory.

A graph is a mathematical concept involving a collection of vertices and a collection of edges.
Edges are the connections between pairs of vertices. A directed graph is a special type of graph
in which all of the edges have a direction, i.e., they originate in one vertex and terminate in
another. Figure 1 is an illustration of a simple directed graph where A is connected to B and C,
B is connected to A, and C is connected to B:

Figure 1. Example of a Simple Directed Graph

An Entity Relationship Diagram (ERD) for tables in a database is an example of a directed
graph. The database tables are the vertices and the relationships created by the foreign keys are
the bidirectional edges. Consider Figure 2 which illustrates the ERD for the core tables of the
NNSA schema [3]. Each box in the diagram represents a table vertex, and each line connecting
two tables represents an edge.

 6

Figure 2. NNSA Core Schema ERD

There can be many edges between two tables, and each edge is labeled with information
indicating which foreign key is used to relate the tables. In Figure 2, the arrival table is related
to the assoc table through the arid column. This means that if an arrival row has an arid of 123
and an assoc row has an arid of 123, those rows are related.

DBUtilLib is able to represent ERDs in memory as directed graphs. The vertices in this graph
are the tables in the ERD and the edges are generic SQL select statements that can be used to
find related data from the tables the edge connects. (The SQL statements are generic because
they do not contain any actual table data.) Consider again the edge labeled arid that connects the
arrival and assoc tables. Within DBUtilLib, this edge would be represented by the following
SQL:
 SELECT *
 FROM assoc
 WHERE arid = #arid#

 7

This SQL statement indicates that, given a specific row from an arrival table, related rows can
be found in the assoc table by using the arid column.

The #arid# notation is a placeholder for a value will later be substituted into this where clause
when looking for an assoc row with a particular arid value. Thus, given a row from an arrival
table with an arid value of 123, the #arid# in the where clause is replaced with the values 123,
and related rows in the assoc table can be found by executing the following SQL:
 SELECT *
 FROM assoc
 WHERE arid = 123

DBUtilLib uses this concept of a directed graph not only to represent an ERD in memory, but
also to create RowGraphs. The vertices in this directed graph are no longer tables, but are
instead rows (in-memory representations of database rows) from tables represented in the in-
memory ERD. While ERDs have bidirectional edges (connectivity between tables can be
explored in either direction), RowGraphs can have either unidirectional or bidirectional edges.
Having unidirectional edges can be useful if an application is only interested in finding
connected rows in one direction but not the other.

A RowGraph is constructed by starting with one or more rows in the database and for each row:
• determining which table that row belongs to
• retrieving the SQL for all of the edges emanating from that table from the in-memory ERD
• replacing column names enclosed in ## in that SQL with the row’s value for the column

name within ##
• executing the SQL to find related rows
The above steps are repeated until all related rows have been found and added to the RowGraph.

From the application development point of view, a RowGraph is extremely useful. Once a set of
database tables has been identified, and the relationships / edges between those tables have been
defined, one may specify an initial row in a single table in the database and extract all the other
rows (from tables defined in the ERD) related to that row, regardless of how many tables are
involved. If the tables and relationships are properly defined, then the application will have in
memory only the rows needed for processing. The application will also have the information
needed to efficiently traverse this data set and access the rows with which it needs to interact.

2.2.1 RowGraph Example

The easiest way to understand RowGraphs is with an example. Tables 3-7 contain some sample
data from origin, event, assoc, arrival, and sitechan tables. Due to space limitations, not all
columns are shown for each table. However, the columns necessary to demonstrate RowGraph
functionality are present.

 8

Table 3. Sample Origin Data

LAT LON DEPTH TIME ORID EVID JDATE GRN SRN ETYPE AUTH

49.9112 78.9267 0 449385550.8 45744 44726 1984089 329 28 en THUR-BAL

Table 4. Sample Event Data

EVID PREFOR AUTH

44726 45744 THUR-BAL

Table 5. Sample Assoc Data

ARID ORID STA PHASE DELTA SEAZ ESAZ
1896847 45744 BRVK P3KP 6.251 116.82 303.57
1896848 45744 BRVK Pg 6.251 116.82 303.57
1896849 45744 BRVK Sn 6.251 116.82 303.57

1896850 45744 BRVK Lg 6.251 116.82 303.57

Table 6. Sample Arrival Data

STA TIME ARID JDATE CHANID CHAN IPHASE AUTH
BRVK 449385644.3 1896847 1984089 53 SHZ07 P3KP LANL
BRVK 449385665.4 1896848 1984089 53 SHZ07 Pg LANL
BRVK 449385714.0 1896849 1984089 53 SHZ07 Sn LANL

BRVK 449385745.0 1896850 1984089 53 SHZ07 Lg LANL

Table 7. Sample Sitechan Data

STA CHAN ONDATE CHANID OFFDATE CTYPE EDEPTH HANG VANG DESCRIP

BRVK SHZ07 1972102 53 2286324 n 0.015 -1 0
short-period
vertical

Given these tables, a simplified representation of the in-memory ERD is shown in Figure 3.

 9

arrival

arid
chanid

sitechan

chanid

event

evid
prefor

where evid=#evid#

where chanid=#chanid#

origin

evid
orid

assoc

orid
arid

where orid=#orid#

where arid=#arid#

Figure 3. In-Memory ERD for Data from Tables 3-7

This example RowGraph construction will begin with the row of origin data. The origin table
has connections to the event table and the assoc table. Note that the origin table and the event
table are connected with the
 where evid = #evid#
where clause. To determine if any event rows belong in the RowGraph with the origin row, the
#evid# in the above where clause is replaced with the value from the evid values from the origin
row (44726), and the following SQL is executed:
 SELECT *
 FROM event
 WHERE evid = 44726
There are no unvisited connections leading from the event table to any other tables, so no further
processing is necessary for the retrieved event row.

Next, the RowGraph construction must determine if there are any assoc rows connected to this
starting row. Using the
 where orid=#orid#
where clause, the 4 assoc rows with the same orid as the starting origin row (orid 45744) are
determined to be connected to the starting origin row.

The assoc table contains connections that have not been explored. Thus, for each of those 4
assoc rows connected to the starting origin row, SQL select statement must be executed to find
connected arrival rows. Since there are four different arids, four different SQL statements will
be executed:

 10

 SELECT * FROM arrival WHERE arid = 1896847
 SELECT * FROM arrival WHERE arid = 1896848
 SELECT * FROM arrival WHERE arid = 1896849
 SELECT * FROM arrival WHERE arid = 1896850
Four arrival rows are retrieved.

Lastly, there is an unexplored connection from the arrival table to the sitechan table. The
RowGraph must determine if there are connected sitechan rows that belong in the RowGraph. It
is interesting to note here that each arrival row has the same chanid value. Thus, all four
arrival rows connect to the same sitechan row. However, the RowGraph will only contain one
copy of this row in order to avoid duplicate Rows in memory.

Figure 4 contains a rough representation of what this RowGraph looks like in memory:

Figure 4. RowGraph for Sample Data in Tables 3-7

2.3 User-Defined Equality

Throughout this document, references are made to “user-defined equality”. As the phrase
implies, this is when the user specifies what it means for two rows to be equal. Typically, two
rows are considered to be equal when every value for every column in those two rows is exactly
the same. However, this is not always the desired behavior.

 11

Consider a scenario where a row must be inserted into a database table. Before inserting that
row, a check must be made to ensure that that row does not already exist in the database.
Checking the table for the existence of a row where every single column’s value is identical to
the column values of the row to be inserted is highly time consuming. Often, the user does not
care if all of the column values are identical, only certain ones.

This is where user-defined equality is useful. By using a SQL where clause, the user defines
what rows are equal to the row in consideration (i.e., any rows returned by executing a SQL
select statement on the table with the user specified where clause).

As an example, consider an origin row that needs to be inserted into an origin table. The user
has specified the equality for origin rows using the following SQL:
 WHERE lat = #lat# AND lon = #lon# AND depth = #depth# AND
 time = #time# AND auth = #auth#

The ## notation indicates places in the SQL statement that need to be populated with values from
the row to be inserted. To determine if a row equal to the row to be inserted exists in the table,
the following SQL is executed:
 SELECT *
 FROM origin
 WHERE lat = #lat# AND lon = #lon# AND depth = #depth# AND
 time = #time# AND auth = #auth#
where the ## values are replaced with actual values from the row that is to be inserted. If this
SQL select statement returns no rows, then there are no rows in the table that are equal to the row
to be inserted. If this SQL select statement returns one or more rows, then one or more rows
exist in the target table that are equal to the row to be inserted, and that row should not be
inserted.

2.4 Merging

One of the initial goals when developing DBTools was to facilitate merging of data from one
data source into another without creating any duplicates, with proper associations maintained in
existing data after it has been merged, and with proper management of ID numbers. This is
accomplished with the merging capabilities that have been built into DBUtilLib that are used by
the DBTools applications and tools.

DBUtilLib’s merging functionality implements methods to merge a RowGraph (a set of
connected rows), created from data in source tables, into a set of target tables. While the target
tables must be of the same type as the source tables, they cannot be the source tables themselves.
In other words, you cannot merge a table’s data into itself.

Merging information from one set of tables into another presents a number of challenges. The
first is that the IDs in the source rows may conflict with the IDs in the target tables. To
overcome this, the IDs in the source rows are renumbered using new ID values that do not
currently exist in the target tables.

 12

Another challenge when merging rows into a different schema is avoiding the duplication of
rows in the target tables. Before inserting a row from the source RowGraph into the target table,
the merging code checks to see if a row equal to the row to be inserted exists in the target tables.
If such a row is found, Merge will refrain from duplicating the information in the target table by
not inserting the source row.

Yet another issue arises when the merging code determines that it cannot insert a row from the
source RowGraph – other rows in the RowGraph may be connected to the row that is not being
inserted. If that row is not inserted into the target, then the rows that are connected to it will have
dangling foreign key pointers once they have been inserted into the target. The merging code
avoids this by renumbering IDs in the source RowGraph; IDs in rows that refer to a row that will
not be inserted are renumbered to instead refer to the row in the target equal to the row that was
not inserted. This preserves the necessary foreign key relationships.

2.5 Undo Capability

Given that the DBTools has the power to modify data within the database, it is essential that
what has been done can be undone. DBTools applications have the capability to spool “undo
sql” statements to an UndoSQL Table in order to reverse what the application has done. “Undo
SQL” is just SQL statements that when executed will restore the database to its former state.

Table 8 contains an example of a few rows from an UndoSQL table that reverses the inserts
performed on some tables.

Table 8. Rows from an UndoSQL Table

UNDOID STATEMENT LDDATE

1 commit; 8/15/2007 8:52
2 DELETE FROM test_event WHERE LDDATE = TO_DATE('2007-08-
15 08:52:29','yyyy-mm-dd hh24:mi:ss');

8/15/2007 8:52

3 DELETE FROM test_origin WHERE LDDATE = TO_DATE('2007-
08-15 08:52:29','yyyy-mm-dd hh24:mi:ss');

8/15/2007 8:52

4 DELETE FROM test_origerr WHERE LDDATE = TO_DATE('2007-
08-15 08:52:29','yyyy-mm-dd hh24:mi:ss');

8/15/2007 8:52

5 DELETE FROM test_arrival WHERE LDDATE = TO_DATE('2007-
08-15 08:52:29','yyyy-mm-dd hh24:mi:ss');

8/15/2007 8:52

To “undo” what a DBTools application has done, simply execute the SQL in the UndoSQL table
in reverse order (in Table 8, this would execute the SQL statements in decreasing order from 5 to
1).

 13

3. DBTOOLS APPLICATIONS

This section gives a brief overview of each of the DBTools applications. More detailed
information for each application, including how to use each application, is available in the
DBTools User’s Manual delivered with the DBTools software.

3.1 EvLoader

EvLoader is an application that merges one or more events from a source event table into a target
event table. All information that is linked to the source event row(s) is also merged. The user
can specify how and what information is related to the source event.

EvLoader operates in two modes. In the first mode, origins in the source event are merged with
origins in the target event based on evid number. This mode was developed for users who may
create an origin (and associated event) and then pass it through a series of refinement steps
wherein the updated information is saved as a set of new origins in different origin tables (but all
still linked to the original event). For example, an automatic data processing system might build
the original origin (and event), and then an analyst may review and refine that origin and save
their work as a new origin (but still the same event). A subsequent analyst might then review
and refine that result and save it, and so on. To properly combine the whole series of origins into
a single table, one could operate EvLoader in the first mode on each of the origin tables, one by
one. Source origins in the source are merged with target origins that have the same evid number
as the source origins.

In the second mode, source events are merged with target events based on spatial/temporal
correlation. Thus, source origins are merged with target origins that they are close to in space
and time. The primary purpose of this mode is to group equivalent origins (i.e., different event
hypotheses) from different catalogs. In this spatial/temporal correlation mode, origins that are
members of the same event in the source tables will remain members of the same event in the
target tables. This is not necessarily true for origins that are members of the same event in the
target tables; these events can be broken and the origins reassigned to other events.

In addition to merging event and origin rows, EvLoader also merges in all other data related to
those events.

3.2 DTX

DTX (DaTa eXchange) recognizes three information storage formats:

1. a set of database tables
2. a set of ASCII flat files
3. XML

These three formats correspond directly to the three different data access types recognized by
DBUtilLib.

 14

DTX can convert information from any of these formats (the “source” format) into any of the
others (the “target” format). These formats do not have to conform to the same schema since
DTX is also capable of converting data from one schema definition to another.

An example of where the source and target schemas might be different is when DTX is reading
data from one schema (e.g. CSS 3.01) and writing it out to a different schema (e.g. NNSA KB
Core2). Often, the data must be converted from the CSS 3.0 format into the NNSA KB Core
format, and DTX is able to do this. There are limitations to the conversions DTX is able to
perform. If a data value is in i8 format in the source, it can easily be converted to i9 format in
the target since no data is lost. However, if data is in i9 format in the source and must be
converted to i8 format in the target, this conversion may not be possible if it would result in the
loss of data. If the target schema does not include columns that are in the source schema, then
DTX just drops those columns. If the target schema includes columns that the source schema did
not, and those columns are allowed to have NA Values, then DTX just adds those columns with
NA Values for their values.

Some examples of where DTX is useful:

- Loading flat file data into database tables
- Writing database table data (or a subset of it) into flat files
- Moving data (or a subset of it) from one set of database tables to another set of database

tables
- Converting data in a set of database tables from one schema definition to another schema

definition

When DTX loads data into the database, it does not simply insert source data into the target - it
merges that data. Merging (which is discussed in more detail in Merging section) ensures that
the data in the target does not contain duplicate information, that all source data that was
referentially connected in the source remains connected in the target, and that all source data is
renumbered properly in order to avoid ID conflicts.

3.3 Remap

Given two sets of tables, Remap will generate a remap table which relates source identification
numbers to target identification numbers. Source and target identification numbers are “related”
when the source and target identification numbers refer to source and target rows which are
“equal” where equality is defined by the user. (See the User-Defined Equality section for more
information.) Consider the following row of information from a source:

1 Schema version 3.0 for the Center for Seismic Studies [4]
2 Schema for the core tables for the National Nuclear Security Administration Knowledge Base [3]

orid lat lon depth time auth
123 50 78 0 246942424 someone

 15

and a target:

Assume the user has defined “equality” as
 WHERE lat = #lat# AND lon = #lon# AND depth = #depth# AND
 time = #time# AND auth = #auth#
Given this definition of equality, these two rows are equal. Thus, a (simplified) remap entry
would contain the following information:

3.4 WFMerge

WFMerge is a waveform merging application. Because waveforms are typically stored on disk,
database tables are needed to store the metadata for the waveform files. This application handles
the merging of binary waveform files and their associated database table information from a
source into a target. WFMerge assumes that the wfdisc table contains this waveform metadata.

3.5 Unloader

Unloader “unloads” RowGraphs from the database by deleting one or more specified rows from
the database as well as all of the rows that are connected to the specified row(s). Rows are only
deleted if doing so will not violate any foreign key relationships in the database or leave any
rows referencing a non-existent row. For example, an arrival row linked to an origin row
through an assoc relation may also be linked to different origin row through another assoc
relation. Deleting the first origin would delete the first assoc relation, but not the arrival row
nor the assoc relation to the second origin row.

3.6 Parallelyze

Parallelyze is an application that takes parameter files for a DBTools application, splits them into
parameter files that are conducive to that application being run in parallel, and then launches
parallel versions of that application. This can dramatically improve performance for cases where
a large data set is being processed (e.g., EvLoader).

Because the intent of the Parallelyze application is to run applications in parallel, this is only
useful if these applications are being run in parallel on a multi-processor machine. Otherwise,
the benefits of running in parallel are minimal.

orid lat lon depth time auth
456 50 78 0 246942424 someone

id_name original_id current_id
orid 123 456

 16

3.7 DBCompare

DBCompare is a tool for comparing tables for equality (see the User-Defined Equality section).
Using the user’s definition of equality, DBCompare compares the data in all of the tables in the
source schema with tables of the same type in the target schema. This tool can be very useful for
regression testing of an application that produces a set of database tables as the output for its
tests.

3.8 EventTable

EventTable creates a new event table using information from an origin table. This application is
often used prior to running EvLoader when dealing with data sets that do not already include
event tables.

An event table typically has the following columns:
 evid, evname, prefor, auth, commid, lddate.
An origin table row has an evid and an auth that can be used for the evid and auth columns of an
event row as well as an orid that can be used for the prefor in an event row. If there are multiple
origin rows with the same evid, the origin row that has the auth with the highest ranking will be
chosen as the source of values for the new event row. Author rankings are specified in an author
ranking table.

The evname and commid columns are not populated with information from the origin table, but
are instead set to their NAValues. The lddate is just set to the current date at the time
EventTable is run. The resulting event table has a number of rows equal to the number of
unique evids in the origin table used to create the event table.

EventTable can also create an event table from an origin table where all of the evids are set to
their NAValues. In this case, one event row is created for each origin row with evids assigned
incrementally starting from 1.

3.9 DatabaseViewer

DatabaseViewer is a tool for viewing sets of related data in the database. Since data is read into
memory (and kept there), it is not possible to read in the entire contents of the database.
DatabaseViewer is not intended to display all of the data in a database, but instead to facilitate
viewing related data.

3.10 TableCreator

TableCreator creates tables in the database that conform to a specified schema definition. This is
useful since table creation scripts can quickly become obsolete as schema definitions change.

 17

4. SYSTEM REQUIREMENTS

4.1 Java

The DBTools applications and tools are written in Java and compiled to Java bytecode. The
system on which these applications are being executed must have a version of Java compatible
with the version of Java used during compilation. If a system has Java, it can run DBTools.

At the time of publication of this document, DBTools is compatible with version 1.5.0_07 as
well as later versions of Java 1.5.

4.2 Platform

Because DBTools is written entirely in Java, it should be able to run on any system with a
compatible version of Java installed.

DBTools has been tested at Sandia National Laboratories on UNIX running Solaris 8 and Solaris
10, Linux, and Windows XP.

4.3 Table Definition Table

All of the DBTools applications and tools require a Table Definition Table to function. DBTools
is able to use Table Definition Tables in either database table or flat file formats.

4.4 Data Source (Database tables, Flat files, XML)

The main focus of all of the DBTools applications and tools is interaction with data. Thus,
access to a data repository in an acceptable format (e.g., database tables, flat files, or an XML
file) is required.

DBTools has been tested using all three data formats. Currently, the only database that DBTools
has been tested against is an Oracle 9i database. We are currently beginning the process of
testing against Oracle 10g.

4.5 Parameter Files and Environment Settings

Most of the DBTools applications and tools are command line interfaces. The only acceptable
way to pass information to the applications and tools is through means of parameters files. A

 18

small subset of the parameters that do not typically change between applications can be set in
environment variables, but a parameter file is always required.

4.6 Size

The DBTools distribution (as a .tar.gz file) is roughly 15.5 MB.

 19

5. FUTURE DEVELOPMENT

The DBTools applications and DBUtilLib are mature, so future development is focused on the
creation of reliable Graphical User Interfaces (GUIs) for the most commonly used applications.

Along with this GUI development, considerable effort is being made to improve the help system
available within these GUIs as well as the User’s Manuals for all applications.

 20

This page intentionally left blank.

 21

6. REFERENCES

1. Sun Microsystems, “Java Technology”, August 2007; http://java.sun.com.

2. R. Sedgewick, Algorithms in Java, 3rd Edition, Addison-Wesley, 2004, Part 5 – Graph

Algorithms.

3. D. Carr, “National Nuclear Security Administration Knowledge Base Core Table Schema

Document”, Sandia National Laboratories, 2002, SAND Report SAND2002-3055.

4. J. Anderson, W.E. Farrell, K. Garcia, J. Given and H. Swanger, “Center for Seismic Studies

Version 3 Database: Schema Reference Manual”, 1990, Technical Report C90-01.

 22

This page intentionally left blank.

 23

GLOSSARY

Duplicate Row
A duplicate row is one that has the same values in all of the columns being examined. Typically,
the user defines which columns should be checked for equality to determine if one row is a
duplicate of another. See the section on User-Defined Equality for more information.

Column
A database table contains one or more columns. A column has a particular data type associated
with it, and rows with values in that column must adhere to that data type.

Dangling Foreign Key
A foreign key that refers to a value that does not exist.

Equality
See User-Defined Equality.

ERD
Entity Relationship Diagram. A diagram that conveys how database tables are related to one
another.

Foreign Key
A column (or set of columns) in a table that refer to a column or set of columns in another table.
Foreign keys are used to associate or relate rows from one table to rows in another table.

IDs
In the context of DBTools, IDs are numeric identifiers for a table.

ID-Owner Table
The table who owns ID and whose primary key is that ID. For example, in the NNSA schema, a
column named orid occurs in many tables. Thus, orid is an ID. However, only one table owns
that ID – the origin table. All other tables with orid IDs in them have orid values that are foreign
keys to the origin table.

Merge
DBTools functionality that loads data from source tables into target tables while: a) not
duplicating data, b) properly renumbering IDs, and c) maintaining existing relationships between
data.

NAValue
A non-null value to use to indicate that no value is available for a given column in a row.

Non ID-Owner Table
A table that does not own an ID.

 24

Owned ID
The ID that an ID-owner table owns.

Primary Key
The primary column (or set of columns) used to uniquely identify a row in a table.

Relationship
Defines how two tables are related.

Remap
A mapping of a source row’s ID to a target row’s ID when those rows are determined to be
equal.

Row
A set of information in the database containing one value for each column.

RowGraph
A set of connected rows (rows that are related).

Schema
A set of tables and information on how those tables are related.

Schema Schema
A schema schema is a set of tables used to describe a schema. These tables have information in
about table names, column names, column types, etc – any information needed to be able to
construct tables conforming to a particular schema and to verify that data within those tables
conforms to that schema.

Source
Information defining the source from which data will be read. This includes the tables, the
relationships between those tables, and information on how to access the data (e.g. database
connectivity information or the names of flat-files).

Source Schema
Schema for a set of source tables (input).

Source Table
Table in the source – a table from which data will be read.

SQL
Structured Query Language. This is a very powerful language with many different capabilities.
In the context of DBTools users, this is the language used when defining queries or relationships
between tables.

 25

SQL Select Statement
A SQL statement for extracting data from the database. Typically of the form:
SELECT [* | <list of column names>]
FROM table_name
WHERE <restrictions on what data is to be selected>

Target
Information defining where data will be output / written to. This includes the tables, the
relationships between those tables, and information on how to access the data (e.g. database
connectivity information or the names of flat-files).

Target Schema
Schema for a set of target tables (output).

Target Table
Table in the target – a table to which data will be written.

Table
A set of data. A table is composed of rows and columns.

Table Definition Table
A collection of metadata about tables that is stored independently of the tables and the code.

Table Type
A definition of a table’s structure. This consists of the number of columns, the columns’
database types, the columns’ Java types, the columns’ flat file information, and so on. This
information is typically stored in a table definition table.

Unique Key
A column (or set of columns) used to uniquely identify a row in a table.

User-Defined Equality
This is where the user defines what it means for two rows from tables that are of the same table
type to be equal. Often, two rows are deemed to be equal if they have the same value in every
column. However, with user-defined equality, the user can select which column values are to be
examined. If the rows have equal values for just those columns, then they are determined to be
equal. See the User-Defined Equality section for more information.

 26

This page intentionally left blank.

 27

DISTRIBUTION

1 Michael L. Begnaud
 Los Alamos National Laboratory
 MS F659
 P.O. Box 1663
 Los Alamos, NM 87545

1 Julio C. Aguilar-Chang
 Los Alamos National Laboratory
 MS F659
 P.O. Box 1663
 Los Alamos, NM 87545

1 Richard J. Stead
 Los Alamos National Laboratories
 MS D408
 EES-11 P.O. Box 1663
 Los Alamo, NM 87545

1 Terri Hauk
 Lawrence Livermore National Laboratory
 MS L-205
 7000 East Ave. POB 808
 Livermore, CA 94551-0808

1 Stanley D. Ruppert
 Lawrence Livermore National Laboratory
 MS L-205
 7000 East Ave.
 Livermore, CA 94550

1 MS0401 Sanford Ballard 05533
1 MS0401 Glenn T. Barker 05533
1 MS0401 Dorthe B. Carr 05533
1 MS0401 Marcus C. Chang 05533
1 MS0401 David P. Gallegos 05533
1 MS0401 James R. Hipp 05533
1 MS0401 Jake S. Jones 05533
30 MS0401 Jennifer E. Lewis 05533
1 MS0401 Elaine M. Martinez 05533
1 MS0401 Christopher J. Young 05533

1 MS0404 James M. Harris 05736

 28

2 MS9018 Central Technical Files 8944
2 MS0899 Technical Library 9536

	GNEMRE DBTools: A Suite of Tools for Access, Maintenance, and Manipulation of Data in a Relational Database

	Abstract
	ACKNOWLEDGMENTS
	CONTENTS
	FIGURES
	TABLES
	1. INTRODUCTION
	2. KEY TECHNICAL CONCEPTS
	2.1 Table Definition Table
	2.2 RowGraph
	2.3 User-Defined Equality
	2.4 Merging
	2.5 Undo Capability

	3. DBTOOLS APPLICATIONS
	3.1 EvLoader
	3.2 DTX
	3.3 Remap
	3.4 WFMerge
	3.5 Unloader
	3.6 Parallelyze
	3.7 DBCompare
	3.8 EventTable
	3.9 DatabaseViewer
	3.10 TableCreator

	4. SYSTEM REQUIREMENTS
	4.1 Java
	4.2 Platform
	4.3 Table Definition Table
	4.4 Data Source (Database tables, Flat files, XML)
	4.5 Parameter Files and Environment Settings
	4.6 Size

	5. FUTURE DEVELOPMENT
	6. REFERENCES
	GLOSSARY
	DISTRIBUTION

