
SANDIA REPORT
SAND2007-5991
Unlimited Release
Printed September 2007

Low-Bandwidth Authentication

Michael J. Collins, Erik Anderson, Lauren McIver, Patrick Donnelley, Brian Gaines,
Austin McDaniel, Kurt Thomas

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2007-5991
Unlimited Release

Printed September 2007

Low-Bandwidth Authentication

Michael J. Collins, Erik Anderson, Lauren McIver
Cryptography and Information Surety Dept. 5614

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0672
mjcolli@sandia.gov

weander@sandia.gov

Patrick Donnelley, Brian Gaines
Austin McDaniel, Kurt Thomas
Networked Systems Dept. 5616
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1372

Abstract

Remotely-fielded unattended sensor networks generally must operate at very low power
— in the milliwatt or microwatt range — and thus have extremely limited communi-
cations bandwidth. Such sensors might be asleep most of the time to conserve power,
waking only occasionally to transmit a few bits. RFID tags for tracking or material
control have similarly tight bandwidth constraints, and emerging nanotechnology devices
will be even more limited. Since transmitted data is subject to spoofing, and since sen-
sors might be located in uncontrolled environments vulnerable to physical tampering, the
high-consequence data generated by such systems must be protected by cryptographically
sound authentication mechanisms; but such mechanisms are often lacking in current sen-
sor networks. One reason for this undesirable situation is that standard authentication

3



methods become impractical or impossible when bandwidth is severely constrained; if
messages are small, a standard digital signature or HMAC will be many times larger than
the message itself, yet it might be possible to spare only a few extra bits per message
for security. Furthermore, the authentication tags themselves are only one part of cryp-
tographic overhead, as key management functions (distributing, changing, and revoking
keys) consume still more bandwidth.

To address this problem, we have developed algorithms that provide secure authentication
while adding very little communication overhead. Such techniques will make it possible to
add strong cryptographic guarantees of data integrity to a much wider range of systems.

4



Acknowledgment

Many thanks to Karen Shanklin for recruiting an outstanding group of summer interns
to participate in this project.

Many thanks to Carl Diegert and Scott Mitchell for helpful technical discussions.

Many thanks to Rolf Riesen for developing and maintaining the LaTex SAND report class
which was used to typeset this report.

5



6



Contents

1 Introduction 11

2 Independent-Subset Authentication 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Subset Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Sliding-Window Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Optimal Sequences for Small Memory Bounds . . . . . . . . . . . . . . . . . . 18

2.2.3 Lower Bounds for the Sliding Window Construction . . . . . . . . . . . . . 18

2.2.4 Iterative Improvement of Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 More General Independence Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Bloom-Filter Authentication 21

3.1 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Authentication Using Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Preventing Attacks against Bloom Filters . . . . . . . . . . . . . . . . . . . . . 24

3.3 Compressing Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Hybrid Authentication 27

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Stand-Alone Block Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Application Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Authentication Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Stand-Alone Communication Outline . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7



4.3 Segmented Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Segmented Communication Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Throttling Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Signal-Strength Authentication 33

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 The Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Broadcasting High Power Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Countering Specific Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Worm Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.2 HELLO floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.3 Sinkholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Unresolved Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 37

8



List of Figures

3.1 Bloom filter Insertion and Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Varying Collision Probability Based on m:n . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Circuit Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9



List of Tables

2.1 Optimal q(b) for small v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Best known q(b) for large v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Best known qr′ for various v, r′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Best known q2(b) for some v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Maintaining a constant compression size z. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Maintaining a constant false-positive rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10



Chapter 1

Introduction

We consider a variety of technical approaches to the problem of secure communication
for severely resource-constrained wireless sensor networks. In chapter 2 we consider the
problem of minimizing the number of bits which must be appended to each message in a
long stream in order to attain a desired level of security on the stream. We formulate this
as a discrete optimization problem on subsets of the message stream and prove several
results. In chapter 3 we consider another method for attaining the same goal, using
Bloom filters [2] in a novel way to compress authentication bits. Chapter 4 considers
yet another method, which can be used if the network allows two-way communication
between a sensor node and its base station. Finally, chapter 5 considers how to protect
low-power nodes against resource-exhaustion attacks by detecting malicious messages in
hardware using a simple circuit to analyze signal strength.

11



12



Chapter 2

Independent-Subset Authentication

2.1 Introduction

We wish to send a stream of many short messages m1, m2, m3, · · · on a channel with very
limited bandwidth, and we wish to provide strong cryptographic authentication for this
data. Because bandwidth is so limited, we assume that we must use almost all transmitted
bits for delivering payload data: say we can append no more than r bits of authentication
to each message, where r is too small to provide adequate security. Suppose we have
decided that qr authentication bits are needed for security; a simple solution would be
to send q consecutive messages m1, m2, · · ·mq, followed by a message authentication tag
t of length qr for the concatenated message (m1|m2| · · ·mq) (repeating this process for
the next block of q messages and so on). This achieves the desired data rate, but it is
unsatisfactory for several reasons. In an extremely low-power environment (such as a
wireless network of very small sensors), we expect that many messages will be dropped
or corrupted, making it impossible for the receiver to verify the correctness of t. Also, we
are transmitting no data at all during the relatively long time needed to transmit the tag.
We seek a more robust solution which will tolerate some missing messages (without the
additional cost of applying an error-correction scheme to already-redundant data), and
which does not interrupt the flow of payload data.

2.2 Subset Authentication

Our basic approach is to append a short authentication tag ai to each message mi; each
ai is an r-bit authentication tag for some appropriately-chosen subset Si of the previous
messages. Let AK be a message authentication code (MAC) with key K that produces
an r-bit output. Thus if Si = {ji

1 < ji
2 < · · · ji

k} we have1

ai = AK(i|mji
1
| · · · |mji

k
) (2.2.1)

and we transmit m1, a1, m2, a2, · · · . If each message is contained in q sets, then each
message is used in the computation of q different tags, and we will eventually accumulate

1It is convenient to ignore the distinction between a message and its index, writing j ∈ Si instead of
mj ∈ Si.

13



the required qr bits of authentication for each message. If AK is a pseudorandom function,
an adversary cannot cause an invalid mi to be accepted without guessing qr random
bits. In practice, AK could be implemented by truncating the output of a full-length
authentication code such as HMAC [1]. The design of a secure, less computationally
intensive MAC which inherently produces a short output would pose an interesting and
challenging problem.

However, it is not enough to simply require that each message appear q times. We are
assuming a very low-power network with no acknowledgement or retransmission protocol,
no error-correction mechanism, and occasional loss of connectivity. Thus we must expect
that some messages will be lost, and if mj is lost, all tags ai such that j ∈ Si will be useless.
Therefore every message must be contained in more than q sets, to provide robustness
against the expected missing messages. The question is, what conditions must we impose
on the sets Si, and what is the optimal way to achieve those conditions?

We first consider the following requirement (more general requirements are considered in
section 2.3): if any one message is lost, this must not prevent full authentication of any
other message. This means that for any pair of messages mi, mj, we must have at least q
sets which contain mi but not mj. Thus if mj is lost, we still have enough good tags to
authenticate mi with the desired degree of security.

This “set-cover” approach requires the sender to remember many old messages. If a node
can remember at most v old messages, then we must have Si ⊂ [i− v, i] for all i. Memory
is presumably quite limited since we are dealing with very low-power nodes. Note that v
is also the maximum delay before a message finally achieves full authentication, which is
another reason to limit v.

Thus we have the following problem: Given memory bound v, find sets Si that maximize
q where

• For each i ∈ N, Si ⊂ [i − v, i]

• For each i �= j there are at least q sets S with i ∈ S, j �∈ S

Given a collection of sets S, define the strength of the collection as

Definition 2.2.1.

q(S) = min
i,j

#{t|i ∈ St, j �∈ St}

(here #A denotes the size of a set A). We have defined S as an infinite collection; such
a collection would of course be specified either by rotating through a finite collection of
given sets, or by specifying a way to generate Si as a function of Si−1. To get the process
started, we can implicitly have dummy messages m−v, · · ·m−1, m0 = 0.

14



2.2.1 Sliding-Window Construction

We first consider the special case in which each set Si is defined by a “sliding window”;
we select a set of distances δ = {δ1 < · · · δk ≤ v} and let each Si = {i − δ1, · · · i − δk}.
It will be convenient to identify the vector of distances d with a binary sequence b of
length v which is zero except on δ. Then

Si = {i − d : bd = 1}.

We may also treat b as an infinite sequence with bj = 0 for j outside of the interval
[0, v − 1]. We say that difference d is “realized (at j)” if bj = 1, bj+d = 0 and call the
ordered pair (j, j + d) a “realization of d”. We define

Definition 2.2.2.
relb(d) = #{i|bi = 1, bi+d = 0} (2.2.2)

so relb(d) is the number of times d is realized in b (we may drop the subscript b when the
context is clear). We then define the strength of the vector b as

q(b) = min
d

relb(d) (2.2.3)

consistent with the definition given above for q(S).

We can assume with no loss of generality that b0 = bv−1 = 1. Changing b0 from zero to
one does not destroy any realizations of any d; changing bv−1 from zero to one creates one
new realization of d for every d, while destroying one realization of each d with bv−d−1 = 1.
Thus q(b) might increase and cannot decrease.

Note that we do not need to consider differences with absolute value greater than v; for
such differences we clearly have rel(d) =

∑
i bi, which is a trivial upper bound on all rel(d).

In fact we can limit our attention to positive differences:

Lemma 2.2.1. For all d, rel(d) = rel(−d)

Proof. rel(d) − rel(−d) =
∑

i(bi − bi+d) = 0

The problem of maximizing q(b) for a fixed v has apparent connections to several other
problems, in particular to the problems of optimal autocorrelation and side-lobe mini-
mization; we have

rel(d) =
∑

i

bi(1 − bi+d) = k −
∑

i

bibi+d (2.2.4)

Letting b̂d be the sequence 0db0d and assuming d < k, and denoting the aperiodic auto-
correlation [4] of a finite binary sequence s by AA(s) we have

Theorem 2.2.2. For all d, rel(d) = v+d−AAd(b̂d)
4

15



Proof. By lemma 2.2.1, we have that rel(d) = 1
2
(rel(d) + rel(−d)), which is one-half the

number of pairs (i, i + d) with bi �= bi+d. And AAd(b̂
d) is the number of such pairs with

bi �= bi+d minus the number of pairs with bi = bi+d. There are v + d such pairs overall,
thus

AAd(b̂
d) = v + d − 4rel(d) (2.2.5)

We can bound the maximum strength of a sequence for a given memory size v as follows:

Theorem 2.2.3. For all b of length v,

q(b) ≤ v + 2

3
(2.2.6)

Proof. We in fact prove the stronger result that

min(rel(1), rel(2)) ≤ v + 2

3
(2.2.7)

Let Rs
� be the number of runs of s ∈ {0, 1} of length �. With no loss of generality we may

assume that � ≤ 2; in a long run of ones or zeros, the third value can be changed without
decreasing rel(1) or rel(2). Then we have

v = R0
1 + R1

1 + 2R0
2 + 2R1

2 (2.2.8)

Runs of zeros and ones alternate, and we can assume with no loss of generality that the
sequence starts and ends with 1, so we also have

R1
1 + R1

2 = 1 + R0
1 + R0

2 (2.2.9)

and combining these we obtain

v = 2(R1
1 + R1

2) + R0
2 + R1

2 − 1 (2.2.10)

Now rel(1) = R1
1 + R1

2 since this is the number of runs of ones. Furthermore, the distance
2 will fail to be realized at bi = 1 if and only if this is immediately followed by a zero-run
of length one; thus (using equation 2.2.9)

rel(2) = R1
1 + 2R1

2 − R0
1 = 1 + R0

2 + R1
2 (2.2.11)

therefore

v = 2rel(1) + rel(2) − 2 (2.2.12)

and the theorem follows.

In fact, the same bound applies to any collection of sets, without the sliding-window
assumption:

16



Theorem 2.2.4. For any collection of sets S with memory bound v,

q(S) ≤ v + 2

3
(2.2.13)

Proof. Let bi be the binary sequence corresponding to the set Si, i.e. bi
t = 1 if and only

if i − t ∈ Si. Consider v consecutive sets Si, · · ·Si+v−1. These are the only sets which
can contain i; thus for any distance d, at least q(S) of these sets contain i but not i + d.
Thus the sequences bi · · · bi+v−1 together contain at least q(S) realizations of d, where in
sequence bi+t we only count a realization at bit position t.

Similarly, the sequences bi+1 · · · bi+v contain at least q(S) different realizations of d and
so, for any L, the v + L − 1 sequences bi · · · bi+v+L−2 contain qL different realizations of
d. Thus as L approaches infinity, the average value of relbj(d) for i ≤ j ≤ i + v + L − 2
approaches (at least) q(S). In particular this holds for d = 1, 2. Now from the proof of
theorem 2.2.3, we know that

2relbj(1) + relbj(2) ≤ v + 2

for each sequence bj, thus the same must be true of the averages, i.e.

3q(S) ≤ v + 2

It is not known whether the strength of an arbitrary collection of sets can exceed the
maximum strength achievable by a sliding window. The proof of theorem 2.2.4 shows
that if this is the case, we must have a collection of sliding windows in which the average
value of each rel(d) exceeds the maximum strength of any single sliding window.

We also have the following relationship among different distances:

Theorem 2.2.5. For all d, d′

rel(d) + rel(d′) ≥ rel(d + d′) (2.2.14)

In particular,

2rel(d) ≥ rel(2d)

Proof. If d �= d′ define a mapping from realizations of d + d′ to realizations of d and d′

as follows: for each bi > bi+d+d′ , map (i, i + d + d′) to (i, i + d) if bi+d = 0, else map to
(i + d, i + d + d′). Clearly this map is injective.

If d = d′ then similarly every realization of 2d can be mapped to exactly one realization
of d, and no more than two realizations of 2d can map to the same point.

17



v max q(v) an optimal vector
1 1 1
4 2 1 1 0 1
7 3 1 1 0 0 1 0 1
10 4 1 1 0 1 0 1 0 0 1 1
14 5 1 1 1 0 0 1 0 1 0 1 1 0 0 1
17 6 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1
21 7 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1
24 8 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1
27 9 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1
31 10 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1
35 11 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1

Table 2.1. Optimal q(b) for small v

2.2.2 Optimal Sequences for Small Memory Bounds

For small values of v, optimal sequences can be found by exhaustive search; results are
summarized in table 2.1. Only “critical” values are shown, i.e. v at which the maximum
q(b) changes. These results show that the bound of theorem 2.2.3 can be attained for
small v. For all lengths except v = 35, the table gives the lexicographically smallest
vector attaining max q(b). Exhaustive search was not completed for v = 35, but q(b) = 11
is still known to be optimal; if we had b of length 35 attaining q(b) = 12, we could remove
one bit to obtain q(b) = 11 at length 34, which has been ruled out by exhaustive search.

As a secondary objective, we could seek to minimize the Hamming weight of b: this weight
is the number of messages that must be combined to compute each authentication tag,
so reducing this weight may reduce the amount of work needed to compute ai. For all v
in this table, the majority of optimal vectors have weight greater than v

2
; for all these v

(except 21 and possibly 35) there are no optimal vectors with weight less than v
2
.

2.2.3 Lower Bounds for the Sliding Window Construction

If v + 1 is a power of 2 we can attain q(b) ≥ v+1
4

by letting b be the output of a linear
feedback shift register [5] with period v. The perfect autocorrelation of an LFSR implies
that v+1

2
bit positions will have bi = 1, and for any d > 0 exactly half of these will have

bi+d = 0 where the indices are taken modulo v.

More generally, if a difference set [6] D of size v exists, then we attain q(b) ≥ v+1
4

by
letting bi = 1 precisely when i ∈ D. A difference set is a set of k = v−1

2
integers mod v,

such that for each d > 0, there are exactly k−1
2

pairs a, b ∈ D with a− b = d; this implies
that there are exactly k+1

2
pairs a ∈ D, b �∈ D with a − b = d, hence rel(d) ≥ k+1

2
= v+1

4
.

18



v max known q(b) Min weight attaining max q(b)
40 12 19
60 18 30
100 28 48
200 55 100
300 81 150

Table 2.2. Best known q(b) for large v

LFSRs and difference sets are, however, periodic structures which do not take advantage
of the edge effects inherent in this problem, and they do not provide optimal solutions.
It appears to be possible to do somewhat better than v+1

4
for all v (see section 2.2.4),

although it also seems that the maximum q(b)/v approaches 1
4

as v approaches infinity.

2.2.4 Iterative Improvement of Windows

Starting with a random binary vector b0, we can attempt to maximize q by iterative local
improvement. At each step, we change one bit of the current solution bi. If we can attain
q(bi+1) > q(bi) by flipping a single bit, we do this (note that a single bit change cannot
increase the strength of the vector by more than 1, since it cannot change any rel(d)
by more than 1). If such immediate improvement is not possible, we consider the set of
distances d which are tight, i.e. which have rel(d) = q(bi). The local optimization criteria
is to reduce the size of this set as much as possible, subject to the condition that strength
does not decrease (i.e. that there is no d for which rel(d) decreases to q(bi) − 1). If local
improvement is impossible, we flip two bits at random.

In order to implement this search, note that it is not necessary to recompute q from
scratch for every vector at Hamming distance 1 from bi. Instead, for each bit position
i and for each tight distance d, we can compute in constant time the effect on rel(d) of
flipping bit i. Table 2.2 gives the strengths of the best vectors found in this manner.

2.3 More General Independence Conditions

More generally we may consider conditions of the following form: for parameters (r, r′),
require that loss of any r messages does not prevent authentication of more than r′

remaining messages. The problem considered above is the special case r = 1, r′ = 0. In
the general case we have the following: for any set A with #A = r, there can be no more
than r′ indices i �∈ A such that

#{j|i ∈ Sj, A ∩ Sj = ∅} < q

19



This is a difficult condition to deal with in general, so we still consider some special cases,
and still consider only the sliding-window approach. If we have r = 1 but r′ > 0, then we
no are no longer maximizing the minimum value of rel(d); instead we seek to maximize

the (r′ + 1)th smallest value. The r′ smallest values correspond to the r′ messages for
which we are allowed to loose full authentication when just one message is altered. Given

b we denote the (r′+1)th smallest value of rel(d) by qr′(b). Table 2.3 gives the best known
results (obtained by iterative search) for some small values of v and r′.

r′\v 10 20 30 40 60 100
1 4 7 10 13 19 30
2 5 8 11 14 20 30
4 5 10 13 16 22 32
6 10 14 17 24 34
8 10 15 19 25 36
10 15 20 26 38
15 20 30 43
20 30 46

Table 2.3. Best known qr′ for various v, r′

If we have r > 1 and r′ = 0, then we require that the loss of any set of r messages does
not prevent authentication of any other message. For this case we define rel(d1, d2, · · · dr)
as the number of indices j where bj = 1, bj+d1 = · · · = bj+dr = 0, and maximize qr(b) =
min rel(d) over all vectors d, where we may assume i < j implies di < dj since order does
not matter. Note that the di may be negative. Trivially we have

qr(b) ≤ v + r

r + 1
(2.3.1)

since every realization of d = (1, 2, · · · r) (except at bv−1 = 1) consists of a 1 followed by r
zeros, and these cannot overlap. Table 2.4 gives the best known values of q2 and q3 (again
obtained by iterative search) for various memory bounds v.

v max known q2(b) max known q3(b)
10 2 1
20 4 3
30 5 3
40 7 4
60 10 5
100 16 8

Table 2.4. Best known q2(b) for some v

20



Chapter 3

Bloom-Filter Authentication

3.1 Bloom Filters

The independent-subset approach to low-bandwidth authentication might become im-
practical if we need to protect against a large number of dropped messages. Here we
consider an alternative approach which utilizes Bloom filters to authenticate a set of mes-
sages. Bloom filters allow for each individual message to be verified independent of the
other messages being received or lost. The loss of any set of messages will not prevent
the authentication of any other message. This feature allows Bloom filters to scale well
in systems where noise and data corruption are highly probable. The disadvantage of the
Bloom filter approach is that it requires more authentication bits per message.

A Bloom filter is a compressed data structure for storing a set S, supporting queries of
the type “is x in S”. Bloom filters guarantee searches will produce no false-negatives,
but there can be false-positives; i.e. there is a small chance that a query will produce the
answer “yes” even though x �∈ S. Items can be added but not removed, and the existence
of an item can be tested in constant time.

The classic Bloom filter, as introduced in [2], is initialized as an m-bit array with each
element set to zero. To add an item x into the filter, the item is processed by k hash
functions derived from two distinct hash functions Ha, Hb in such a way that each of the
k hash functions are unique:

Hi(x) = Ha(x) + i × Hb(x)(mod m)

Each of these hash functions will map to a single bit of the m-bit array. This array cell is
then set to 1. Once an array cell is set to 1 it will never change back to zero: if a second
item maps to a cell which is already set to 1, nothing will change.

To check whether an item is stored in the Bloom filter, the same process of hashing the
element k times is repeated. The bit positions in the array are inspected. If any of the
bit mappings point to a cell that is still set to zero then there is absolute certainty that
the item is not in the Bloom filter. Should all of the bits reference cells set to one, we can
conclude with some probability that the item is within the Bloom filter.

21



void AddToBloom(message)

for (i = 1 ... k) {
mapping = H(i,message);

Bloom(mapping) = 1;

}

boolean CheckInBloom(message)

for (i = 1 ... k) {
check = H(i)(message);

if (Bloom(check) �= 1) {
quit(failure: message is not in the Bloom filter);

}
}
quit(success: all bits of the message match those of the Bloom filter);

Figure 3.1. Bloom filter Insertion and Query

For a Bloom filter that is m-bits long, constructed from k hash functions, and storing n
messages, the probability for a false positive is the probability that k randomly-chosen
bits have been set to 1:

(

1 −
(

1 − 1

m

)kn
)k

≈ (1 − e−kn/m
)k

(3.1.1)

If m and n are known, then k can be optimized to minimize the probability of false
positives. This probability is minimized when each cell has a 1

2
probability of equaling

one, thus

k =
m

n
ln(2) (3.1.2)

and the probability of a false positive is

(
1

2

)k

≈ 0.6185m/n (3.1.3)

As m increases for fixed n, the probability of a collision decreases logarithmically.

22



 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 0  20  40  60  80  100  120  140  160

P
ro

ba
bi

lit
y 

of
 C

ol
lis

io
n

Ratio of m:n

Figure 3.2. Varying Collision Probability Based on m:n

3.2 Authentication Using Bloom Filters

In order to use Bloom filters for authentication, we use keyed hashes HK
a , HK

b . The basic
idea is that after sending n messages, we authenticate them by sending the keyed Bloom
filter containing these messages. The receiving node authenticates each message m by
checking if m is in the filter. An adversary who does not know K cannot compute the
correct filter; the probability that a forged m will be accepted is the probability of a false
positive in the filter.

Actually, in the low-bandwidth setting, we do not want to send the entire filter all at
once. Instead the sender NodeA begins by gathering a set of n messages and sending each
of these n values to receiver NodeB with no authentication provided. Once a total of n
messages have been sent by NodeA, the next round of sending a new set of n messages
begins and authentication data for the previous n messages is appended to each outgoing
packet. To each message in the next set of n messages, we will append m/n bits of the
Bloom filter for the last set of n messages.

For each message r received, NodeB will test inclusion within the Bloom filter, checking
to see that each of the k keyed hash functions reference cells that are set to 1. Should
any of the Bloom filter bits be lost during transmission, mappings into those bits will
be ignored for authentication. Thus for an m-bit array with n total sections, with s × n

23



sections lost where 0 ≤ s < 1, the remaining n − s × n sections must provide adequate
security. For each message we expect that (1 − s)k of the hash functions will map into
the portion of the array received by NodeB, and the probability of a false positive is

(
1

2

)(1−s)k

(3.2.1)

Once the set of messages has been authenticated the Bloom filter can be removed from
memory or overwritten by the Bloom filter for the next block of messages.

3.2.1 Preventing Attacks against Bloom Filters

A simple attack on this scheme would be for an adversary to transmit a Bloom filter in
which all bits are set to 1, so that all messages will authenticate. This could be prevented
by encrypting the filter, or by putting an upper bound on the fraction of bits set to 1.
The latter option is preferable since it does not require an extra encryption/decryption
operation at each stage. Given the parameters of the filter we know how many bits we
expect to set to 1

3.3 Compressing Bloom Filters

Application of Bloom filters to low-bandwidth authentication requires a very low false-
positive rate, but also requires a small filter, and these requirements conflict. The com-
pressed Bloom filter, first described in [7], makes a tradeoff, reducing the efficiency of
storing items in order to allow for compression of the filter. For the optimized case above,
the probability of any single bit of the m-bit array being set to one is 1

2
. Since the hash

functions are essentially random, it is impossible to compress such a filter. To enable
compression, the probability that any array bit is set to one is reduced to less than 1

2
.

This can be accomplished by either increasing the size of m or reducing the number of k,
in either case, effecting the size of the Bloom filter or the original false positive rate. The
final result is a compressed size z < m.

The savings possible for compressing a Bloom filter to z bits is dependent on the entropy
of the binary array. The results from [7] show it is experimentally possible to compress
z 
 m while maintaining a small false positive rate. The savings applied to z are
accomplished by reducing the number of k and increasing m, thus requiring more physical
memory, but less computation since fewer hashes are used.

In tables 3.1 and 3.2, the transmission bits per element z/n cannot be made arbitrarily
small for a given false positive rate. This is in contrast to the independent-subset method

24



Array bits per element m/n 16 28 48
Transmission bits per element z/n 16 15.846 15.829
Hash functions k 11 4 3
False positive rate f 0.000459 0.000314 0.000222

Table 3.1. Maintaining a constant compression size z.

Array bits per element m/n 16 37.5 93
Transmission bits per element z/n 16 14.666 13.815
Hash functions k 11 3 2
False positive rate f 0.000459 0.000454 0.000453

Table 3.2. Maintaining a constant false-positive rate.

in which we could, if necessary, append just one authentication bit to each message
and still achieve any desired level of security. But there is some compensation for this
loss of efficiency; using Bloom filters, the loss of some messages will not prevent the
authentication of other messages.

25



26



Chapter 4

Hybrid Authentication

4.1 Overview

Techniques for low-power, low-bandwidth authentication must be able to handle a rela-
tively high number of dropped messages. This presents a problem, since authentication
data for one message must be broken up and distributed over many other messages, and
some of this authentication data will be lost. The independent-subset and Bloom-filter
methods address this problem by introducing redundancy in the authentication data.
Here we propose a different approach: a hybrid system which utilizes one-way communi-
cation for sending a set of messages, then briefly switches over to slower, more expensive
two-way communication in which the receiver can notify the sender which messages were
lost in transit, in turn receiving authentication for those messages which were successfully
broadcast. The two-way part of the communication is protected by acknowledgements,
timeouts, and retransmits to guarantee message delivery. Such a system allows for some
messages to be lost while still authenticating the remaining messages within a reasonable
amount of bandwidth and time, because two-way communication is mostly avoided. Note
that in the most tightly constrained systems, the required two-way communication might
be too slow or even impossible; but when it is applicable, this hybrid system could reduce
the number of authentication bits per message, since we can use a single fixed-length
authentication code to authenticate many messages.

We define two modes for hybrid authentication: sending a stand-alone authentication
block or, instead, appending small segments of authentication to future data.

4.2 Stand-Alone Block Authentication

4.2.1 Application Data Transmission

For the first leg of communication, NodeA streams a number of messages, each appended
with a small numeric identifier, to NodeB. For each message sent, NodeA must store the
message and associated identifier for later use during authentication. However, not all
the messages sent by NodeA are guaranteed to reach NodeB. Over time, there will be a
build up of messages stored in memory for both NodeA and NodeB. During this period, m

27



messages will have been sent by NodeA while r messages will have been received by NodeB,
where m ≥ r. One-way communication continues until a request for authentication is
transmitted.

4.2.2 Authentication Data Transmission

Once NodeB receives a threshold level of n messages, it will initiate two-way commu-
nication requesting NodeA to send authentication data. NodeB will send the list of all
message identifiers received IDR allowing NodeA to determine which messages were lost
in transit. Until NodeA receives this request, it will continue to stream application data.
As this is a two-way communication stream, should NodeB not receive a reply within time
t, it will re-send the authentication request. Time delay or message failure will result in
new messages being sent to NodeB that were not included in the list of for which au-
thentication was originally requested. NodeB can either store these messages for a future
authentication session or, if the previous request was not answered in time t, send an
updated list.

Upon successfully receiving the authentication request, NodeA will reply with the authen-
ticator HMACK(messages received) of every message that was successfully received by
NodeB. Should NodeA not receive an acknowledgement within time t, it will re-send the
authentication data. Once this authentication data has been received, one-way communi-
cation will continue as before with NodeA streaming new application data. Should NodeB

receive more authentication data rather than new application data after time t, the ter-
mination request was not received and must be resent. Once authentication completes,
NodeA is free to remove messages and identifiers from its memory.

4.2.3 Stand-Alone Communication Outline

Begin One-Way Communication

• NodeA sends NodeB messages of the form (message||identifier), until NodeB has
received a threshold of n messages.

Begin Two-Way Communication

• NodeB initiates authentication by sending (IDR), the set of identifiers successfully
received.

• After time t, NodeB will re-send this request if it has not yet received a reply.

• NodeA replies with (HMACK(MR)), the authentication tag for the messages re-
ceived by NodeB.

28



• After time t, NodeA will re-send this reply if it has not yet received an acknowledg-
ment.

• NodeB replies with an acknowledgement once all authentication data is received,
two-way communication ceases and one-way communication resumes.

• After time t, if NodeB received more authentication data rather than new applica-
tion data, it will re-send the termination request.

4.2.4 Performance

The total time it needed to authenticate a group of n messages is equal to the total time to
transmit the n messages along with the time to transmit the authentication request and
HMAC block, with possible faults. The total memory required for the process includes
m messages stored by NodeA and n messages stored by NodeB along with space on both
nodes for the HMAC. Recall that NodeA has to store every message and identifier sent,
m, while NodeB can only store those received, r. For a fault-prone channel, if NodeB does
not request authentication before NodeA’s memory fills, there is the chance of overflow.
Thus, so far we have assumed the fault rate is low enough so the total number of messages
stored by the sender m does not exceed the node’s memory.

Though the current scheme does not prevent overflow, the value of n can be modified for
any given environment to reduce the risk of data overflow; a smaller n would be more
favorable to a nosier channel as the number of messages likely stored by NodeA would be
reduced, while a larger n could be supported in a clear channel as the discrepancy between
m and r would be reduced. While this method provides a probabilistic defense against
overflow, to fully prevent the problem NodeA should cease one-way communication once
it has reached or is within its memory limit. At this point, NodeA would initiate two-
way communication by requesting the set of identifiers received rather than waiting for
NodeB to present the identifiers upon reaching n messages. This places more overhead
on two-way communication and may lead to authenticating a set of messages smaller
than n, but guarantees that any messages sent and received will be used rather than
be invalidated through NodeA overwriting them during overflow, preventing NodeA from
using that message in the HMAC.

Compared to pure one-way communication, there is a limited amount of overhead involved
in sending authentication data via two-way communication, depending on the size of n.
However, the hybrid approach overcomes the problem of one-way communication not
scaling well to numerous faults. Increasing the number of messages authenticated within
a block will reduce the total number of two-way transmissions as the size of the HMAC
is independent of the number of messages being authenticated . Overall, stand-alone
authentication operates as a light weight protocol for authenticating messages in a low-
bandwidth environment with a reasonable authentication delay that depends only on
the length of the HMAC and the noise of the channel which may result in re-sends. For
information networks where a constant update of data is necessary and down-time to send

29



a stand-alone authentication block is unacceptable, a segmented authentication scheme
would be preferred.

4.3 Segmented Authentication

In the previous scheme, HMAC(MR) was sent all at once, using a two-way communication
protocol to guarantee delivery. No data is being sent while the authenticator is being sent.
The alternative is for NodeA to split HMAC(MR) into short segments of length l and
to append these segments to successive messages. The special two-way communication
ends when NodeA has acknowledged receipt of IDR. So now there is no guarantee that
NodeB will receive all bits of HMAC(MR), since some messages will be dropped. Thus
the threshold n must be set large enough so that, when NodeB has received n messages
and nl authentication bits, these nl bits provide the desired level of security.

Each of the HMAC segments sent by NodeA must be unique and independent, so that
any set of n segments will provide nl bits of security against forged messages. Simply
splitting a long HMAC into shorter pieces does indeed give us a collection of independent
functions (since by assumption HMAC is pseudorandom), but this is not sufficient; we
do not know how many messages NodeA will have to send before n messages have been
received, so NodeA might run out of authentication bits. Achieving an arbitrary number
of independent HMACs can be accomplished by including the message identifier with
the HMAC such that the authentication segment sent with mi is the first l bits of
HMACK(MR||i).

4.3.1 Segmented Communication Outline

Here is a more explicit list of the steps in the segmented authentication protocol. Begin
One-Way Communication

• NodeA sends NodeB messages of the form (message||identifier). As there is no
guarantee NodeB receives a message, discretion for when to begin authentication is
left to NodeB, starting after NodeB reaches a threshold of n messages.

Begin Two-Way Communication

• NodeB initiates communication by responding with (OpAuthReq||IDR), the authen-
tication request operation code followed by the set of message identifiers received.

• After time t, NodeB will re-send the request if it has not yet received a reply.

• NodeA acknowledges receipt of the previous message set MR.

30



• After time t, NodeA will re-send the acknowledgement if it receives another OpAuthReq
packet, meaning the previous message reply was lost.

Begin One-Way Communication

• After NodeA successfully acknowledges the authentication request, it sends (message||identifier
the unique hashed authentication of the previous messages received appended to a
new message which is not authenticated.

Begin Two-Way Communication

• Once NodeB has received q HMACs to authenticate the entire set of messages MR it
sends (OpAuthReq||IDnew R), a new authentication request for the set of messages
received between the last MR and the current message.

• After time t, NodeB will re-send the request if it has not yet received a reply.

• Once NodeA successfully receives and acknowledges the request, the protocol will
loop between one-way and two-way communication.

4.4 Throttling Authentication

Though the block size of stand-alone authentication and the nl-bit security outlined of
segmented authentication were both assumed to be constant, there is no reason that
NodeB could not vary the level of security required. For the stand-alone scheme, NodeB

can send an authenticationLength variable to NodeA when authentication is requested.
Similarly, in segmented authentication NodeB can vary the size of n. NodeA will continue
sending authentication for MR until it is notified by NodeB to stop. The ability to throttle
the level of authentication could prove valuable to applications which can classify data
as critical or insensitive, analyze power remaining, or compare data to other reports and
require varying authentication based upon those variables. In such a system, unimportant
data can require weaker authentication data while critical information can require greater
than usual authentication.

31



32



Chapter 5

Signal-Strength Authentication

5.1 Introduction

Usually one wishes to filter out extraneous weak signals, considered noise, from a strong
signal. In contrast, the circuit described here allows for the filtering of strong signals
that are assumed to have come from adversaries. Sensors in a low-power WSN will have
fairly weak signal strength when communicating amongst themselves. Any adversary
masquerading as a sensor or otherwise trying to disrupt the network will probably be
at a fixed location, and will need to broadcast strong signals in order to reach a large
number of sensor nodes, or to reach a node whose location is unknown. An adversary
who is restricted to using standard hardware, such as an ordinary laptop, will likewise
be broadcasting a stronger signal than what is broadcast by a special-purpose low-power
sensor node.

The circuit itself filters out a strong signal, assumed to be malicious, while passing the
weak signal along. The hardware is very simple and uses very few circuit elements: AND
gates, NOT gates, two resistors, and possibly an amplifier.

There are several assumptions made that allow for this circuit to be useful:

• First, the design assumes that the attackers are unaware of the circuit’s existence,
or that they do not understand how to circumvent it. Because of the weak signal
strength of sensor nodes, it is unlikely that the adversary will become aware that
sensors are not receiving its messages, as it cannot receive a reply to confirm the
receipt. Of course, if the adversary is nearby sensors and could receive messages,
then perhaps she will realize the sensors ignore her messages.

• Second, the Base Station for the sensor nodes uses a different frequency from the
sensors themselves. If this is not possible then the architecture must be either
expanded to make primitive checks for whether the strong signal is from a friendly
base station or the design must be discarded. Some methods for separating messages
from a base station and from a sensor may include ensuring a parity for all messages
from a sensor. For example, all sensors will always use an even bit parity versus the
base station which will always use odd bit parity.

• Third, these laptop-class attackers are attempting to “play by the rules”; the at-

33



tackers are attempting various attacks that are not blatantly malicious, such as
wormhole attacks as opposed to denial of service attacks. A possibly undesirable
result of this assumption is that a signal received from a sensor at the same time as
a laptop-class attacker’s signal will both be discarded.

• Fourth, the incoming digital signals have no DC component. This is a small as-
sumption and easily fixed in circuitry, but worth noting.

5.2 The Circuit

The circuit is comprised of 2 logic gates and an attenuator. The circuit expects digital
signals with power levels intact. A diagram of the basic circuit is displayed below in
Figure 5.1:

Figure 5.1. Circuit Diagram.

In the case of a high amplitude signal, the attenuator will lower the amplitude of the signal
by a certain carefully chosen proportion, but not below the input threshold of the NOT
gate. The intention is to maintain the logic value of the waveform across the attenuator
for all points. When the signal passes through the NOT gate, the signal is made into
its complement. The end result is the complement of the signal and the signal itself are
put through the AND gate. Naturally, this results in all 0’s, or false, thus removing the
signal.

In the case of a low amplitude signal, the signal will pass through the attenuator which
is guaranteed to reduce the signal strength below the threshold of the NOT gate. The
signal, after leaving the NOT gate, will be all 1’s as a result. The consequence of the
signal itself going through the AND gate with all 1’s is the original signal itself.

34



5.3 Broadcasting High Power Messages

The strength of this hardware is that it automatically discards messages that claim to
be from sensor, but have power levels too high to have been sent by a legitimate sensor.
But because of the nature of wireless communication, this architecture does not entirely
secure a sensor from laptop-class attackers. The power level of a signal deteriorates at
approximately [8] 1

R2 . This results in some subsection of the circular propagation of the
malicious signal having the correct power level of a neighboring sensor. This will result
in attackers being able to target some nodes, but possibly not knowing whom they are
targeting.

5.4 Countering Specific Attacks

The design helps prevent a wide array of attacks on the sensor network. Many of the most
devastating attacks can be carried out only by laptops or similarly powerful adversaries
[3].

5.4.1 Worm Hole

The Worm Hole attack is very dangerous to sensor networks due to the nature of their
communication; all traffic with data must reach the base station. A laptop can take ad-
vantage of this by making itself appear to be best place to forward messages from a victim
node. Once communication is established, the attacker can either stop communicating all
messages completely or pick choice sensors to relay during a time of crisis in which the
sensors’ data are most needed.

It is worth noting that certain authentication schemes can render this attack useless as
the inability of the laptop-class attacker to properly respond to messages from the distant
sensors will render it considered as a “failed” sensor.

The hardware design defends against this attack by disallowing the attacker to commu-
nicate with nearby sensors because of the strength of its signal. Distant node may also
view the attacker as a laptop as well, depending on their distances. Even if the attacker
is successful in creating a wormhole, she will be unable to maintain it assuming sensors
that invalidate the attacker’s messages will notify the base station of the attacker’s pres-
ence. The affected sensors will simply discard the communication path upon learning the
attacker’s keys are invalidated.

35



5.4.2 HELLO floods

A HELLO flood attack sends to nodes a constant stream of HELLO messages, which
request key negotiation or simply “notify” the sensor of its presence.

The architecture does extremely well against countering this attack, provided the attacker
is not aware of it. The circuit will filter out all of these HELLO messages from a laptop-
class attacker immediately, thus saving time spent authenticating and legitimizing these
requests.

5.4.3 Sinkholes

Sinkhole attacks are particularly devastating to networks, as a compromised node adver-
tises itself as a single high quality route to the base station [3]. After most nodes route
their information through this compromised node, simply turning it off or selectively
forwarding packets during critical times can render the sensor network useless.

Sinkhole attacks are perpetrated by high power sensors capable of reaching the base
station in generally one hop. These must advertise themselves as a sensor close the
base station. This attack can cause interesting effects on sensor networks including most
sensors in the network attempting to contact the sinkhole sensor but failing to reach
it. Naturally, most of these sensors will see the messages broadcast by the sinkhole as
malicious. These will discard it and forward to the base station the keys invalidated;
sensors later will ignore this sinkhole.

5.5 Unresolved Concerns

The circuit does not take into account many high-level concepts in signal processing.
These concepts include Impedance Matching and Power Level Preservation across de-
modulators. Additionally, signals from legitimate sensors that are received at the same
time as malicious laptop-class attackers will be discarded.

The most fundamental way to bypass this defense, assuming the adversary is aware of it,
is to change the power levels of the output signal so the nodes reached by the adversary
receive sensor-like power levels for the message. With some basic changes to the hardware,
a sensor will process messages that the circuit would have ignored, but will automatically
assume them to be malicious. The sensor can then propagate a message to the base
station to broadcast a notice that the malicious node is acting improperly and should be
ignored. In this way, even if the circuit is bypassed, it becomes easy to track malicious
nodes and keys that have become compromised.

36



References

[1] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message authentication using hash
functions: the HMAC construction. CryptoBytes, 2(1):12–15, Spring 1996.

[2] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

[3] Chris Karlof and David Wagner. Secure Routing in Wireless Sensor Networks: Attacks
and Countermeasures. Elsevier’s AdHoc Networks Journal, Special Issue on Sensor
Network Applications and Protocols, 1(2–3):293–315, September 2003.

[4] Raymond A. Kristiansen. On the aperiodic autocorrelation of binary sequences. Mas-
ter’s thesis, University of Bergen, 2003.

[5] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, New York, NY, USA, 1986.

[6] Jr. Marshall Hall. Combinatorial theory (2nd ed.). John Wiley & Sons, Inc., New
York, NY, USA, 1998.

[7] Michael Mitzenmacher. Compressed bloom filters. In PODC ’01: Proceedings of
the twentieth annual ACM symposium on Principles of distributed computing, pages
144–150, New York, NY, USA, 2001. ACM Press.

[8] Peter Sholander. RF propagation models. Document on RF Propogation and Deteri-
oration with distance, April 2007.

37



DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 9536

1 MS 0123 D. Chavez, LDRD Office, 1011

38


	Low-Bandwidth Authentication
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Independent-Subset Authentication
	2.1 Introduction
	2.2 Subset Authentication
	2.3 More General Independence Conditions

	Chapter 3 Bloom-Filter Authentication
	3.1 Bloom Filters
	3.2 Authentication Using Bloom Filters
	3.3 Compressing Bloom Filters

	Chapter 4 Hybrid Authentication
	4.1 Overview
	4.2 Stand-Alone Block Authentication
	4.3 Segmented Authentication
	4.4 Throttling Authentication

	Chapter 5 Signal-Strength Authentication
	5.1 Introduction
	5.2 The Circuit
	5.3 Broadcasting High Power Messages
	5.4 Countering Specific Attacks
	5.5 Unresolved Concerns

	References
	DISTRIBUTION


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




