
SANDIA REPORT
SAND2007-5873
Unlimited Release
Printed September 2007

Constitutive Models in LAME

William M. Scherzinger
Daniel C. Hammerand

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

and Daniel C. Hammerand

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2007-5873

Unlimited Release

Printed September 2007

Constitutive Models in LAME

William M. Scherzinger and Daniel C. Hammerand

Solid Mechanics – 1524

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-MS0372

Abstract

The Library of Advanced Materials for Engineering (LAME) provides a common

repository for constitutive models that can be used in computational solid mechanics

codes. A number of models including both hypoelastic (rate) and hyperelastic (total

strain) constitutive forms have been implemented in LAME. Descriptions of the

structure and testing of LAME reside in other reports, while this report details the

material models that have been implemented thus far.

4

ACKNOWLEDGMENTS

The authors would like to acknowledge the help of a number of people at Sandia National

Laboratories. The Adagio and Presto code development teams, including Arne Gullerud,

Kendall Pierson, Jason Hales and Nathan Crane have been especially helpful in the development

of LAME and the interface between Strumento and LAME. William Gilmartin wrote a large

part of the initial implementation of LAME and its interface in Adagio and Presto. The SNTools

team, especially Mark Hamilton and Kevin Brown, have helped with code management issues.

A number of constitutive model developers, including Bob Chambers, Mike Neilsen and Shane

Schumacher, have given very useful feedback on the design of LAME. Finally, analysts that

have been willing to use LAME, Jeff Gruda, Matthew Neidigk and Frank Dempsey, have also

helped guide its design.

5

CONTENTS

1. Introduction.. 7

2. Constitutive Models ... 9

2.1 BCJ Model .. 9

2.2 BCJ MEM Model.. 10

2.3 Ductile Fracture Model ... 12

2.4 Elastic Model .. 14

2.5 Elastic-Plastic Model .. 15

2.6 Elastic-Plastic Power Law Hardening Model ... 17

2.7 Elastic Fracture Model.. 18

2.8 Foam Plasticity Model .. 19

2.9 Honeycomb Model.. 20

2.10 Hyperfoam Model... 21

2.11 Incompressible Solid Model ... 23

2.12 Johnson-Cook Model .. 24

2.13 Low Density Foam Model .. 26

2.14 Mooney-Rivlin Model .. 27

2.15 Multilinear Elastic-Plastic Model ... 30

2.16 Multilinear Elastic Plastic with Failure Model ... 32

2.17 Neo-Hookean Model... 34

2.18 NLVE Polymer Model.. 35

2.19 Orthotropic Crush Model.. 41

2.20 Orthotropic Rate Model .. 42

2.21 Power Law Creep Model .. 44

2.22 Soil and Foam Model.. 45

2.23 Solder Model... 46

2.24 Solder with Damage Model .. 48

2.25 Stiff Elastic Model .. 50

2.26 Swanson .. 51

2.27 Thermoelastic Model .. 54

2.28 Thermoelastic-Plastic Power Law Hardening Model ... 55

2.29 Thermoelastic-Plastic Power Law Hardening Weld Model ... 57

2.30 Universal Polymer Model ... 59

2.31 Viscoelastic Swanson Model .. 67

2.32 Viscoplastic Model ... 71

2.33 Viscoplastic Foam Model ... 73

3. Summary.. 75

4. References.. 77

6

7

1. INTRODUCTION

Any modern structural mechanics finite element code whether it is an explicit transient dynamics

code such as Presto [1] or a quasi-static code like Adagio [2] can be described as a number of

interlinked parts. For instance, Adagio has routines associated with element calculations such as

determining the strains from the gradient of the displacements and the internal forces from the

divergence of the stresses. Another part of Adagio is concerned primarily with the enforcement

between contact of various parts in a model. Still yet another portion of Adagio is concerned

primarily with the numerical solution of the resulting governing equations. A critical part of

Adagio as well as any solid mechanics code is the portion where the constitutive response of the

material models is computed. A recent change to Adagio and Presto has grouped the material

models into a library called LAME. Having such a library where all most of the calculations

involved with various material models is sectioned-off from, but still interfaced with the rest of

the Adagio/Presto coding allows the material model developers to focus on their portion of the

coding tasks in a more efficient manner. Also, the same material models contained in LAME are

used in several codes. Currently this includes both Adagio and Presto. Further plans call for

using these same models in Salinas. The importance of this can not be overstated. Many of our

mechanics problems concern the structural response across a number of loading regimes. Being

able to use the same finite element model with exactly the same material models in each code

can only increase our confidence in the results in the consistency of each analysis. Finally,

employing LAME across our solid mechanics codes results in the analysts having access to the

latest version of each model incorporating the latest bug fixes no matter which solid mechanics

code they are running for their analysis.

The structure and testing of LAME is described Scherzinger and Hammerand ([3] and [4]). The

purpose of the present report is to describe the material models which have already been

implemented into LAME. The descriptions are designed to give useful information to both

analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models

have been incorporated. These include everything from the simple isotropic linear elastic models

to a number of elastic-plastic models for metals to models for honeycomb, foams, potting

epoxies and rubber. A complete description of each model is outside the scope of the current

report. Rather, the aim here is to delineate the properties, state variables, functions, and methods

for each model. However, a brief description of some of the constitutive details is provided for a

number of the material models. Where appropriate, the SAND reports available for each model

have been cited. Many models have state variable aliases for some or all of their state variables.

These alias names can be used for outputting desired quantities. The state variable aliases

available for results output have been listed in this report. However, not all models use these

aliases. For those models, no state variable names are listed. Nevertheless, the number of state

variables employed by each model is always given.

Currently, there are four possible functions for a material model. This report lists which of these

four methods are employed in each material model. As far as analysts are concerned, this

information is included only for the awareness purposes. The analyst can take confidence in the

fact that model has been properly implemented and the methods necessary for achieving accurate

and efficient solutions have been incorporated. The most important method is the getStress

8

function where the actual material model evaluation takes place. Obviously, all material models

incorporate this function. The initialize function is included in most material models. The

initialize function is called once at the beginning of an analysis and its primary purpose is

to initialize the material state variables associated with the model. Many times, there is some

information which can be set once per load step. For instance, we may have temperature

dependent material properties in an analysis where temperature is prescribed. Instead of setting

those parameters at each iteration in a time step, it is much more efficient to set them once per

time step at the beginning of the step. These types of load step initializations are performed in

the loadStepInit method. The final function used by many models is the

pcElasticModuli method which changes the moduli that are to be used by the elastic

preconditioner in Adagio. The moduli for the elastic preconditioner are set during the

initialization of Adagio. Sometimes, better convergence can be achieved by changing these

moduli for the elastic preconditioner. For instance, it typically helps to modify the

preconditioner when the material model has temperature dependent moduli. For many material

models, it is not necessary to change the values of the moduli that are set initially in the code.

Hence, those models do not have pcElasticModuli functions. All four of these methods

receive information from the matParams structure as described by Scherzinger and

Hammerand [3].

9

2. CONSTITUTIVE MODELS

2.1 BCJ Model

The BCJ model is a plasticity model that was developed at SNL/CA. Information on the BCJ

model can be found in reference [5].

This constitutive law is a state variable model used to simulate the finite deformation behavior of

metals. It uses a multiplicative decomposition of the deformation gradient into elastic,

volumetric plastic and deviatoric parts. The model considers the natural configuration defined by

this decomposition and its associated thermodynamics. The model is also capable of modeling

strain rate and temperature sensitivity along with damage evolution.

Properties:

State Variables (14):

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

Methods:

initialize(matParams * p);

loadStepInit(matParams * p);

getStress(matParams * p);

YOUNGS_MODULUS

POISSONS_RATIO

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

DAMAGE_EXPONENT

THETA_OPT

FACTOR

RHO

SPECIFIC_HEAT

INITIAL_ALPHA_XX

INITIAL_ALPHA_YY

INITIAL_ALPHA_ZZ

INITIAL_ALPHA_XY

INITIAL_ALPHA_YZ

INITIAL_ALPHA_ZX

INITIAL_KAPPA

INITIAL_DAMAGE

TEMP0

10

2.2 BCJ MEM Model

The BCJ_MEM model is a plasticity model that was developed at SNL/CA and is a variation of

the BCJ model. Information on the BCJ_MEM model can be found in reference [5].

This constitutive law is a state variable model used to simulate the finite deformation behavior of

metals. It uses a multiplicative decomposition of the deformation gradient into elastic,

volumetric plastic and deviatoric parts. The model considers the natural configuration defined by

this decomposition and its associated thermodynamics. The model is also capable of modeling

strain rate and temperature sensitivity along with damage evolution.

Properties:

State Variables (27):

YOUNGS_MODULUS

POISSONS_RATIO

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

C31

DAMAGE_EXPONENT

BZ

SMZ

CZ

FX

CXA

CXB

HZ

RZ

INITIAL_ALPHA_XX

INITIAL_ALPHA_YY

INITIAL_ALPHA_ZZ

INITIAL_ALPHA_XY

INITIAL_ALPHA_YZ

INITIAL_ALPHA_ZX

INITIAL_KAPPA

INITIAL_GRAIN_SIZE

INITIAL_REX_VOL_FRAC

INITIAL_ZETA

INITIAL_DAMAGE

11

Functions:

none

Methods:

initialize(matParams * p);

loadStepInit(matParams * p);

getStress(matParams * p);

12

2.3 Ductile Fracture Model

The DUCTILE_FRACTURE model is a plasticity model based on the power law hardening

model (see EP_POWER_LAW) that calculates a failure parameter.

The hardening law for the plasticity model is a power law fit

n

y p LAσ σ ε ε= + − , (1)

where σ is the von Mises stress, yσ is the yield stress, pε is the equivalent plastic strain, Lε is

the Lüders strain, A is the hardening constant, n is the hardening exponent, and • denotes the

Heaviside step function.

Two other parameters, the critical crack opening strain and the critical tearing parameter,

describe the failure of the material. The critical tearing parameter, pt , is given by

()

4

max

max0

2

3

f

p p

m

t d

ε
σ

ε
σ σ

=
−∫ , (2)

where maxσ is the maximum principal stress, mσ is the mean stress and • denotes the

Heaviside step function.

There are no user input functions for this model.

Properties:

LAMBDA

SHEAR_MODULUS

YIELD_STRESS

HARDENING_CONSTATN

HARDENING_EXPONENT

LUDERS_STRAIN

CRITICAL_TEARING_PARAMETER

CRITICAL_CRACK_OPENING_STRAIN

13

State Variables (8):

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

14

2.4 Elastic Model

The ELASTIC model is the simplest constitutive model in LAME. This model is finite

deformation, hypoelastic constitutive model that is an extension of linear elasticity. The stress

rate is related to the rate of deformation by

 ˆ 2ij ij kk ijD Dσ λδ µ= + , (3)

where λ and µ are the Lamé constants, ijD are the components of the rate of deformation and

the stress rate, ˆijσ , is an objective stress rate. In Adagio and Presto, this is the Green-McInnis

rate.

The input for the model is the YOUNGS_MODULUS and the POISSONS_RATIO. The Lamé

constants can be calculated from these parameters.

()()

()

1 2 1

2 1

E

E

ν
λ

ν ν

µ
ν

=
− +

=
+

 (4)

There are no state variables or user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

State Variables:

none

Functions:

none

Methods:

getStress(matParams * p);

15

2.5 Elastic-Plastic Model

The ELASTIC_PLASTIC model is an elastic-plastic, linear hardening model. A description of

the model can be found in [6].

The model is used to model metal plasticity where the hardening curve is described with a linear

fit. The hardening curve is given by

 y pHσ σ ε′= + , (5)

where σ is the von Mises stress, yσ is the yield stress, pε is the equivalent plastic strain and

H ′ is the hardening modulus. This is the simplest model for metal plasticity, but unfortunately
very few materials follow linear hardening curves. This model owes its popularity to its easy

implementation (the radial return algorithm requires no iterations) and to the fact that it is the

simplest plasticity model to model hardening. It is useful for quick scoping studies and some

analytical problems where one wants to take into account the effects of plasticity.

The model is also capable of modeling kinematic hardening through the parameter BETA. If

BETA is equal to one then the hardening is isotropic, i.e. the center of the yield surface is fixed,

while if BETA is equal to zero the hardening is kinematic, i.e. the center of the yield surface

moves. Values between zero and one involve a combination of kinematic and isotropic

hardening. This is especially important in modeling problems that have cyclic loading.

There are eight state variables for this model: the equivalent plastic strain, the radius of the yield

surface and the six components of the back-stress tensor that defines the center of the yield

surface.

There are no user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

HARDENING_MODULUS

BETA

16

State Variables (8):

EQPS

ALPHA_XX

ALPHA_YY

ALPHA_ZZ

ALPHA_XY

ALPHA_YZ

ALPHA_ZX

RADIUS

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

17

2.6 Elastic-Plastic Power Law Hardening Model

The EP_POWER_HARD model is an elastic-plastic, power law hardening model. A description

of the model can be found in [6] and [7].

The model is used to model metal plasticity where the hardening curve is described by a power

law fit. The hardening curve is given by

n

y p LAσ σ ε ε= + − , (6)

where σ is the von Mises stress, yσ is the yield stress, pε is the equivalent plastic strain, Lε is

the Lüders strain, A is the hardening constant, n is the hardening exponent, and • denotes the

Heaviside step function. This is a widely used model for metal plasticity and there are a number

of parameter fits in the literature for various materials. This particular implementation of the

model does not model kinematic hardening – a capability that could easily be added.

The model has two state variables: the equivalent plastic strain and the radius of the yield

surface.

There are no user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

HARDENING_CONSTANT

HARDENING_EXPONENT

LUDERS_STRAIN

State Variables (2):

EQPS

RADIUS

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

18

2.7 Elastic Fracture Model

The ELASTIC_FRACTURE model is used to model brittle fracture/failure. The model uses a

maximum-principal-stress failure criterion. The stress decays isotropically based on the

component of strain parallel to the maximum principal stress. The value of the component of

strain over which the stress is decayed to zero is a user-defined parameter for the model. This

strain parameter can be adjusted so that failure is mesh independent.

The model has six state variables, none of which are aliased for output.

There are no user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

MAX_STRESS

CRITICAL_STRAIN

State Variables (6):

Functions:

none

Methods:

getStress(matParams * p);

19

2.8 Foam Plasticity Model

The FOAM_PLASTICITY model is used to model polyurethane foams. The model is

particularly useful for modeling failure of polyurethane foams [8]. The model has a pressure

dependent yield function and an associated flow rule. Therefore the integration of this model can

be quite complex.

The yield surface looks like

2 2

2 2
1m s

a b

σ σ
φ = + − , (7)

where mσ is the mean stress, sσ is the von Mises stress, a and b are the hydro strength and

shear strength respectively. There are also hardening constants and exponents for both the hydro

strength and the shear strength.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

PHI

SHEAR_STRENGTH

SHEAR_HARDENING

SHEAR_EXPONENT

HYDRO_STRENGTH

HYDRO_HARDENING

HYDRO_EXPONENT

BETA

State Variables (6):

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

20

2.9 Honeycomb Model

The HONEYCOMB model is used to model reinforced aluminum honeycomb [9]. The model is

orthotropic with the three principal axes of orthotropy labeled the T, L and W axes. This model

is the latest in an evolution of models that include the orthotropic crush and orthotropic rate

models. For a complete description of the constitutive model, along with procedures for fitting

test data to the model, the reader is directed to [9].

Properties:

State Variables (39):

Functions:

Methods:

initialize(matParams * p);

getStress(matParams * p);

MODULUS_FUNCTION

RATE_FUNCTION

T_FUNCTION

L_FUNCTION

W_FUNCTION

TL_FUNCTION

LW_FUNCTION

WT_FUNCTION

TLTLP_FUNCTION

LWLWP_FUNCTION

WTWTP_FUNCTION

TTP_FUNCTION

LLP_FUNCTION

WWP_FUNCTION

TTLP_FUNCTION

TTWP_FUNCTION

LAMBDA

SHEAR_MODULUS

YIELD_STRESS

MODULUS_TTTT

MODULUS_TTLL

MODULUS_TTWW

MODULUS_LLLL

MODULUS_LLWW

MODULUS_WWWW

A1

A2

A3

B1

B2

B3

C1

C2

C3

TS

LS

WS

TLS

LWS

WTS

ESTW

ESTL

ESLT

ESLW

ESWT

ESWL

21

2.10 Hyperfoam Model

The HYPERFOAM model is a hyperelastic model that is used to model foams. It is based on an

Ogden [10] type model and is the same as the Hyperfoam model that is in ABAQUS [11].

The stress in this model is derived from a strain energy density that is only dependent on the

principal stretch ratios. As a result, it is simple to derive the principal stresses from the strain

energy density. The principal stresses can be converted back into the global coordinates. The

strain energy density for this model is

 () ()1 2 3 1 2 32
1

2 1
, , 3 1k k k k k

N
k

k k i

W J
α α α α βµ

λ λ λ λ λ λ
α β

−

=

 
= + + − + − 

 
∑ , (8)

where the iλ are the principal stretch ratios and J is the Jacobian of the deformation. The

material parameters are kµ , kα and kν with

1 2

k
k

k

ν
β

ν
=

−
 . (9)

The number of material properties depends on the number of terms, N , in the description of the

strain energy density. The principal Cauchy stresses are given by

 ()no sum on I
I

I

W
I

J

λ
σ

λ

∂
=

∂
 . (10)

Since the model is hyperelastic, if the host code is storing the stress components in another

configuration (e.g. the un-rotated configuration), then the stress components must be converted

to that configuration prior to sending them back to the host code.

Properties:

N

SHEAR

ALPHA

POISSON

State Variables:

 none

Functions:

none

22

Methods:

getStress(matParams * p);

23

2.11 Incompressible Solid Model

The INCOMPRESSIBLE_SOLID model is a variation of the ELASTIC model that is used with

Adagio’s multilevel solver. The model is used to model nearly incompressible materials (where

0.5ν ≈) in a quasistatic code, e.g. Adagio. The model is essentially the same as the ELASTIC

model except that it scales the bulk modulus and/or the shear modulus. The model needs some

way to account for the scaled response in the host code, e.g. it uses the multi-level solution

control and augmented Lagrange wrappers in Adagio. This model is not intended for transient

dynamics applications, e.g. Presto. However, if it is used in Presto, the scaling terms are

ignored.

There are no state variables or user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

BULK_SCALING

SHEAR_SCALING

State Variables:

 none

Functions:

none

Methods:

getStress(matParams * p);

pcElasticModuli(matParams * p);

24

2.12 Johnson-Cook Model

The JOHNSON_COOK model is a rate and temperature dependent plasticity model. This model

is generally used for high velocity impact calculations. The rate and temperature dependence is

included in the hardening law as follows:

 () ()()1 ln 1n m

y pA C Tσ σ ε ε ∗ ∗= + + −& , (11)

where σ is the von Mises stress, pε is the equivalent plastic strain, A is the hardening constant,

n is the hardening exponent, C is the rate constant, ε ∗
& is a normalized plastic strain rate, T ∗ is

the effective temperature and m is the thermal exponent. The normalized plastic strain rate is

defined as

0

pε
ε

ε
∗ =

&
&

&
 , (12)

where pε& is the equivalent plastic strain rate and 0ε& is a reference strain rate. In the code 0ε& is

hard-coded to a value of 0.001. The effective temperature is given by

 0

0m

T T
T

T T

∗ −
=

−
 , (13)

where T is the temperature, 0T is a reference temperature and mT is the melt temperature.

There are five state variables for this model and three of them are aliased for output: the radius of

the yield surface, the equivalent plastic strain and the equivalent plastic strain rate.

There are no user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

HARDENING_CONSTANT

HARDENING_EXPONENT

RHOCV

RATE_CONSTANT

THERMAL_EXPONENT

REFERENCE_TEMPERATURE

MELT_TEMPERATURE

25

State Variables (5):

RADIUS

EQPS

EQDOT

Functions:

none

Methods:

getStress(matParams * p);

26

2.13 Low Density Foam Model

The LOW_DENSITY_FOAM model is a phenomenological model that is used to model low

density polyurethane foams. This model was developed at Sandia National Laboratories and

complete documentation can be found in [12].

The yield function for this model has the form

 ()2 11A I B CIσ ′= + + , (14)

where A , B and C are material properties, • denotes the Heaviside step function, 2I ′ is the

second invariant of the deviatoric strain and 1I is the first invariant of the strain.

There are eight state variables for this model, only one of which is aliased for output. There are

no user input functions for this model.

Properties:

YOUNGS_MODULUS

A

B

C

NAIR

P0

PHI

State Variables (8):

PAIR

Functions:

none

Methods:

getStress(matParams * p);

27

2.14 Mooney-Rivlin Model

The MOONEY_RIVLIN model is a hyperelastic model that is used to model rubber. The strain

energy density as implemented in Adagio is given by

 1 210 01(3) (3) (ln)m m mU C I C I K J J J= − + − + − (15)

where C10, C01, and K are temperature dependent material constants and the strain quantities are

defined as follows. The strain tensor is nominally the left Cauchy-Green strain tensor excluding

the volumetric change given as

T

B F F     =      (16)

where F 
  is defined in terms of the total deformation gradient []F as follows:

 []
1

3F J F
−

  =  (17)

with J defining the relative volumetric change given in terms of differential volume dV as

follows:

 []
()

det
(0)

dV t
J F

dV
= = (18)

The first and second strain invariants are simply

 []1 :I I B =   (19)

and

 [] ()()2

2 1

1
:

2
I I I B B   = −     (20)

The mechanical volumetric strain is given by

 m

th

J
J

J
= (21)

where the thermal volumetric strain is given by

 []detth thJ F= (22)

28

with []thF defined as the thermal deformation gradient. That is, the total deformation gradient is

multiplicatively decomposed as

 [] [][]m thF F F= (23)

with isotropic thermal expansion defined by

 [] []1/3

th thF J I= (24)

The deviatoric and volumetric stresses are respectively given as

 [] 110 01 01

2
' ()

m

DEV C I C B C B B
J

σ       = + −      
 (25)

and

 ()ln mp K J= (26)

Properties:

C10

C01

BULK_MODULUS

TARGET_E

MAX_POISSONS_RATIO

BULK_SCALING

SHEAR_SCALING

State Variables (12):

C10

C01

K

SFJTH

JTH

VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

SFJTH_FLAG

29

Functions:

TARGET_E_FUNCTION

C10_FUNCTION

C01_FUNCTION

BULK_FUNCTION

THERMAL_EXPANSION_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

pcElasticModuli(matParams * p);

30

2.15 Multilinear Elastic-Plastic Model

The MULTILINEAR_EP model is an elastic-plastic model with a piecewise linear hardening

curve. This model provides significant flexibility for an analyst in describing the hardening

behavior of an elastic-plastic material. A hardening function, ()pH ε , describes equivalent

stress – equivalent plastic strain pairs that are used to describe the hardening behavior for the

material. The hardening curve for the model is given by

 ()y pHσ σ ε= + , (27)

where σ is the von Mises stress and yσ is the yield stress.

In addition to supporting arbitrary hardening curves, the model allows for isotropic and/or

kinematic hardening for the yield surface, temperature dependent elastic properties and a

temperature dependent yield stress. The hardening curve, however, does not change shape with

temperature.

There are 11 state variables for this model, eight of which are aliased for output. The other three

correspond to temperature dependent properties. There are four user input functions for this

model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

BETA

State Variables (11):

EQPS

RADIUS

ALPHA_XX

ALPHA_YY

ALPHA_ZZ

ALPHA_XY

ALPHA_YZ

ALPHA_ZX

31

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

YIELD_STRESS_FUNCTION

HARDENING_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

32

2.16 Multilinear Elastic Plastic with Failure Model

The ML_EP_FAIL is a ductile failure model that uses the multilinear elastic-plastic model. The

model has a piecewise linear hardening curve which provides significant flexibility for an analyst

in describing the hardening behavior of an elastic-plastic material. A hardening function,

()pH ε , describes equivalent stress – equivalent plastic strain pairs that are used to describe the

hardening behavior for the material. The hardening curve for the model looks like

 ()y pHσ σ ε= + , (28)

where σ is the von Mises stress and yσ is the yield stress.

In addition to supporting arbitrary hardening curves, the model allows for isotropic and/or

kinematic hardening for the yield surface, temperature dependent elastic properties and a

temperature dependent yield stress. The hardening curve, however, does not change shape with

temperature.

Two other parameters, the critical crack opening strain and the critical tearing parameter,

describe the failure of the material. The critical tearing parameter, pt , is given by

()

4

max

max0

2

3

f

p p

m

t d

ε
σ

ε
σ σ

=
−∫ , (29)

where maxσ is the maximum principal stress, mσ is the mean stress and • denotes the

Heaviside step function.

There are 14 state variables for this model, eight of which are aliased for output. There are four

user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

BETA

CRITICAL_TEARING_PARAMETER

CRITICAL_CRACK_OPENING_STRAIN

33

State Variables (14):

EQPS

RADIUS

ALPHA_XX

ALPHA_YY

ALPHA_ZZ

ALPHA_XY

ALPHA_YZ

ALPHA_ZX

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

YIELD_STRESS_FUNCTION

HARDENING_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

34

2.17 Neo-Hookean Model

The NEO_HOOKEAN model is a hyperelastic model based on small strain linear elasticity. If a

large deformation elasticity model is needed, this is probably a better model than the ELASTIC

model for that purpose. The model that is implemented in LAME is the same as the model in

[13].

The strain energy density for the neo-Hookean model is given by

 () () 1/3

1 1 tr
det ln det 1 3

4 2 det
W K µ

 
 = − − + −  

 

C
C C C

C
 , (30)

where K is the bulk modulus, µ is the shear modulus and C is the right Cauchy-Green tensor.

The stress can be derived directly from the strain energy density. The components of the Cauchy

stress, ijσ , are

 5/31 1 1

2 3
ij ij ij ij kkK J B B J

J
σ δ µ δ −   

= − + −   
   

 , (31)

where ijB are the components of the left Cauchy-Green tensor and detJ = F is the Jacobian of

the deformation. For small strains it is easy to show that (31) reduces to the expression for small

strain linear elasticity.

There are no state variables or user input functions for this model.

Properties:

BULK_MODULUS

SHEAR_MODULUS

State Variables:

 none

Functions:

none

Methods:

getStress(matParams * p);

35

2.18 NLVE Polymer Model

The NLVE_POLYMER model is a nonlinear viscoelastic material model for analyzing stresses

and strains in filled and unfilled polymers. It employs a finite strain measure (Hencky strain H)

and is thermodynamically consistent so in principle can be used to analyze material performance

all the way up to failure. It predicts a full range of behavior including yielding, stress relaxation,

volume relaxation, physical aging, enthalpy relaxation, etc. The model uses a material clock

driven by the potential part of the internal energy. The code inputs allow the user to specify

either the mathematical terms in the constitutive equation directly or a set of physically

measurable quantities from which the equation terms are computed. This model is the rigorously

complete model for filled and unfilled polymers. It is intended for research purposes. Analysts

are advised to use the simpler, but still accurate Universal_Polymer model.

Complete details of this model are given in References [14,15]. However, some of the relevant

equations are presented here. This model is derived using a Rational Mechanics approach where

all thermodynamic quantities are derived from a single potential, the Helmholtz free energy,Ψ .

The internal energy U in the model is related to the Helmholtz free energy as

 U Tη= Ψ + (32)

where η is the entropy and T is the temperature. The full expression for the internal energy is

given as follows:

()

()

()

* * * *

1 1
0 0

* * * *

2 2
0 0

* * * *

3 3
0 0

*

4 4
0

1
 + du f , () ()
2

dH dH
 + () du f ,

ds du

 + (,) du f , () ()

1
 + () du f
2

:

t t
H H

c

t t

t t
H

H

t

dI dI
U U ds t s t u s u

ds du

T ds t s t u

dI dT
T I ds t s t u s u

ds du

T ds t

∞= Ψ − −∫ ∫

Ψ − −∫ ∫

Ψ − −∫ ∫

Ψ −∫ ()

() ()

()

()

* * *

0

* * * *

4 4 3 3
0 0

* * * *3
3

0 0

* * * *4
4

0 0

, () ()

 () f ,0 ()+ (,) f ,0 ()

 + du f , () ()

1
 + du f , (

2

[

H

H

t

t t
H

H

t t
H

I

t t

I

dT dT
s t u s u

ds du

dIdT
T T ds t s s T I ds t s s

dt ds

dI dT
ds t s t u s u

T ds du

dT
ds t s t u

T ds

−∫

− Ψ − Ψ −∫ ∫

∂Ψ 
− −∫ ∫ 

∂ 

∂Ψ 
− −∫ ∫ 

∂ 

()* * * *2
2

0 0

) ()

dH dH
 + du f ,

ds du
:]

H

t t

I

dT
s u

du

ds t s t u
T

∂Ψ 
− −∫ ∫ 

∂  (33)

with the material clock defined by

36

 * *

1

1 1
and log a = B = C 1

()

reft
c

ref
s c c c

Udw
t s

a w U U U

   
− = − −∫    

   
 (34)

and the equilibrium energy given by

()
 I

2 2 23
3 4

2
2 3 43 4 4

2

3
4

1 1
, +

2 2

1 1
 - -

2 4

2

 + T

C pot I HH

ref

ref ref ref

H H H H H

H

refref ref

H

r

ref

U I T U I II I T T I T
I

I T T T
T T T

T
T

ψ ψ∞ ∞

 ∂Ψ
∆ = + − Ψ ∆ − Ψ ∆ − ∆ 

∂ 

 ∂Ψ ∂Ψ ∂ Ψ   
− ∆ ∆ ∆   

∂ ∂ ∂    

∂Ψ 
Ψ ∆ +  

∂ 

24

2
3 234

32

3

2

ef ref

H

refref

ref

H H

I T T
T

T I I
T Iε

 ∂Ψ 
∆ + ∆  

∂  
 

   ∂Ψ∂ Ψ + ∆ + Ψ +    ∂ ∂    

(35)

The Hencky stress
H

S is the stress measure that is work conjugate with the Hencky strain H and

is given by

() () ()

()

()

I I

1 1 2 2
0 0

3 3
0

3
3

0 0

I
 f * * () I +2 f * * ()

 + (, I) f * * () I

I
 + f * *, * * () () I

I

 +

t t
H

ref refH

t

ref H

t t
H

ref

H T

ref

dHd
S ds t s s T ds t s s

ds ds

dT
T ds t s s

ds

ddT
ds du t s t u s u

ds ds

I

ρ ρ

ρ

∂
ρ

∂

ρ ψ ψ

= Ψ − Ψ −∫ ∫

Ψ −∫

 Ψ
− −∫ ∫ 

 

+
 I I T I I T I T T

2

1
 +2

2 HHH H refI T I T T I Hψ ψ ψ ρ ψ
 

+ ∆ + ∆ + ∆  

 (36)

The Hencky stress is converted internally to the Cauchy stress for use in static and dynamic

equilibrium equations. The relaxation functions are specified using Prony series as follows:

/

1

() i

N
t

m mi
i

f t f e
τ−

=

= ∑ (37)

37

Properties:

There are 253 properties that are input for this model. Some of these properties are input, but

some are not and are simply computed from some of the other inputs. For example, the

relaxation functions are usually input as Williams-Watts functions and then Prony series are

determined from them. Since many of the inputs comprise a Prony series, only the name of the

first term in each series is explicitly given here.

1PSI PRONY 1, 1PSI PRONY 2, etc: Property Numbers 1-30 are the exponential series

prefactors (f1i) that are used to define the normalized relaxation function f1 associated

with the Ψ1 integral in the equation for
H

S

2PSI PRONY 1, 2PSI PRONY 2, etc: Property Numbers 31-60 are the exponential series

prefactors that are used to define the normalized relaxation function f2 associated with the

Ψ2 integral in the equation for
H

S

3PSI PRONY 1, 3PSI PRONY 2, etc: Property Numbers 61-90 are the exponential series

prefactors that are used to define the normalized relaxation function f3 associated with the

Ψ3 integral in the equation for
H

S

4PSI PRONY 1, 4PSI PRONY 2, etc: Property Numbers 91-120 are the exponential

series prefactors that are used to define the normalized relaxation function f4 associated

with the Ψ4 integral in the equation for
H

S

RELAX TIME 1, RELAX TIME 2, etc: Property Numbers 121-150 are the exponential

series relaxation times (τi) that are used to define all the normalized relaxation functions
in the equation for

H
S

Ψ1(IH) = Ψ1

ref +
dΨ1

dIH
IH

1PSI REF, Ψ1

ref

I1 DERIV 1PSI,
dΨ1

dIH

Ψ2(T,IH ,IHH) = Ψ2

ref +
dΨ2

dT
(T −TREF) +

dΨ1

dIH
IH +

dΨ1

dIHH
IHH +

1

2

d2Ψ1

dIHH
2
IHH

2

2PSI REF, Ψ2

ref

T DERIV 2PSI,
dΨ2

dT

I1 DERIV 2PSI,
dΨ2

dIH

38

I2 DERIV 2PSI,
dΨ2

dIHH
, (IHH is the 2

nd
 Hencky strain invariant)

I2 2DERIV 2PSI,
d2Ψ2

dIHH
2

Ψ3(T,IH) = Ψ3

ref +
dΨ3

dT
(T −TREF) +

dΨ3

dIH
IH +

d2Ψ3

dTdIH
IH (T −TREF)

3PSI REF, Ψ3

ref

T DERIV 3PSI,
dΨ3

dT

I1 DERIV 3PSI,
dΨ3

dIH

I1T 2DERIV 3PSI,
d2Ψ3

dIHdT

Ψ4 (T,IH) = Ψ4

ref +
dΨ4

dT
(T −TREF) +

dΨ4

dIH
IH +

1

2

d2Ψ4

dT 2
(T −TREF)

2

4PSI REF, Ψ4

ref

T DERIV 4PSI,
dΨ4

dT

T 2DERIV 4PSI,
d2Ψ4

dT 2

I1 DERIV 4PSI,
dΨ4

dIH

Reference temperature, Tref
Reference density

WLF coefficient C1

WLF coefficient C2

B, Shift factor constant

Uc

ref , Shift factor constant

1

1

1

() exp
t

f t

β

τ

  
 = − 
   

WWBETA 1PSI, β1
WWTAU 1PSI, τ1

2

2

2

() exp
t

f t

β

τ

  
 = − 
   

39

WWBETA 2PSI, β2

WWTAU 2PSI, τ 2

3

3

3

() exp
t

f t

β

τ

  
 = − 
   

WWBETA 3PSI, β3

WWTAU 3PSI, τ 3

4

4

4

() exp
t

f t

β

τ

  
 = − 
   

WWBETA 4PSI, β4
WWTAU 4PSI, τ 4
DOUBLE INTEG FACTOR (not used)

RUBBERY BULK MOD

I1 DERIV R_BULK

GLASSY BULK MOD

I1 DERIV G_BULK

RUBBERY SHEAR MOD

T DERIV R_SHEAR

I2 DERIV R_SHEAR

GLASSY SHEAR MOD

T DERIV G_SHEAR

RUBBERY VOL CTE

T DERIV R_CTE

GLASSY VOL CTE

T DERIV G_CTE

RUBBER HCAPACITY

T DERIV R_HCAPACITY

GLASSY HCAPACITY

T DERIV G_HCAPACITY

GLASS TRANSITION TEM

TG TEST PRESSURE

SHIFTED TG VALUE

ENERGY OPTION (0= temp specified; 1=adiabatic, compute temperature)

PSI EQ 2I, ΨII , (These terms are used in the Taylor series

PSI EQ IT, ΨIT expansion that defines the equilibrium

PSI EQ 2T, ΨTT stress)

PSI EQ 2H, ΨHH

PSI EQ 3I, ΨIII

PSI EQ 2IT, ΨIIT

PSI EQ I2T, ΨITT

PSI EQ 3T, ΨTTT

PSI EQ 2HT, ΨHHT

40

PSI EQ 4I, ΨIIII

PSI EQ 3IT, ΨIIIT

PSI EQ 2I2T, ΨIITT

PSI EQ I3T, ΨITTT

PSI EQ 4T, ΨTTTT

PSI EQ 4H, ΨHHHH

PSI POT IT

PSI POT 2T

PSI POT 2IT

PSI POT I2T

PSI POT 3T

PSI POT 4T

PSI POT I

PSI POT 2I

PSI POT 3I

PSI POT 2H

PSI POT 2HT

1PSI POT FACTOR

2PSI POT FACTOR

3PSI POT FACTOR

4PSI POT FACTOR

PSI POT 2I2T

State Variables (281):

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

41

2.19 Orthotropic Crush Model

The ORTHOTROPIC_CRUSH model is useful for modeling energy absorbing materials like

aluminum honeycomb. It is a fairy coarse model that gives reasonable results when the loading

is aligned with the principal axes of orthotropy of the material. One restriction for this material

is that the axes of orthotropy must be aligned with the global Cartesian axes.

Fully compacted elastic properties and a yield stress are given for the material. In addition to

these properties, initial orthotropic elastic moduli and shear moduli are given with respect to the

global Cartesian axes. Six functions are defined that give the crush strength of the material as a

function of volumetric strain for the six stress components. This models the plateau strength for

the material.

There is one state variable for this model, the volumetric strain. There are six user input

functions corresponding to the crush strength curves for the six stress components.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

EX

EY

EZ

GXY

GYZ

GZX

VMIN

State Variables (1):

0 - EVOL

Functions:

CRUSH_XX

CRUSH_YY

CRUSH_ZZ

CRUSH_XY

CRUSH_YZ

CRUSH_ZX

Methods:

initialize(matParams * p);

getStress(matParams * p);

42

2.20 Orthotropic Rate Model

The ORTHOTROPIC_RATE model is an extension of the ORTHOTROPIC_CRUSH model that

allows for rate dependent crush strengths. This model also allows for arbitrary orientation of the

axes of orthotropy with respect to the global Cartesian axes. The model assumes three

orthogonal axes of orthotropy – the T, L and W directions.

Normal and shear moduli with respect to the axes of orthotropy are input for the model along

with the direction cosines for the T and L directions. The normal and shear crush strengths are

defined through user input functions along with a rate multiplier function. Another function

modifies the modulus of the material as a function of volumetric strain.

There are six state variables for this model, only one of which is aliased for output. There are

eight user input functions for this model.

Properties:

State Variables (6):

0 - EVOL

Functions:

MODULUS_FUNCTION

RATE_FUNCTION

T_FUNCTION

L_FUNCTION

W_FUNCTION

TL_FUNCTION

LW_FUNCTION

WT_FUNCTION

LAMBDA

SHEAR_MODULUS

YIELD_STRESS

MODULUS_TTTT

MODULUS_TTLL

MODULUS_TTWW

MODULUS_LLLL

MODULUS_LLWW

MODULUS_WWWW

MODULUS_TLTL

MODULUS_LWLW

MODULUS_WTWT

TX

TY

TZ

LX

LY

LZ

43

Methods:

initialize(matParams * p);

getStress(matParams * p);

44

2.21 Power Law Creep Model

The POWER_LAW_CREEP model can be used to model the creep behavior of metals, like brazes

and solders, and geologic materials like salt. The model is useful for capturing secondary creep

in materials. The theory behind the POWER_LAW_CREEP model can be found in [6].

The power law creep model describes the evolution of the creep strain, cε , as a function of the

von Mises stress, σ

 ()expm

c A Bε σ= −& , (38)

where A is the creep constant, m is the creep exponent and B is the thermal constant.

There are two state variables for this model – the equivalent creep strain and the equivalent stress

rate.

There are no user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

CREEP_CONSTANT

CREEP_EXPONENT

THERMAL_CONSTANT

State Variables (2):

ECREEP

SEQDOT

Functions:

none

Methods:

getStress(matParams * p);

45

2.22 Soil and Foam Model

The SOIL_FOAM model is a model that was implemented in SANTOS [6] and JAS3D [16]. The

model can be used as a simple model of a geologic material. The model has a pressure

dependent yield surface which allows it to behave as, say, a Drucker-Prager model. The bulk

behavior is modeled with a user input pressure-volumetric strain curve.

There are three state variables for this model. Only one of the state variables is aliased for output

– volumetric strain.

There is one user input function. The pressure function gives the pressure as a function of

volumetric strain.

Properties:

BULK_MODULUS

TWO_MU

PRESSURE_CUTOFF

A0

A1

A2

State Variables (3):

EVOL

Functions:

PRESSURE_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

46

2.23 Solder Model

The SOLDER model is a viscoplastic model that is used to model the mechanical response of

solder. Detailed information on the model can be found in [17], [18], [19] and [20].

There are 28 state variables for this model. None of the state variables are aliased for output.

State variables 12-28 are for temperature dependent material properties.

There are 17 user input functions for this model. These functions define the temperature

dependence of various material properties.

Properties:

State Variables (28):

Functions:

BULK_FUNCTION

SHEAR_FUNCTION

RATE_FUNCTION

XP_FUNCTION

XM_FUNCTION

ALPHA_FUNCTION

A1_FUNCTION

A2_FUNCTION

A3_FUNCTION

A4_FUNCTION

A5_FUNCTION

A6_FUNCTION

A7_FUNCTION

A8_FUNCTION

B1_FUNCTION

B2_FUNCTION

B3_FUNCTION

BULK_MODULUS

SHEAR_MODULUS

FLOW_STRESS

FLOW_RATE

SINH_EXPONENT

GRAIN_SIZE

GRAIN_EXPONENT

ALPHA

A1

A2

A3

A4

A5

A6

A7

A8

B1

B2

B3

47

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

48

2.24 Solder with Damage Model

The SOLDER_DAMAGE model is a viscoplastic damage model that is used to model the

mechanical response of solder. Microstructural damage is modeled through a damage evolution

equation. Detailed information on the model can be found in [17], [18], [19] and [20].

There are 40 state variables for this model. None of the state variables are aliased for output.

State variables 26-40 are for temperature dependent material properties.

There are 15 user input functions for this model. These functions define the temperature

dependence of various material properties.

Properties:

State Variables (40):

BULK_MODULUS

SHEAR_MODULUS

FLOW_STRESS

FLOW_RATE

SINH_EXPONENT

GRAIN_SIZE

GRAIN_EXPONENT

ALPHA

A1

A2

A3

A4

A5

A6

A7

A8

B1

B2

B3

D1

D2

D3

D4

D5

YIN

YF

GAMMA

49

Functions:

YOUNG_FUNCTION

POISSON_FUNCTION

RATE_FUNCTION

ALPHA_FUNCTION

A1_FUNCTION

A2_FUNCTION

A3_FUNCTION

A4_FUNCTION

A5_FUNCTION

A6_FUNCTION

A7_FUNCTION

B1_FUNCTION

B2_FUNCTION

YIN_FUNCTION

YF_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

50

2.25 Stiff Elastic Model

The STIFF_ELASTIC model is based on the ELASTIC model and is similar to the

INCOMPRESSIBLE_SOLID model. However, rather than scale properties based on the notion

of incompressibility (or the ratio of the shear modulus to the bulk modulus) this model scales

properties based on relative the stiffness of different materials in the same problem – e.g. a

“soft” and a “hard” material. This model requires some way to account for the scaled properties

in the host code, e.g. the multi-level solution control and augmented-Lagrange wrappers in

Adagio. All portions of the material response are softened by the same amount in this model.

This model is not intended for transient dynamics applications, e.g. Presto. However, if it is used

in Presto, the scaling is ignored.

There are no material state variables or user input functions for this model.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

SCALE_FACTOR

State Variables:

 none

Functions:

none

Methods:

getStress(matParams * p);

pcElasticModuli(matParams * p);

51

2.26 Swanson

The Swanson model is a hyperelastic model typically used for modeling rubbers. By properly

setting the material constants, a number of standard hyperelastic models can be recovered. The

strain energy density is given by

1 1 11 1 1

1 2 11 1 1

1 1 1

3 3 3
1 1 1 (ln)

2 1 3 2 1 3 2 1 3

P Q R

m m m

A B CI I I
U K J J J

P Q R

+ + +
     

= − + − + − + −     
+ + +     

where the strain quantities are defined as follows. The strain tensor is nominally the left Cauchy-

Green strain tensor excluding the volumetric change given as

T

B F F     =      (39)

where F 
  is defined in terms of the total deformation gradient []F as follows:

 []
1

3F J F
−

  =  (40)

The first and second strain invariants are simply

 []1 :I I B =   (41)

and

 [] ()()2

2 1

1
:

2
I I I B B   = −     (42)

The mechanical volumetric strain is given by

 m

th

J
J

J
= (43)

where the total and thermal volumetric strains are given by

 [] []det and detth thJ F J F= = (44)

with []thF defined as the isotropic thermal deformation gradient as follows:

 [] []1/3

th thF J I= (45)

That is, the total deformation gradient is broken into mechanical and thermal parts using

52

 [] [][]m thF F F= (46)

The deviatoric stresses are given by

 [] 1

1 2 2

2
'

m

U U U
DEV I B B B

J I I I
σ

 ∂ ∂ ∂       = + −       ∂ ∂ ∂  
 (47)

where the partial derivatives of the strain energy are simply

1 1

1 1
1 1

1

1 1
1 1

2 3 2 3

P R

I IU
A C

I

   ∂
= − + −   

∂    
 (48)

1

2
1

2

1
1

2 3

Q

IU
B

I

 ∂
= − 

∂  
 (49)

The pressure is given by

 ()ln mp K J= (50)

As previously noted, a number of standard hyperelastic models can be recovered by properly

setting the material constants. For instance, a Neo-Hookean model can be simulated by using

1 10 1

1 1

1 1

2 0

0 0

0 0

A C P

B Q

C R

K K

= =

= =

= =

=

 (51)

The Mooney-Rivlin constitutive equation results from using

1 10 1

1 01 1

1 1

2 0

2 0

0 0

A C P

B C Q

C R

K K

= =

= =

= =

=

 (52)

However, unlike the native Mooney-Rivlin implementation in LAME, the Swanson model does

not incorporate temperature dependent moduli.

53

Properties:

A1

P1

B1

Q1

C1

R1

BULK_MODULUS

CUT_OFF_STRAIN

TARGET_E

MAX_POISSONS_RATIO

BULK_SCALING

SHEAR_SCALING

State Variables (9):

SFJTH

JTH

VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

SFJTH_FLAG

Functions:

TARGET_E_FUNCTION

THERMAL_EXPANSION_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

pcElasticModuli(matParams * p);

54

2.27 Thermoelastic Model

The THERMOELASTIC model is a temperature dependent version of the ELASTIC model where

the elastic constants are temperature dependent. A description of the thermoelastic model can be

found in [6].

There are no state variables for this model.

There are two user input functions: the Young’s modulus function, the Poisson’s ratio function.

These functions define these properties as a function of temperature.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

State Variables:

 none

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

55

2.28 Thermoelastic-Plastic Power Law Hardening Model

The THERMO_EP_POWER model is a thermoelastic-plastic power law hardening model. It is a

temperature dependent version of the EP_POWER_HARD model that allows for the elastic

properties and the yield stress to vary as a function of temperature. As an additional feature, this

model allows for isotropic and/or kinematic hardening – a feature that is not in the

EP_POWER_HARD model.

This model has 11 state variables, 8 that are available for output: the equivalent plastic strain,

radius of the yield surface and six components of the back stress tensor that gives the location of

the center of the yield surface. The other state variables keep track of the temperature dependent

properties for the model.

There are three user input functions for this model: the Young’s modulus function, the Poisson’s

ratio function and the yield stress function. These functions define these properties as a function

of temperature.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

HARDENING_CONSTANT

HARDENING_EXPONENT

LUDERS_STRAIN

BETA

State Variables (11):

EQPS

RADIUS

ALPHA_XX

ALPHA_YY

ALPHA_ZZ

ALPHA_XY

ALPHA_YZ

ALPHA_ZX

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

YIELD_STRESS_FUNCTION

56

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

57

2.29 Thermoelastic-Plastic Power Law Hardening Weld Model

The THERMO_EP_POWER_WELD model is a variation of the THERMO_EP_POWER model that

can be used to model, in a crude way, a weld. The added feature in this model is the transition

temperature, tT . The model has elastic properties that are a function of temperature. At the start

of an analysis, the elastic properties have their values evaluated at the transition temperature.

The first time that the temperature exceeds the transition temperature the material behaves as the

THERMO_EP_POWER model.

This model has 12 state variables, 9 that are available for output: the equivalent plastic strain,

radius of the yield surface, six components of the back stress tensor that gives the location of the

center of the yield surface and a flag that turns on if the temperature has gone beyond the

transition temperature. The other state variables keep track of the temperature dependent

properties for the model.

There are three user input functions for this model: the Young’s modulus function, the Poisson’s

ratio function and the yield stress function. These functions define these properties as a function

of temperature.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

YIELD_STRESS

HARDENING_CONSTANT

HARDENING_EXPONENT

LUDERS_STRAIN

BETA

TRANSITION_TEMPERATURE

State Variables (12):

EQPS

RADIUS

ALPHA_XX

ALPHA_YY

ALPHA_ZZ

ALPHA_XY

ALPHA_YZ

ALPHA_ZX

WELD_FLAG

58

Functions:

YOUNGS_MODULUS_FUNCTION

POISSONS_RATIO_FUNCTION

YIELD_STRESS_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

59

2.30 Universal Polymer Model

This is a phenomenological, nonlinear viscoelastic material model for analyzing stresses and

strains in filled and unfilled polymers. It represents a simplification of the NLVE_POLYMER

model, and it was developed for production analyses of encapsulated components. It predicts a

full range of behavior including yielding, stress relaxation, volume relaxation, and physical

aging. The model uses a material clock driven by temperature, volume and strain (similar to

potential internal energy of NLVE_POLYMER). The strain measure is obtained from the

integration of the rate of deformation tensor. As a special feature, it does allow the user to

initiate an analysis from a stress-free temperature, Tsf, that is different from the reference

temperature, Tref, at which the material properties are defined.

The Cauchy stress is given by

{ } ()

{ } ()

{ } ()

[]{ }

1
g 1

0

g 1
0

g 2
0

1 sf

I
 K (()) (()) f * * () I

 K (()) (()) (()) (()) f * * () I

 2 (()) (()) f * * ()

 (()) (()) (()) T(t) T I

t

t

g

t
dev

d
T t K T t ds t s s

ds

dT
T t T t K T t T t ds t s s

ds

d
G T t G T t ds t s s

ds

K T t I K T t T t

σ

δ δ

ε

δ

∞

∞ ∞

∞

∞ ∞ ∞

= − −∫

− − −∫

+ − −∫

+ − − 2 (())
dev

G T t ε∞+

 (53)

where

1

1

: ()

1

3dev

I I trace

I I

ε ε

ε ε

= =

= −
 (54)

and

NLVE_POLYMER

NLVE_POLYMER

60

() () () () ()

() () () () ()

() () (

g g g g

g g ref ref g ref sf ref sf g sf sf

ref ref ref sf ref sf sf sf

g g

g g ref ref g ref sf r

dK dK dK dK
K T K T T K T T T T K T T

dT dT dT dT

dK dK dK dK
K T K T T K T T T T K T T

dT dT dT dT

d d
T T T T T

dT dT

α α
α α α

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

= + − = + − + − = + −

= + − = + − + − = + −

= + − = + −) () ()

1
() ()

2

() () () () ()

1
() ()

2

g g

ef sf g sf sf

g

g g sf sf

ref ref ref sf ref sf sf sf

sf sf

d d
T T T T

dT dT

d
T T T

dT

d d d d
T T T T T T T T T

dT dT dT dT

d
T T T

dT

α α
α

α
δ α

α α α α
α α α α

α
δ α

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

∞
∞ ∞

+ − = + −

 
= + − 
 

= + − = + − + − = + −

 
= + −  

 (55)

() () () () ()

() () () () ()

g g g g

g g ref ref g ref sf ref sf g sf sf

ref ref ref sf ref sf sf sf

dG dG dG dG
G T G T T G T T T T G T T

dT dT dT dT

dG dG dG dG
G T G T T G T T T T G T T

dT dT dT dT

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

= + − = + − + − = + −

= + − = + − + − = + −

 (56)

The material clock is defined by

 1

2

ˆ* * log a =
ˆ()

t

s

dw N
t s and C

a w C N

 
− = −  ∫  + 

 (57)

where

() () 1
1 3 1 1

0 0

4
0 0

I
() f * * () () f * * ()

() ()
(* *, * *) :

t t

ref ref

t t
dev dev

ddT
N T t T ds t s s C I t ds t s s

ds ds

d s d u
C dsdu f t s t u

ds du

ε ε

   = − − − + − −∫ ∫       

  
+ − −∫ ∫ 

  

(58)

() ()

{ }

1
1 3 1 1 1 1 1

0 0

4 2

I
() f * * () () f * * ()

()

sf sf ref

t t

ref

eff

dev

ddT
N T t T ds t s s C I t I I I ds t s s

ds ds

C I t

       = − − − + − + − − −∫ ∫           

+

 (59)

61

Note that the clock invariant I1(t)ref is measured from the reference temperature, not the stress

free state. In order for the clock to reduce to the WLF equation at temperatures above Tg, we

must define the clock coefficients consistently. To do so, first approximate N for and

equilibrated material slightly above Tg:

{ }3 1 1 1 1 3

3

() () () ()

(1)()

sf sf refref ref ref

ref

N T T C I t I I I T T C T T

C T T

α

α

∞

∞

     = − + − + − ≈ − + −    

= + −
 (60)

To make the UPM clock reproduce the WLF equation above Tg, we must enforce a condition that

1 1 3 1

2 2 3 2

3

(log) (log)

ˆ ˆ() (1)() ()

ˆ ˆ() (1)()
()

(1)

WLF UPM

ref ref ref

ref ref
ref

a a

C T T C C T T C T T

C T T C C T T C
T T

C

α

α

α

∞

∞

∞

=

− − − + − − −
= =

+ − + + −
+ −

+

 (61)

From this condition, we can define the UPM clock parameters in terms of the WLF coefficients.

()

1 1

2 2 3

ˆ

ˆ 1 ref

C C

C C C α∞

=

= +
 (62)

Note that if the volumetric coefficient of thermal expansion varies as a linear function of

temperature, then the volume strain is quadratic:

()

() ()

() ()

0 0

00

1 0 0

2 2 2

0 0 0 0 0 0

2

0 0 0

0 0 0

() () ()

1 1
()

2 2

1

2

1

2

T T

T T

T T

TT

d
I T s ds s T ds

dT

d d d d
T s s T T T T T

dT dT dT dT

d
T T T T

dT

d
T T T T

dT

α
α α

α α α α
α α

α
α

α
α

 
= = + −∫ ∫   

      
= − + = − − + −            

= − + −

 
= + − −  

 (63)

where we adopt the notation that

 [] ()1 0 0

1
() () ()

2
o

d
I T T T T and T T T

dT

α
δ δ α= − ≡ + − (64)

62

Properties:

There are 134 properties for this model. Some are input, but some are derived from other

inputs. For example, the relaxation functions are usually input as Williams-Watts

functions and then Prony series are determined from them.

WWBETA 1

WWTAU 1

WWBETA 2

WWTAU 2

SPECTRUM START TIME

SPECTRUM END TIME

LOG TIME INCREMENT

BULK GLASSY 0

BULK GLASSY 1

BULK GLASSY 2

BULK RUBBERY 0

BULK RUBBERY 1

BULK RUBBERY 2

VOLCTE GLASSY 0

VOLCTE GLASSY 1

VOLCTE GLASSY 2

VOLCTE RUBBERY 0

VOLCTE RUBBERY 1

VOLCTE RUBBERY 2

SHEAR GLASSY 0

SHEAR GLASSY 1

SHEAR GLASSY 2

SHEAR RUBBERY 0

SHEAR RUBBERY 1

SHEAR RUBBERY 2

REFERENCE TEMPERATURE

WLF C1

WLF C2

CLOCK C1

CLOCK C2

CLOCK C3

CLOCK C4

CLOCK C5

CLOCK C6

FILLER VOL FRACTION

STRESS FREE TEMPERATURE

RELAX TIME 1

RELAX TIME 2

RELAX TIME 3

RELAX TIME 4

RELAX TIME 5

RELAX TIME 6

RELAX TIME 7

RELAX TIME 8

RELAX TIME 9

RELAX TIME 10

RELAX TIME 11

RELAX TIME 12

RELAX TIME 13

RELAX TIME 14

RELAX TIME 15

RELAX TIME 16

RELAX TIME 17

RELAX TIME 18

RELAX TIME 19

RELAX TIME 20

RELAX TIME 21

RELAX TIME 22

RELAX TIME 23

RELAX TIME 24

RELAX TIME 25

RELAX TIME 26

RELAX TIME 27

RELAX TIME 28

RELAX TIME 29

RELAX TIME 30

F1 1

F1 2

F1 3

F1 4

F1 5

F1 6

F1 7

F1 8

F1 9

F1 10

F1 11

F1 12

63

State Variables (249):

AEND

IGXX1

IGYY1

IGXY1

IGYZ1

IGZX1

IGXX2

IGYY2

IGXY2

IGYZ2

IGZX2

IGXX3

IGYY3

IGXY3

IGYZ3

IGZX3

IGXX4

IGYY4

IGXY4

IGYZ4

IGZX4

IGXX5

IGYY5

IGXY5

IGYZ5

IGZX5

IGXX6

IGYY6

IGXY6

IGYZ6

IGZX6

IGXX7

IGYY7

IGXY7

F1 13

F1 14

F1 15

F1 16

F1 17

F1 18

F1 19

F1 20

F1 21

F1 22

F1 23

F1 24

F1 25

F1 26

F1 27

F1 28

F1 29

F1 30

F2 1

F2 2

F2 3

F2 4

F2 5

F2 6

F2 7

F2 8

F2 9

F2 10

F2 11

F2 12

F2 13

F2 14

F2 15

F2 16

F2 17

F2 18

F2 19

F2 20

F2 21

F2 22

F2 23

F2 24

F2 25

F2 26

F2 27

F2 28

F2 29

F2 30

64

IGYZ7

IGZX7

IGXX8

IGYY8

IGXY8

IGYZ8

IGZX8

IGXX9

IGYY9

IGXY9

IGYZ9

IGZX9

IGXX10

IGYY10

IGXY10

IGYZ10

 IGZX10

IGXX11

IGYY11

IGXY11

IGYZ11

IGZX11

IGXX12

IGYY12

IGXY12

IGYZ12

IGZX12

IGXX13

IGYY13

IGXY13

IGYZ13

IGZX13

IGXX14

IGYY14

IGXY14

IGYZ14

IGZX14

IGXX15

IGYY15

IGXY15

IGYZ15

IGZX15

IGXX16

IGYY16

IGXY16

IGYZ16

IGZX16

IGXX17

IGYY17

IGXY17

IGYZ17

IGZX17

IGXX18

IGYY18

IGXY18

IGYZ18

IGZX18

IGXX19

IGYY19

IGXY19

IGYZ19

IGZX19

IGXX20

IGYY20

IGXY20

IGYZ20

IGZX20

IGXX21

IGYY21

IGXY21

IGYZ21

IGZX21

IGXX22

IGYY22

IGXY22

IGYZ22

IGZX22

IGXX23

IGYY23

IGXY23

IGYZ23

IGZX23

IGXX24

IGYY24

IGXY24

IGYZ24

IGZX24

IGXX25

IGYY25

 IGXY25

65

IGYZ25

IGZX25

IGXX26

IGYY26

IGXY26

IGYZ26

IGZX26

IGXX27

IGYY27

IGXY27

IGYZ27

IGZX27

IGXX28

IGYY28

IGXY28

IGYZ28

IGZX28

IGXX29

IGYY29

IGXY29

IGYZ29

IGZX29

IGXX30

IGYY30

IGXY30

IGYZ30

IGZX30

IKI11

IKI12

IKI13

IKI14

IKI15

IKI16

IKI17

IKI18

IKI19

IKI110

IKI111

IKI112

IKI113

IKI114

IKI115

IKI116

IKI117

IKI118

IKI119

IKI120

IKI121

IKI122

IKI123

IKI124

IKI125

IKI126

IKI127

IKI128

IKI129

IKI130

IKAT1

IKAT2

IKAT3

IKAT4

IKAT5

IKAT6

IKAT7

IKAT8

IKAT9

IKAT10

IKAT11

IKAT12

IKAT13

IKAT14

IKAT15

IKAT16

IKAT17

IKAT18

IKAT19

IKAT20

IKAT21

IKAT22

IKAT23

IKAT24

IKAT25

IKAT26

IKAT27

IKAT28

IKAT29

IKAT30

IF1P1

IF1P2

IF1P3

66

Functions:

none

Methods:

initialize(matParams * p);

getStress(matParams * p);

IF1P4

IF1P5

IF1P6

IF1P7

IF1P8

IF1P9

IF1P10

IF1P11

IF1P12

IF1P13

IF1P14

IF1P15

IF1P16

IF1P17

IF1P18

IF1P19

IF1P20

IF1P21

IF1P22

IF1P23

IF1P24

IF1P25

IF1P26

IF1P27

IF1P28

IF1P29

IF1P30

EPSXX

EPSYY

EPSZZ

EPSXY

EPSYZ

EPSZX

LOGA

EFFI2

67

2.31 Viscoelastic Swanson Model

The viscoelastic Swanson is a finite strain viscoelastic model which has an initial elastic

response that matches the Swanson material model [21, 22, 23]. The model is typically

employed in calculating the response of rubber materials. The bulk response is elastic, while the

deviatoric response is viscoelastic. Such a constitutive modeling approach is commonly used in

simulating the response of rubbers.

The Cauchy stress []()tσ is computed from the following equation

[] []

[] []

0

00

() () ()

1 1 (* *)
() () ()

()
0

dev

Tdevt

t p t I t

dG t
DEV F t S d F t

J G d t

σ σ

τ
τ τ

τ

 = + + 

  −   
     −     

∫
 (65)

which is rewritten as follows:

[] []

[] []

0

0

*

0

() () ()

1 1 (*)
() () * ()

*
0

dev

Tdevt

t p t I t

dG
DEV F t S t d F t

J G d

σ σ

τ
τ τ

τ

 = + + 

     
 −    

     
∫

 (66)

where []()F t is the total deformation gradient at time t, J is the determinant of []()F t , ()p t is the

elastic pressure computed as

 ()ln mp K J= (67)

Jm is the determinant of the mechanical part of []()F t , 0 ()dev tσ   is the deviatoric Cauchy stress

at time t computed using the elastic Swanson model with initial moduli values, 0 ()devS t τ −  is

the deviatoric second Piola-Kirchhoff stress computed using the elastic Swanson model with

initial moduli values at time t τ− , and G(t) is the shear relaxation modulus. Here the reference

state for the two state tensors ([]()F t and 0 ()devS t τ − ) is the original configuration at 0t = .

The shear relaxation modulus is represented using a Prony series as follows:

 0
1

() exp
GN

i
i

i

t
G t G g g

λ
∞

=

  
= + −∑   

  
 (68)

Finally, the reduced material time t* is related to the physical time t as follows:

68

1

*
WLF N

dt dt
A A

= (69)

or

0

*
() ()

t

WLF N

dx
t

A x A x
= ∫ (70)

where WLFA is the WLF shift factor given by

()
()

1

10

2

log
ref

WLF

ref

C T T
A

C T T

− −
=

+ −
 (71)

and NA is a numerical shift factor which the model user can specify arbitrarily to slow or speed

the viscoelastic relaxations as desired.

Properties:

A1

P1

B1

Q1

C1

R1

BULK_MODULUS

CUT_OFF_STRAIN

TARGET_E

MAX_POISSONS_RATIO

BULK_SCALING

SHEAR_SCALING

PRONY_SHEAR_INFINITY

PRONY_SHEAR_1

PRONY_SHEAR_2

PRONY_SHEAR_3

PRONY_SHEAR_4

PRONY_SHEAR_5

PRONY_SHEAR_6

PRONY_SHEAR_7

PRONY_SHEAR_8

PRONY_SHEAR_9

PRONY_SHEAR_10

SHEAR_RELAX_TIME_1

SHEAR_RELAX_TIME_2

SHEAR_RELAX_TIME_3

SHEAR_RELAX_TIME_4

SHEAR_RELAX_TIME_5

SHEAR_RELAX_TIME_6

SHEAR_RELAX_TIME_7

SHEAR_RELAX_TIME_8

SHEAR_RELAX_TIME_9

SHEAR_RELAX_TIME_10

WLF_COEF_C1

WLF_COEF_C2

WLF_TREF

69

State Variables (77):

SFJTH

JTH

VMECHXX

VMECHYY

VMECHZZ

VMECHXY

VMECHYZ

VMECHZX

SFJTH_FLAG

VSXXDEV1

VSYYDEV1

VSZZDEV1

VSXYDEV1

VSYZDEV1

VSZXDEV1

VSXXDEV2

VSYYDEV2

VSZZDEV2

VSXYDEV2

VSYZDEV2

VSZXDEV2

VSXXDEV3

VSYYDEV3

VSZZDEV3

VSXYDEV3

VSYZDEV3

VSZXDEV3

VSXXDEV4

VSYYDEV4

VSZZDEV4

VSXYDEV4

VSYZDEV4

VSZXDEV4

VSXXDEV5

VSYYDEV5

VSZZDEV5

VSXYDEV5

VSYZDEV5

VSZXDEV5

VSXXDEV6

VSYYDEV6

VSZZDEV6

VSXYDEV6

VSYZDEV6

VSZXDEV6

VSXXDEV7

VSYYDEV7

VSZZDEV7

VSXYDEV7

VSYZDEV7

VSZXDEV7

VSXXDEV8

VSYYDEV8

VSZZDEV8

VSXYDEV8

VSYZDEV8

VSZXDEV8

VSXXDEV9

VSYYDEV9

VSZZDEV9

VSXYDEV9

VSYZDEV9

VSZXDEV9

VSXXDEV10

VSYYDEV10

VSZZDEV10

VSXYDEV10

VSYZDEV10

VSZXDEV10

SOXXDEV

SOYYDEV

SOZZDEV

SOXYDEV

SOYZDEV

SOZXDEV

WLF_AAVG

ANAVG

70

Functions:

NUMERICAL_SHIFT_FUNCTION

THERMAL_EXPANSION_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

pcElasticModuli(matParams * p);

71

2.32 Viscoplastic Model

The VISCOPLASTIC model is used to model braze joint materials with state variables to model

hardening and recovery. A detailed presentation of the theory can be found in [24].

There are 19 state variables for this model. The state variables describe the back stress, strain

rate, and iteration counts. State variables 11-19 are used for temperature dependent material

properties.

There are 9 user input functions for this model. These functions define the temperature

dependence of various material properties.

Properties:

State Variables (19):

Functions:

SHEAR_FUNCTION

BULK_FUNCTION

RATE_FUNCTION

EXPONENT_FUNCTION

ALPHA_FUNCTION

IHARD_FUNCTION

IREC_FUNCTION

KHARD_FUNCTION

KREC_FUNCTION YOUNGS_MODULUS_FUNCTION

0 - SVBXX

1 - SVBYY

2 - SVBZZ

3 - SVBXY

4 - SVBYZ

5 - SVBZX

8 - EQDOT

9 – COUNT

10 - SHEAR

11 - BULK

12 - RATE

13 - EXP

14 - ALPHA

15 – A1

16 – A2

17 – A4

18 – A5

SHEAR_MODULUS

BULK_MODULUS

ISO_EXPONENT

KIN_EXPONENT

FLOW_STRESS

FLOW_RATE

SINH_EXPONENT

ALPHA

ISO_HARDENING

ISO_RECOVERY

KIN_HARDENING

KIN_RECOVERY

72

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

73

2.33 Viscoplastic Foam Model

The VISCOPLASTIC_FOAM model is a plasticity model that is used to model rigid foams. It

used a non-associated flow rule. The model is documented in [25].

There are 14 state variables for this model. None of the state variables are aliased for output.

There are eight user input functions for this model that described temperature dependent

properties, rate effects and hardening behavior.

Properties:

YOUNGS_MODULUS

POISSONS_RATIO

FLOW_RATE

POWER_EXPONENT

BETA

SHEAR_STRENGTH

SHEAR_HARDENING

HYDRO_STRENGTH

HYDRO_HARDENING

SHEAR_EXPONENT

HYDRO_EXPONENT

PHI

State Variables (14):

Functions:

YOUNGS_FUNCTION

POISSONS_FUNCTION

RATE_FUNCTION

EXPONENT_FUNCTION

SS_FUNCTION

SH_FUNCTION

HS_FUNCTION

HH_FUNCTION

Methods:

initialize(matParams * p);

getStress(matParams * p);

loadStepInit(matParams * p);

74

75

3. SUMMARY

A range of material models have been implemented in LAME. These include simple linear

elastic models with and without temperature dependent moduli. Another set of models

incorporate different forms of plasticity with linear or power law hardening with yield surfaces

that correspond to isotropic, kinematic or mixed hardening. Several model options are available

in LAME for modeling foams. Likewise, several hyperelastic models for the large strain elastic

response of rubbers are available. Finally, several viscoelastic models appropriate for potting

epoxies or rubbers exist in LAME. Currently, all of the LAME models are available in the ASC

codes Adagio and Presto. Several of the LAME models have been hooked-up to the augmented-

Lagrange wrappers in Adagio such that the conjugate gradient solver in Adagio can be employed

efficiently. Such wrappers allow part or all of the material response to be stiffened or softened.

Such scaling of material model behavior is intended for use in Adagio. If these particular models

are employed in Presto, the specified scalings are ignored.

A brief overview of each model in LAME has been presented in this report. The required

material parameters, the state variables available for named output, and the name of any user

input functions are given. Finally, for informational purposes for both developers and analysts,

the particular LAME routines that are actually implemented for each model are listed. All

models employ a getStress() method for determining the stresses used for equilibrium

calculations. Many use an initialize() method for initializing state variables. Some

models incorporate a loadStepInit() method for initializing pieces of information once per

time step. For instance, temperature dependent moduli only need to be set once per step when

the temperature is known for all time steps. Some models need to change the moduli that are

used for the elastic preconditioner in Adagio at each time step. For instance, in the case of

temperature-dependent moduli, it is better to use the moduli at the current temperature in the

elastic preconditioner. Another example of when the elastic moduli for the preconditioner may

need to be changed is for materials which soften dramatically at large strains. Such elastic

preconditioner moduli changes are performed using the pcElasticModuli() method.

Materials that do not employ a pcElasticModuli() method have appropriate moduli for the

elastic preconditioner set once at the beginning of the Adagio analysis.

76

77

4. REFERENCES

1. Koteras, J. R., A. S. Gullerud, N. K. Crane, and J. D. Hales, Presto User’s Guide Version
2.6, SAND2006-6093, Sandia National Laboratories, Albuquerque, NM, October 2006.

2. Pierson, K. H. and J. D. Hales, “ADAGIO/ANDANTE User’s Guide Version 2.0”,
Memo, Sandia National Laboratories, Albuquerque, NM, September 2004.

3. Scherzinger, W.M. and D. C. Hammerand, Library of Advanced Materials for

Engineering - LAME, SAND07-5515, Sandia National Laboratories, Albuquerque, NM,

October 2007.

4. Scherzinger, W. M. and D. C. Hammerand, Testing of Constitutive Models in LAME,

SAND07-5872, Sandia National Laboratories, Albuquerque, NM, October 2007.

5. Bammann, D. J., M. L. Chiesa and G. C. Johnson, “Modeling Large Deformation and
Failure in Manufacturing Processes,” Proceedings of the 19

th
 International Congress of

Theoretical and Applied Mechanics, ed. T. Tatsumi, E. Watanabe and T. Kambe, pp.

359-376, Elsevier Science Publishers, Amsterdam, 1997

6. Stone, C. M., SANTOS – A Two-Dimensional Finite Element Program for the
Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543, Sandia

National Laboratories, Albuquerque, NM, July 1997.

7. Stone, C. M., G. W. Wellman and R. D. Krieg, A Vectorized Elastic/Plastic Power Law
Hardening Material Model Including Lüders Strain, SAND90-0153, Sandia National

Laboratories, Albuquerque, NM, March 1990.

8. Neilsen, M. K. and W. Y. Lu, “Failure Predicted by a Plasticity Model for Polyurethane
Foam,” 6

th
 U. S. Congress on Computational Mechanics, Dearborn, MI, August 1-3,

2001.

9. Hinnerichs, T. D., T. G. Carne, W. Y. Lu, E. C. Stasiunas, M. K. Neilsen, W. M.
Scherzinger and B. R. Rogillio, Characterization of Aluminum Honeycomb and

Experimentation for Model Development and Validation, Volume II: Honeycomb

Experimentation for Model Development and Validation, SAND2006-4455, Sandia

National Laboratories, Albuquerque, NM, August 2006.

10. Ogden, R. W., Non-Linear Elastic Deformations, Dover, Mineola, NY, 1997.
11. HKS, ABAQUS Version 6.6, User’s Manual, Vol. III, Materials, Hibbitt, Karlsson and

Sorensen, Providence, RI, 2006.

12. Neilsen, M.K., H. S. Morgan, and R. D. Krieg, A Phenomenological Constitutive Model

for Low Density Polyurethane Foams, SAND86-2927, Sandia National Laboratories,

Albuquerque, NM, April 1987.

13. Simo, J. C. and T. J. R. Hughes, Computational Inelasticity, Springer, New York, 1998.
14. Caruthers, J. M., D. B. Adolf, R. S. Chambers, and P. Shrikhande, “A

Thermodynamically Consistent, Nonlinear Viscoelastic Approach for Modeling Glassy

Polymers”, Polymer, 45, pp. 4577-4597, 2004.

15. Adolf, D. B., R. S. Chambers and J. M. Caruthers, “Extensive Validation of a
Thermodynamically Consistent, Nonlinear Viscoelastic Model for Glassy Polymers”,

Polymer, 45, pp. 4599-4621, 2004.

16. Blanford, M.L., Heinstein, M.W., Key, S.W., ‘JAS3D – A Multi-Strategy Iterative Code
for Solid Mechanics Analysis Users’ Instructions, Release 2.0’, Memo, Sandia National

Laboratories, Albuquerque, NM, September 2001.

78

17. Fossum, A.F., P.T. Vianco, M. K. Neilsen and D. M. Pierce, “A Practical Viscoplastic
Damage Model for Lead-Free Solder,” Journal of Electronic Packaging, 128, pp. 71-81,

2006.

18. Vianco, P. T., J. A. Rejent, A. F. Fossum and M. K. Neilsen, “Compression Stress-Strain
and Creep Properties of the 52 In – 48 Sn and 97 In – 3 Ag Low-Temperature Pb-Free

Solders,” Journal of Materials Science: Materials in Electronics, 18 (1-3), pp. 93-119,

2006.

19. Wei, Y., C. L. Chow, M. K. Neilsen and H. E. Fang, “Characteristics of Creep Damage
for 60 Sn – 40 Pb Solder Material,” Journal of Electronic Packaging, 123, pp. 278-283,

2001.

20. Wei, Y., C. L. Chow, M. K. Neilsen and H. E. Fang, “Failure Analysis of Solder Joints
with a Damage-Coupled Viscoplastic Model,” International Journal for Numerical

Methods in Engineering, 56, pp. 2199-2211, 2003.

21. HKS, ABAQUS Version 6.6, Theory Manual, Hibbitt, Karlsson and Sorensen,

Providence, RI, 2006.

22. Hammerand, D. C., ‘ABAQUS Style Finite Strain Viscoelasticity in Adagio’, Memo,
Sandia National Laboratories, Albuquerque, NM, March 2003.

23. Hammerand, D. C., ‘Finite Strain Viscoelasticity in Adagio and ABAQUS’, Memo,
Sandia National Laboratories, Albuquerque, NM, July 2003.

24. Neilsen, M. K., S. N. Burchett, C. M. Stone and J. J. Stephens, A Viscoplastic Theory for
Braze Alloys, SAND96-0984, Sandia National Laboratories, Albuquerque, NM, April

1996.

25. Neilsen, M. K., W. Y. Lu, B. Olsson and T. D. Hinnerichs, “A Viscoplastic Constitutive
Model for Polyurethane Foams,” Proceedings of the IMECE2006, November 5-10, 2006,

Chicago, IL.

79

Distribution

1 MS0346 Tom Baca 1523

1 MS0346 Robert Chambers 1524

1 MS0346 Jim Cox 1526

1 MS0346 Stephen Montgomery 1524

1 MS0346 Matthew Neidigk 1524

1 MS0346 Dave Reedy 1526

1 MS0346 Mike Starr 1526

1 MS0372 Lupe Arguello 1525

1 MS0372 Joe Bishop 1525

1 MS0372 Nicole Breivik 1524

1 MS0372 Frank Dempsey 1524

1 MS0372 Kristin Dion 1524

1 MS0372 Brenton Elisberg 1524

1 MS0372 Jeff Gruda 1524

1 MS0372 Kenneth Gwinn 1524

3 MS0372 Daniel Hammerand 1524

1 MS0372 Terry Hinnerichs 1524

1 MS0372 John Holland 1524

1 MS0372 David Lo 1524

1 MS0372 Don Longcope 1524

1 MS0372 Kurt Metzinger 1524

1 MS0372 Jake Ostien 1524

1 MS0372 John Pott 1524

1 MS0372 Jim Redmond 1525

3 MS0372 William Scherzinger 1524

1 MS0372 Mike Stone 1525

1 MS0372 Leah Tuttle 1524

1 MS0372 Gerald Wellman 1525

1 MS0376 James Bean 1524

1 MS0376 Jonathon Rath 1524

1 MS0380 Manoj Bhardwaj 1542

1 MS0380 Nathan Crane 1542

1 MS0380 Arne Gullerud 1542

1 MS0380 Jason Hales 1542

1 MS0380 Martin Heinstein 1542

1 MS0380 Joe Jung 1542

1 MS0380 Richard Koteras 1542

1 MS0380 Hal Morgan 1540

1 MS0380 Kendall Pierson 1542

1 MS0380 Vicki Porter 1542

1 MS0380 Garth Reese 1542

80

1 MS0380 Ben Spencer 1542

1 MS0380 Tim Walsh 1542

1 MS0382 Carter Edwards 1543

1 MS0382 Mike Glass 1541

1 MS0384 Art Ratzel 1500

1 MS0555 Rod May 1522

1 MS0557 Dave Clauss 1521

1 MS0557 Dan Segalman 1525

1 MS0660 Chris Lamb 9512

1 MS0836 Shane Schumacher 1516

1 MS0847 Marcus Billings 1524

1 MS0847 Pavel Chaplya 1526

1 MS0847 Mike Neilsen 1526

1 MS0847 Pete Wilson 1520

1 MS1070 Channy Wong 1526

1 MS1070 Jordan Massad 1526

1 MS1070 Phillip Reu 1526

1 MS1070 Anton Sumali 1526

 MS9018 Central Technical Files 8944

 MS0899 Technical Library 9536

1
1

(electronic)
(electronic)

	1. INTRODUCTION
	2. CONSTITUTIVE MODELS
	2.1 BCJ Model
	2.2 BCJ MEM Model
	2.3 Ductile Fracture Model
	2.4 Elastic Model
	2.5 Elastic-Plastic Model
	2.6 Elastic-Plastic Power Law Hardening Model
	2.7 Elastic Fracture Model
	2.8 Foam Plasticity Model
	2.9 Honeycomb Model
	2.10 Hyperfoam Model
	2.11 Incompressible Solid Model
	2.12 Johnson-Cook Model
	2.13 Low Density Foam Model
	2.14 Mooney-Rivlin Model
	2.15 Multilinear Elastic-Plastic Model
	2.16 Multilinear Elastic Plastic with Failure Model
	2.17 Neo-Hookean Model
	2.18 NLVE Polymer Model
	2.19 Orthotropic Crush Model
	2.20 Orthotropic Rate Model
	2.21 Power Law Creep Model
	2.22 Soil and Foam Model
	2.23 Solder Model
	2.24 Solder with Damage Model
	2.25 Stiff Elastic Model
	2.26 Swanson
	2.27 Thermoelastic Model
	2.28 Thermoelastic-Plastic Power Law Hardening Model
	2.29 Thermoelastic-Plastic Power Law Hardening Weld Model
	2.30 Universal Polymer Model
	2.31 Viscoelastic Swanson Model
	2.32 Viscoplastic Model
	2.33 Viscoplastic Foam Model

	3. SUMMARY
	4. REFERENCES

