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Abstract 

 

The Library of Advanced Materials for Engineering (LAME) provides a common 

repository for constitutive models that can be used in computational solid mechanics 

codes.  A number of models including both hypoelastic (rate) and hyperelastic (total 

strain) constitutive forms have been implemented in LAME.  Descriptions of the 

structure and testing of LAME reside in other reports, while this report details the 

material models that have been implemented thus far. 
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1.  INTRODUCTION 
 

 

Any modern structural mechanics finite element code whether it is an explicit transient dynamics 

code such as Presto [1] or a quasi-static code like Adagio [2] can be described as a number of 

interlinked parts.  For instance, Adagio has routines associated with element calculations such as 

determining the strains from the gradient of the displacements and the internal forces from the 

divergence of the stresses.  Another part of Adagio is concerned primarily with the enforcement 

between contact of various parts in a model.  Still yet another portion of Adagio is concerned 

primarily with the numerical solution of the resulting governing equations.  A critical part of 

Adagio as well as any solid mechanics code is the portion where the constitutive response of the 

material models is computed.  A recent change to Adagio and Presto has grouped the material 

models into a library called LAME.  Having such a library where all most of the calculations 

involved with various material models is sectioned-off from, but still interfaced with the rest of 

the Adagio/Presto coding allows the material model developers to focus on their portion of the 

coding tasks in a more efficient manner.  Also, the same material models contained in LAME are 

used in several codes.  Currently this includes both Adagio and Presto.  Further plans call for 

using these same models in Salinas.  The importance of this can not be overstated.  Many of our 

mechanics problems concern the structural response across a number of loading regimes.  Being 

able to use the same finite element model with exactly the same material models in each code 

can only increase our confidence in the results in the consistency of each analysis.  Finally, 

employing LAME across our solid mechanics codes results in the analysts having access to the 

latest version of each model incorporating the latest bug fixes no matter which solid mechanics 

code they are running for their analysis. 

 

The structure and testing of LAME is described Scherzinger and Hammerand ([3] and [4]).  The 

purpose of the present report is to describe the material models which have already been 

implemented into LAME.  The descriptions are designed to give useful information to both 

analysts and code developers.  Thus far, 33 non-ITAR/non-CRADA protected material models 

have been incorporated.  These include everything from the simple isotropic linear elastic models 

to a number of elastic-plastic models for metals to models for honeycomb, foams, potting 

epoxies and rubber.  A complete description of each model is outside the scope of the current 

report.  Rather, the aim here is to delineate the properties, state variables, functions, and methods 

for each model.  However, a brief description of some of the constitutive details is provided for a 

number of the material models.  Where appropriate, the SAND reports available for each model 

have been cited.  Many models have state variable aliases for some or all of their state variables.  

These alias names can be used for outputting desired quantities.  The state variable aliases 

available for results output have been listed in this report.  However, not all models use these 

aliases.  For those models, no state variable names are listed.  Nevertheless, the number of state 

variables employed by each model is always given. 

 

Currently, there are four possible functions for a material model.  This report lists which of these 

four methods are employed in each material model.  As far as analysts are concerned, this 

information is included only for the awareness purposes.  The analyst can take confidence in the 

fact that model has been properly implemented and the methods necessary for achieving accurate 

and efficient solutions have been incorporated.  The most important method is the getStress 
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function where the actual material model evaluation takes place.  Obviously, all material models 

incorporate this function.  The initialize function is included in most material models.  The 

initialize function is called once at the beginning of an analysis and its primary purpose is 

to initialize the material state variables associated with the model.  Many times, there is some 

information which can be set once per load step.  For instance, we may have temperature 

dependent material properties in an analysis where temperature is prescribed.  Instead of setting 

those parameters at each iteration in a time step, it is much more efficient to set them once per 

time step at the beginning of the step.  These types of load step initializations are performed in 

the loadStepInit method.  The final function used by many models is the 

pcElasticModuli method which changes the moduli that are to be used by the elastic 

preconditioner in Adagio.  The moduli for the elastic preconditioner are set during the 

initialization of Adagio.  Sometimes, better convergence can be achieved by changing these 

moduli for the elastic preconditioner.  For instance, it typically helps to modify the 

preconditioner when the material model has temperature dependent moduli.  For many material 

models, it is not necessary to change the values of the moduli that are set initially in the code.  

Hence, those models do not have pcElasticModuli functions.  All four of these methods 

receive information from the matParams structure as described by Scherzinger and 

Hammerand [3]. 
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2.  CONSTITUTIVE MODELS 
 

2.1 BCJ Model 
 

The BCJ model is a plasticity model that was developed at SNL/CA.  Information on the BCJ 

model can be found in reference [5]. 

 

This constitutive law is a state variable model used to simulate the finite deformation behavior of 

metals.  It uses a multiplicative decomposition of the deformation gradient into elastic, 

volumetric plastic and deviatoric parts. The model considers the natural configuration defined by 

this decomposition and its associated thermodynamics.  The model is also capable of modeling 

strain rate and temperature sensitivity along with damage evolution. 

 

Properties: 

 
State Variables (14): 

 

Functions: 

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

 

Methods: 

 

initialize( matParams * p ); 

loadStepInit( matParams * p ); 

getStress( matParams * p ); 

YOUNGS_MODULUS 

POISSONS_RATIO 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 

C14 

C15 

C16 

 

C17 

C18 

C19 

C20 

DAMAGE_EXPONENT 

THETA_OPT 

FACTOR 

RHO 

SPECIFIC_HEAT 

INITIAL_ALPHA_XX  

INITIAL_ALPHA_YY  

INITIAL_ALPHA_ZZ  

INITIAL_ALPHA_XY  

INITIAL_ALPHA_YZ  

INITIAL_ALPHA_ZX 

INITIAL_KAPPA 

INITIAL_DAMAGE 

TEMP0 
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2.2 BCJ MEM Model 
 

The BCJ_MEM model is a plasticity model that was developed at SNL/CA and is a variation of 

the BCJ model.  Information on the BCJ_MEM model can be found in reference [5]. 

 

This constitutive law is a state variable model used to simulate the finite deformation behavior of 

metals.  It uses a multiplicative decomposition of the deformation gradient into elastic, 

volumetric plastic and deviatoric parts. The model considers the natural configuration defined by 

this decomposition and its associated thermodynamics.  The model is also capable of modeling 

strain rate and temperature sensitivity along with damage evolution. 

 

Properties:  

 
 

State Variables (27): 

 

YOUNGS_MODULUS 

POISSONS_RATIO 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 

C14 

C15 

C16 

C17 

C18 

C19 

C20 

C21 

C22 

C23 

C24 

C25 

C26 

C27 

C28 

C29 

C30 

C31 

DAMAGE_EXPONENT 

BZ 

SMZ 

CZ 

FX 

CXA 

CXB 

HZ 

RZ 

INITIAL_ALPHA_XX  

INITIAL_ALPHA_YY  

INITIAL_ALPHA_ZZ  

INITIAL_ALPHA_XY  

INITIAL_ALPHA_YZ  

INITIAL_ALPHA_ZX 

INITIAL_KAPPA 

INITIAL_GRAIN_SIZE 

INITIAL_REX_VOL_FRAC 

INITIAL_ZETA 

INITIAL_DAMAGE 



11 

Functions:  

 

none 

 

Methods:  

initialize( matParams * p ); 

loadStepInit( matParams * p ); 

getStress( matParams * p ); 
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2.3 Ductile Fracture Model 
 

The DUCTILE_FRACTURE model is a plasticity model based on the power law hardening 

model (see EP_POWER_LAW) that calculates a failure parameter. 

 

The hardening law for the plasticity model is a power law fit 

 

 

 
n

y p LAσ σ ε ε= + −  , (1) 

 

where σ  is the von Mises stress, yσ  is the yield stress, pε  is the equivalent plastic strain, Lε  is 

the Lüders strain, A  is the hardening constant, n  is the hardening exponent, and •  denotes the 

Heaviside step function. 

 

Two other parameters, the critical crack opening strain and the critical tearing parameter, 

describe the failure of the material.  The critical tearing parameter, pt , is given by 

 

 
( )

4

max

max0

2

3

f

p p

m

t d

ε
σ

ε
σ σ

=
−∫  , (2) 

 

where maxσ  is the maximum principal stress, mσ  is the mean stress and •  denotes the 

Heaviside step function. 

 

There are no user input functions for this model. 

 

Properties:  

 

LAMBDA 

SHEAR_MODULUS 

YIELD_STRESS 

HARDENING_CONSTATN 

HARDENING_EXPONENT 

LUDERS_STRAIN 

CRITICAL_TEARING_PARAMETER 

CRITICAL_CRACK_OPENING_STRAIN 

 



13 

State Variables (8): 

 

Functions:  

 

none 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.4 Elastic Model 
 

The ELASTIC model is the simplest constitutive model in LAME.  This model is finite 

deformation, hypoelastic constitutive model that is an extension of linear elasticity.  The stress 

rate is related to the rate of deformation by 

 

 ˆ 2ij ij kk ijD Dσ λδ µ= +  , (3) 

 

where λ  and µ  are the Lamé constants, ijD  are the components of the rate of deformation and 

the stress rate, ˆijσ , is an objective stress rate.  In Adagio and Presto, this is the Green-McInnis 

rate. 

 

The input for the model is the YOUNGS_MODULUS and the POISSONS_RATIO.  The Lamé 

constants can be calculated from these parameters. 

 

 
( )( )

( )

1 2 1

2 1

E

E

ν
λ

ν ν

µ
ν

=
− +

=
+

 (4) 

 

There are no state variables or user input functions for this model. 

 

Properties: 

 

YOUNGS_MODULUS 

POISSONS_RATIO 

 

State Variables: 

 

none 

 

Functions: 

 

none 

 

Methods: 

 

getStress( matParams * p); 
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2.5 Elastic-Plastic Model 
 

The ELASTIC_PLASTIC model is an elastic-plastic, linear hardening model.  A description of 

the model can be found in [6]. 

 

The model is used to model metal plasticity where the hardening curve is described with a linear 

fit.  The hardening curve is given by 

 

 y pHσ σ ε′= +  , (5) 

 

where σ  is the von Mises stress, yσ  is the yield stress, pε  is the equivalent plastic strain and 

H ′  is the hardening modulus.  This is the simplest model for metal plasticity, but unfortunately 
very few materials follow linear hardening curves.  This model owes its popularity to its easy 

implementation (the radial return algorithm requires no iterations) and to the fact that it is the 

simplest plasticity model to model hardening.  It is useful for quick scoping studies and some 

analytical problems where one wants to take into account the effects of plasticity. 

 

The model is also capable of modeling kinematic hardening through the parameter BETA.  If 

BETA is equal to one then the hardening is isotropic, i.e. the center of the yield surface is fixed, 

while if BETA is equal to zero the hardening is kinematic, i.e. the center of the yield surface 

moves.  Values between zero and one involve a combination of kinematic and isotropic 

hardening.  This is especially important in modeling problems that have cyclic loading. 

 

There are eight state variables for this model: the equivalent plastic strain, the radius of the yield 

surface and the six components of the back-stress tensor that defines the center of the yield 

surface. 

 

There are no user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

HARDENING_MODULUS 

BETA 
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State Variables (8): 

 

EQPS 

ALPHA_XX 

ALPHA_YY 

ALPHA_ZZ 

ALPHA_XY 

ALPHA_YZ 

ALPHA_ZX 

RADIUS 

 

Functions:  

 

none 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.6 Elastic-Plastic Power Law Hardening Model 
 

The EP_POWER_HARD model is an elastic-plastic, power law hardening model.  A description 

of the model can be found in [6] and [7]. 

 

The model is used to model metal plasticity where the hardening curve is described by a power 

law fit.  The hardening curve is given by 

 

 
n

y p LAσ σ ε ε= + −  , (6) 

 

where σ  is the von Mises stress, yσ  is the yield stress, pε  is the equivalent plastic strain, Lε  is 

the Lüders strain, A  is the hardening constant, n  is the hardening exponent, and •  denotes the 

Heaviside step function.  This is a widely used model for metal plasticity and there are a number 

of parameter fits in the literature for various materials.  This particular implementation of the 

model does not model kinematic hardening – a capability that could easily be added. 

 

The model has two state variables: the equivalent plastic strain and the radius of the yield 

surface. 

 

There are no user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

HARDENING_CONSTANT 

HARDENING_EXPONENT 

LUDERS_STRAIN 

 

State Variables (2): 

 

EQPS 

RADIUS 

 

Functions:  

 

none 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.7 Elastic Fracture Model 
 

The ELASTIC_FRACTURE model is used to model brittle fracture/failure. The model uses a 

maximum-principal-stress failure criterion. The stress decays isotropically based on the 

component of strain parallel to the maximum principal stress. The value of the component of 

strain over which the stress is decayed to zero is a user-defined parameter for the model. This 

strain parameter can be adjusted so that failure is mesh independent. 

 

The model has six state variables, none of which are aliased for output. 

 

There are no user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

MAX_STRESS 

CRITICAL_STRAIN 

 

State Variables (6): 

 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 
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2.8 Foam Plasticity Model 
 

The FOAM_PLASTICITY model is used to model polyurethane foams.  The model is 

particularly useful for modeling failure of polyurethane foams [8].  The model has a pressure 

dependent yield function and an associated flow rule.  Therefore the integration of this model can 

be quite complex. 

 

The yield surface looks like 

 

 
2 2

2 2
1m s

a b

σ σ
φ = + −  , (7) 

 

where mσ  is the mean stress, sσ  is the von Mises stress, a  and b  are the hydro strength and 

shear strength respectively.  There are also hardening constants and exponents for both the hydro 

strength and the shear strength. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

PHI 

SHEAR_STRENGTH 

SHEAR_HARDENING 

SHEAR_EXPONENT 

HYDRO_STRENGTH 

HYDRO_HARDENING 

HYDRO_EXPONENT 

BETA 

 

State Variables (6): 

 

Functions:  

 

none 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.9 Honeycomb Model 
 

The HONEYCOMB model is used to model reinforced aluminum honeycomb [9].  The model is 

orthotropic with the three principal axes of orthotropy labeled the T, L and W axes.  This model 

is the latest in an evolution of models that include the orthotropic crush and orthotropic rate 

models.  For a complete description of the constitutive model, along with procedures for fitting 

test data to the model, the reader is directed to [9]. 

 

Properties:  

 
 

State Variables (39): 

 

Functions:  

 
 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

MODULUS_FUNCTION 

RATE_FUNCTION 

T_FUNCTION 

L_FUNCTION 

W_FUNCTION 

TL_FUNCTION 

LW_FUNCTION 

WT_FUNCTION 

 

TLTLP_FUNCTION 

LWLWP_FUNCTION 

WTWTP_FUNCTION 

TTP_FUNCTION 

LLP_FUNCTION 

WWP_FUNCTION 

TTLP_FUNCTION 

TTWP_FUNCTION 

 

LAMBDA 

SHEAR_MODULUS 

YIELD_STRESS 

MODULUS_TTTT 

MODULUS_TTLL 

MODULUS_TTWW 

MODULUS_LLLL 

MODULUS_LLWW 

MODULUS_WWWW 

A1 

A2 

A3 

B1 

B2 

B3 

C1 

C2 

C3 

TS 

LS 

WS 

TLS 

LWS 

WTS 

ESTW 

ESTL 

ESLT 

ESLW 

ESWT 

ESWL 
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2.10 Hyperfoam Model 
 

The HYPERFOAM model is a hyperelastic model that is used to model foams.  It is based on an 

Ogden [10] type model and is the same as the Hyperfoam model that is in ABAQUS [11]. 

 

The stress in this model is derived from a strain energy density that is only dependent on the 

principal stretch ratios.  As a result, it is simple to derive the principal stresses from the strain 

energy density.  The principal stresses can be converted back into the global coordinates.  The 

strain energy density for this model is 

 

 ( ) ( )1 2 3 1 2 32
1

2 1
, , 3 1k k k k k

N
k

k k i

W J
α α α α βµ

λ λ λ λ λ λ
α β

−

=

 
= + + − + − 

 
∑  , (8) 

 

where the iλ  are the principal stretch ratios and J  is the Jacobian of the deformation.  The 

material parameters are kµ , kα  and kν  with 

 

 
1 2

k
k

k

ν
β

ν
=

−
 . (9) 

 

The number of material properties depends on the number of terms, N , in the description of the 

strain energy density.  The principal Cauchy stresses are given by 

 

 ( )no sum on I
I

I

W
I

J

λ
σ

λ

∂
=

∂
 . (10) 

 

Since the model is hyperelastic, if the host code is storing the stress components in another 

configuration (e.g. the un-rotated configuration), then the stress components must be converted 

to that configuration prior to sending them back to the host code. 

 

Properties: 

  

N 

SHEAR 

ALPHA 

POISSON 

 

State Variables: 

 

 none 

 

Functions:  

 

none 
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Methods:  

 

getStress( matParams * p ); 
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2.11 Incompressible Solid Model 
 

The INCOMPRESSIBLE_SOLID model is a variation of the ELASTIC model that is used with 

Adagio’s multilevel solver.  The model is used to model nearly incompressible materials (where 

0.5ν ≈ ) in a quasistatic code, e.g. Adagio.  The model is essentially the same as the ELASTIC 

model except that it scales the bulk modulus and/or the shear modulus.  The model needs some 

way to account for the scaled response in the host code, e.g. it uses the multi-level solution 

control and augmented Lagrange wrappers in Adagio.  This model is not intended for transient 

dynamics applications, e.g. Presto.  However, if it is used in Presto, the scaling terms are 

ignored. 

 

There are no state variables or user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

BULK_SCALING 

SHEAR_SCALING 

 

State Variables: 

 

 none 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 

pcElasticModuli( matParams * p ); 
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2.12 Johnson-Cook Model 
 

The JOHNSON_COOK model is a rate and temperature dependent plasticity model.  This model 

is generally used for high velocity impact calculations.  The rate and temperature dependence is 

included in the hardening law as follows: 

 

 ( ) ( )( )1 ln 1n m

y pA C Tσ σ ε ε ∗ ∗= + + −&  , (11) 

 

where σ  is the von Mises stress, pε  is the equivalent plastic strain, A  is the hardening constant, 

n  is the hardening exponent, C  is the rate constant, ε ∗
&  is a normalized plastic strain rate, T ∗  is 

the effective temperature and m  is the thermal exponent.  The normalized plastic strain rate is 

defined as 

 

 
0

pε
ε

ε
∗ =

&
&

&
 , (12) 

 

where pε&  is the equivalent plastic strain rate and 0ε&  is a reference strain rate.  In the code 0ε&  is 

hard-coded to a value of 0.001.  The effective temperature is given by 

 

 0

0m

T T
T

T T

∗ −
=

−
 , (13) 

 

where T  is the temperature, 0T  is a reference temperature and mT  is the melt temperature. 

 

There are five state variables for this model and three of them are aliased for output: the radius of 

the yield surface, the equivalent plastic strain and the equivalent plastic strain rate. 

 

There are no user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

HARDENING_CONSTANT 

HARDENING_EXPONENT 

RHOCV 

RATE_CONSTANT 

THERMAL_EXPONENT 

REFERENCE_TEMPERATURE 

MELT_TEMPERATURE 

 



25 

State Variables (5): 

 

RADIUS 

EQPS 

EQDOT 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 
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2.13 Low Density Foam Model 
 

The LOW_DENSITY_FOAM model is a phenomenological model that is used to model low 

density polyurethane foams.  This model was developed at Sandia National Laboratories and 

complete documentation can be found in [12]. 

 

The yield function for this model has the form 

 

 ( )2 11A I B CIσ ′= + +  , (14) 

 

where A , B  and C  are material properties, •  denotes the Heaviside step function, 2I ′  is the 

second invariant of the deviatoric strain and 1I  is the first invariant of the strain. 

 

There are eight state variables for this model, only one of which is aliased for output.  There are 

no user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

A 

B 

C 

NAIR 

P0 

PHI 

 

State Variables (8): 

 

PAIR 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 
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2.14 Mooney-Rivlin Model 
 

The MOONEY_RIVLIN model is a hyperelastic model that is used to model rubber.  The strain 

energy density as implemented in Adagio is given by 

 

 1 210 01( 3) ( 3) ( ln )m m mU C I C I K J J J= − + − + −  (15) 

 

where C10, C01, and K are temperature dependent material constants and the strain quantities are 

defined as follows.  The strain tensor is nominally the left Cauchy-Green strain tensor excluding 

the volumetric change given as 

 

 
T

B F F     =       (16) 

 

where F 
   is defined in terms of the total deformation gradient [ ]F  as follows: 

 

 [ ]
1

3F J F
−

  =   (17) 

 

with J defining the relative volumetric change given in terms of differential volume dV as 

follows: 

 

 [ ]
( )

det
(0)

dV t
J F

dV
= =  (18) 

 

The first and second strain invariants are simply 

 

 [ ]1 :I I B =    (19) 

 

and 

 [ ] ( )( )2

2 1

1
:

2
I I I B B   = −      (20) 

 

The mechanical volumetric strain is given by 

 

 m

th

J
J

J
=  (21) 

 

where the thermal volumetric strain is given by 

 

 [ ]detth thJ F=  (22) 
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with [ ]thF defined as the thermal deformation gradient.  That is, the total deformation gradient is 

multiplicatively decomposed as 

 

 [ ] [ ][ ]m thF F F=  (23) 

 

with isotropic thermal expansion defined by 

 

 [ ] [ ]1/3

th thF J I=  (24) 

 

The deviatoric and volumetric stresses are respectively given as 

 

 [ ] 110 01 01

2
' ( )

m

DEV C I C B C B B
J

σ       = + −      
 (25) 

 

and 

 

 ( )ln mp K J=  (26) 

 

Properties: 

 

C10 

C01 

BULK_MODULUS 

TARGET_E 

MAX_POISSONS_RATIO 

BULK_SCALING 

SHEAR_SCALING 

 

State Variables (12): 

 

C10 

C01 

K 

SFJTH 

JTH 

VMECHXX 

VMECHYY 

VMECHZZ 

VMECHXY 

VMECHYZ 

VMECHZX 

SFJTH_FLAG 
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Functions: 

 

TARGET_E_FUNCTION  

C10_FUNCTION 

C01_FUNCTION 

BULK_FUNCTION 

THERMAL_EXPANSION_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 

pcElasticModuli( matParams * p ); 
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2.15 Multilinear Elastic-Plastic Model 
 

The MULTILINEAR_EP model is an elastic-plastic model with a piecewise linear hardening 

curve.  This model provides significant flexibility for an analyst in describing the hardening 

behavior of an elastic-plastic material.  A hardening function, ( )pH ε , describes equivalent 

stress – equivalent plastic strain pairs that are used to describe the hardening behavior for the 

material.  The hardening curve for the model is given by 

 

 ( )y pHσ σ ε= +  , (27) 

 

where σ  is the von Mises stress and yσ  is the yield stress. 

 

In addition to supporting arbitrary hardening curves, the model allows for isotropic and/or 

kinematic hardening for the yield surface, temperature dependent elastic properties and a 

temperature dependent yield stress.  The hardening curve, however, does not change shape with 

temperature. 

 

There are 11 state variables for this model, eight of which are aliased for output.  The other three 

correspond to temperature dependent properties.  There are four user input functions for this 

model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

BETA 

 

State Variables (11): 

 

EQPS 

RADIUS 

ALPHA_XX 

ALPHA_YY 

ALPHA_ZZ 

ALPHA_XY 

ALPHA_YZ 

ALPHA_ZX 
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Functions:  

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

YIELD_STRESS_FUNCTION 

HARDENING_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.16 Multilinear Elastic Plastic with Failure Model 
 

The ML_EP_FAIL is a ductile failure model that uses the multilinear elastic-plastic model.  The 

model has a piecewise linear hardening curve which provides significant flexibility for an analyst 

in describing the hardening behavior of an elastic-plastic material.  A hardening function, 

( )pH ε , describes equivalent stress – equivalent plastic strain pairs that are used to describe the 

hardening behavior for the material.  The hardening curve for the model looks like 

 

 ( )y pHσ σ ε= +  , (28) 

 

where σ  is the von Mises stress and yσ  is the yield stress. 

 

In addition to supporting arbitrary hardening curves, the model allows for isotropic and/or 

kinematic hardening for the yield surface, temperature dependent elastic properties and a 

temperature dependent yield stress.  The hardening curve, however, does not change shape with 

temperature. 

 

Two other parameters, the critical crack opening strain and the critical tearing parameter, 

describe the failure of the material.  The critical tearing parameter, pt , is given by 

 

 
( )

4

max

max0

2

3

f

p p

m

t d

ε
σ

ε
σ σ

=
−∫  , (29) 

 

where maxσ  is the maximum principal stress, mσ  is the mean stress and •  denotes the 

Heaviside step function. 

 

There are 14 state variables for this model, eight of which are aliased for output.  There are four 

user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

BETA 

CRITICAL_TEARING_PARAMETER 

CRITICAL_CRACK_OPENING_STRAIN 
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State Variables (14): 

 

EQPS 

RADIUS 

ALPHA_XX 

ALPHA_YY 

ALPHA_ZZ 

ALPHA_XY 

ALPHA_YZ 

ALPHA_ZX 

 

Functions:  

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

YIELD_STRESS_FUNCTION 

HARDENING_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.17 Neo-Hookean Model 
 

The NEO_HOOKEAN model is a hyperelastic model based on small strain linear elasticity.  If a 

large deformation elasticity model is needed, this is probably a better model than the ELASTIC 

model for that purpose.  The model that is implemented in LAME is the same as the model in 

[13]. 

 

The strain energy density for the neo-Hookean model is given by 

 

 ( ) ( ) 1/3

1 1 tr
det ln det 1 3

4 2 det
W K µ

 
 = − − + −  

 

C
C C C

C
 , (30) 

 

where K  is the bulk modulus, µ  is the shear modulus and C  is the right Cauchy-Green tensor.  

The stress can be derived directly from the strain energy density.  The components of the Cauchy 

stress, ijσ , are 

 

 5/31 1 1

2 3
ij ij ij ij kkK J B B J

J
σ δ µ δ −   

= − + −   
   

 , (31) 

 

where ijB  are the components of the left Cauchy-Green tensor and detJ = F  is the Jacobian of 

the deformation.  For small strains it is easy to show that (31) reduces to the expression for small 

strain linear elasticity. 

 

There are no state variables or user input functions for this model. 

 

Properties:  

 

BULK_MODULUS 

SHEAR_MODULUS 

 

State Variables: 

 

 none 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 
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2.18 NLVE Polymer Model 
 

The NLVE_POLYMER model is a nonlinear viscoelastic material model for analyzing stresses 

and strains in filled and unfilled polymers. It employs a finite strain measure (Hencky strain H ) 

and is thermodynamically consistent so in principle can be used to analyze material performance 

all the way up to failure.  It predicts a full range of behavior including yielding, stress relaxation, 

volume relaxation, physical aging, enthalpy relaxation, etc.  The model uses a material clock 

driven by the potential part of the internal energy. The code inputs allow the user to specify 

either the mathematical terms in the constitutive equation directly or a set of physically 

measurable quantities from which the equation terms are computed.  This model is the rigorously 

complete model for filled and unfilled polymers.  It is intended for research purposes.  Analysts 

are advised to use the simpler, but still accurate Universal_Polymer model. 

 

Complete details of this model are given in References [14,15].  However, some of the relevant 

equations are presented here.  This model is derived using a Rational Mechanics approach where 

all thermodynamic quantities are derived from a single potential, the Helmholtz free energy,Ψ .  

The internal energy U in the model is related to the Helmholtz free energy as 

 

 U Tη= Ψ +  (32) 

where η  is the entropy and T is the temperature.  The full expression for the internal energy is 

given as follows: 

 

 

( )

( )

( )

* * * *

1 1
0 0

* * * *

2 2
0 0

* * * *

3 3
0 0

*

4 4
0

1
 +   du f , ( ) ( )
2

dH dH
  + ( )  du f ,  

ds du

  + ( , )  du f , ( ) ( )                           

1
  + ( )  du f
2

:

t t
H H

c

t t

t t
H

H

t

dI dI
U U ds t s t u s u

ds du

T ds t s t u

dI dT
T I ds t s t u s u

ds du

T ds t

∞= Ψ − −∫ ∫

Ψ − −∫ ∫

Ψ − −∫ ∫

Ψ −∫ ( )

( ) ( )

( )

( )

* * *

0

* * * *

4 4 3 3
0 0

* * * *3
3

0 0

* * * *4
4

0 0

, ( ) ( )

 ( )  f ,0 ( )+ ( , )  f ,0 ( )

      +  du f , ( ) ( )

1
      +  du f , (

2

[

H

H

t

t t
H

H

t t
H

I

t t

I

dT dT
s t u s u

ds du

dIdT
T T ds t s s T I ds t s s

dt ds

dI dT
ds t s t u s u

T ds du

dT
ds t s t u

T ds

−∫

− Ψ − Ψ −∫ ∫

∂Ψ 
− −∫ ∫ 

∂ 

∂Ψ 
− −∫ ∫ 

∂ 

( )* * * *2
2

0 0

) ( )

dH dH
      +  du f ,  

ds du
: ]

H

t t

I

dT
s u

du

ds t s t u
T

∂Ψ 
− −∫ ∫ 

∂   (33) 

 

with the material clock defined by 
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 * *

1

1 1
and log  a = B = C 1  

( )

reft
c

ref
s c c c

Udw
t s

a w U U U

   
− = − −∫    

   
 (34) 

 

and the equilibrium energy given by 

 

( )
 I

2 2 23
3 4

2
2 3 43 4 4

2

3
4

1 1
,  +   

2 2

1 1
                   - - 

2 4
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               + T

C pot I HH

ref
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H H H H H

H

refref ref

H

r

ref
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T T T

T
T
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 ∂Ψ
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3
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ef ref

H

refref

ref

H H

I T T
T

T I I
T Iε

 ∂Ψ 
∆ + ∆  

∂  
 

   ∂Ψ∂ Ψ + ∆ + Ψ +    ∂ ∂    

(35) 

 

The Hencky stress 
H

S is the stress measure that is work conjugate with the Hencky strain H  and 

is given by 

 

 

( ) ( ) ( )

( )

( )

I I

1 1 2 2
0 0

3 3
0

3
3

0 0

I
  f * * ( ) I +2    f * *  ( )

       +  ( , I )  f * * ( ) I 

I
       +    f * *, * * ( ) ( ) I 

I

          +

t t
H

ref refH

t

ref H

t t
H

ref

H T

ref

dHd
S ds t s s T ds t s s

ds ds

dT
T ds t s s

ds

ddT
ds du t s t u s u

ds ds

I

ρ ρ

ρ

∂
ρ

∂

ρ ψ ψ

= Ψ − Ψ −∫ ∫

Ψ −∫

 Ψ
− −∫ ∫ 

 

+
 I I T I I T I T T

2

  

1
  +2  

2 HHH H refI T I T T I Hψ ψ ψ ρ ψ
 

+ ∆ + ∆ + ∆  

 (36) 

 

The Hencky stress is converted internally to the Cauchy stress for use in static and dynamic 

equilibrium equations.  The relaxation functions are specified using Prony series as follows: 

 

 
/

1

( ) i

N
t

m mi
i

f t f e
τ−

=

= ∑  (37) 
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Properties:  

 

There are 253 properties that are input for this model.  Some of these properties are input, but 

some are not and are simply computed from some of the other inputs.  For example, the 

relaxation functions are usually input as Williams-Watts functions and then Prony series are 

determined from them.  Since many of the inputs comprise a Prony series, only the name of the 

first term in each series is explicitly given here. 

 

1PSI PRONY 1, 1PSI PRONY 2, etc: Property Numbers 1-30 are the exponential series 

prefactors (f1i) that are used to define the normalized relaxation function f1 associated 

with the Ψ1 integral in the equation for 
H

S  

 

2PSI PRONY 1, 2PSI PRONY 2, etc: Property Numbers 31-60 are the exponential series 

prefactors that are used to define the normalized relaxation function f2 associated with the 

Ψ2 integral in the equation for 
H

S  

 

3PSI PRONY 1, 3PSI PRONY 2, etc: Property Numbers 61-90 are the exponential series 

prefactors that are used to define the normalized relaxation function f3 associated with the 

Ψ3 integral in the equation for 
H

S  

 

4PSI PRONY 1, 4PSI PRONY 2, etc: Property Numbers 91-120 are the exponential 

series prefactors that are used to define the normalized relaxation function f4 associated 

with the Ψ4 integral in the equation for 
H

S  

 

RELAX TIME 1, RELAX TIME 2, etc: Property Numbers 121-150 are the exponential 

series relaxation times (τi) that are used to define all the normalized relaxation functions 
in the equation for 

H
S  

 

Ψ1(IH ) = Ψ1

ref +
dΨ1

dIH
IH  

 

1PSI REF, Ψ1

ref  

I1 DERIV 1PSI, 
dΨ1

dIH
 

Ψ2(T,IH ,IHH ) = Ψ2

ref +
dΨ2

dT
(T −TREF ) +

dΨ1

dIH
IH +

dΨ1

dIHH
IHH +

1

2

d2Ψ1

dIHH
2
IHH

2
 

 

2PSI REF, Ψ2

ref  

T DERIV 2PSI, 
dΨ2

dT
 

I1 DERIV 2PSI, 
dΨ2

dIH
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I2 DERIV 2PSI, 
dΨ2

dIHH
,   ( IHH is the 2

nd
 Hencky strain invariant) 

I2 2DERIV 2PSI, 
d2Ψ2

dIHH
2
 

 

Ψ3(T,IH ) = Ψ3

ref +
dΨ3

dT
(T −TREF ) +

dΨ3

dIH
IH +

d2Ψ3

dTdIH
IH (T −TREF )  

 

3PSI REF, Ψ3

ref  

T DERIV 3PSI, 
dΨ3

dT
 

I1 DERIV 3PSI, 
dΨ3

dIH
 

I1T 2DERIV 3PSI, 
d2Ψ3

dIHdT
 

 

Ψ4 (T,IH ) = Ψ4

ref +
dΨ4

dT
(T −TREF ) +

dΨ4

dIH
IH +

1

2

d2Ψ4

dT 2
(T −TREF )

2  

 

4PSI REF, Ψ4

ref  

T DERIV 4PSI, 
dΨ4

dT
 

T 2DERIV 4PSI, 
d2Ψ4

dT 2
 

I1 DERIV 4PSI, 
dΨ4

dIH
 

Reference temperature, Tref 
Reference density 

WLF coefficient C1 

WLF coefficient C2 

B,  Shift factor constant 

Uc

ref ,  Shift factor constant 

 
1

1

1

( ) exp
t

f t

β

τ

  
 = − 
   

 

WWBETA 1PSI, β1 
WWTAU 1PSI, τ1 

 
2

2

2

( ) exp
t

f t

β

τ

  
 = − 
   
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WWBETA 2PSI, β2 

WWTAU 2PSI, τ 2 
 

3

3

3

( ) exp
t

f t

β

τ

  
 = − 
   

 

WWBETA 3PSI, β3 

WWTAU 3PSI, τ 3 
 

4

4

4

( ) exp
t

f t

β

τ

  
 = − 
   

 

WWBETA 4PSI, β4  
WWTAU 4PSI, τ 4  
DOUBLE INTEG FACTOR (not used) 

RUBBERY BULK MOD 

I1 DERIV R_BULK 

GLASSY BULK MOD 

I1 DERIV G_BULK 

RUBBERY SHEAR MOD 

T DERIV R_SHEAR 

I2 DERIV R_SHEAR 

GLASSY SHEAR MOD 

T DERIV G_SHEAR 

RUBBERY VOL CTE 

T DERIV R_CTE 

GLASSY VOL CTE 

T DERIV G_CTE 

RUBBER HCAPACITY 

T DERIV R_HCAPACITY 

GLASSY HCAPACITY 

T DERIV G_HCAPACITY 

GLASS TRANSITION TEM 

TG TEST PRESSURE 

SHIFTED TG VALUE 

ENERGY OPTION (0= temp specified;  1=adiabatic, compute temperature) 

PSI EQ 2I,  ΨII ,         (These terms are used in the Taylor series 

PSI EQ IT,  ΨIT           expansion that defines the equilibrium 

PSI EQ 2T,  ΨTT           stress) 

PSI EQ 2H,  ΨHH  

PSI EQ 3I,  ΨIII  

PSI EQ 2IT,  ΨIIT  

PSI EQ I2T,  ΨITT  

PSI EQ 3T,  ΨTTT  

PSI EQ 2HT,  ΨHHT  
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PSI EQ 4I,  ΨIIII  

PSI EQ 3IT,  ΨIIIT  

PSI EQ 2I2T,  ΨIITT  

PSI EQ I3T,  ΨITTT  

PSI EQ 4T,  ΨTTTT  

PSI EQ 4H,  ΨHHHH  

PSI POT IT 

PSI POT 2T 

PSI POT 2IT 

PSI POT I2T 

PSI POT 3T 

PSI POT 4T 

PSI POT I 

PSI POT 2I 

PSI POT 3I 

PSI POT 2H 

PSI POT 2HT  

1PSI POT FACTOR 

2PSI POT FACTOR 

3PSI POT FACTOR 

4PSI POT FACTOR 

PSI POT 2I2T 

 

State Variables (281): 

 

Functions:  

none 

 

Methods:  

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.19 Orthotropic Crush Model 
 

The ORTHOTROPIC_CRUSH model is useful for modeling energy absorbing materials like 

aluminum honeycomb.  It is a fairy coarse model that gives reasonable results when the loading 

is aligned with the principal axes of orthotropy of the material.  One restriction for this material 

is that the axes of orthotropy must be aligned with the global Cartesian axes. 

 

Fully compacted elastic properties and a yield stress are given for the material.  In addition to 

these properties, initial orthotropic elastic moduli and shear moduli are given with respect to the 

global Cartesian axes.  Six functions are defined that give the crush strength of the material as a 

function of volumetric strain for the six stress components.  This models the plateau strength for 

the material. 

 

There is one state variable for this model, the volumetric strain.  There are six user input 

functions corresponding to the crush strength curves for the six stress components. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

EX 

EY 

EZ 

GXY 

GYZ 

GZX 

VMIN 

 

State Variables (1): 

 

0 - EVOL 

 

Functions:  

 

CRUSH_XX 

CRUSH_YY 

CRUSH_ZZ 

CRUSH_XY 

CRUSH_YZ 

CRUSH_ZX 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.20 Orthotropic Rate Model 
 

The ORTHOTROPIC_RATE model is an extension of the ORTHOTROPIC_CRUSH model that 

allows for rate dependent crush strengths.  This model also allows for arbitrary orientation of the 

axes of orthotropy with respect to the global Cartesian axes.  The model assumes three 

orthogonal axes of orthotropy – the T, L and W directions. 

 

Normal and shear moduli with respect to the axes of orthotropy are input for the model along 

with the direction cosines for the T and L directions.  The normal and shear crush strengths are 

defined through user input functions along with a rate multiplier function.  Another function 

modifies the modulus of the material as a function of volumetric strain. 

 

There are six state variables for this model, only one of which is aliased for output.  There are 

eight user input functions for this model. 

 

Properties: 

 
State Variables (6): 

 

0 - EVOL 

 

Functions:  

 

MODULUS_FUNCTION 

RATE_FUNCTION 

T_FUNCTION 

L_FUNCTION 

W_FUNCTION 

TL_FUNCTION 

LW_FUNCTION 

WT_FUNCTION 

 

LAMBDA 

SHEAR_MODULUS 

YIELD_STRESS 

MODULUS_TTTT 

MODULUS_TTLL 

MODULUS_TTWW 

MODULUS_LLLL 

MODULUS_LLWW 

MODULUS_WWWW 

MODULUS_TLTL 

MODULUS_LWLW 

MODULUS_WTWT 

TX 

TY 

TZ 

LX 

LY 

LZ 
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Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.21 Power Law Creep Model 
 

The POWER_LAW_CREEP model can be used to model the creep behavior of metals, like brazes 

and solders, and geologic materials like salt.  The model is useful for capturing secondary creep 

in materials.  The theory behind the POWER_LAW_CREEP model can be found in [6]. 

 

The power law creep model describes the evolution of the creep strain, cε , as a function of the 

von Mises stress, σ  
 

 ( )expm

c A Bε σ= −&  , (38) 

 

where A  is the creep constant, m  is the creep exponent and B  is the thermal constant. 

 

There are two state variables for this model – the equivalent creep strain and the equivalent stress 

rate. 

 

There are no user input functions for this model. 

 

Properties:   

 

YOUNGS_MODULUS 

POISSONS_RATIO 

CREEP_CONSTANT 

CREEP_EXPONENT 

THERMAL_CONSTANT 

 

State Variables (2): 

 

ECREEP 

SEQDOT 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 
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2.22 Soil and Foam Model 
 

The SOIL_FOAM model is a model that was implemented in SANTOS [6] and JAS3D [16].  The 

model can be used as a simple model of a geologic material.  The model has a pressure 

dependent yield surface which allows it to behave as, say, a Drucker-Prager model.  The bulk 

behavior is modeled with a user input pressure-volumetric strain curve. 

 

There are three state variables for this model.  Only one of the state variables is aliased for output 

– volumetric strain. 

 

There is one user input function.  The pressure function gives the pressure as a function of 

volumetric strain. 

 

Properties:  

 

BULK_MODULUS 

TWO_MU 

PRESSURE_CUTOFF 

A0 

A1 

A2 

 

State Variables (3): 

 

EVOL 

 

Functions:  

 

PRESSURE_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 
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2.23 Solder Model 
 

The SOLDER model is a viscoplastic model that is used to model the mechanical response of 

solder.  Detailed information on the model can be found in [17], [18], [19] and [20]. 

 

There are 28 state variables for this model.  None of the state variables are aliased for output.  

State variables 12-28 are for temperature dependent material properties. 

 

There are 17 user input functions for this model.  These functions define the temperature 

dependence of various material properties. 

 

Properties: 

State Variables (28): 

 

Functions:  

 

BULK_FUNCTION 

SHEAR_FUNCTION 

RATE_FUNCTION 

XP_FUNCTION 

XM_FUNCTION 

ALPHA_FUNCTION 

A1_FUNCTION 

A2_FUNCTION 

A3_FUNCTION 

A4_FUNCTION 

A5_FUNCTION 

A6_FUNCTION 

A7_FUNCTION 

A8_FUNCTION 

B1_FUNCTION 

B2_FUNCTION 

B3_FUNCTION 

 

BULK_MODULUS 

SHEAR_MODULUS 

FLOW_STRESS 

FLOW_RATE 

SINH_EXPONENT 

GRAIN_SIZE 

GRAIN_EXPONENT 

ALPHA 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B1 

B2 

B3 
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Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.24 Solder with Damage Model 
 

The SOLDER_DAMAGE model is a viscoplastic damage model that is used to model the 

mechanical response of solder.  Microstructural damage is modeled through a damage evolution 

equation.  Detailed information on the model can be found in [17], [18], [19] and [20]. 

 

There are 40 state variables for this model.  None of the state variables are aliased for output.  

State variables 26-40 are for temperature dependent material properties. 

 

There are 15 user input functions for this model.  These functions define the temperature 

dependence of various material properties. 

 

Properties: 

 
State Variables (40): 

 

BULK_MODULUS 

SHEAR_MODULUS 

FLOW_STRESS 

FLOW_RATE 

SINH_EXPONENT 

GRAIN_SIZE 

GRAIN_EXPONENT 

ALPHA  

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B1 

B2 

B3 

D1 

D2 

D3 

D4 

D5 

YIN 

YF 

GAMMA 
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Functions:  

 

YOUNG_FUNCTION 

POISSON_FUNCTION 

RATE_FUNCTION 

ALPHA_FUNCTION 

A1_FUNCTION 

A2_FUNCTION 

A3_FUNCTION 

A4_FUNCTION 

A5_FUNCTION 

A6_FUNCTION 

A7_FUNCTION 

B1_FUNCTION 

B2_FUNCTION 

YIN_FUNCTION 

YF_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.25 Stiff Elastic Model 
 

The STIFF_ELASTIC model is based on the ELASTIC model and is similar to the 

INCOMPRESSIBLE_SOLID model.  However, rather than scale properties based on the notion 

of incompressibility (or the ratio of the shear modulus to the bulk modulus) this model scales 

properties based on relative the stiffness of different  materials in the same problem – e.g. a 

“soft” and a “hard” material.  This model requires some way to account for the scaled properties 

in the host code, e.g. the multi-level solution control and augmented-Lagrange wrappers in 

Adagio.  All portions of the material response are softened by the same amount in this model.  

This model is not intended for transient dynamics applications, e.g. Presto.  However, if it is used 

in Presto, the scaling is ignored. 

 

There are no material state variables or user input functions for this model. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

SCALE_FACTOR 

 

State Variables: 

 

 none 

 

Functions:  

 

none 

 

Methods:  

 

getStress( matParams * p ); 

pcElasticModuli( matParams * p ); 
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2.26 Swanson 
 

The Swanson model is a hyperelastic model typically used for modeling rubbers.  By properly 

setting the material constants, a number of standard hyperelastic models can be recovered.  The 

strain energy density is given by 

 
1 1 11 1 1

1 2 11 1 1

1 1 1

3 3 3
1 1 1 ( ln )

2 1 3 2 1 3 2 1 3
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m m m
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+ + +
     
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+ + +     

 

 

where the strain quantities are defined as follows.  The strain tensor is nominally the left Cauchy-

Green strain tensor excluding the volumetric change given as 

 

 
T

B F F     =       (39) 

 

where F 
   is defined in terms of the total deformation gradient [ ]F  as follows: 

 

 [ ]
1

3F J F
−

  =   (40) 

 

The first and second strain invariants are simply 

 

 [ ]1 :I I B =    (41) 

 

and 

 [ ] ( )( )2

2 1

1
:

2
I I I B B   = −      (42) 

 

The mechanical volumetric strain is given by 

 

 m

th

J
J

J
=  (43) 

 

where the total and thermal volumetric strains are given by 

 

 [ ] [ ]det and detth thJ F J F= =  (44) 

 

with [ ]thF defined as the isotropic thermal deformation gradient as follows: 

 

 [ ] [ ]1/3

th thF J I=  (45) 

 

That is, the total deformation gradient is broken into mechanical and thermal parts using 
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 [ ] [ ][ ]m thF F F=  (46) 

 

The deviatoric stresses are given by  

 [ ] 1

1 2 2

2
'

m

U U U
DEV I B B B

J I I I
σ

 ∂ ∂ ∂       = + −       ∂ ∂ ∂  
 (47) 

where the partial derivatives of the strain energy are simply 
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The pressure is given by 

 ( )ln mp K J=  (50) 

 

As previously noted, a number of standard hyperelastic models can be recovered by properly 

setting the material constants.  For instance, a Neo-Hookean model can be simulated by using 
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The Mooney-Rivlin constitutive equation results from using 

 

 

1 10 1

1 01 1

1 1

2 0

2 0

0 0

A C P
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 (52) 

 

However, unlike the native Mooney-Rivlin implementation in LAME, the Swanson model does 

not incorporate temperature dependent moduli. 
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Properties:  

 

A1 

P1 

B1 

Q1 

C1 

R1 

BULK_MODULUS 

CUT_OFF_STRAIN 

TARGET_E 

MAX_POISSONS_RATIO 

BULK_SCALING 

SHEAR_SCALING 

 

State Variables (9): 

 

SFJTH 

JTH 

VMECHXX 

VMECHYY 

VMECHZZ 

VMECHXY 

VMECHYZ 

VMECHZX 

SFJTH_FLAG 

 

Functions:  

 

TARGET_E_FUNCTION 

THERMAL_EXPANSION_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 

pcElasticModuli( matParams * p ); 
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2.27 Thermoelastic Model 
 

The THERMOELASTIC model is a temperature dependent version of the ELASTIC model where 

the elastic constants are temperature dependent.  A description of the thermoelastic model can be 

found in [6]. 

 

There are no state variables for this model. 

 

There are two user input functions: the Young’s modulus function, the Poisson’s ratio function.  

These functions define these properties as a function of temperature. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

 

State Variables: 

 

 none 

 

Functions:  

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.28 Thermoelastic-Plastic Power Law Hardening Model 
 

The THERMO_EP_POWER model is a thermoelastic-plastic power law hardening model.  It is a 

temperature dependent version of the EP_POWER_HARD model that allows for the elastic 

properties and the yield stress to vary as a function of temperature.  As an additional feature, this 

model allows for isotropic and/or kinematic hardening – a feature that is not in the 

EP_POWER_HARD model. 

 

This model has 11 state variables, 8 that are available for output: the equivalent plastic strain, 

radius of the yield surface and six components of the back stress tensor that gives the location of 

the center of the yield surface.  The other state variables keep track of the temperature dependent 

properties for the model. 

 

There are three user input functions for this model: the Young’s modulus function, the Poisson’s 

ratio function and the yield stress function.  These functions define these properties as a function 

of temperature. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

HARDENING_CONSTANT 

HARDENING_EXPONENT 

LUDERS_STRAIN 

BETA 

 

State Variables (11): 

 

EQPS 

RADIUS 

ALPHA_XX 

ALPHA_YY 

ALPHA_ZZ 

ALPHA_XY 

ALPHA_YZ 

ALPHA_ZX 

 

Functions:  

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

YIELD_STRESS_FUNCTION  
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Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.29 Thermoelastic-Plastic Power Law Hardening Weld Model 
 

The THERMO_EP_POWER_WELD model is a variation of the THERMO_EP_POWER model that 

can be used to model, in a crude way, a weld.  The added feature in this model is the transition 

temperature, tT .  The model has elastic properties that are a function of temperature.  At the start 

of an analysis, the elastic properties have their values evaluated at the transition temperature.  

The first time that the temperature exceeds the transition temperature the material behaves as the 

THERMO_EP_POWER model. 

 

This model has 12 state variables, 9 that are available for output: the equivalent plastic strain, 

radius of the yield surface, six components of the back stress tensor that gives the location of the 

center of the yield surface and a flag that turns on if the temperature has gone beyond the 

transition temperature.  The other state variables keep track of the temperature dependent 

properties for the model. 

 

There are three user input functions for this model: the Young’s modulus function, the Poisson’s 

ratio function and the yield stress function.  These functions define these properties as a function 

of temperature. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

YIELD_STRESS 

HARDENING_CONSTANT 

HARDENING_EXPONENT 

LUDERS_STRAIN 

BETA 

TRANSITION_TEMPERATURE 

 

State Variables (12): 

 

EQPS 

RADIUS 

ALPHA_XX 

ALPHA_YY 

ALPHA_ZZ 

ALPHA_XY 

ALPHA_YZ 

ALPHA_ZX 

WELD_FLAG 
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Functions:  

 

YOUNGS_MODULUS_FUNCTION 

POISSONS_RATIO_FUNCTION 

YIELD_STRESS_FUNCTION  

 

Methods:  

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 

 



59 

2.30 Universal Polymer Model 
 

This is a phenomenological, nonlinear viscoelastic material model for analyzing stresses and 

strains in filled and unfilled polymers.  It represents a simplification of the NLVE_POLYMER 

model, and it was developed for production analyses of encapsulated components.  It predicts a 

full range of behavior including yielding, stress relaxation, volume relaxation, and physical 

aging.  The model uses a material clock driven by temperature, volume and strain (similar to 

potential internal energy of NLVE_POLYMER).  The strain measure is obtained from the 

integration of the rate of deformation tensor.  As a special feature, it does allow the user to 

initiate an analysis from a stress-free temperature, Tsf, that is different from the reference 

temperature, Tref, at which the material properties are defined. 

 

The Cauchy stress is given by 
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where 
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and 
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The material clock is defined by 
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Note that the clock invariant I1(t)ref is measured from the reference temperature, not the stress 

free state. In order for the clock to reduce to the WLF equation at temperatures above Tg, we 

must define the clock coefficients consistently.  To do so, first approximate N for and 

equilibrated material slightly above Tg: 
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To make the UPM clock reproduce the WLF equation above Tg, we must enforce a condition that 
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From this condition, we can define the UPM clock parameters in terms of the WLF coefficients. 
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Note that if the volumetric coefficient of thermal expansion varies as a linear function of 

temperature, then the volume strain is quadratic: 
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where we adopt the notation that 
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Properties:  

There are 134 properties for this model.  Some are input, but some are derived from other 

inputs.  For example, the relaxation functions are usually input as Williams-Watts 

functions and then Prony series are determined from them. 

 

 

WWBETA 1 

WWTAU 1 

WWBETA 2 

WWTAU 2 

SPECTRUM START TIME 

SPECTRUM END TIME 

LOG TIME INCREMENT 

BULK GLASSY 0 

BULK GLASSY 1 

BULK GLASSY 2 

BULK RUBBERY 0 

BULK RUBBERY 1 

BULK RUBBERY 2 

VOLCTE GLASSY 0 

VOLCTE GLASSY 1 

VOLCTE GLASSY 2 

VOLCTE RUBBERY 0 

VOLCTE RUBBERY 1 

VOLCTE RUBBERY 2 

SHEAR GLASSY 0 

SHEAR GLASSY 1 

SHEAR GLASSY 2 

SHEAR RUBBERY 0 

SHEAR RUBBERY 1 

SHEAR RUBBERY 2 

REFERENCE TEMPERATURE 

WLF C1 

WLF C2 

CLOCK C1 

CLOCK C2 

CLOCK C3 

CLOCK C4 

CLOCK C5 

CLOCK C6 

FILLER VOL FRACTION 

STRESS FREE TEMPERATURE 

RELAX TIME 1 

RELAX TIME 2 

RELAX TIME 3 

RELAX TIME 4 

RELAX TIME 5 

RELAX TIME 6 

RELAX TIME 7 

RELAX TIME 8 

RELAX TIME 9 

RELAX TIME 10  

RELAX TIME 11 

RELAX TIME 12 

RELAX TIME 13 

RELAX TIME 14 

RELAX TIME 15 

RELAX TIME 16 

RELAX TIME 17 

RELAX TIME 18 

RELAX TIME 19 

RELAX TIME 20 

RELAX TIME 21 

RELAX TIME 22 

RELAX TIME 23 

RELAX TIME 24 

RELAX TIME 25 

RELAX TIME 26 

RELAX TIME 27 

RELAX TIME 28 

RELAX TIME 29 

RELAX TIME 30 

F1 1 

F1 2 

F1 3 

F1 4 

F1 5 

F1 6 

F1 7 

F1 8 

F1 9 

F1 10  

F1 11 

F1 12 



63 

 
State Variables (249): 

 

AEND 

IGXX1 

IGYY1 

IGXY1 

IGYZ1 

IGZX1 

IGXX2 

IGYY2 

IGXY2 

IGYZ2 

IGZX2 

IGXX3 

IGYY3 

IGXY3 

IGYZ3 

IGZX3 

IGXX4 

IGYY4 

IGXY4 

IGYZ4 

IGZX4 

IGXX5 

IGYY5 

IGXY5 

IGYZ5 

IGZX5 

IGXX6 

IGYY6 

IGXY6 

IGYZ6 

IGZX6 

IGXX7 

IGYY7 

IGXY7 

F1 13 

F1 14 

F1 15 

F1 16 

F1 17 

F1 18 

F1 19 

F1 20 

F1 21 

F1 22 

F1 23 

F1 24 

F1 25 

F1 26 

F1 27 

F1 28 

F1 29 

F1 30 

F2 1 

F2 2 

F2 3 

F2 4 

F2 5 

F2 6 

F2 7 

F2 8 

F2 9 

F2 10  

F2 11 

F2 12 

F2 13 

F2 14 

F2 15 

F2 16 

F2 17 

F2 18 

F2 19 

F2 20 

F2 21 

F2 22 

F2 23 

F2 24 

F2 25 

F2 26 

F2 27 

F2 28 

F2 29 

F2 30 
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IGYZ7 

IGZX7 

IGXX8 

IGYY8 

IGXY8 

IGYZ8 

IGZX8 

IGXX9 

IGYY9 

IGXY9 

IGYZ9 

IGZX9 

IGXX10 

IGYY10 

IGXY10 

IGYZ10 

 IGZX10 

IGXX11 

IGYY11 

IGXY11 

IGYZ11 

IGZX11 

IGXX12 

IGYY12 

IGXY12 

IGYZ12 

IGZX12 

IGXX13 

IGYY13 

IGXY13 

IGYZ13 

IGZX13 

IGXX14 

IGYY14 

IGXY14 

IGYZ14 

IGZX14 

IGXX15 

IGYY15 

IGXY15 

IGYZ15 

IGZX15 

IGXX16 

IGYY16 

IGXY16 

IGYZ16 

IGZX16 

IGXX17 

IGYY17 

IGXY17 

IGYZ17 

IGZX17 

IGXX18 

IGYY18 

IGXY18 

IGYZ18 

IGZX18 

IGXX19 

IGYY19 

IGXY19 

IGYZ19 

IGZX19 

IGXX20 

IGYY20 
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IGYZ23 
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IGXY24 
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IGZX24 
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IGYZ25 

IGZX25 

IGXX26 

IGYY26 

IGXY26 

IGYZ26 

IGZX26 

IGXX27 

IGYY27 

IGXY27 

IGYZ27 

IGZX27 

IGXX28 

IGYY28 

IGXY28 

IGYZ28 

IGZX28 

IGXX29 

IGYY29 

IGXY29 

IGYZ29 

IGZX29 

IGXX30 

IGYY30 

IGXY30 

IGYZ30 

IGZX30 

IKI11 

IKI12 

IKI13 

IKI14 

IKI15 

IKI16 

IKI17 

IKI18 

IKI19 

IKI110 

IKI111 

IKI112 

IKI113 

IKI114 

IKI115 

IKI116 

IKI117 

IKI118 

IKI119 

IKI120 

IKI121 

IKI122 

IKI123 

IKI124 

IKI125 

IKI126 

IKI127 

IKI128 

IKI129 

IKI130 

IKAT1 

IKAT2 

IKAT3 

IKAT4 

IKAT5 

IKAT6 

IKAT7 

IKAT8 

IKAT9 

IKAT10 

IKAT11 

IKAT12 

IKAT13 

IKAT14 

IKAT15 

IKAT16 

IKAT17 

IKAT18 

IKAT19 

IKAT20 

IKAT21 

IKAT22 

IKAT23 

IKAT24 

IKAT25 

IKAT26 

IKAT27 

IKAT28 

IKAT29 

IKAT30 

IF1P1 

IF1P2 

IF1P3 
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Functions:  

none 

 

Methods:  

initialize( matParams * p ); 

getStress( matParams * p ); 

IF1P4 

IF1P5 

IF1P6 

IF1P7 

IF1P8 

IF1P9 

IF1P10 

IF1P11 

IF1P12 

IF1P13 

IF1P14 

IF1P15 

IF1P16 

IF1P17 

IF1P18 

IF1P19 

IF1P20 

IF1P21 

IF1P22 

IF1P23 

IF1P24 

IF1P25 

IF1P26 

IF1P27 

IF1P28 

IF1P29 

IF1P30 

EPSXX 

EPSYY 

EPSZZ 

EPSXY 

EPSYZ 

EPSZX 

LOGA 

EFFI2 
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2.31 Viscoelastic Swanson Model 
 

The viscoelastic Swanson is a finite strain viscoelastic model which has an initial elastic 

response that matches the Swanson material model [21, 22, 23].  The model is typically 

employed in calculating the response of rubber materials.  The bulk response is elastic, while the 

deviatoric response is viscoelastic.  Such a constitutive modeling approach is commonly used in 

simulating the response of rubbers. 

 

The Cauchy stress [ ]( )tσ  is computed from the following equation 
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which is rewritten as follows: 
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where [ ]( )F t is the total deformation gradient at time t, J is the determinant of [ ]( )F t , ( )p t is the 

elastic pressure computed as 

 

 ( )ln mp K J=  (67) 

 

Jm is the determinant of the mechanical part of [ ]( )F t , 0 ( )dev tσ    is the deviatoric Cauchy stress 

at time t computed using the elastic Swanson model with initial moduli values, 0 ( )devS t τ −   is 

the deviatoric second Piola-Kirchhoff stress computed using the elastic Swanson model with 

initial moduli values at time t τ− , and G(t) is the shear relaxation modulus.  Here the reference 

state for the two state tensors ([ ]( )F t  and 0 ( )devS t τ −  ) is the original configuration at 0t = .  

The shear relaxation modulus is represented using a Prony series as follows: 
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Finally, the reduced material time t* is related to the physical time t as follows: 
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or 
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where WLFA  is the WLF shift factor given by 
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and NA is a numerical shift factor which the model user can specify arbitrarily to slow or speed 

the viscoelastic relaxations as desired. 

 

Properties: 

 
 

A1 

P1 

B1 

Q1 

C1 

R1 

BULK_MODULUS 

CUT_OFF_STRAIN 

TARGET_E 

MAX_POISSONS_RATIO 

BULK_SCALING 

SHEAR_SCALING 

PRONY_SHEAR_INFINITY 

PRONY_SHEAR_1 

PRONY_SHEAR_2 

PRONY_SHEAR_3 

PRONY_SHEAR_4 

PRONY_SHEAR_5 

PRONY_SHEAR_6 

PRONY_SHEAR_7 

PRONY_SHEAR_8 

PRONY_SHEAR_9 

PRONY_SHEAR_10 

SHEAR_RELAX_TIME_1 

SHEAR_RELAX_TIME_2 

SHEAR_RELAX_TIME_3 

SHEAR_RELAX_TIME_4 

SHEAR_RELAX_TIME_5 

SHEAR_RELAX_TIME_6 

SHEAR_RELAX_TIME_7 

SHEAR_RELAX_TIME_8 

SHEAR_RELAX_TIME_9 

SHEAR_RELAX_TIME_10 

WLF_COEF_C1 

WLF_COEF_C2 

WLF_TREF 

 



69 

State Variables (77): 

 
 

SFJTH 

JTH 

VMECHXX 

VMECHYY 

VMECHZZ 

VMECHXY 

VMECHYZ 

VMECHZX 

SFJTH_FLAG 

VSXXDEV1 

VSYYDEV1 

VSZZDEV1 

VSXYDEV1 

VSYZDEV1 

VSZXDEV1 

VSXXDEV2 

VSYYDEV2 

VSZZDEV2 

VSXYDEV2 

VSYZDEV2 

VSZXDEV2 

VSXXDEV3 

VSYYDEV3 

VSZZDEV3 

VSXYDEV3 

VSYZDEV3 

VSZXDEV3 

VSXXDEV4 

VSYYDEV4 

VSZZDEV4 

VSXYDEV4 

VSYZDEV4 

VSZXDEV4 

VSXXDEV5 

VSYYDEV5 

VSZZDEV5 

VSXYDEV5 

VSYZDEV5 

VSZXDEV5 

 

VSXXDEV6 

VSYYDEV6 

VSZZDEV6 

VSXYDEV6 

VSYZDEV6 

VSZXDEV6 

VSXXDEV7 

VSYYDEV7 

VSZZDEV7 

VSXYDEV7 

VSYZDEV7 

VSZXDEV7 

VSXXDEV8 

VSYYDEV8 

VSZZDEV8 

VSXYDEV8 

VSYZDEV8 

VSZXDEV8 

VSXXDEV9 

VSYYDEV9 

VSZZDEV9 

VSXYDEV9 

VSYZDEV9 

VSZXDEV9 

VSXXDEV10 

VSYYDEV10 

VSZZDEV10 

VSXYDEV10 

VSYZDEV10 

VSZXDEV10 

SOXXDEV 

SOYYDEV 

SOZZDEV 

SOXYDEV 

SOYZDEV 

SOZXDEV 

WLF_AAVG 

ANAVG 
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Functions:  

 

NUMERICAL_SHIFT_FUNCTION 

THERMAL_EXPANSION_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 

pcElasticModuli( matParams * p ); 
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2.32 Viscoplastic Model 
 

The VISCOPLASTIC model is used to model braze joint materials with state variables to model 

hardening and recovery.  A detailed presentation of the theory can be found in [24]. 

 

There are 19 state variables for this model.  The state variables describe the back stress, strain 

rate, and iteration counts.  State variables 11-19 are used for temperature dependent material 

properties. 

 

There are 9 user input functions for this model.  These functions define the temperature 

dependence of various material properties. 

 

Properties:  

 
State Variables (19): 

 
 

Functions:  

 

SHEAR_FUNCTION 

BULK_FUNCTION 

RATE_FUNCTION 

EXPONENT_FUNCTION 

ALPHA_FUNCTION 

IHARD_FUNCTION 

IREC_FUNCTION 

KHARD_FUNCTION 

KREC_FUNCTION YOUNGS_MODULUS_FUNCTION 

0 - SVBXX 

1 - SVBYY 

2 - SVBZZ 

3 - SVBXY 

4 - SVBYZ 

5 - SVBZX 

8 - EQDOT 

9 – COUNT 

10 - SHEAR 

11 - BULK 

12 - RATE 

13 - EXP 

14 - ALPHA 

15 – A1 

16 – A2 

17 – A4 

18 – A5 

SHEAR_MODULUS 

BULK_MODULUS 

ISO_EXPONENT 

KIN_EXPONENT 

FLOW_STRESS 

FLOW_RATE 

SINH_EXPONENT 

ALPHA 

ISO_HARDENING 

ISO_RECOVERY 

KIN_HARDENING 

KIN_RECOVERY 
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Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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2.33 Viscoplastic Foam Model 
 

The VISCOPLASTIC_FOAM model is a plasticity model that is used to model rigid foams.  It 

used a non-associated flow rule.  The model is documented in [25]. 

 

There are 14 state variables for this model.  None of the state variables are aliased for output. 

 

There are eight user input functions for this model that described temperature dependent 

properties, rate effects and hardening behavior. 

 

Properties:  

 

YOUNGS_MODULUS 

POISSONS_RATIO 

FLOW_RATE 

POWER_EXPONENT 

BETA 

SHEAR_STRENGTH 

SHEAR_HARDENING 

HYDRO_STRENGTH 

HYDRO_HARDENING 

SHEAR_EXPONENT 

HYDRO_EXPONENT 

PHI 

 

State Variables (14): 

 

Functions: 

  

YOUNGS_FUNCTION 

POISSONS_FUNCTION 

RATE_FUNCTION 

EXPONENT_FUNCTION 

SS_FUNCTION 

SH_FUNCTION 

HS_FUNCTION 

HH_FUNCTION 

 

Methods:  

 

initialize( matParams * p ); 

getStress( matParams * p ); 

loadStepInit( matParams * p ); 
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3.  SUMMARY 
 

A range of material models have been implemented in LAME.  These include simple linear 

elastic models with and without temperature dependent moduli.  Another set of models 

incorporate different forms of plasticity with linear or power law hardening with yield surfaces 

that correspond to isotropic, kinematic or mixed hardening.  Several model options are available 

in LAME for modeling foams.  Likewise, several hyperelastic models for the large strain elastic 

response of rubbers are available.  Finally, several viscoelastic models appropriate for potting 

epoxies or rubbers exist in LAME.  Currently, all of the LAME models are available in the ASC 

codes Adagio and Presto.  Several of the LAME models have been hooked-up to the augmented-

Lagrange wrappers in Adagio such that the conjugate gradient solver in Adagio can be employed 

efficiently.  Such wrappers allow part or all of the material response to be stiffened or softened.  

Such scaling of material model behavior is intended for use in Adagio.  If these particular models 

are employed in Presto, the specified scalings are ignored. 

 

A brief overview of each model in LAME has been presented in this report.  The required 

material parameters, the state variables available for named output, and the name of any user 

input functions are given.  Finally, for informational purposes for both developers and analysts, 

the particular LAME routines that are actually implemented for each model are listed.  All 

models employ a getStress() method for determining the stresses used for equilibrium 

calculations.  Many use an initialize() method for initializing state variables.  Some 

models incorporate a loadStepInit() method for initializing pieces of information once per 

time step.  For instance, temperature dependent moduli only need to be set once per step when 

the temperature is known for all time steps.  Some models need to change the moduli that are 

used for the elastic preconditioner in Adagio at each time step.  For instance, in the case of 

temperature-dependent moduli, it is better to use the moduli at the current temperature in the 

elastic preconditioner.  Another example of when the elastic moduli for the preconditioner may 

need to be changed is for materials which soften dramatically at large strains.  Such elastic 

preconditioner moduli changes are performed using the pcElasticModuli() method.  

Materials that do not employ a pcElasticModuli() method have appropriate moduli for the 

elastic preconditioner set once at the beginning of the Adagio analysis. 
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