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Abstract 
 

Constitutive models for computational solid mechanics codes are in LAME – the 
Library of Advanced Materials for Engineering.  These models describe complex 
material behavior and are used in our finite deformation solid mechanics codes.  To 
ensure the correct implementation of these models, regression tests have been created 
for constitutive models in LAME.  A selection of these tests is documented here. 
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1.  INTRODUCTION 
 
Constitutive models are an important part of any solid mechanics code.  If an analysis code is 
meant to provide accurate results, the constitutive models that describe the material behavior 
need to be implemented correctly.  Ensuring the correct implementation of constitutive models is 
the goal of a testing procedure that is used with the Library of Advanced Materials for 
Engineering (LAME) (see [1] and [2]). 
 
A test suite for constitutive models can serve three purposes.  First, the test problems provide the 
constitutive model developer a means to test the model implementation.  This is an activity that 
is always done by any responsible constitutive model developer.  Retaining the test problem in a 
repository where the problem can be run periodically is an excellent means of ensuring that the 
model continues to behave correctly.  A second purpose of a test suite for constitutive models is 
that it gives application code developers confidence that the constitutive models work correctly.  
This is extremely important since any analyst that uses an application code for an engineering 
analysis will associate a constitutive model in LAME with the application code, not LAME.  
Therefore, ensuring the correct implementation of constitutive models is essential for application 
code teams.   A third purpose of a constitutive model test suite is that it provides analysts with 
example problems that they can look at to understand the behavior of a specific model.  Since the 
choice of a constitutive model, and the properties that are used in that model, have an enormous 
effect on the results of an analysis, providing problems that highlight the behavior of various 
constitutive models to the engineer can be of great benefit. 
 
LAME is currently implemented in the Sierra based solid mechanics codes Adagio [3] and Presto 
[4].  The constitutive models in LAME are available in both codes.  Due to the nature of a 
transient dynamics code – e.g. Presto – it is difficult to test a constitutive model due to inertia 
effects that show up in the solution.  Therefore the testing of constitutive models is primarily 
done in Adagio.  All of the test problems detailed in this report are run in Adagio. 
 
It is the goal of the constitutive model test suite to provide a useful service for the constitutive 
model developer, application code developer and engineer that uses the application code.  Due to 
the conflicting needs and tight time constraints on solid mechanics code development, no 
requirements exist for implementing test problems for constitutive models.  Model developers 
are strongly encouraged to provide test problems and document those problems, but given the 
choice of having a model without a test problem or no model at all, certain requirements must be 
kept loose.  A flexible code development environment, especially with regards to research and 
development in constitutive modeling, is essential to the success of such an environment. 
 
This report provides documentation of a number of tests for the constitutive models in LAME.  
Each section documents a separate test with a brief description of the model, the test problem 
and the results.  This report is meant to be updated periodically as more test problems are created 
and put into the test suite. 
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2.  GENERAL CONSTITUTIVE MODEL TESTING 
 
The means of testing constitutive models is something that cannot be defined in general.  Each 
model will have unique capabilities that need to be tested.  What should be tested is any 
capability that the constitutive model has.  What is tested, in reality, are those capabilities 
deemed to be important by the constitutive model developer. 
 
It is not the purpose of this document to determine exactly what tests a constitutive model 
developer should run to check their model.  Rather, this document will provide a number of 
examples of tests that are run for many of the models in LAME. 
 
2.1 Mesh for Verification Tests 
 
This mesh that is used for most of the verification tests is the same mesh that is used for the 
patch test in Adagio and Presto – a cube with seven elements.  The mesh is shown in Figure 1.  
The elements in this mesh are not parallelepipeds, so this mesh is a good test of linear 
consistency for the elements, hence its usefulness as a patch test.  If the constitutive model is 
implemented correctly, a test with this mesh can be run where, if a linear displacement field is 
placed on the eight exterior nodes of the cube, not only is the correct stress found, but that stress 
is the same for every element. 
 
The patch-test mesh has eight exterior nodes that are used to define boundary conditions.  The 

 
Figure 1: The seven element patch test mesh used for constitutive model 

verification.  The center element is element number 1. 
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boundary conditions can have prescribed displacements or tractions.  The boundary conditions 
can be along coordinate axes or any set of user defined axes.  With this capability, verification 
tests can be created with a number of different boundary conditions: prescribed displacement, 
prescribed traction or mixed boundary conditions.  A simpler mesh – a single element – can also 
be used.  A test of this type run is Adagio would mimic exactly a point simulator.  Finally, it 
should be noted that with either mesh, a uniform strain field is the expected result of any applied 
boundary conditions.  Therefore, hourglass control should have no effect on the solution. 
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3. MATERIAL MODEL TESTS 
 
A number of material models in LAME have regression tests in Adagio and Presto that test the 
implementation and capabilities of the models.  This section documents these tests and provides 
examples for tests that can be run for different constitutive models.  Constitutive modelers are 
encouraged to develop test problems for any model that they implement in LAME.  The 
documentation in this section provides examples for the types of tests that they can develop for 
their models.  The application code developers for Adagio and Presto use these tests in their 
nightly regression test suite to ensure that no code changes have occurred that might affect 
functionality.  Any application code that uses LAME is encouraged to develop the same tests for 
their application code.  Analysts can also use the tests that are documented here to understand 
what to expect from the constitutive models that they are using in their analysis. 
 
The test problems in this section represent only some of the test problems that are in the 
regression test suites for LAME.  There are currently over 80 regression tests for constitutive 
models that are in LAME.  The test suites are a part of the Adagio and Presto regression test 
suites.  As more problems are documented and/or created they will be added to this report. 
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3.1 Elastic Test 
 
The simplest test is the regression test that is run for the elastic model.  This test is a uniaxial 
stress test.  The test uses the patch-test mesh of a unit cube shown in Figure 1. 
 
A uniaxial stress is prescribed using displacement control in the x  direction and traction-free 
boundary conditions in the y  and z  directions.  The prescribed displacement is such that the 
displacement of the x−  face is zero and the displacement of the x+  face has a maximum of 
0.005 in. and a minimum of -0.005 in.  Since the initial geometry is of a unit cube, i.e. a 1 in. 
cube, the maximum and minimum strains are 
 

 
( )

( )

3
max

3
min

ln 1.005 4.9875 10

ln 0.995 5.0125 10

ε

ε

−

−

= = ×

= = − ×
 . (1) 

 
The prescribed displacement/strain as a function of time is given in Table 1. 
 

 
The material constants for the elastic model that are used in this problem are shown in Table 2. 
 

 
Given a uniaxial strain problem on a unit cube with zero lateral tractions, the stress calculated 
using an elastic model is 
 
 ( )ln 1xx xx xE E uσ ε= = +  , (2) 

 
where E  is the Young’s modulus and u  is the prescribed displacement in the x  direction.  
Using the values for the prescribed displacements in Table 1 and the material properties in Table 
2, the maximum and minimum axial stresses are 349.875 10× psi and 350.125 10− × psi 
respectively. 

Table 1.  Displacement boundary condition for elastic test 
 

time displacement axial strain 
0.00 s 0.000  in 0.0000 
0.25 s 0.005  in 34.9875 10−×  
0.75 s -0.005 in 35.0125 10−− ×  
1.00 s 0.000 in 0.0000 

 

Table 2.  Material properties for elastic test 
 

property value 
YOUNGS MODULUS 610 10×  psi 
POISSONS RATIO 0.25  
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Since the lateral surfaces are traction free they are free to contract.  The displacement of the 
lateral surface is 
 

 
( )

1
1

1
y z

x

u u
u

ν= = −
+

 . (3) 

 
Using the prescribed displacements in Table 1, the minimum and maximum lateral 
displacements are 31.2461 10−− × in. and 31.2539 10−× in. respectively. 
 
3.1.1 Results for Elastic Test 
 
The results for the elastic test match exactly the expected results presented above.  A plot of the 
six stress components is shown in Figure 2.  The only non-zero stress component is xxσ .  The 

other five components are zero. 
 

 
Figure 2: Results for the stress components of element number 1 in the elastic test 

problem. 
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3.2 Thermoelastic Test 
 
The verification test for the thermoelastic model is designed to test the model under a 
combination of mechanical and thermal loading.  The constitutive model has temperature 
dependent material properties, i.e. a temperature dependent Young’s modulus and a temperature 
dependent Poisson’s ratio.  The test problem does not use thermal strains since thermal strains 
are currently handled outside of LAME.  The mesh for the problem is the mesh shown in Figure 
1. 
 

 
The test problem has two stages: a mechanical one and a thermal one.  The test problem lasts two 

 
Figure 3: Normalized functions for the Young’s modulus and Poisson’s ratio as a 

function of temperature. 
 

Table 3.  Room temperature material properties for thermoelastic test 
 

property value 
YOUNGS MODULUS 31 10×  psi 
POISSONS RATIO 0.25  
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seconds.  From zero seconds to one second the material is stretched isothermally from its initial 
configuration to an axial strain of 34.9875 10−× .  For stage two the axial strain is held fixed while 
the temperature increases from room temperature to 1,000o C.  This increase in temperature 
causes a change in the elastic properties that will result in a change in the axial stress.  It should 
be noted that the values used for this test problem are completely fictitious.  Furthermore, since 
the test is run with Adagio, a quasi-static code, the solution to the problem is independent of the 
loading rate. 
 
The reference temperature constitutive properties for the thermoelastic model used in the test 
problem are shown in Table 3.  For temperatures other than the reference temperature, two 
functions describe how the constitutive properties change with temperature.  These functions are 
shown in Figure 3. 
 
Since the problem is uniaxial stress, the axial stress in the problem is simply 
 
 ( )xx xxE Tσ ε=  . (4) 

 
Figure 4: The axial stress in the thermoelastic test as a function of time.  Up until 1 
second the stress is mechanical, from 1 second to 2 seconds the stress decreases 

due to the reduction in the elastic modulus from an increase in temperature. 
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At room temperature (the reference temperature) the normalized function is 1.0.  At 1,000o  C the 

normalized function is 0.5.  Therefore, at room temperature the Young’s modulus is 31 10×  psi, 
while at 1,000o C the Young’s modulus is 500  psi.  Given that the axial strain is 34.9875 10−× , 

the axial stress at room temperature will be 4.9875 psi.  After the temperature rises to 1,000o C 
the axial stress will drop to 2.4938  psi. 
 
In a similar manner, the lateral strain can be calculated.  From the normalized curves for the 
Poisson’s ratio, the Poisson’s ratio at 1,000o  C will be 0.1875.  From this we can calculate the 

lateral strain at room temperature, with an axial strain of 34.9875 10−× , will be 31.2469 10−− × , 
while at 1,000o C the lateral strain will be 30.9352 10−− × .  These strains will result in lateral 

displacements of 31.2461 10−− ×  in and 30.9347 10−− ×  in. 
 

 
Figure 5: The lateral displacements in the thermoelastic test as a function of time.  Up 

until 1 second the loading is mechanical, from 1 second to 2 seconds the lateral 
displacement decreases due to the reduction in the Poisson’s ratio from an increase in 

temperature. 
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3.2.1 Results for Thermoelastic Test 
 
The results for the thermoelastic test match the expected results exactly.  The axial stress as a 
function of time is shown in Figure 4.  Here the stress up to 1 second is from strictly mechanical 
loading at the reference temperature (i.e. room temperature).  At 1 second the mechanical 
loading, through displacement control, stops and the temperature rises to 1,000o C.  This causes a 
drop in the elastic modulus and a corresponding decrease in the stress.  By the end of the analysis 
the elastic modulus and the stress are both one-half of their values at room temperature. 
 
The results showing the lateral displacement as a function of time are shown in Figure 5.  Once 
again these results match perfectly the expected results due to the reduction in the Poisson’s 
ratio. 
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3.3 Elastic-Plastic Test 
 
The verification test for the elastic-plastic, linear hardening model is similar to the elastic test in 
that it models uniaxial stress with a prescribed displacement.  The elastic-plastic linear hardening 
model is described in [5] and [6]. 
 
The test is different from the elastic test in that is has three unit cubes rather than one.  The three 
separate cubes allow us to test the elastic-plastic model with isotropic hardening, kinematic 
hardening and combined hardening all in one test. 
 
Uniaxial stress is prescribed in all three cubes using displacement control in the x  direction and 
traction-free boundary conditions in the y  and z  directions.  The prescribed displacement is 
such that the displacements of the x−  faces of the cubes are zero and the displacements of the 

x+  faces have a maximum of 0.005 in. and a minimum of -0.005 in.  Since the initial geometry 
is of a unit cube, i.e. a 1 in. cube, the maximum and minimum strains in each cube are 
 

 
( )

( )

3
max

3
min

ln 1.005 4.9875 10

ln 0.995 5.0125 10

ε

ε

−

−

= = ×

= = − ×
 . (5) 

 
The prescribed displacement/strain as a function of time is given in Table 4. 
 

 
The material constants for the isotropic hardening problem are shown in Table 5.  The material 
constants for the kinematic hardening problem are shown in Table 6.  The material constants for 
the combined hardening problem are shown in Table 7. 
 
The hardening behavior – isotropic, kinematic or combined – determines how the yield surface 
either grows or moves in stress space to accommodate loading outside of the yield surface.  A 
difference in the results will be seen if loading is reversed, as it is in this verification problem.  
For the initial loading, from 0.0 to 0.25 s, the results are the same for isotropic, kinematic and 
combined hardening.  At 0.25 s the loading is reversed and the material unloads.  The material 
state is now inside of the yield surface and will eventually hit the opposite side of the yield 
surface.  Whether the yield surface is growing in size (isotropic hardening) and/or moving in 
stress space (kinematic hardening) will determine when the stress state reaches the yield surface 
and begins to show plastic deformation.  A pure kinematic hardening model ( 0.0β = ) will 

Table 4.  Displacement boundary condition for elastic-plastic test 
 

time displacement axial strain 
0.00 s 0.000  in 0.0000 
0.25 s 0.005  in 34.9875 10−×  
0.75 s -0.005 in 35.0125 10−− ×  
1.00 s 0.000 in 0.0000 
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predict plastic re-loading first, a combined model ( 0.0 1.0β< < ) will predict plastic re-loading 
second, and an isotropic model ( 1.0β = ) will predict plastic re-loading last. 
 
At 0.75 s, the material has resumed plastic loading for all three models, and the loading is 
reversed again.  Once again the material state is now inside the yield surface until it hits the yield 
surface on the other side of the elastic domain.  The same behavior is observed in this reversal as 
was seen in the fist reversal at 0.25 s – plastic loading of the kinematic hardening model, 
followed by the combined hardening model, followed by the isotropic hardening model. 
 
The response for all three problems starts as an elastic response followed by yielding of the 
material once the uniaxial stress reaches the yield stress.  The response after yield is the elastic-
plastic response which continues until un-loading at 0.25t = s.  Once the loading is reversed, the 
response is elastic.  The subsequent yield after load reversal will depend on the hardening law.  
The material with the kinematic hardening law, where the yield surface moves in stress space, 
will yield first, followed by the material with the combined hardening law, where the yield 
surface both moves and grows, followed by the material with the isotropic hardening law, where 
the yield surface is stationary but grows. 

Table 5.  Material properties for elastic-plastic test with isotropic hardening 
 

property value 
YOUNGS MODULUS 610 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 310 10×  psi 
HARDENING MODULUS 3100 10×  psi 
BETA 1.0 

 
Table 6.  Material properties for elastic-plastic test with kinematic hardening 

 
property value 

YOUNGS MODULUS 610 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 310 10×  psi 
HARDENING MODULUS 3100 10×  psi 
BETA 0.0 

 
Table 7.  Material properties for elastic-plastic test with combined hardening 

 
property value 

YOUNGS MODULUS 610 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 310 10×  psi 
HARDENING MODULUS 3100 10×  psi 
BETA 0.5 
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3.3.1 Results for Elastic-Plastic Test 
 
The results for the elastic-plastic test are exactly what is expected.  The axial stress from the test 
is shown in Figure 6 for all three models – isotropic, kinematic and combined hardening – along 
with the exact solutions for the isotropic and kinematic hardening cases.  The behavior is the 
same until the material state hits the yield surface after the first unloading.  After this the 
kinematic hardening model has the lowest stress value (in absolute value) and the isotropic 
hardening model has the highest stress value.  The combined hardening model lies between the 
other two. 

 
Figure 6: The axial stress components from the elastic-plastic linear hardening test.  

Results are shown for isotropic hardening ( 1.0β = ), kinematic hardening ( 0.0β = ) and a 
combination of isotropic and kinematic hardening ( 0.5β = ).  The exact results for 

isotropic and kinematic hardening are given by the red and green lines respectively. 
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3.4 Elastic-Plastic Power Law Hardening Test 
 
The verification test for the elastic-plastic power law hardening test is similar to the test for the 
elastic-plastic linear hardening test.  The elastic-plastic power law hardening model is described 
in [5] and [7].  The mesh for the problem is shown in Figure 1. 
 
A uniaxial stress is prescribed using displacement control in the x  direction and traction-free 
boundary conditions in the y  and z  directions.  The prescribed displacement is such that the 
displacement of the x−  face is zero and the displacement of the x+  face has a maximum of 
0.005 in. and a minimum of -0.005 in.  Since the initial geometry is of a unit cube, i.e. a 1 in. 
cube, the maximum and minimum strains are 
 

 
( )

( )

3
max

3
min

ln 1.005 4.9875 10

ln 0.995 5.0125 10

ε

ε

−

−

= = ×

= = − ×
 . (6) 

 
The prescribed displacement/strain as a function of time is given in Table 8. 
 

 
The material constants for the elastic-plastic power law hardening model that are used in this 
problem are shown in Table 9. 
 

 
The response of the material in this problem is initially elastic.  After yield, the material is 
perfectly plastic exhibiting a Lüders band.  Once the equivalent plastic strain surpasses the 
Lüders strain, the material starts to harden with a power law relationship.  At 0.25 seconds the 

Table 8.  Displacement boundary condition for elastic-plastic power law hardening 
test 

 
time displacement axial strain 

0.00 s 0.000  in 0.0000 
0.25 s 0.005  in 34.9875 10−×  
0.75 s -0.005 in 35.0125 10−− ×  
1.00 s 0.000 in 0.0000 

 

Table 9.  Material properties for elastic-plastic power law hardening test 
 

property value 
YOUNGS MODULUS 31 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 1.0 psi 
HARDENING CONSTANT 1.0 psi 
HARDENING EXPONENT 0.25 
LUDERS STRAIN 0.002 
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loading is reversed and elastic unloading occurs.  Once the state hits the yield surface, the 
material continues to harden until loading is reversed again at 0.75 seconds.  Elastic unloading 
occurs again, followed by hardening once the state hits the yield surface. 
 
3.4.1 Results for Elastic-Plastic Power Law Hardening Test 
 
The results for the elastic-plastic power law hardening test are shown in Figure 7.  The plot 
shows the axial stress (which is equal to the von Mises stress) versus the end displacement for 
the unit cube.  The Lüders band is obvious in the test results, followed by the power law 
hardening.  Load reversal is seen at an end displacement of 0.005 in.  This load reversal results in 
elastic unloading, followed by continued hardening.  Another load reversal occurs at an end 
displacement of -0.005 in.  Again this load reversal results in elastic unloading, followed by 
continued hardening.  These results are expected in the power law hardening model; an exact 
solution was not calculated for this test. 

 
Figure 7: The axial stress component from the elastic-plastic power law hardening test 

showing axial stress versus end displacement. 
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3.5 Thermoelastic-Plastic Power Law Hardening Test 
 
The thermoelastic-plastic power law hardening test uses the THERMO_EP_POWER model.  
This model is a power law hardening model with an underlying thermoelastic elasticity model.  
In addition to having the Young’s modulus and the Poisson’s ratio as functions of temperature, 
the yield stress is also a function of temperature.  One other feature of this model that is not 
present in the power law hardening elastic-plastic model is the ability to model kinematic 
hardening. 
 

Table 10.  Room temperature material properties for thermoelastic-plastic power law 
hardening test with isotropic hardening 

 
property value 

YOUNGS MODULUS 31 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 1.0 psi 
HARDENING CONSTANT 1.0 psi 
HARDENING EXPONENT 0.25 
LUDERS STRAIN 0.002 
BETA 1.0 

 
Table 11.  Room temperature material properties for thermoelastic-plastic power law 

hardening test with kinematic hardening 
 

property value 
YOUNGS MODULUS 31 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 1.0 psi 
HARDENING CONSTANT 1.0 psi 
HARDENING EXPONENT 0.25 
LUDERS STRAIN 0.002 
BETA 0.0 

 
Table 12.  Material properties for thermoelastic-plastic power law hardening test with 

combined hardening 
 

property value 
YOUNGS MODULUS 31 10×  psi 
POISSONS RATIO 0.25  
YIELD STRESS 1.0 psi 
HARDENING CONSTANT 1.0 psi 
HARDENING EXPONENT 0.25 
LUDERS STRAIN 0.002 
BETA 0.5 
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The test problem is similar to the elastic-plastic linear hardening model due to the need to test the 
isotropic, kinematic and combined hardening aspects of the model.  In this test there are three 
element blocks, one for each type of hardening.  The material properties are shown in Table 10, 
Table 11 and Table 12. 
 
The thermal loading in this test involves a temperature increase from 20o  C to 1000o  C.  The 
increase in temperature of the material will affect the elastic properties and the yield stress. 
 
3.5.1 Results for Thermoelastic-Plastic Power Law Hardening Test 
 
Since the underlying elastic model and the yield stress vary as a function of temperature, the 
results from the test are difficult to interpret.  However, it is expected that the results will show 
that the three models will track each other until the yield surface is engaged after the initial 
unloading.  This is the same behavior that was observed in the elastic-plastic linear hardening 
test.  After re-engaging the yield surface, the kinematic hardening model will have the lowest 
stress in absolute value, followed by the combined hardening model and then the isotropic 
hardening model. 

 
Figure 8: Normalized functions for the Young’s modulus and Poisson’s ratio as a 
function of temperature for the thermoelastic-plastic power law hardening model. 
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The results are shown in Figure 9.  These results show the expected behavior with load reversals, 
engaging the yield surface at different locations and a general decrease in the radius of the yield 
surface.  An analytical solution was not generated for this test problem. 
 

 
Figure 9: The axial stress components from the thermoelastic-plastic power law 

hardening test.  Results are shown for isotropic hardening ( 1.0β = ), kinematic hardening 
( 0.0β = ) and a combination of isotropic and kinematic hardening ( 0.5β = ). 
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3.6 Power Law Creep Test 
 
The verification test for the power law creep test involves the uniaxial loading of a block through 
displacement control, followed by stress relaxation.  The power law creep model is a secondary 
creep model that is described in [5].  The mesh for the problem is shown in Figure 1. 
 
The power law creep model describes the evolution of the creep strain, cε , as a function of the 

von Mises stress, σ  
 
 ( )expm

c A Bε σ= −&  , (7) 

 
where A  is the creep constant, m  is the creep exponent and B  is the thermal constant.  The 
material properties used in the power law creep test are given in Table 13. 
 

The test problem is an axial displacement control problem.  The end displacement ramps up to 
0.01 over 100 seconds and is held constant until 1,000 seconds.  While the strain is fixed, the 
inelastic strain, or creep strain, evolves according to (7).  The evolution of the creep strain causes 
a relaxation in the axial stress. 
 
The problem can be formulated as an ordinary differential equation.  Using an additive 
decomposition for the strain rate 
 
 e cε ε ε= +& & &  , (8) 

 
where eε&  is the elastic strain rate,and the fact that the stress depends only on the elastic strain, 

we obtain the following non-linear ODE for the axial stress 
 
 0B mEAe Eσ σ ε−+ − =&& . (9) 
 
For the initial 100 seconds the strain rate can be calculated from the uniform axial displacement 
 
 ε λ λ= &&  , (10) 
 
while for the final 900 seconds the strain rate is zero.  The rest of the terms in (9) are constants. 

Table 13.  Material properties for the power law creep test 
 

property value 
YOUNGS MODULUS 390.68 10×  kPa 
POISSONS RATIO 0.39 
CREEP CONSTANT 55.116 10−×  
CREEP EXPONENT 4.51 
THERMAL CONSTANT 29.5 
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3.6.1 Results for Power Law Creep Test 
 
The results for the power law creep test are shown in Figure 10.  The stress ramps up during the 
initial loading which is subsequently followed by stress relaxation. 
 
An analytical solution to (9) does not exist in general; it must be solved numerically.  A 
numerical solution to (9) can be found using, for example, a Runga-Kutta algorithm.  This was 
done for this problem and the results in Figure 10 matched the numerical solution to the problem. 
 

 
Figure 10: Axial stress from the power law creep test. 
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3.7 Soil and Foam Test 
 
The soil and foam model is a versatile model that is capable of modeling geologic materials and 
crushable foams.  The soil and foam model is described in [5], [6]and [8]. 
 

The test verification test problem for the soil and foam model tests a Drucker-Prager model that 
exhibits pressure dependence of the yield surface.  The material properties used for the Drucker-
Prager model are given in Table 14. 
 
The values for A0 and A1 describe a linear relationship between the radius of the yield surface 

 
Figure 11: 16 element mesh for the soil and foam test. 

 

Table 14.  Material properties for soil and foam test 
 

property value 
SHEAR MODULUS 927.815 10×  Pa 
BULK MODULUS 983.444 10×  Pa 
A0 62.3383 10×  Pa 
A1 2.3383 
A2 0.0 
PRESSURE CUTOFF 61.0 10− ×  Pa 

 



31 

and the pressure. 
 
The mesh for the problem is shown in Figure 11.  It is a square column that is four elements 
high, and two by two in the x-z plane. 
 
The displacement boundary conditions for this problem are fixed normal to the x− , y−  and z−  
faces of the mesh – resulting in symmetry planes on these surfaces.  A pressure boundary 
condition is placed on the x+  and z+  faces.  A prescribed displacement in the y-direction is 
placed on the y+  face.  The time variation of the pressure and the displacement boundary 
conditions are shown in Figure 12. The boundary conditions will result in an initial state of 
biaxial stress that transitions to a state of uniaxial stress.  The pressure will decrease while the 
effective stress will initially decrease, pass through a state of pure pressure, then increase again, 
intersecting the yield surface at some point. 
 
3.7.1 Results for Soil and Foam Test 
 

 
Figure 12: Boundary conditions for the soil and foam test problem. 
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The results for the soil and foam test match the expected behavior.  A plot showing the yield 
surface and the stress state throughout the analysis is shown in Figure 13.  These results show 
that the material behaves exactly as expected. 
 

 
Figure 13: Results showing the von Mises stress versus the pressure for the soil and 

foam test using a Drucker-Prager model.  The green line is the pressure dependent yield 
surface for the material. 
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3.8 Neo-Hookean Test 
 
Two test problems are run for the neo-Hookean model: a uniaxial strain test and a simple shear 
test.  Both of these tests are completely displacement control.  As a result, the deformation and 
strain are known and the stress can easily be computed.  The mesh for each problem is the same 
as the patch-test mesh in Figure 1.  The constitutive model is described in [9]. 
 
The strain energy density for the neo-Hookean model is 
 

 ( ) ( ) 1/3

1 1 tr
det ln det 1 3

4 2 det
W K μ ⎛ ⎞⎡ ⎤= − − + −⎜ ⎟⎣ ⎦ ⎝ ⎠

C
C C C

C
 , (11) 

 
where C  is the right Cauchy-Green tensor.  There are two material properties for this model, the 
bulk modulus, K , and the shear modulus, μ . 
 

The second Piola-Kirchoff stress is calculated from (11) 
 

 2ij
ij

W
S

C

∂
=

∂
 , (12) 

 
and the Cauchy stress is 
 

 
1

ij ik kl jlF S F
J

σ =  . (13) 

 
It is worth noting that ij ki kjC F F=  and 2det J=C .  Using (11), the second Piola-Kirchoff stress is 

 

 ( )1 2 1 2/31 1
1

2 3ij ij ij ij kkS KC J C C Jμ δ− − −⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 . (14) 

 
The Cauchy stress is 
 

 5/31 1 1

2 3ij ij ij ij kkK J B B J
J

σ δ μ δ −⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 , (15) 

 
where ij ik jkB F F= . 

Table 15.  Material properties for the neo-Hookean test 
 

property value 
BULK MODULUS 0.500 MPa 
SHEAR MODULUS 0.375 MPa 
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For the uniaxial strain neo-Hookean test, the deformation gradient is 
 

 

0 0

0 1 0

0 0 1
ijF

λ⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 , (16) 

 
which, when substituted in (15), gives 
 

 

( )

( )

2 5/3
11

2 5/3
22 33

1 1 2
1

2 3

1 1 1
1

2 3

K

K

σ λ μ λ λ
λ

σ σ λ μ λ λ
λ

−

−

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞= = − − −⎜ ⎟
⎝ ⎠

 . (17) 

 
A second test is the simple shear test.  This test is also entirely displacement controlled.  The 
deformation gradient for simple shear is 

 
Figure 14: Stress components from the uniaxial strain neo-Hookean test. 
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1 0

0 1 0

0 0 1
ijF

γ⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 . (18) 

 
For simple shear 1J =  and 
 

 

21 0

1 0

0 0 1
ijB

γ γ
γ

⎡ ⎤+
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 . (19) 

 
The trace of the left Cauchy-Green tensor is 23kkB γ= + . 

 
The non-zero components of the Cauchy stress are 
 

 
Figure 15: Stress components from the simple shear neo-Hookean test. 
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 2 22 1
; ;

3 3xy xx yy zzσ μγ σ μγ σ σ μγ= = = = −  . (20) 

 
3.8.1 Results for Neo-Hookean Test 
 
The results for the uniaxial test problem are shown in Figure 14 while the results for the simple 
shear problem are shown in Figure 15.  It is easy to show that the numerical results match the 
analytical results in (17) and (20). 
 



37 

3.9 Hyperfoam Test 
 
The hyperfoam test involves two problems: a uniaxial strain problem and a biaxial strain 
problem.  Both problems are entirely displacement controlled.  As a result, the deformation and 
strain are known and the stress can easily be computed.  The mesh for each problem is the patch-
test mesh in Figure 1. 
 
The constitutive model is an Ogden type hyperelasticity model that is described in [10].  This 
model uses a series expansion for the strain energy density.  The material properties used for the 
test problems are shown in Table 16.  There are three terms used in the expansion of the strain 
energy density 
 

 ( ) ( )1 2 3 1 2 32
1

2 1
, , 3 1k k k k k

N
k

k k i

W Jα α α α βμλ λ λ λ λ λ
α β

−

=

⎡ ⎤
= + + − + −⎢ ⎥

⎣ ⎦
∑  . (21) 

 
The expression for kβ  can be written in terms of a Poisson’s ratio, kν  

 

 
1 2

k
k

k

νβ
ν

=
−

 . (22) 

 
Given the strain energy density in (21), the three principal Cauchy stresses can be written as 
 

 ( )no sum on I
I

I

W
I

J

λσ
λ
∂

=
∂

 . (23) 

 

 
The first test problem is uniaxial strain.  For this problem the axial engineering strain is -0.6.  
The lateral strains are zero.  For this problem the three principal stretch ratios are 
 

 
1

2 3

0.4

1.0

λ

λ λ

=

= =
 . (24) 

 
The second test problem is biaxial strain.  For this problem the engineering strains are -0.6 in two 
coordinate directions.  The third coordinate direction has a strain of zero.  For this problem the 
three principal stretch ratios are 

Table 16.  Material properties for the hyperfoam test 
 

property values 
SHEAR 63.74 10×  63.17 10− ×  41.18 10×  
ALPHA 2.536 2.090 -8.807 
POISSON 0.5630 0.5507 0.3662 
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=
 . (25) 

 
For the uniaxial strain problem the principal stresses are 
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 . (26) 

 
For the biaxial strain problem the principal stresses are 
 

 
Figure 16: The stress components from the uniaxial hyperfoam test.  The principal 

stresses are oriented along the coordinate directions: 1 xxσ σ= , 2 yyσ σ=  and 3 zzσ σ= . 
 



39 

 

( )

( )

3
2

1 2 2
1

3
2

3 2
1

21

21
1

k k k

k k

k

k k

k

k k

α α β

α β

μσ σ λ λ
λ α

μσ λ
λ α

−

=

−

=

= = −

= −

∑

∑
 . (27) 

 
3.9.1 Results for Hyperfoam Test 
 
Given the material properties in Table 16, the principal Cauchy stresses can easily be computed 
for both problems using (26) and (27).  The numerical results are shown in Figure 16 and Figure 
17.  In both cases the principal axes are aligned with the coordinate axes.  The numerical results 
match the analytical results exactly. 
 

 
Figure 17: The stress components from the biaxial hyperfoam test.  The principal 

stresses are oriented along the coordinate directions: 1 xxσ σ= , 2 yyσ σ=  and 3 zzσ σ= . 
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3.10 Low Density Foam Test 
 
The low density foam test is a uniaxial stress problem.  The axial loading is displacement 
controlled with traction free lateral surfaces.  The mesh for the problem is the patch-test mesh in 
Figure 1. 
 
The constitutive model is documented in [11].  The yield function for this model has the form 
 
 ( )2 11A I B CIσ ′= + +  , (28) 

 
where A , B  and C  are material properties, •  denotes the Heaviside step function, 2I ′  is the 

second invariant of the deviatoric strain and 1I  is the first invariant of the strain. 

 

The test problem is uniaxial compression of the material.  The axial compression has a final 
stretch ratio of 0.25λ = .  Since the problem is traction free for the lateral surfaces, the lateral 
displacements (strains) are solved for in Adagio.  The model will exhibit a slight Poisson effect, 
but for all practical purposes it can be assumed to have a Poisson’s ratio of 0.0. 
 
If the lateral strains are assumed to be zero, the yield function for the solid phase in (28) can be 
evaluated as 
 

 ( )1 1A B Cσ λ⎡ ⎤= + + −⎣ ⎦  . (29) 

 
For the input in Table 17 the yield function evaluated at the beginning of the problem is 100 psi  
and at the end of the problem is about 134 psi.  Of course in this analysis the effect of the air is 
not taken into account.  Assuming no lateral strains, this will be about 69 psi.  Adding this to the 
structural stress we will have a stress of approximately 203 psi. 
 
3.10.1 Results for Low Density Foam Test 
 

Table 17.  Material properties for the low density foam test 
 

property value 
YOUNGS MODULUS 3010 psi 
POISSONS RATIO 0.0 
A 49.2 psi 
B 60.8 psi 
C -0.517 
NAIR 1.0 
P0 14.7 psi 
PHI 0.090 
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The results for the compressive stress versus the end displacement (both shown as positive) are 
in Figure 18.  The assumption of zero lateral strains is just an assumption; there will be some 
lateral strain.  From Adagio the lateral displacements are 0.02136 in.  The lateral stretch ratios 
are 1.02136 and the lateral strains are 0.02114.  With these values the structural yield stress is 
133.24 psi.  The pressure due to the air will contribute 63.62 psi so that the final axial stress will 
be 196.86 psi.  This is exactly what the test problem gives for the axial stress shown in Figure 18. 
 

 
Figure 18: Axial stress for the low density foam test. 
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3.11 Orthotropic Crush Test 
 
The orthotropic crush model is used to model energy absorbing materials – mainly aluminum 
honeycomb.  This model is one of three models that can be used to model honeycomb; the other 
two are the orthotropic rate model and the honeycomb model.  This model is the simplest one of 
the three. 
 

 
The test for the orthotropic crush model is a displacement control, uniaxial stress test.  The 
material is compressed in the x direction and is traction free in the y and z directions.  The mesh 
that is used for the problem is the patch test mesh shown in Figure 1. 
 
The material properties for the model are given in Table 18.  It should be noted that the 
orthotropic behavior of this model is strictly limited to the global axes.  In practice this limits the 
ability of this model to model honeycomb in an actual system.  Six crush strength functions are 
also defined that give the crush strength for the six stress components.  As with the material 
properties, the strengths refer to the strength in the global coordinate system.  Plots of the 
strength curves are shown in Figure 19. 
 
In the regression test, the unit cube is compressed well past the lock-up strain – the volumetric 
strain where the material strength increases dramatically.  For the early stage of deformation the 
response is elastic with a slope of 45 10xE = ×  psi.  Once the plateau stress is reached, the stress 

follows the function that defines the crush strength for the xx component of the stress.  In this 
case the plateau stress is 600 psi.  Finally, at the lock up strain the material behaves as a perfectly 
plastic material with a yield stress of 2,000 psi. 

Table 18.  Material properties for the orthotropic crush test 
 

property value 
YOUNGS MODULUS 61.0 10×  
POISSONS RATIO 0.25 
YIELD STRESS 32.0 10×  
EX 45.0 10×  
EY 52.2 10×  
EZ 41.0 10×  
GXY 51.1 10×  
GYZ 35.0 10×  
GZX 42.5 10×  
VMIN 0.70 
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3.11.1 Results for Orthotropic Crush Test 
 
The results for the orthotropic crush test are shown in Figure 20.  These results match exactly the 
expected behavior for the model.  The initial slope is equal to xE  and the plateau stress of 600 

psi is easily seen.  The material approaches full compaction at a volumetric strain of 0.65 and 
reaches full compaction at a volumetric strain of 0.70. 

 
Figure 19: Input crush strength curves for the orthotropic crush test. 
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Figure 20: Crush strength versus volumetric strain for the orthotropic crush test. 
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4.  CONCLUSIONS 
 
A number of test problems have been presented that are used as regression tests for the 
constitutive models in LAME.  These regression tests are run in Adagio, a quasistatic solid 
mechanics code developed on the Sierra framework.  The test problems serve three purposes.  
First, they provide confidence for the constitutive model developer that the model has been 
implemented correctly.  Second, since the regression tests are run on a nightly basis, the 
problems ensure that the models continue to give the correct answers as code development 
progresses.  Finally, the test problems provide examples for analysts that would like to see what 
kind of behavior is expected from a particular model. 
 
The tests presented in this report do an adequate job of all three of these functions even though 
they certainly could be improved or expanded.  Other models that are in LAME can be added to 
the test suite, and many test problems exist that do not appear in this report.  However, the job of 
improving or expanding tests, and especially formally documenting tests, is a long process.  
Furthermore, the added benefit of creating and documenting more tests, while certainly present, 
must be weighed against other pressing needs.  Over 80 tests currently exist in the test suite, and 
many have informal documentation that is contained in the test directory.  Upgrading the 
documentation for these tests will always be an on-going effort. 
 
In the future it is expected that this report will grow as more tests are added to the regression test 
suite and more models are added to LAME.  However, concerning testing, no requirements are 
going to be set upon either the code development teams or constitutive model developers.  We 
hope that the process of developing tests and providing documentation – at least some brief form 
of documentation, but possibly something more formal – for the constitutive model developer 
will become a natural part of the model development/implementation process. 



46 

 
 



47 

5.  REFERENCES 
 

1. Scherzinger, W.M. and Hammerand, D.C., Constitutive Models in LAME, SAND07-
XXXX, Sandia National Laboratories, Albuquerque, NM, XXXX 2007. 

2. Scherzinger, W.M. and Hammerand, D.C., Library of Advanced Materials for 
Engineering – LAME, SAND07-5515, Sandia National Laboratories, Albuquerque, NM, 
September, 2007. 

3. Pierson, K.H. and Hales, J.D., ‘ADAGIO/ANDANTE User’s Guide Version 2.0’, Memo, 
Sandia National Laboratories, Albuquerque, NM, September 2004. 

4. Koteras, J.R., Gullerud, A.S., Crane, N.K., and Hales, J.D., Presto User’s Guide Version 
2.6, SAND2006-6093, Sandia National Laboratories, Albuquerque, NM, October 2006. 

5. Stone, C. M., SANTOS – A Two-Dimensional Finite Element Program for the 
Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543, Sandia 
National Laboratories, Albuquerque, NM, July 1997. 

6. Taylor, L. M. and D. P. Flanagan, PRONTO3D A Three-Dimensional Transient Solid 
Dynamics Program, SAND87-1912, Sandia National Laboratories, Albuquerque, NM, 
March 1989. 

7. Stone, C. M., G. W. Wellman and R. D. Krieg, A Vectorized Elastic/Plastic Power Law 
Hardening Material Model Including Lüders Strain, SAND90-0153, Sandia National 
Laboratories, Albuquerque, NM, March 1990. 

8. Krieg, R. D., A Simple Constitutive Description for Cellular Concrete, SC-DR-72-0883, 
Sandia National Laboratories, Albuquerque, NM, March 1972. 

9. Simo, J. C. and T. J. R. Hughes, Computational Inelasticity, Springer, New York, 1998. 
10. Ogden, R. W., Non-Linear Elastic Deformations, Dover, Mineola, NY, 1997. 
11. Neilsen, M. K., H. S. Morgan and R. D. Krieg, A Phenomenological Constitutive Model 

for Low Density Polyurethane Foams, SAND86-2927, Sandia National Laboratories, 
Albuquerque, NM, April 1987. 



48 

 
 
 



49 

Distribution 
 
 
1 MS0346 Tom Baca 1523 
1 MS0372 Lupe Arguello 1525 
1 MS0372 Joe Bishop 1525 
1 MS0372 Robert Chambers 1524 
3 MS0372 Daniel Hammerand 1524 
1 MS0372 John Pott 1524 
1 MS0372 Jim Redmond 1525 
3 MS0372 William Scherzinger 1524 
1 MS0372 Mike Stone 1525 
1 MS0372 Leah Tuttle 1524 
1 MS0372 Gerald Wellman 1525 
1 MS0380 Manoj Bhardwaj 1542 
1 MS0380 Nathan Crane 1542 
1 MS0380 Arne Gullerud 1542 
1 MS0380 Jason Hales 1542 
1 MS0380 Martin Heinstein 1542 
1 MS0380 Joe Jung 1542 
1 MS0380 Richard Koteras 1542 
1 MS0380 Hal Morgan 1540 
1 MS0380 Kendall Pierson 1542 
1 MS0380 Vicki Porter 1542 
1 MS0380 Garth Reese 1542 
1 MS0380 Ben Spencer 1542 
1 MS0380 Tim Walsh 1542 
1 MS0384 Arthur Ratzel 1500 
1 MS0555 Rod May 1522 
1 MS0557 Dave Clauss 1521 
1 MS0660 Chris Lamb 9512 
1 MS0836 Shane Schumacher 1516 
1 MS0847 Mike Neilsen 1526 
1 MS0847 Pete Wilson 1520 
1 MS1070 Channy Wong 1526 
 
2 MS9018 Central Technical Files 8945-1 
2 MS0899 Technical Library 4536 
 


