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Abstract 
 
The use of combined imagery from different imaging sensors has the potential to provide 
significant performance improvements over the use of a single image sensor for beyond-
the-fence detection and assessment of intruders.  Sensing beyond the fence is very 
challenging for imagers due to uncertain dynamic and harsh environmental conditions.  
The use of imagery from varying spectral bands can alleviate some of this difficulty by 
providing stronger truth data that can be combined with truth data from other spectral 
bands to increase detection capabilities.  Imagery fusion of collocated, aligned sensors1 
covering varying spectral bands [1,2,3] has already been shown to improve the 
probability of detection and the reduction of nuisance alarms.  The development of new 
multi-spectral sensing algorithms that incorporate sensors that are not collocated will 
enable automated sensor-based detection, assessment, localization, and tracking in harsh 
dynamic environments.  This level of image fusion will provide the capability of creating 
spatial information about the intruders.  In turn, the fidelity of sensed activities is 
increased resulting in opportunities for greater system intelligence for inferring and 
interpreting these activities and formulating automated responses. The goal of this work 
is to develop algorithms that will enable the fusion of multi-spectral data for improved 
detection of intruders and the creation of spatial information that can be further used in 
assessment decisions. 

                                                 
1 Collocated, aligned sensors refers to those that are placed in the same, or close to the same, physical 
location and that are aimed in directions that will maximize the overlap in their fields-of-view. 
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Fusion of Image Data for Beyond the Fence 
Intruder Detection and Assessment 

 

1. Introduction 
 
Image fusion is an important step to improve imaging and automatic detection and 
classification performance over that of single imaging sensors.  Registered images from 
different times (multi-temporal) and different sensors (multi-spectral and multi-
resolution) can be combined to produce composite imagery with spectral and spatial 
characteristics equal to or better than that of the individual imagers.  When the sensors 
are collocated and aligned, emphasis is placed on registration of the images. This 
amounts to spatial alignment of overlapping images so they can be mapped to a common 
two-dimensional coordinate system.  Once registration is achieved, the images can be 
combined into a composite image for further processing.  One approach to this is 
discussed in Section 2. 
 
When the images are not collocated, but are viewing a common scene, a mapping is still 
required, but the registration becomes a problem of mapping 2-D information into a 
common 3-D coordinate space.  There are generally two approaches to this fusion 
process.  In the first approach, objects of interest are extracted from a 2D image and 
combined with those extracted from other 2D images.   The result is a set of targets 
represented as point objects in a three-dimensional space model.  These point objects are 
then used to locate, ID, and track targets in space and time.  Common examples of point 
objects represented in a 3-D space model are aircraft in airspace or targets on a 
battlefield.  This approach to fusion is considered the general fusion of data rather than 
the fusion of imagery.  Discussion of this approach to fusion can be found in [4].  The 
second fusion approach is aimed more at image fusion in which complete 2-D data sets 
from multiple source imagery are acquired and combined.  A complete spatial mapping 
from the multiple sources is then created, and the composite mapping is processed to 
extract useful assessment information.  Steps needed for this fusion process are discussed 
in Section 3. 
 

2. Fusion of Multi-Spectral Images from Collocated, Aligned 
Sensors 

 
An image scene viewed through different spectral bands has varying characteristics 
depending on the spectrum being observed.  For example, the images in Figure 1 show 
the visible band at the low (blue) and high (red) end of the spectrum, respectively.  There 
are noticeable changes that can be easily seen such as the brightness of the rectangular 
sign in the lower left of each image.  Other differences are not quite as noticeable by 
simple observation, but can be extracted through various filtering techniques.  For 
example, the texture of the mountains approaches a maximum towards the “green” 
portion of the spectrum and is reduced at both the red and blue ends.  The goal in fusing 
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images from the different spectrums is to draw out the distinguishing features from each 
spectrum and create a composite image, which can then be more easily assessed. 
 

 
Figure 1.  An image scene observed in the low and high extremes of the visible 
spectrum. 

 
The first step in combining different images from aligned sensors is to register all images 
to a common coordinate system.  This spatial alignment is a prerequisite for further 
operations and can occur at the raw image level, in which each pixel in an image is 
referenced with known accuracy to either a pixel or pixels in another image or to a 
selected coordinate mapping.  This will allow for the creation of a composite image from 
multiple light spectrums.  For the general data fusion approach, the registration can also 
occur at higher levels, relating objects rather than individual pixels.   
 
Composite images can be created by applying a high-pass filter over each of the input 
images obtained from different narrow spectral bands.  Pixel values for the composite 
image are selected from the band with the greatest high frequency response at each 
particular pixel location.  With this approach, the goal is to create composite images with 
maximum textures.  The composite image, useful for assessment purposes, leverages the 
complementary strengths from the different spectral bands.  The pictures in Figure 2 
illustrate the process using data obtained from just 2 bands (blue and red).  Data collected 
in the “blue” portion of the spectrum is more focused in the near field (upper left 
thumbnail image) while data collected in the “red” portion is more focused in the far field 
(upper right thumbnail image).  The result of the high-pass filtering operation is seen in 
the pair of thumbnail images on the lower left.  The composite image (far right image) is 
in sharp focus in both the near field and far field, and maximizes the texture throughout 
the entire image.  By maximizing the texture, more useful information can be extracted 
from the scene that can then enhance the intelligence needed for assessment purposes.   
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Figure 2.  Processing images from the blue and red ends of the visible spectrum is 
performed to create an enhanced composite image. 

 

3. Fusion of Images from Non-Collocated Sensors that Observe 
a Common Region of Interest 

 
It is not always feasible or practical to collocate image sensors that observe a similar 
region of interest.  For applications such as beyond-the-fence monitoring, the 
environment or terrain may limit the placement of individual sensors or imagers from 
different spectrums may operate optimally from different locations.  The image data can 
still be fused by properly mapping it into a common time, space, and spectral reference 
frame.  This process is often referred to as data alignment.  Data alignment involves 
spatial transformations to project (or warp) image data to a common three-dimensional 
coordinate system or earth reference model.  At this point, non-imaging data that can be 
spatially referenced (e.g., acoustic, seismic) can also be associated with the image data.  
This leads into the capability to do data association, which is very important in order to 
correlate new data with previous data for detection and segmentation of targets on the 
basis of temporal changes (motion) or spatial changes (behavior).   
 
There are two major areas that need to be addressed to perform the mapping of two-
dimensional image data to a common reference model.  Section 3.1 describes the 
development of the camera model that can be used to perform the mapping.  A pin-hole 
camera model is assumed for simplicity (i.e., no distortion).  If there is significant 
distortion in the image, it must be characterized and corrected in order to use the pinhole 
model.  Then, once the camera model is defined, two-dimensional images can be mapped 
to a common three-dimensional reference model.  The 2-D to 3-D mapping is discussed 
in Section 3.2.    
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3.1. Defining a camera model to map 2-D images onto a common 3-D 
coordinate frame 

 
This section describes the development of a camera model that can be used to transform 
world points to image coordinates.  Once this model is developed, an inverse mapping is 
used to go from the pixel coordinates to world coordinates.  Development of the camera 
model is broken down into three major steps: transforming world coordinates to camera 
coordinates, mapping camera coordinates to sensor coordinates, and mapping sensor 
coordinates to pixel coordinates. 
 
Mapping World Coordinates to Camera Coordinates 
 
The mapping of world coordinates to camera coordinates is performed by the use of a 
coordinate transform. 
 
Let’s assume  

Pj = [xj, yj, zj] = world position of camera j 
Pwij = [xw, yw, zw] = world position of a point i in camera j. 
Pc = [xc, yc, zc] = camera coordinates of the point i. 

 
To go from world to camera coordinates, the following mapping must be solved: 

 
Pc = R[Pwij – Pj], 

 
where R is a 3X3 matrix representing the angles of rotation of the camera. The matrix R 
can be defined as 

R =RxRyRz, 
where  
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and θ is the angle of rotation about the x, y, or z axis.  The equation for Pc can be 
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The camera coordinates are a function of a rotation of the difference between the world 
coordinate of a point and the world coordinate of the camera.  
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Camera Coordinates to Sensor Coordinates 
 
A mapping from camera coordinates to sensor coordinates can be established by using a 
perspective transform.  This can be described using the following diagram. 

 
Figure 3.  Relationship between the camera and sensor coordinates. 

 
In this figure, zc extends out from the front of the camera and xc extends across the image 
plane of the camera.  Although it is not shown, yc extends out the top of the camera.  The 
view is down from the top of the camera, down the y axis.  The focal length is 
represented by f and xs is a pixel on the focal plane.  The relationships in the above 
diagram are as follows. 
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Sensor Coordinates to Pixel Coordinates 
 
A relationship is now defined to go from sensor coordinates to pixel coordinates by 
applying a scaling transform.  The sensor format of the imager is required to complete 
this step.  For example, a 1/3” format imager has a sensor height of 3.6 mm and a sensor 
width of 4.8 mm.  The following terminology is used to define the necessary equations: 
 

Nv   =   number of pixels vertically (e.g., 480 for a 640x480 image) 
Nh  =   number of pixels horizontally (e.g., 640  for a 640x480 image) 
h   =   sensor height (e.g., 3.6 mm for a 1/3” imager format) 
w  =   sensor width (e.g., 4.8 mm for a 1/3” imager format) 
(xp, yp)   =   pixel location on the image. 
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Using the equations from (2), we can define the relationships between the pixels and the 
sensor format as 
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where, 

Sh is the ratio of horizontal pixels to sensor height and 
Sv is the ratio of vertical pixels to sensor width. 

 
If the pixels are square, we can assume Sh = Sv and the resulting relationship is 
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This is called the scaled focal length and can be substituted into the previous equations to 
get 
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We can now substitute equation (1) into equation (3) to describe the mapping of world 
coordinates to pixels coordinates.  
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These pixel positions assume a pinhole camera model in which there is no distortion 
involved and the world point, image point, and optical center are collinear.  Under this 
assumption, in which there is no distortion in the images, an inverse mapping can be used 
to go from pixel coordinates to world coordinates.  This can be shown as follows: 
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This relationship provides a method to map unregistered two-dimensional images onto a 
common world coordinate frame.  An example is shown in Figure 4.  The top two images 
are of the same scene taken from different viewpoints (imagers are not collocated).  The 
bottom two images illustrate the mapping to the common world coordinate frame in 
which the images are now registered.  For simplicity and illustration purposes, the images 
in this example are mapped to a plane (zw = 0).   
 
Registration is expected to allow better tracking and assessment capabilities in an 
extended detection system.  Detection and tracking will be greatly improved by mapping 
data from all spectrums (collocated or not) onto the common world coordinate grid.  
Thus, a better layout of activity will be seen by the tracking algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4.  Result of mapping unregistered 2D images to a common coordinate space. 
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World Coordinates to Pixel Coordinates and the Need for Distortion Correction 
 
It is important to note that xp and yp from the previous section represent undistorted 
pixels.  Therefore, the mapping in Figure 4 assumed distortion correction was not needed.  
Generally, in real-world applications, this assumption does not hold and the most 
important deviation is in terms of radial barrel distortion.  In order to correct for this 
distortion error, the image measurements must be mapped to those that would have been 
obtained under a perfect linear camera.  Lens distortion takes place during the initial 
projection of the world onto the image plane.  A distortion function is applied to the 
measured coordinates to yield corrected coordinates that will obey a linear projection. In 
defining a distortion model, it is be useful to refer to the diagram below. 
 
 

 
Figure 5.  Pixel relationships with radial distortion. 

 
In this diagram, (xu,yu) is the undistorted pixel position and (xd,yd) is the distorted 
(measured) pixel position.  The center pixel position on the optical plane is represented 
by (xo,yo).  The distance from the center pixel to the pixel position of a point as seen in 
the distorted (observed) image is rd.  The variable ru is the distance from the center pixel 
to the pixel position of a point as would be seen in the undistorted image.  From the 
figure, the following relationships can be defined: 
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and, from Pythgorean’s theorem, 
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A distortion factor, which is a function of the radius only, must be defined.    The 
distortion factor is used in a distortion model to change an undistorted pixel to a distorted 
pixel (or vise versa).  That is, 
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Using this correction, the coordinates (xu, yu) have a linear relationship to the coordinates 
of the world point.  They represent the ideal image position if there was no distortion.  An 
approximation to an arbitrary distortion factor is given by a Taylor series expansion 
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The function F(r) is defined for positive values of r and F(0) = 1.  The coefficients for the 
radial correction are {k1, k2, k3, k4, …, xo, yo} and are considered to be a part of the 
intrinsic calibration of the camera.  This correction is needed to map from an image point 
to a ray in the camera coordinate system.  An example optical model that relates the 
undistorted radius to the distorted radius is 
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The parameter k is adjusted to correct for the observed distortion.  If the correct value for 
k equals 0, there is no distortion in the observed image.  Larger values of k indicate more 
distortion.  Applying the equations in (5), the relationships between distorted and 
undistorted coordinates can be written as 
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An example using this procedure for radial distortion is shown in Figure 6.  The image on 
the left was taken through an ultra-wide angle lens.  It is easy to notice the severe amount 
of distortion by the curvature of the horizon and fence line.  The image on the right is the 
corrected, undistorted image. 
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Figure 6.  An image before and after radial distortion is removed. 
 
Once distortion has been removed from the image, the inverse mapping shown in 
equation (5) can be applied.  This will provide the world coordinates of points in the 
image.  A further discussion of a process to determine the distortion correction 
coefficients for a given camera is provided in Appendix A.   

3.2. Mapping multiple camera views to a common coordinate system 
 
Undistorted two-dimensional images can be mapped onto a common coordinate system.  
To accomplish this, knowledge of the Euclidean structure of the scene must be available.  
If this information is not available, a method of self-registration can be used in which the 
relative positions and orientations of cameras can be determined.  The goal is to 
determine these parameters without ever having to measure the world positions of 
calibration targets.  This is a significant benefit for deploying systems in uncontrolled or 
hazardous territories. 
 
Self registration determines the relative three-dimensional positions and orientations of 
cameras in a multi-camera network by only observing distinct points in the common field 
of view.  It will also determine the relative three-dimensional positions of the points.  The 
relative positions of the cameras and points can only be determined within a scale factor, 
but the relative orientations are precisely determined.  This process facilitates data 
association for fusion algorithms.   
 
Self-registration requires at least two different views of an area, either from two separate 
cameras or from one camera at two different positions.  Matching of distinct features or 
points from multiple camera views is required.  This can be a difficult problem and 
different techniques can be exploited to simplify the correspondence.  The approach of 
interest for this work is a problem in optimization.  It is defined in the equations below.  
 
Define the world space as 

Pcij = Rj (Pwi - Pj), 
where 
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Pcij = [Xcij, Ycij, Zcij] = world position of point i in camera j coordinates 
Rj = 3x3 rotation matrix for camera j (3 unknowns/camera). 
Pwi =  [Xwi, Ywi, Zwi]  = world position of a point i (3 unknowns/point) 
Pj =  [Xj, Yj, Zj]  = world position of camera j (3 unknowns/camera).. 

 
Define the pixel coordinates of point i as seen by camera j as 
 

Uij = S·Xcij / Zcij  
and 

Vij = S·Ycij / Zcij,  
 
where S = N·f / w, in which f is the lens focal length, N is the number of pixels across the 
sensor, and w is the width of the sensor. 
 
A steepest descent optimization is used to determine the unknowns in Pcij. An error 
function is defined for the pixel coordinates as follows: 

euij = Uij - S·Xcij / Zcij  
and 

evij = Vij - S·Ycij / Zcij. 
 

The global performance index to be minimized in the steepest descent procedure is the 
sum of the squared errors above over all points in all cameras.  That is, 
 

E = ∑∑(euij
2+ evij

2) 
 
 
The result of this process is location and position angles for each camera.  At this point it 
is now possible to select world points in the scene and map them to a pixel coordinate in 
each camera frame.  This provides a correspondence between all pixels in the different 
camera views and will allow a complete mapping of a three-dimensional space.  The 
images in Figure 7 show views from four different cameras that observe a common area.  
Corresponding pixels with Xwi, Ywi, with 0 < i < 96 and Zw = 0 are shown in yellow. 
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Figure 7.  Corresponding pixels in four image views of a common area. 

4. Summary 
 
Fusing multi-spectral imagery into a common 3-D coordinate space allows for a high 
level of intelligence for inferring and interpreting activities within the region of interest.  
Detection and assessment from single 2-D imagery can often lead to an unacceptable 
number of nuisance alarms and very little information for assessment decisions.  Using 
multi-spectral imagery provides additional information about the scene that may not 
otherwise be available.  Combining the imagery from several sensors, either from the 
same or from different spectrums, will allow increased intelligence for faster assessment 
decisions.  The advantages of combining multi-spectral imagery are often capitalized 
upon by using collocated, aligned sensors.  This allows for composite images with 
detailed information from each sensed spectrum, which can then be processed for further 
information.  Sometimes sensors cannot be collocated due to terrain restrictions, sensor 
limitations, or the method of set-up.  In these situations, the combined use of the different 
imagers is still desired, but the fusion methods change.  An approach to accomplishing 
image fusion of multiple imagers that are not collocated is to map each individual two-
dimensional image into a common three-dimensional coordinate space.  The individual 
images may be from a single spectrum or the result of fusing images from several 
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spectrums.  The resulting three-dimensional space can be further processed to extract 
assessment information that is based on multiple multi-spectral image sensors.  The use 
of the methodologies described in this report leads towards the rapid deployment of 
several imagery sensors without the need for pre-determined sensor locations.  The image 
fusion architecture allows for the use of the best features of each spectrum for increased 
detection, decreased nuisance alarms, and intelligent assessment capabilities.   
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APPENDIX A 
 

Selecting a Distortion Model and the Optimal Distortion 
Coefficients 

 
When long focal length lenses are used (25mm or greater) the image distortion is minimal 
and can often be ignored.  However, with shorter focal length lenses there is generally too 
much distortion to perform direct mappings between world points and camera points.  In 
order to map camera images from different cameras onto each other or to map targets in 
world positions onto camera images (or vise versa) an appropriate distortion model must 
be applied to the data.  It is not always obvious which distortion model will provide the 
best results.  This section provides a methodology for selecting a distortion model.  The 
selection of a distortion model requires selection of optimal distortion parameters, {k1, k2, 
k3, k4, …, xo, yo}.   
 
1. Defining a Measure of Error for Selecting Distortion 

Coefficients 
 
In order for a distortion correction model to be effective, it is necessary to optimize the 
model by selecting good distortion coefficients.  This can be done by minimizing the cost 
based on the deviation from a linear mapping.  In other words, the goal is to minimize the 
error between the true undistorted pixel locations of the measured world points and the 
model predicted undistorted pixel position of the world points.  This error can be 
represented as the following: 
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Here, (xu, yu) = the undistorted pixel positions of measured points obtained using a 
distortion model with selected distortion coefficients, and 
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is a parameter matrix that is used to apply the perspective model transform of world 
positions of the measured points to their undistorted pixel positions.  The derivation of 
this parameter matrix comes from the definitions of xp and yp in equation (4), define in 
the main document.  We assume that we are working in a plane and, therefore, zw is set to 
0.  These variables can be rewritten as 
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Since the only variables in these equations are xw, yw, and zw, the rest of the terms can be 
written as constants, cij: 
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To further simplify, we divide both the numerator and denominator by c33.  This, in turn, 
creates a new set of constants, which we label as aij: 
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This is the xp and yp expressed in (6).  Recall that this model for xp and yp only works for a 
pinhole camera in which there is no distortion.  Since the measured pixels (xp, yp) are 
most likely distorted, but we want to use this perspective transform in finding the optimal 
distortion coefficients, we will change the notation of  (xp, yp) to (u, v).  With no 
distortion correction (u, v) = (xp, yp), but as the perspective parameters (aij) become 
optimized, (xp, yp) will approach their undistorted positions (xu, yu) that is expressed in the 
error function in (6).  The pixel positions (u, v) are rewritten as shown below for use in 
the next step. 

 



  A-3 

1

1

3231

232221

3231

131211

++
++=

++
++=

ww

ww

ww

ww

yaxa
ayaxav

and
yaxa

ayaxau

     (8) 

 
These equations effectively perform a perspective transform of the world positions of the 
measured points to pixel positions, assuming that all measured points are on a plane (zw = 
0).  We also assume that any rotation of the camera is about its optical center since other 
rotation is not accounted for.  
 
Remember that the goal is to optimize the distortion coefficients for the distortion model 
that will be applied to the data.  An effective approach for doing this is to apply the 
distortion model, with default coefficients, to the data and then optimize the coefficients 
by minimizing the error expressed in (6).  The error is best minimized using an 
optimization algorithm such as steepest descent.  Before we can apply the optimization 
procedure we must first define the perspective model parameters, aij, that are used in the 
error function.  This step is described in the following section. 
 
2. Using Linear Least Squares to Solve for the Perspective 

Model Parameters  
 
The perspective model parameters are computed using the world positions of the 
measured points (xw, yw) and the (u, v) pixel positions that result after applying distortion 
correction to the measured points (xp, yp).  A linear least squares approach is used to find 
these parameters.  In linear least squares we are trying to solve for the matrix x in the 
equation 
 

Ax = b. 
 
The assignment of A begins with the equations in (8).  Multiplying both sides of the 
equation(s) by the denominator and rearranging terms yields 
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These can be expanded further by including the terms for all eight aij terms (a33 = 1 is the 
9th term).  
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Finally, this can be put in matrix form by listing all points i to N of the measured pixels 
(u, v) and their corresponding world positions  (xw, yw). The result is 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅

−−
−−
−−
−−

=

NNNNNN

NNNNNN

vyvxyx
uyuxyx

vyvxyx
uyuxyx
vyvxyx
uyuxyx

wwww

wwww

wwww

wwww

wwww

wwww

1000
0001

1000
0001
1000
0001

A

222222

222222

111111

111111

 

 
This is a 2N x 8 matrix, where N is the number of measured points.  The parameter 
matrix x is a 8 x 1 and b is 2N x 1.  These are shown below: 
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Linear least squares can now be used to solve for x.  This matrix along with initial values 
of distortion coefficients can be used in the steepest descent algorithm, which will 
minimize the error specified in (6) and find the optimal distortion coefficients.  These 
coefficients will optimize the selected distortion model. 
 
3. Selection of a Distortion Model 
 
A challenge presents itself in determining the appropriate distortion model.  There are 
several distortion models in use today, but it is not entirely straight-forward as to the 
appropriate model for an application.  A study was conducted to compare the distortion 
models by applying a specific distortion model to measured points, optimizing the 
distortion parameters for that model, and then calculating the final error between the 
measured points the optimized distorted points. 
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Several radial distortion models were considered: 
A. ru = rd · (1 + k · rd

2) 
 
B. ru = rd · (1 + k1 · rd

2 + k2 · rd
4) 

 
C. rd = ru · (1 + k · ru

2) 
 
D. ru = (-f / 2) · (e-2rd / f – 1) / erd / f 
 
A fifth distortion model was also included in which both radial and tangential distortion 
was considered, but it was found that tangential distortion was small enough to be 
ignored. 
 
A procedure was defined to compare the different models.  It is explained in the 
following steps: 
 
1. Create a point grid in a plane to use for target points.  The points should be 

equidistant apart. Capture images of the point grid with the points filling up the field-
of-view of the camera as much as possible.  These points represent the world 
coordinates of the measured points. An example image of a point grid is shown in 
Figure A-1. 

 
2. In software, segment the points using a simple threshold routine.  We used 

0.6*(MaxGray-MinGray) as the threshold for each point.  This was calculated over a 
20 pixel box that surrounded each point.  Points are selected in order to specify the 
world coordinates, with xw incrementing fastest and then yw (recall that zw = 0 since 
this is a planar mapping).  Compute the center pixel of each dot on the grid.  These 
will make up the measure pixel values.  After this step, we have a list of measured 
pixel positions (xpi , ypi) and their corresponding world positions (xwi , ywi)  

 
Figure A-1. Image of a 7x7 point grid captured with a 2.6mm 
lens.
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3. We found that by normalizing the measured pixel positions, the performance of the 

distortion models improve.  Also, the world coordinate grid should be centered on the 
middle dot on the point grid in order to minimize bias that is otherwise introduced. 

 
4. Initialize distortion model coefficients (e.g., k = 0, uo = 320 vo = 240 for a 640x480 

image).  Use the steepest descent algorithm to optimize these coefficients.  The 
performance function for steepest descent will use steps 5 – 7 until the error function 
in step 7 is minimized. 

 
5. Use distortion model with current coefficients to solve for normalized undistorted 

pixel positions of points. 
 

Example: 
 Using distortion model ru = rd · (1 + k · rd

2) and the relationships in (5): 
  u* = u + k(u - uo) [(u - uo) 2 + (v - vo) 2)] 
  v* = v + k(v - vo) [(u - uo) 2 + (v - vo) 2)] 
 where 
  (u, v) = distorted measured pixel 
  (u*, v*) = undistorted position of (u, v) 

 
6. Use normalized point/world positions resulting from step 5 to solve for the eight 

perspective model parameters using linear least squares. 
 
7.  Computer the error function from (6), which can be expressed as  
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The minimized error can be used to evaluate different models.  In an ideal case, the 
model-predicted undistorted measured pixels would coincide perfectly with the 
undistorted measured pixels.  Another measure of comparison is to distort the model-
predicted undistorted pixels using the optimized coefficients.  In this case the distorted 
points should overlay the original measured points exactly.  Results from this 
optimization process are shown in Figures A-2 and A-3.  In Figure A-2, the green dots 
represent the undistorted pixel positions using the optimized coefficients in the distortion 
model, the red dots represent the model-predicted undistorted pixel positions using the 
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optimized perspective model from (8), and the blue dots represent the distorted position 
of the model predicted undistorted position using optimized coefficients in the selected 
distortion model.  Notice that the red dots almost completely cover the green dots, 
indicating a near perfect fit.  The image in Figure A-3 was created using the optimized 
distortion model. 
 

 

 
  

Figure A-3. Undistorted image from Figure A-1 using distortion 
model A. 

 

Figure A-2. Results of applying distortion model A to distorted image in Figure 
A-1. 
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