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ABSTRACT 
Computed Tomography (CT) is a well established technique, particularly in medical 
imaging, but also applied in Synthetic Aperture Radar (SAR) imaging.  Basic CT 
imaging via back-projection is treated in many texts, but often with insufficient detail to 
appreciate subtleties such as the role of non-uniform sampling densities.  Herein are 
given some details often neglected in many texts. 
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FOREWORD 
While researching another topic with similarities to tomography, several issues arose that 
challenged our understanding of computed tomography.  This necessitated a detailed 
study of subtleties of the filtered back-projection algorithm and how it relates to Fourier 
reconstruction.  A specific question arose “Why do we need to filter prior to back-
projection?”  This led to a study of non-uniform sampling and how to properly account 
for variations in sampling density.  These subtleties seemed to often be overlooked in 
books on tomography.  This report records our analysis of these issues. 
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1 Introduction & Background 
Computed Tomography (CT) gained its initial utility in the field of medical imaging.  
The first commercially viable CT scanner was invented by Godfrey Newbold Hounsfield 
at Thorn EMI Central Research Laboratories in Hayes, England using X-rays. Hounsfield 
first conceived his idea in 1967, and the technique was publicly announced in 1972.  The 
first US patent was issued to Hounsfield in 1973.1  Many books and papers have since 
been written on the topic.2,3,4   

Munson, et al.,5 showed the relationship of CT to Synthetic Aperture Radar (SAR) image 
formation, and a number of researchers in the area have adopted this paradigm for SAR 
analysis if not for a viable image formation algorithm. 

CT image formation is most often implemented via a technique known as “filtered back-
projection”, or “convolution back-projection”.  This is very related to Fourier 
reconstruction, one being just the other-domain version of its counterpart.  However there 
are some subtleties related to the fact that the raw data is generally not uniformly sampled 
in either of the two dimensions.  Properly relating Fourier reconstruction to back-
projection requires accounting for this.  While texts often present the correct result, they 
typically do not advance an explanation for why this is true. 

This report develops the filtered back-projection algorithm and details the effects of non-
uniform sampling.  While the analysis herein is most certainly not novel, it may 
nevertheless prove useful to those wishing to explore the details of tomographic image 
reconstruction. 
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“One of the advantages of being disorderly is that one is constantly making exciting 
discoveries.” 

A. A. Milne (1882 - 1956) 
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2 Filtered Back-projection Tomography 
The following development is consistent with medical imaging.   

Consider a two-dimensional object ( )yxg ,  defined with Cartesian coordinates x and y. 

We can define a new coordinate frame as the old one rotated by an angle θ .  The new 
coordinates are 

θθ sincos yxt +=  
θθ cossin yxs +−=  (1) 

Similarly, the original coordinated can be calculated from these as 

θθ sincos stx −=  (2) 
θθ cossin sty +=  

and we define 

( ) ( )yxgstg ,, =′  (3) 

This is illustrated in Figure 1.   
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Figure 1.  Coordinate geometry. 
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The tomographic projection at some angle θ  is a measure of the transmissivity of the 
object.  While various illumination and collection geometries exist, we will presume the 
simplest, that is, a geometry as indicated in Figure 2. 
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Figure 2.  Data collection geometry. 

The tomographic projections are then described by an integral for each position t along 
the transmission path, that it, an integration in the direction of the axis s. 

( ) ( )∫
∞

∞−

′= dsstgtp ,,θ  (4) 

Taking the Fourier transform over t yields 

( ) ( ) ( )∫ ∫∫
∞

∞−

−
∞

∞−

∞

∞−

− ′== dsdtestgdtetpfP ftjftj ππθθ 22 ,,,  (5) 

The characteristics of the Fourier transform for an individual tomographic projection is 
that we have the values of the Fourier transform along a line through the origin at an 
angel θ .   This is illustrated in Figure 3. 
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Figure 3.  The Fourier space data corresponding to the data collected in Figure 2. 

Collecting projections and transforming them at a set of angles for different nθ  yields a 
data set of Fourier transform (of the object) values along radial “spokes” in the Fourier 
plane, where the spokes are defined by the various angles nθ  of the projections.  This is 
guaranteed by the “Fourier slice theorem.”  This is illustrated in Figure 4. 
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Figure 4.  Fourier space of data from multiple collection angles. 



 - 12 - 

Since at this point we have values of the Fourier transform of the object, we can 
reconstruct the object function by taking the 2-dimensional inverse Fourier transform of 

( )θ,fP .  The nature of ( )θ,fP  suggests a polar inverse Fourier transform. 

( ) ( ) ( )∫ ∫ −
∞

=′′
π

φθπ θθφ
2

0

cos2

0

,, ddffefPrg frj  (6) 

Where original Cartesian coordinates can be calculated as 

φcosrx =  
φsinry =  (7) 

But we only have data at discrete angles nθ , so the integral over angle θ  becomes a 
summation over a discrete set of nθ .  That is, for N angles evenly distributed and 
spanning the range 0 to 2π we have 

( ) ( ) ( )∑∫
=

−
∞

Δ=′′
N

n

frj
n dffefPrg n

1

cos2

0

,, θθφ φθπ . (8) 

Tacit in this result is a subtlety that deals with the fact that data density in Fourier space 
decreases with radial distance from the origin.  A discussion of the effects of data density 
is given in Appendix A.  A discussion of the Polar Fourier Transform for data at sampled 
angles is given in Appendix B. 

Nevertheless we also note that 

( ) nnn rrr θφθφφθ sinsincoscoscos +=−  (9) 

Which using our previously defined coordinates becomes 

( ) nnnn tyxr =+=− θθφθ sincoscos . (10) 

We have added the subscript n to t to indicate a specific oriented t at an angle nθ  

Then our reconstruction becomes 

( ) ( )∑∫
=

∞
Δ=′′

N

n

ftj
n dffefPrg n

1

2

0

,, θθφ π  (11) 

Or rearranging a bit 
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( ) ( ) ( )∑ ∫
=

∞

∞−

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=′′

N

n

ftj
n dfefuffPrg n

1

2,, θθφ π  (12) 

Where ( )fu  is the unit step function. 

The entity in the square brackets is the inverse Fourier transform of ( ) ( )fuffP nθ, , 
which is simply a filtered version of ( )nntp θ, .  The Filter has transfer function 

( ) ( )fuffH =  (13) 

allowing us to write 

( ) ( ) ( )∑ ∫
=

∞

∞−

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

N

n

ftj
n dfefHfPyxg n

1

2,, θθ π . (14) 

Consequently the algorithm becomes to collect a set of projections ( )nntp θ,  and filter 
them with ( )fH .  In the raw data domain this is accomplished via convolution.  Then the 
filtered projections are back-projected, and the resulting set of back-projections 
appropriately summed.  This forms the image. 
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“All truths are easy to understand once they are discovered; the point is to discover 
them.” 

Galileo Galilei (1564 - 1642) 
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3 Summary and Conclusions 
The ‘filtering’ part of the Filtered-Back-projection algorithm is what makes it equal to an 
inverse polar Fourier transform of the Fourier data.  This is due to the non-uniform 
sampling density that results from equal-angle sampling, where 2-dimensional sampling 
density decreases with radial distance from the spectral origin. 
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“The most exciting phrase to hear in science, the one that heralds new discoveries, is not 
'Eureka!' (I found it!) but 'That's funny ...' “ 

Isaac Asimov (1920 - 1992) 
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Appendix A - Nonuniform Sampling 
In calculating the Fourier Transform of a signal with variable-rate sampling, effectively 
the samples need to be weighted by the inverse of their local sampling density. 

Two sampling rates 

The purpose here is to calculate the spectrum of a function from sampled data where 
different parts of a function are sampled at one of two separate sampling rates. 

Consider a function ( )xg .  We identify its Fourier transform as ( )fG  where 

( ) ( )∫
∞

∞−

−= dxexgfG fxj π2  (A1) 

and consequently identify the Fourier transform pair 

( ) ( )fGxg ⇔ . (A2) 

We now identify a masking function ( )xh1  which has unit amplitude for some range of x, 
and is zero everywhere else.  Furthermore, we define its complement as 

( ) ( )xhxh 12 1−=  (A3) 

and stipulate that ( )xh1  and ( )xh2  are non-overlapping, that is, ( ) ( ) 021 =xhxh  for any and 
all x. 

Their Fourier transforms are identified as 

( ) ( )fHxh 11 ⇔  
( ) ( ) ( ) ( )fHffHxh 122 −=⇔ δ . (A4) 

We now identify two parsed signals 

( ) ( ) ( )xgxhxw 11 =  
( ) ( ) ( )xgxhxw 22 = . (A5) 

We shall assume that both of these signals are effectively band-limited.  They are not 
strictly band-limited, but for all intents and purposes may be considered as such. 

Each of these is sampled at different rates, 1sf  and 2sf  respectively.  We shall 
furthermore assume that all sampling rates are adequate to prevent significant aliasing.  
The sampled signals are then 
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( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1 1

1
11

n s
s f

nxxwxw δ  

( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2 2

2
22

n s
s f

nxxwxw δ . (A6) 

We identify the Fourier transform pair for the sampling function as 

( )∑∑ −⇔⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

u
ss

n s
ufff

f
nx δδ . (A7) 

This allows us to identify the Fourier transform of our sampled signals as 

( ) ( ) ( ) ( ) ( ) ( )∑∑ −=−=
11

111111111 ***
u

ss
u

sss uffffHfGuffffWfW δδ  

( ) ( ) ( ) ( ) ( ) ( )∑∑ −=−=
22

222222222 ***
u

ss
u

sss uffffHfGuffffWfW δδ . (A8) 

Each of these signals exhibits a replicated spectrum, with copies centered at multiples of 
their respective sampling frequencies.  However, we are interested only in the baseband 
components, that is, we select via filtering during reconstruction the components 

( ) ( ) ( ) ( )fffHfGfW ss δ111 **=′  
( ) ( ) ( ) ( )fffHfGfW ss δ222 **=′ . (A9) 

These then become 

( ) ( ) ( )fHffGfW ss 111 *=′  
( ) ( ) ( )fHffGfW ss 222 *=′ . (A10) 

Our goal is to recover ( )fG  from ( )fWs1′  and ( )fWs2′  via a linear combination of these 
component spectral pieces.  Consequently we equate 

( ) ( ) ( )fWkfWkfG ss 2211 ′+′= . (A11) 

This can be expanded to 

( ) ( ) ( ) ( )( )fHfkfHfkfGfG ss 222111* +=  (A12) 

or 

( ) ( ) ( ) ( ) ( )( )fHfkfkffkfGfG sss 1221122* −+= δ  (A13) 

or furthermore to 
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( ) ( ) ( ) ( ) ( )fHfGfkfkfGfkfG sss 1221122 *−+= . (A14) 

It becomes readily apparent that to accomplish the equality for arbitrary ( )fH1 , and 
arbitrary sampling frequencies 1sf  and 2sf , we need to choose scaling factors  

11 1 sfk =  

22 1 sfk = . (A15) 

In summary, to properly compute the spectrum from the sampled data, the spectral 
contribution from the two sections of data needs to be scaled inversely proportional to the 
sampling rate used for those two sections of data. 

This can be accomplished by weighting each sample inversely proportional to the 
sampling rate at which it was collected.  We need not wait to scale the Fourier transforms 
themselves. 

More than two sampling rates 

The purpose here is to extend the results of the previous section and calculate the 
spectrum of a function from sampled data where multiple different sections of a function 
are sampled at different sampling rates. 

We now identify N masking functions ( )xhn  each of which have unit amplitude for some 
range of x, and is zero everywhere else.  Furthermore, we again assume that the ( )xhn  are 
non-overlapping, and that one and only one ( )xhn  is non-zero for any value x.  That is 

( ) 1
1

=∑
=

N

n
n xh . (A16) 

Their Fourier transforms are identified as 

( ) ( )fHxh nn ⇔  (A17) 

and 

( ) ( )ffH
N

n
n δ=∑

=1
. (A18) 

We identify the parsed signals 

( ) ( ) ( )xgxhxw nn = . (A19) 

We shall assume that all of these signals are effectively band-limited.  Again, they are not 
strictly band-limited, but for all intents and purposes may be considered as such. 
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Each of these is sampled at different rates, snf  respectively.  We shall furthermore 
assume that all sampling rates are adequate to prevent significant aliasing.  The sampled 
signals are then 

( ) ( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

nm sn

n
nsn f

mxxwxw δ . (A20) 

This allows us to identify the Fourier transform of our sampled signals as 

( ) ( ) ( ) ( )∑ −=
nu

nsnsnnsn uffffHfGfW δ** . (A21) 

Each of these signals exhibits a replicated spectrum, with copies centered at multiples of 
their respective sampling frequencies.  However, we are interested only in the baseband 
components, that is, we select via filtering during reconstruction the components 

( ) ( ) ( ) ( ) ( ) ( )fHffGfffHfGfW nsnsnnsn *** ==′ δ . (A22) 

Our goal is to recover ( )fG  from the ( )fWsn′  via a linear combination of these 
component spectral pieces.  Consequently we equate 

( ) ( )∑
=

′=
N

n
snn fWkfG

1
. (A23) 

This can be expanded to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+== ∑∑∑

−

=

−

==

1

1

1

11
**

N

n
nsNN

N

n
nsnn

N

n
nsnn fHffkfHfkfGfHfkfGfG δ

 (A24) 

or 

( ) ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= ∑

−

=

1

1
*

N

n
nsNNsnnsNN fHfkfkffkfGfG δ  (A25) 

or furthermore to 

( ) ( ) ( ) ( ) ( )∑
−

=
−+=

1

1
*

N

n
nsNNsnnsNN fHfGfkfkfGfkfG . (A26) 

It becomes readily apparent that to accomplish the equality for arbitrary ( )fHn , and 
arbitrary sampling frequencies snf , we need to choose scaling factors  
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snn fk 1= . (A27) 

In summary, to properly compute the spectrum from the sampled data, the spectral 
contribution from the various sections of data need to be scaled inversely proportional to 
the sampling rate used for those sections of data. 

Again, this can be accomplished by weighting each sample inversely proportional to the 
sampling rate at which it was collected.   

Sampling in two dimensions 

The purpose here is to extend the results of the first section to two dimensions. 

Consider a function ( )yxg , .  We identify its Fourier transform as ( )yx ffG ,  where 

( ) ( ) ( )
∫ ∫
∞

∞−

∞

∞−

+−= dxdyeyxgffG yfxfj
yx

yxπ2,,  (A28) 

and consequently identify the Fourier transform pair 

( ) ( )yx ffGyxg ,, ⇔ . (A29) 

We now identify a masking function ( )yxh ,1  which has unit amplitude for some range of 
x, and some range of y, and is zero everywhere else.  Furthermore, we define its non-
overlapping complement as 

( ) ( )yxhyxh ,1, 12 −= . (A30) 

Their Fourier transforms are identified as 

( ) ( )yx ffHyxh ,, 11 ⇔  
( ) ( ) ( ) ( ) ( )yxyxyx ffHffffHyxh ,,, 122 −=⇔ δδ . (A31) 

We now identify two parsed signals 

( ) ( ) ( )yxgyxhyxw ,,, 11 =  
( ) ( ) ( )yxgyxhyxw ,,, 22 = . (A32) 

We shall assume that both of these signals are effectively band-limited in all dimensions.  
We shall furthermore assume that all sampling rates are adequate to prevent significant 
aliasing in any dimension.  The sampled signals are then 
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( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

1

1

1

1
11

1 1

,,
sy

y

n n sx

x
s f

n
y

f
nxyxwyxw

y x

δδ  

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

2

2

2

2
22

2 2

,,
sy

y

n n sx

x
s f

n
y

f
nxyxwyxw

y x

δδ . (A33) 

There is no correlation between, 1sxf , 1syf , 2sxf  and 2syf .   

We identify the Fourier transform pair for the 2-dimensional sampling function as 

( ) ( )∑∑∑∑ −−⇔⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

v u
syysxxsysx

n n sy

y

sx

x vffuffff
f
n

y
f
nx

x y

δδδδ . (A34) 

This allows us to identify the Fourier transform of our sampled signals as 

( ) ( ) ( ) ( ) ( )∑∑ −−=
1 1

1111111111 *,*,,
v u

syysxxsysxyxyxyxs vffuffffffHffGffW δδ  

( ) ( ) ( ) ( ) ( )∑∑ −−=
2 2

2222222222 *,*,,
v u

syysxxsysxyxyxyxs vffuffffffHffGffW δδ .  

  (A35) 

Each of these signals exhibits a replicated spectrum, with copies centered at multiples of 
their respective sampling frequencies in the two dimensions.  However, we are interested 
only in the baseband components, that is, we select via filtering during reconstruction the 
baseband components 

( ) ( ) ( ) ( ) ( )111111 *,*,, yxsysxyxyxyxs ffffffHffGffW δδ=′  
( ) ( ) ( ) ( ) ( )222222 *,*,, yxsysxyxyxyxs ffffffHffGffW δδ=′ . (A36) 

These then become 

( ) ( ) ( )yxsysxyxyxs ffHffffGffW ,*,, 1111 =′  
( ) ( ) ( )yxsysxyxyxs ffHffffGffW ,*,, 2222 =′ . (A37) 

Our goal is to recover ( )yx ffG ,  from ( )yxs ffW ,1′  and ( )yxs ffW ,2′  via a linear 
combination of these component spectral pieces.  Consequently we equate 

( ) ( ) ( )yxsyxsyx ffWkffWkffG ,,, 2211 ′+′= . (A38) 

This can be expanded to 

( ) ( ) ( ) ( )( )yxsysxyxsysxyxyx ffHffkffHffkffGffG ,,*,, 22221111 +=  (A39) 
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which can be manipulated to 

( ) ( ) ( ) ( ) ( )yxyxsysxsysxyxsysxyx ffHffGffkffkffGffkffG ,*,,, 1222111222 −+= .  
  (A40) 

It becomes readily apparent that to accomplish the equality for arbitrary ( )yx ffH ,1 , and 
arbitrary sampling frequencies in both dimensions we need to choose scaling factors  

( )111 1 sysx ffk =  
( )222 1 sysx ffk = . (A41) 

In summary, to properly compute the spectrum from the sampled data, the spectral 
contribution from the two sections of data needs to be scaled inversely proportional to the 
2-dimensional sampling density used for those two sections of data. 

This can be accomplished by weighting each sample inversely proportional to the local 
sampling density at which it was collected.  We need not wait to scale the Fourier 
transforms themselves. 

Extensions 

In calculating the multi-dimensional Fourier transform from sampled data, the sample 
weighting by the inverse of the local sampling density is expected to hold for multiple 
sampling rates in multiple dimensions. 
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“There is much pleasure to be gained from useless knowledge.” 

Bertrand Russell (1872 - 1970) 
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Appendix B - Fourier Transform of function with 
samples at equally spaced angular spokes 
If a function is sampled at evenly spaced angles, then the samples need to be weighted 
(scaled) by the radial distance from the origin in order to estimate the Fourier transform 
of the original function. 

Rectangular coordinates 

Consider a 2-dimensional function ( )yxg ,  with Fourier transform given by 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

+−= dxdyeyxgvuG vyuxj π2,, . (B1) 

Thus, ( )yxg ,  and ( )vuG ,  constitute a Fourier transform pair, which we illustrate by 
writing 

( ) ( )vuGyxg ,, ⇔ . (B2) 

We wish to identify the function along some line passing through the origin.  We do this 
by forming the angular sample 

( ) ( ) ( )nnns xyyxgyxg θθδθ sincos,,, −=  (B3) 

If we allow a composite angular sampled function to contain many such individual lines, 
all passing through the origin, and equally spaced in angle, then we can define our 
composite sampled function as 

( ) ( ) ( ) ( )∑∑ −==
n

nn
n

nss xyyxgyxgyxg θθδθ sincos,,,, . (B4) 

Since we are dealing with lines, we can completely sweep the angular space by restricting 
nθ  to the range 0 to π. 

Polar coordinates 

We define the corresponding polar-coordinate function and its transform as 

( ) ( )φθ ,, sGrg ′⇔′  (B5) 

where 



 - 26 - 

( ) ( ) ( )∫ ∫
∞

−−′=′
π

θφπ θθφ
2

0 0

cos2,, drdrergsG srj . (B6) 

The angular sampled function becomes 

( ) ( ) ( )( ) ( )( )( )πθθδθθδθθ −−+−′=′ ∑ nn
n

s rrrgrg ,,  (B7) 

noting that we are limiting 0≥r .  However, we still have restricted nθ  to the range 0 to 
π.  If we allow nθ  to range all the way to 2π, then we can write 

( ) ( ) ( )( )n
n

s rrgrg θθδθθ −′=′ ∑ ,,  (B8) 

where nθ  is limited to values corresponding to equal increments of θΔ  and 

N
πθ 2=Δ  (B9) 

where N is the total number of radial ‘spokes’ to the sampled function.  Consequently 

( ) ( ) ( )( )∑
=

−′=′
N

n
ns rrgrg

1
,, θθδθθ . (B10) 

We make use of the identity 

( ) ( )t
a

at δδ 1=  (B11) 

and note that allows us to equate 

( ) ( ) ( )∑
=

−⎟
⎠
⎞

⎜
⎝
⎛′=′

N

n
ns r

rgrg
1

1,, θθδθθ . (B12) 

With malice of forethought, we define but leave unspecified two scaling parameters, rk  
and θk , such that a new function is formed 

( ) ( ) ( ) ( )∑
=

−⎟
⎠
⎞

⎜
⎝
⎛′=′=′′

N

n
nrsrs r

rgkkrgkkrg
1

1,,, θθδθθθ θθ . (B13) 

Now we calculate the Fourier transform of ( )θ,rgs′′  as 
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( ) ( ) ( )∫ ∫
∞

−−′′=′′
π

θφπ θθφ
2

0 0

cos2,, drdrergsG srj
s  (B14) 

which becomes in turn 

( ) ( ) ( ) ( )∫ ∫ ∑
∞

−−

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛′=′′

π
θφπ

θ θθθδθφ
2

0 0

cos2

1

1,, drdre
r

rgkksG srj
N

n
nr  (B15) 

( ) ( ) ( ) ( )∑∫ ∫
=

∞
−− −′=′′

N

n
n

srj
r drdergkksG

1 0

2

0

cos2,,
π

θφπ
θ θθθδθφ  (B16) 

( ) ( ) ( )∑∫
=

∞
−−′=′′

N

n

srj
nr drergkksG n

1 0

cos2,, θφπ
θ θφ  (B17) 

We are driving towards making this look like an integration over θ so we can equate it to 
( )φ,sG′ .  As is, unless compensated, as N increases the summation takes in more and 

more angular samples and consequently gets bigger.  Prudence dictates that a scale factor 
that compensates for increasing N would allow meaningful comparison of ( )φ,sG ′′ .  
Consequently, at this point we choose the scale factor 

N
k πθθ

2=Δ= . (B18) 

Note that θk  is a constant for a constant N.  This allows 

( ) ( ) ( )∑∫
=

∞
−− Δ′=′′

N

n

srj
nr drergksG n

1 0

cos2,, θθφ θφπ . (B19) 

Now as N increases, θΔ gets smaller.  In the limit 

( ) ( ) ( )∫ ∫
∞

−−
→Δ

′=′′
π

θφπ
θ

θθφ
2

0 0

cos2
0

,,lim drdkergsG r
srj  (B20) 

Since we desire this to be the 2-dimensional spectrum of our original function, we equate 

( ) ( )φφ
θ

,,lim
0

sGsG ′=′′
→Δ

 (B21) 

which forces 
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( ) ( ) ( ) ( )∫ ∫∫ ∫
∞

−−
∞

−− ′=′
π

θφπ
π

θφπ θθθθ
2

0 0

cos2
2

0 0

cos2 ,, drdrergdrdkerg srj
r

srj  (B22) 

This can only be true if we equate 

rkr = . (B23) 

Bottom line: 

Consequently, if we have angular sampled functions ( ) ( ) ( )( )n
n

s rrgrg θθδθθ −′=′ ∑ ,, , 

then the Fourier transform of the un-sampled function ( )θ,rg′  is estimated by actually 

calculating the Fourier transform of ( ) ( )θπθ ,2, rgr
N

rg ss ′=′′ . 

Furthermore, weighting the sampled data as a function of radial distance from the origin 
would be required in any coordinate frame. 

Note: 

The weighting by r goes away (is not needed) if the data were resampled to a uniform 
density, e.g. on a rectangular grid with uniform sample spacing in each dimension. 
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