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Abstract

This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol
Dynamics Simulator), which employs a section-based approach for describing the particle size
distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas
phase species transport and reactions. The method uses a discontinuous Galerkin formulation to
represent the particle distributions within each section and to solve for changes to the aerosol par-
ticle distributions due to condensation, coagulation, and nucleation processes. CADS conserves
particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations.
Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application)
have been developed with CADS, with the initial emphasis on developing fundamental mecha-
nisms for soot formation within fires. This report also describes the 0-D application, TDcads,
which models a time-dependent perfectly stirred reactor.
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1. Introduction

Cantera Aerosol Dynamics Simulator (CADS) is a tool for developing predictive phenomenologi-
cal models for aerosol formation incorporating detailed kinetics mechanisms that yield the con-
centrations, particle sizes, and temperature, in reactive flow environments. CADS is a generalized
library able to address particle formation and transport processes, including particle coagulation,
gas phase reactions, surface chemistry (growth and oxidation), transport by Brownian diffusion,
thermophoresis, and diffusiophoresis, and particle nucleation from molecular species.

CADS is based on a sectional description of particle sizes. The continuous distribution of particle
sizes, which may typically span from the sub-nanometer regime up to 100 microns is discretized
into individual bins. Each bin may have multiple degrees of freedom, with 1or 2 degrees of free-
dom being used to describe the particle-size distribution within a bin. Additional degrees of free-
dom within each bin are used to describe the composition of a multicomponent particle phase,
assuming the full mixture state approximation for the particles, allowing also for the calculation
of intra-particle condensed phase chemistry.

As a library, CADS may be incorporated into computational fluid dynamics (CFD) codes to handle
particle source terms and gas source terms due to particle-related reactions and to provide trans-
port properties for particles. The libraries’ application programming interface (API) includes gen-
eral calls for particle and gas-phase species source terms due to nucleation, coagulation, and
condensation reactions. Particle source terms are on a per-sectional-bin basis. Transport proper-
ties for particles, both diffusion rates and particle terminal velocities which are influenced by ex-
ternal forces acting on the particles, are obtained on a per section-bin basis. Applications based on
CADS handle the solution of conservation reactions describing the transport and reaction of parti-
cles in zero or multiple dimensions by calling CADS source-term and transport-parameters rou-
tines. 

Within the CADS package is a time-dependent batch reactor and perfectly-stirred reactor (PSR)
simulator named TDcads. This application has been very useful to address algorithm issues within
the CADS’ aerosol modules, to verify mechanism phenomena, and to address particle phenomena
that can be addressed in a 0D setting.

CADS is layered on top of Cantera [1], an object-oriented tool for solving chemical kinetics, ther-
modynamics, and transport processes in reacting flows. Cantera’s main role has been to solve ap-
plications involving reacting laminar gas flows, including combustion, chemical vapor
deposition, and solid fuel-cell systems. Cantera has application codes for PSR’s, 1D reacting flow
simulations, and equilibrium solvers. It has be used as a third-party library in external reacting-
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flow simulation codes, such as FLUENT, using fortran, C++, python, or matlab interfaces, to
evaluate properties and chemical source terms that appear in the application’s governing equa-
tions. Therefore, CADS may be considered to be an extension of Cantera’s constitutive modeling
package paradigm to encompass constitutive modeling of particle interactions. 

The initial target application has been to describe soot formation in laminar flames. Soot domi-
nates radiative heat transfer in a fire. Soot formation, volume fraction, particle size, temperature,
and radiative properties all need to be modeled in order to calculate heat transfer within a fire.
Current soot models are highly empirical, fuel specific, and without particle size description and
temperature, i.e., inadequate for our needs. Soot morphology strongly suggests a specific, nearly
universal, soot formation sequence. Molecular transport mechanisms play an important role in
making this sequence happen and in determining the location and temperature of radiating hot
soot as well as the size of the primary particles. Modeling must be used to come up with an expla-
nation for reconciling the observations on soot morphology with those on soot formation. It ap-
pears that molecular transport mechanisms such as thermophoresis are important in locating the
soot particles relative to the flame zone and consequently determining the soot particle tempera-
ture which determined the radiative energy transfer. Chemistry, also dependent on temperature
and particle age, determines the radiative properties of the soot.

A sub-grid model for soot formation, that may be used for applications on the engineering scale,
that yields both the concentration and temperature, must include this physics. Therefore, a compu-
tational framework is needed to develop the specific models to allow us to calculate the position,
temperature, and radiative properties of soot particles in flames. It is hoped that the general open-
source tool, CADS, will help the fire community to develop these detailed mechanisms for soot for-
mation, that may then be used for generating sub-grid soot models suitable for understanding heat
fluxes in fires. Additional promising applications for CADS involve the modeling of nano particle
production, micro-electro-mechanical systems (MEMS), chemical vapor deposition (CVD), and
microcontamination processes.

1.1 Equations that CADS solves

The formulation for CADS is based around providing constitutive models for all of the terms in the
multidimensional aerosol general dynamics equation [2] for the particle concentration distribution
function, .  is the concentration of particles at position  and time t with total monomer
unit numbers between  and . 

n n µ t,( ) x
µ µ dµ+
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(1.1)

 is a function of the number of monomer units (i.e., molecules) in the particle, ,
time, and the spatial dimension.  is the net growth rate of particles of size  due to interac-
tions with the gas phase; it may be negatively or positively valued. The resulting flux of particles,

, in the particle coordinate, , is called the particle current and the corresponding
term in Eqn. (1.1) is called the condensation operator. The two integral expressions in Eqn. (1.1),
the continuum formulation of the Smoluchowski expression, constitutes the coagulation operator.

 is the coagulation kernel, which is the cross-section for coagulation for particles of size
 and .  is the particle diffusion coefficient, a strong function of the particle size, for small

particles.  is the deviation of the particle terminal velocity (i.e., the assumption that the particles
are in inertial equilibrium is implicitly made here) from the mass averaged velocity of the gas me-
dium, , due to the influence of external forces such as thermophoresis, diffusiophoresis, and
gravity.  is the source term for particle creation due to nucleation from molecular species. In
CADS, nucleation also refers to cases wherein particles are destroyed due to physical processes
such as the oxidation of carbon.

The first step in solving the integro-differential equation of Eqn. (1.1) is to discretize the particle
distribution coordinate, , into distinct sectional bins. Then, the solution of Eqn. (1.1) may be un-
dertaken on a “per-bin” basis, with the  value acting substantially like a distinct coordinate di-
mension.

There has been an extensive treatment of section models in the literature. In early work, Gelbard
and Seinfeld [3] solved analytically the equation for coagulation and growth of a multicomponent
aerosol for two components and simplified coagulation rates and growth laws. The sectional solu-
tion approach to the multicomponent continuous general dynamic equation has been developed
by Gelbard and Seinfeld [4]; it is this work and the resulting MAEROS application [5] that is
forerunner to the model presented here. Recent work on combustion systems have included an ap-
proach where sectional bins are treated as an extension of individual molecules [6].

Early on in the program, it was realized that conservation properties for both particle mass/com-
position and particle number were important to the overall goal of obtaining mechanistic under-
standing of particle inception and growth in fires. There had been some work previously on “2
component” sectional models that achieve this, through keeping track of both particle number and
particle mass within a section [7, 8]. This approach is currently the favorite for global climate and
marine environment simulations. However, from previous work on advection dominated systems,

td
d n µ t,( ) vn µ t,( )( )∇• cn µ t,( )( )∇•

µ∂
∂ G µ t,( )n µ t,( )( )+ + + D n µ t,( )∇( )∇•=

 1
2
--- β µ̃ µ µ̃–,( )n µ̃( )n µ µ̃–( ) µ̃d

0

µ

∫ β µ µ̃,( )n µ̃( )n µ( ) µ̃d
0

∞
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n n µ t,( )= µ
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a promising approach using discontinuous Galerkin approximation to the condensation operator
has been adopted within CADS. This approach has proven to be extremely accurate both for the
calculation of the condensation and coagulation operators, because of the inherent low numerical
diffusion properties of the discontinuous Galerkin approximation and due to the fact in contrast
with [7, 8] the particle concentrations within a section are distributed throughout the section. Dif-
ficulties associated with maintaining positivity of the particle distribution within each section
have been encountered and largely overcome.

The condensation kernel uses a discontinuous Galerkin method to calculate the transfer rates of
particles along the particle number axis due to the condensation process. Growth or particle etch-
ing rates are determined on a per surface area basis. Spherical particles are currently assumed.
Surface growth rates for particles are determined in a separate kernel that has the ability to treat
the surface of particles as a separate phase consisting of surface species, with surface site fractions
describing their concentrations. Surface growth processes are then described via mass-action sur-
face reactions involving gas phase, surface phase, and bulk phase species. The particle surface
growth kernel uses an internal implicit solver, so that surface site fractions may be implicitly
solved for during a residual calculation, so that they don’t explicitly appear in the solution vector.

The coagulation kernels are precalculated using 2D Romberg integrations and stored for later use.
The dependence of the coagulation kernel on temperature, composition, and pressure are factored
in by calculating a ratio of the present value of the coagulation kernel to a stored value of the co-
agulation kernel used in the precalculation. No limitations on sectional bin discretizations are im-
posed by the coagulation kernel. The software does not support coagulation kernels for charged
particles at this time. The concept of a fractal dimension that determines the volume to surface
area of particles and affects the coagulation kernel is not fully implemented within the library, yet.

 in Eqn. (1.1) refers to all phenomena that involving the creation (or destruction) of particles
from interactions with gas phase species. The modeling approach used here treats nucleation as a
special case of agglomeration. In this treatment, the evolution of the particle size distribution by
agglomeration is explicitly included in chemical reaction-like mechanisms that transfer material
from the molecular species to particles. This class of nucleation phenomena is sometimes called
rapid nucleation. These routines maybe incorporated into flow and transport codes in the same
manner that the Cantera subroutines are used to calculate gas phase chemistry. This treatment fa-
cilitates the inclusion of particle formation and growth in existing codes that now perform chem-
istry calculations. The treatment in CADS can optionally handle reversible nucleation reactions.
Just as their molecular counterparts, particles have Gibbs free energies of formation assigned to
them. These values normally come from treating the particles as ideal solid solutions of monomer
units which have standard state thermodynamic properties. However, individual particles in-

Snucl
part
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volved with the nucleation mechanism may have specific thermodynamic properties assigned to
them, which overwrite the default values. With the Gibbs free energies of particles specified, re-
versible nucleation reactions may be formulated through the principle of microscopic reversibili-
ty. The idea of reversible nucleation reactions has grown out of the concept, from soot nucleation
that since the precursor species to particles in flames are small PAH species and since particles in
the lowest bin sections are larger PAH species, then the relative abundance of small to large PAH
species in the active region of a flame must involve thermodynamic factors to a great extent.

Classical nucleation theory (and the associated parameterization of the effect of surface tension on
the Gibbs free energy of small particles) isn’t in CADS yet. In classical nucleation theory, mono-
mers have a concentration slightly above their saturation limit of the gas. The monomers cluster
together through a reversible coagulation process, mitigated by the effects of surface tension
which affects the stability of the cluster. Surface tension forces generally increase as the particle
diameter decreases, leading to smaller particles having a larger effective Gibbs free energy. This
Kelvin effect leads to a minimum in the distribution of the cluster distribution. The minimum in
the distribution is called the critical cluster size. The particle flux through the minimum cluster
size is associated with the classical particle nucleation rate. 

At the start of the program, it was thought that special attention to the cluster-size regime was go-
ing to be paid via a model akin to Wu and Flagan [9], wherein a discrete description of the mono-
mer and cluster interactions have been melded into a treatment of particles separated into
sectional bins at higher monomer numbers. However, due to overall time constraints, this was
dropped. Moreover, for the initial soot problem class, this may not have been necessary. Essential-
ly, the small cluster regime for combustion mechanisms is dominated by the study of the chemis-
try and thermodynamics of large PAH species [10]. The equivalent of classical nucleation theory
comes down to understanding the thermodynamics of large PAH molecules, perhaps using a vari-
ant of group additivity theory [11]. 

All kernel operations within CADS have “analytical” jacobian routines. However, some of these
routines actually use numerical differencing schemes to obtain “quasi-analytical” jacobians for
the individual operators. Because the particle number coordinate used in the sectional representa-
tion partially behaves like a dimensional coordinate, the calculation of these analytical jacobians
is much faster than the calculation of purely numerical jacobians, by a factor of 10. The analytical
jacobian formulation takes advantage of the interaction sparsity to reduce the operation count. 

Within CADS, the assumption is made that particles travel at their terminal velocities. The terminal
velocity may be different than the mass-averaged velocity of the gas phase, due to external forces.
The relative difference between the terminal velocity and the mass-averaged gas velocity is equal
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to  in Eqn. (1.1). External forces currently implemented within CADS are the thermophoretic and
diffusiophoretic forces. Gravity as an external force, as well as the gravitational settling process as
a particle sink) is currently not implemented, because the initial problem class didn’t warrant its
inclusion. This small inertial assumption creates a great deal of simplification with respect to the
solution of the multidimensional particle transport equation. However, it limits the problem class
that CADS may be applied to [12]. Routines for the evaluation of the particle diffusion coefficient,

, are also included within CADS. Only models for the Brownian diffusion coefficient are current-
ly covered. In all cases of the evaluation of transport properties, interpolation formulas between
the free-molecular regime and the continuum regime are used.

How does this method compare with the moments method? Sectional methods will not compete
in speed and computational efficiency with moments methods, because they utilize many more
degrees of freedom to represent the particle distributions than do moments methods [13]. Howev-
er, they may be used to check the veracity of assumptions to the gross shape of the particle distri-
bution that moments methods must innately make and to understand how these assumptions affect
the answer. Detailed molecular modeling of the aerosol nucleation chemistry and the thermody-
namics of particles/species in the boundary between the molecular species and the particle region
is possible also with sectional methods but not with moments methods.

1.2 Overall Layout and Structure of the Input Files

CADS employs a block text input file as its main input. The left side of Figure 1.1 presents a much
shortened layout for that block text file. Separate blocks are included in that file pertaining to the
main categories of input. Some blocks are only associated with the TDcads application, while oth-
er blocks, such as the ADS Model Definition block and the Section Model Definition

Block, are needed by all applications that use CADS.

Within the ADS Model Definition block are the names of several XML or CTI input files,
which specify the several chemistry mechanisms involved with conducting a particle simulation.
CTI is a human readable Cantera file format that get’s preprocessed into Cantera’s XML input file
format. As CADS reads its main block text input file, it looks for the names of these auxiliary input
files and reads their contents in during the initialization of the package. The main block of the in-
put file therefore serves as a directory for needed file locations.

These XML or CTI input files are read by low-level Cantera routines, and serve to initialize the
gas-phase chemistry mechanism, the gas-phase particle nucleation mechanism, the particle sur-
face chemistry mechanism, and the bulk particle chemistry mechanism. The rough content of
each of these files are listed in Figure 1.1. Details about each of these files, as well as details about

c

D
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the content and options in the main block text input file is presented in the pertinent chapters of
this manual.

CADS shares with Cantera the additional paradigm of attempting to separate out the data from the
solution method. This methodology has a strong tradition in the combustion field. For example
the calculation of the Gibbs free energies of particles is a separate knowable fact that may be sep-
arated, parameterized, and stored in a data file; it may be correlated with the observation of parti-
cle number from a certain simulation, but its parameterization is separable. The rate that acetylene
adds to radical benzene-like sites on a soot particle may be parameterized and stored in a data file;
its value may be highly correlated with particle number in a sooting flame. However, given
enough information its rate constant is separately determinable. The data for CADS are given in the
XML files, while the choices for solution method is given in the block text input file.

Note, this same layout is used in multiple applications, because the block I/O routines are built
into the CADS library routines. Right now there are 2 applications based on CADS. A zero-D code
that emulates PSR’s, with particle creation. The other application is based on an 1D opposing
flow flame code. Both of these applications share the same CADS input file formats.

Figure 1.1 Layout of CADS and TDcads input files

TDcads_input.txt or ParticleFile.txt:

Start Block ADS Model Definition
Start Block Gas Phase Model

Gas Phase = ethene.xml
Start Block Particle Phase Model
 Cantera Particle Condensed Phase file=soot.xml
End Block Particle Phase Model
Start Block Nucleation Model
 Cantera Particle Nucleation Phase File=partNucl.xml
End Block Nucleation Model
Start Block Particle Surface Reaction Model
 Cantera Surface Reaction File = sootSurf.xml
End Block Particle Surface Reaction Model

End Block ADS Model Definition
Start Block Section Model Definition

Number of sections = 30
...

End Block Section Model Definition
Start Block TDcads Model Definition

Boundary conditions = PSR
...

End Block TDcads Model Definition
Start Block TDcads Time Step Parameters

Final time = 10
...

End Block TDcads Time Step Parameters
Start Block TDcads Initial Conditions

Temperature = 1000
...

End Block TDcads Initial Conditions

Bulk Particle Phase file: soot.xml
Bulk Phase Species
Bulk Phase Thermodynamics, molar volume

Bulk phase reactions.
Bulk Species Thermodynamic Properties

Surface Phase Mechanism file: sootSurf.xml
Surface Phase description
-> gas phase, bulk particle phase links
Surface Phase Species Thermodynamics

Surface Reactions

Particle Nucleation file: partNucl.xml

Particle Species Thermodynamics

-> gas phase, bulk particle phase links

Nucleation Reactions

Particle Species Description

 (includes autogeneration of particle species)

Gas Phase Mechanism file: ethene.xml
Gas Phase Species
Species Thermodynamic Properties
Species Transport Properties
Gas phase reactions.



16

1.3 How To Compile and Use CADS

CADS is based on the open source software code Cantera to calculate reaction rates and evaluate
thermodynamic quantities. Cantera has a Berkeley open source license, and is freely available for
download from http://sourceforge.net. CADS will also be available on http://sourceforge.net, and
has a Berkeley open source license associated with it.

To use CADS, Cantera and CADS must be downloaded from http://sourceforge.net. Autoconf scripts
automate the installation of Cantera and CADS. In order to use CADS, Cantera must be compiled
and installed. Then, CADS applications link against the installed Cantera libraries as a Cantera ap-
plication. Further directions for installation of the software are included in the downloaded files.

Cantera has both a python and a matlab front end to it. Currently, CADS does not have these front
ends. In order to use Cantera’s CTI file format, Cantera must be installed with at least the “mini-
mal python installation” option. 

1.4 Outline of the Report

The report is broken up into chapters, each one focussing on a major physical process instantiated
as a kernel operation within CADS. The first chapter is focussed on describing the sectional repre-
sentation and numerical details associated with this representation. The following chapters con-
centrate on individual kernel options within CADS that comprise its functionality: condensation,
coagulation, nucleation, particle surface growth (a distinct component operation of condensation),
bulk chemistry, and transport properties. Then, the last two chapters describe the equations behind
TDcads, the particle PSR/batch reactor simulator, and provide a couple of example problems us-
ing TDcads. Additional TDcads examples are provided in the downloadable source code.
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2. Equation and Section Model Setup

In this chapter, some of the critical terminology for the section method is outlined. The independent 
variables are delineated. How the sectional bins are set up from the input file is described. Lastly, 
numerical issues related to all of the individual source terms are discussed.

2.1 Particles versus Clusters

The terms, clusters and particles, will refer to distinct concepts in this document. Particles, a 
general term, refers to any condensed phase object of any size in the particle phase. The term, 
cluster, refers to a subclass of particles, where the modeling package will follow them as either 
distinct particles or will bin them via their discrete sizes, while averaging their compositions to 
produce a single derived composition for a given discrete size. Currently, clusters are not 
implemented in the current version of the package, and represent a research opportunity.

2.2 Monomer Unit

The concept of the monomer unit (MU for short) is central to the technical description and 
implementation of the modeling package and its connection to the underlying gas-phase kinetics 
mechanism. A monomer unit represents the fundamental building block for units within the 
particle modeling package. There may be more than one type of building block within the modeling 
package, in which case particles will have varying concentrations of these monomer units as a 
function of particle size. A monomer unit is closely akin to the concept of a “molecule” in the gas 
package. Each type of MU is made up of a fixed number of elements and has a stoichiometry based 
on the number of elements. The underlying gas package dictates what elements are defined in the 
combined package. However, a monomer unit doesn’t necessarily have to be defined as a molecule 
in the gas package. For example, we might define “SiO2”, as a monomer unit in the particle 
package. It is comprised of one silicon element and 2 oxygen elements. The molecule, SiO2, 
doesn’t necessarily have to exist as a gas phase molecule in the gas phase mechanism. A cluster of 
size 10 comprised of this monomer unit would consist of 10 silicon atoms and 20 oxygen atoms. 
However, in all technical specifications in the particle package it would be referred to having a size 
of 10, even though it actually consists of 30 atoms.

In applications of CADS that use Cantera’s solid-phase thermodynamics capabilities, each monomer 
unit must correspond to a solid phase species in the thermodynamic phase that represents the 
condensed phase of the particle. In this case, there is a one-to-one correspondence between 
monomer units and solid phase species within Cantera.
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2.3 Discrete Size Regime

Originally this project was to include a discrete size regime. We may get there yet in later years.... 
For now, this section will just introduce the nomenclature employed in a discrete size regime 
submodel. Following, we refer to the entire model as discrete section model (DSM). However, the 
size regime of the DSM may be broken up into a Discrete Size Regime (DSR) and a Sectional Size 
Regime (SSR). Our DSM model only contains a SSR region. The SSR regime is where a range of 
particle sizes are included in a single bin. A DSR regime is where each bin only includes a single 
total monomer unit value. Variations in mole fractions of individual monomer unit values may 
occur as well as degeneracies in the underlying geometry within a DSR bin. In the future a DSR 
region may be added in order to understand nucleation further. However, it would seem not to be 
worth it, unless detailed thermodynamic and kinetic information about molecules in the DSR 
region were available to make the extra computational cost worth it.

2.4 Description of Independent Variables Within the Particle Package

Within CADS, all particle sizes are expressed in terms of monomer units as the fundamental 
independent variable. For example, a cluster containing 25 monomer units is size 25. Describing 
the particles in this manner provides an unambiguous size even when multicomponent composition 
may produce a situation in which a particle with more monomer units has a smaller diameter or 
mass than a particle with fewer MU’s. The concentration of clusters and particles will also be 
tracked in monomer units. For example, 1010 particles per cm3 with size 25 monomer units is a 
concentration of 2.5x1011 MU per cm3 or 4.15 x 10-13 moles of MU per cm3.

The choice of fundamental units within a section method application is not a straightforward 
decision. Other researchers have used different fundamental units. However, the advantage to 
using monomer units is that they are easily added and subtracted, and their use allows for a method 
that may rigorously conserve mass, element, and particle number. Quantities such as particle 
diameter or particle mass are considered to be derived quantities, easily calculated from an 
equation of state for the particle and from the fundamental independent variables expressed in 
terms of MU’s.

2.5 Description of a Section

The size of a particle is a continuous function of the total monomer unit size, . In general the 
particle size may vary between zero to infinity. The evolution of a distribution of particles is in 
general an integral-differential equation. A section method breaks this problem up by separating 
the continuous distributions into a finite number of sections. Section boundaries are given in units 

µ
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of MU’s, or monomer units. The lower bound for section 0 is the particle with the smallest number 
of MU’s; the name is , (named m_v0 in the code). , an important parameter for a section 
model implementation, is an input to the particle modeling package. Below this quantity all 
particles are lumped into clusters and species. Each section L will extend from a lower MU bound 
of  to an upper MU bound of . The number of sections, m_numsections, in the section 
model is an input parameter to CADS in the Section Model Definition block. This is described 
later in Section 2.11

Within CADS, there is no inherent limitation in the spacing of section boundaries. One popular 
choice for spacing is to use a geometric progression, using a factor of 2 in size between each 
subsequent section, e.g. Eqn. (2.1). Spacings of this size and greater tends to minimize the cost of 
evaluating the coagulation operator.

(2.1)

Thus, a collision between one particle in section L - 1 and any other particle with equal or lower 
MU value will result in an agglomerated particle will never fall into a section higher than section 
L. Eqn. (2.1) is a specific example of geometric spacing of sections where each section boundary 
is a multiple, g, of the next section boundary, Eqn. (2.2).

(2.2)

The maximum MU value followed by the section model is named , labeled 
m_vmax within the program.  is also input from the setup file. However, it may be ignored in 
some cases. As an alternative to geometric distributions, internal boundaries within the sections 
may be determined via an equispaced log base 2 distribution function, Eqn. (2.3).

(2.3)

The overall control for how the boundaries of the sections are determined and what the minimum 
and maximum values of the section bounds are is determined by the “Section Spacing Type” 
card, described later in Section 2.11.

A sectional model is constructed by binning the continuous representation of the particle 
distribution function, , or monomer distribution function, , into  bins. Eqn. (2.4) 
presents the formulas for the total concentration of monomer units in the ith bin, , and the total 
concentration of particles in the ith bin, .
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(2.4)

The basic building blocks for CADS involves the monomer unit distribution function, . 
 is distributed within each section via the following manner. Within each section,  

is described by a discontinuous Galerkin finite element representation with varying order:

. (2.5)

 is the basis function for the jth degree of freedom in the representation, and  is the 
coefficients for the jth basis function.  are the basic independent variables in the section model. 
The term discontinuous refers to the fact that the distribution may be discontinuous across section 
boundaries, thus . Note this allowed discontinuity in particle distributions 
does not present a problem with satisfaction with the underlying integro-differential equation 
representing the particle distribution. That equation, which involves but is more general than a 
purely advection equation, may allow for abrupt discontinuities in the particle distribution as a 
function of size that change as a function of time and space.

The next section will describe the types of basis functions that have been implemented.

2.6 Basis Functions for Sections

Basis functions are implemented via a virtual base class. There are currently 3 instantiations of the 
basis class, 2 involving a single degree of freedom (DOF-1) within the section and one involving 
two degrees of freedom (DOF-2) within the element. The two single degree of freedom classes 
differ in what is held constant within the section. This issue has received considerable attention 
within the literature; a lot of work has been carried out to determine what implementation gives the 
best overall results for the condensation and coagulation operators [14]. We note here that the 
virtual base class implementation of this discrete section model allows for an interested user to 
develop different implementations of basis functions which hold different quantities fixed rather 
easily.

The sectionBF1.cpp implementation holds the MU distribution constant within a section. This is 
equivalent for the equations of state used so far to holding the particle volume constant within each 
section.
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 where (2.6)

Another class implementation sectionBF1_logv.cpp treats the MU sectional distribution as 
lognormal dependent on  within the section, Eqn. (2.7), though little work has been done with 
this implementation.

 where (2.7)

The two degree of freedom implementation, sectionBF2.cpp, uses the MU values at the top and 
bottom v values of the sections as unknowns. Then, it assumes a linear distribution of MU’s within 
a section, Eqn. (2.8).

(2.8)

 where  and .

There are many choices and different alternative formulations that could have been made. For 
example, degrees of freedom based on increasing order of the interpolation polynomial (i.e., basis 
functions of 1 and  in this case) are the common choices for discontinuous Galerkin treatments. 
However this choice was not made here. Also, a linear function of the particle number within the 
section could have been implemented instead of the MU number. The merits of these choices and 
alternatives can be determined in the future. 

2.7  Details about Dependent vs. Independent Variables in the CADS Package

Independent variables are the formal unknowns that are part of the solution vector of an 
application. Dependent variables are derived from functions of independent variables. In order to 
formulate an exact Jacobian, for example, for the particle source terms, which is required for an 
implicit solution algorithm, it must be made very clear what is an independent variable and what 
is a dependent variable. There are two types of independent unknowns within the CADS package. 
The first type of independent variable are the coefficients for the basis functions for the distribution 
of the total monomer units in a section. The formula for the particle monomer unit distribution 
function in a section i, , for a degree of freedom 2 distribution is given by Eqn. (2.9).
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(2.9)

 and  are the basis functions for the low and high modes in section i. They are currently 
defined as traditional linear finite element functions of  (see Eqn. (2.8)).  and  are the 
coefficients for those basis functions, and they are considered the independent variables within 
CADS.

The total density of monomer units in section i, , may be expressed in terms of the distribution, 
, by the following integral formula,

, (2.10)

where  and  are coefficients of the section integral. The number of particles in a bin, , is 
given by the following integral formula,

, (2.11)

where  and , Eqn. (2.12), are coefficients of the section integral in Eqn. (2.11).

(2.12)

Note, the corresponding  and  coefficients for the DOF-1 implementation given in Eqn. (2.6) 
are derived in Eqn. (2.13).

, (2.13)

When there is more than one type of MU in the section, additional degrees of freedom are defined. 
These are defined as , the total monomer unit density of monomer unit type k in section i.  
becomes a dependent variable given by the following formula:
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, (2.14)

and is never explicitly included in a vector of independent unknowns. Eqn. (2.14) and its 
dependencies must be reflected in the Jacobian entries, whose evaluations are influenced by the 
formal definition of independent vs. dependent variables. Note, because of this definition, the 
source terms for condensation and coagulation are independent of the values for , in many 
practical cases. This fact leads to a computational savings, because the dependence of the 
coagulation and condensation operators on the multiple MU unknowns, , may be neglected in 
practice.

To sum up, for the DOF-2 case with nmu different types of monomer units, the unknown vector 
for each section i, , can be described by Eqn. (2.15).

(2.15)

If there is only one monomer unit type, then there are no  degrees of freedom in the unknown 
vector. The unknown solution vector for the DOF-1 case with nmu different degrees of freedom is 
given by Eqn. (2.16).

(2.16)

2.8 General CADS Source Term and Discussion of Conservation Properties

We start off with the specification of the population balance equations for particles undergoing a 
certain set of coagulation, nucleation, surface growth, and surface evaporation reactions, Eqn. 
(2.17), which is the same as Eqn. (1.1) without spatial gradients.  is the concentration 
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distribution of particles (kmol particles m-3 MU-1) having monomer unit size  at time, t.  
is the concentration distribution of monomer units (kmol particles m-3 MU-1). 

 is the coagulation rate constant for particles of monomer unit size  and  in units of m3 
(kmol particles)-1 s-1. The expression in Eqn. (2.17) reflects the hyperbolic nature of the growth 
term [15], by recognizing that the condensation term in Eqn. (2.17) represents a continuous particle 
flux (i.e., velocity) in the monomer unit direction [2].

(2.17)

 represents the net growth rate of particles of size  at time t.  is 
the total evaporation rate of particles with monomer size ;  is comprised of the sum of the 
individual evaporation rates of each different monomer unit type.  is the surface growth 
reaction rate for particles of monomer unit size .

We seek a numerical method which is robust according to the following metrics. The main metrics 
have to do with the conservation of integral moments, , of the above equation, Eqn. (2.17). For 
example, the zeroth moment is a specification of the change in the total number of particles, while 
the first moment expresses the total conservation of mass in the system. These moments are 
important due to the fact that they are the observables of the system, especially with regards to light 
scattering experiments (i.e., the moment corresponding to the square of the volume). Also, certain 
operations observe conservation properties with respect to these moments. For example, surface 
growth conserves particle number and, in combination with the gas phase, conserves mass. In our 
initial discussion, we will assume that the model includes just one type of monomer unit in order 
to simplify the formulas to focus the discussion on these numerical issues.

(2.18)

Another metric for numerical robustness of a discretization scheme is to reduce to a minimum the 
numerical diffusion associated with the solution of Eqn. (2.17). Numerical diffusion is the 
unphysically large spreading out of the particle concentration during the transient process of 
coagulation or condensation, especially leading to the creation of a high monomer unit tail in the 
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particle distribution function. This issue has been of much concern in the literature recently, though 
its importance in terms of understand soot formation schemes and its influence on heat transfer and 
kinetics within flames is an open question.

We seek to derive a sectional model by binning the continuous representation of the particle 
distribution function, , or the monomer distribution function, , into  bins. Eqn. 
(2.4) presents the formulas for the total concentration of monomer units in the ith bin, , and 
the total concentration of particles in the ith bin, .

The basic building blocks for our model will involve the monomer unit distribution function, 
. With the usage of stoichiometric coefficients to describe reaction rates, the use of  

will lead to conservation of mass properties. Conservation of particles numbers may also be 
assured if careful attention is paid to each source term. Here conservation of particles means that 
the particle number changes strictly according to that dictated by the coagulation and nucleation 
operator and not due to numerical artifact.

In order to calculate the time varying change in the independent variables, the section basis 
coefficients, and the total monomer units of type k, , source terms for each section, , are 
constructed. This source term vector is one of the basic outputs from CADS. The source term for 
DOF-2 cases has the following format:

 . (2.19)

 is the source term for total monomer units within section bin i. It represents the source rate 
of monomer units to the particle phase for particles with sizes ranging from  to ; it has units 
of kmol MU m-3 s-1.  is the source term for particles within section bin i, with units of 
(kmol particles) m-3 s-1.  is the source term for monomer units of type k within section i. It has 
units of (kmol MU_k) m-3 s-1.  is the source term for gas phase species k due to interactions 
with particles in (or being created within) section i. It has units of (kmol) m-3 s-1. Each source term 
component is separated into 4 different kernel operations: condensation, coagulation, nucleation, 
and bulk-particle kinetics. Each are separable source terms and are discussed in their own chapters 
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in this manual. The condensation source term involves particle - gas reactions taking place on the 
surface of particles that don’t change the number of particles. The coagulation source term involves 
particle-particle binary reactions and doesn’t involve the gas phase. The nucleation source term 
involves reactions that create or destroy particles, in which gas phase species comprise either all of 
the reactants or all of the products. The bulk-particle kinetics involves intra-particle phase 
chemistry reactions that optionally may also create gas-phase species.

The source term for DOF-1 case, Eqn. (2.20), differs from the DOF2 case in that the source term 
for particles is dropped.

(2.20)

Essentially, because there is only one degree of freedom representing the distribution of particles 
within section i, there can be only one independent source term representing the moment of the 
distribution for that section. The total monomer unit source term is retained because it represents 
the conservation of mass.

Introducing more nomenclature, the vector sectional source term for section i, , may be broken 
down by physical effect, via the following Eqn. (2.21).

(2.21)

, , , and  are the sectional vector source terms due to coagulation, 
condensation, nucleation, and bulk-phase particle reactions. These source terms, along with 
particle transport and radiation properties, are the basic building blocks for formulating zero-, one- 
and multi-dimensional simulations of the evolution of particle distributions. 

In addition to the source term, CADS provides quasi-analytical Jacobians of these source terms with 
respect to the CADS independent variables and gas-phase species concentrations. “Quasi-analytical” 
here means that the final analytical result may have been partly or wholly derived from taking 
intelligently chosen numerical differences of individual source terms, under the CADS “hood”. 
Because the monomer unit coordinate, , behaves somewhat like another physical dimension, 
intelligently choosing the numerical derivatives below the operator level, i.e., underneath the 
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, , , and  level, has been shown to lead to at least an order-of-magnitude 
speed-up in the calculation of a jacobian over a method which takes numerical derivatives at the 
overall particle source term level , due to a reduction in operation count [16].

CADS rigorously conserves elements, mass, enthalpy, and particle number in the following sense. 
Each of its physical effect operators, , , , and , conserves these quantities 
independently up to numerical roundoff error. The DOF-1 case conserves particle number, even 
though there is no explicit source term for particles; it does this, because each of the physical source 
terms are constructed to achieve this, albeit at the expense of increased numerical diffusion, as will 
be shown.

2.9 Treatment of the First and the Last Section Bins

Problems with conservation principles arise when the source terms that lead to higher particle MU 
values are applied to the last section in a section method. If left untreated, the conservation of mass 
principle and conservation of particles treatment will be violated, because for any fixed section 
method, there is a maximum value for the monomer unit to particle ratio, . There are 
several different methodologies for handling the last section bin in a sectional method. The first 
methodology is to let large particles “disappear” from the calculation. For example, any particle 
which through coagulation events gets larger than , simply is dropped from the 
calculation, with the underlying thought that extremely large particles have small Brownian 
diffusivities, small relative surface areas, and thus low reactivities. 

However, CADS uses a different approach, which adheres to the maintenance of conservation 
principles. CADS turns off all source terms for the last section where particles in the last section are 
reactants and which leads to an increased monomer unit to particle ratio. For example, it turns off 
the surface growth term in the last section, if and only if the surface growth term is positive. It turns 
off coagulation source terms in the last section if one of the reactants for the coagulation reaction 
is in the last section. Therefore, the coagulation kernel can add to the concentration of particles in 
the last section, but it can’t create particles larger than .

This treatment of the last section, therefore, preserves conservation of mass and particles, at the 
expense of treating the last section bin as a relatively inert holding bin (except for etching surface 
reactions).

Etching condensation reactions applied to the first section bin require special treatment as well. 
Normally, for etching reactions, the condensation reaction would create a flux of particles that bin 
L to section bin L-1. However, this process breaks down for the section bin 0. Through various 
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numerical experiments, an adequate treatment for this problem has been found to be that the 
surface reaction in section bin 0 should remain unchanged. However, when the monomer unit to 
particle ratio in section bin 0 has been reduced to the minimum permissible value, , then the 
total particle number should be reduced in such a quantity that maintains conservation of mass/
elements, at the expense of the conservation of particles. The major effect of this is that it allows 
for etching surface growth reactions to fully depopulate a particle distribution, if given enough 
time. This treatment will be explained fully in the condensation chapter. 

2.10 Thermodynamics

CADS make extensive use of Cantera’s internal thermodynamics capabilities. Both the surrounding 
gas phase and the particle’s bulk phase utilize Cantera’s generic ThermoPhase object, and therefore 
must have a full equation of state implementation associated with it. In order for an aerosol to form 
and be stable with respect to the surrounding environment, formation of the bulk particle phase 
from elements of the surrounding gas phase, must be thermodynamically stable, i.e., must lead to 
a lowering of the total system Gibbs free energy. CADS is a truly reversible system.

However, particle surface tension effect have so far been ignored within CADS thermodynamics 
implementation in terms of their overall driving force on condensation reaction rates (p. 257, ref. 
[2]). Thus, the Kelvin relation has been neglected. This is probably appropriate for the initial class 
of problems used for CADS, i.e., solid phase, high temperature reactions. However, it isclearly 
inappropriate for liquid-phase aerosol particles at lower temperatures. In these problems, the 
Kelvin relation, which relates the supersaturation of the gas phase that is necessary for equilibrium 
to hold with respect to the size of the particle, and its effect on classical nucleation theory limits 
the smallest aerosol size that is attainable. For water at room temperature, this size is roughly 0.2 

 [2]. However, this limitation doesn’t hold for gas->solid aerosol reactions at high temperature, 
because the effects of the surface energy increase is much reduced, practically to the point where 
nanometer-sized particles are stable relative to their monomer precursors (e.g., see the Soot, Si 
particle and SiO2 particle literature). 

2.11 Section Model Definition Block of The Particle Input File

Much of the set-up of the sectional bins is handled in the input block, Section Model 
Definition. Figure 2.1 displays a commented listing of the line entries in the block. The first 
couple of entries lay out the number and type of the particle section bins, as well as the monomer 
unit boundaries for the bins. The number of sections, the number of degrees of freedom in a section, 
and the lower bound for section 0 are required entries, and their values are always honored. The 
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section spacing type keyline determines how the section boundaries are laid out. The 
difference between linear, log base 2, and geometric spacing has been covered in section 2.5. The 
following numbers are valid entries for the key line.

0 - Logarithmic spacing preserving factor of 2
geometry requirement. Upper bound input, vmax, 

Figure 2.1 Section Model Definition Block

START BLOCK SECTION MODEL DEFINITION
!------------------------------------------------------------------
!  Number of Sections = int  (required) (default = 20)
Number of sections = 100
!------------------------------------------------------------------
! Number of DOF's per section  = int  (required) (default = 2)
!  limits = 1 or 2
Number of DOF's per section = 2
!------------------------------------------------------------------
!  Lower bound for section region = int
!    (required) (default = 20)
!    Value of the monomer unit number for the bottom boundary of the first section.
Lower bound for section region = 35.
!------------------------------------------------------------------
! Upper bound for section region = {number}
!      (required) (default = 2.0E6)
!   Value of the monomer unit number for the top boundary of the highest section.
Upper bound for section region = 280.

   !------------------------------------------------------------------
! Section Spacing Type = [ 1 - 5]
!   (required) (default = 2)
Section spacing type = 3

   !------------------------------------------------------------------
! Section Spacing File = [filename] 
!        (conditionally required) 
Section Spacing File = 1.5
!------------------------------------------------------------------
! Spacing Geometric Ratio
!      (required)
Spacing Geometric Ratio = 1.5
!------------------------------------------------------------------
! Number monomer unit types = [number]
!   (conditionally required) (default = 1)
Number of monomer unit types = 1
!------------------------------------------------------------------
! Identity of monomer unit types = species_1 species_2 ...
!        (conditionally required)
! Identity of monomer unit types = C2H2
!------------------------------------------------------------------
! Dimensionality of transport = {number}
!     (required) (limit = 1 to 3) (default = 3)
Dimensionality of transport = 1
!------------------------------------------------------------------
!  Thermal Conductivity of Particle = number
!      (required) (mks units)
Thermal Conductivity of Particle = 80.7
!------------------------------------------------------------------
! BLOCK MU Molecular Weights
! Conditionally required
start block MU Molecular Weights
 C2H2 = 26.0
end block   MU Molecular Weights 
!------------------------------------------------------------------
! BLOCK Molar Volumes 
!        Conditionally required (units m^3/kmol
start block Molar Volumes

C2H2 = 0.00619
end block Molar Volumes
!------------------------------------------------------------------

END BLOCK SECTION MODEL DEFINITION
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is ignored.
1 - Linear spacing.
2 - Logarithmic spacing between specified max and min
3 - Geometric spacing, given by the section lower bound

and the value of the Spacing Geometric Ratio card.
Disregard the section upper bound value.

4 - Geometric spacing of section boundaries
using a fixed vmax. Geometric factor is ignored.

5 - The exact spacing is read in from a file.

Many of the entries (# 0, 3, 5) cause the value in the subsequent Upper bound for section 
region card to be ignored. Entry #4 causes the Spacing Geometric Ratio card to be ignored, in 
contrast. If entry #5 is selected, the exact spacing may be read in from an ascii input file, with one 
double per line. The name of the file is read in from the Section Spacing File card.

The next group of cards are only needed if Cantera is not used to specify the composition of the 
particle bulk-phase (see Chap. 7). These cards set the number of monomer unit types (Number 
monomer unit types) and their ascii names Identity of monomer unit types. If Cantera is 
used, the information is obtained from the Cantera XML or CTI file listed in the Cantera 
Particle Condensed Phase File card. This file contains the thermodynamic description of the 
particle condensed phase, which of course includes the number and names of the bulk-phase 
species in that phase. Note, these cards may be included when Cantera is also used. The number 
and names of the bulk species must match exactly with what’s in the Cantera file.

The dimensionality of transport card is used to size loops and memory storage with respect 
to the number of physical dimensions. This is used in transport routines that determine the terminal 
particle velocity, for example.

The Thermal Conductivity of Particle card is a required parameter to set the particle thermal 
conductivity (in MKS units). The particle thermal conductivity is used in the calculation of the 
terminal particle velocity. See Chapter 8 and ref. [17].

The last two items in the Section Model Definition Block are sub blocks that specify the 
molecular weights of monomer unit species and the molar volumes (MKS units) of monomer units. 
These blocks are required if Cantera is not used. If Cantera is used, then the information is 
redundant, but checked for internal consistency with Cantera’s data. CADS uses a constant partial 
molar volume approximation for the condensed particle phase.

Note, the paradigm used by CADS is that if Cantera can supply the information, then the input file 
doesn’t need to supply the same information. However, if the input file does supply the same 
information, an error condition results unless Cantera and CADS exactly agree.
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2.12 Relative and Absolute Error Tolerance Conditions Within CADS

The unknowns in the discrete section method involve a range of  for a range of particle sizes, 
expressed on a grid of  that varies considerably in spacing. The particles sizes can vary to such 
a great extent that convergence requirements for predictor-corrector methods must also take the 
different grid spacings in  into account as well. Predictor-Corrector time-stepping methods use 
error control that is based on relative error control, RTOL, and an absolute error control, ATOL, 
approach [18, 19]. RTOL is the relative tolerance allowed in each solution variable at each time 
step, while ATOL is the scale of the solution variable to be used at each time step so that small 
values of a variable don’t create undo influence on error norms. Typically a weight vector,  is 
formed for each solution component, i, 

, (2.22)

where  is a lagged value of the solution component, i, and then the weight vector is used in 
the calculation of a dimensionless measure of nonlinear convergence results or time-step truncation 
error via Eqn. (2.23).

(2.23)

RTOL may be considered dimensionless, while ATOL carries with it the dimension of the solution 
variable, . Given that the independent unknowns in CADS have widely different scalings, given 
that they represent particles concentrations ranging in molecular sizes to millimeter sizes, and 
given the fact that the  and the  independent unknowns have different formal units, a 
systematic method for assigning values for  must be formulated. Below we derive a 
method to do this:

Let , Eqn. (2.24), be the total amount of monomer units in the particle phase. 

(2.24)

Typically, changes in quantities that involve factors of less than , where 
 is typically around  even for extremely accurate calculations, are insignificant and 

may be ignored, and additionally should be ignored. This is the essential trade-off we make when 
we use an ATOL requirement in error tolerances. Below a specified value of the total value, 
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numerical round-off errors prevent the accurate calculation of a result; convergence stalls may 
occur if more accuracy is requested than can be delivered given finite-precision arithmetic.

Eqn. (2.24) will induce different requirements in each of the sections due to the disparities in  
values. Absolute error tolerances for sectional basis coefficient unknowns,  and , are then 
defined by Eqn. (2.25).

. (2.25)

where 

Eqn. (2.25) equalizes the absolute error tolerances, in terms of the variation in  that each 
section i causes.  is a nominally small monomer unit amount that is added in order to ensure 
that  always.  is set such that it is comparable to the  parameter used for 
the surrounding gas phase species. Gas-phase species unknowns are usually expressed in terms of 
mass fractions. If so, the units must be put on the correct basis via Eqn. (2.26), for example 
assuming an ideal gas.

, (2.26)

The other variable type in the section equation set are ‘s for MU types greater than one. They 
require a different expression, Eqn. (2.27), for their absolute tolerances, since  has units that 
are the same as .

. (2.27)

Note that the absolute error tolerances will systematically increase as a function of section 
refinement; this problem has been corrected to first order by adding a mitigating  
multiplicative refinement factor to all error tolerances.

A unified way to represent the ATOL calculation is to define the following quantity, .

(2.28)
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 is the section-bin concentration of monomer units (kmol MU m-3) that CADS considers high 
enough to solve accurately. Concentrations lower than  are too small for CADS to worry 
about. Concentration higher than  are solved for accurately, independent of section bin 
number and particle number density.

2.13 Description of Low-Cutoffs Limits Within CADS

For the DOF-2 implementation, many of the individual algorithms for kernel operations within 
CADS (e.g., coagulation or condensation) have two forms of the source terms that are used: the 
accurate form and the stable, nonnegative form. Depending upon the value of , the total 
monomer units in a section, a switch is made between the stable source term and unstable source 
term with a ramp. One of the key items needed in the decision on whether to implement a ramp is 
the relative concentration of monomer units in the section bin. If the section bin has a “small 
concentration” of particles, then a ramp will be imposed between the accurate form and the stable, 
nonnegative formulation. As the concentration of particles in a section decreases to zero, the stable, 
nonnegative form of the kernel is employed exclusively. When there is a large concentration of 
monomer units in a section, the accurate form of the kernel is used.

Therefore, CADS maintains a definition of what a “small concentration” is for each section L, called 
. The relationship between  and  was explored in terms of the numerical 

behavior of the algorithm [20]. The relative values of  and  have a large influence 
on numerical behavior.  is currently give by 

, (2.29)

and, the cutoff value for the section basis coefficients and MU> 1  values are:

(2.30)

.

 is set to be a couple of orders of magnitude larger than , following the 
recommendations of [20].
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2.14 Specification of Ramps Within CADS

As noted in the previous section, CADS makes use of ramps in its source terms to create continuous 
first derivative changes from accurate to numerically stable behavior for DOF-2 discretizations. 
Here, we describe the numerical form of the ramps. The ramps consist of cubic polynomials of the 
form:

 where  and (2.31)

 is a functional of the current solution vector, , Eqn. (2.15) (and not the time step or source 
term itself).  is the solution value or solution condition where the accurate source term evalua-
tion method is used.  is the solution value or solution condition where the stable source term 
evaluation method is used. Ramps are used to provide final source terms of the general form:

. (2.32)

There are two cases where ramps are used. The first case is when the total monomer units in a sec-
tion is approaching the minimum cutoff level  discussed in the previous section. Then, typ-
ical functions for x are .  or . Typical 
values of  and  are .

The second case occurs even for sections with a large populations of monomer units. If the skew 
in a section, i.e., the ratio of the section basis coefficient with the highest value of monomer units 
to the section basis coefficient with the lowest value of monomer units gets higher than a cutoff, 
then a ramp is imposed between source term formulations which are accurate to source term for-
mulations which are numerically stable. For example if  is greater than , the following value 
of x is defined:

 with  and . (2.33)

Section bins with coefficients whose relative values don’t differ by a factor of 10 are handled with 
accurate source term treatments. Section bins whose coefficients differ by more than a factor of 
30 are handled with numerically stable source term treatments. Sections bins with coefficients 
have intermediate relative values are handled with hybrid ramped source term treatment with a 
continuous first derivative.
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2.15 Interplay Between Cutoffs and Ramps

Ramps are necessary to maintain non negativity of sectional basis coefficients for the DOF-2 
implementation. However, the imposition of ramps often creates a situation where the nonlinear 
solution problem will not be able to be solved without numerical damping of the update vectors. 
In general, the use of numerical damping factors is not a problem, especially far from the 
convergence criteria, because numerical damping is almost always needed anyway on practical 
problems involving kinetic systems.

However, near the convergence criteria (and below), it is always prudent to have a nonlinear 
system that doesn’t need numerical damping to converge. If this is to be achieved, then the 
monomer unit cutoff values  must be set to be a couple of order of magnitudes greater than 
the  values. Then, this will ensure that the relative error tolerance will dominate the 
weighting vector if the solution to the system is in the ramp section, and it will probably ensure that 
the system will be in Newton’s domain of convergence (without damping) when the criteria for 
satisfaction of the nonlinear equations are satisfied. 

The drawback to having  greater than  is that numerical damping will be necessary 
in more cases, and there will also inevitably more time step truncation error failures, because the 
system becomes more nonlinear for magnitudes of the sectional basis coefficients which the 
predictor-corrector solver is trying to solve accurately.

However, in contrast, if  is set lower than , then some of the sectional basis 
coefficients may be negative (though their magnitudes are below ) when the nonlinear 
solver has achieved convergence. A significant degree of solution cropping will have to employed 
to maintain positivity. In general less time-step truncation errors will result from this method, 
because the ramps will occur for magnitudes of the sectional basis coefficients which the predictor-
corrector solver is not trying to solve accurately.

However, time-step truncation errors are a relatively small price to pay for increased non negativity 
and quadratic convergence properties at the end of a nonlinear iteration. And, their frequency may 
be mitigated by adjustments of the severity of the ramps. Some of this interplay was discovered 
late in the development cycle of CADS [20]. Therefore, the theory has only been partially 
implemented within the source code. Essentially, this is an important practical subject when 
solving the resulting non-linear equations system.
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3. Condensation Operator

In this section, the numerical method for calculating the source term for condensation will be 
described. The part of Eqn. (2.17) related to the condensation kernel is replicated below as Eqn. 
(3.1). The source term comes about by separating Eqn. (3.1) into two terms representing the time 
derivative of the state variables of the particle distribution (e.g., see Eqn. (2.15)) and the source 
term due to the condensation kernel,  (e.g., see Eqn. (2.19)). This chapter will describe the 
formulation for . For a description how the time derivatives of the state variables are 
formulated and for how it all goes together in one case, see the later TDcads chapter.

(3.1)

 represents the net growth rate of particles (i.e., growth minus etching) of size  at time t, 
in units of # of monomer units per second. In implementing the surface growth rate, all surface 
growth rates in the code are calculated on a “per surface area” basis. Then, the surface growth rates 
per surface area are multiplied by the surface area of a particle with  total monomer units to 
obtain . Note,  is not on a kmol MU basis.  moves particles along the 
sectional basis coordinates axis, e.g., , , ,..., which is on a straight “number of monomer 
units” basis. Further description of the calculation of  will be delayed until the Surface 
Growth Chapter. In the current chapter, it will be assumed to be a given function.

The expression in Eqn. (3.1) is a purely hyperbolic equation [15]. The condensation term in Eqn. 
(3.1) may be considered to represent a continuous particle flux (i.e., velocity) in the monomer unit 
direction [2], analogous to other types of hyperbolic equations.

It will be shown that a first-order discontinuous Galerkin treatment [21, 22, 23, 24] of the 
condensation reaction equation leads to a numerical method which conserves mass and particle 
number and which exhibits a small amount of numerical diffusion. Also, because the mesh is fixed 
with respect to the boundaries of the sectional bins, the method allows for the addition of one or 
more physical coordinates into the equation system with relative ease. 

First, the MU coordinate direction is split into  sections, which are considered as “elements.” A 
solution defined on the finite-element space, , of piecewise polynomials of degree , 

, is sought, with no continuity requirements across interelement boundaries, defined on the 
set of finite elements, , whose size is bounded in all dimensions by the size, h.

(3.2)
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Next, the boundary  of the finite element  is split according to the direction of the particle 
flux, i.e., the sign of  used in the previous direction. Let  represent the inflow part of the 
finite element boundary, while  will represent the outflow part of the boundary.

 (3.3)

 (3.4)

 is the outward unit normal to  at x. Therefore,  represents an inflow into the 
finite element.

Following the original literature on the discontinuous galerkin method [21,22,23], the equation 
representing particle condensation, Eqn. (3.5), may be written as

(3.5)

Extra surface terms are only added for upstream interfaces, , not downstream interfaces, . 
 represents the jump discontinuity across the  interface created by the discontinuous 

interpolation of the independent variable, , across element boundaries.  represents the 
upstream component, which in this case, is calculated from the finite element interpolation of  
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Figure 3.1 Schematic of the setup of the 0-D Discontinuous Galerkin Method.  is the 
monomer unit distribution within a section, which is constant.  is the particle 
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the boundary integral in Eqn. (3.5) are depicted in blue.
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from the adjacent upstream element.  represents the finite element interpolation of  at the  
boundary.  is the value of the finite element basis function on the + side of the interface at the 

 boundary.  represents a one dimensional finite element, i.e. a discretization of the monomer 
unit coordinate, . Extensions to higher dimensional finite elements via inclusion of physical 
coordinates will be discussed later. Also, some authors have included the time coordinate as 
another coordinate of the finite element instead of treating the time derivative via the method of 
lines; this is called the “space-time method”, and has been shown to be effective. The space-time 
method won’t be used here, as the applications that use the particle package all use either the 
method of lines or a simple backwards Euler time-stepping strategy to handle time derivatives. 
Also, the particle’s time derivatives will eventually be coupled into the global time derivatives of 
the application, which has its own time scales. 

The inclusion of the jump discontinuity in Eqn. (3.5) may be understood by noting that if the other 
term are integrated by parts, then Eqn. (3.5) would resemble the standard finite element method 
applied to the single element, , with weakly imposed boundary conditions applied to the 
upstream boundaries. Now, the Galerkin method may be formulated by specifying that the solution 
should be such that for all , such that  satisfies Eqn. (3.5) for all .

Each finite element, , will correspond to a sectional bin. If for the moment,  is assumed to be 
positive everywhere for the case of pure condensation without etching, Eqn. (3.5) may be 
simplified to Eqn. (3.6).

(3.6)

First, formulate an example for the case where  is a constant function for section i, and 
zero in all other sections. The notation  will be used for this basis function. Each section, i, 
has a constant value for the monomer unit concentration within the section, . The 
particle concentration within each section has the form, .

Using this expression for  with  within section i, Eqn. (3.6) reduces to Eqn. (3.7), 
which can be seen to a standard upwind differencing scheme applied to a hyperbolic equation 
system for a control volume centered at the section midpoint:

 . (3.7)

And, equivalently the equation for the control volume i-1 becomes:
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(3.8)

It can be seen from Eqn. (3.7) and Eqn. (3.8) that the scheme conserves particles, since the same 
number of particles flow out of a lower section as flow into the section just above it. However, let’s 
determine whether Eqn. (3.7) conserves monomer units.

The continuum expression for monomer unit conservation applied to a single section i may be 
derived from Eqn. (3.1) by multiplying first by  and then integrating over the section, yielding 
Eqn. (3.9).

(3.9)

 is defined by Eqn. (3.9). The discrete analog of Eqn. (3.9) summed up over all sections may be 
written as Eqn.(3.10) assuming intersectional particle fluxes conserve mass and the growth rate is 
linearly interpolated.

(3.10)

Eqn. (3.8) can not be made equivalent to Eqn. (3.10). In fact, if  and  are constant over all 
sections, then Eqn. (3.8) would yield an unphysically zero growth rate for the total monomer units 
in contrast to Eqn. (3.10). The fact that the discretization scheme produced by the zeroth order, one-
unknown-per-section, discontinuous Galerkin method expressed by Eqn. (3.7) doesn’t conserve 
mass should not be a surprise considering there is only one degree of freedom in the section and 
Eqn. (3.7) was constructed from the discontinuous Galerkin method to conserve particles.

Instead of Eqn. (3.7), a discretization scheme is sought that conserves both particle number and 
monomer units. This may be achieved by starting with Eqn. (3.9) and (3.10) to define the end result 
of monomer unit conservation. Following ref. [25], a certain number of particles are moved into 
the next highest section in such a way as to conserve particle number while satisfying the 
generalized form of Eqn. (3.9). To start, the flux of particles into bin i from bin  is ignored for 
now. Let  and  be the average number of monomer units per particle in section i and 

; For one degree of freedom sections, these are constant quantities. Then, the conservation of 
particles property during a backwards Euler step from  to  is
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(3.11)

In Eqn. (3.11),  is the flux of monomer units from section i to section .  will be 
determined from the mass conservation principle. The generalized form of Eqn. (3.9) that accounts 
for the addition of MU’s into section  is

. (3.12)

Eqns. (3.11) and (3.12) represent a two equation - two unknown system that may be solved to yield 
the final result:

(3.13)

 is always negative as . Thus, the requirement of simulatneously 
conserving particles and mass leads to a negative net monomer production rate for section i due to 
condensation processes within section i. Monomer units are promoted to the next section where the 
number of monomer units per particle is greater in order not to grow the number of particles even 
when the total monomer units in the particle phase is increasing. Adding in the flux from section 

 to section i, which we initially ignored, the general expression for section i may be written as

. (3.14)

Numerical diffusion, where the particle distribution function is unphysically spread to higher 
monomer unit particles, will result from the scheme. However, Eqn. (3.14) is far preferable due to 
its conservation properties than Eqn. (3.7), especially considering the availability of the alternative 
scheme discussed in the next section which exhibits little numerical diffusion. Therefore, Eqns. 
(3.13) and (3.14) has been adopted as the condensation algorithm for 1 DOF-per-section 
interpolations with CADS.
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Note, if  is negative in Eqn. (3.13), i.e., etching of particles in section i is occurring, an 
analogous 2x2 system is solved, involving the calculation a particle flux from section i to section 

, that also conserves monomer units and particles.

3.1 First-order Discontinuous Galerkin Derivation

Let’s now formulate an expression for the first-order discontinuous Galerkin discretization of Eqn. 
(3.6). The monomer unit concentration in section  is represented by a standard discontinuous 
linear finite element basis function interpolation:

, (3.15)

where

 and 

Additionally, . For the purposes of the next derivation where conservation properties are 
derived, this may be rephrased via a linear combination as

, (3.16)

where  and , and the basis functions redefined as  and 
. Then, Eqn. (3.5) may be applied to section i, first using  to obtain

,

which simplifies to yield

. (3.17)
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(3.18)

Eqn. (3.18) is the particle conservation equation assuming a first order interpolation of the particle 
density within the section (note,  and ). 

The second equation, Eqn. (3.19), of the two equation, two unknown system for the unknowns 
corresponding to linear basis functions may be derivied by applying  in Eqn. (3.5).

(3.19)

The jump discontinuity term for this equation is zero, because the linear basis function, , is 
zero at . A coordinate transformation,  is carried out next on Eqn. 
(3.19) to give

.

After integration by parts, Eqn. (3.19) may be expressed as

. (3.20)

Next, addition of Eqn. (3.17) multiplied by  yields

. (3.21)

Eqn. (3.21) represents the equation for conservation of monomer units within the section. 
Satisfaction of the total conservation of monomer units equation, obtained by summing Eqn. (3.21) 
over all sections, follows.
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We have shown that an out-of-the-box first-order discontinuous Galerkin treatment of the 
hyperbolic discrete section model results in a numerical scheme which is conservative with respect 
to total mass and particle number. Since these conservation properties represent the zeroth and first 
moment of the particle number density integral, an additional question to answer is whether a 
second order discontinuous Galerkin method would additionally conserve the second moment of 
the particle number density. This conjecture is true, but not shown here.

In summary, for the DOF-2 implementation of condensation within CADS, Eqns. (3.18) and (3.21) 
are used to determine the unknown coefficients basis function coefficients,  and  in 
section i.

Note, in the above treatment, the assumption that  was positive was used implicitly. The case 
where  is negative is an extension of the above treatment. In this case, Eqns. (3.18) and (3.21) 
hold with the particle and total monomer unit TMU concentration vectors to use taken from the 
“upstream” side of the interface. However, now the upstream side of the interface is switched. The 
etching equations are given in Eqn. (3.22) and (3.23), where :

(3.22)

(3.23)

3.2 Extension of Discontinuous Galerkin Treatment to the Multiple Monomer Unit
Case

The treatment derived in the previous section may be extended to the case where there are multiple 
monomer units in each particle. There is no direct analog for conservation equation for one 
monomer unit type like Eqn. (3.21), which pertains to the total MU’s in the particles and to the 
particle number density. Instead, a monomer unit balance on a single monomer unit type due to 
condensation processes, Eqn. (3.24), is constructured.
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 (3.24)

 is the monomer unit concentration of type jmu. 

(3.25)

 is the mole fraction of monomer units of type jmu in section i. Other relations follow:

Thus, Eqn. (3.24) represents a species balance of jmu with respect to the current section; the first 
term on the lhs is the time derivative of the jmu monomer unit on the section, i. The other terms on 
the left side are due to the flux of of species jmu in particles entering and leaving the section due 
to condensation.  is the growth rate of a particle with total monomer unit concentration , 
with units of .  represents the condensation rate of species jmu on 
particles with total monomer unit numbers equal to .  is the concentration of particles with 
size . With the discrete Galerkin treatment, we must be careful to take into account the jump 
discontinuities in the monomer unit concentrations at the interfaces between sections when 
applying Eqn. (3.24). This requires that the  used in the intersectional flux expressions 
in Eqn. (3.24) be taken from the correct “upwind” side of the intersectional boundary.

Eqn. (3.24) provides one equation for the total concentration of each monomer unit within the 
section. If Eqn. (3.24) is summed up over all different monomer unit types, Eqn. (3.21) is properly 
obtained. Therefore, one of the balance equations for the distinct monomer unit types, the first one 
for CADS, is not linearly independent and must be discarded when solving the system. Eqn. (3.24) 
only provides one equation for each monomer unit type. Therefore, CADS does not allow variations 
in MU mole fractions within a section.
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3.3 Filtering Techniques for DOF-2 Discontinuous Galerkin Method

Numerical experiments quickly indicated that while the discontinuous Galerkin method showed 
great promise, it also needed various filtering schemes to maintain monotonicity and numerical 
robustness [23, 26]. For example, during the growth of an initial gaussian particle distribution in a 
repleneshing growth medium, one issue that arose occurred in the tail of the distribution. The 
sections did not drain uniformly to zero particle and MU concentration as they should have. 
Instead, they drained to a skewed MU distribution whose overall particle density was very near 
zero, but still  and . 

The equations for a single section may be analyzed to understand why this occurs with the raw 
equation set, Eqns. (3.18) and (3.21). These are presented in Eqn.(3.26), where we have ignored 
any particles entering the ith section, an appropriate assumption for a growing distribution. 

(3.26)

 is the MU concentration on the lower node of the ith section, i.e., at an MU value of .  the 
MU concentration on the upper node of the ithsection, i.e., at an MU value of .  is 
the concentration of MU’s in particles at , equal to .  is the growth rate in MU per 
second of a particle of MU size . Even if the growth rate per unit surface area is independent of 

, there is a surface area dependence on  that makes  a nontrivial function of .  is a 
linear function in  of the following form:

 where (3.27)

 and .

The L and H refer to the lower and higher side of the sectional distribution within a section. Thus, 
we may rewrite Eqn. (3.26) with no loss of generality to the following form:
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(3.28)

where

and .

A necessary condition for the stability of the numerical method and the disappearance of the 
skewness in the distribution is given below:

, when , , and . (3.29)

In order to ensure that this is the case, we solve Eqn. (3.28) by inverting the matrix:
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Figure 3.2 Pictorial description of the need to adjust the average MU value of parti-
cles for sections which are draining due to the condensation kernel. The 
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(3.30)

where

, , and  

n is the total particle density in the section, while  and  are the coefficients for the evaluation 
of n from the  and , the independent variables in the problem, determined from the 
volumetric integrations over the section.

Solving the first equation in Eqn. (3.30) for the time derivative of , Eqn. (3.31) results.

(3.31)

where 

 is the average monomer units per particle in the high mode of the sectional distribution.

Applying the condition in Eqn. (3.29), it’s seen that there will be a problem if
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Unfortunately, Eqn. (3.32) frequently occurs in practice. Therefore, as depicted in Figure. (3.2), an 
adjustment in the average monomer units per particle leaving section i, , is made to the source 
term for section i when necessary to prevent the skew numerical instability of the particle 
distribution. The value of  is given by Eqn. (3.33).

(3.33)

For practical cases  turns out to be fairly close but always larger than . For example, if 
we make the assumption that , then test cases for Eqn. (3.33) may be evaluated. 
If  and , then  and . If  and 

, then  and . Additionally, it can also be shown that if 
 and  is set to Eqn. (3.33), then . 

Thus, a filter of the type in Eqn. (2.32) may be created with the following requirements. If , 
and either  or  defined in Eqn. (2.30), then set  from it’s original value of 

 to the larger value in Eqn. (3.33). A ramp in setting this condition is provided via Eqn. (2.32) 
so that final source term vector is continuous.

Note, the determinant, , is always positive, but small and proportional to , suggesting that 
there may be problems with numerical behavior of the algorithm appearing for very small values 
of .

The filtering results may be reexpressed in terms of partial source term vectors, originally 
described in Section 2.8. Unfiltered, assuming postive values of , the source term vector due 
to condensation from growth within section i and movement out of section i , , is equal to the 
rhs of Eqn. (3.26), repeated here with the extra terms for addition to section  spelled out.
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(3.35)

Then, with the filtering, the unconditionally stable form of the  source term (for ) 
becomes:

. (3.36)

A ramp is used to change between the more accurate treatment of Eqn. (3.34) and the stable 
treatement of Eqn. (3.36).

(3.37)

 is a maximum of two seperate ramps, one based on the skewed coefficients in section i, and 
other on a low MU cutoff criterion for section i.

Because each individual source term  is treated so that a stable system results in terms of the 
“draining of a section”, the sum of these source terms also leads to a stable system. However, one 
additional problem remains with  and  source term additions in Eqn. (3.36). 
These additions may create skewness in section . This problem is treated in the next section, 
where a tie-line calculation resulting in the splitting of these source term additions is used to 
resolve the instability.

3.4 Filter for Source Term Additions to a Section due to Condensation

Without any filter, for a DOF-2 method, it is observed that the a particle distribution, advancing in 
size due to condensation from the gas, will create sections, i, ahead of the main distribution where 

. The reason for this is that the condensation operator is trying to create a mean distribution 
within the section, , which has the property, , where  is the 
average monomer units per particle in the low mode of section i, by adding particles with a small 
MU to particle ratio relative to the bounds of the section. In order to accommodate this request,  
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is driven to negative values. This problem may be solved by splitting the incoming particle stream, 
e.g., the last two source terms in Eqn. (3.36), into two parts, one with , and one with 
particles diverted into the lower section with either  or more conservatively 

. Note, this means that some of the particles that are moved upwards from 
section  to section i by condensation are then put back into the original section  due to 
this filter.

The math involved with this tie-line calculation is essentially equivalent to that used for Section 
4.5 involving the coagulation operator. This filter is applied when  and , or 
alternatively when  and . Below, the  case is described. However, the etching 
case is completely analogous. Note, section i is defined as the destination section for the original 
source term, and the modifications to the condensation source term due to the drain adjustment 
described in the previous section are carried out before the adjustments to the source term 
described here are made.

Let  be the source term for particles incoming into section i from section  due to 
condensation. It’s name will be shortened to  below. Let  be the source term for 
total monomer units; it’s name will be shortened to  below. Let  be the average MU 
per particle in that source term.

 with the unstable condition that .

Then, we will distribute this source term partly into the lower section, Section , which is 
alternatively called Lalt, under some conditions to preserve positivity of the coefficients. These 
conditions are when  is below and  is above a threshold, and also, it turns out, when both  
and  are below a threshold. Changing the names of  and  to  and , 
Eqn. (3.38) expresses the condition for conservation of particles and TMU in the partition.

 (3.38)

 is the average monomer units per particle in the modified source term for section . 
Several different methods for specifying  were attempted. The method currently in use is to 
set  equal to , because the skewness in section  is also a concern.

Solving the 2x2 system in Eqn. (3.38):
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(3.39)

Eqn. (3.39) is a simple tie-line condition specifying the stable formulation of the source term . 
A ramp condition described in section (2.14) is used to formulate a final source term that exhibits 
a continuous first derivative.

(3.40)

 is a maximum of two seperate ramps, one based on the skewed coefficients in section i, and 
other on a low MU cutoff criterion for section i.

A recap of what has been done to the original condensation source terms, Eqn. (3.26), is in order. 
First the full condensation operator is broken up into individual section contributions, i, where each 
sectional contribution includes the growth within that section, the transport out of that section, and 
the addition of into neighboring sections. Next, the sectional contribution is analyzed for skewness 
creation due to the draining of particles from section i. A solution, Eqn. (3.36), is found for this 
problem. However, additions to neighboring sections may also cause skewed distributions in the 
neighboring section. The source term for these additions must be filtered again based on the 
skewness of the neighboring section, possibly resulting in mass and particles being put back into 
the original section.

3.5 Special Treatment of the Top and Bottom Sectional Bins

The top section is not allowed to have volumetric growth condensation reactions, therefore 
preserving the principle of conservation of monomer unit and particles. Etching reactions 
involving the top section are allowed.

Etching condensation reactions applied to the first section bin require special treatment. Normally, 
for etching reactions, the condensation reaction would create a flux of particles from bin L to 
section bin L-1. However, this process breaks down for the section bin 0. Through various 
numerical experiments, an adequate treatment for this problem has been found to be that the 
surface reaction in section bin 0 should remain unchanged. However, when the monomer unit to 
particle ratio in section bin 0 has been reduced to the minimum permissible value, , then the 
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total particle number should be reduced in such a quantity that maintains conservation of monomer 
units, at the expense of the conservation of particles. The major effect of this is that it allows for 
etching surface growth reactions to fully depopulate a particle distribution, if given enough time. 
The implementation details will now be described.

Recalling that Eqns. (3.22) and (3.23) are the particle and total monomer conservation equations 
for the condensation operator. Then, the right-hand side of Eqn. (3.23), reproduced below as Eqn. 
(3.41), is called the volumetric etching TMU source term for section 0, .

(3.41)

This is the rhs of Eqn. (3.23). There usually is no volumetric etching particle term at all, because 
condensation reactions do not cause a change in the total number of particles. However, for the 
zereoth sectional bin a source term is created, when the monomer unit to particle ratio in section 
bin 0 is close to the minimum permissible value, 

(3.42)

 and  are ramp defined by Eqn. (2.31), where: 

, and , , for the skew ramp;

, and , , for the cutoff ramp.

In essence, what we have done is add a rhs to Eqn. (3.22) for section 0. When the ramp is fully 
activated, particles with total monomer units equal to , the lowest number of monomer units 
per particle allowed in the section, are being destroyed at a particle etch rate of .

The discussion above pertained to the DOF-2 case. In the DOF-1 case, there is always etching from 
Section 0, unless it is specifically turned off. This means that there are normally particle losses in 
the condensation operator under etching conditions for the DOF-1 case.
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3.6 Input Deck Options

The preceding sections have described the theory behind CAD’s condensation kernel. Figure (3.3) 

presents the block of the input file for CADS that controls the options for the conduction kernel.

The first option, Method, toggles on and off the condensation kernel in its entirety. Setting it to 
NONE turns off the kernel. Setting it to ADS turns on the kernel.

The next option, Allow Bottom Section Etching, handles the treatment of etching for the 
bottom section. If this option is set to false, etching is turned off for section 0. This has the effect 
of making the condensation operator conserve particles under etching conditions, at the expense of 
possibly piling up particles in section 0 under etching conditions. 

Figure 3.3 Input Options for the Condensation Operator

START BLOCK ADS MODEL DEFINITION
START BLOCK CONDENSATION MODEL

! Method = [ NONE | ADS ]
!     (required) (default = ADS)
! Toggle switch to turn condensation on and off.
Method = ADS
!------------------------------------------------------------
!  Allow Bottom Section Etching = [boolean]
!               optional ( default = true)
!
!   Allow for the possibility of etching of the bottom
!   section, even if there is no bottom flux option.
!   What this achieves it that it allows for a mechanism
!   to destroy particles via the surface growth 
!   condensation operator. 
!   Basically, you would only want to have this false
!   if you were checking for conservation properties, or
!   if you had a better idea of what to do with the
!   bottom flux.
Allow Bottom Section Etching = true
!------------------------------------------------------------
!  Section Addition Adjust Method = [ Conservative | Ramp | 
! Always Accurate ]
!   Method for filling in a section. This sets algorithm
!   for determining the MU to particle ratios entering a
!   section as a function of the distribution of 
!   particle ratios already in the section. There is a 
!   balance between accuracy and numerical stability
!     Conservative = injected amount is always >MUL and
!                    < MUH.
!     Ramp         = Injected amount varies depending 
!                    upon the existing amounts. 
!                    (accurate when it can be, and conservative 
! when it needs to be) default
!     Always Accurate = injected amounts are always 
!                       at v_i and v_ip1. Negative 
!                       coefficients are to be expected.
!   (only applicable to DOF 2 implementations) 
Section Addition Adjust Method = Ramp
!------------------------------------------------------------

END BLOCK CONDENSATION MODEL
START BLOCK ADS MODEL DEFINITION
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The option, Section Addition Adjust Method, allows the user to adjust the filter for source 
term additions to a section. There are three options. The default option, Ramp, described in section 
(3.4) is to use a ramp to turn on the tie line calculation when necessary. The option, 
Conservative, implements a method where tie-line calculation is used always. The option, 
Always Accurate, turns off the tie-line calculation in all cases. Note, this option only affects DOF-
2 implementations. 

3.7 Sample Problem for Particle Growth via Condensation

In order to illustrate the condensation operator, a sample problem will be solved. The sample 
problem will be one with an analytical solution to Eqn. (3.1). The numerical result will be 
compared to the analytical result.

3.7.1 Analytical Example Problems for Pure Condensational Growth

The expression for growth of a particle is given by Eqn. (3.1), reproduced below as Eqn. (3.43).

(3.43)

Gelbard [27] has previously reported work in the literature [28] concerning an analytical solution 
to Eqn. (3.43), the solution derivation of which we will repeat here. Friedlander [2, p. 285] also 
provides analytical solutions for Eqn. (3.43) in special casec.

If the particle growth rate, , is restricted to the following form,

, (3.44)

the first order hyperbolic nature of Eqn. (3.43) may be exploited to obtain an initial solution of Eqn. 
3.43 in short order.

(3.45)

(3.46)

Let
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G µ t,( ) H t( )f µ( )=
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1
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-----------

t∂
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 and . (3.47)

Then,

(3.48)

And, by the method of characteristics, solutions must be of the following form:

, (3.49)

where  is an arbitrary function. Any function  will satisfy Eqn. (3.48). For satisfaction of 
the initial conditions, a functional form of  is used, where 

, which leads immediately to the satisfaction of the initial conditions. To 
conclude the solution is equal to Eqn. (3.50).

(3.50)

3.7.2 Example 1 Surface Reaction Limited Growth of Particles

Let’s assume that the growth of spherical particles occurs via a direct surface reaction which 
doesn’t depend upon the size of the particle. Let’s also assume that there is an unlimited supply of 
reactant in the gas phase. Under these conditions, the growth rate of a spherical particle in # per 
second may be expressed as

, (3.51)

where  is the diameter of a particle of total MU size .  is the surface reaction rate, given in 
units of kmol m-2 s-1.  is Avogadro’s number. If a spherical particle with a constant molar 
concentration of  is assumed,  may be expressed in terms of .

(3.52)

These expressions may be written in the nomenclature of the previous section.
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, where (3.53)

Thus,

 and . (3.54)

And, the solution is

. (3.55)

Another way to look at Eqn. (3.55) is to note that , and thus the diameter of the distribution 
of particles should grow linearly in time.

Numerical Implementation

We first carry out a solution which has a constant growth rate per unit surface area, . Then, 
. The equation set is as follows. For each section, i:

(3.56)

and

(3.57)

The unknowns in the equation system are the coefficients for the distribution of TMU within each 
section. There are two of them corresponding to the value of q for  and  within each section.

A First Attempt at a Numerical Solution

To initialize the simulation, the number of sections is set to 10. The number of degrees of freedom 
per section is be set to 2. The lower boundary is be set to 100 MU, while the upper boundary is set 
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to  MU. The monomer unit ID is set to C2H2, and the molar volume is set to 0.0255 m3 
(kmol MU)-1.

It’s necessary to have a gas phase ideal gas mixture in order to properly initialize the Section 
Model. We will use air with C2H2 added in order to ensure that the particle MU is also a gas-phase 
species. We will start with a relatively large number of particles, such that the particle number is 
roughly 1 part in 104 of the number of molecules. At room temperature and 300 K this requires a 
particle density value of  gmol cm-3 =  kmol m-3. We will use a gaussian 
distribution of particles initially, centered at 60 MU with a width of 60. Thus

(3.58)

We will assume a growth rate that will double the average particle size in 10 seconds. When the 
surface area of a 60 MU particle (  m2) is factored in, this works out to be:

(3.59)

(3.60)

Note, the correct units for inclusion into the program is the second one, Eqn. (3.60), because the 
growth rate per particle is tracked on a direct MU units basis, not on a kmol MU units basis. Thus, 
because we track particle sizes in direct MU basis, see Eqn. (3.43), we have to track particle growth 
on a direct MU basis as well.

3.7.3 Results

Figure 3.4 illustrates the CADS solution vs. analytical solution. The black lines are the analytical 
results. Particles with an initial gaussian distribution grow by a factor of 10 in monomer unit size.  
The red curve is the result from the DOF-2 discontinuous Galerkin method using a geometric grid 
spacing of 2. The blue curve is from the DOF-1 method using a geometric spacing of 1.5. Note, 
both methods conserve particle numbers up to round-off error. The DOF-1 method exhibits a great 
deal of numerical diffusion, which leads to a spreading out of the distribution both on the high and 
low side, and a great deal of underestimation of the peak height. The discontinuous galkerin 
treatment did exceedingly well at reproducing the analytical distribution. Note, the analytical result 
does have a discontinuity at the tail, where the distribution falls discontinuously to zero. This is due 
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to the cutoff of the initial distribution at the bottom section at t = 0. Thus, the smallest particle gets 
bigger throughout the run. In this sample problem, there is no production of particles via a 
nucleation mechanism. Therefore, the discontinuity in particle concentration is "advected" to 
higher MU’s along a characteristic.

Figure 3.5 provides results for the average diameter predicted by two methods as a function of time 
for various grid spacings. Results are all fairly clustered around each other except for the DOF1 
method with the widest sectional spacing of 1.095.

Details of the resolution of the two methods as a function of grid spacing are now addressed. Figure 
3.6 provides results for the DOF-2 discontinuous Galerkin method as a function of the geometric 
section spacing. The 1.2 spacing results contain roughly 14 degrees of freedom in the MU region 
where the particle density is significant. Even with only 14 unknowns the distribution of particles 
is fairly close to the analytical result. Each of the further refinements, the 1.1 and 1.05 spacings, 
roughly doubles the degrees of freedom in the significant particle density region. The agreement 
with the analytical results gets progressively better on refinement. Note the hardest part to achieve 
success on is the C0 discontinuity at the tail end of the distribution. Even here the refinement in 
grid spacing is seen to promote agreement with the analytical results.

Figure 3.4 MU density of particle distribution versus MU per particle for pure 
condensation. Growth rate is proportional to the surface area, with 
spherical particles assumed. An initial gaussian profile (black) is used.
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Figure 3.5 Average diameter predicted by the DOF 2 discontinuous Galerkin and War-
ren/Seinfeld DOF1 methods as a function of time for various section spac-
ings.
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Figure 3.6 Convergence test for discontinuous Galerkin method using two degrees of 
freedom. Shown is an enlargement of the monomer unit region with nonzero 
particule density.
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Figure 3.7 provides refinement results for the DOF1 method, which also preserves particle 
numbers. Each of the three curves have roughly the same number of unknowns as the curves if 
Figure 3.6. However, the agreement with the analytical results isn’t as good. Figure 3.7 does show 
that the method is converging towards the analytical result as the grid is refined. Of particular 
concern are the high and low tails to the distribution, which can cause anomolous behavior, 
especially if light scattering intensity, which has a  dependence, is an important observable. 

Despite the numerical diffusion, there are some benefits to using the Warren and Seinfeld method 
DOF1. The method is a faster than the discontinuous Galerkin method. For example the 1.025 
spacing case took 525 seconds (-g option) and 2662 time steps, while the discontinuous Galerkin 
method with 1.05 spacing took 6099 time steps and 2348 seconds. Also, there were several time 
step truncation error failures using the discontinuous Galerkin method. On checking why these 
occurred, I observed they were due to the sudden onset of the filtering algorithms in a section. 
There may be more work necessary in the future to fully characterize the filtering algorithm’s 
numerical behavior in order to smooth transitions.

Figure 3.8  compares the raw results without the filtering technique to the filtered result for the case 
of 1.2 geometric spacing. Inserts in the graph detail the leading and trailing edge of the evolving 
particle distribution. Figure 3.8 demonstrates that the application of the filters has a rather large 
effect on the solution quality. In particular, the "draining filter" has a large effect. Without the 

Figure 3.7 Convergence test for DOF-1 method. Shown is an enlargement of the monomer 
unit region with nonzero particule density.
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"draining filter", there remains a small but nonneglible negative particle number and mass left 
behind in each section that has been drained. Surprising also is the difference between the filtered 
and the nonfiltered results at the top of the distribution. The filtered results are closer to the 
analytical results. The application of the filters on the leading and trailing edge of the distribution 
has altered the numerical results everywhere. The net mass accummulation, however, has not 
changed very much (0.2465 kmol MU m-3 for the unfiltered case and 0.245498  kmol MU m-3 for 
the filtered case).

At longer times for this problem, the same trends get stronger. Figure 3.9 shows the results for the 
problem at later times where the analytical solution largely resides within one section. The DOF 2 
1.2 spacing demonstrates adequate performance. The distribution of particle density is spread out 
over roughly 5 sections, while the analytic solution is roughly one third of a section in width. The 
Warren and Seinfeld method (DOF 1) with roughly the same density of degrees of freedom shows 
inferior performance. Figure 3.10 shows the average particle diameter versus time. The average 
particle diameter of the predicted distribution for the DOF 2 1.2 spacing case is indestingishable 
from the analytical result. The DOF 1 case, however, exhibits a net decrease in the average 
diameter from the analytical result, demonstrating that the large amount of numerical diffusivity is 
having a impact on integrated quantities.

Figure 3.8 Details of the effects of the filters for the 1.2 spacing case.
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Figure 3.9 Distributions at a longer time, t = 150000 sec.
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Figure 3.10 Average diameter versus time for various cases.
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4. Coagulation

Coagulation is the process wherein two particles collide and create a single larger particle. A given 
size particle will grow to a larger size by an effective collision with another particle or monomer. 
An effective collision is one which results in the formation of a new particle composed of the two 
colliding particles. All collisions are not necessarily effective. The effectiveness will depend upon 
the size and composition of the particles, as well as other environmental factors. The coagulation 
operator is distinct from the condensation operator in the sense that the coagulation operator 
involves two particle reactants. The condensation operator involves just one particle reactant and 
zero, one or possibly more molecular reactants. The coagulation operator is very similar to 
bimolecular reactions. It will be shown that the for small particle sizes of 10 nm or so, the 
coagulation kernel is the rate limiting step for evolution of the particle distribution and therefore 
controls the time step that may be taken for accurately integrating the particle distribution 
equations.

The evolution of a distribution of particles, which has concentrations  kmol particle per m3 
per monomer unit (MU) of size  monomer units at time t, due to coagulation, may be described 
by retaining only three of the terms in Eqn. (1.1) to give an integral-differential equation, Eqn. 
(4.1).

(4.1)

 is the coagulation kernel giving the collision frequency (units of m3 (kmol particles)-1 
sec-1), between two particles of MU size  and size . The first term on the RHS of Eqn. (4.1) 
stems from two particles of lower size forming a particle of size . The one-half is necessary in 
order to not over count collisions. The second term on the RHS of Eqn. (4.1) is due to collision of 
particles of size  colliding with other particles to form particles of a larger size.

The coagulation kernel has one form for the free molecule particle regime, where particles “see” 
the gas as individual molecules, and a different form for the continuum particle regime, where the 
particles “see” the gas as a continuum. In our application, a model that interpolates between free 
molecule and continuum and exhibiting the correct limits in both cases has been implemented.

Integrating Eqn. (4.1) over all particle total monomer unit sizes, , we obtain an equation for the 
total particle concentration, , having units of kmol particle m-3, as a function of time,

. (4.2)
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At the small sizes of newly formed soot, our first target application, it appears that particles are 
sufficiently fluid-like that clusters, formed via coagulation, will flow into a spherical particle [30]. 
At larger sizes (and cooler temperatures than flamelet temperatures) this is not true. Particles that 
form at larger sizes may appear to be a fractal agglomeration of smaller primary particles. It has 
been widely observed that soot particles in fire consist of agglomerates of primary spherical 
particles. Collision frequencies of fractal particles are different from those for spherical particles 
of the same total volume. The model for coalescence initially used here does not account for the 
morphology of soot particles; particles are assumed to be spherical. However, a fractal dimension 
could very easily be added to the program, by adding an extra degree of freedom per particle 
section, to account for the change in the collision properties due to a change in the morphology of 
a soot particle. This has been done in some other particle modeling efforts. 

In this chapter, the coagulation kernel  is presented. Then, the method for evaluating the 
integrals within CADS is described. In the last section, a couple of verification problems are solved.

4.1 Coagulation Kernel due to Brownian and/or Molecular Motion

CADS has adopted Fuch’s expression [31] for the collision frequency between two particles, 
because it is applicable for particles ranging from millimeter to molecular sizes. This expression is 
interpolates between the free molecular and continuum-limiting regimes.

(4.3)

where

 = Collision frequency function between particles in MKS units of m3 kmol-1 sec-1

 = Avogadro’s number

 = Diameter of particle i

 = Brownian diffusivity of particle i

 = Characteristic separation distance for particle i
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 = Mean thermal velocity for particle i with mass 

 has units of m3 s-1 kmol-1. If multiplied by two particle concentrations of units kmol 
m-3, it produces a rate of production of kmol m-3 s-1, which is the nominal units of gas-phase rates 
of production from gas phase reactions. The Fuch’s expression accounts for particle size, and it 
may be used with distinct multicomponent particles, if a relation for the size of the particle as a 
function of its composition is provided. Collisions may be thought of as a chemical reaction with 
the collision frequency function as the reaction rate. The rate of formation of  by reaction of i 
with j by collision is then given by the rate of their collision. The efficiency of collision is assumed 
to be equal to one, in this initial CADS implementation, even though there is some evidence that 
collisions between very small particles with near-molecular diameters have non-unity collision 
efficiencies. Implementation of a non-unity collision efficiency model in future editions of CADS is 
a relatively small modular project, due to the object-oriented approach.

The Brownian diffusivity of particle i may be given by the following relation, Eqn. (4.4) [32].
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, where  is the Knudsen-Weber interpolating friction factor (4.4)

 is the Cunningham correction factor to Stokes law, used to account for slip-flow on the particle 
surfaces, and is dependent on the particle Knudsen number.  is given by the following formula 
[2, p. 34], obtained originally by a fit to experimental data:

. (4.5)

, , and 

where

(4.6)

 (4.7)

 is the mean molecular weight. The equation for  provides an interpolation formula for the 
entire range of Knudsen number.  is the mean free path in the gas. In Eqn. (4.7)  is the gas 
concentration and  is the collisional cross section of gas phase molecules.Note the hard sphere 
result from Bird, Stewart, and Lightfoot [51], for example, has a 3 instead of the 2 next to  in Eqn. 
(4.7). However, the result for real gases is much more complicated. The actual answer is that the 
number has to be consistent with the accommodation coefficient, , (a quantity appearing in the 
molecular limit which represents the fraction of molecules which leaves the particle surface in 
equilibrium) such that the drag force on the particle in the free molecular and continuum limits is 
given by the correct limiting expression. Using Eqn. (4.7), and the expression for the friction 
coefficient that is obtained in the molecular limit, [2, p. 33],

, (4.8)

Eqns. (4.4), (4.5), (4.7), and (4.8) may be solved for in the molecular limit ( ) to determine 
the consistent value of  It turns out to be . However, no adequate theories exist for 
specification of . Therefore,  is assumed to be the constant 0.907 within the CADS package. 
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Figure (4.2) displays the particle diffusivity vs. particle diameter result for the 2 cases of the full 
expression, Eqn. (4.4), vs. just the molecular kinetic theory limit, Eqn. (4.8). The kinetic theory 
expression was calculated assuming a 0.91 accommodation coefficient. The bath gas was assumed 
to be 400 K N2 at 1 atm. The full expression, Eqn. (4.4), is seen to be consistent with the molecular 
limiting theory at small particle sizes. Moreover, if the curve is extrapolated to molecular 
dimensions, then predicted diffusivities are roughly equal to the gas-phase molecular counterparts 
(  m2 s-1). At large particle sizes, Eqn. (4.4) yields a much larger value of the diffusion 
coefficient than the molecular limiting expression.

Eqn. (4.3) may be simplified and compared to other formulations in the case of its two limits, 
molecular collisions and continuum collisions. In the continuum limit, the expression on the LHS 
of the denominator in Eqn. (4.3) dominates, and the expression reduces to Eqn. (4.9), where the 
expression for the particle radius, , has been used instead of the particle diameter.

(4.9)

Without the  term, this expression is exactly the expression that may be derived 
for the continuum limit, which assumes Brownian-motion diffusion-limited coagulation [2, p. 
190].
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The characteristic separation distance for particle i, , is a concept originated by Fuchs to marry 
the continuum coagulation description with a molecular description. Essentially, around each 
particle, Fuchs envisioned a distance within which, particles would move according to the kinetic 
theory of gasses as if in a vaccum.Outside that region, which for particle-particle interactions is 
equal to , particle-particle interactions behave in the continuum limit. Equating the 
fluxes at the boundaries of the two regions results in a transition law rule, Eqn. (4.3).

The derivation for  is reported in [32, p. 162] and the results are conveyed below. Define an 
apparent mean free path, , for the particle as

.

Then, Fuchs derives the following relation, Eqn. (4.10), for the separation distance.

(4.10)

For T = 400 K and 1 atm, Fig. (4.3) plots the ratio of the separation distance to the diameter as a 
function of the particle diameter. Also shown on the plot is the Knudsen number. It’s readily seen 
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that the separation distance is a small fraction of the particle diameter except for small particles of 
roughly 20 nm or less. The separation distance itself is fairly constant with respect to the particle 
diameter having a value of about 10 nm. Therefore, in the continuum limit, the separation distance, 

, in Eqn. (4.9) is effectively zero.

The molecular limit for Eqn. (4.3) may derived by dropping the LHS of the denominator. This 
results in Eqn. (4.11).

(4.11)

Eqn. (4.11) may be rewritten in terms of the volume of each particle,  and , assuming spherical 
particles, and the particle density, , as Eqn. (4.12).

(4.12)

Eqn. (4.12) agrees with Eqn. 7.17 on ref. 2, p. 192, and Eqn. 4.36 from ref. 32, p. 160. The values 
of  for the free molecular flow collision integral are plotted in Figure (4.4). When both 
particles have low radii the free molecular formula is the same as the Fuch’s formula. For larger 
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molecules the formula yields a higher collision rate than the Fuchs formula, because the free 
molecular formula doesn’t take into account of the diffusional mass-transport resistance that occurs 
in the continuum regime. Figure (4.5) contains a plot of the collision frequency in the continuum 
limit, Eqn. (4.9). 

4.2 Evaluating The Integrals in the Coagulation Kernel

In this section, the method by which CADS handles the calculation of Eqn. (4.1) after binning the 
particles into sections is described. The evaluation of Eqn. (4.1) turns into a double integral over 
particle source bins A and B, with complicated integral limits, for the production of particles in 
source bin L. Within each section, particle concentrations may have distributions of densities 
which must be accounted for.

The chief complication in the calculation of coagulation integrals is to codify all of the possible 
boundary condition cases that arise after the particle size distributions are binned into sections. The 
approach is based on cataloging all of the section bin to section bin interactions that produce an 
agglomerated particle in product section L. Particles in section L have MU values between  and 

. The loop over section L will be the outer loop in the total agglomeration source term, the 
RHS of Eqn. (4.1). Section A is the section containing the larger of the two particles involved in 
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the agglomeration reaction producing a section L particle. Section B is the section containing the 
lower MU particle. Both A and B must be equal to or lower than L.

First, the lowest and highest sections for particle A which could possibly contribute an 
agglomeration source term for section L will be found. The lowest A section bound, section SA_LB 
(section A - lower bound), contributing to the L source term is the section for which coagulation 
with itself would yield a section L particle. This section is determined from the relation.

(4.13)

The highest A section that contributes an agglomeration source term, SA_UB (section A - upper 
bound) is section L in most cases,

SA_UB = L.

Then, a loop is formulated over the section A, the section containing the bigger particle, from 
SA_LB to SA_UB. We look for interactions between section A particles and another section 
containing the smaller section B particle such that the resulting particle lies within section L. First, 
for a given section A with lower and upper MU section bounds of  and , we find SB_LB 
and SB_UB, the lowest and highest values of section B such that an agglomeration reaction 
producing a section L particle can occur.

Let’s first calculate SB_LB.  is the lower bound for the section B particle. Section SB_LB 
may be found from the following relation,

. (4.14)

Then, we find the upper section B bound by using the relation,

. (4.15)

to find SB_UB. Note that SB_UB may well be equal to L in some coarse mesh cases where 
. This would involve L-L agglomeration cases where the resulting particle is also put 

into bin L. The mass within bin L remains the same. However, the total number of particles is 
reduced by one. This loss of particles must also be accounted for in the discretization scheme; this 
topic will be addressed later in the chapter.

Now, for a given section A, we may then loop over each section B from sections SB_LB to SB_UB 
in order to calculate the collision integrals. For each section A - section B interaction producing a 
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particle in section L, there are three coagulation integrals that conceptually need to be evaluated, 
corresponding to the rate of particle loss from each section, the rate of section A loss of MU’s and 
the rate of section B loss of MU’s. The three integrals, which represent different weighted averages 
of the collision rate between a particles of size  and  are presented in Eqns. (4.16 - 4.19).

(4.16)

(4.17)

(4.18)

(4.19)

Note, the outer integral is carried out over section B. This creates fewer cases where the integral 
must be broken up into 2 sections. The types of functions to be used in the inner integral over 
section A can now be cataloged. 

The lower value of the inner integrand is equal to . If the MAX 
function switch modes because of the integrand, then the integrand must be broken up in order to 
avoid severe numerical inaccuracies. The upper value of the inner integrand is equal to 

.

The differences in the inner integrand boundary conditions are cataloged via the simple format 
represented in Figure (4.6) The types clearly depend on where the integration bounds intersect the 
corners of the section A - section B limiting rectangle. Thus, there are 16 possible interaction types. 
Not all types are possible. For example, it’s not possible to have an upper bound of type 3 combined 
with a lower bound of type 2 or 3. Integrals involving type 1 will have to be broken up into separate 
integrals in order maintain a simple trapezoidal shape (i.e., one trapezoid with parallel 

 sides). If both the upper limit and the lower limit are both of type 1, then the 
integral is broken up into three integrals. This is the most complicated case.

Note, the factor of 1/2 in Eqn. (4.1) is taken care of automatically when section A is not the same 
as section B. In other words, because section A is always larger than section B, we are explicitly 
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not double counting collisions between section A - section B particles. When section B is in fact 
section A, we must maintain the principle that there is one particle which is always smaller than the 
other one within the collision integrals, Eqn. (4.16) to (4.18). This could be done by having the 
integral area along the  line. However, I chose to accomplish the same thing by just 
multiplying the section A - section A integrals flux terms by 1/2.

Now that the complicated boundary condition cases are broken up into simpler boundary condition 
cases, where the loop over the bounds for  involves only a single straight line, the double 
integral in Eqn. (4.16) - (4.18) may be solved by a general strategy. Romberg integration formulas 
have been used [33], that use Richardson extrapolation to generate limiting convergence bounds.

The entire coagulation procedure is kept within a dynamically allocated tree structure. With the 
current implementation of coagulation, there is no geometric constraint on section sizes. Therefore, 
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understanding and codifying the effects of numerical diffusion on particle size predictions may be 
done using a “mesh convergence” procedure. Mesh convergence here means that the size of 
sections get reduced to approximately the continuum limit.

4.3 Precalculation of Coagulation Integrals

All of the integrals presented in the previous section can be precomputed, and their values stored 
at the cost of a moderate amount of storage. This is true even for discretization schemes with 
multiple degrees of freedom in each section. We may formulate an algorithm for precalculation of 
the coagulation integrals, leading to a dramatic savings in computer time. As long as  
stays constant or at least weakly varying, precalculation is a winning strategy. 

The first step is to expand the basis functions in the integrals in Eqns. (4.16) to (4.18).

(4.20)

The 4 coefficients, ,..., , for each section A-B interaction, for the particle loss 
term, may be precomputed and stored in the dynamically allocated linked tree. Then, the 
coagulation integrals may be cheaply determined via a 4 term quadratic expression described in 
Eqn. (4.20). For each section A- section B to section L interaction, there are 12 interaction 
coefficients for DOF 2 expansions, 4 for each of the , ,  terms. For 
DOF 1 expansions, there are 3 interaction coefficients, one for each of the , , 

 terms.

4.3.1 Temperature and Bulk Composition parameterization

The cost of computing  and the other coefficients at each coagulation rate of progress 
evaluation is prohibitively expensive. For example, if there are N sections then in general there will 
be on the order of 1/4 N3 section L-A-B evaluations to determine. Therefore, the integrals are 
evaluated once, and the coefficients, ,... , for the biquadratic basis functions 
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reactions are stored dynamically via a linked list tree. However, the coagulation kernels, 
, vary as a function of the temperature, pressure, gas composition (through the 

evaluation of the viscosity) and potentially as a function of the bulk composition within the reactant 
sections A and B. Therefore, , , and  will be a constantly varying 
function of the surrounding gas conditions and local particle composition.

One answer to how to modify the coefficients is to create a multiplicative factor for each section A 
- section B interaction which takes into account the change in  from the value used when 
the section A - section B interaction coefficients were precalculated value to the current value. This 
may be done for midsection particle sizes for both section A and section B. The final expression is 
Eqns. (4.21-4.23)

(4.21)

(4.22)

(4.23)

where

(4.24)

 is the ratio of the coagulation kernel, for particles at the midsections of section A and section 
B, evaluated at the current environmental state to that evaluated at the state of the previous 
precalculation.  here refers to the previous precalculated state, which may include multiple state 
variables, not just T. T in the numerator refers to multiple state variables, not just the temperature, 
in the current gas-particle environment.
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Note, the temperature dependence of  may be further analyzed. In the molecular limit, 
 can be seen (see Eqn. (4.12)) to have a  dependence. In the continuum limit, Eqn. 

(4.9), the collision integrals temperature dependence is determined by the temperature dependence 
of the sum of the particle diffusion coefficients. The temperature dependence of  is given by 

. The temperature dependence of  varies in a complex fashion with T and the gas phase 
composition. However, it roughly follows a  dependence. Therefore, the collision frequency in 
the continuum limit roughly follows a  dependence as well. Therefore, in the initial 
implementation  has been parameterized with a  dependence. This is expected to be 
changed in later implementations to the more accurate formulation in Eqn. (4.24) that handles the 
effects of transitional Knudsen numbers accurately.

4.4 Implementation of Numerical filters for the Coagulation Kernel

The numerical issues associated with having 2 degrees of freedom in a section for the coagulation 
kernel turn out to be very similar to the condensation operator. Without filters, ahead of the 
evolving distribution from a coagulation kernel, negative coefficients develop, because the 
distribution in the leading section can’t accommodate an MU value outside the allowed MU band 
determined by the basis functions within the section. Behind the distribution, sections don’t drain 
uniformly, leaving a skewed distribution in their wake, with near net zero particle amounts. The 
solution that was developed for the condensation problem for the draining problem involved 
changing the MU per particle value for the particles leaving a section to a value determined by the 
diagonalization of the 2x2 matrix problem. The same approach is used here for the coagulation 
operator. The math is simpler, since there is no growth term in the coagulation kernel. The details 
are provided below.

The draining problem is broken up into individual Section B- Section A -> Section L interactions. 
If all individual draining interactions result in stable non-negative coefficient-producing results, 
then the sum is guaranteed to result in the same. The problem is further subdivided into first 
considering section A and then considering section B. The particle loss rate, Eqn. (4.21), is never 
changed however during this entire process. First the effective MU per particle loss rate from 
section A is modified. Then, the same is done for section B. The gain MU per particle rate for 
section L is then the sum of the section A and B loss rates.

For the single draining reaction involving one reaction term, consider the follow small matrix 
problem for the change in coefficient values,  and , for the drain of either Section A or Section 
B (we will assume i is section A below, but it could be either). The matrix problem is essentially a 
restatement of Eqns. (4.21) and (4.22 or 4.23). The top reaction in Eqn. (4.25) is the particle loss 
reaction, while the bottom reaction is the MU loss equation from the section.
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 (4.25)

 where (4.26)

 where (4.27)

 and 

(4.28)

 and  are the particle number coefficients for the lower and upper DOFs in section A.  and 
 are the upper and lower basis functions for Section A.  and  are the upper and lower 

monomer units per particle in the upper and lower basis function modes in section A.  is the 
number of particles in Section A.  is the loss rate per number of particles in section A due 
to the particular section B- section A-> section L interaction (BAL) under consideration. Because 
the focus is on one section, section A, the sectional coefficients for section B are included in the 
term, . , the importance of which will be described below, isthe loss rate of total 
monomer units per loss rate of particles in section A.

One necessary condition for proper draining of a section with a skewed distribution is the 
requirement that  when . Solving Eqn. (4.25), when  and thus 
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(4.29)

with 

(4.30)

Thus, for  to be true,

(4.31)

 or 

Therefore, we should require that as , . This requirement is almost met 
by the coagulation kernel by itself. However, other influences in the coagulation integral, such as 
a variable collision rate and variations in other particle distributions in other sections cause this not 
to be the case rigorously. Therefore, we require a condition on the kernel that all collisions 
involving a “draining” section have the requirement:

, when  is below a threshold and  is above. (4.32)

, when  is below a threshold and  is above. (4.33)

The inequality comes about from looking at Eqn. (4.30) and requiring that, when ,  
should be greater or equal to zero, in order for the skewed condition not to occur. In words, when 

, and thus all of the particles are in the top mode of the section, particles which are heavier 
than the average MU per particle of the top mode should be taken out of the section, in order for 

 to stay positive. The condition in Eqn. (4.33) is the exact compliment of the Eqn. (4.32) 
condition for the opposite case where . 
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When both  and  are positive but below a tolerance, the following condition for the 
coagulation reaction rate is required:

 when  and  are below a threshold (4.34)

Eqn. (4.34) forces Section A to drain to zero as a single entity, with both modes draining at the same 
relative rate constant. Eqns. (4.32), (4.33), and (4.34) are the basic strategy used in the method 
BimolecularRxnLowSections in the input deck described in Section 4.6. This is the default drain 
stabilization strategy used in CADS.

An alternative strategy within CADS is available. The origin of the different method stems from the 
differences between Eqn. (4.21) and Eqn. (4.25)’s description of the drain reaction in Section A. 
Eqn. (4.21) suggests that the high and low modes of Section A can drain independently at different 
rate constants. Rewriting Eqn. (4.25) to reflect this fact leads to Eqn. (4.35).

(4.35)

where the equations,

, (4.36)

defines the new terms, , , , , from previously defined 
quantities.

Continuing as before, the necessary condition for proper draining with a developing a skewed 
distribution is that when , then . Solving Eqn. (4.35), when  and thus 
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 (4.37)

(4.38)

The other necessary condition that when ,  leads to

 (4.39)

(4.40)

Therefore, the following alternative stabilizing strategy described by Eqns. (4.41), (4.42), and 
(4.43) may be used.

 when  and  are both below a threshold (4.41)

 when  is below and  is above a threshold (4.42)

 when  is below and  is above a threshold (4.43)

This strategy is called the “BimolecularRxn” strategy in the input deck described in Section 4.6. 
The name BimolecularRxn is used, because the implementation closely resembles treating the two 
modes of a section with separate drain reactions near conditions that would cause the section to 
undergo non-negative conditions. Away from problem conditions, however, the full 12 coefficient, 
accurate implementation (Eqns. (4.21, 4.22, and 4.23) is maintained to describe the BAL 
interaction.

Now that we have described the strategy for section A, what about section B? Because the particle 
loss terms haven’t been touched in the treatment for section A, the section B treatment can be 
handled independently of the section A treatment. Thus, the section B treatment is the same as has 

MUBAL
AH coag, µ∆

2cA
H

--------- MUA
H→=

t∂
∂bA

H

kBAL
AH coag, bA

H–=

bA
H 0= t∂

∂ bA
H 0=

MUBAL
AL coag, µ∆

2cA
L

--------- MUA
L→=

t∂
∂bA

L

kBAL
AL coag, bA

L–=

MUBAL
AL coag, MUA

L→

MUBAL
AH coag, MUA

H→
bA

L bA
H

MUBAL
AL coag, MUA

L→

MUBAL
AH coag, MUA

H→
bA

L bA
H

MUBAL
AL coag, MUA

L→

MUBAL
AH coag, MUA

H→
bA

H bA
L



83

been described for section A. The average MU loss for section B is adjusted, when necessary to 
maintain numerical stability. The final result is Eqn. (4.44).

(4.44)

where

(4.45)

After the drain operations have been carried out, the source term vector for the single section B - 
section A -> section L interaction may be described by the following equation.

(4.46)

 is the accurate source term, containing all 12 coefficients, with , ,  
given by Eqns. (4.21), (4.22), and (4.45), and .

(4.47)

 is the stable source term for the BAL interaction that is attributable to the lower mode L of 
section A.  is the stable source term for the BAL interaction that is attributable to the higher 
mode H of section A.

 and (4.48)

The following relations hold
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(4.49)

 and  are the parts of the particle loss source term that can be attributed 
to the lower and upper modes of section A.  is the part of the MU loss from section 
B calculated from the accurate formula, that can be attributed to the lower mode of section A. 

 is the part of the MU loss from section B calculated from the stable formula 
(which is ), that can be attributed to the lower mode of section A. 

 and  are defined analogously. , , and 
 are defined so that each source term conserves mass and elements.

4.5 A Filter For Source Term Additions to a Section

Without any filter, it is observed that the an advancing coagulation distribution will create sections 
ahead of the main distribution where . The reason for this is that the coagulation operator is 
trying to create a mean distribution within the section where, , by adding particles 
with a small MU to particle ratio relative to the bounds of the section. In order to accommodate this 
request,  is driven to negative values. This problem may be solved by splitting the incoming 
particle stream into two parts, one with , and one with particles diverted into the next 
lower section with . Here is the math involved with this tie-line calculation.

Let  be the source term for particles incoming into section L from the section A - section 
B interaction; it’s name will be shortened to  below. Let  be the source term for total 
monomer units; it’s name will be shortened to  below. Let  be the average MU 
per particle in the source term,
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 with the condition that .

Then we will distribute this source term partly into the lower section, Section L-1, which is 
alternatively called Lalt, under some conditions to preserve positivity of the coefficients. These 
conditions are when  is below and  above a threshold, and also, it turns out, when both  
and  are below a threshold. Changing the names of  and  to  and , 
Eqn. (4.50) expresses the condition for conservation of particles and TMU in the partition of the 
original source term.

 (4.50)

Solving the 2x2 system:

(4.51)

Eqn. (4.51) is a simple tie-line condition. Note, an alternative implementation could spot the 
average monomer units per particle entering section L-1 at the value . This would be 
appropriate if we were also concerned with skewness in Section L-1. Then, the final result would 
be Eqn. (4.52).

(4.52)

Both of these filters, Eqn.(4.51) and Eqn. (4.52), require a ramping condition in order to turn them 
on, if continuity in the overall source term is to be maintained. The same criteria as was used for 
the condensation operator, Eqn. (3.40), is used for the ramping condition.
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In Figure (4.7) we present a schematic of the filtering scenario described by Eqn. (4.52), except 
that the total MU’s in the flux are now too high for section L and the section L coefficients have 
the property that  is below and  is above a threshold. Then, the alternate section that will be 
receiving some of the particles originally destined for section L is section L+1. Section L+1 is 
called Lalt.

The total source term for section L consists of a flux of particles  with total mass flux of 
 such that the average mass per incoming particle is . If 

, then the section can in all cases accept the flux as is. However, if 
, then the ability of the section to absorb the source of particles without  

perhaps extending into negative values depends on the relative values of  and , the magnitude 
of the particle flux,  and the time step. When  is much greater than , some of the 
particle flux  must be moved to a higher zone, , with a greater MU per particle 
value, so that the remaining portion of the particle flux, , can have its MU per particle 
value adjusted downwards to , the highest MU per particle value supported by nonnegative 
coefficients within section L. 

In choosing the MU value per particle for section , an additional complication arises. At first 
we may want to select an MU value of , the lowest in section , in order to minimize the 
effect of this operation on the accuracy of the coagulation kernel. However, we may risk creating 
a skewed distribution within section  with our efforts to avoid a skewed distribution within 
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section L. To avoid this possibility, we adjust the MU value per particle to be assigned to the 
 particle flux, :

. (4.53)

 is a function of  and , varying between 0 and 1. When , 
. When this is not the case,  decreases to zero in a continuous manner 

such that residual evaluation retains its smoothness as a function of  and . 

A tie line approach is used to distribute the particle fluxes between sections L and , such that 
the total particle and mass fluxes are preserved. 

 (4.54)

The mass flux into section L,  and section , , is adjusted as

    . (4.55)

Finally, the entire procedure involving split adjusting the particle flux  must be ramped as a 
function of the relative values of  and  in the same way we adjusted , in order to 
maintain smoothness in the residual evaluation.

(4.56)

 denotes the original particle flux with an MU per particle value of .  is 
the particle flux to sections L and L+1 that is the final result to the entire split adjustment procedure 
described above.  represents the total particle flux that is employed as the final source 
term for the single Section B- Section A-> Section L coagulation interaction.

4.5.1 Adjustment to the Source Term Addition Algorithm

Eqn. (4.46) has described the case where the original source term for the BAL interaction, , 
has been broken up into three parts, , , , in order to ensure non-negativity of 
the sectional coefficients. In practice, for evolving coagulation distributions along the high side of 
the distribution, it was observed that when , the split-adjust procedure described in the 
previous section frequently lead to the case where none of the original flux into the destination 
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section L, actually ended up in section L. Instead it ended up in the alternate section, L-1. To correct 
this and obtain a smoother and more accurate distribution as a function of time, the split adjust 
procedure was modified. The modified procedure split-adjusted the three individual source terms, 

, , , separately before combining the total into the final result. With this 
modification, there was always some of the initial source term that ended up in section L (from the 
split-adjustment of ).

4.5.2 DOF 1 Split-Adjust Methods

Up to now, the discussion has been exclusively concerned with stabilizing DOF 2 methods. 
However, the DOF 1 case needs split adjustments as well, in order to account for the particle 
number and to conserve mass/elements at the same time. The reason for the need to split adjust is 
simply explained. A DOF1 section contains a fixed monomer unit to particle ratio, , where for 
us the following relation holds, , while a DOF 2 section contains a variable 
ratio (where ). Therefore, in order to conserve mass, an incoming particle 
source stream with an incoming monomer unit to particle ratio, , must be divided into 2 
sections in order to conserve particles and mass in the source stream. This is the same tie-line 
calculation as was previously described in Section 4.5 in Figure. 4.7 and Eqn. (4.46).

4.6 Input Deck Options

The preceding sections have described the theory behind the options available to CADS users. 
Figure (4.8) shows the section block of the input file for CADS that controls the coagulation kernel.

The first option “Method” toggles on and off the coagulation kernel in its entirety. Setting it to 
“NONE”, turns the kernel off. Setting it to “ADS”, turns the kernel on. 

The next optional keyword, “Collision Rate Formula”, sets the formulation for the collision rates 
between particles. There are four options: Mixed, Free Molecular, Continuum Limit, and Zero. 
The default, Mixed, implements the Fuchs formula, Eqn. (4.3). Free Molecular implements the 
low-pressure limiting collision rate formula, Eqn. (4.12). Continuum Limit implements the 
continuum-limit formula, Eqn. (4.9). Zero sets the coagulation kernel to zero.

The “DOF2 Interaction Method” keyword broadly determines how the different degrees of 
freedom in an a DOF 2 interpolation of a section interact with each other in the coagulation kernel. 
The default method is CombinedHiLow. If that is used, then each section A - 
section B section L interaction produces one source vector that then gets distributed into 
section L and surrounding sections if necessary to preserve non negativity.
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The other option is “SeparateHiLow”. In this treatment each mode of the DOF 2 section, i.e., the 
low mode and the high mode, is handled relatively separately. Thus, the section A - 
section B section L interaction produces 4 source vectors. Each of those source vectors are 
then distributed into section L and surrounding sections (if necessary) separately. The result of this 
is that the DOF2 coagulation kernel behaves similar to the DOF 1 kernel as each mode in a section 
interacts separately and also unfortunately has similar convergence properties. Each interaction has 
a fixed final MU ratio for the product particle. However, because the high and low mode in a 
draining section is treated separately, the skew problem described in the previous sections is 
completed eliminated. 

At the source code level, the “DOF2 Interaction Method” causes different child objects of the 
parent coagulation kernel object to be employed. The CombinedHiLow object causes the 
PartCoagDOF2Combined object to be used. The “SeparateHiLow” object causes the 
PartCoagDOF2Bimolecular object to be used.

Figure 4.8 Block of the input file that controls Coagulation

START BLOCK ADS MODEL DEFINITION
START BLOCK COAGULATION MODEL

! Method = [NONE | ADS]
!     (required) (default = ADS)
Method = ADS
!------------------------------------------------------------
!   Collision Rate Formula = {"Mixed", "Free Molecular",
!                            "Continuum limit", zero }
!        (Default="Mixed")   (optional)
Collision Rate Formula = Mixed
!------------------------------------------------------------
! DOF2 Interaction Method = [ CombinedHighLow |
!                             SeparateHighLow]
! Method for how the different degrees of freedom in a
!  DOF 2 interpolation of a section interact with each
!  other in the coagulation kernel.
! (Default = CombinedHighLow) (optional)
DOF2 Interaction Method = CombinedHighLow 
!------------------------------------------------------------
! Drain MU Adjust Method = [NONE | Maximal | Minimal | 
!                            BimolecularRxnLowSections |
!                            BimolecularRxn | AlwaysSeparateHighLow]
!   (optional) (Default = BimolecularRxnLowSections)
! Method for specifying the coagulation method with CADS.
Drain MU Adjust Method = BimolecularRxnLowSections 
!------------------------------------------------------------
! Section Addition Adjust Method = [Conservative | Ramp | 
!                              Always Accurate]
!   Method for filling in a section. This sets algorithm
!   for determining the MU to particle ratios entering a
!   section as a function of the distribution of 
!   particle ratios already in the section. 
! (default = ramp) (optional)
Section Addition Adjust Method = Ramp
!------------------------------------------------------------

END BLOCK COAGULATION MODEL
END BLOCK ADS MODEL DEFINITION

  →
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The “Drain MU Adjust Method” modifies the way the coagulation kernel handles the draining of 
a section. Currently, there are 6 of these methods. The default is called 
BimolecularRxnLowSections, which was described in Section 4.4. An alternative to the default 
is BimolecularRxn, which was also described in Section 4.4. The method NONE may be described, 
as well, which turns off all drain adjustments. The methods Maximal and Minimal are first-
generation methods, which are discouraged and won’t be described here.

The line, “Section Addition Adjust Method” sets the algorithm for determining the MU to 
particle ratios entering a section as a function of the distribution of particle ratios already in the 
section. There is a balance between accuracy and numerical stability (numerical stability both in 
terms of the non negativity of the distribution and the smoothness of the Jacobian terms. The theory 
behind this was discussed in Section 4.5. The Conservative method always injects an MU ratio, 

,into section i such that . The Ramp method only changes the 
incoming  ratio if the change is required due to the existing distribution in the section. The 
Always Accurate option never changes the incoming  distribution. Negative coefficients 
are to be expected.

Note, all of the above options only modify the DOF 2 case. Except for the collision rate formula, 
the DOF 1 case is not affected by any of these values. Note, in the DOF 1 case, split adjustments 
are always done in order to account for both particle numbers and to conserve mass/elements.

4.7 Sample Problem for Particle Growth via Coagulation

A particle distribution undergoing pure coagulation driven by either the free-molecule coagulation 
kernel or the continuum-regime coagulation kernel will develop a self-similar distribution for each 
kernel [4]. Any numerical description of coagulation employing one of these kernels should 
generate the respective self similar distribution. Friedlander [4] defines the form and requirements 
of the self-similar or self preserving particle size distribution. The size distribution function, 

, is defined as the differential particle number concentration, dN, that lies between particle 
sizes, and , at time t. Eqn. (4.57) represents the differential equation.

(4.57)

N is the cumulative size distribution function, i.e., the number of particles having size  or lower. 
The integral relations for the total particle number, ,

MUcoag MUi
L MUcoag MUi

H< <
MUcoag

MUcoag

n µ t,( )
µ µ dµ+

n µ t,( )
µd

dN=

µ
NT



91

 , (4.58)

and the total volume of particles, ,

, (4.59)

where  is the volume of a particle of size , hold for the distribution function with the 
additional condition that  approaches zero at both extremes of  approaching zero and 
infinity.

Coagulation of particles is described by the integral-differential equation Eqn. (4.60).

(4.60)

Integrating Eqn. (4.60) over all particle MU sizes, , we obtain an equation for the total number 
of particles as a function of time,

, (4.61)

where is the coagulation kernel giving the collision frequency (units of m3 (kmol 
particles)-1 sec-1), between two particles of size  and size . The coagulation kernel has one form 
for the free molecule particle regime, where particles “see” the gas as individual molecules, and a 
different form for the continuum particle regime, where the particles “see” the gas as a continuum. 
In our application, we have a form that interpolates between free molecule and continuum and goes 
to the correct limits in each case (see Section 4.1).

The size distribution function can be made dimensionless. The average volume of a particle, , is 
defined as the total particle volume concentration φ divided by the total particle number 
concentration, . 

 where (4.62)
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 is the volume of the particle per monomer unit. The normalized particle size, η, is defined as 
the particle volume, V, divided by the average volume of a particle in the distribution, .

(4.63)

The dimensionless distribution function, , is defined as

. (4.64)

Integral relations,

(4.65)

and

, (4.66)

demonstrate that the integral of  and the first integral moment of  are independent of time.

In the free molecule regime, an analytical solution, Eqn. (4.68), exists (by solving Eqn. 8.18, p. 234 
[14]) for the total particle number evolution over time in the self preserving distribution limit. If 
Eqn. (4.12) is plugged into Eqn. (4.61), the following relation is found:

(4.67)

where

is a dimensionless constant, whose value must be calculated once the dimensionless self-
preserving distribution,  has been determined. Wu and Friedlander [35] have published a value 
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for  of 6.552 for spherical particles in the free molecular regime. Eqn. (4.67) may be integrated 
and  solved for to obtain Eqn. (4.68).

(4.68)

Eqn. (4.68) is often expressed in terms of a dimensionless time, (for example Ref. 29 uses this 
expression)

, (4.69)

to yield 

. (4.70)

In the continuum regime, an analytical solution, Eqn. (4.71), also exists for the total particle 
number, .

(4.71)

a is 0.9046 and b is 1.248. In the above equations, k is Boltzmann’s constant, T is absolute 
temperature, µ is gas viscosity, and ρp is particle material density. Note that in both expressions, 
when the right-hand term in the denominator is large compared to 1, the expression is independent 
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of the initial particle concentration. Tabulations of the self preserving distribution functions maybe 
found in ref [29].The distributions are plotted here in Figure 4.9.

There are two time scales of interest for the test problem. The first is how long it takes to get to the 
self-similar distribution and the second is how long it takes the expressions for the number 
concentration of the self-similar distribution to become independent of the initial number 
concentration. The first time scale, the time to get to a self-similar distribution from an initially 
mono disperse distribution is reported by Friedlander [2] for the free molecule regime as

, (4.72)

and for the continuum regime as

Figure 4.9 Self-preserving particle number distributions [29].
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. (4.73)

Going from an initially poly-disperse distribution will take greater or lesser time depending on how 
different the initial distribution is from the self-similar distribution. Sometimes the time can be 
much greater. For a free-molecular self-preserving distribution, the geometric standard deviation 
of a self-preserving distribution is 1.46 [29]. Starting with an initial lognormal distribution of 2.5 
will take about 3 orders of magnitude longer to get to a self preserving distribution than from an 
initially mono disperse distribution. Similar results are expected for the continuum regime.

Time for the concentration decline to become independent of the initial concentration (to within 
1%) for the free molecule regime is

, (4.74)

and for the continuum regime is

. (4.75)

4.7.1 Free-Molecular Regime Test Problem

In the free molecule regime, consider an initial distribution of mono-disperse 1 nm diameter 
particles with initial concentration of  per cm3, a bulk material density of 4.2 grams per 
cm3, at a temperature of 1800 K. These conditions are used in Vemury and Pratsinis [29]. 
Assuming a molecular weight of 26 kg kmol-1, and bulk-particle molar volume of 0.00619 m3 
kmol-1, the volume fraction of particles in the gas, φ, is 5.24x10-6 (volume concentration of 5.24 
cm3 per m3). For these number, the characteristic time constant, , Eqn. (4.69) is equal to 

 sec. The time to get to a self-preserving distribution is  seconds. The 
time for the number concentration decline to become independent of the initial concentration is 

 seconds. In less than  seconds, this problem should give a self preserving 
distribution with a number concentration decline independent of the initial concentration. In 

 seconds, the concentration will be  particles per cm3.
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Figure 4.10 contains the results for the dimensionless particle number vs. the dimensionless time, 
. Agreement is excellent between the calculation and the analytical result, Eqn. (4.70), for 

both the DOF1 and DOF2 cases.

Results for the nondimensional particle distributions are presented in Figure 4.11. Even on a 
relatively coarse grid with a geometric spacing of 2.0 the DOF 2 implementation exhibits very nice 
agreement with the analytical results (black) given in [29]. The degree-of-freedom 1 (DOF 1) 
method is also shown. Results for geometric spacings of 1.5 and 1.2 indicate that there is seems to 
be convergence towards the analytical results. However, a much finer resolution is needed to get 
good agreement with the DOF-1 method, obviously. The 1.2 DOF 1 method had about 35 bins 
encompassing the distribution in Figure 4.11with 150 bins in the entire simulation, while the 1.5 
DOF-1 method had 15 bins in the distribution with 100 bins in the entire simulation. The 2.0 DOF 2 
method had 10 bins with 20 degrees of freedom in the distribution in Figure 4.11 with 40 bins in 
the entire simulation.

4.7.2 Continuum Regime

In the continuum regime, consider an initial distribution of mono-disperse 0.5 µm diameter 
particles with an initial concentration of 1010 per cm3 in a gas at 300 K with a viscosity of 

Figure 4.10 Self-preserving particle distribution in the free-molecular regime. Dimen-
sionless particle number vs. the dimensionless time. DOF 2 and DOF 1 cases 
vs. the analytical solution.
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1.81x10-4 poise. The volume fraction φ is 6.55x10-4 (volume concentration of 655 cm3 per m3). 
This is a very high volume concentration but for the mathematical purposes here it is suitable. For 
this situation, the time to get to self preserving is 8.5 seconds. The time for the number 
concentration decline to become independent of the initial concentration is 31 seconds. In less than 
40 seconds, this problem should give a self-preserving distribution with a number concentration 
decline independent of the initial concentration. One sees that this takes much longer than the free 
molecule case above because the initial concentrations are lower by six orders of magnitude in 
order to maintain realistic conditions.   In 300 seconds, the concentration will be 1.03x107 particles 
per cm3 and the average diameter will be 4.96 µm.

Figure 4.11 Results for self-preserving distribution in the free-molecular regime. Distri-
butions of particle number concentration are shown at t = 0.01.
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5. Nucleation

5.1 Definition of Nucleation

Nucleation refers to particles that are formed via condensation of gas phase species. Nucleation 
begins when thermodynamics favors the condensed phase in particle form over the gas phase. 
Classically, this is generally associated with a concentration of the nucleating gas phase species in 
excess of its equilibrium vapor pressure, i.e., a saturation ratio greater than one. Nucleation occurs 
to relieve this supersaturation. The excess in concentration may arise from cooling of the gas or 
from gas phase production of the nucleating species from chemical reaction. At the same time 
monomer and cluster collision is taking place, monomer evaporation from the clusters is occur-
ring. In classical nucleation theory, there exists an equilibrium cluster size distribution determined 
by the balance between condensation on and evaporation from clusters at some reference condi-
tion. Nucleation occurs when there is net growth of some critical cluster size in this distribution. 
The formation rate of these critical clusters is the nucleation rate and the size of the critical cluster 
is the nuclei size. Classical nucleation theory and closely related formulations provide a predic-
tion of the size of the critical clusters and the particle “current” through that size which constitutes 
the nucleation rate. Within combustion problems, however, due to the absence of Kelvin Effect 
type influences, critical cluster sizes occur at the molecular sized level, i.e., where the speciation 
is handled via direct inclusion of species (i.e., polyaromatic hydrocarbons) in the molecular mech-
anism. Thus, an alternative approach to the classical nucleation formulation within CADS has been 
implemented wherein bimolecular reactions between precursor PAH’s lead to formation of the 
initial particles. Classical nucleation formulations may be added later in CADS, as the need war-
rants.

Within CADS, nucleation reactions are defined as reactions that occur between molecular species 
and particles that create and/or destroy particles. Typically, if all of the reaction participants on 
one side of the reaction sign are molecular species and one or more participants on the other side 
of the reaction sign is a particle, then that reaction is considered a nucleation reaction and is in-
cluded in the nucleation mechanism. Note, this means that reactions which destroy particles are 
also considered nucleation reactions. Nucleation reactions should be contrasted with surface 
growth (i.e., condensation) reactions. Within CADS, all reactions are considered either to be nucle-
ation, condensation or bulk-particle reactions. Condensation reactions typically don’t lead to the 
change in the number density of particles, and the rates of condensation reactions are proportional 
to the surface area of the particles. Nucleation reactions necessarily lead to the change in the num-
ber density of particles, and may exhibit a variety of rate dependencies with respect to the particle 
number density and therefore the particle surface area. The chief dependency/feature is that nucle-
ation reactions may be independent of the number density of particles.
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There is one possibility where condensation reactions can also lead to the change in the number of 
particles. This case is the etching of particles from the zeroth sectional bin. An optional modifica-
tion to the normal condensation algorithm has been added to allow for the destruction of particle 
number density due to etching of particles in the zeroth sectional bin. This is carried out while 
conserving elements, but under represents high molecular weight products of particle etching re-
actions. The alternative to this optional modification would involve adding in an additional “nu-
cleation/etching” reaction to the nucleation mechanism involving particles in the zeroth order bin 
as a reactant that would create a single or multiple product molecular species (of a relatively high 
molecular weight) as the result of the etching reaction.

The Kelvin equation takes into account the effects of surface tension on the stability of small par-
ticles. Because the previous implementation is completely reversible, it should be possible to in-
clude the effects of the Kelvin equation in the nucleation rates of particles. The Kelvin equation 
necessarily includes a modification to all reversible reactions that change the size of a particle.

5.2 Particle Species

In order to represent the possibly reversible nature of nucleation reactions, within nucleation reac-
tions, particles are represented by “particle species.” Particle species are individual molecular 
species, whose concentrations exhibit a duality with the sectional bin particle unknowns. Because 
they are “species” from Cantera’s point of view, Cantera’s existing mechanism for calculating rate 
of progress for kinetic reactions and rates of formation of species may be used in the calculation 
of nucleation reactions, where one side of the reaction expression actually involves a distribution 
of molecular sizes represented by a distributed function of the total species size.

Figure 5.1. graphically depicts this duality. Particle species maintain two different ways for speci-
fying its elemental composition. In the first way, a particle species maintains an elemental compo-
sition list just as an other molecular species does. In the other way, particle species maintain a 
stoichiometric composition vector based on the monomer units of the particle phase. As Figure 
5.1 illustrates, their composition can be represented in terms of the total monomer unit number, 

,and the monomer unit composition, for multi-species particle phases. Also, the rate of produc-
tion of particle species can be directly related to the rate of production of total monomer units, 
monomer units types and total particles. This is done by assigning particles species to individual 
section bins. Particle species below the cutoff of the zeroth section bin are assigned to the zeroth 
sectional bin.

The end result of the nucleation operator are source terms for the gas-phase molecular species, 
 and for each section L of the particle distribution, . The sum of the gas and 

particle nucleation source terms conserves mass and is faithful to the prescribed change in the par-

ν

Snucl_gas Snucl_part L,
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ticle number density, detailed in the nucleation kinetics mechanism. This is true for the 2 DOF 
formulation and frequently true for the 1 DOF formulations. In the 1 DOF formulation, a tie-line 
approach is used to apportion the particle species source terms between 2 sectional bins. The tie-
line approach solves a 2x2 equation system based on the total number of monomer units and the 
total desired change in particle numbers for each particle species. 

For nucleation reactions that are reversible or that involve the irreversible destruction of particle 
species, a concentration of particle species must be determined in order to evaluate the production 
rate of the particle species from a reaction rate. This is achieved by constructing an algorithm for 
determining the concentration of a particular particle species from the monomer unit distribution 
function,  of the section L, corresponding to the particle species. The default behavior is to 
assign  of the available particle concentration around the total monomer unit value of the par-
ticle species, , to the concentration of a particular particle species. The exact equation for the 
concentration (kmol m-3) of particle species k, , is Eqn. (5.1).

(5.1)

 is the total monomer unit distribution function in section L, the section containing parti-
cle species k.  is limiting factor between 0 and 1 that takes into account of the elemental sto-

Figure 5.1 Duality between particle species and section bins. Nucleation reactions 
are written in terms of particle species. These, in turn can be represented 
by particle unknowns.
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ichiometry between the particle species and the elemental composition of the section. For 
example, if the sectional bin is made up of particles consisting of SiO2 and the particle species 
contains carbon, then . If the sectional bin is made up of purely carbon and the particle 
species is pure carbon, then .  is the total monomer units in the particle species. 

 is equal to the following formula:

(5.2)

where  is the number of particle species in section L. Though far from rigorous, Eqn. (5.2) 
attempts to create a representative range of  values for which concentration of the particular par-
ticle species accounts for. In particular if there are many particle species in a single bin, then the 
concentration of any single particle species should be reduced to reflect this fact. The cap on 5 
monomer units in Eqn. (5.2) reflects the following thought. If there is only one particle species in 
a very large sectional bin, encompassing a large range of total monomer units, then the concentra-
tion of the particle species should probably only reflect the concentration of particles around its 
own total monomer unit concentration and not the entire concentration of particles in the section. 

5.3 Cantera Implementation

Much of the mechanics of calculating production rates and thermodynamic quantities for the nu-
cleation process is carried out by the normal lower-level functions of Cantera. However, in order 
to use these functions, wrappers around Cantera’s thermodynamics objects and kinetics objects 
that take into account the sectional bin representation must be constructed. Figure 5.2 pictorially 
describes these wrapper objects involved and their interrelationships within the CADS calculation 
of the particle nucleation rate.

A central role is played by the PartSpecPhase object. The PartSpecPhase object calculates the 
concentrations and thermodynamics for the particle species, i.e., the full range of features of the 
parent, Cantera’s ThermoPhase object. Conceptually, all of the normal thermodynamics functions 
declared in the ThermoPhase object are implemented by the PartSpecPhase object. The concen-
tration of particle species is needed by the kinetics algorithms for reversible nucleation reactions 
or for reactions involving particle break-up into molecular species. The evaluation of the concen-
tration of particle species is handled by the PartSpecPhase object, as described in the previous 
section. 
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5.3.1 Calculation of Thermodynamic Species for Particle Species

Two basic options are provided for calculation of the thermodynamic functions for particle spe-
cies. The first option uses the particle solid-phase thermodynamic values to calculate the thermo-
dynamic functions for each particle species. It does this by referencing the thermodynamics object 
for the particle solid phase through a reference pointer, m_ParticleSolidPhase. First it calcu-
lates all of the reference thermodynamic functions for the monomer units of the solid phase at the 
current temperature using m_ParticleSolidPhase. Then, the values are combined with the sto-
ichiometric composition of the particle species in terms of the monomer units of the solid phase to 
derive the molar thermodynamic functions for the particle species. The stoichiometric composi-
tion of each particle species is determined using a basis set of monomer unit species for the solid 
phase [34]. The basis set is defined as a minimal number of monomer units types whose elemental 
composition can span the range of all possible elemental compositions of all monomer unit types. 
Note, this number is frequently, but not always, equal to the number of elements defined in the 
monomer units of the solid particle phase. The default set of basis monomer unit species, as well 

getPartSpecConc()

PartSpecPhase

Figure 5.2 Glyph diagram of the implementation of nucleation within the Cantera frame-
work. Triangles represent inheritance relationships with the pointy end direct-
ed at the parent object.Dotted arrows depict dependencies; one object 
maintains a pointer to another object in order to carry out a needed function.
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as the stoichiometric composition of each particle species, are determined algorithmically (e.g., 
see ref [34]). However, since this affects the calculation of the thermodynamic properties, the de-
fault set can be specified in the input XML file using the optional defaultSpeciesBasis XML 
node option within the Particle Species thermo XML element specification. For example, sup-
pose there were 2 species in the soot solid phase, C_new and C_old, each having an elemental 
composition of one carbon atom, but perhaps have different thermodynamic reference properties. 
Then, the following XML snippet, which sets up a PartSpecPhase object, could be added to the 
particle species XML element to resolve the ambiguity in specification of the default thermody-
namic properties.

<!-- “phase” contains elements, thermo, species, transport and kinetics descriptions
of the phase -->

<phase id=”PartSpecPhaseExample, dim=”3”
<!-- “thermo” describes the thermodynamic model for the ThermoPhase object, and

provides parameters for that model -->
 <thermo model=”PartSpecPhase”>

<condensedPhaseThermo> sootPhase </condensedPhaseThermo>
<defaultSpeciesBasis> 

C_new 
</defaultSpeciesBasis>

 </thermo>
</phase>

The model attribute of PartSpecPhase in the thermo XML node specifies that the phase will be a 
Particle Species phase. The condensedPhaseThermo node specifies the condensed phase that 
will be used by the Particle Species phases to extract the basis set of condensed phases species 
from. In this example, we have defined the default monomer units basis species for the solid 
phase to be C_new. Note, either C_new or C_old could have been chosen since they have the same 
elemental composition. Then, if a particle species, named C18, consists of 18 carbon atoms, the 
enthalpy for C18 would be determined by the following relation:

(5.3)

Another option can be used to specify the stoichiometry of a particle species. Within the species 
section of the XML file, the species basis may be specified exactly, using the speciesBasisAr-
ray XML element. For example, the C18 particle species mentioned above could be specified to 
consist of a unique number of C_old and C_new species, using the following XML code snippet:

<!-- “species” describes a single species in a phase. It contains the element 
composition, standard state thermodynamic specification, and transport props -->

<species id=”Part_C18 dim=”3”>
<!-- “atomArray” contains the atomic composition -->

 <atomArray> C:18 </atomArray>
<speciesBasisArray>

C_new:11
C_old:7

hC18 T Po,( ) 18hC_new T( )=
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</speciesBasisArray>
</species>

This species XML element does not need a thermo XML element, since the thermodynamic spec-
ification of the species will be generated from a linear combination of the C_new and C_old ther-
modynamic values.

Alternatively, specific thermodynamic polynomials may be supplied for each specified particle 
species. These uniquely define the thermodynamic functions for the particle species irrespective 
of the thermodynamics for the ideal solid solution phase. This is done in the species XML element 
in the normal way. For example the previous example could be modified to be the following:

<species id=”Part_C18 dim=”3”>
 <atomArray> C:18 </atomArray>

<speciesBasisArray>
C_new:11
C_old:7

</speciesBasisArray>
<thermo>

<NASA P0="100000.0" Tmax="1000.0" Tmin="200.0"> 
<floatArray size="7" title="low"> 2.344331120E+000, 

7.980520750E-003,-1.947815100E-005, 2.015720940E-008, 
-7.376117610E-012, -9.179351730E+002, 6.830102380E-001

</floatArray> 
</NASA> 
<NASA P0="100000.0" Tmax="3500.0" Tmin="1000.0"> 

<floatArray size="7" title="high"> 3.337279200E+000, 
-4.940247310E-005, 4.994567780E-007, -1.795663940E-010,
2.002553760E-014, -9.501589220E+002, -3.205023310E+000

</floatArray> 
</NASA>

</thermo>
</species>

The specification of the thermo XML element preempts alternative thermodynamic function cal-
culations previously discussed.

In all cases, the pressure dependence of the thermodynamic polynomials then follows the standard 
ideal gas law form. For example, the Gibbs energy, G, has the following pressure dependence:

. (5.4)

Currently, PartSpecPhase assumes that the particle species exist in an ideal gas, but are dilute in 
that medium. The total sum of the species in the PartSpecPhase is not constrained to sum up to 
the total concentration given by the ideal gas law. Though never explicitly checked, this sum is 
implicitly assumed to be much less than one.

GC18 T P,( ) GC18 T Po,( ) RT P Po⁄( )ln+=
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5.3.2 Calculation of Kinetic Rates of Reaction

The kinetics object that calculates the net rate of production of particle species is called 
PSP_KineticsMgr. It is derived from the Cantera class Kinetics and refers to the CADS object 
class PartSpecPhase and the gas phase medium, IdealGasPhase, through pointers. The class, 
PNK_CantKin, derived from PartNuclKin handles the mapping of the particle species rates of 
formation into the rates of production of unknowns specific to the sectional bins representation. 
Some of the code that is not Cantera-specific is included in the class PartNuclKin. Code that is 
specific to Cantera is included in virtual functions defined in the class PartNuclKin and reimple-
mented in the derived class, PNK_CantKin. 

For example, the core routine, nucleationRate(), is a virtual function defined in PartNuclKin. 
It is defined explicitly in the class PNK_CantKin. In order to calculate the nucleation rate, Part-
NuclKin first translates the current sectional bin concentrations into concentrations of particle 
species. PNK_CantKin handles the calculation of the concentration of the particle species via Eqn. 
(5.2). Then, it calls PSP_KineticsMgr to calculate the rates of production of gas-phase species 
and particle species using the normal Cantera kinetics procedure. It then reinterprets the rates of 
particle species production in terms of rates of production of particle section bin concentra-
tions.Damping algorithms to maintain positivity in the DOF 2 implementation are also located in 
the PartNuclKin class. These are described in a later section.

5.4 Implementation in the Input File

The master input file contains a block pertaining to the nucleation operator. Figure 5.3 contains 
the nucleation operator section of the particle input file. The METHOD command line has two val-
ues, Cantera or NONE. This serves to toggle the nucleation operator. The next command line sup-
plies the file name for the XML commands specifying the particle phase and the nucleation 
reactions. The last command line, Section Addition Adjust Method, specifies the algorithm to 
employ to stabilize the nucleation source term. This is discussed in a subsequent section.

The nucleation kinetics equations are contained in the particle species file. Figure 5.4 contains an 
example of a particle species XML file. Figure 5.5 is a continuation of that example showing sam-
ple nucleation reactions involving the particle species.

Figure 5.4 displays several different ways that particle species can be declared in the input file. 
First, they can be explicitly declared. The XML element, speciesArray, defines what explicit 
particle species is in the phase and where to get information about the species. The attribute 
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datasrc defines where to find information about the species. It’s value “#species_PartSpec” 
means that the data should be found in the current file, as children of the XML element named 
speciesData. Alternative, if the value “file.xml#species_PartSpec” were specified, then the 
file named, file.xml, would be searched for XML elements speciesData in order to find the spe-
cies data.

The thermodynamic model for the particle species phase is defined to be PartSpecPhase, that 
causes the implementation of the PartSpecPhase class described in section 5.3. What this means 
is that thermodynamics for particle species that don’t have explicitly defined thermodynamic 
functions is obtained from the particle solid phase. The ID of the particle solid phase to obtain the 
thermodynamic functions from is given in the child XML element, condensedPhaseThermo. 
“sootPhase” is the name of the condensed phase thermodynamics description for the particles. In 
that phase, the MU types, C-new and C-old, are defined, with thermodynamic functions assigned 
to these species. The condensed phase is currently always assumed to be an ideal, constant vol-
ume, ideal solution.

The elementArray XML element specifies what elements are defined to be in the particle phase 
and where to get information about them, i.e., the file “elements.xml”. Elements don’t have to be 
in any particular order. 

The kinetics model is defined to be ParticleNucleationKinetics. This means that the 
PSP_KineticsMgr is used to calculate the reaction rates. The phaseArray XML element indi-
cates what other phases are involved in the calculation of reaction rates within PSP_KineticsMgr. 
The phase, ethene, is the ID of an ideal gas phase containing the H2, A1, and A3 species that ap-
pear in the kinetic reaction expressions. The XML element reactionArray contains the database 

Figure 5.3 Nucleation block of the particle input file

START BLOCK ADS MODEL DEFINITION
....
START BLOCK NUCLEATION MODEL

! METHOD = {<Cantera>| NONE}
METHOD = Cantera
! Cantera Particle Nucleation Phase File = {string}
! Default name = PartNuclPhaseFile.xml
Cantera Particle Nucleation Phase File = partNucl.xml
! Section Addition Adjust Method = [ Conservative | <Ramp> | 
! Always Accurate ]
Section Addition Adjust Method = Ramp

END BLOCK NUCLEATION MODEL
....

END BLOCK ADS MODEL DEFINITION
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specification, i.e., where the reactions are to be found. The datasrc attribute, 
“#reactions_Nucleation” means that the nucleation reactions should be found in the XML ele-
ment, reactionData, with id “reactionsNucleation” within the current file.

The species, Part_12, Part_20, and Part_23 are declared explicitly in the phase. Part_12 has 
explicit thermodynamic functions assigned to it. Part_20 doesn’t have thermodynamic functions 

Figure 5.4 Example of an XML particle-species file

<phase id="PartSpecPhaseExample" dim="3"> 
<thermo model="PartSpecPhase"> 

<condensedPhaseThermo> sootPhase </condensedPhaseThermo> 
<defaultSpeciesBasis> C-new </defaultSpeciesBasis> 

</thermo> 
<elementArray datasrc="elements.xml"> H C O N Ar </elementArray> 
<speciesArray datasrc="#species_PartSpec" rule="create_on_demand">

Part_12 Part_20 Part_23 </speciesArray> 
<reactionArray datasrc="#reactions_Nucleation" />
<kinetics model="ParticleNucleationKinetics" /> 
<phaseArray> ethene </phaseArray> 

</phase> 

<speciesData id="species_PartSpec"> 
<!-- Particle species specified by its own input thermo -->
<species name="Part_12"> 

<atomArray> C:12 </atomArray> 
<speciesBasisArray> C-new:12 </speciesBasisArray> 
<thermo> 

<NASA P0="100000.0" Tmax="1000.0" Tmin="200.0"> 
<floatArray size="7" title="low">2.344331120E+000, 7.980520750E-003, 
-1.947815100E-005, 2.015720940E-008, -7.376117610E-012, 
-9.179351730E+002, 6.830102380E-001</floatArray> 

</NASA> 
<NASA P0="100000.0" Tmax="3500.0" Tmin="1000.0"> 

<floatArray size="7" title="high">3.337279200E+000, -4.940247310E-005,
4.994567780E-007, -1.795663940E-010, 2.002553760E-014, 
-9.501589220E+002, -3.205023310E+000</floatArray> 

</NASA> 
</thermo> 

</species> 
<species name="Part_20"> 

<atomArray> C:20 </atomArray> 
<speciesBasisArray> C-new:20 </speciesBasisArray> 

</species> 
<species name="Part_23"> 

<atomArray> C:23 </atomArray> 
</species> 

</speciesData> 
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assigned to it; it obtains its thermo from the particle solid phase. Part_20 defines the MU species 
basis, however, (e.g., consisting of 20 C_new MU’s) so that the thermodynamics functions are de-
liberately specified. Part_23 only specifies its stoichiometry, leaving the specification of the MU 
species basis up to a default algorithm. In this case, the default MU species basis is defined to be 
C-new by the defaultSpeciesBasis XML element of the thermo XML element, see Figure 5.4.

However, another particle species is defined implicitly through the first nucleation reaction in Fig-
ure 5.5. In that reaction, the product “Particle” is created. This is a keyword indicating that the 
particle species should be created “on the fly”, if an existing particle species doesn’t have the re-
quired elemental composition. The required elemental composition in this case, noting that A1 
has C6H6 and A3 has C14H10 stoichiometry, is one with 28 carbons. Thus, a new particle species 
is created in the phase with 28 carbons, with its thermodynamics specified by the default generat-

Figure 5.5 Example of an XML particle-species file (continued)

<reactionData id=”reactions_Nucleation" model="ParticleNucleationKinetics"> 
<!-- 

The Particle species entry will automatically create a
new species in the PartSpecPhase phase with the right stoichiometry.

--> 
<reaction id="nucleation_rxn_1" reversible="no"> 

<equation>A3 + A3 =] Particle + 10 H2</equation> 
<reactants>A3:2</reactants> 
<products>Particle:1 H2:10</products> 
<rateCoeff> 

<Arrhenius order="2"> 
<A units="cm3/mol/s">1.2E23</A> 
<b>-2.92</b> 
<E units="cal/mol">15890.</E> 

</Arrhenius> 
</rateCoeff> 

</reaction> 

<reaction id="nucleation_rxn_2" reversible="yes"> 
<equation> A1 + A3 [=] Part_20 + 8 H2</equation> 
<reactants> A1:1 A3:1 </reactants> 
<products> Part_20:1 H2:8 </products> 
<rateCoeff> 

<Arrhenius order="2"> 
<A units="cm3/mol/s">1.2E23</A> 
<b>-2.92</b> 
<E units="cal/mol">15890.</E> 

</Arrhenius> 
</rateCoeff> 

</reaction> 
</reactionData> 
</ctml>
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ed MU species basis of the particle solid phase. The XML element speciesArray contains an at-
tribute, rule, which can be used to toggle this automatic particle species creation capability. If the 
attribute rule with the value “create_on_demand” isn’t present then the auto-generation capabil-
ity won’t be enabled.

In Figure 5.5, all of the XML entries that specify the individual reaction kinetics are boiler-plate 
Cantera entries, except for the create_on_demand particle species, which auto generates species, 
as described previously. Note, however, the equation XML element doesn’t specify any at-
tributes to the reaction; it’s only a string representation of the reaction and is ignored. The reac-
tants and products XML elements and the reversible attribute specify the actual properties of 
the kinetic reaction.

5.5 Numerical Stability Considerations

Numerical testing has demonstrated that filters for the nucleation source term are necessary in or-
der to maintain numerical robustness. Here and elsewhere within CADS, numerical robustness is 
defined as maintaining positivity of all coefficients in the sectional particle distribution unknowns 
for the DOF 2 case no matter how large a time step is taken, when an implicit time-stepping algo-
rithm is used. If the nucleation source term has a monomer unit to particle ratio which is too close 
to one end of a bin, a skewed distribution with a negative sectional coefficient may result. The 
DOF 1 case doesn’t exhibit similar problems. The same approach is used in the nucleation term as 
has been previously described elsewhere. Figure 5.6 depicts the filtering carried out on the nucle-
ation source term.

 represents the source term vector for nucleation. Its form is given by Eqn. (5.5). The 
ratio of the total monomer unit (TMU) term to the particle source term yields the monomer unit 
per particle value of the source term, . Each sectional bin, i, in the DOF 2 implementation can 
afford a certain range of  values in its intersectional distribution, while still maintaining posi-
tive basis coefficients. The high and low limit for this range is specified by the values  and 

. Values of average number of monomer units in the particles of a section, , outside of 
this range (i.e., either  or ) for the section, may cause one of the sec-
tional basis coefficients,  or  (where  for the DOF 2 represen-
tation), potentially to go negative.
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(5.5)

The nucleation source term’s monomer unit per particle average, , is equal to 
. When  is outside the range of  to , difficulties with one 

of the sectional basis coefficients going negative may or may not occur depending on a range of 
factors associated with the other source terms, the existing values of the sectional basis coeffi-
cients, the value of the time step, and the time-stepping algorithm. For example, there may be oth-
er source terms to section i such that the net source terms has an acceptable overall monomer unit 
per particle ratio. If the existing sectional basis functions are positive, for time dependent calcula-
tions and for short enough times, the sectional basis functions will maintain their positivity. 

However, Figure 5.6 shows a case where the nucleation source term must be reapportioned be-
tween the neighboring section in order to maintain the positivity of  no matter what the time 
step value. In this case,  and . Barring other source terms, and as-

Figure 5.6 DOF 2 filtering of the nucleation source term vector. The source term is 
apportioned to neighboring section in order to maintain positivity of the 
basis coefficients.
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suming that the nucleation source terms are positive, this will force:

 and 

The following algorithm may be used to avoid this instability. For the particular case where 
, as shown in Figure 5.6 (other cases are handled in a similar fashion), a portion 

of the  vector is redirected to the higher section, i+1. Thus, the source term,  
is split into two parts, each part having a different and more stable value for  according to 
that section’s parameters. The original section’s adjusted monomer unit ratio is denoted as 

, while the neighboring section’s adjusted monomer unit ratio is denoted as .The 
following value for these quantities are used:

(5.6)

(5.7)

The second term in Eqn. (5.6) and (5.7) is to ensure positivity of sectional basis coefficients even 
after roundoff errors.  is a constant with a current value of . Then, the following 2 
x 2 matrix system representing a partitioning of the original source term for section i that con-
serves the original total particle and TMU source terms, Eqn (5.8), is solved for the adjusted parti-
cle source terms for section i and ,  and . 

(5.8)

(5.9)

The above description applies to how the tie-line approach is applied to one section, with the al-
ternate source term section being one section higher ( ). To formulate a stabilized nu-
cleation source term, this approach is applied to all source terms and then collected:

(5.10)
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 and (5.11)

Here,  or  depending on value of . 

There is one important special case to this procedure. The lowest section, section 0, can not han-
dle . For this case when the average MU’s per particle in the lowest section is 
however than , particle conservation is dropped when the adjusted source term is needed for 
stability purposes:

(5.12)

(5.13)

This lowers the numbers of particles actually created, while maintaining elemental conservation. 
Because the particle coagulation rate is an inverse function of the particle size, this seems to be a 
fair approximation.

The DOF 1 case shares some similarities with the DOF 2 case. For the DOF 1 case, in essence, 
. In other words, each section can only handle a single monomer unit number to 

particle ratio, not a range of monomer unit numbers. Therefore, a tie-line approach is always used 
to generate the correct monomer units to particle ratio given by the nucleation source term, 

.

5.5.1 Input File Options

There is a line command in the input file that modifies the stability behavior for the DOF 2 case 
called Section Addition Adjust Method. It can have three valid parameters, Conservative, 
Ramp, and Always Accurate.
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The Conservative case always applies the stability operator, Eqn. (5.10), to the nucleation 
source term. The Always Accurate case always skips the application of the stability operator. 
The third case, Ramp, which is the default, attempts to apply the stability operator only when it is 
needed to maintain positivity of the section bin coefficients by applying the following formula:

(5.14)

where  is a ramp for section i that is 0 when no stability is needed and is 1 when full stability is 
needed. The following algorithm for determining  is used.

(5.15)

where

 where and (5.16)

 and , , and 

and

 where and (5.17)

,  and 

 guards against a section becoming skewed, as depicted in Figure 5.6.  makes sure the 
algorithm reverts to a conservative implementation when there are few particles in the bin. 

, which does depend on i, is usually set to 4 or 5 magnitudes lower than the total monomer 
units in the particle phase. 

5.6 Jacobian for Particle Nucleation Reactions

The nucleation operator is complicated. However, typically, relatively few gas phase species and 
relatively few particles section unknowns are involved. Therefore, the way to efficiently calculate 
it’s Jacobian is to limit the number of variables which have to be numerically differenced in its 
derivation. Let’s define the nucleation kinetics operator by the following Eqn.(5.18).
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 (5.18)

 is the full source term for the nucleation operator.  is the source term for the particle 
unknowns, while  is the source term for the gas unknowns. In general, particles may both 
be created and destroyed by this operator. Note, however, operations where the same number of 
particles appear on both sides of reaction are not included in this operator; they are included in the 
condensation operator. The dependence on the unknowns is in general full. However, in practice, 
there is a great deal of sparsity in the Jacobian created by differentiating Eqn. (5.18) with respect 
to the unknowns.

There are several boolean flags and integer arrays that are used to delineate the sparsity. The val-
ues of these booleans are calculated within the program.

m_reversibleNuclRxn True if there at least one reversible reaction defined in the nucle-
ation reaction mechanism.

m_srcAdjMade True if there at least one source term adjustment made to a nucle-
ation source term, where part of the source term is redirected to 
another section bin in order to maintain numerical stability. 

m_MUMoleFractionDependent True if at least one nucleation reaction depends on the mole 
fraction of MU’s.

m_highestParticipatingSection Highest section number containing a particle species.

These are used to cut down the operation count when a straightforward numerical delta approach 
is used to calculate the jacobian terms, with respect to all of the variables that are listed within 
Eqn. (5.18). For gas-phase unknowns, an additional variable, heldConstant, is used to indicate 
what variables constitute the independent gas-phase unknowns (note mks units are assumed).

heldconstant 0 numSpecies gas phase concentrations and T
1 numSpecies - 1 gas phase concentrations, P, and T
2 numSpecies - 1 gas phase mass fractions, P, and T

For the heldconstant=0 case, the pressure is not an independent variable. For the other two cas-
es, an additional parameter, kspec, the special gas phase species must be supplied such that all del-
ta’s of gas phase concentrations follow the following thermodynamically consistent form:

 and ,

such that the mole fractions always sum to one. 
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6. Surface Growth

The net surface growth rate of a particle, , is needed in the calculation of the condensation 
operator (see Chapter 3).  represents the cumulative effects of all of the reactions between 
a particle and the surrounding gas, as long as the particle itself is preserved. If the particle is 
consumed, then the reaction is considered to be covered under the “nucleation” reaction kernel, 
presented in the previous chapter. Currently, fragmentation of particles due to etching is not 
covered.

As was mentioned previously the net growth rate  is assumed to be able to be broken up 
into the net growth rate per surface area, which we will define as , with units of kmol1 m-2 s-1 
and the surface area corresponding to a particle of size , . Then, the net growth rate may 
be expressed by the following equation

(6.1)

Note,  is not on a kmol MU basis.  moves particles along the sectional basis 
coordinates axis, e.g., , , ,..., which is on a straight “number of monomer units” basis. 
Therefore,  has units of MU per time. The surface area is currently calculated assuming the 
particle is a sphere. However in the future, this calculation will be determined via an expanded 
function involving the fractal dimension of the particle.

(6.2)

,the volume of a particle with  total monomer units, is calculated via the following formula.

(6.3)

 is the partial molar volume of particles in section i;  is Avogadro’s number. The molar 
volume of the particle is in general a function of the bulk composition of the particle. Currently, a 
constant molar volume ideal solution is assumed for the particle, where the particle molar volume 
for section i, ,is calculated from the following formula

. (6.4)
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 are constant standard state molar volumes for bulk particle monomer unit type k, and  is 
the mole fraction for bulk particle monomer unit type k in sectional bin i.

The net growth rate , Eqn. (6.5), is the some of the individual growth rates for each component 
of the bulk particle phase, , of which there are .

. (6.5)

, as well as the ‘s are calculated from the surface-interface problem defined below. In 
general the surface-interface problem involves the two “bulk” phases, the gas phase and the bulk 
particle phase, on either side of the interface, plus a specification of the interface itself. CADS relies 
heavily on the preexisting tools for defining and handling two-dimensional interfaces between 
three-dimensional phases already in Cantera [38]. This capability has been used to solve CVD and 
solid fuel cell problems. Surface phases are treated as two-dimensional ideal solutions of multiple 
interfacial species. Each surface phase may have a fixed site density, , and each site may be 
occupied by one of several adsorbates, or may be empty (an empty site is usually also defined as a 
surface species). The chemical potential of each species is computed using the expression for an 
ideal solution:

. (6.6)

where  is the coverage of species k on the surface. The coverage is related to the surface 
concentration, , by the following formula

, (6.7)

where  is the number of sites covered or blocked by each surface species k.

The following also holds for the surface site fraction variables, .

(6.8)

In general the surface-growth rate of particles will be a function of the state of the bulk phases on 
either side of the interface plus the state of the interface itself. Cantera contains an interfacial 
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kinetics object that defines reactions that occur on the interface, involving both interfacial species 
and the species defined on either side of the interface in the adjacent bulk phases. The surface 
interfacial flux, , will have source terms amongst the gas phase, the particle phase, and the 
surface phase, Eqn. (6.9)

(6.9)

Each of the separate source terms, , , and  are vectors over the species in 
their respective phases.  is in general a function of the gas/particle temperature, T, the gas 
pressure, and the species concentrations in the gas, monomer unit concentrations in the particle 
phase, and the surface-site concentrations in the interface phase. In general the surface interfacial 
flux is specific to each sectional bin, due to the fact that the surface fluxes are in general a function 
of the bulk-particle phase composition. However, CADS recognizes the special cases where the 
surface flux problem is not a function of the bulk composition, and therefore, only needs to be 
calculated once.

One problem remains however. The interfacial species concentrations, or equivalently the surface-
site fractions, are not known a priori. The surface-site fractions are not part of the CADS solution 
vector either. To get around this problem, CADS makes the assumption that their values are in 
pseudo-steady state equilibrium with the current bulk compositions, and then the pseudo steady-
state problem is solved implicitly as part of the source-term calculation. The next section describes 
the solution of this sub-problem.

6.1 Solving for the Surface Site Fractions

Let  be the surface concentration of the kth species in the nth surface phase with units of kmol 
m-2. Then, Eqn. (6.10) is the conservation equation expressing the continuity balance for the 
species.

, , (6.10)

 is the net production rate from all surface reaction for the kth surface species; it is a subset 
of the bigger vector, , in Eqn. (6.9).  is the surface area.
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One of the surface-site conservation equations, Eqns. (6.10), is redundant and must be replaced by 
Eqn. (6.8). The equation corresponding to the surface site fraction with the largest magnitude is 
replaced by Eqn. (6.8).

The equation system, Eqn. (6.8) and Eqn. (6.10), with  unknowns, , is then solved using a 
damped Newton algorithm, with a time step transient if needed, using the utility routine, named 
Placid, developed under a previous program [39], until .

Placid has been shown to be remarkably stable. It very rarely fails, and if it does, it’s due to a badly 
constructed surface mechanism. It contains two algorithms. The first conservative algorithm, a 
pseudo transient that uses a damped newton’s method, is used when the initial guess is bad and is 
based on the ref. [40], which guarantees convergence for a pseudo transient algorithm as long as 
suitable criteria for the problem statement, such as the existence of a stable steady state, are met. 
The other algorithm, a simple damped newton’s method, is used when the initial guess is very close 
to the actual solution; this is the norm during an overall residual evaluation, where a saved solution 
from a previous iteration is used to initialize placid. It’s relatively fast and accurate, because it’s 
part of a global residual evaluation, that itself may be used as part of evaluating a global Jacobian.

At the end of the procedure,  is identified as .

6.2 Cantera Implementation

Much of the mechanics of calculating production rates and thermodynamic quantities for the 
surface-growth process is carried out by the normal lower level functions of Cantera. However, in 
order to use these functions, wrappers around Cantera’s thermodynamics objects and kinetics 
objects that take into account the sectional-bin representation and the need to solve the implicit 
surface problem are formulated. Figure 6.1 pictorially describes these wrapper objects involved 
and their interrelationships within the CADS calculation of the particle surface growth rate.

The parent object that controls the calculation of  is the ParticleSurfRxn object. A call 
to the virtual function surfaceGrowthRate() returns the vector of values, . The calculation of 
surface area is carried out by calls within the condensation object, partDiscGalerkin.

The child of ParticleSurfRxn is PSR_InterfaceKinetics. This implements ParticleSurfRxn 
members using wrapper objects around Cantera. Note, other children of ParticleSurfRxn are also 
available. For example, the constant surface-growth object, SurfRxn_Const, was used in the 
condensation sample problem in Chapter 3. There is also a HACA surface-growth object, 
hacaSurfRxn, that hard-codes the HACA mechanism for a hard-coded bulk phases [41].
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PSR_InterfaceKinetics also inherits from the main Cantera interfacial Kinetics object, 
InterfaceKinetics, to obtain surface-reaction rates, using the function 
getNetProductionRates(). InterfaceKinetics contains a vector of the ThermoPhase objects 
containing all of the phases present at the interface, the interface phase, and the two surrounding 
bulk phases consisting of the ideal gas phase, IdealReactingGasPhase, and the particle bulk 
phase, IdealSolidSolnPhase, which was previously discussed in the nucleation chapter. 
PSK_InterfaceKinetics also contains a contiguous vector for all of the species source terms 
from the surface reaction.

In order to solve the implicit surface problem, where the surface site fractions are in pseudo-steady 
state, PSR_InterfaceKinetics calls Placid. Placid implements a nonlinear relaxation 
algorithm, calling getNetProductionRates() from 

IdealSolidSolnPhase

Figure 6.1 Glyph diagram of the implementation of surface kinetics within the Cantera 
framework. Triangles represent inheritance relationships with the pointy end 
directed at the parent object. Dotted arrows depict dependencies; one object 
maintains a pointer to another object in order to carry out a needed function.
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PSR_InterfaceKinetics::InterfaceKinetics repeatedly to relax the pseudo-steady state 
system involving the particle surface.

The IdealSolidSolnPhase object calculates the concentrations and thermodynamics for particle 
bulk species, i.e., the full range of features of the parent, Cantera’s ThermoPhase object. 
Conceptually, all of the normal thermodynamics functions calculated by the ThermoPhase object 
are handled by the IdealSolidSolnPhase object. The IdealSolidSolnPhase object is the same 
object pointed to by the m_ParticleSolidPhase pointer in the PartSpecPhase object, mentioned 
in Section 5.3 of the previous chapter.

6.3 Input Deck Options

The preceding sections have described the theory behind the options available to CADS users. 
Figure 6.2 shows the section block of the input file for CADS that controls the surface growth 
calculation.

The first option “Method” determines how the surface growth for particles will be determined. The 
default is Cantera, which means that Cantera input files contain all of the details on how the 
calculation will be carried out. The method NONE means that the surface-growth rate will be set to 
zero. Constant Surface Reaction Rate means that a constant growth rate is applied to 
monomer unit type 0, and a zero growth rate is applied to all other monomer unit types. The method 
HACA hardcoded implements a hard-coded HACA mechanism for surface growth with hard-
coded values.

Figure 6.2 Block of the input file that controls Surface Growth

START BLOCK ADS MODEL DEFINITION
START BLOCK PARTICLE SURFACE REACTION MODEL

! Method = [NONE | Cantera | Constant Surface Reaction Rate| haca hardcoded ]
!     (required) (default = Cantera)
! Determines the method that the surface growth rate
! is determined.
Method = Cantera
!------------------------------------------------------------
!   Constant Surface Reaction Rate = { double} [units]
!        (Default=00)   (conditionally required)
! default MKS units = kmol m-2 s-1
! Constant Surface Reaction Rate = 5.0E15 gmol/cm2/s
!------------------------------------------------------------
! Cantera Surface Reaction File = [ string ]
! (Default=SurfacePhaseFile.xml)   (optional)
! The name of the Cantera input file containing the 
! description of the particle surface phase and surface
! phase reactions.
Cantera Surface Reaction File = SurfacePhaseFile.xml

END BLOCK PARTICLE SURFACE REACTION MODEL
END BLOCK ADS MODEL DEFINITION



123

The next optional keyword, “Constant Surface Reaction Rate”, sets the constant surface 
reaction rate to a double; this option is only used when Constant Surface Reaction Rate is 
chosen for the Method.

Cantera Input File specifies the Cantera input file for the description of the surface phase and 
surface reactions that occur on that surface phase. The file to be input here should be in ctml format, 
and not Cantera’s cti format. 

6.4 Sample Problem

A sample problem that implements a HACA-type mechanism within the Cantera Aerosol 
Dynamics Simulator (i.e., CADS), is now presented. I will note up front that the mechanism included 
in this memo is for example-purposes only and has not been validated against data. The purpose is 
to generate an explicit example of how to set up a nontrivial surface-condensation mechanism and 
then to use CADS to analyze its behavior.

6.4.1 Description of the Mechanism

The starting point is the paper by Frenklach and Wang [36]. They provide several versions of the 
HACA (Hydrogen abstraction - carbon addition) mechanism depending upon the size of the 
aromatic molecule and the amount of detail to be included in the model; the first version is 
described in their paper on p. 170.

(P-1)

(P-2)

(P-3)

Equation (P-1) represents the balance between abstraction and recombination of hydrogens on the 
surface of aromatics, A, of size i. Eqn. (P-1) is a reversible reaction, meaning that either forward 
and reverse rate constants or the species thermodynamics and forward rate constant must be 
supplied in order to completely specify the behavior of the reaction. Eqn. (P-2) consists of the 
reversible addition of acetylene to a radical (benzene-like) site on the aromatic. Eqn. (P-3) involves 
the irreversible addition of another acetylene to the aromatic, which completes the creation of 
another ring. (P-3) also involves the loss of a hydrogen atom, in order to close the stoichiometric 
balance on H atoms. Eqns. (P-1) to (P-3) taken together will increase the size of a PAH molecule 
by one aromatic ring.

Ai H+ Ai H2+↔

Ai  C2H2+ AiC2H2↔

AiC2H2 C2H2+ Ai 1+  H+→
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There are a few subtle issues about the system. First, the overall rate for Eqn (P-1) is dependent on 
the number of species of type  and  available for collisions with the gas phase molecules. 
Thus, the rate is proportional to the surface area of the particle. Also, note the following species 
replace one another on the surface during the mechanism: , , , and .  
can be considered to be the same as , except that one bulk aromatic unit has grown. Therefore, 
all of these species may be considered to be part of the same surface phase and to be in competition 
with each other in terms of their surface concentrations. The overall concentration of the union of 
these surface species may be expressed in terms of a surface site density of the surface phase and 
has units of kmol sites per m2 of surface are. The relative concentration of the surface species on 
the surface may be expressed in terms of surface site fractions, , where  is defined as the 
fractional coverage of the surface by surface species i.

During the cycle represented by Eqns (P-1) - (P-3) a total of 4 Carbons and 2 Hydrogens are 
incorporated into the molecule. These represent growth of the solid particle phase and the surface 
phase of the particle by this amount of elements. There are various choices for how to formulate 
the bulk phase species. One possibility is to assume this represents 2 bulk carbons PAH species and 
2 bulk or surface C-H species that represent benzene-like carbons that have terminating hydrogen 
atoms. The advantage of this identification is that there are probably group contribution approaches 
that may be employed to calculate the thermodynamics of these species (e.g., p. 272 of ref 37 has 
thermodynamic group contribution values for these very species). And, thermodynamics is needed 
for various stages of the HACA mechanism. It also is better to keep each unit of the bulk phase, 
i.e., each monomer unit, roughly the same size, because values for the partial molar volume for 
each monomer unit are needed, and the code currently is more accurate if these are roughly all 
equal.

Because Eqns. (P-1) to (P-3) represent reactions involving species, it’s not necessary to spell out 
what is in the bulk particle phase and what is in the surface phase of the bulk particle.

Frenklach and Wang go on (p. 172) to provide a more complicated mechanism, which they apply 
to the growth of larger PAH molecules via the linear kinetics lumping methodology, where they 
grow 2 units, i.e., grow from  to .The net gain from growing 2 units is +8 C atoms and +2 
H atoms. Thus, the unit of growth is seemingly in conflict. But, this is a real issue with underlying 
consequences for the structure/bonding of the emerging soot particles and needs a proper amount 
of attention. Note, if one can consider PAH’s as a series of interlocked aromatics in a 2D hexagon 
pattern, then the fundamental unit in the solid particle phase is a single aromatic ring with an 
overall stoichiometry of 2 carbon atoms (6 carbon atoms each shared equally by 3 surrounding 
aromatics), with no hydrogen atoms at all. Therefore, the difference between the two PAH-growth 
mechanisms might involve a difference in the growth rate of the surface phase of the aromatics, 

Ai Ai  •

Ai Ai  AiC2H2  Ai 1+ Ai 1+
Ai

θi θi

Ai Ai 2+
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which do have hydrogen atom termination. If the growth process were carried out to grow more 
units, the number of hydrogen atoms abstracted from the surface might turn out to be increased 
relatively so that only carbon atoms would be pushed into the solid phase, and the limiting 2 carbon 
atom stoichiometry of the hexagon unit cell may be reached. The Frenklach and Wang paper 
doesn’t have any kinetic mechanism for incorporating H atoms into the bulk soot phase. Thus, the 
first Frenklach mechanism may be interpreted as one that grows one “monomer unit of 2 PAH 
carbons and also grows the surface phase by 2 units of surface C-H. And, the second Frenklach 
mechanism may be similarly interpreted as one that grows 3 monomer units of 2 PAH carbons and 
2 units of surface C-H units.

Indeed, this is the correct interpretation. Frenklach’s soot condensation mechanism is described on 
p. 178 of their paper. This is the method they apply to larger PAH molecules, which they finally 
call soot. This mechanism is reproduced below:

(S1)

(S2)

(S3)

 represents an arm-chair site on the soot particle surface, with  being the 
corresponding radical. Rxn (S-1) represents the reversible hydrogen abstraction reaction involving 
that site. No thermodynamics is given for these sites in the paper. Rxn (S2) represents the 
recombination of Hydrogen atoms onto a radical site on the soot surface. Additional oxidation 
reactions are provided for the  site. However, these will not be discussed further.

In the mechanism (S1) to (S3), a total of 2 carbons and 0 hydrogens are introduced into the bulk 
particle phase during each cycle. Therefore, no hydrogen species have to be represented in the bulk 
particle phase; hydrogen species only exist on the surface.

6.4.2 Solution of the Surface Growth Equation Set

Eqns. (S-1) to (S-3) can be expressed in terms of a set of differential equations for the 
concentrations of the surface species and the formation rate of the bulk particle species:

(6.11)

Csoot-H H+ Csoot   H2+↔

Csoot H+ Csoot-H →

Csoot C2H2+ Csoot-H H+→

Csoot-H Csoot

Csoot  

Csoot-H[ ]sd
td

------------------------------ Rs1– Rs-1 Rs2 Rs3+ + +=
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(6.12)

(6.13)

 refers to a surface concentration, which has units of kmol m-2.  refers to the concentration 
of bulk particle species, which has units of kmol m-3.  refers to a bulk species consisting 
of a aromatic carbon bonded to 3 other aromatic carbon; it has a stoichiometry consisting of one 
carbon atom. In this mechanism, no hydrogen is buried into the bulk soot layer. However, if it were, 
one might include an additional bulk species named, .  consists of a benzene-like 
carbon atom with an attached Hydrogen atom; it would have a stoichiometry of one Carbon and 
one Hydrogen atom.

The rates of progress for the reactions are given by the following expressions:

             

             

The equation system may be solved by assuming steady state concentrations for the surface 
species, i.e., setting the Eqns. (6.11) and (6.12) to zero (equivalent to Eqn. (6.10)). 

(6.14)

(6.15)

Eqns. (6.14) and (6.15) are actually linearly dependent with respect to one another. To solve the 
system we need the additional piece of information that the two surface species sum up to the total 
surface site concentration, , Eqn. (6.16). The surface site concentration was estimated by 
Frenklach and Wang to be  cm-2 [41].

(6.16)

Eqn. (6.16) is the dimensionalized equivalent to Eqn. (6.8). Using Eqn. (6.16), the equations for 
the surface site fractions may be found:

Csoot[ ]sd
td

-------------------------- Rs1 Rs-1– Rs2– Rs3–=

Cb 3Cb–[ ]bd
td

-------------------------------- 2Rs3=

 [ ]s  [ ]b
Cb 3Cb–

Cb H– Cb H–

Rs1 ks1 Csoot-H[ ]s H[ ]= Rs-1 ks-1 Csoot[ ]s H2[ ]=

Rs2 ks2 Csoot[ ]s H[ ]=

Rs3 ks3 Csoot[ ]s C2H2[ ]=

Csoot-H[ ]s
ks-1 Csoot[ ]s H2[ ] ks2 Csoot[ ]s H[ ] ks3 Csoot[ ]s C2H2[ ]+ +

ks1 H[ ]
---------------------------------------------------------------------------------------------------------------------------------------------------=

Csoot[ ]s
ks1 H[ ] Csoot-H[ ]s

ks-1 H2[ ] ks2 H[ ] ks3 C2H2[ ]+ +
---------------------------------------------------------------------------=

Total[ ]s
2.3 1015×

Csoot-H[ ]s Csoot  [ ]s+ Total[ ]s=
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(6.17)

(6.18)

And, the surface growth rate of particles due to the simplified HACA mechanism is found to be:

(6.19)

The surface interface problem has been solved explicitly in this sample problem, because the 
mathematics is extremely simple. In general, within CADS, we solve the surface interface problem 
numerically, using placid to obtain Eqn. (6.17), (6.18), and (6.19) numerically. The numerical 
procedure has the advantage that it generalizes to more complex surface mechanisms 
automatically.

Csoot[ ]s
ks1 H[ ] Total[ ]s

ks1 H[ ] ks-1 H2[ ] ks2 H[ ] ks3 C2H2[ ]+ + +
--------------------------------------------------------------------------------------------------=

Csoot-H[ ]s
ks-1 H2[ ] ks2 H[ ] ks3 C2H2[ ]+ +( ) Total[ ]s

ks1 H[ ] ks-1 H2[ ] ks2 H[ ] ks3 C2H2[ ]+ + +
----------------------------------------------------------------------------------------------------=

Cb 3Cb–[ ]bd
td

-------------------------------- 2 ks3 C2H2[ ]
ks1 H[ ] Total[ ]s

ks1 H[ ] ks-1 H2[ ] ks2 H[ ] ks3 C2H2[ ]+ + +
--------------------------------------------------------------------------------------------------⎝ ⎠

⎛ ⎞=
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6.4.3 Implementation within CADS

Figure (6.3) contains the working lines of the cti file that describes the simplified HACA 
mechanism. The file format has been extensively documented in the manual for the cti data file 
structure and example files supplied on Goodwin’s web site for Cantera [38].

This file may be postprocessed with the Cantera tool, cti2ctml, in order to create the file, 
haca.xml. The file haca.xml is the actual file for the surface condensation operator that is read 
into the CADS package (see section 6.3). haca.xml contains the same information as haca.cti, but 
in an unfriendly format. It also contains elements of the bulk-phase file, that would not normally 

Figure 6.3 File haca.cti. This file contains all of the information necessary to specify the 
surface growth mechanism to CADS.

ideal_gas(name = 'gas', elements = 'O H C N Ar',
          species = 'gri30: H N2 CH3 CH4 C2H2 H2',
          initial_state = state(temperature = 1400.0, pressure = OneAtm,
              mole_fractions = 'H:0.002, N2:0.938, H2:0.04, CH4:0.01, C2H2:0.01'))
stoichiometric_solid(name = 'soot', elements = 'O H C N Ar',
                     density = (3.52, 'g/cm3'),
                     species = 'CB-CB3')
species(name = 'CB-CB3',
        atoms = 'C:1',
        thermo = const_cp(t0 = (1000., 'K'),
                          h0 = (9.22, 'kcal/mol'),
                          s0 = (-3.02, 'cal/mol/K'),
                          cp0 = (5.95, 'cal/mol/K')))
ideal_interface(name = 'soot_interface', elements = 'O H C N Ar ',

        species = 'Csoot-* Csoot-H', reactions = 'all',
                phases = 'gas soot', site_density = (3.8E-9, 'mol/cm2'),
                initial_state = state(temperature= 1000.0,
                                      coverages = 'Csoot-*:0.1, Csoot-H'))
species(name = 'Csoot-*',
        atoms = 'H:0 C:1',
        thermo = const_cp(t0 = (1000., 'K'), h0 = (51.7, 'kcal/mol'),
                          s0 = (19.5, 'cal/mol/K'), cp0 = (8.41, 'cal/mol/K')))
species(name = 'Csoot-H',
        atoms = 'H:1 C:1',
        thermo = const_cp(t0 = (1000., 'K'),
                          h0 = (11.4, 'kcal/mol'),
                          s0 = (21.0, 'cal/mol/K'),
                          cp0 = (8.41, 'cal/mol/K')))
surface_reaction('Csoot-H + H <=> Csoot-* + H2',   [2.5E14, 0.0, 16.0])
surface_reaction('Csoot-* + H => Csoot-H',        [4.0E11, 0.48, -0.072])
surface_reaction('Csoot-* + C2H2 => Csoot-H + H + 2 CB-CB3',   
                                                    [4.0E13, 0.0, 10.11])
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be in the surface-condensation file, specifying the identity, composition, and thermodynamics of 
the bulk particle phase species, also called “monomer units”. This additional information is used 
by the test program for placid, which is described below.

The equation system is solved within the CADS package using a submodel called placid, which 
was originally developed for the MPSalsa CVD code package [39]. placid solves the surface 
evolution equation set to the point where the surface species are in pseudo-steady state. In other 
words, it solves Eqns. (6.11) to (6.12) in this particular case, setting the surface-site time 
derivatives to zero. In this fashion, the surface-site fractions do not become part of the overall 
solution vector in the problem; their values are implicitly calculated as part of the overall residual 
calculation. 

6.4.4 Testing the Solution For One Specific Case

Eqns. (6.11) to (6.12) may be solved for one specific case in order to validate the placid submodel. 

First, let’s calculate the concentration of gas phase species, starting with , the total 
concentration of species in the gas phase, and then applying mole fractions listed in Figure (6.3):

(6.20)

Next we will calculate the forward rate constants for reactions (S1) to (S3) at 1400 K using the 
reaction rate constants listed in Figure (6.3).

(6.21)

Ctotal

Ctotal 8.705 10 6–×  gmol
cm3
------------=

H[ ] 0.002Ctotal 1.74 10 8–×  gmol
cm3
------------= =

H2[ ] 0.04Ctotal 3.48 10 7–×  gmol
cm3
------------= =

C2H2[ ] 0.01Ctotal 8.705 10 7–×  gmol
cm3
------------= =

ks1 2.5 1014×   cm3

gmol s
----------------⎝ ⎠

⎛ ⎞
16 kcal

gmol
------------–

RT
------------------------exp 7.94 1011×   cm3

gmol s
----------------= =
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The evaluation of the reverse rate constant for (S1) involves more work, because we first have to 
evaluate the thermodynamics for all gas and surface species. From table printouts using cttables, 
[42], the standard state gibbs free energies for the gas species are obtained:

 and (6.22)

 and (6.23)

While cttables is not yet able to handle interfacial reactions with surface species, the standard 
state thermodynamic functions for the surface phase species may be determined to be:

(6.24)

and:

(6.25)

ks2 4.0 1011×   cm3

gmol s
----------------⎝ ⎠

⎛ ⎞ T0.48
0.072 kcal

gmol
------------

RT
----------------------------exp 1.329 1013×   cm3

gmol s
----------------= =

ks3 4.0 1013×   cm3

gmol s
----------------⎝ ⎠

⎛ ⎞
10.11–  kcal

gmol
------------

RT
-------------------------------exp 1.056 1012×   cm3

gmol s
----------------= =

G°H 1400K( ) H°∆ f 298, H( )– 43.669–   kcal
gmol
------------= H°∆ f 298, H( ) 52.103  kcal

gmol
------------=

G°H 1400K( ) 8.434  kcal
gmol
------------=

G°H2
1400K( ) H°∆ f 298, H2( )– 51.201–   kcal

gmol
------------= H°∆ f 298, H2( ) 0=

G°H2
1400K( ) 51.201–   kcal

gmol
------------=

H°Csoot 1400K( ) 51.7 103× 8.41 400( )+  cal
gmol
------------ 55.064  kcal

gmol
------------= =

S°Csoot 1400K( ) 19.5 8.41 1400
1000
------------⎝ ⎠

⎛ ⎞ln⎝ ⎠
⎛ ⎞+  22.330  cal

gmol
------------= =

G°Csoot 1400K( ) 55.064 103× 1400( )22.330– 23.802  kcal
gmol
------------= =

H°Csoot-H 1400K( ) 11.4 103× 8.41 400( )+  cal
gmol
------------ 14.764  kcal

gmol
------------= =
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Therefore, the standard Gibbs free energy of reaction for S-1 is calculated as:

(6.26)

And, the equilibrium constant for (S1) is calculated as:

(6.27)

Therefore, the reverse reaction-rate constant for (S1) is calculated as:

(6.28)

Values for all of the terms in the denominator of Eqn. (6.17) can be formulated:

(6.29)

Now, the surface site fractions can be calculated from Eqns. (6.17) and (6.18).

(6.30)

(6.31)

S°Csoot-H 1400K( ) 21.0 8.41 1400
1000
------------⎝ ⎠

⎛ ⎞ln⎝ ⎠
⎛ ⎞+  23.83  cal

gmol
------------= =

G°Csoot-H 1400K( ) 14.764 103× 1400( )23.83– 18.598–   kcal
gmol
------------= =

G°S1∆ 23.802 51.201–( ) 18.598–( ) 8.434+( )–+ 17.235  kcal
gmol
------------–= =

Kc S1,
G°s-1∆
RT

----------------exp 2.0389 10 3–×= =

kS-1 kS1Kc S1, 7.94 1011×( ) 2.0389 10 3–×( ) 1.62 109  cm3

gmol s
----------------×= = =

ks1 H[ ] 7.94 1011×( ) 1.74 10 8–×( ) 1.382 104×   s 1–= =

ks 1– H2[ ] 1.618 109×( ) 3.48 10 7–×( ) 5.63 102×   s 1–= =

ks2 H[ ] 1.329 1013×( ) 1.74 10 8–×( ) 2.312 105×   s 1–= =

ks3 C2H2[ ] 1.056 1012×( ) 8.71 10 8–×( ) 9.198 104×   s 1–= =

θCsoot
s Csoot[ ]s

Total[ ]s
------------------------ 0.0409= =

θCsoot-H
s Csoot-H[ ]s

Total[ ]s
--------------------------- 0.9591= =
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 is the total concentration of surface sites. The growth rate may be calculated from Eqn. 
(6.19).

(6.32)

Figure 6.4 presents the results of the PSR_PlacidTester2 program, located in the cads/src 
directory. The code itself actually took 23 iterations to solve the simple problem from a bad initial 
guess, due to the fact that it uses a very conservative pseudo-transient algorithm. The bottom line 
results are exactly the same as the analytical results presented above. However, all units in the 
printout are in MKS, the default for Cantera, instead of CGS units, which were used in the analysis 
above. Additional verification using a debugger proved that the thermochemistry involved with 
surface reaction (S1) agreed with the analytical results presented above.

Figure 6.5 contains the results of the growth rate, expressed as the rate of carbon incorporation into 
the particle phase per surface area, as a function of the H atom concentration in the gas phase. The 

Total[ ]s

Cb 3Cb–[ ]bd
td

-------------------------------- 2 ks3 C2H2[ ] θCsoot
s Total[ ]s( )( )=

 2 1.056 1012×( ) 8.71 10 8–×( ) 0.0409( ) 3.8 10 9–×( )=

  2.86 10 5–× gmol
cm2 s
--------------=

  3.43 10 4–× gm
cm2 s
--------------=

Figure 6.5 Dependence of the particle condensation rate on the mole fraction of H atoms in 
the gas phase. 
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dependence is linear for low H atom concentrations. However, for higher H atom ratios the linear 
dependence drops off. This is due to the rate limiting of the overall reaction due to the branching 
ratio effect created by the ratio of the (S1) and (S2) reaction rate. It’s expected that the surface 
growth rate becomes independent of H atom concentration at high H atom concentrations. Note, 
all reaction rates and thermochemical input into this program should be double checked for 
accuracy and relevance. It was not the purpose of this memo to validate reaction rate information 
against theory or experiment, but merely to introduce and provide an example of the surface solver 
capability with the CADS package.

Printout of residual and jacobian
Residual: weighted norm = 6.8907e-14
Index       Species_Name      Residual     Resid/wtRes      wtRes
0: soot_interface:Csoot-*  :   0.000e+00    0.000e+00    3.800e-11
1: soot_interface:Csoot-H  :  -1.084e-19   -9.745e-14    1.113e-06

retn = 1
Gas Temperature = 1400
Gas Pressure    = 101325
Gas Phase:  gas   (0)
                       Name           Conc              MoleF       SrcRate 
                                    (kmol/m^3)                   (kmol/m^2/s) 
   0                        H      1.74094e-05          0.002   -7.204185e-04
   1                       N2       0.00816501          0.938    0.000000e+00
   2                      CH3                0              0    0.000000e+00
   3                      CH4       8.7047e-05           0.01    0.000000e+00
   4                     C2H2       8.7047e-05           0.01   -1.431975e-04
   5                       H2      0.000348188           0.04    5.034067e-04
Sum of gas mole fractions= 1

Bulk Phase:  soot   (6)
Bulk Temperature = 1400
Bulk Pressure    = 101325
                       Name           Conc              MoleF       SrcRate 
                                    (kmol/m^3)                   (kmol/m^2/s) 
   0                   CB-CB3          293.065              1    2.863949e-04
Bulk Weight Growth Rate = 0.00343989 kg/m^2/s
Bulk Growth Rate = 9.77241e-07 m/s
Bulk Growth Rate = 3518.07 microns / hour
Density of bulk phase = 3520 kg / m^3 
                      = 3.52 gm / cm^3 
Sum of bulk mole fractions= 1

Surface Phase:  soot_interface (7)
Surface Temperature = 1400
Surface Pressure    = 101325
                       Name         Coverage         SrcRate 
   0                  Csoot-*        0.0409776    -1.084202e-19
   1                  Csoot-H         0.959022    -1.084202e-19

Figure 6.4  PSR_PlacidTester2 output
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I have demonstrated that the surface solver portion of the CADS numerical code agrees with an 
analytical solution for a nontrivial surface mechanism involving implicit degrees of freedom. And, 
I have described roughly how surface site fractions are handled implicitly within CADS.

The methodology may look complex. However, it simplifies and generalizes the overall treatment 
of surface chemistry and alleviates the user from having to solve complicated algebraic expressions 
for effective surface fluxes when the surface chemistry mechanism gets more complicated than 
surface reaction treatments like (S1) to (S3). For example, a common additional complexity added 
to soot growth mechanisms is to add branches for the direct addition of PAH’s to soot particles. 
This may be accommodated directly by the simple addition of more surface reactions to the file 
involving more gas phase species. These surface reactions can be made to depend upon the surface 
state of the soot surface, i.e., the current state of the surface site densities. Or, it can be made to be 
independent of the surface-state by not including any dependence on surface site concentrations 
within the surface mechanism. 
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7. Particle Bulk-Phase Reactions

CADS can also accommodate reactions in the particle bulk-phase. These consist of homogeneous
reactions which take place in the bulk of the particle phase, between bulk phase species. These
might include a liquid-to-solid (or crystal-structure) phase change, for example. Alternatively, the
reactions might lead to a change in the chemical composition of soot that can occur internally
within PAH structures, such as dehydrogenation reactions that transform the PAH further towards
a graphitic structure. The latter would result in hydrogen leaving the particle for the gas phase.

The source term for bulk-phase reactions, , has been introduced in Chapter 2, Eqn. (2.20). It
may be broken down into sectional components,  for section i, and then the vector into its
components:

(7.1)

Several implicit assumptions are employed when formulating the kinetics. The bulk phase is cur-
rently considered an ideal solution, and it is “well stirred”, i.e., the phase has a homogeneous mor-
phology. No particles are considered to be created or destroyed during this operation, so

.

The calculation of  is carried out in two parts. First, the homogeneous source term  is
calculated from the solid kinetics operation. , which spans all of the particle monomer unit
types in the phase, has units of kmol m-3 s-1. This is on a per volume of particle basis, as the kinet-
ics object is treating the particle medium as a homogeneous volumetric phase. Currently, the
source term for gas species from bulk particle reactions, , is equal to zero; this may be
changed in the future.

The source term, , for species due to bulk particle reactions is calculated in the following
standard Cantera methodology. Define  as the number of bulk phase reactions. The source
term for kinetic species k (which spans all species in all phases present the gas, bulk, and surface
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of the particles) is given by:

(7.2)

The rate of progress, ,of the jth reaction is evaluated according to mass action kinetics, Eqn.
(7.3).

(7.3)

 are generalized concentrations of the bulk species. Generalized concentrations, Eqn. (7.4), are
calculated from the activity of the bulk-phase species, , multiplied by the standard concentra-
tion of the bulk species, , which is an artifice that translates between activities and actual re-
action-rate system used:

(7.4)

In the discussion below,  is further assumed to be independent of k.  and  are the for-
ward and reverse species reaction order parameters for the jth reaction. The stoichiometric coeffi-
cient, , for the kth species in the jth reaction is given by Eqn. (7.5).

(7.5)

 and  are the temperature-dependent forward and reverse reaction rate constants for the jth re-
action. The reverse rate constant may be calculated from the forward rate constant from the fol-
lowing formula:

,

where

. (7.6)

The standard-state Gibbs free energy, , for reaction j is given by
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, (7.7)

where  is the standard chemical potential of the kth bulk phase species. 

Then,  is translated into  by multiplication of the volume of particles in the section per
volume of gas, Eqn. (7.8).

(7.8)

 is the molar volume for particles in section i (m3 kmol-1);  is the total monomer density for
section i (kmol m-3). The molar volume of the particle is in general a function of the bulk compo-
sition of the particle. Currently, a constant molar volume ideal solution is assumed for the particle,
where the particle molar volume for section i, ,is calculated from the following formula:

. (7.9)

 are constant standard state molar volumes for bulk particle monomer unit type k, and  is 
the mole fraction for bulk particle monomer unit type k in sectional bin i. Note, the formulation for 

 is used extensively within CADS to calculate particle volumes and particle surface areas 
assuming spherical particles.

Within CADS, the conservation equation for the first monomer unit type is discarded, and a 
conservation equation for the total number of monomer units is used in its place. The source term 
for the total monomer units is given by Eqn. (7.10).

(7.10)

The source term for particle creation from bulk kinetics is currently zero:

. (7.11)

Nothing is currently done in the DOF-2 implementation to prevent skew numerical instabilities
due to the non-zero values for . For the DOF-1 implementation a tie-line calculation is
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carried out to maintain particle conservation, so that the source term for section i is partly distrib-
uted into neighboring sections whenever  (see section 4.5.2).

Extensions towards inclusion of a more complicated bulk-phase reaction term may be made in the
future. It’s not inconceivable to add bulk gas-phase species as reactants or products to CADS solid
kinetics treatment. However, this isn’t done now, because extending the number of entries in the
species vector and the bulk kinetics source term vector associated with this operation would be in-
efficient, and a use case for this capability has not arisen. Additionally, multiple bulk phases, at
least based on an equilibrium partition of the available type of bulk monomer units in each sec-
tional bin, may be easily achieved within this framework. Recently the Pitzer model for strong
electrolyte thermodynamics has been implemented within Cantera [43], providing the necessary
fundamental support for aerosol modeling involving the effluorescence and deliquescence of at-
mospheric salt particles.

7.1 Cantera Implementation

Much of the mechanics of calculating production rates and thermodynamic quantities for the bulk 
kinetics is carried out by the normal lower level functions of Cantera. However, in order to use 
these functions, wrappers around Cantera’s thermodynamics objects and kinetics objects that take 
into account the sectional bin representation are formulated. Figure 7.1 pictorially describes these 
wrapper objects involved and their interrelationships within the CADS calculation of the particle 
bulk reactions.

The parent object that controls the calculation of  is the PartSolidKin object; this object 
contains the man API for bulk kinetics with respect to the other parts of CADS. A call to the virtual 
function solidKinRate() returns the bulk particle source term vector, , discussed in the 
previous section.

The child of PartSolidKin is PSK_SolidKinetics. This implements PartSolidKin members 
using wrapper objects around Cantera. 

PSK_SolidKinetics also inherits from a child object of the main Cantera Kinetics object, 
Kinetics, called SolidKinetics. SolidKinetics is a variant of the Kinetics object, with 
support to handle solid-phase reactions efficiently. SolidKinetics currently assumes that there is 
one and only one bulk phase present, and that phase is the Cantera ThermoPhase model, 
IdealSolidSolnPhase. IdealSolidSolnPhase implements an ideal solution model with 
constant partial molar volumes and with a few choices for the formulation of generalized 
concentrations. Generalized concentrations, which translate the activity of a species into the 
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quantity used in kinetics rate expressions, may either be unity or the inverse of the species molar 
volume. So far, unity has been used within CADS. This means that reaction expressions involving 
bulk-phase species involve the activity, and therefore, in the case of ideal solutions, the mole 
fractions of bulk species. 

For each section, PSK_SolidKinetics calculates the net production rates of bulk particle mono-
mer units on a “per volume of particle” basis, due to the bulk homogeneous context of Cantera’s
kinetics operation. Then, it multiplies that with the particle volume of section i per volume of gas,
which it obtains via queries to the main SectionModel object with CADS, m_SM, to get the correct
values for .

7.2 Input Deck Options

The preceding sections have described the theory behind the options available to CADS users. 
Figure 7.2 shows the section block of the input file for CADS that controls the bulk-phase kinetics 
calculation.

Figure 7.1 Glyph diagram of the implementation of bulk particle reactions within the 
Cantera framework. Triangles represent inheritance relationships with the 
pointy end directed at the parent object. Dotted arrows depict dependencies.
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There are two blocks. The first block Particle Phase Model controls how the bulk phase ther-
modynamics is calculated within the program. The Method keyline controls the basic functional-
ity. There are three options. NONE means that there is no thermodynamics or thermodynamics
input file for the bulk particle phase. Very limited functionality within CADS is then available. The
number, names, stoichiometry, and molar volumes of the species in the particle phase are then in-
put via the SECTION MODEL DEFINITION block described in Section 2.11 and Figure 2.1. The next
option ADS Ideal Solution is currently unimplemented, and shouldn’t be used. The last option,
Cantera, is used and should be used to obtain the full CADS functionality.

Cantera Particle Condensed Phase File specifies the Cantera input file for the description 
of the bulk particle phase and bulk particle reactions that occur homogeneous within that phase. 
The file to be input here should be in ctml format, and not Cantera’s cti format, and is described in 
the following section.

The next block, PARTICLE PHASE KINETICS, has options that apply specifically to the bulk
phase kinetics operator. There is one keyline in the block, called Kinetics Method, with two pos-
sible values: NONE, and Cantera. This option serves as a toggle switch for turning on and off the
bulk particle kinetics source term.

Figure 7.2 Block of the input file that controls the specification of the bulk-phase thermo-
dynamics and bulk-phase kinetics mechanism.

START BLOCK ADS MODEL DEFINITION
START BLOCK PARTICLE PHASE MODEL

! Method = [NONE | ADS Ideal Solution | Cantera ]
!     (required) (default = Cantera)
! Determines the method that is used internally for calculating the thermodynamics
! of the particle phase.
Thermodynamics Method = Cantera
!------------------------------------------------------------
! Cantera Particle Condensed Phase File = [ string ]
! (Default=ParticlePhase.xml)   (conditionally required)
! The name of the Cantera input file containing the 
! description of the particle condensed phase.
!
Cantera Particle Condensed Phase File= ParticlePhase.xml

END BLOCK PARTICLE SURFACE REACTION MODEL

START BLOCK PARTICLE PHASE KINETICS
! Kinetics Method = [ NONE | Cantera ]
!  (required) (default = Cantera)
! Method for specifying the bulk phase kinetics. Note,
! if Cantera is chosen here, Cantera must be chosen for
! the Thermodynamics Method.
!
Kinetics Method = Cantera

END BLOCK PARTICLE PHASE KINETICS
END BLOCK ADS MODEL DEFINITION
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7.3 Sample File

Figure 7.3 contains a sample bulk-phase thermodynamics file, with bulk phase chemistry defined.
The XML element, speciesArray, defines the number and names of the monomer units defined
in the bulk particle phase. Two species are defined: C-new and C-graph. The number and names
of the species must match input that has been specified in other areas of the CADS input; if not, an
error is thrown. 

Each species has a section of the file devoted to specification of its standard state properties. This
is in the speciesData XML element, in sub XML elements with names species and the name
attribute equal to the name of the species. 

In species sub element, the element stoichiometry of the species is given. NASA polynomials
giving the polynomial forms for the reference state thermodynamic properties at 1 bar are provid-
ed, and the standard state molar volumes are also provided. 

The thermodynamics model, IdealSolidSolution, to be used is listed in the thermo XML ele-
ment. Parameters for the model, standardConc model = “unity”, are also provided in the
thermo block. Setting the standard concentration to unity means that  in Eqn. (7.4); this
is a standard treatment for solid phase kinetics.

A single bulk phase reaction is defined at the bottom of the file.

  (B-1)

The reaction is defined as irreversible, and has the following formula for its rate of progress, Eqn.
(7.3).

(7.12)

Note, the Enthalpy and Gibbs free energy of the solid phase is defined in the bulk XML file,
through the specification of the standard-state NASA polynomials and bulk-mixture thermody-
namics properties. In particular, the sensible heat of formation of the particle phase is given by the
difference in absolute enthalpies between the gas-phase precursor species and the absolute enthal-
pies of the particle phase, specified via the file presented in Figure 7.3. Overall consistency in the
thermodynamics treatment within CADS means that attention must be spent on specifying the cor-
rect numbers for the bulk-phase thermodynamics. The importance of this issue has been ad-
dressed in [44]. The NASA polynomial form used for both the C-new and C-graph species in

co k, 1=

C-new C-graph→

R1 10000( )XC-new=
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Figure 7.3 Sample bulk particle phase thermodynamics file - xml format

<ctml>
<phase id="sootPhase" dim="3">

    <state>
      <temperature units="K">500</temperature>
    </state>

<thermo model="IdealSolidSolution">
       <standardConc model="unity" />
    </thermo>
    <elementArray datasrc="elements.xml"> H  C  O  N  Ar </elementArray>
    <speciesArray datasrc="#species_solidSolution">
        C-new  C-graph
    </speciesArray>
    <reactionArray datasrc="#reactions_solidSolution">
    </reactionArray>
    <kinetics model="SolidKinetics" />
    <standardConc model="unity" />
  </phase>
  <speciesData id="species_solidSolution">
    <species name="C-graph">
      <note>This corresponds to old soot</note>
      <atomArray> C:1 </atomArray>
      <thermo>
       <NASA P0="100000.0" Tmax="1000.0" Tmin="200.0">
         <floatArray size="7" title="low">
           2.344331120E+000,  7.980520750E-003, -1.947815100E-005,
           2.015720940E-008, -7.376117610E-012, -9.179351730E+002,
           6.830102380E-001
          </floatArray>
        </NASA>
        <NASA P0="100000.0" Tmax="3500.0" Tmin="1000.0">
          <floatArray size="7" title="high">
           3.337279200E+000, -4.940247310E-005,  4.994567780E-007,
          -1.795663940E-010,  2.002553760E-014, -9.501589220E+002,
          -3.205023310E+000
          </floatArray>
        </NASA>
      </thermo>
      <standardState model="constant_incompressible"> 
         <molarVolume> 0.0255 </molarVolume>
      </standardState>
    </species>
    <species name="C-new">
      <note>This corresponds to new soot</note>
      <atomArray> C:1 </atomArray>
      <thermo>
       <NASA P0="100000.0" Tmax="1000.0" Tmin="200.0">
         <floatArray size="7" title="low">
           2.344331120E+000,  7.980520750E-003, -1.947815100E-005,
           2.015720940E-008, -7.376117610E-012, -9.179351730E+002,
           6.830102380E-001
          </floatArray>
        </NASA>
        <NASA P0="100000.0" Tmax="3500.0" Tmin="1000.0">
          <floatArray size="7" title="high">
           3.337279200E+000, -4.940247310E-005,  4.994567780E-007,
          -1.795663940E-010,  2.002553760E-014, -9.501589220E+002,
          -3.205023310E+000
          </floatArray>
        </NASA>
      </thermo>
      <standardState model="constant_incompressible"> 
         <molarVolume> 0.0255 </molarVolume>
      </standardState>
    </species>
  </speciesData>
  <!-- reaction data -->
  <reactionData id="reactions_solidSolution" model="SolidKinetics" submodel="SolidKinetics_0">

<reaction id="bulk_rxn_1" reversible="no">
      <equation>C-new [=>] C-graph</equation>
      <reactants> C-new:1 </reactants>
      <products> C-graph:1 </products>
      <rateCoeff>
        <Arrhenius order="1">

 <A> 10000. </A> <b> 0.0    </b> <E units="cal/mol"> 00000. </E>
        </Arrhenius>
      </rateCoeff>
    </reaction>
  </reactionData>
</ctml>
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Figure 7.3 are derived assuming bulk graphite, with the absolute scale consistent with the NIST
database scale used in the online databases [45].
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8. Transport Properties of Particles

Transport properties for particles are needed for conservation equations for particles in flows.
Transport properties are also needed for zero-dimensional simulations of particle concentrations,
because particle source and sink terms often involve transport properties in their constitutive
models. 

In all cases, particles are assumed to be in inertial equilibrium with respect to the gas. This, of
course, places a large restriction on the problems that CADS may handle, and the restriction may be
relaxed in the future. Equations for justification of this restriction, in the initial CADS implementa-
tion aimed at sooting flames, are presented in Section 8.2. The transport properties of particles are
then broken up into two cases: the calculation of the terminal velocity of particles, which though
assumed to be in inertial equilibrium, may not be equal to the mass-averaged gas velocity, and the
calculation of the diffusivities of particles. Particle terminal velocities from the thermophoretic
and diffusiophoretic forces are described. Currently, the only diffusion kernel implemented within
CADS is Brownian diffusion. A turbulent diffusivity kernel may be implemented at a later date.

8.1 Brownian Particle Diffusion Coefficients

Much of the theory for Brownian diffusion of particles has already been developed in Chapter 4,
when introducing the Coagulation operator. The results will briefly repeated here. The Brownian
diffusivity of particle i may be given by the following relation, Eqn. (8.1) [32].

, where  is the friction factor (8.1)

 is the Cunningham correction factor to Stokes law, used to account for slip-flow on the particle 
surfaces, and is dependent on the particle Knudsen number.  is given by the following formula 
[2, p. 34], obtained originally by a fit to experimental data:

. (8.2)
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(8.3)

 (8.4)

The equation for  provides an interpolation formula for the entire range of Knudsen number.  
is the mean free path in the gas. In Eqn. (8.4)  is the gas concentration and  is the collisional 
cross section of gas phase molecules. Note the hard sphere result from BSL [51], for example, has 
a 3 instead of the 2 next to  in Eqn. (8.4). However, the result for a real gas is much more 
complicated. The actual answer is that the number has to be consistent with the accommodation 
coefficient, , (a quantity appearing in the molecular limit which represents the fraction of 
molecules which leaves the particle surface in equilibrium) such that the drag force on the particle 
in the free molecular and continuum limits is given by the correct, consistent, limiting expression. 
Using Eqn. (8.4), and the expression for the friction coefficient in the molecular limit, [2, p. 33],

, (8.5)

Eqns. (8.1), (8.2), (8.4), and (8.5) may be solved for in the molecular limit ( ) to determine 
the consistent value of  It turns out to be . However, no adequate theories exist for 
specification of . Therefore,  is assumed to be a given constant within the CADS package. Figure 
(8.1) displays the particle diffusivity vs. particle diameter result for the 2 cases of the full 
expression, Eqn. (8.1), vs. just the molecular kinetic theory limit, Eqn. (8.5). The kinetic theory 
expression is calculated assuming a 0.91 accommodation coefficient. The bath gas is assumed to 
be 400 K N2 at 1 atm. The full expression, Eqn. (8.1), is seen to be consistent with the molecular 
limiting theory at small particle sizes. If the curve is extrapolated to “particles” of molecular 
dimensions, then predicted diffusivities are roughly equal to their gas-phase molecular 
counterparts (  m2 s-1). At large particle sizes, Eqn. (8.1) yields a much larger value of 
the diffusion coefficient than the molecular limiting expression.

8.2 Particle Terminal Velocities

The premise used within CADS is that an aerosol particle moves with its local terminal velocity, 
calculated from the local gas conditions, i.e., it is not subject to inertial forces. This statement is 
expressed mathematically by Eqn. (8.6).
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(8.6)

 and  are the force on a particle due to diffusiophoresis, i.e., gas 
concentration gradients, and thermophoresis, i.e., gas thermal gradients, respectively.  are 
other forces, such as the gravity force or the force on a charged particle in a electric field, that are 
not included in CADS, but may be added later. When there is only one component in the gas, 

 reduces to , where  is the velocity of the gas, and  is the drag 
coefficient of the particle, previously introduced in Chapter 4, Eqn. (4.4).

The non-dimensional time constant for satisfaction of the right equality in Eqn. (8.6) can be derived 
from a nondimensionalization of the particle transport equation, Eqn. (8.6). The dimensionless 
time constant, , Eqn. (8.7), which is derived assuming the Stokes drag flow expression, 

.

(8.7)

The Stokes number, which is equal to the dimensionless ratio of the stopping distance to a charac-
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Figure 8.1 Particle Brownian diffusion coefficients as a function of particle diameter. 
400 K, 1 atm, in an N2 ambient. Black line is the full formula; red line is the 
formula from the molecular limiting case, assuming an accommodation coef-
ficient of 0.91.
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teristic length scale, L, of the problem may then be defined as

(8.8)

where  is a characteristic velocity of the gas.

In CADS, the assumption is made that Stk is small, and that therefore inertial effects don’t have to
be tracked. This turns out to be valid for applications where CADS has been applied to. For exam-
ple, typical numbers for opposing flow flames are  cm s-1, and  mm. For air, it
turns out that  requires particles of ~25 m, which are larger than normal soot particles.
Support for inertial effects may be added later to CADS; as there are important applications that
may only be approached via the inclusion of these effects [12].

In order to calculate the terminal velocity, the forces on a particle are summed up and the terminal 
velocity is determined from the condition that the resulting sum of the forces must equal zero, Eqn. 
(8.6). The terminal velocity of the particle, , will be a function of the particle total monomer 
unit size. In general,  is closely related to the mass-averaged velocity of the gas, , and may 
be expressed in terms of  and a particle-size dependent perturbation, , from .

(8.9)

8.3 Diffusiophoresis

Let’s for the moment just consider the force on a particle due to molecular diffusion, i.e., the 
diffusiophoretic force. The expression for diffusiophoresis comes from Waldmann [17] as reported 
in Waldmann and Schmitt [46]. The force exerted on a small particle, defined as one which is small 
enough such that the gas flow is not perturbed, by the gas is given by the expression in Eqn. 8.10 
[p. 140, ref 46].

(8.10)

In the above expression,  is the velocity of the particle.  is the accommodation coefficient
for collisions of species k with the particle, , the accommodation coefficient, is the fraction of
species i which reflects thermally with a Maxwellian distribution from the particle as contrasted
with specular (i.e., elastic) collisions.  is the partial pressure of species k, and  is the radius
of the particle.  is the average thermal velocity of species k,
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. (8.11)

 is average velocity of species k, which includes the diffusive flux for species k. For example, if
 is the mass averaged velocity of the gas, and  is the diffusive mass flux of species k, then 

could be calculated from the following expression:

, (8.12)

where  is the density of species k. If there is no diffusion, then all species move with the mass
average velocity, and a particle also moving with the mass averaged velocity subject only to 
force will experience zero force if it too moves with the mass averaged velocity. If there is species
diffusion, then in general the value of  which creates a net zero force on the particle will not
be equal to the mass average velocity of the gas. It will depend in a complicated way on the spe-
cies gradients. The general principle is that aerosol particles move in the direction of the diffusion
flux of the heavier gas components.

Eqn. (8.10) may be put in terms of the frictional drag coefficient, f, used in Chapter 4. f, in the lim-
it of infinite Kn, see Eqn. (4.8), may be rearranged to the following value

, (8.13)

where  is the average velocity of the gas, based on the average molecular weight, and  is the
average accommodation coefficient. With this result in hand, it seems prudent and necessary (af-
ter introducing thermophoresis force) to extend the diffusiophoresis formula from infinite Knuds-
en numbers to all Knudsen numbers via the following formulation:

(8.14)

Here,  is given by the Knudsen-Weber interpolating formula, Eqn. (4.4), for the friction of a par-
ticle of radius r. In Chapter 4, it was found that for a particular value of , 0.91, Eqn. (4.4) may
yield the same value  in the  limit.

Note, if the diffusiophoresis force is the only force acting on the particles, then the terminal veloc-
ity of particles will not vary due to the correction in Eqn. (8.14). And, therefore, the predicted dif-
fusiophoresis terminal velocity will be independent of the particle radius. While there is
experimental data in binary gases [46] which demonstrates that the diffusiophoresis terminal ve-
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locity does depend on Kn, the existing theories on large-particle diffusiophoresis employ empiri-
cally derived ratios of accommodation coefficients [46] to calculate an empirical “diffusion slip
factor”, and also have been applied only to binary gases. Therefore, the decision was made not to
incorporate them within CADS.

8.4 Thermophoresis

For small particles the force on a spherical particle in which there is a temperature gradient is giv-
en by Eqn. (8.15) [46].

(8.15)

 is the translational heat conductivity (or monatomic heat conductivity) expression

, (8.16)

with viscosity , and molecular weight . For a single gas, the terminal velocity in the small
particle limit may be calculated from Eqn. (8.10) and (8.15) to yield Eqn. (8.17) [2].

(8.17)

The force on larger particles, those near the continuum limit has been a subject of much conjec-
ture. CADS has employed the formulation due to Brock [48], derived from using Maxwell’s classi-
cal boundary conditions involving thermal and frictional slip, Eqn. (8.18).

(8.18)

In the equation,  is now the full thermal conductivity of the gas.  is the thermal conductiv-
ity of the particle phase. The ratio  is an important parameter for the large particle ratio
limit.T The numerical constants  and  are given by

 and (8.19)
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where  and  are the thermal and momentum accommodation coefficients, and within CADS
have been assigned values of  and . Also, .

The high Knudsen number limit may be taken for Eqn. (8.18) to see how closely it agrees with the
free-molecular limiting expression Eqn. (8.5). The result, 

(8.20)

is actually very close to Eqn. (8.5). The difference is a factor of .

And, therefore, Eqn. (8.18) may be used as the basis of an interpolation formula over the entire
range of Knudsen numbers. However, following the example of Talbot et al. [47] who have uti-
lized this and compared the resulting expression to experimental data, Eqn. (8.18) is adjusted so
that it agrees with Eqn. (8.5) in the molecular limit, at least up to a factor . The final equa-
tion, which is used within CADS, is Eqn. (8.21).

(8.21)

Figure 8.2 Dimensionless terminal velocity from the thermophoretic force as a function of 
the particle Knudsen number. Ratio of the gas thermal conductivity to the particle 
thermal conductivity is 0.0003. Calculation is for air at 300 K and 1 atm.
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Talbot’s agreement with the data was generally adequate, yielding agreement of the thermophore-
sis velocity calculated using the Millikan drag formula for the friction factor at the 20% level.

Using Eqn. (8.14), Eqn. (8.21), and assuming a zero mass-averaged velocity, the dimensionless
terminal velocity,

,

where  is the terminal velocity, in air at 300 K is calculated as a function of the particle
Knudsen number in Fig. (8.2). The dimensionless terminal velocity is in good agreement with a
similar figure from Friedlander [p. 51, ref. 2], for low ratios of the gas to particle thermal conduc-
tivities.

8.5 Sectional averages

In previous sections, the value of the brownian diffusion coefficient  has been shown to be a 
strong (and decreasing function) of the particle size. In order to employ the particle diffusion 
coefficient in particle transport equations, , and the other transport coefficients, must be 
averaged over each section as well taking into account of the current monomer unit distribution in 
the section, . Eqn. (8.22) is the sectional average for section i.

(8.22)

, the terminal velocity due to external forces on particles of size  within section i, is also
sectionally averaged. The gravity force and the thermophoretic force are examples of external
forces.
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9. TDcads: Time Dependent CADS

9.1 Introduction

TDcads is a zero-dimensional application that solves the time-dependent conservation equations 
for species, particle unknowns, and temperature, in an enclosed volume or in a CSTR. 

The primary purpose of TDcads is to test the CADS package in a 0D setting thoroughly before 
advancing to a one-dimensional (1D) setting. It employs a simple first order predictor-corrector 
backwards Euler algorithm for time, even though, in some cases an explicit time stepping scheme 
would be warranted. The reason for the use of the implicitly backwards-Euler scheme is that the 
1D applications that CADS are targeted for must also use an implicit time-stepping solution 
scheme. TDcads has been designed with an implicit scheme so that it may be used as a test plat-
form. In that capacity, it has proven to be extremely valuable. It has shown the necessity of using 
a semi-analytical jacobian due to both accuracy and speed concerns. Additionally, TDcads has 
been used to set up several validation examples to demonstrate that the CADS package can solve 
the aerosol particle dynamics equations robustly, accurately, and verifiable.

The unknowns and equation set are described below.

9.2 Equations

A list of the independent unknowns in the problem is , presented in Eqn. (2.15) 
and Eqn. (2.16). Eqn. (9.1) is the conservation equation for particles in section i.  is the 
source term for particles in section i; it has units of kmol particles m-3 s-1.  is the concentration 
of particles in section i and has units of (kmol particles) m-3.  and  are linear combinations of 

 and  The “m-3” in the units expression denotes per cubic meter of gas.

(9.1)

(9.2)
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Eqn. (9.1), the particle conservation equation, is only used in the DOF 2 simulations. In the DOF 
1 simulations, it is ignored. However, all particle source term kernels accurately account for parti-
cle number changes in the DOF 1 case at the expense of increased numerical diffusion. Eqn. (9.2) 
is the expression for the total monomer unit balance in section i.  is the total concentration of 
total monomer units (TMU) in section i; it has units of (kmol TMU) m-3.  is the source term 
for total monomer units for section i; it has units of (kmol monomer units) m-3 s-1. Eqn. (9.3) is the 
conservation of monomer units of type k > 0 in section i.  is the concentration of monomer 
units of type k in section i; it has units of (kmol monomer units of type k) m-3.  is the source 
term for monomer units of type k > 0 in section i; it has units of (kmol monomer units k) m-3 s-1. 
The balance on monomer units of type k = 0 is not used, as it would lead to a singular equation 
system.

When the gas is included, the conservation equation for gas species k is added to the equation set, 
Eqn. (9.4). , the independent unknown, is the molar concentration of gas species j.

(9.4)

 is the source term (kmol m-3 s-1) due to gas phase reactions.  is the source term (kmol 
m-3 s-1) for gas phase species from interactions with the particle phase.

Derivatives are taken in a “space-time manner”, and a predictor-corrector backwards Euler 
method is employed. Therefore, on going from step  to n, the following equations are used:

(9.5)

. (9.6)

(9.7)

(9.8)
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An extra equation for  is used when the gas concentrations are followed. Under constant pres-
sure conditions, the extra equation tracks the volume:

(9.9)

It’s discrete form is:

. (9.10)

Under constant volume conditions, there is no extra equation. The volume is assumed to be a con-
stant . Internally, whenever Cantera is updated, the ideal gas equation is used to deter-
mine the current pressure, given the temperature and the complete set of gas-phase species 
concentrations. Cantera can accurately track the pressure under constant-volume conditions.

An additional equation must be used to close out the formulation of the gas-phase species. There 
are several different formulations for this equation.

In formulation #1, used for constant pressure cases, one of the gas phase species conservation 
equations, corresponding to the species with the highest concentration, is replaced by the expres-
sion for the “time dependent” ideal gas equation of state in terms of the independent variables,  
and T, Eqn. (9.11).

(9.11)

In formulation #2, no special equation is employed. Instead it’s recognized that if you sum up 
Eqn. (9.4) over all j and add in Eqn. (9.9), Eqn. (9.11) results. Formulation #2 is the default for the 
constant pressure case, and has been shown to lead to fairly good element conservation properties 
despite the fact that the volume is being solved for.

Formulation #3 uses the constant volume case. Eqn. (9.11) is replaced by the trivial case of Eqn. 
(9.12).
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All N species equations are kept. Then, the pressure is solved for implicitly via the ideal gas equa-
tion of state. The constant volume case conserves elements up to round-off error.

9.3 Specification of the Equation Unknowns

Unknowns that describe the particle distribution are the coefficients,  and , for the sectional 
basis functions in the interpolation of the total monomer unit concentration within a section, 

:

(9.13)

where

 and (9.14)

Note, 

(9.15)

 is the total monomer unit concentration in section i. The total concentration of monomer units 
of type k > 0 in section i, , is also an independent unknown.

For the gas, the concentrations of species j from 1 to the number of species, , are the unknowns. 
The temperature is the unknown in the energy equation, which is expressed in total enthalpy form. 
The pressure is not an independent variable in the formulation. For constant pressure boundary 
conditions, it is assumed. For constant volume boundary conditions, the pressure is calculated 
from the N species concentrations, the temperature, and the ideal gas law.

When the energy equation is added to the equation system, the temperature of the reactor becomes 
an unknown. If the energy equation is not used, the temperature is assumed to be a given constant.

9.4 Adding the Energy Conservation Equation

Within TDcads, it is possible to specify either isothermal flow or include the evolution of the 
energy equation. The derivation of the energy equation is not as straightforward as it may seem, 
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due to particles and molecular species being treated differently in terms of the “flow work” that 
they perform. First, the derivation of total internal energy in the particle phase is carried out. The 
internal energy of the particle phase is used instead of the enthalpy, because particles don’t partic-
ipate in any volume expansion work done by the gas, using the current level of approximation 
where particle concentrations don’t participate in the overall gaseous equation of state. However, 
differences between enthalpies and internal energies for solids, which are roughly equal to 

, are relatively small, because the solid molar volumes are very relatively small compared 
to their gas counterparts.

The total internal energy of the particle phase, , an extensive thermodynamic quantity, is 
evaluated by summing up over individual particles sections:

. (9.16)

 is the concentration of particles having monomer unit size .  is the intrin-
sic (i.e., on a per kmol MU basis) internal energy of particles in the ith section bin. It is constant 
within the bin, since , the mole fraction of monomer units within the bin, is assumed constant 
within the bin, and can be taken out of the integral, leaving , the total concentration of mono-
mer units as a straight multiplier. No surface energy contributions to the total particle energy are 
used here; if there were, the evaluation of Eqn. (9.16) would follow along similar lines, but with 
additional surface tension terms that would have to be integrated over the distribution within a 
section.

An expression for the total mixture enthalpy of the gas and particle mixed-phase system is sought. 
The best way to understand the derivation is to imagine initially that the particles are inert within 
a reacting gas medium. Their only influence on the energy equation would be from their effect on 
the combined mixture heat capacity of the multiple phase system. The governing equation for a 
constant pressure closed system would then be Eqn. (9.17):

(9.17)

Now, if we allow for creation of particles, then the energy that went into that creation must be sub-
tracted from the enthalpy balance equation in Eqn. (9.17).

pVsolid

QUpart

QTupart n µ( )ui
part µ( ) µd

µi

µi 1+

∫
i

∑ Qiui
part

i
∑= =

n µ( ) µ ui
part T P Xi k,, ,( )

Xi k,
Qi

d ChgasV( )
dt

-------------------------- QiV
d ui

part( )
dt

-------------------
i

∑+ Q· surr=



160

(9.18)

This extra term on the right of Eqn. (9.18) is associated with the creation of particle mass inside 
the domain, and may be derived from a total enthalpy balance on surface growth terms, and has 
been documented before in codes such as SPIN which calculates an energy balance on a surface 
due to bulk film growth [50]. Adding Eqn. (9.2) multiplied by  summed over all bins, i,

, (9.19)

where we have allowed for differences in the molar internal energies with respect to particle bins, 
i, into Eqn. (9.17), yields the energy balance for the entire system, Eqn. (9.20).

(9.20)

 is the concentration of the gas.  is the molar enthalpy of the gas mixture.  is the heat 
transfer to the gas-particle mixture from the surroundings [49]. This includes radiative transfer. 

 is the total internal energy in the particle phase. 

Eqn. (9.20) may be derived alternatively by constructing a rigorous energy balance over the gas 
phase including energy transport and enthalpy transport from the gas phase to the particle phase 
due to particle growth:

(9.21)

The first term represents the loss of enthalpy from the gas phase due to gas molecules leaving the 
gas phase. In Eqn. (9.21), the second term on the rhs is the conductive heat transfer to the particle 
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phase, which can further be deduced to be equal to the sensible heat increase in the particle phase 
(disregarding radiation effects again).

Then, a rigorous energy balance may be conducted on the particle phase. The total change in 
energy in the particle phase is due to the energy exchanged due to the surface growth reaction, 

, and the energy due to conduction to the particle phase:

. (9.22)

Addition of Eqn. (9.21) and Eqn. (9.22), with the added simplification that the total enthalpy for 
the surface reaction process is conserved, i.e.,

, (9.23)

again yields the combined total mixture enthalpy formulation, Eqn. (9.20).

For the constant volume case, Eqn. (9.24), where the gas enthalpy term has been replaced by a 
gas-phase internal energy term, holds. There is no pV expansion for the constant volume case.

(9.24)

 is the rate of heat exchange with the surroundings, and is equal to zero if the adiabatic 
approximation holds.

9.5 Adding in a CSTR Approximation

The starting point are the equations given in Coltrin and Kee [49], extended for the presence of a 
particle phase. Constant volume and constant pressure are assumed in the CSTR approximation. 
The expression for the conservation of gas phase species j is:

(9.25)

Si
TMU

d Qi
TMUui

partV( )
dt

--------------------------------------
i

∑ Si
TMUui

part

i

 

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

V Qgas_to_part–=

Si
TMUui

part

i

 

∑ Sj
gash̃jV

j

 

∑–=

d CugasV( )
dt

-------------------------- d QupartV( )
dt

----------------------------+ Σ
·

surr=

Σ
·

surr

d CjV( )
dt

----------------- F·
out

Xj F·
in

Xj
in–+ Sj

gas Wj
gas+( )V=



162

 is the molar flow rate into the reactor, and  is the molar flow rate out of the reactor. Nor-
mally, Eqn. (9.25) is expressed on a mass basis, because under steady state conditions the mass 
flow rates into the PSR reactor is equal to the mass flow rate out of the reactor. This is not the case 
for molar flow rates. When particles are included, the mass flow rates incoming and outgoing are 
equal at steady state if the sum is carried out over both gas and particle phases. 

One can add up the individual ways that volume is created and lost within the reactor, and use the 
constant pressure assumption to derive an explicit expression for how the molar flux out, , 
varies with the molar flux in, . This maybe done by summing up Eqn. (9.25) over all species j 
and then by using the ideal gas law.

(9.26)

This gives an explicit equation for  that may be plugged back into Eqn. (9.25). One of the 
species conservation equations must be replaced by the sum of the mole fractions equals one con-
dition in order to avoid a singular equation system.

The equation for the particle species may be derived fairly easily once  is determined:

(9.27)

(9.28)

(9.29)

 is the molar flux of particles in section i entering the reactor; it has units of (kmol parti-
cles) s-1. The other quantities are defined analogously.

The energy equation, including the particle phase contributions, is given in Eqn. (9.30).
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(9.30)

The particle terms in Eqn. (9.30) can be derived in two ways. The first way would be to start with 
Eqn. (9.24), and then add in the enthalpy flux terms for the gas and the internal energy flux terms 
for the particle phase, representing the inflow of energy in the inlet and the outflow of energy via 
the outlet flow.

The second method would be to start with a consistent energy equation for the CSTR approxima-
tion for just the gas phase only, with additional terms representing the sensible heat of the particle 
particle phase. Then, the addition of Eqn. (9.28) multiplied by the internal energy of the ith section 
yields Eqn. (9.30), after summation over all particle bins.

9.6 Brief Description of the Code Layout

The main routine where the residuals are calculated is the member function evalResidNJ() of 
the C++ object resid_adsm, located in the file tdcads.cpp. The object resid_adsm, is derived 
from the class ResidJacEval, which is the C++ object that is need by the backwards Euler C++ 
object, BEulerInt.

The resid_adsm object also has a member function, evalJacobian(), which is responsible for 
calculating the jacobian of the residual in evalResidNJ(). It does this by calling functions which 
return jacobians of the individual source terms that contribute to Eqns. (9.1) to (9.8).

To add another equation or modify the existing equations, the primary routine that needs to be 
altered are in the file TDcads.cpp. The primary C++ object that needs to be changed is the object 
resid_adsm. It contains, for example, the number of unknowns in the time dependent residual.

9.7 Input File Options

Specific input file options for TDcads are separated into 3 main blocks: TDcads Model Defini-
tion, TDcads Time Step Parameters, and TDcads Initial Conditions. These blocks are in 
addition to the Section Model Definition block and the ADS Model Definition block 
described in the previous chapters of this manual. The overall format of the input file, which is 
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made up of collections of distinct blocks, is best presented in tutorial problems which is distrib-
uted with the code.

The TDcads model definition block sets up the problem type and prescribes what unknowns are in 
the solution vector. Figure 9.1 contains the options for this block. The first two keylines state 
whether gas phase concentrations and the temperature are included in the solution vector. If they 

Figure 9.1 Input file for the TDcads Model Definition block

START BLOCK TDCADS MODEL DEFINITION
!Include Gas Species in Solution Vector = bool (required)
! Defaults = false -> implies constant gas composition
Include Gas Species in Solution Vector = no
! -----------------------------------------------------------
! Include Temperature in Solution Vector = bool (required)
! Defaults = false -> implies isothermal conditions
Include Temperature in Solution Vector = no
! -----------------------------------------------------------
! Boundary Conditions = [ constant pressure | constant volume | psr ] (required)
!  Default = constant pressure
Boundary Conditions = constant pressure
! -----------------------------------------------------------
! Volume of Reactor = [ double ] unit_of_length^3
!      (optional) (default = 1.0E-6 m^3 = 1 cm^3
Volume of Reactor = 1.0E-6 m^3
! -----------------------------------------------------------
! Special Gas Species - string (defalt = 0) (required)
Special Gas Species = N2

! -----------------------------------------------------------
START BLOCK TDCADS INFLOW CONDITIONS

Inflow Temperature = 300.
! ------------------------------------------------------
! Inflow Pressure = [double] [Pressure_Units]
!  (default = 1.0 atm) (optional)
Inflow Pressure = 1.0 atm
! ------------------------------------------------------
! Inflow Molar Flow Rate = [double] 
!  (default = none) (required) (units = kmol s-1) 
Inflow Molar Flow Rate = 1.0
!------------------------------------------------------------
START BLOCK INFLOW GAS MOLE FRACTIONS

N2   = 0.90
C2H2 = 0.10

END BLOCK INFLOW GAS MOLE FRACTIONS
!------------------------------------------------------------ 
! Particle Initial Conditions BLOCK
!    (optional)
!    In this block we specify the initial conditions for
!    the particle unknowns in an additive format.
!    The additive format here indicates that we may
!    have more than one distribution block and the 
!    compositions will add.
START BLOCK PARTICLE INLET CONDITIONS

START BLOCK PARTICLE MONOMER DISTRIBUTION
END BLOCK PARTICLE MONOMER DISTRIBUTION
START BLOCK Particle Gaussian Distribution
END BLOCK Particle Gaussian Distribution
START BLOCK Inflow Particle Raw Solution Vector 

Particle File = SolnFile.txt
END BLOCK Inflow Particle Raw Solution Vector

END BLOCK PARTICLE INLET CONDITIONS
END BLOCK TDCADS INFLOW CONDITIONS

END BLOCK TDCADS MODEL DEFINITION
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are not included, then their values are assumed to be constant. The Boundary Condition keyline 
specifies how the gas conditions change as a function of the reactions. A constant pressure condi-
tion means that the volume of gas tracked by the simulation changes as a function of time. The 
volume becomes part of the solution vector. If the simulation is constant volume, the pressure will 
change as a function of time. The pressure is determined by the ideal gas law at every time step. A 
PSR condition means that the reactor has an inflow and an outflow and is at constant pressure. 
The inflow conditions are specified by the TDcads Inflow Conditions block within the TDcads 
Model Definition block; the inflow block becomes a required block. The outflow conditions 
are solved for.

The Volume of Reactor keyline specifies the initial volume of the reactor. The default value is 1 
cm-3. The Special Gas Species keyline specifies the special gas phase species identity. In some 
formulations, this species has a different equation applied to it than the rest of the species in order 
to conserve total mass for example. Usually, the species with the greatest concentration is set as 
the special gas-phase species.

 The TDcads Inflow Conditions is a required block when the PSR boundary condition is cho-
sen, and it is an error to include this block when the PSR boundary condition is not chosen. In the 
block, the inlet gas mole fraction vector, the inlet particle distribution, the inlet pressure, and the 
inlet temperature are specified. An example of the block format for specification of the inlet mole 
fractions is given in Figure 9.1. The format must have a species on the left hand side of the equals 
sign and a double value on the right hand side. The values of all mole fractions must sum up to (or 
be very close to) one; they are normalized exactly to a sum of one within the code.

The Particle Inlet Conditions block specifies the particle content of the inlet stream. 
Options for a equi-sized distribution, a gaussian distribution, and a distribution specified by input 
from an ascii file are possible. All blocks within this section are additive in their effect. Figure 9.2 
provides a detailed description of options in this block.

The Particle Monomer Distribution block will install a given concentration of particles all 
with the same size into the solution vector. Note, This may entail putting distributions into two 
adjacent bins to obtain the correct total number to size ratio overall. The monomer size is speci-
fied with the Monomer Size keyline, which accepts a double with an optional unit of length con-
version string (the default is always to employ MKS units). The particle number concentration is 
specified with the Monomer concentration keyline, which accepts a double with an optional 
unit of concentration. The default units for concentration is kmol particles m-3. The MU mole 
fraction block specifies the mole fraction of the particles in the inlet stream.
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The Particle Gaussian Distribution block installs a given concentration of particles with a 
gaussian distribution of sizes, Eqn. (9.31).

(9.31)

Figure 9.2 Particle Initial Conditions block

START BLOCK PARTICLE INLET CONDITIONS
START BLOCK PARTICLE MONOMER DISTRIBUTION

!  Monomer size = [dbl] [Length unit]
!      (required)
!      (Length unit defaults to MKS -> meters)
!     This card specifies the diameter of the particle.
Monomer size = 1 nm
!------------------------------------------------------
!  Monomer Concentration = [dbl] [Concentration unit]
!      (required) (concentration unit defaults to MKS -> kmol/m3) 
!     This card specifies the concentration of the particles.
Monomer concentration = 1.0E16 molec/cm3
!------------------------------------------------------
!  Block format for specifiation of the mole fractions of the particle phase
START BLOCK MU Mole Fractions

C2H2 = 1.0
END BLOCK MU Mole Fractions
!-----------------------------------------------------

END BLOCK PARTICLE MONOMER DISTRIBUTION
START BLOCK Particle Gaussian Distribution

!  Monomer Unit Peak = [dbl]
!      (required)
! This card specifies the number of monomer units at the peak of the distribution.
! This value is in # molecules.
Monomer Unit Peak = 30
!------------------------------------------------------
!  Monomer Unit Spread = [dbl]
!      (required)
!     This card specifies the gaussian spread of the distribution. This value is in # molecules.
Monomer Unit Spread = 30
!------------------------------------------------------
! Monomer Concentration = [dbl] [Concentration unit]
!      (required)
!     This card specifies the net concentration of the particles.
Monomer concentration = 1.0E16 molec/cm3
!------------------------------------------------------
!  Block format for specifiation of the mole fractions of the particle phase
START BLOCK MU Mole Fractions

C2H2 = 1.0
END BLOCK MU Mole Fractions

END BLOCK Particle Gaussian Distribution 
!------------------------------------------------------
! Direct specification of the particle solution vector via an ascii file
START BLOCK Inflow Particle Raw Solution Vector

Particle File = SolnFile.txt
END BLOCK Inflow Particle Raw Solution Vector
!--------------------------------------------------------
! Default Small Positive Section Value = bool
!  (optional)

 ! This optional boolean will set a small positive value for the quantity of particles in each 
! of the sectional bins. Currently, it is set to 1.0E-200. This value sometimes enhances the  
! startup of the simulation.
! Default Small Positive Section Value = true
END BLOCK PARTICLE INITIAL CONDITIONS

N µ( )
No

π µs∆( )
---------------------

µ µo–( )2

µs∆ 2
----------------------–exp=
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 is the value given in the Monomer unit peak keyline.  is the standard deviation of the 
distribution and is given in the Monomer unit spread keyline.  is the value given in the Mono-

Figure 9.3 TDcads Time Step Parameters block

START BLOCK TDCADS TIME STEP PARAMETERS
! Initial Time Step - double (required)
Initial Time Step = 1.0E-11
!------------------------------------------------------------
! Final Time - double(required)
Final Time = 0.01
! --------------------------------------------------------------
!  Analytic or Numerical Jacobian = [ analytic, numerical ]
!   (optional) Default = numerical
Analytic or Numerical Jacobian = analytic

! -----------------------------------------------------------
! Maximum Number of Time Steps - Int (default large) (optional)
!  Maximum Number of Time Steps = 10000
! -----------------------------------------------------------
! Relative Time Step Error Tolerance = dbl (optional)
!  Set the relative time step error tolerances
! Default = 1.0E-3 Limits = 0.5 > rtol > 1.0E-9
!  Relative Time Step Error Tolerance = 1.0E-3
! -----------------------------------------------------------
! Absolute Time Step Error Tolerance = dbl (optional)
!  Set the absolute time step error tolerances
!  Default = 1.0E-6 (Limits = 1.0E-4 > atol > 1.0E-60)
!  Absolute Time Step Error Tolerance = 1.0E-6
! -----------------------------------------------------------
! Number of Constant Delta T Time Steps = int (optional)
!  Number of Constant Delta T Time Steps = 0
! -----------------------------------------------------------
! PrintFlag - Int (default 1) (optional)
!  Set the amount of printing from each time step 1 to 3
PrintFlag = 1
! -----------------------------------------------------------
!  Print Solution Every N Steps  - int (default 1) (optional)
!  Set the time step interval at which the solution will will be printed. This defaults
! to printing at every time step
! Print Solution Every N Steps = 1
! -----------------------------------------------------------
!  Print Solution at N Regular Intervals - int ( default 0) (optional)
!  Prints the solution at n regular intervals wrt to the final time, TOUT.
! Print Solution at N Regular Intervals = 10
! -----------------------------------------------------------
!  Print Solution for first N Time Steps - int (default 0) (optional)
! Print Solution for first n Time Steps = 10
! -----------------------------------------------------------
!  Minimum number of newton iterations = int (default 0) (optional)
!  Minimum number of newton iterations = 0
! -----------------------------------------------------------
!  Matrix Conditioning = boolean ( default = false) (optional)
!  Matrix Conditioning = false
! -----------------------------------------------------------
!  Matrix Row Scaling = boolean ( default = true) (optional)
!  Matrix Row Scaling = true
! -----------------------------------------------------------
!  Matrix Column Scaling = boolean ( default = false) (optional)
!  Matrix Column Scaling = false
!------------------------------------------------------------
!  Dump Jacobians to Disk = boolean ( default = false) (optional)
!  Dump Jacobians to Disk = false
!------------------------------------------------------------

END BLOCK TDcads TIME STEP PARAMETERS

µo µs∆
No
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mer concentration keyline. There is also a MU Mole Fraction block to specify the monomer 
unit mole fraction in the gaussian distribution.

The Inflow Particle Raw Solution Vector block installs a user specified distribution of par-
ticles. These are read in from a file specified within the block. The format of this file is a straight 
ascii input of the particule state vector, with one double value per line.

Figure 9.3 contains options for the implicit time stepping algorithm within TDcads. The Initial 
Time Step keyline sets the initial time step within TDcads. The Final Time keyline sets the final 
time of the simulation. The Analytical or Numerical Jacobian keyline sets the type of jaco-
bian approximation to be used. The Relative Time Step Error Tolerance and Absolute 
Time Step Error Tolerance keylines sets the overall magnitudes of the relative and absolute 
error tolerances in both the nonlinear convergence criteria and the time-step truncation error toler-
ance criteria.

The Number of Constant Delta T Time Steps keyline sets the number of initial time steps 
that will be taken where the time step error control will not be applied. The default is zero.

The Print Solution Every N Steps keyline sets the time step interval at which the solution 
will be printed. This defaults to printing at every time step. Setting this to zero will turn off this 
trigger for printing. There are two other triggers for printing of the solution. The Print Solution 
at N Regular Intervals option prints out the solution at equispaced time intervals. The Print 
Solution for first n Time Steps option prints out the solution for the specified number of 
initial time steps.

The Minimum number of newton iterations keyline turns on the capability for ensuring that a 
minimum number of newton iterations are carried out at each time step. This option is useful for 
checking the quality of jacobian approximations.

The Matrix Conditioning keyline turns on the capability for matrix preconditioning. For DOF 
1 methods, this option is ignored. For DOF 2 section models, a small block diagonal matrix, the 
mass matrix, is used as a preconditioner before the large matrix is inverted. This is an experimen-
tal option.

The Matrix Row Scaling keyline turns on the capability for matrix row scaling. Before a nonlin-
ear iteration, the matrix and the right hand side is row sum scaled before being given to the linear 
solver. This has the effect of reducing the condition number of the linear system, and therefore its 
use increases the accuracy of the linear solver step. By default, matrix scaling is turned on. 
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The matrix column scaling keyline turns on the ability to carry out matrix column scaling dur-
ing the linear solve step. For example, when both row and column scaling are turned on, a Newton 
iterative step, which could previously be described by

,

where  is the solution update at step n,  is the jacobian at step n, and  
is the residual at step n, is altered to the following formulation:

(9.32)

 is the column scaled matrix obtained by taking the weighting vector described in Section 2.12 
and multiplying by a factor of .  is the row sum scaled vector, obtained by row sum scal-
ing the matrix . The transformed matrix in brackets, , has a much lower 
condition number as determined by lapack routines than the original matrix. The transformed 
update vector, , is scaled appropriately so that each component of  has the same 
order or magnitude in relation to how well that component satisfies its individual convergence 
requirement. 

The Dump Jacobians to Disk keyline turns on the capability for dumping jacobians to disk. 
This dump is in a comma separated format that is easily readable by a spreadsheet program.

Figure 9.4 contains the options for specifying the initial conditions of a TDcads simulation. Gas 
temperature, gas pressure and gas composition must be specified. As previously discussed around 
Figure 9.2, initial particle profiles are derived either from a mono-dispersed distribution or from a 
gaussian profile. The Read Solution Vector block may be used to completely specify the ini-
tial condition. The file SolnFile.txt is written out at every time step from TDcads. The Read 
Solution Vector option may be used as a restart capability.

9.8 Conservation Properties of the Space-Time Derivative

A question has come up about the use of the space-time derivative in Eqns. (9.1) to (9.30) instead 
of a different time discretization. I will show space-time derivative conserves elements during a 
time step for any amount of time-step truncation error, while the normal approximation only con-
serves elements in the limit of zero time-step truncation error.
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The space-time discretization of the volume-concentration product is done by treating the time 
dimension like a physical coordinate, constructing an integral around the domain, and then formu-
lating a conservation property by accounting for the fluxes out of the domain. It’s use has been 
attributed to Tayfoon Tezduyar and Tom Hughes [52], who have used the space-time derivative 
discretization in 2D and 3D finite element fluid mechanics codes. Using the integral approach 
described above, the discretized time derivative becomes:

Figure 9.4 TDcads initial conditions block.

START BLOCK TDcads INITIAL CONDITIONS
! Gas Temperature - double (no default) (required)
!    Specify the gas temperature (Kelvin)
Gas Temperature = 1800.
!------------------------------------------------------------
! Gas Pressure - double [Pressure_unit] (no default) (required)
!       Specify the pressure - pressure units default to MKS unless specified.
Gas Pressure = 1.0 atm
!------------------------------------------------------------
!  Initial Gas Mole Fractions ( required )
! Block format for specifiation of the mole fractions
! of the gas phase.
START BLOCK INITIAL GAS MOLE FRACTIONS

N2   = 0.90
C2H2 = 0.10

END BLOCK INITIAL GAS MOLE FRACTIONS
!------------------------------------------------------------
! Particle Initial Conditions BLOCK (optional)
!    In this block we specify the initial conditions for
!    the particle unknowns in an additive format.
START BLOCK PARTICLE INITIAL CONDITIONS
!---------------------------------------------------------

START BLOCK PARTICLE MONOMER DISTRIBUTION
Monomer size = 1 nm
Monomer concentration = 1.0E16 molec/cm3
START BLOCK MU Mole Fractions

C2H2 = 1.0
END BLOCK MU Mole Fractions

END BLOCK PARTICLE MONOMER DISTRIBUTION
START BLOCK Particle Gaussian Distribution

Monomer Unit Peak = 30
Monomer Unit Spread = 30
Monomer concentration = 1.0E16 molec/cm3
START BLOCK MU Mole Fractions

C2H2 = 1.0
END BLOCK MU Mole Fractions

END BLOCK Particle Gaussian Distribution 
 Default Small Positive Section Value = true
END BLOCK PARTICLE INITIAL CONDITIONS
! Read Solution Vector Block
!       Optional Block to override much of what was just
!       input above, and supply the initial conditions
!       for the solution vector
!         (optional)
!-----------------------------------------------------------
! START BLOCK Read Solution Vector
!   Solution Vector File = {string} (required)
! Solution Vector File = SolnFile.txt
! END BLOCK Read Solution Vector

END BLOCK TDCADS INITIAL CONDITIONS
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. (9.33)

 is the time step number. and  is the time step increment from time  to . The normal 
discretization of the volume concentration product is

. (9.34)

The difference between these two expressions is

, (9.35)

which is the same- or higher-order term as the backwards Euler discretization error.

An example problem with two species may be used to test the elemental conservation property. 
Assume that there are two species, A and B, comprising a constant T and P ideal gas, with one 
reaction where  using a constant reaction rate constant of . At each time step the conser-
vation of elements property depends on the following equality holding:

(9.36)

Is Eqn. (9.36) satisfied for each time derivative discretization method, using Eqn. (9.33) or Eqn. 
(9.34) to formulate the time derivative? The discretized form of the sample problem for the space-
time derivative is:

(9.37)

(9.38)

 (9.39)

Then, combining Eqn. (9.38) and Eqn. (9.39):
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(9.40)

Adding Eqn. (9.40) to Eqn. (9.37):

(9.41)

Collecting  terms on one side of the equation and  term on the other side, Eqn. (9.42) is 
obtained.

(9.42)

The relation, , has been used to complete the proof. Thus, the space-
time derivative does satisfy conservation of elements irrespective of the time-step truncation 
error.

The discretized form of the sample problem for the normal derivative formulation is:

(9.43)

(9.44)

 (9.45)

Adding Eqn. (9.40) to Eqn. (9.43), the following is obtained:

(9.46)

Collecting terms, the following is obtained:
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(9.47)

Note, the statement of the element balance is off by the difference in the formulations of the time 
derivative. Therefore, the normal time derivative doesn’t conserve elements when there is time-
step truncation error, and thus is inferior to the space-time derivative formulation in a very funda-
mental way.
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10. Example Calculations

10.1 Growth of a MonoDispersed Aerosol in a Bath of Constant Growth Medium

Consider an initial distribution of dilute particles in a medium. Let the medium initially consist of
two species. The first species is inert, while the second species may undergo a simple growth-ad-
dition reaction with an aerosol phase. Then, an analytical solution to the rate of growth of the
aerosol can be derived under several limiting assumptions. First let’s assume that the initial parti-
cles have a monodispersed size distribution.

Let  be the concentration of species 2 in the gas phase. Let  be the total particle density in
the gas phase, expressed in kmol particles m-3. Let  be the total concentration of particles in
the gas phase, expressed in kmol MU m-3. Then, the average number of monomer units per parti-
cle is initially equal to 

. (10.1)

Let  be the molar volume of monomer units in the particle phase, expressed in m3 (kmol parti-
cles)-1. Then, the initial total volume of particles in the gas phase, expressed as the volume frac-
tion - m3 particle m-3 gas, is equal to

. (10.2)

Each particle is assumed to be spherical. The initial volume of each particle is equal to
. The radius of each particle is 

, (10.3)

and the surface area of each particle is

. (10.4)

Assume that the growth reaction is proportional to the surface area of the particles and the con-
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centration of species 2. The rate of progress, , of the reaction per particle surface area may
be expressed as

, (10.5)

where the rate constant, Eqn. (10.6), may be expressed in terms of the sticking coefficient, , and
average gas-species velocity, .

(10.6)

The total rate of production of monomer units, MU’s, is given by Eqn. (10.7).

(10.7)

 is introduced to adsorb all of the constants. In Eqn. (10.7),  has been assumed to be a con-
stant. Integrating Eqn. (10.7) yields Eqn. (10.8).

(10.8)

 is the initial total monomer units.

10.1.1 TDcads Solution

Let’s fill in some of the constants to be used in the TDcads solution. TDcads was run in a constant
pressure mode. The temperature and pressure of the simulation was set to 1000 K and 1 atm. The
mole fraction of the condensable species was set to 0.9. Therefore,

Setting , the mean thermal velocity of the condensing species is equal to
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Therefore, with , the reaction rate is equal to

.

The initial number density of particles has been set to 

.

Note, this isn’t a constant in the TDcads simulation, because the constant pressure assumption re-
quires the reactor volume to shrink. However, with the volume set to 1 cm3, the number of parti-
cles in reactor, , is a constant. The initial monomer size is set to 2 nm. The molar
volume of the condensed phase, , is 0.0255 kmol m-3. Therefore, the initial number of mono-
mers per particle is

.

Therefore, the initial number density of monomer units in the particle phase is

Putting all the numbers together, a value of  can be calculated

In Figure 10.1, the cube root of Eqn. (10.8) is plotted against the cube root of the  prediction.
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from TDcads. A straight line is to be expected at small time. Good agreement is obtained at small
times for the absolute value of  and its slope with respect to time. At later times the analyti-

Figure 10.1 TDcads results vs. small-time Analytical solution which assumes no gas contrac-
tion.
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Figure 10.2 TDcads Model definition block for the PSR Sample Problem

START BLOCK TDCADS MODEL DEFINITION

Include Gas Species in Solution Vector = yes
Include Temperature in Solution Vector = no
Boundary Conditions = psr
Volume of Reactor = 10.0E-6 m^3
Special Gas Species = N2
START BLOCK TDCADS INFLOW CONDITIONS

Inflow Temperature = 1000.
Inflow Pressure = 1.0 atm
Inflow Molar Flow Rate = 1.0
START BLOCK INFLOW GAS MOLE FRACTIONS

N2 = 0.10
SPEC2 = 0.90

END BLOCK INFLOW GAS MOLE FRACTIONS
START BLOCK PARTICLE INLET CONDITIONS

START BLOCK PARTICLE MONOMER DISTRIBUTION
Monomer Size = 2 nm
Monomer Concentration = 1.0E-10 gmol/cm3
Start Block MU Mole Fraction

condensesd-new = 1.0
End Block MU Mole Fraction

END BLOCK PARTICLE MONOMER DISTRIBUTION
END BLOCK PARTICLE INLET CONDITIONS

END BLOCK TDCADS INFLOW CONDITIONS
END BLOCK TDCADS MODEL DEFINITION

QT
1 3⁄
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cal model fails to account for the change in volume of the reactor and, therefore, the increase in
particle density. TDcads eventually reaches a steady state where all of the condensible material
has migrated to the particle phase. At that point, since the original mole fraction of condensible
gas was 0.9, the volume of the reactor is 1/10 of its original value.

10.2 PSR Implementation of the Growth of a Monodispersed Aerosol

Taking the first problem as a starting case, Let’s add an inflow, an outflow, and a reactor volume
to the problem to get a PSR. The TDcads Model Definition Block is replicated from the input file
in Figure 10.2. The volume is set to 10 cm3, the pressure is set to 1 atm, while the inlet flow rate is
set to 1 m3 s-1, i.e., 106 cm3 /sec. Therefore, the residence time is  sec.

Figure 10.3 contains the resulting size distributions that flow out of the reactor.  is the concen-
tration distribution of mononer units as a function of the number of monomer units in the particle,
and has units of (kmol MU) m-3 MU-1. In agreement with expectation,  decreases in a geometric
progression as the number of monomer units increases. The vertical drops in the distribution are
due to the intersectional boundaries and the discontinuous Galerkin formulation. The slight
change of slope at very low particle concentrations at the highest particles numbers is due to a
change in the algorithm that kicks in for low particle numbers, which was previously discussed in
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Figure 10.3 TMU concentration distribution function exiting the PSR
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Section 2.13. The change in algorithm helps to preserve the nonnegativity of the sectional basis
function coefficients.
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11.Index of Symbols

 (second is ) Designation for the index of the section number. These usually appear 
as the first subscript.

Reaction index

 (second is ) Designation for the index of the monomer unit type. The second index 
to be used is the letter, l. These usually appear as the second subscript, 
when there is also a subscript for the section number.

Index of the target section. 

Time step number. Appears as the last superscript.

Number of sections in the current discretization of the  coordinate.

Number of monomer unit types

Particle Concentrations and Related Quantities

Coefficient for the lower basis function in section . This is one of the 
independent variables in the particle solution vector. (note, 

)

Coefficient for the higher basis function in section . This is one of the 
independent variables in the particle solution vector. (note, 

)

The concentration of particles (kmol particles m-3) having monomer 
unit size  at time, t

The total concentration of particles in the particle phase. This has units 
of (kmol particles) m-3.

The total concentration of particles in section . This has units of (kmol 
particles) m-3.

Distribution function for the concentration of monomer units in particles 
with monomer size  at time t. The units are (kmol m-3) MU-1.

The total concentration of monomer units in the particle phase. This has 
units of (kmol MU) m-3.

i j

j

k l

L

n

Nsect µ

NMU_types

bi
L i

qi µ t,( ) Θi
L µ( )bi

L t( ) Θi
H µ( )bi

H t( )+=

bi
H i

qi µ t,( ) Θi
L µ( )bi

L t( ) Θi
H µ( )bi

H t( )+=

n µ t,( ) q µ( )
µ

-----------=
µ

NT

Ni i

q µ t,( )
µ

QT



  182

The total concentration of monomer units in section  in the particle 
phase. This has units of (kmol MU) m-3

, The total concentration of monomer units in section  attributable to the 
lower and higher degree of freedom for section i, respectively. These 
quantities have units of (kmol MU) m-3

 The mole fraction of monomer unit type k in the particles of section i. k 
is assumed to be evenly distributed within the section i (i.e., 

).

Distribution function for the concentration of monomer units of type k 
in particles with monomer size . The units are (kmol MUK m-3) 
MU-1. Note this is related to  by the multiplicative constant, 

.

The total concentration of monomer units of monomer unit type  in the 
particle phase. This has units of (kmol MU) m-3.

The total concentration of monomer units of monomer unit type  in 
section  in the particle phase. This has units of (kmol MU) m-3. This is 
one of the independent variables in the particle solution vector, .

Monomer unit number. This is the number of monomer units in a 
particle. Units are the number of monomer units.

Basis function for the lower mode of a 2 DOF description of the total 
monomer unit distribution within a section. 

Basis function for the upper mode of a 2 DOF description of the total 
monomer unit distribution within a section. 

Other Variables

Surface area of a single particle, with total monomer units, , and 
particle monomer unit mole fractions, . Since this quantity refers to 
a single particle, the units are m2.

Total surface area of all particles in section i. This quantity is dependent 
upon the number of particles in the section and on the composition of the 
particle phase, . The units for this is m2 of surface area per m3 of 
gas phase medium.

Qi i

Qi
L Qi

H i

Xi k, Xi k,
part=

Xi k, Zi k, Qi⁄=

zk µ t,( )
µ

q µ t,( )
Xi k,

ZT k, k

Zi k, k
i

Ξ

µ

Θi
L µ( )

Θi
H µ( )

a µ Xpart,( ) µ
Xpart
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Avogadro’s number

, Coefficient for the evaluation of  from the basis function coefficients, 
 and , which are the independent variables in the problem.

( )

Gas phase concentration of species k. Units are kmol m-3.

, Coefficient for the evaluation of  from the basis function coefficients, 
 and , which are the independent variables in the problem.

   ( ) or 

 The Brownian diffusivity of particle m. Units are m2 s-1.

Vector force (diffusiophoresis, or net) on a particle.

The net growth rate of particles of monomer unit size  at time t. Since 
this quantity is on a per particle basis, the units are number of monomer 
units per time.

The growth rate of monomer unit k on particles of monomer unit size  
at time t. Since this quantity is on a per particle basis, the units are 
number of monomer units of type k per time.

The net growth rate of all particles in section . Since this quantity is on 
a concentration basis having been integrated over the particle 
distribution function, the units are (kmol MU) m-3.

, Coefficient for the evaluation of  from the basis function coefficients, 
 and , which are the independent variables in the problem.

 The collisional rate constant for reaction  between a gas phase species 
and a particle of size . Has units of m3 (kmol MU)-1 s-1.

Integral moment  of the particle distribution function, .

Av
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L ci

H Ni
bi

L bi
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Ni ci
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Lower monomer unit per particle bound in section i. If all of the particles 
in section i were in the lower mode of the distribution function, then the 
monomer unit per particle value would be equal to this amount. 

Higher monomer unit per particle bound in section i. If all of the 
particles in section i were in the higher mode of the distribution function, 
then the monomer unit per particle value would be equal to this amount. 

 The average number of particles per monomer unit in section i.

Set of piecewise polynomials of degree  defined on the specific finite 
element domain K.

Source term vector for the particles unknowns for section i. Units are 
(kmol) m-3 s-1.

Source term for particles in section i. Units are (kmol particles) m-3 s-1.

Source term for the total monomer units for section i. Units are (kmol 
MU) m-3 s-1.

Source term for the total monomer units of monomer unit k for section 
i. Units are (kmol MU) m-3 s-1.

Source term for the total monomer units of monomer unit type k for 
section i, due to the solid phase particle kinetics operator only. Units are 
(kmol MU) m-3 s-1.

Source term for the particle conservation equations in section i due to 
the bulk phase particle kinetics operator. This is a vector, with each term 
having units of kmol m-3 s-1. For each section for a DOF 2 
implementation, with  different monomer unit types, there are 

 conservation equations. The first equation is the particle 
conservation equation. The second equation is the total monomer unit 
conservation equation, and the last  equations are the 
individual monomer unit conservation equations excluding the zeroth 
monomer unit.

Source term vector for the particle conservation equations in section i 
due to the coagulation operator. Each term has units of kmol m-3 s-1. For 
each section for a DOF 2 implementation, with  different 
monomer unit types, there are  conservation equations. 
The first equation is the particle conservation equation. The second 

MUi
L
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H
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Si
part
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Si
bulk
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Si
coag
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equation is the total monomer unit conservation equation, and the last 
 equations are the individual monomer unit conservation 

equations excluding the zeroth monomer unit. 

Each  term represents the source term due to one interaction, 
where a particle in section B collides and adds to a particle in section A 
creating one new particle mostly in section L. It may for stability and/or 
conservation purposes also add particles to an adjacent section to L, 
section Lalt. 

This is the particle source term component of the expression, . 
There are entries in section B, A, and L.

This is the total monomer unit source term component of the expression, 

Lowest MU number of the higher section in a pair which can collide and 
produce a particle in section L.

 Highest MU number of the higher section in a pair which can collide and 
produce a particle in section L.

Lowest MU number of the lowest section in a pair which can collide and 
produce a particle in section L, when the higher pair is in section A.

 Highest MU number of the lowest section in a pair which can collide and 
produce a particle in section L, when the higher pair is in section A.

 Complete source term for the nucleation operator.

Source term for the particle unknowns due to the nucleation operator.

Source term for the gas phase concentrations due to the nucleation 
operator.

 Set of finite elements defined on the monomer unit coordinate, , 
whose size is bounded in all dimensions by the size, h.

Velocity of gas phase species k (m s-1).

or Volume or volume of a particle with  monomer units in it. Units are in 
m3. Small caps are used for “per particle” quantities.

NMU_types 1–

SB A+ L→
coag SB A+ L→

coag

SB A+ L→
coag, part SB A+ L→

coag

SB A+ L→
coag, TMU

SB A+ L→
coag

SA_LBL

SA_UBL

SB_LBL A,
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L bi

H Zi m, Ck
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Si
nucl_part

Si
nucl_gas

Th µ( ) µ

vk
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Partial molar volume of species k or monomer unit type k in the particle 
phase. Units are in m3 kmol-1.

Molar volume of a particle with monomer size . Units are in 
m3 kmol-1.

Finite element space with characteristic sized elements h.

Collision frequency due to Brownian motion between particles with 
monomer unit numbers  and , in units of m3/kmol/sec.

Collisional particle loss rate from section A and B, each, for the 
coagulation of a particle from the lower section B with the higher section 
A, which produces a new particle in section L.

Collisional section A monomer loss rate from the coagulation of a 
particle from the lower section B with the higher section A, which 
produces a new particle in section L.

Collisional section B monomer loss rate from the coagulation of a 
particle from the lower section B with the higher section A, which 
produces a new particle in section L.

Collisional section L monomer creation rate from the coagulation of a 
particle from the lower section B with the higher section A, which 
produces a new particle in section L.

 Particle mean thermal velocity for particle m = 

Particle solution vector. This is a list of the independent unknowns in the 
particle package that completely determines the state of the particle 
distribution, when combined with the independent unknowns in the 
surrounding, medium.

Vk

V µ( ) µ

Wh

β µi µj,( )
µi µj
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