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Abstract

Aria is a Galerkin finite element based program for solving coupled-physics problems described by
systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state
problems in two and three dimensions on parallel architectures. The suite of physics currently
supported by Aria includes the incompressible Navier-Stokes equations, energy transport equation,
species transport equations, nonlinear elastic solid mechanics, and electrostatics as well as general-
ized scalar, vector and tensor transport equations. Additionally, Aria includes support for arbitrary
Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking. Coupled physics
problems are solved in several ways including fully-coupled Newton’s method with analytic or nu-
merical sensitivities, fully-coupled Newton-Krylov methods, fully-coupled Picard’s method, and a
loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations
of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic
load balancing are some of Aria’s more advanced capabilities. Aria is based on the Sierra Framework.
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Chapter 1

Introduction

1.1 Aria Overview

Aria is a Sierra application implementing the finite element method (FEM) for solving systems
of partial differential equations (PDEs). Foremost, Aria’s development targets applications which
involve incompressible flow (Navier-Stokes). However, the general design of Aria lends itself to
the solution of systems of PDEs describing physical processes including energy transport, species
tranport with reactions, electrostatics and general transport of scalar, vector and tensor quantities
in two and three dimensions both transient and direct to steady state. Moreover, different regions
of the physical domain (i.e., the input mesh) may have either different materials and/or different
collections of physics (viz., PDEs) defined on them. These systems of equations may be solved
alone, in a segregated but coupled algorith (“loosely coupled”) or as a single, fully-coupled system.
Currently, Aria’s loose coupling capabilities are handled by the Arpeggio application which also
allows Aria to couple (loosely) to the quasistatic structural mechanics code, Adagio.

Aria is able to accomodate meshes that utilize linear and quadratic elements in two and three
dimensions. In two dimensions, Aria supports quadrilateral (4 and 9 node) and trianglar (3 and 6
node) elements. In three dimensions, Aria supports hexahedral (8 and 27 node) and tetrahedran (4
and 10 node) elements. Moreover, meshes may be comprised of combinations of these elements (i.e.,
both quadrilateral and trianglar elements in two dimensions).

The physical coordinates and mesh displacements are always interpolated in accordance with the
input mesh, but other solution degrees of freedom may be interpolated using a lower order basis
function. For example, if the input mesh is composed of 9 node (quadratic) quadrilateral elements,
then the physical coordinates and mesh displacements (if active) will be interpolated using quadratic
basis functions, whereas other degrees of freedom, e.g., temperature or voltage, could use linear shape
functions.

Additional information concerning the project may be found at the Aria’s home page, Aria Users
Homepage Notz (b), and at Aria’s sourceforge web site, Aria SourceForge Project Notz (a) . Both
of those web sites currently require access to Sandia’s internal restricted network.

1.2 Nonlinear Coupling Strategies in Aria

One of the difficulties with writing broadly applicable computational mechanics software is that
developers can’t take advantage of specific knowledge of the application domain in order to optimize
the algorithm. Thus, in providing generality one sometimes sacrifices efficiency. One place this is
evident in multiphysics modeling is in the choice of coupling strategies. While it is well understood
that a fully coupled system solved with Newton’s method utilizing analytic sensitivities is formally
the most robust and correct approach to solving multiphysics applications it is also computationally
expensive and complex to implement. Furthermore, while Newton’s method has the fastest rate of
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asymptotic convergence it’s domain of convergence is often empirically observed to be smaller than
other methods. Lastly, in some applications, certain subsets of the physics may be only weakly
coupled so that a loosely coupled approach may be more computationally efficient. To address these
concerns while remaining general and flexible Aria offers a number of options for nonlinear solution
strategies and physics coupling.

In defining a problem in Aria, users configure one or more Regions. Each Region consists of one or
more PDEs to be solved on some or all of the input mesh. All of the PDEs in each Region are solved
in a tightly coupled (i.e., single matrix) manner using one of several nonlinear solution strategies
available. Users may then define loose couplings between two or more Regions. For example, some
or all of a solution from one Region may be transferred to another Region where it is treated as a
constant, external field. The aggregate nonlinear problem including the contributions from all of
the Regions may be iterated to convergence. The particulars of which physics are solved in each
Region and the nonlinear solution strategy used within and between Regions is completely specified
through the input file. Furthermore, an Aria user may pick a simple, minimal algorithm without
needing to fit it into an overly-generalized worst-case scenario that represents the union of all possible
algorithms.

Dynamically-specified loose coupling has many potential advantages that users may leverage. First,
the resulting linear system is considerably smaller and contains far fewer off-diagonal contributions
which can significantly increase the performance of linear solvers. Also, a resulting linear system may
have a more attractive form, such as symmetric positive-definite, that permits the use of tailored
iterative solutions techniques. Other extensions to loose coupling include subcycling of transient
simulations where each Region may advance in time with its own time step size and in-core coupling
to other applications based upon the Sierra framework.

1.3 Constraints Equations within Aria

Aria has a unique capability associated with the specification of global constraint equations. These
may be used to specify conserved quantities that are not specifically specified as part of the equations
set. For example, in some electrochemistry problems where current is specified as a boundary
condition, the global conservation of charge neutrality must be imposed as an additional global
condition.

Constraint equations have unique issues associated with their solution.

1.4 Level Set Algorithm

Level set algorithms utilize a signed distance function F such that one material, or phase, is asso-
ciated with regions of space where F > 0 and a different phase is associated with regions of space
where F < 0. The curve or surface where F = 0 defines the interface between the two phases. In
Goma and most other level set codes F is used to partition material property models such that
the property has the appropriate values in each phase and, typically, transitions smoothly from one
phase to the other. In Aria, however, F is used to partition contributions of the residual equations
between the two phases.

In both cases the partitioning is done using a Heaviside function to partition the physical space
into two phases which we’ll label A and B. The Heaviside function HA(F ) is defined such that
HA(F ) = 1 in phase A and HA(F ) = 0 in phase B; in the vicinity of F = 0 the Heaviside function
may be defined to be a smooth function that transitions from 0 to 1. Likewise, HB(F ) = 1 in phase
B and HB(F ) = 0 in phase A. In fact HB(F ) is defined as HB(F ) ≡ 1−HA(F ).
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In Goma, this Heaviside function is used to partition the material properties such that a material
property σ is defined as

σ(F, . . .) = σA(. . .)HA(F ) + σB(. . .)HB(F ). (1.1)

In Aria, however, the integrand of each residual equation is multipled by the sum of Heaviside
function so as to decomponse the equation into contributions from each phase,∫

V

(. . .) dV →
∫
V

HA(F ) (. . .) dV +
∫
V

HB(F ) (. . .) dV. (1.2)

This formulation has a number of advantages. Material models are not functions of F so no special
models need to be written and the input sytax is the same as well. Secondly, this approach is
conservative for conservative governing equations. For example, the MASS and ADVECTION terms
of the energy equation (see section 3.3) are proportional to ρCp and hence, in Goma’s formulation,
proportional to H2(F ) where as the DIFFUSION term is proportional κ and hence proportional to
H(F ). Thus, in the vicinity of the interface F = 0 energy is not tranported correctly between these
tranport modes.

In Aria, each assembly kernel has an arbitrary list of coefficients that multiply the integrand of the
kernel (see section 23.12). Thus, the formulation depicted in equation 1.2 is accomplished by simply
adding the appropriate Heaviside function to the list of coefficients for each kernel associated with
the equation.

1.5 Outline of the Manual

In chapter 2 we will discuss the overall environment for running Aria applications, including the
layout for the Aria input deck. In chapter 3 we will present the general equations that are solved by
Aria. These should be read by every user.

In later chapters, we will delve down to discuss individual line commands of the input deck. Chapter
4 discusses equation line cards (i.e., EQ), which serve to add individual equations with coupled
independent unknowns to a coupled PDE representation of a region. Chapter 5 discusses how to
apply initial conditions to the field variables associated with the equation sets. Chapter 6 presents the
line commands associated with specifying boundary conditions. Chapter 7 introduces the concepts
associated with distinguishing conditions. Chapter 8 introduces line commands associated with
source terms.
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Chapter 2

Getting Started

2.1 Setting Up Your Environment

To access Sierra/Aria/Arpeggio one additional entry to your path, the location of the SNTools
directory, is required. The SNTools team maintains installations on most of the compute resources
available to Sandians and sometimes those change from machine to machine. See The SNTools
Project for more details about running on specialized machines. On many machines, including the
Linux desktops on the 9100 LAN, the path is that shown in this example.

In addition to setting up your path (see below) you should verify that you are using Sandia’s version
of ssh that includes Kerberos authentication support so that you can run parallel jobs without
having to supply your password for each additional process spawned by mpi.

2.1.1 Setting up for the csh and tcsh Shells

Add SNTools to your path. In either your /.cshrc or /.tcshrc file add the line

set path=(/home/sntools/production/current/sntools/engine $path)

2.1.2 Setting up for the bash Shell

Add SNTools to your path. In either your /.bashrc or /.profile file add the line

export PATH=/home/sntools/production/current/sntools/engine:$PATH

2.2 Running Aria

This section includes some very simple examples of how to run Aria. For more information on
running on some of Sandia’s clusters, etc. see The SNTools Project.

In its simplest form, Aria can be run like this:

% sierra aria -i ariarun.i

In this example, ariarun.i is the Aria input file. The output – nonlinear iterations, time step
information, etc. – will be written to a file called ariarun.log. So, you can monitor the progress
of the simulation by watching the log file. Alternatively, you can have all of the output sent to
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the screen by using the -l logfile command line option. If you set the log file to be - (a single
“minus” character) all of the output will be sent to the standard output (usually your screen):

% sierra aria -i ariarun.i -l -

If you would like to use aprepro in your input file, add the -a command line option to have your
input file automatically processed:

% sierra aria -i ariarun.i -l - -a

Oftentimes we want to run Aria remotely or locally in a batch mode, save any standard output
and perhaps even logout from a session. Unfortunately, termination of the session through either
voluntary (interactive) or involuntary (timeout) logout out may in effect terminate the Aria job. In
this caes one can prevent the job from terminating by using the Unix nohup command in conjunction
with the standard execution command line.

% nohup sierra aria -i ariarun.i -l YourLogFile -a

2.3 Aria Environment Overview

Aria is a Sierra application implementing the finite element method (FEM) for solving systems
of partial differential equations (PDEs). Foremost, Aria’s development targets applications which
involve incompressible flow (Navier-Stokes). However, the general design of Aria lends itself to
the solution of systems of PDEs describing physical processes including energy transport, species
tranport with reactions, electrostatics and general transport of scalar, vector and tensor quantities
in two and three dimensions both transient and direct to steady state. Moreover, different regions
of the physical domain (i.e., the input mesh) may have either different materials and/or different
collections of physics (viz., PDEs) defined on them. These systems of equations may be solved
alone, in a segregated but coupled algorith (“loosely coupled”) or as a single, fully-coupled system.
Currently, Aria’s loose coupling capabilities are handled by the Arpeggio application which also
allows Aria to couple (loosely) to the quasistatic structural mechanics code, Adagio.

Aria’s models and algorithms are integrated into the Sierra framework through the architecture
illustrated in Figure 2.1. A Sierra-based application has four layers of code: Domain, Procedure,
Region, and Model/Algorithm.

The outermost layer of an application is the Domain, or “main” program of the application. THis
domain layer is implemented by the Sierra Framework to manage the startup/shutdown of an ap-
plication, and to orchestrate the execution of an application-proved set of procedures.

Code at the Procedure level is rsponsible for evolving one or more s loosely coupled ses of physics
through a sequence of steps. This sequence may be a set of time steps, nonlinear solver iterations,
or some combinations of these or other types of steps.

An application mauy define multiple procedures to implement hand-off coupling between physics
within the same main program. In hand-off coupling the first (or preceding) procedure completes
execution, mesh and field data is transferred to a succeeding procedure, and the succeeding procedure
continues the simulation with a different set of physics. For example, the first thermal procedure
could calculate a temperature distribution inside a differentially heated fluid, and the second pro-
cedure could simulate natural convection of the fluid due to the density gradients set up by the
resulting temperature field.
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“Main”

Procedure (time step control)
Region A

(single time step)

Models

Mesh and Fields

Region B
(single time step)

Models

Mesh and Fields

Transfer

Parallel 
Synchronous

Parallel
Asynchronous

Parallel
Distributed

Figure 2.1. Schematic UML class diagram for the Expression subsys-
tem.

Code at the region level is responsible for evolving a tightly coupled set of physics throug a single
step. Loose coupling of REgions is supported by the advanced transfer services provided by the
Sierra framework.

Each region owns (1) a set of models or algorithms that implement its tightly coupled set of physics
and solvers and (2) an in-memory parallel distributed mesh and field database. This mesh and field
data is fully distributed among parallel processors via domain decomposition.

2.4 Parallel Processing Runtime Environment

SIMD vs MIMD

mpi

parallel io

exception handling

2.5 Overview of the Input File Structure

An Aria model is described by commands contained in an ASCII input file. The structure of the
input file follows a nested hierarchy. The topmost level of this hierarchy is named the domain.
Underneath the domain is a level called the procedure, followed by the region level. Figure 1.1
shows this nesting.

The domain level contains one or more procedures. At the domain level, you also find commands
associated with describing the finite element mesh, the linear solver set-up, material properties
associated with a defined material, and user functions associated with source terms and boundary
conditions that are added into Aria’s intrinsic set of functions.
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The procedure level contains one or more regions. The procedure level is also used to specify the
time stepping parameters, and interactions between regions, such as data transfers. Essentially at
the procedure level, loose coupling algorithms are specified. Loose coupling here is defined within the
context of Aria’s implicitly full-coupled paradigm. Whenever an independent variables’s interaction
with other variables in the solution procedure is not fully represented in the global matrix, the
algorithm for loose coupling of that variable and its associated equation will be described at the
procedure level. This loose coupling algorithm is given a fancy name called a “solution control
description”. The procedure level contains a block specifying the solution control procedure. An
analogy to this block in simpler codes would be top level loop. For example in time dependent
applications, the solution control description block would involve a block to solve the time dependent
problem repeated for each time step until the desired solution time is reached.

The region level is used to specify details about the tightly coupled equation system to be solved. The
details include boundary conditions and initial conditions, where materials models are applied, and
where surface and volumetric source terms are applied. Essentially, meshes and material properties
described at the domain level are tied into the problem statement here via their names.

Global constraints equations are also specified at the region level. At the region level, specification
of what gets sent to the output file and at what frequency also is made. Additional post-processing
associated with the output is specified. For example, additional volumetric fields which are functions
of the independent variables may be specified to be added to the output file.

There are two types of commands in the input file. The first type is referred to as a block command.
A block command is a grouping mechanism. A block command contains a set of commands made
up of other block commands and line commands. A line command is the second type of command.
The domain, procedure, and region levels are all parsed as block commands. A block command is
defined in the input file by a matching pair of Begin and End lines. For example,

Begin SIERRA myJob

.....

End SIERRA myJob

A set of key words for the block command follows the “Begin” and “End” keywords. In most cases a
user-specified name is added to the block commands. In the example above the keywords, SIERRA
myJob, are added. Optionally, the keyword may be left off of the end of the block.

The second type of command is the line command. A line command is used to specify parameters
within a given block command. In the remaining chapters and sections of this manual, the scope of
each block and line command is identified, along with summaries of the meanings. Note that the
ordering of any commands within a command block is arbitrary. Thus,

Begin Finite Element model fluid

Database name is pipeflow2d.g

Use Material water for block1

End Finite Element model fluid

will have the same effect as

Begin Finite Element model fluid

Use Material water for block1

Database name is pipeflow2d.g

22



End Finite Element model fluid

And the ordering of command blocks within the domain/procedure/region blocks are arbitrary–
allowing you conderable freedom to collect and arrange commands. Note that the terms “command
block” and “block command” are interchangeable.

The sierra command block must contain a block for a procedure containing an aria region:

Begin procedure myProcedureName

Begin Aria region name

End Aria region name

End procedure myProcedureName

The procedure command block is used to contain all of the Aria commands that are associated with
a solution procedure defined for a set of Aria Regions. The myProcedureName and name keywords
of the procedure and region blocks are left up to you. Note that the Aria procedure command
block must be present in the input file and must contain at least one Aria region command block.
The procedure command block also contains other important command blocks such as the TIME
STEPPING block.

2.5.1 Syntax Conventions for Commands

In this section we describe the conventions used in presenting all the command descriptions in the
remainder of this manual. There are four basic kinds of tokens, or words, that Aria expects to find
as it parses an input file. These are keywords, names, parameters and delimiters.

2.5.1.1 Keywords

The words which distinguish one block command, or line command, from another we term keywords.
Keywords are denoted in this manual in the monospaced font, for example, BOUNDARY CONDITION.

2.5.1.2 Names

The word, or words, that you supply on the same line of the begin line of a block command, is the
name. Many times you may need to supply this name as a character parameter in a separate line
command. Names are denoted in italics, name , as are parameters.

2.5.1.3 Parameters

There are three types of input parameters you may need to supply to line commands: character
strings, integers, and real numbers. These are denoted in the documentation as (C), (I), and (R),
respectively. Character strings don’t have to be delimited by quotation marks. Real numbers may be
entered in decimal form or exponential form. For example 0.0001, .1E-3, 10.0d-5 are all equivalent.
Furthermore, if a real(R) is expected, an integer can be used. If an integer(I) is expected, however,
you must specify it without a decimal point.
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2.5.1.4 Multiple Parameters

For the case when a list of one or more paremeters is allowed, or required, for a command, (C,...)
denotes a list of character strings, (I,...) a list of integers, and (R, ...) a list of real numbers. For
a list of character strings, the separator between the strings must be one or more spaces or tab
characters. Therefore, phrases with multiple spaces and words in them are tokenized into multiple
character parameters before being processed by the application. For a list of real or integer numbers
the comma can also be used as a separator.

2.5.1.5 Enumerated Parameters

Certain commands have predefined parameters, called enumerations, which are listed within {}.
Each parameter in the list is separated using | . The default parameter for the list of parameters is
enclosed by <>.

2.5.1.6 Delimiters

The keywords of a line command are often required to be separated from the parameters by a
delimiter. You have a choice of delimiters to use: the equal sign, =, or a word. In this manual, we
denote the choices surrounded by {}, and separated by |. You may use any one of the delimiters from
those listed. For example, the line command to specify the density within the Property Specificaiton
for Material Block command is

Density {= |IS} (R)

Examples of valid form syou could write in the input file are

Begin Property Specificaiton for Material water ... Density 1̄.0E-3 # kg/m3̂ at 20C ... End

and

Examples of valid form syou could write in the input file are

Begin Property Specificaiton for Material water ... Density is 1.0E-3 # kg/m3̂ at 20C ... End

2.5.1.7 White Space

Command keywords, names, and parameters and delimiters must have spaces around them.

2.5.1.8 Indentation

All leading spaces and/or tab characters are ignored in the input file. Of course, we recommend
that you use indentation to improve the readability for yourself and others that may need to see
your files.

2.5.1.9 Case Sensitivity

None of the command keywords, parameters, or delimiters read from the input file are case sensitive.
For example, the following two lines are equivalent:
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Use Material water for block_1

and

USE material wATer for blOCK_1

The exception to this rule are file names used for input and output, because the current operating
systems on which SIERRA applications are run are based on UNIX, where file names are case
sensitive.

2.5.1.10 Comments and Line Continuation

You may place comments in the input file starting with either the $ or # character. All further
characters on al ine following a comment character are ignored.

You can continue a command in the input file to the next line by using the line continuation character
$, or you may optionally following it with a comment#. All further characters on the same line
following a line continuation character $ are ignored, and the characters on the following line are
joined and parsing continues. An example is the line command used to specify the title of a thermal
model:

Begin SIERRA Job Indentifier

#

$ This thermal model for Aria simulates a convective heat transfer

#

Title \$ The title command is used to set the analysis title

Convective heat transfer to a part. The analysis \#

makes use of conjugate heat transfer to account for \$

cooling of a part due to flowing water.

...

End SIERRA Job Indentifier

2.5.1.11 Checking the Syntax

Errors in the input deck can be checked by adding the command, “-check” to the aria command
line. For example,

sierra aria -check -i input.i

This command will print the code echo of the input deck and any syntax errors within it to the
screen.
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[<Operator> ]<Name>[ <Subindex>][ <Phase>][ <Component>]

Figure 2.2. General format of Aria’s string-based naming convention
for expressions. Fields in square brackets are optional.

2.6 Fields

Fields are defined as variables which are distributed on mesh objects. For example, if the temperature
is defined via Q1 interpolation on a 2D mesh consisting of quadrilaterals, then the vector of nodal
temperature coefficients that make up the interpolation would be defined as the Temperature field
on that mesh. Fields may be defined on any mesh object type (e.g., elements, faces, edges, nodes,
node sets, and side sets), not just at nodes.

The mesh object and field data may be distribued among parallel processors via a domain decom-
position algorithm. Both fields and meshes are owned at the region level. A particular field may
or may not be part of Aria’s solution vector for the particular region. However, all fields in Aria’s
solution vector are fields defined on the mesh for that region.

2.6.1 Field String-Naming Convention

Due to the dynamic nature of fields and variables in Aria a consistent naming convention must be
used for sanity sake. This section describes the format of string-names of Aria Expressions. These
string forms are used for input and output only; Aria has more efficient internal structures for
referencing Expressions.

Briefly, the overall format is described in Figure 2.6.1.

Valid values of the <Operator> field are listed in Table 2.6.1. Valid values of the <Name> field are too
numerous to list here; they include things like degrees of freedom (VELOCITY, SPECIES) and material
properties (VISCOSITY, ELECTRICAL CONDUCTIVITY). The <Subindex> field can be used to designate
multiple instances of a field. This is typically used for species equations. All integer values are valid
subindex values but it’s best to use values ≥ 1. The <Phase> field is used in level set problems.
Some fields are present in “all phases” while others, such as material properties, depend on which
phase is being referred to. The <Component> field allows the user to specify a particular component
of vector and tensor fields; valid values are described in Table 2.6.1.

2.7 Equations

Equations are defined within an Aria region to represent an particular continuity equation to be
solved. Within the Aria input deck, solution variables are assigned as the independent unknowns to
equations. In general, there is a one-to-one correspondence between solution unknowns and equation
degrees of freedom.

2.8 Equation String-Naming Convention

Similar to the field string-naming convention, equation names pose a similar requirement. This
section describes the format of string-names of Aria equations. These string forms are used for
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Operator Description
(none) “No-Op”, no-operator
DT Time derivative
GRAD Gradient
DIV Divergence
DET Determinant of a 2-tensor
DETJ Determinate of the Jacobian of transformation
SURFACE DETJ Determinate of the Jacobian of transformation
REF FRAME “No-Op” in the undeformed reference frame
GRAD REF FRAME Gradient in the undeformed reference frame
DIV REF FRAME Divergence in the undeformed reference frame
DETJ REF FRAME Determinate of the Jacobian of transformation in the undeformed reference frame
SURFACE DETJ REF FRAME Determinate of the Jacobian of transformation in the undeformed reference frame
OLD “No-Op” at the previous time step
GRAD OLD Gradient at the previous time step
DIV OLD Divergence at the previous time step

Table 2.1. Valid values of of the <Operator> prefix.

Phase Description
(none) A field present in all phases within a material
A Phase A
B Phase B
C Phase C

Table 2.2. Valid values of of the <Phase> suffix. Phase lables are used
in level set calculations only.

Component Description
(none) No specified component
X First vector component
Y Second vector component
Z Third vector component
XX (1,1) 2-tensor component
XY (1,2) 2-tensor component
XZ (1,3) 2-tensor component
YX (2,1) 2-tensor component
YY (2,2) 2-tensor component
YZ (2,3) 2-tensor component
ZX (3,1) 2-tensor component
ZY (3,2) 2-tensor component
ZZ (3,3) 2-tensor component

Table 2.3. Valid values of of the <Component> suffix. In non-cartesian
coordinate systems these may refer to, for example, radial or angular
components.
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String-Name Description
TEMPERATURE Just the temperature.
SPECIES 2 Species number two
VELOCITY X The first component of the velocity vector
DIV VELOCITY The devergence of the velocity field
DENSITY The density
DENSITY A The density in level set phase A
GRAD SPECIES 2 Y B The second component of the gradient of species number 2 in level set phase B

Table 2.4. Examples of well formed string names for Aria Expressions.

<Equation Name>[ <Subindex>][ <Phase>][ <Component>]

Figure 2.3. General format of Aria’s string-based naming convention
for equations. Fields in square brackets are optional.

input and output only; Aira has more efficient internal structures for referencing equations.

Briefly, the overall format is described in Figure 2.8.

Valid values of the <Equation Name> field are numerous and changing in time. Typical values include
MOMENTUM, ENERGY, SPECIES, LEVEL SET, MESH, CURRENT and VOLTAGE; see chapter 4 for a complete
description of existing equations. All integer values are valid subindex values but it’s best to use
values ≥ 1 – currently -1 has a special meaning of “no subindex”. The <Phase> field is used in
level set problems. Some fields are present in “all phases” while others, such as material properties,
depend on which phase is being referred to. The <Component> field allows the user to specify a
particular component of vector and tensor equation; valid values are described in Table 2.6.1.

2.9 Example Program Directory

2.10 Aprepro Interface
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Chapter 3

Equations Aria Solves

3.1 Generalized Conservation Equation

We first introduce a general conservation equation, as a model for the specific equations that Aria
solves, demonstrating how the galerkin finite element method is applied to it, and how the integra-
tion by parts is carried out on its individual terms. Following Deen (1998), the conservation of a
general scalar quantity b(x, t), with units of amount-per-unit-volume, at a point x and time t can
be expressed as

∂b

∂t
+ ∇ · (bv) = −∇ · f + BV (3.1)

where v is the mass average velocity, f is the diffusive flux of b, and BV is the volumetric source of
b.

The Galerkin FEM (G/FEM) residual form of 3.1 is formed by bringing the right hand side terms
to the left, multiplying by the FEM weight function φi and integrating over the volume V,

Ri
b =

∫
V

(
∂b

∂t
+ v · ∇b + b∇ · v + ∇ · f −BV

)
φi dV = 0. (3.2)

In many applications ∇·v = 0 so we ignore that term from here on. However, it is straight forward to
account for this term via the source term BV. Using the vector identity (∇·f)φi = ∇·(fφi)−∇φi ·f
and using the divergence theorem, 3.2 becomes

Ri
b =

∫
V

[(
∂b

∂t
+ v · ∇b−BV

)
φi −∇φi · f

]
dV +

∫
S

n · fφi dS = 0. (3.3)

Here n is a unit normal along the boundary S, pointing out of the volume V.

Equation 3.3 embodies the sign convention for sources, fluxes and equation terms used within Aria.
For example, scalar flux expressions in Aria provide values for fn ≡ n · f and should be positive for
a flux of b leaving the volume V.

Note also that we have not assigned a units convention to the equation. Any unit system may be
employed in the specification of the individual terms in 3.1. However, each term in 3.1 must have
overall units of [b] / [time], and the overall residual expression has units of [b] * [L]**3 / [time],
where [b] are units of the conserved quantity, b, [L] is the unit of the length scale, and [time] is the
unit for time.

3.2 Conservation of Mass

For a material with density ρ, letting b = ρ results in the conservation of mass. Since there is no
net flow relative to the mass average velocity f = 0. Although there are no sources of mass, having
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such a source can be convenient in modeling and simulation; so, we let the mass source be BV = qm.
Thus, (3.1) becomes

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = qm. (3.4)

For the special but common case of constant density, this reduces to

∇ · v = 0. (3.5)

Using equation 3.3, the G/FEM residual form is

Ri
P =

∫
V

(
−∂ρ

∂t
− ρ∇ · v − v · ∇ρ + qm

)
φi dV = 0. (3.6)

Important Note: Equation 3.6 has been multiplied by -1 because this form results in a better linear
system for the special case of incompressible flow. This is important to remember when defining
mass source terms.

In Aria, each term in 3.6 is specified separately as identified in equation 3.7.

Ri
P =

∫
V

−∂ρ

∂t
φi dV

︸ ︷︷ ︸
MASS

+
∫
V

− (v · ∇ρ + ρ∇ · v) φi dV

︸ ︷︷ ︸
ADV

+
∫
V

qmφi dV

︸ ︷︷ ︸
SRC

= 0 (3.7)

For a purely incompressible form, Aria offers the alternative form given in 3.8;

Ri
P +

∫
V

−∇ · vφi dV

︸ ︷︷ ︸
DIV

+
∫
V

qmφi dV

︸ ︷︷ ︸
SRC

= 0 (3.8)

3.3 Conservation of Energy

For a material with constant density and specific heat Cp, temperature T , heat flux q and volumetric
energy source HV , letting b = ρCpT , f = q and BV = HV results in the conservation of energy.

ρCp
∂T

∂t
+ ρCpv · ∇T = −∇ · q + HV . (3.9)

A common constitutive relationship for q is Fourier’s law, q = −κ∇T where κ is the thermal
conductivity. However, we leave the heat flux as an option to be specified as part of the material
properties (see section 10.13). Using equation 3.3, the G/FEM residual form is

Ri
T =

∫
V

[(
ρCp

∂T

∂t
+ ρCpv · ∇T −HV

)
φi −∇φi · q

]
dV +

∫
S

qnφi dS = 0 (3.10)

where qn is the heat flux at the boundary. For example, the natural convection boundary condition
gives qn = h(T − T∞) where h is the heat transfer coefficient and T∞ is the bulk temperature away
from the surface.
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In Aria, each term in 3.10 is specified separately as identified in equation 3.11.

Ri
T =

∫
V

ρCp
∂T

∂t
φi dV

︸ ︷︷ ︸
MASS

+
∫
V

ρCpv · ∇Tφi dV

︸ ︷︷ ︸
ADV

−
∫
V

HV φi dV

︸ ︷︷ ︸
SRC

−
∫
V

∇φi · q dV

︸ ︷︷ ︸
DIFF

+
∫
S

qnφi dS = 0 (3.11)

More and more often we needing to account for variable density problems and so we need to bring
back some of the terms we threw away because we were going to assume ∇·v ≡ 0. Here’s a do-over
of equation 3.11 that accomodates a variable density through the DIV term:

Ri
T =

∫
V

ρCp
∂T

∂t
φi dV

︸ ︷︷ ︸
MASS

+
∫
V

ρCpv · ∇Tφi dV

︸ ︷︷ ︸
ADV

+
∫
V

ρCpT∇ · vφi dV

︸ ︷︷ ︸
DIV

−
∫
V

HV φi dV

︸ ︷︷ ︸
SRC

−
∫
V

∇φi · q dV

︸ ︷︷ ︸
DIFF

+
∫
S

qnφi dS = 0 (3.12)

Note, however, that equation 3.12 still assumes a constant specific heat Cp.

3.4 Conservation of Chemical Species

For a material with species k with molar concentration Ck, molar flux Jk relative to the mass average
velocity and volumetic reation rate RV,k, letting b = yk, f = Jk and BV = RV,k in (3.1) results in
the conservation equation for species k,

∂Ck

∂t
+ v · ∇Ck = −∇ · Jk + RV,k. (3.13)

For liquid mixtures which are dilute in all species except one, Fick’s law is often used to approximate
Jk. In this approximation, Dk represents the diffusion coefficient of species k with respect to the
concentrated species and it is assumed that the interactions between dilute species is assumed
negligible. Again, however, we choose to leave the governing equation in the more general form and
require the particular diffusive flux model as user input (see section 10.30). Using equation 3.3, the
G/FEM residual form is

Ri
Ck

=
∫
V

[(
∂Ck

∂t
+ v · ∇Ck −RV,k

)
φi −∇φi · Jk

]
dV +

∫
S

qn,kφi dS = 0 (3.14)

where qn,k is the mass flux at the boundary. For example, the natural convection boundary condition
gives qn = k(Ck −C∞,k) where k is the mass transfer coefficient and C∞,k is the bulk concentration
away from the surface.
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In Aria, each term in 3.14 is specified separately as identified in equation 3.15.

Ri
Ck

=
∫
V

∂Ck

∂t
φi dV

︸ ︷︷ ︸
MASS

+
∫
V

v · ∇Ckφi dV

︸ ︷︷ ︸
ADV

−
∫
V

RV,kφi dV

︸ ︷︷ ︸
SRC

−
∫
V

∇φi · Jk dV

︸ ︷︷ ︸
DIFF

+
∫
S

qn,kφi dS = 0 (3.15)

More and more often we needing to account for variable density problems and so we need to bring
back some of the terms we threw away because we were going to assume ∇·v ≡ 0. Here’s a do-over
of equation 3.15 that accomodates a variable density through the DIV term:

Ri
Ck

=
∫
V

∂Ck

∂t
φi dV

︸ ︷︷ ︸
MASS

+
∫
V

v · ∇Ckφi dV

︸ ︷︷ ︸
ADV

+
∫
V

C∇ · vφi dV

︸ ︷︷ ︸
DIV

−
∫
V

RV,kφi dV

︸ ︷︷ ︸
SRC

−
∫
V

∇φi · Jk dV

︸ ︷︷ ︸
DIFF

+
∫
S

qn,kφi dS = 0 (3.16)

Often times it is useful to solve for mass, weight or volume fractions of each species rather than for
the concentration directly. In that case, an additional condition exists,∑

k

Ck = 1 (3.17)

Using this condition, it is only necessary to solve for N − 1 species fractions where N is the total
number of species present in the problem. The final species, then, is simply given as

Cj = 1−
∑
k 6=j

Ck (3.18)

This method can be triggered in Aria by specifing the equation term FRACBAL. In this case, the
equation for Cj is not included in the system of unknowns but is instead post-processed on the fly.
Aria will automatically detect all other species equations and include them in the fraction balance.

3.5 Conservation of Fluid Momentum

The Cauchy momentum equation is given by

ρ
∂v

∂t
+ ρv · ∇v − g −∇ · T = 0 (3.19)

where T is the fluid stress tensor and g is a body force. We construct the G/FEM residual form
of 3.19 by contracting with the unit coordinate vector in the k-direction, ek, multiplying by the
weight function φi and integrating over the volume. Using the vector identiy (∇ · T ) · ekφi =
∇ · (T · ekφi)− T t : ∇(ekφi) and integrating by parts gives

Ri
m,k =

∫
V

[(
ρ
∂v

∂t
+ ρv · ∇v − g

)
· ekφi + T t : ∇

(
ekφi

)]
dV −

∫
S

n · T · ekφi dS = 0 (3.20)
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In Aria, each term in 3.20 is specified separately as identified in equation 3.15.

Ri
m,k =

∫
V

ρ
∂v

∂t
· ekφi dV

︸ ︷︷ ︸
MASS

+
∫
V

ρv · ∇v · ekφi dV

︸ ︷︷ ︸
ADV

−
∫
V

g · ekφi dV

︸ ︷︷ ︸
SRC

+
∫
V

T t : ∇
(
ekφi

)
dV

︸ ︷︷ ︸
DIFF

−
∫
S

n · T · ekφi dS = 0 (3.21)

3.6 Conservation of Solid Momentum

Aria currently solves the quasistatic form of the solid momentum equations. Furthermore, the solid
stress is treated as a linear elastic material. In this limit, the Cauchy momentum equation is given
by

∇ · T = 0 (3.22)

where T is the solid stress tensor. We construct the G/FEM residual form of 3.19 by contracting
with the unit coordinate vector in the k-direction, ek, multiplying by the weight function φi and
integrating over the volume. Using the vector identiy (∇ · T ) · ekφi = ∇ · (T · ekφi)−T t : ∇(ekφi)
and integrating by parts gives

Ri
m,k =

∫
V

T t : ∇
(
ekφi

)
dV = 0 (3.23)

Here, the surface contribution,
∫
S
n · T · ekφi dS, has been dropped because Aria currently only

supports dirichlet and natural (homogeneous) boundary conditions for the solid equation.

In Aria, each term in 3.23 is specified separately as identified in equation 3.24.

Ri
m,k =

∫
V

T t : ∇
(
ekφi

)
dV

︸ ︷︷ ︸
DIFF

= 0 (3.24)

Currently, Aria does not support direct specification of the more popular stress-strain parametization
that utilizes Young’s modulus E, Poisson’s ratio ν and coefficient of thermal expansion α (note, the
shear modulus G = µ). The relationship between these two parametizations is summarized here for
convenience.

2µ =
E

(1 + ν)
(3.25)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(3.26)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (3.27)

3.7 Voltage Equation

The electric potential or voltage V is frequently used in determining the electric field, E = −∇V .
While (3.1) cannot be applied to the voltage, the equation governing the voltage – Gauss’ law from
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Maxwell’s equations – has a similar form. Writing the electric displacement D as D = εE, where ε
is the electric permittivity, Gauss’ law is

∇ · ε∇V = ρe (3.28)

where the permittivity is taken to be a constant and ρe is the volumetric free charge density.

Using equation 3.3, the G/FEM residual form is

Ri
V =

∫
V

(
−ρeφ

i + ∇φi · ε∇V
)

dV +
∫
S

qnφi dS = 0 (3.29)

In Aria, each term in 3.29 is specified separately as identified in equation 3.30.

Ri
V = −

∫
V

ρeφ
i dV

︸ ︷︷ ︸
SRC

+
∫
V

∇φi · ε∇V dV

︸ ︷︷ ︸
DIFF

+
∫
S

qnφi dS = 0 (3.30)

3.8 Current Equation

An alternate formulation for solving for the electrical potential (see section 3.7) is to solve the
“current” equation which is a conservation equation for electrical charge. The electrical current J
is frequently related to the electric field E using Ohm’s law as J = σeE where σe is the electrical
conductivity. The electric potential or voltage V is used in determining the electric field, E = −∇V .
However, we choose to leave the electrical current as a more general constitutive model to be provided
as a material model input (see section 10.4).

−∇ · J = ρe (3.31)

Using equation 3.3, the G/FEM residual form is

Ri
V =

∫
V

(
−ρeφ

i −∇φi · J
)

dV +
∫
S

qnφi dS = 0 (3.32)

In Aria, each term in 3.32 is specified separately as identified in equation 3.33.

Ri
V = −

∫
V

ρeφ
i dV

︸ ︷︷ ︸
SRC

−
∫
V

∇φi · J dV

︸ ︷︷ ︸
DIFF

+
∫
S

qnφi dS = 0 (3.33)

3.9 Suspension Equation

In treating the suspension as a continuum, we introduce an evolution equation for particle volume
fraction, φ, as

∂φ

∂t
+ v · ∇φ + ∇ · N = 0. (3.34)

The particle volume fraction is defined as the total summed volume of particles per volume of the
particle medium. 3.34 represents a balance between the storred particles, the convected particle flux,
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and the diffusive particle flux, N . Several mechanisms which include Brownian motion, sedimen-
tation, hydrodynamic particle interactions, and gradients in suspension viscosity may contribute to
the diffusive particle flux. Specification of the appropriate flux model must then be carried out to
close the definition of the conservation equation.

3.10 Stress Tensor Projection Equation

A projection equation is defined as an equation where a derived quantity at the interior gauss
points is evaluated and projected to be a solution unknown at the nodal points. The stress tensor
projection equation projects the momentum stresses, tau, without the pressure term, to the nodal
points. Projecting the momentum stress smoothes out the momentum stress tensor and allows for a
dot product to be carried out on the projected field, which is needed for least squares stabilization
schemes. The solution variable, τab, is calculated from 3.35.

Ri
V = −

∫
V

(τab − src τab)φi dV

︸ ︷︷ ︸
DEF

= 0 (3.35)

τab is a tensor variable. For 2D problems, ab stands for XX, XY, YX, and YY. For 3D problems
ab stands for XX, XY, XZ, YX, YY, YZ, ZX, ZY, and ZZ. The source term in the equation srcτ ab

refers to the momentum stress without the pressure diagonal term.

src τxx = 2µ
du

dx
− 2

3
(µ− λ)(∇ · v)

src τyy = 2µ
dv

dy
− 2

3
(µ− λ)(∇ · v)

src τzz = 2µ
dw

dz
− 2

3
(µ− λ)(∇ · v)

src τxy = src τyx = µ(
du

dy
+

dv

dx
)

src τxz = src τzx = µ(
du

dz
+

dw

dx
)

src τyz = src τzy = µ(
dv

dz
+

dw

dy
)
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3.11 Notes on Solid Mechanics

Some of the standard references on solid mechanics include Malvern (1969), Mase (1970), Bonet
and Wood (1997) and Belytschko et al. (2004). As is often the case, the mathematical notion used
through-out these texts is different in many cases and this is often a source of confusion. Here, we’ll
lay out some basic defintions in our notation and, when possible, give the notation used in these
othere texts.

In what follows, x is the position vector of a material particle in the deformed or current spatial
configuration and X is the position vector of a material particle in the undeformed or initial or
reference configuration. The displacement vector d is the difference between these to states1 viz.
x = X + d.

We will make extensive use of the gradients of these fields and so it is important to distinguish
between gradients in the reference configuration and the current configuration. Gradients in the
current configuration are denoted ∇ in Gibbs notation or ∂ /∂xi in index notation. Gradients in
the reference configuration are denoted ∇X in Gibbs notation or ∂ /∂Xi in index notation2.

Next, we define the deformation gradient F

F ≡ ∇Xxt (3.36)
= ∇XXt + ∇Xdt (3.37)
= I + ∇Xdt (3.38)

where the superscript t denotes the transpose operator3. The inverse deformation gradient4, F−1,
is also useful and can be computed as

F−1 ≡ ∇Xt (3.39)
= ∇xt −∇dt (3.40)
= I −∇dt. (3.41)

The determinants of F and F−1 are denoted J and J−1 respectively and are often used in transfor-
mations between different stress definitions5.

It’s worth noting at this point that in Aria both gradient operators, ∇ and ∇X , are available as
Expression objects as are F , F−1, J and J−1.

The Green or Green-Lagrange strain tensor E is defined6 as

E ≡ 1
2
(
F t · F − I

)
(3.42)

=
1
2
(
∇Xd + ∇Xdt + ∇Xd · ∇Xdt

)
. (3.43)

The Green strain is a strain measure in the reference configuration and is suitable for large defor-
mations and large rotations. The analagous Eulerian (or Almansi’s) strain tensor E∗ is defined7

1d is denoted u in Malvern (1969), Mase (1970), Bonet and Wood (1997), and Belytschko et al. (2004).
2In Belytschko et al. (2004) ∇X is denoted ∇0.
3In Mase (1970) this is called the conjugate dyadic and is denoted with a subscript c. In Malvern (1969) the

quantity ∇Xxt is denoted x
↼
∇X where the arrow over the gradient operator denotes the direction of the operation.

4In Mase (1970) F−1 is denoted H.
5Sometimes J is expressed as a ratio of the densities between the reference and current configurations, ρ◦/ρ.
6In Mase (1970) E is denoted LG and is called the Lagrangian strain.
7In Mase (1970) E∗ is denoted EA.
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as

E∗ ≡ 1
2
(
I − F−t · F−1

)
(3.44)

=
1
2
(
∇d + ∇dt −∇d · ∇dt

)
. (3.45)

The Eulerian strain is also a suitable strain measure for large deformations and rotations but is
defined in the current configuration.

The Cauchy stress, σ, is a stress measure defined in the current configuration as

σ = λEkkI + 2µE (3.46)

where Ekk denotes the trace of E and λ and µ are the Lamé coefficients. This constitutive equation
may also be augmented with some initial residual stress or a thermal stress,

σ = λEkkI + 2µE − β (T − T◦) I + σr. (3.47)

Here β is related to the coefficient of thermal expansion, T is the temperature, T◦ is the reference
temperature of the solid and σr is the residual stress.

For large deformations and large rotations Aria uses the second Piola-Kirchhoff stress which is
defined in the reference configuration and is related to the Cauchy stress as

S = JF−1 · σ · F−t. (3.48)

The reverse transformation is readily given by

σ = J−1F · S · F t. (3.49)

Mathematically, the Cauchy stress σ is most conveniently expressed in terms of the Lamé coefficients
λ, µ and β. In practice, however, it is more common to measure and report a different but related set
of parameters: the Young’s modulus E, the Poisson’s ratio ν and the coefficient of thermal expansion
α. (Note, the shear modulus G = µ.) The relationship between these two sets of parameters is

2µ =
E

(1 + ν)
(3.50)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(3.51)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (3.52)

In Aria, there are separate Expression Names for the Cauchy stress and the second Piola-Kirchhoff
stress expressions. In the input files, users provide their choice of constitutive relations in the
material model specification, e.g.,

Begin Aria Material The_Material
Density = Constant rho = 2.33e-15
Lambda = Constant lambda = 52810.30445
Two Mu = Constant two_mu = 134426.2295
Mesh Stress = Nonlinear_Elastic Reference_Frame=Moving
Mesh Stress = Residual Sx=-11 Sy=-11
Mesh Stress = Isothermal T=800 T_ref=450

End

37



In this Example, there will be three contributions to the stress in the mesh stress: nonlinear elasticity,
a planar residual stress and an isotropic linear thermal stress. Internally, Aria contains a separate
expression for transforming these Cauchy stresses into Piola-Kirchhoff stresses, viz.

S = JF−1 ·
(∑

i

σi

)
· F−t. (3.53)

Note that second Piola-Kirchhoff stresses are not specified in the input file – only Cauchy stresses
are. Aria automatically creates an Expression to compute the transform in (3.53).

3.12 Units and Unit Conversions

Aria make no a priori specification concerning the units of each term. However, as with all engineer-
ing codes, errors associated with unit conversions are quite easy to do. In some situations, with just
one or two driving forces playing a role in a calculation, nondimensionalization of the equations can
lead to a simplification of the problem statement (and to increased solution robustness due to proper
scaling of the terms in the equations). However, in complicated cases with multiple competing forces
and rate constants, sticking to unit systems to specify all quantities frequently leads to less errors
in engineering calculations, and also leads to the ability to incorporate third party library packages
for specification of source terms and transport properties which necessarily presume to employ units
systems in their application programming interfaces (API). The next section discusses the SI units
system, and its application for reacting flow and electromagnetic applications.

3.12.1 SI Units

Quantity Name Abbreviation
length meter (metre) m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance kmole kmol
luminous intensity candela cd

Table 3.1. Fundamental SI units.

discuss electromagnetic unit specification, e.g., Gauss’s law.
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Factor Prefix Abbreviation
1024 yotta Y
1021 zetta Z
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deca da
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
10−21 zepto z
10−24 yocto y

Table 3.2. SI magnitude prefixes.
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Quantity Unit Definition
Frequency hertz Hz = 1/s
Force newton N = m·kg/s2

Pressure, stress pascal Pa = N/m2 = kg/m·s2
Energy, work, quantity of heat joule J = N·m = m2·kg/s2

Power, radiant flux watt W = J/s = m2·kg/s3

Quantity of electricity, electric charge coulomb C = s·A
Electric potential volt V = W/A = m2·kg/s3·A
Capacitance farad F = C/V = s4·A2/m2·kg
Electric resistance ohm Omega = V/A = m2·kg/s3·A2

Conductance siemens S = A/V = s3·A2/m2·kg
Magnetic flux weber Wb = V·s = m2 kg/s2·A
Magnetic flux density, magnetic induction tesla T = Wb/m2 = kg/s2·A
Inductance henry H = Wb/A = m2 kg/s2·A2

Luminous flux lumen lm = cd·sr
Illuminance lux lx = lm/m2 = cd·sr/m2

Activity (ionizing radiations) becquerel Bq = 1/s
Absorbed dose gray Gy = J/kg = m2/s2

Dynamic viscosity pascal second Pa·s = kg/m·s
Moment of force meter newton N·m = m2·kg/s2

Surface tension newton per meter N/m = kg/s2

Heat flux density, irradiance watt per square meter W/m2 = kg/s3

Heat capacity, entropy joule per kelvin J/K = m2·kg/s2·K
Specific heat capacity, specific entropy joule per kilogram kelvin J/kg K = m2/s2·K
Specific energy joule per kilogram J/kg = m2/s2

Thermal conductivity watt per meter kelvin W/m·K = m·kg/s3·K
Energy density joule per cubic meter J/m3 = kg/m s2

Electric field strength volt per meter V/m = m·kg/s3·A
Electric charge density coulomb per cubic meter C/m3 = s·A/m3

Electric displacement, electric flux density coulomb per square meter C/m2 = s·A/m2

Permittivity farad per meter F/m = s4·A2/m3·kg
Permeability henry per meter H/m = m·kg/s2·A2

Molar energy joule per kmol J/kmol = m2kg/s2·kmol
Molar entropy, molar heat capacity joule per kmol kelvin J/kmol K = m2kg/s2·K·kmol
Exposure (ionizing radiations) coulomb per kilogram C/kg = s·A/kg
Absorbed dose rate gray per second Gy/s = m2/s3

Table 3.3. SI derived units and their definitions.
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Quantity Unit
erg 1 erg = 10−7 J
dyne 1 dyn = 10−5 N
poise 1 P = 1 dyn·s/cm2 = 0.1 Pa·s
stokes 1 St = 1 cm2/s = 10−4 m2/s
gauss 1 G = 10−4 T
oersted 1 Oe = (1000/(4 pi)) A/m
maxwell 1 Mx = 10−8 Wb
stilb 1 sb = 1 cd/cm2 = 104 cd/m2

phot 1 ph = 104 lx

Table 3.4. CGS derived units and their definitions.

3.12.2 Common Units and Conversion Factors

1 g·/s2 = 1 dyn = 10−5 kg·m/s2 = 10−5 N
1 g·/s2 = 7.2330×10−5 lbm·ft/s2 (poundal)
1 lbf = 4.4482 N
1 g·/s2 = 2.2481×10−6lbf

Table 3.5. Units and conversion factors for force.

1 bar = 105 Pa = 105 N/m2

1 psia = 1 lbf/in2

1 psia = 2.0360 in Hg at 0 ◦C
1 psia = 2.311 ft H2O at 70 ◦F
1 psia = 51.715 mm Hg at 0 ◦C (ρHg = 13.5955 g/cm3)
1 atm = 14.696 psia = 1.01325×105N/m2 = 1.01325 bar
1 atm = 760 mm Hg at 0 ◦C = 1.01325×105 Pa
1 atm = 29.921 in Hg at 0 ◦C
1 atm = 33.90 ft H2O at 4 ◦C

Table 3.6. Units and conversion factors for pressure and stress.

1 cp = 10−2 g/cm· s = 10−2 Poise
1 cp = 2.4191 lbm/ft·h
1 cp = 6.7197×10−4 lbm/ft·s
1 cp = 10−3 Pa·s = 10−3 kg/m·s = 10−3 N·/m2

1 cp = 2.0886×10−5 lbf · s/ft2

1 Pa·s = 1 N·s/m2 = 1 kg/m·s = 1000 cp = 0.67197 lbm/ft·s

Table 3.7. Units and conversion factors for viscosity.
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1 g/cm3 = 1000 kg/m3 = 62.43 lbm/ft3

1 g/cm3 = 8.345 lbm/U.S. gal
1 lbm/ft3 = 16.0185 kg/m3

Table 3.8. Units and conversion factors for density.

1 btu/h·ft·◦F = 4.1365×10−3 cal/s·cm·◦C
1 btu/h·ft·◦F = 1.73073 W/m·K

Table 3.9. Units and conversion factors for thermal conductivity.

1 btu/h·ft2·◦F = 1.3571×10−4 cal/s·cm2·◦C
1 btu/h·ft2·◦F = 5.6783×10−4 W/cm2·◦C
1 btu/h·ft2·◦F = 5.6783 W/m2·◦C
1 kcal/h·m2·◦F = 0.2048 btu/h·ft2·◦F

Table 3.10. Units and conversion factors for heat-transfer coefficients.
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Chapter 4

Equation Specification

This chapter will document all of the EQ line commands within the current version of Aria. EQ line
commands add equations and independent variables to Aria’s specification of the equation set to be
solved for within each region. The equation is also associated with a field variable here that becomes
part of the solution vector for Aria. EQ cards occur in Aria’s input file within Region blocks.

¿¿¿¿Each equation should really point to an equation number in the preceding section, to a section
of the manual, or to an external reference¡¡¡¡

The EQ card add an equation to be solved for on a particular MESH PART . The format is as follows

EQ equation FOR DOF on MESH PART using INTERP with TERM0 . . TERMn

Equation is the string identifier for the individual equations listed in the previous chapter. The
format for the equation string identifiers is listed in a subsection of Chapter 2. The DOF keyword
specifies the independent unknown that is solved for in order to satisfy the equation. Normally, it
is a strict function of the equation keyword. In other words, the temperature is the only valid DOF

entry if the energy equation is being solved. MESH PART is usually the name of an active element
block in the finite element model. Unfortunately, if an equation is to be solved on the entire finite
element model, this means that there must be multiple EQ keywords for each element block defined
in the mesh.

INTERP defines the finite element interpolation to be used. Currently the valid entries for this key-
word are P0, P1, Q1, Q2, QS2, T1, and T2. However, in some combinations, various interpolations
are not permitted for some variables.

TERMn refer to the broad categories for the terms in a general advection-diffusion continuity
equation. Each term in the equation must be explicitly turned on for it to appear in the conservation
equation. Admissible values of TERM are MASS, ADV, DIFF, SRC, and XFER.

XFER refers to the following case.

4.1 EQ CONTINUITY

Syntax EQ CONTINUITY[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the continuity equation 3.4.
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Details The only admissible value for DOF is PRESSURE.

Admissible values of INTERP are Q1, Q2, QS2, P1, P0, T1 and T2.

Admissible values of TERMn are MASS, DIV, ADV, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.2 EQ CURRENT

Syntax EQ CURRENT[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the electrical current equation 3.31.

Details The only admissible value for DOF is VOLTAGE.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.3 EQ ENERGY

Syntax EQ ENERGY[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the energy conservation transport equation 3.9.
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Details Admissible values for DOF are TEMPERATURE and ENTHALPY.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are MASS, ADV, DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section[3.3] of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.4 EQ LEVEL SET

Syntax EQ LEVEL SET[ <Subindex>] for DOF ON MESH PART USING INTERP with
TERM0 . . TERMn

Description Activates the level set (distance function) equation.

Not Ready for General Use

Details The only admissible value for DOF is LEVEL SET.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are MASS, ADV, DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.5 EQ MESH

Syntax EQ MESH[ <Subindex>] for DOF ON MESH PART USING INTERP with TERM0 .
. TERMn

Description Activates the pseudo-solid mesh equation 3.22.
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Details The only admissible value for DOF is MESH DISPLACEMENTS.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are DIFF, TSTRAIN, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.6 EQ MOMENTUM

Syntax EQ MOMENTUM[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the fluid momentum equation 3.19.

Details The only admissible value for DOF is VELOCITY.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are MASS, ADV, DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.7 EQ SHEAR

Syntax EQ SHEAR[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP with
TERM0 . . TERMn

Description Activates the shear-rate definition/intermediate equation.
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Details The only admissible value for DOF is GAMMA DOT.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are DEF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.8 EQ SOLID

Syntax EQ SOLID[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP with
TERM0 . . TERMn

Description Activates the solid momentum equation 3.22.

Details The only admissible value for DOF is SOLID DISPLACEMENTS.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are DIFF, TSTRAIN, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.9 EQ SPECIES

Syntax EQ SPECIES[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the species transport equation 3.13.
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Details The only admissible value for DOF is SPECIES.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are MASS, ADV, DIFF, SRC, FRACBAL and XFER.
With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual. The FRACBAL term may not be included with other terms.

Some other things to note about species equations in Aria.

• The FRACBAL term may be assigned to any species number.

• Species numbers in Aria are arbitrary; they may start at any value and need
not be continuous.

• For the species fraction balances, Aria will automatically detect all species that
are present in the problem and include them in the balance.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.10 EQ SUSPENSON

Syntax EQ SUSPENSION[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

Description Activates the suspension transport equation 3.34.

Details The only admissible value for DOF is PHI.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are ADV, DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.11 EQ VOLTAGE

Syntax EQ VOLTAGE[ <Subindex>][ <Phase>] for DOF ON MESH PART USING INTERP

with TERM0 . . TERMn

48



Description Activates the voltage equation (electric-displacement formulation) 3.28. See also the
CURRENT equation.

Details The only admissible value for DOF is VOLTAGE.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Admissible values of TERMn are DIFF, SRC, and XFER.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.12 EQ Stress Tensor Projection

Syntax EQ Stress Tensor Projection[ <Subindex>][ <Phase>] for DOF ON MESH PART

USING INTERP with TERM0 . . TERMn

Description Activates the Stress Tensor Projection equation.

Details The only admissible value for DOF is Stress Tensor.

Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

The only admissible values of TERMn are DEF.

With the exception of XFER these terms are described in the Equations Aria Solves
section 3 of the manual.

The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.13 ELASTICITY FORMULATION

Syntax ELASTICITY FORMULATION = PLANE TYPE

Description Assigns the elasticity formulation TYPE for two-dimensional problems involving the
MESH and SOLID equation 3.22.

Details Allowable formulation PLANE TYPE is PLANE STRESS or PLANE STRAIN.

Parent Block(s) ARIA REGION
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4.14 PRESSURE STABILIZATION

Syntax PRESSURE STABILIZATION IS TYPE WITH SCALING = C

Description Prescribe a stabilization technique for solving the MOMENTUM 3.19 and CONTINUITY 3.4
equations with equal order interpolation.

Details Aria supports both PSPG (Pressure Stabilizide Petrov-Gelerkin) and PSPP (Pressure
Stabilized Pressure Projection) stabilization techniques for solving the MOMENTUM and
CONTINUITY equations with equal order interpolation.

Valid options for the TYPE specification are NO STABILIZATION, PSPG CONSTANT,
PSPG LOCAL, PSPG GLOBAL and PSPP CONSTANT.

NO STABILIZATION disables any stabilization.

PSPP CONSTANT results in the recently developed stabilization technique of Dohrmann
and Bochev (2004) and Bochev et al. (2006).

In the PSPG forms of stabilization, introduced by Hughes et al. (1986), terms from
the momentum equation are added to the continuity equation scaled by a multiplier,
α. The exact form of the multipler depend on a global Reynolds number that is
defined as

Re ≡ ρ|v|〈h〉
2µ

(4.1)

Here, ρ is the density, µ is the viscosity, |v| is a velocity scale and 〈h〉 is an element
length scale. Armed with Re, the stabilization multipler α is defined in one of two
ways.

Re ≤ 3 : α ≡ τ〈h〉2

12µ
(4.2)

Re > 3 : α ≡ τ〈h〉
2ρ|v|

(4.3)

NB: Currently, Aria always uses the low-Reynolds number for of α, as defined in
(4.2). The PSPG LOCAL method computes |v| and 〈h〉 within each element. The
PSPG GLOBAL method computes |v| and 〈h〉 as averages over all of the elements with
the MOMENTUM equation defined. The PSPG CONSTANT gives |v| and 〈h〉 a value of 1
(one) and just uses the scale factor.

Parent Block(s) ARIA REGION

4.15 MESH MOTION

Syntax MESH MOTION IS TYPE ON MESH PART
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Description Defines the type of mesh motion to be used in the simulation.

Details Admissible values of TYPE are ARBITRARY, LAGRANGIAN, and TOTAL ALE.
When TYPE is ARBITRARY or TOTAL ALE the MESH equation must be active.
When TYPE is LAGRANGIAN or TOTAL ALE the SOLID equation must be active.
The MESH PART must be an active element block.

Parent Block(s) ARIA REGION

4.16 SAVE RESIDUALS

Syntax SAVE RESIDUALS = MODE

Description Causes Aria to save the residuals to a field with the prefix residaul->, e.g.,
residual->Temperature. This will be done for all fields (though we could make
it a per-field option). Valid choices are OFF (default), BEFORE BCS and AFTER BCS.

Details Causes Aria to save the residuals to a field with the prefix residaul->, e.g.,
residual->Temperature. This will be done for all fields (though we could make
it a per-field option). Valid choices are OFF (default), BEFORE BCS and AFTER BCS.

For the choice BEFORE BCS the residuals will be saved at the point in the assembly
process where the primary equations have been assembled but prior to the assembly
of any boundary conditions or distinguishing conditions. For the choice of AFTER BCS
the residuals will be saved after all BCs and distinguishing conditions have been
applied. The default, OFF, is to not save the residuals.

This feature is only applicable when using the NEWTON nonlinear solution strategy.

Parent Block(s) ARIA REGION

4.17 INTEGRATION RULE

Syntax INTEGRATION RUL for block name = INT

Description Overrides the default integration rule for the equations defined on block name .

Details Overrides the default integration rule for the equations defined on block name .

Parent Block(s) ARIA REGION
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Chapter 5

Initial Conditions

5.1 IC CIRC X

Syntax IC CIRC X AT MESH PART DOF AMP = Ω

Description Initial boundary condition for the x component of a vector variable with constant
tangential magnitude along circles of radius r(x, y) defined on the mesh entity.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = −Ωr(x, y) sin θ. (5.1)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION

5.2 IC CIRC Y

Syntax IC CIRC Y AT MESH PART DOF AMP = Ω

Description Initial boundary condition for the y component of a vector variable with constant
tangential magnitude along circles of radius r(x, y) defined on the mesh entity.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = Ωr(x, y) cos θ. (5.2)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION
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5.3 IC CONSTANT

Syntax IC CONST AT MESH PART DOF = REAL

Description Constant initial condition.

Details Sets DOF to the provided constant value on mesh entity associated with the name
MESH PART .

Parent Block(s) ARIA REGION

5.4 IC COUETTE X

Syntax IC COUETTE X AT MESH PART DOF PARAMS = Ω ri ro

Description Initial condition for x component of a vector variable in a Couette device with inner
radius ri, outer radius ro and driven at angular velocity Ω, that varies spatially over
a mesh entity.

Details Sets DOF to vary spatially over the nodeset associated with the name
MESH PART according to the relation

DOF = −Ωr(x, y)
riro

r2
o − r2

i

sin θ. (5.3)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION

5.5 IC COUETTE Y

Syntax IC COUETTE Y AT MESH PART DOF PARAMS = Ω ri ro

Description Initial condition for x component of a vector variable in a Couette device with inner
radius ri, outer radius ro and driven at angular velocity Ω, that varies spatially over
a mesh entity.

Details Sets DOF to vary spatially over the nodeset associated with the name
MESH PART according to the relation

DOF = Ωr(x, y)
riro

r2
o − r2

i

cos θ. (5.4)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).
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Parent Block(s) ARIA REGION

5.6 IC COUETTE SH

Syntax IC COUETTE SH AT MESH PART DOF PARAMS = Ω ri ro

Description Initial condition for generalized shear rate in a Couette device with inner radius ri,
outer radius ro and driven at angular velocity Ω, that varies spatially over a mesh
entity.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF =
Ω

r2(x, y)
riro

r2
o − r2

i

(
1

r(x, y)
− r(x, y)

r2
o

)
(5.5)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION

5.7 IC READ FILE

Syntax IC Read File DOF = STRING

Description This IC command will initialize the field DOF with values from the field with the
name given by the STRING argument in the input mesh database.

Details This IC command will initialize the field DOF with values from the field with the name
given by the STRING argument in the input mesh database. For example, if your input
mesh database (the file referenced in the FINITE ELEMENT MODEL) contains a vector
field named U then you could initialize a velocity field by setting DOF to VELOCITY
and the STRING argument to U.

Parent Block(s) ARIA REGION

5.8 IC LINEAR

Syntax IC LINEAR AT MESH PART DOF COEF = C0 C1 C2 C3

Description Initial condition that varies spatially over a mesh entity in a linear fashion.
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Details Sets DOF to the provided value on nodeset associated with the name MESH PART in
the following manner

DOF = C0 + C1x + C2y + C3z. (5.6)

Parent Block(s) ARIA REGION

5.9 IC PARAB

Syntax IC PARAB AT MESH PART DOF COEF = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Description Initial condition that varies spatially over a mesh entity in a parabolic fashion.

Details Sets DOF to the provided value on nodeset associated with the name MESH PART in
the following manner

DOF = C0 + C1x + C2y + C3z + C4xy + C5xz + C6yz + C7x
2 + C8y

2 + C9z
2. (5.7)

Parent Block(s) ARIA REGION
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Chapter 6

Boundary Conditions

This chapter documents the boundary condition, BC, line commands within the current version of
Aria. In what follows, Dirichlet boundary conditions are first described and are followed by flux
boundary condition descriptions.

6.1 BC CIRC X

Syntax BC CIRC X DIRICHLET AT MESH PART DOF AMP = Ω

Description Dirichlet boundary condition for the x component of a vector variable with constant
tangential magnitude along circles of radius r(x, y) defined on the mesh entity.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = −Ωr(x, y) sin θ. (6.1)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION

6.2 BC CIRC Y

Syntax BC CIRC Y DIRICHLET AT MESH PART DOF AMP = Ω

Description Dirichlet boundary condition for the y component of a vector variable with constant
tangential magnitude along circles of radius r(x, y) defined on the mesh entity.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = Ωr(x, y) cos θ. (6.2)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).
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Parent Block(s) ARIA REGION

6.3 BC CONST

Syntax BC CONST DIRICHLET AT MESH PART DOF = REAL

Description Constant Dirichlet condition.

Details Sets DOF to the provided constant value on mesh entity associated with the name
MESH PART .

Parent Block(s) ARIA REGION

6.4 BC LINEAR

Syntax BC LINEAR DIRICHLET AT MESH PART DOF COEF = C0 C1 C2 C3

Description Dirichlet boundary condition that varies spatially over a mesh entity in a linear
fashion.

Details Sets DOF to the provided value on nodeset associated with the name MESH PART in
the following manner

DOF = C0 + C1x + C2y + C3z. (6.3)

Parent Block(s) ARIA REGION

6.5 BC LINEAR IN TIME

Syntax BC LINEAR IN TIME DIRICHLET AT MESH PART DOF = C0 C1

Description Dirichlet boundary condition whose value is a linear function in time.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = C0 + C1t (6.4)

Parent Block(s) ARIA REGION
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6.6 BC PARAB

Syntax BC PARAB DIRICHLET AT MESH PART DOF COEF = C0 C1 C2 C3 C4 C5 C6 C7

C8 C9

Description Dirichlet boundary condition for DOF that varies spatially over a mesh entity in a
parabolic fashion.

Details Sets DOF to the provided value on nodeset associated with the name MESH PART in
the following manner

DOF = C0 + C1x + C2y + C3z + C4xy + C5xz + C6yz + C7x
2 + C8y

2 + C9z
2. (6.5)

Parent Block(s) ARIA REGION

6.7 BC PERIODIC LINEAR IN TIME

Syntax BC PERIODIC LINEAR IN TIME DIRICHLET AT MESH PART DOF COEF = C0 C1 C2

C3

Description Dirichlet boundary condition that provides a periodic linear (ramp) function in time
over a portion of the local time period τ = C3.

Details The value of DOF is given by a periodic linear (ramp) function in time, within a local
time interval τ as illustrated in figure below.

DOF =
{

C0 + C1tp tp ≤ td
C0 otherwise

(6.6)

where tp = t − τ Int(t/τ) is a local time period and td = C2 is the dwell time within
this time period. Note that td < τ in order for the boundary condition to be uniquely
defined.

t

C0

C1

C2 C3

y

Parent Block(s) ARIA REGION
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6.8 BC PERIODIC STEP IN TIME

Syntax BC PERIODIC STEP IN TIME DIRICHLET AT MESH PART DOF COEF = C0 C1 C2

C3

Description Dirichlet boundary condition that provides a periodic step function in time over a
portion of the local time period τ = C3.

Details The value of DOF is given by a periodic step function in time, as illustrated in figure
below.

DOF =
{

C0 tp ≤ td
C1 otherwise

(6.7)

where tp = t − τ Int(t/τ) is a local period time and td = C2 is the dwell time within
this time period. Note that td < τ in order for the boundary condition to be uniquely
defined.

t

C0

C1

C2 C3

y

Parent Block(s) ARIA REGION

6.9 BC ROTATING X

Syntax BC ROTATING X DIRICHLET AT MESH PART DOF Omega = Ω C0 C1 C2

Description Dirichlet boundary condition that applies the x-component of a rotation in time about
the z-axis.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF X = X0 (cos ωt− 1)− Y0 sinωt (6.8)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION
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6.10 BC ROTATING Y

Syntax BC ROTATING X DIRICHLET AT MESH PART DOF Omega = Ω C0 C1 C2

Description Dirichlet boundary condition that applies the y-component of a rotation in time about
the z-axis.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF Y = X0 sinωt + Y0 (cos ωt− 1) (6.9)

The rotation Ω is assumed to be about the vector (0, 0, 1) passing through point
(0, 0, 0).

Parent Block(s) ARIA REGION

6.11 BC TRANSLATE

Syntax BC TRANSLATE DIRICHLET AT MESH PART DOF SCALE = C0

Description Dirichlet boundary condition for translating a value in time.

Details Sets DOF to the provided value on nodeset associated with the name
MESH PART according to the relation

DOF = C0t (6.10)

Parent Block(s) ARIA REGION

6.12 BC UNIDIRECTIONAL FLOW X

Syntax BC UNIDIRECTIONAL FLOW X DIRICHLET AT MESH PART DOF coef = c0 c1 c2

Description A specialized boundary condition for conveniently specifying inflow boundary condi-
tions on simple geometries.
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Details This boundary condition is really meant for specifying inflow velocity profiles in a
convenient way. The three coefficients provide the magnitudes of plug, shear and
parabolic flow as a function of the y-coordinate. Specifically,

DOF = c0 + c1
y − y◦

H
+ c2

[
1−

(
y − y◦

H

)2
]

(6.11)

Here y◦ is the y-coordinate of the middle of the surface (sideset) or nodelist (nodeset)
and H is the half-width of the surface or nodelist. Both y◦ and H are automatically
calculated by Aria. This combination of flows is represented graphically as

c0 + c1 + c2

Parent Block(s) ARIA REGION

6.13 BC UNIDIRECTIONAL FLOW Y

Syntax BC UNIDIRECTIONAL FLOW Y DIRICHLET AT MESH PART DOF coef = c0 c1 c2

Description A specialized boundary condition for conveniently specifying inflow boundary condi-
tions on simple geometries.

Details This boundary condition is really meant for specifying inflow velocity profiles in a
convenient way. The three coefficients provide the magnitudes of plug, shear and
parabolic flow as a function of the x-coordinate. Specifically,

DOF = c0 + c1
x− x◦

H
+ c2

[
1−

(
x− x◦

H

)2
]

(6.12)

Here x◦ is the x-coordinate of the middle of the surface (sideset) or nodelist (nodeset)
and H is the half-width of the surface or nodelist. Both x◦ and H are automatically
calculated by Aria. This combination of flows is represented graphically as

c0 + c1 + c2

Parent Block(s) ARIA REGION
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6.14 BC FLUX

Syntax BC FLUX FOR EQNAME ON MESH PART = MODEL [param1 = val1, param2 = val2

...]

Description Neumann boundary condition that sets the surface normal flux of the degree of free-
dom associated with equation EQNAME to that provided by the specified MODEL .

Details MODEL the supplies a diffusive flux fn ≡ n · f in accordance with equation 3.3. I.e.,
it adds the surface integral ∫

MESH PART

n · fφi dS (6.13)

to the residual for equation EQNAME . See, e.g., qn in equation 3.10.

Parent Block(s) ARIA REGION

6.14.1 BC FLUX = CONSTANT

Parameters FLUX = REAL

Example BC Flux for Energy on surface 10 = Constant Flux=3.14159

Description FLUX is the value of the constant flux where positive values indicate a loss, i.e., positive
flux leavse the volume.

6.14.2 BC FLUX = ENCLOSURE RADIATION

Parameters [MULTIPLIER = REAL ]

Example BC Flux for Energy on surface 10 = Enclosure Radiation

Description This boundary condition incorporates the heat flux that’s computed using Chaparral
for enclosure radiation.

See chapter 21 for more information on enclosure radiation.

6.14.3 BC FLUX = LASER

Parameters TON = REAL

TOFF = REAL

X0 = REAL

Y0 = REAL

R0 = REAL W = REAL

FLUX = REAL

RLASER = REAL
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Example BC Flux for Energy on surface 10 = Laser ton=0 toff=10 x0=0 y0=0 w=1.0
rlaser=0.025 flux=3.14159 r0=0.01

Description This boundary condition imposes an energy flux due to an incident laser. The laser
is directed in the z direction and travels in a circular path.

TON is the time when the laser is turned on.

TOFF is the time when the laser is turned off.

X0 is the x coordinate of the center of the laser path.

Y0 is the y coordinate of the center of the laser path.

W is the angular velocity of the laser.

FLUX is the value of the energy flux into the surface. (The usual convention is that
positive fluxes indicate loss.)

RLASER is the radius of the laser beam.

6.14.4 BC FLUX = LASER WELD

Parameters PATH FUNCTION = STRING

FLUX = REAL

RLASER = REAL

[NORMAL TOLERANCE = REAL ]

Example # This function lives at the top level, inside the ’Begin Sierra’
block

Begin Definition for Function PATH
Type is Multicolumn Piecewise Linear
Column Titles Time X Y Z
Begin Values
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.2250000E+00 0.1500000E+00 0.0000000E+00 0.0000000E+00
0.2328540E+00 0.1552336E+00 -0.1370490E-03 0.0000000E+00
...

End
End

# This goes in the Aria Region with all of the other BCs
BC Flux for Energy on surface 10 = Laser Path Function=PATH
Rlaser=0.025 Flux=3.14159
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Description This boundary condition imposes an energy flux due to an incident laser. The po-
sition of the laser is dictated by a user supplied function which contains x, y and z
coordinates as a function of time; Aria uses linear piecewise interpolation to obtain
the location of the laser at a given time.

PATH is the name of the user supplied function which has time as the first column
and contains columns titled X, Y and Z containing the x, y and z coordinates.

FLUX is the value of the energy flux into the surface. (The usual convention is that
positive fluxes indicate loss.)

RLASER is the radius of the laser beam.

The determination of whether a point in space has an incident laser flux is done as
follows. At time t the laser is at a point P and the Laser Weld boundary condition is
being evaluated at a point x (typically an integration point). The distance of x from
P is defined as r ≡ P −x. If a tolerance NORMAL TOLERANCE is supplied and the out-
of-surface portion of r is greater than the tolerance then the flux is taken to be zero.
Otherwise, the out-of-surface portion of r is subtracted to neglect minor differences
between the PATH FUNCTION and the discretized mesh, rs ≡ r − (n · r)n where n is
the outward unit normal at x. If |rs| < RLASER then the point x is considered to be
in the beam and the flux is applied; otherwise, no flux is applied.

6.14.5 BC FLUX = SPOT WELD

Parameters SRC X = REAL

SRC Y = REAL

[SRC Z = REAL ]
DIR X = REAL

DIR Y = REAL

[DIR Z = REAL ]
FLUX = REAL

R = REAL

[TON = REAL ]
[TOFF = REAL ]

Example BC Flux for Energy on surface 10 = Spot Weld Src X=0 Src Y=3 Dir X=0
Dir Y=-1 Flux=1000 R=0.01
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Description This boundary condition imposes an energy flux due to an incident laser. The laser
source is at the coordinates provided by the SRC vector coordinates (s in the figure
below) and it is directed from there as specified by the DIR vector (d in the figure
below).

θ
h

d

s

p

n

rp

R

The radius of the laser is provided by R (R in the figure) and the energy flux is
provided by the FLUX argument (written as f below). A positive FLUX is defined as
energy input to the surface. That is, the net normal flux is

qn =
(−n) · d

|d|
(−f) =

n · d

|d|
f (6.14)

Here, the term −n · d accounts for the fact that the surface may not be orthogonal
to the laser.

6.14.6 BC FLUX = LATENT HEAT

Parameters Y0 = REAL

[SPECIES = INT ]

Example BC Flux for Energy on surface 10 = Latent Heat Y0=0.2 SPECIES=0
BC Flux for Energy on surface 10 = Latent Heat Y0=0.4 SPECIES=1
BC Flux for Energy on surface 10 = Latent Heat Y0=0.0 SPECIES=2

Description This boundary condition accounts for the heat flux due to the latent heat of vapor-
ization (evaporation).

q = Hvρ(Yi − Y∞,i) (6.15)

where Hv,i is the heat of vaporization of species i, ρ is the density of the material,
Yi is the mass fraction of species i and Y∞,i is the mass fraction of species i far from
the surface.

SPECIES is the index of the species to use (in multicomponent systems), = i in
equation 6.15.

Yinf is the mass fraction of species i far from the surface, = Y∞,i in equation 6.15.
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6.14.7 BC FLUX = NAT CONV

Parameters T0 = REAL

H = REAL

Example BC Flux for Energy on surface 10 = Nat Conv T0=273.15 H=300

Description This boundary condition accounts for the heat flux due to natural heat convection:

q = h(T − To) (6.16)

TO is the temperature of free space.

H is the heat transfer coefficient.

6.14.8 BC FLUX = RAD

Parameters TO = REAL

CRAD = REAL

Example BC Flux for Energy on surface 10 = Rad TO=273.15 CRAD=1.3e-8

Description This boundary condition accounts for the heat flux due to radiation in free space:

q = crad(T 4 − T 4
o ) (6.17)

TO is the temperature of free space.

CRAD is the coefficient that multiplies the radiation term, viz., the product of the
emissivity and the Stefan-Boltzmann constant, which is 5.67× 10−08 W m−2 K−4 (SI
Units).

6.14.9 BC FLUX = VAPOR COOLING

Parameters TBOIL = REAL

Example BC Flux for Energy on surface 10 = Vapor Cooling Tboil=3000

Description This boundary condition accounts for the cooling of a material due to vaporization.
See Allen Roach (raroach@sandia.gov) for more information.

TBOIL is the boiling point of the material.
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6.14.10 BC FLUX = NAT CONV

Parameters Yinf = REAL

k = REAL

Example BC Flux for Species 2 on surface 10 = Nat Conv k=0.15 Yinf=0.8

Description This boundary condition accounts for the mass flux due to natural convection:

q = k(Y − Y∞) (6.18)

Yinf is the bulk species concentration, Y∞.

k is the mass transfer coefficient.

6.14.11 BC FLUX = CAPILLARY

Parameters (none)

Example BC FluxBP for Momentum on surface 10 = Capillary

Description This boundary condition implements the capillary (surface tension) contributions to
the traction boundary condition Cairncross et al. (2000). Specifically, this boundary
condition adds to the kth component of the ith momentum residual∫

S

σ (I − nn) : ∇
(
φiek

)
dS. (6.19)

where σ is the surface tension and n is the unit outward normal to the interface. This
condition accounts for both the curvature and surface tension gradient contributions
to the traction condition.

6.14.12 BC FLUX = CONSTANT TRACTION

Parameters [X = REAL ]
[Y = REAL ]
[Z = REAL ]

Example BC Flux for Momentum on surface 10 = Constant Traction Y=0.5
or
BC Flux for Mesh on surface 10 = Constant Traction X=0.1 Y=0.5
or
BC Flux for Solid on surface 10 = Constant Traction Z=0.5
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Description This boundary condition integrates a constant and uniform traction over a surface for
either fluid momentum, mesh elasticity or solid elasticity. Specifically, this boundary
condition adds to the kth component of the ith momentum/mesh/solid residual∫

S

f tφ
i dS. (6.20)

where f t is the constant traction vector whose components are given by the param-
eters X, Y and Z.

6.14.13 BC FLUX = ELECTRIC TRACTION

Parameters [SIGN = REAL ]

Example BC Flux for Momentum on surface 10 = Electric Traction
BC Flux for Mesh on surface 10 = Electric Traction
BC Flux for Solid on surface 10 = Electric Traction

Description This boundary condition adds the stress contribution for due to the presence of an
electric field. Here, the electric stress tensor is taken to be

T e = εEE − 1
2
εE · EI (6.21)

where E = −∇V is the electric field and V is voltage and ε is the electric permittivity.
The electric traction is then defined as

t = εn · EE − 1
2
εE · En (6.22)

where n is the outward normal to the boundary.

6.14.14 BC FLUX = FLOW HYDROSTATIC

Parameters [GX = REAL ]
[GY = REAL ]
[GZ = REAL ]
[P REF = REAL ]

Example BC Flux for Momentum on surface 10 = Flow Hydrostatic Gy=-9.8
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Description This boundary condition provides a hydrostatic pressure head along a boundary. The
acceleration vector g is specified with the parameters GX, GY and GZ (all default to
zero). The reference pressure Pref (P REF, defaults to zero) is taken to be the pressure
datum at the origin (0, 0, 0). Specifically, this BC adds

n · T = −

(
Pref +

Nd∑
i

ρgixi

)
n (6.23)

to the momentum equation. Here Nd is the spatial dimension of the problem, gi

are the components of the acceleration, xi are the coordinate components and ρ is
the density. NOTE: This BC evaluates the density material model for ρ thus the
parameters for g should not include the density.

6.14.15 BC FLUX = OPEN FLOW

Parameters PRESSURE = REAL

Example BC Flux for Momentum on surface 10 = Open Flow Pressure=1000

Description This boundary condition adds back the stress contribution for inlet/outlet flows where
the pressure is prescribed, and the flow is unidirectional. This command line is used
in open-flow applications to set the pressure datum, while attempting to impose the
least amount of constraint on the flow profile. A necessary prerequisite is that the
flow either be into the domain or out of the domain, not both. The assumption of a
fully developed profile is implicit in the expression below where n · ∇v = 0 has been
used.

q = −p◦n + µn · ∇vt (6.24)

Here, p◦ is the pressure provided by the user, µ is the viscosity, ∇vT is the transpose
of the gradient of the velocity, and n is the outward normal to the boundary.

6.14.16 BC FLUX = PRESSURE

Parameters P = REAL

[C T = REAL ]

Example BC Flux for Momentum on surface 10 = Pressure P=101325
or
BC Flux for Mesh on surface 10 = Pressure P=101325
or
BC Flux for Solid on surface 10 = Pressure P=101325
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Description This boundary condition integrates a uniform pressure over a surface for either fluid
momentum, mesh elasticity or solid elasticity. The optional parameter C T allows the
pressure to vary linearly in time. Specifically, this boundary condition adds to the
kth component of the ith momentum/mesh/solid residual∫

S

− (p + ctt) nφi dS. (6.25)

where p is the pressure provided by the parameter P, t is time and ct is a constant
provided by the C T parameter.

6.14.17 BC FLUX = SLIP

Parameters BETA = REAL

[VS X = REAL ]
[VS Y = REAL ]
[VS Z = REAL ]

Example BC Flux for Momentum on surface 10 = Slip Beta = 0.01

Description This boundary condition implements the Navier slip boundary condition along a
surface wherein the tangential velocity along the surface is proportional to the fluid
stress,

q = n · T =
1
β

(v − vs) (6.26)

where β is the Navier slip coefficient, v is the fluid velocity and vs is the velocity
of the surface. The surface velocity is zero by default but a nonzero velocity can be
supplied in component form using one or more of the optional VS X, VS Y and VS Z
parameters.

6.14.18 BC FLUX = TRANSIENT TRACTION

Parameters [A X = REAL ]
[A Y = REAL ]
[A Z = REAL ]
[B X = REAL ]
[B Y = REAL ]
[B Z = REAL ]

Example BC Flux for Momentum on surface 10 = Transient Traction B Y=0.5
or
BC Flux for Mesh on surface 10 = Transient Traction A X=0.1 A Y=0.5
or
BC Flux for Solid on surface 10 = Transient Traction B Z=0.5
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Description This boundary condition integrates a uniform but time dependent traction over a
surface for either fluid momentum, mesh elasticity or solid elasticity. Specifically,
this boundary condition adds to the kth component of the ith momentum/mesh/solid
residual ∫

S

(fa + tf b) φi dS. (6.27)

where t is time and fa and f b are is constant traction vectors whose components are
given by the parameters A X, A Y and A Z and B X, B Y and B Z respectively.

6.14.19 BC FLUX = WETTING SPEED BLAKE LS

Parameters V W = REAL

G = REAL

THETA = REAL

WIDTH = REAL

Example BC Disting for Momentum A on surface 3 = Wetting Speed Blake LS
V w=1e-1 g=1 Width=1 Theta=60
BC Disting for Momentum B on surface 3 = Wetting Speed Blake LS
V w=1e-1 g=1 Width=1 Theta=60

Description This boundary condition is a distinguishing condition that enforces a slip velocity in
accordance with the model provided by Blake and De Coninck (2002).

v − f(φ)vw sinh (g (cos θs − cos θa))
nls − cos θanw

1− cos2 θa
= 0 (6.28)

Here θs is the static or equilibrium contact angle and is provided by the THETA
input parameter, θa is the actual (or “observered” or “current”) contact angle, g
is a constant prameter given by the G input parameter and vw is the characteristic
slip velocity and is given by the input parameter V W. In their paper, Blake and De
Coninck develop g and vw theoretically.

The function f(φ) where φ is the level set distance function is simply a triangle shape
function which causes the velocity to vary from vw to zero over the distance given by
the input parameter WIDTH. Taking hw to half of the input WIDTH parameter, f(φ) is
given as

f(φ) =


0 : φ < −hw

1 + φ/hw : −hw ≤ φ < 0
1− φ/hw : 0 ≤ φ < hw

0 : hw ≤ φ

This boundary condition is a distinguishing condition which means the momentum
equations are discarded at the nodes where this is applied. Also, the velocity pro-
vided by this boundary condition is purely tangential. Thus, this boundary condition
automatically enforces no-pentration in addition to slip/no-slip.

Note: The interface normal points out of the negative phase (negativly signed level
set distance φ) into the positive phase. Thus, the contact angle is measured from the
wall, through the negative phase and to the level set interface φ = 0.
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Chapter 7

Distinguishing Conditions

7.1 An Introduction to Distinguishing Conditions

Aria’s distinguishing condition (DC) feature is an essential ingredient in solving many coupled physics
problems. A distinguishing condition is really just another equation specification except that it
typically replaces a regular equation on a subset of the domain such as a surface.

For example, in solving fluids problems with a free surface where the mesh boundary moves with
the material, e.g., an ALE simulation, a kinematic condition is used to tie the mesh to the fluid
on the free boundary. In this example, one of the mesh coordinates, say MESH DISPLACEMENTS X, is
uknown. So, the equation that is normally used to solve for that component (the x−component of
the MESH equation) is replaced with the kinematic condition: n ·

(
v − ḋ

)
− v◦ = 0.

An additional feature of distinguishing conditions is that multiple DCs for a given degree of freedom
on a given surface are added together. This additive feature allows users to build up their own
conditions from primitive ones.

An important thing to know about these conditions is that they are satisfied weakly. That is, the
DC is multiplied by a finite element weight function and integrated over the surface. Consequently,
the condition is only satisfied weakly and to within the tolerance of the nonlinear solver.

The remainder of this chapter contains a description of the primitive DCs that are available in Aria.
Using the user plugin feature described in chapter 14 users can add their own, more complicated or
specialized conditions.

7.2 BC DISTING

Syntax BC DISTING for EQNAME [ <Subindex>][ <Phase>]
ON MESH PART = MODEL [param1 = val1, param2 = val2 ...]

Description Replaces the equations for EQNAME on MESH PART with a distinguishing condition
implemented by MODEL .
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Details Prior to the assembly of the distinguishing conditions, the “normal” matrix and
RHS entries are zeroed. So, these conditions do not rely on penalty parameters.
Also, if multiple distinguishing conditions are supplied the are added together so
the sum of the conditions is satisfied – that is, they are not individually satisfied.
This allows you to construct complex expressions based on the available primitives
and/or any plugins. See the POLYNOMIAL model below for an example combining
two distinguishing conditions. Finally, it is worth noting that these conditions are
satisfied weakly and so they are only satisfied to within the tolerance of the nonlnear
solver.

Parent Block(s) ARIA REGION

7.2.1 KINEMATIC

Description This model implements the kinematic condition of the form

n · (v − ẋ)− v◦ = 0 (7.1)

where n is the outward unit normal to the boundary, v is the velocity, ẋ is the time
derivative of the mesh boundary position and v◦ is the mass flux per unit mass across
the interface, viz. a “leak” velocity. The leak velocity can be supplied by the V0
parameter which defaults to zero.

Parameters V0 = REAL

Example BC Disting For Mesh X On surface 2 = Kinematic v0=0

7.2.2 PLUGIN

Parameters NAME = STRING

[...]

Example BC Disting For Temperature On surface 5 = Plugin Name=MyDC alpha=2.3

Description NAME is the name with which the plugin is registered. See section 14 for more infor-
mation.

7.2.3 POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]
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Example BC Disting For Mesh Y On surface 2 = Polynomial Variable=Time Order=1
C1=0.5

BC Disting For Mesh Y On surface 2 = Polynomial
Variable=Mesh Displacement Y Order=1 C1=-1

Description Arbitrary order polynomial function of a specified scalar variable.

N∑
i=0

CiX
i = 0 (7.2)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

In the example given above, two distinguishing conditions are combined to give a
composite function. In that example, the resulting conditions is

1
2
t− dy = 0 (7.3)

or
dy =

1
2
t (7.4)

7.2.4 WETTING SPEED BLAKE LS

Parameters V W = REAL

G = REAL

THETA = REAL

WIDTH = REAL

[TAU = REAL ]

Example BC Disting for Momentum A on surface 3 = Wetting Speed Blake LS
V w=1e-1 g=1 Width=1 Theta=60
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Description
v − δ(F )vw sinh (g (cos θs − cos θ)) tw + δ(F )τ v̇ = 0 (7.5)

where v is the fluid velocity and tw is the tangent to the wall. The function δ(F ),
where F is the level set distance field, is given by

δ(F ) =
1
2

(
1 + cos

πF

α

)
(7.6)

when |F | < α and zero elsewhwere. Here, α is the half of the WIDTH parameter. The
term involving τ is a transient relaxation term. By default, τ = 0.

This distinguishing condition is a function of the static and observed contact angles.
The static contact angle θs, supplied by the THETA parameter, is fixed. The observed
contact angle θ is computed from the current state of the solution as illustracted in
the following diagram. The important point here is that the contact angle is measured
through the negative side of the distance function which is denoted PHASE A in Aria.

nw

θ
nf =

∇F

|∇F |

Free Surface :
F = 0

Wall

F > 0

F < 0
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Chapter 8

Source Terms

8.1 POINT SOURCE FOR . . .

Syntax POINT SOURCE FOR EQNAME ON MESH PART VALUE = Q X = x [Y = y [Z =
z]]

Description Arbitrary point source contributions.

Details This adds a point source with value Q at the specified position. Currently limited
to constant and scalar sources. Only supported by the voltage equation (though
extending it to other equations is simple, just ask). This line command syntax needs
to change since the ON MESH PART piece doens’t really make sense since you already
supply the coordinates. You have to supply as many coordinate positions as the
problem has dimensions.

Mathematically, the point source is represented as

q = Qδ(x−X) (8.1)

where δ() is the Dirac delta function which is zero everywhwere except at the point
x = X where x is the physical coordinate and X is the position provided via the
input. In finite elements, this source is integrated∫

V

Qδ(x−X)φi dV = Qφi(X) ∈ ElemX . (8.2)

Here we employ the local support of the basis functions φ so that this is only evaluated
in the elements containing the point X, ElemX .

Parent Block(s) ARIA REGION

Example POINT SOURCE FOR Voltage ON block 1 Value = 1 X = 0 Y = 0 Z = 0

8.2 SOURCE FOR ENERGY

Syntax SOURCE FOR ENERGY ON MESH PART = MODEL [param1 = val1, param2 = val2

...]
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Description Arbitrary source contributions for the energy equation.

Details Adds the source provided by MODEL to the energy equation.

Parent Block(s) ARIA REGION

8.2.1 SOURCE FOR ENERGY = VISCOUS DISSIPATION

Parameters [MULTIPLIER = REAL ]

Example Source For Energy on block 1 = Viscous Dissipation

Description This source accounts for the heat generation due to viscous dissipation:

q = m τ : ∇v (8.3)

where τ is the viscous stress tensor, ∇v is the gradient of the velocity and m is a
multiplier (MULTIPLIER) that defaults to 1. The exact form of τ will depend on the
MOMENTUM STRESS model choice(s) for the material.

8.2.2 SOURCE FOR ENERGY = COMPRESSIVE WORK

Parameters [MULTIPLIER = REAL ]

Example Source For Energy on block 1 = Compressive Work

Description This source accounts for the heat generation or consumption due to compression:

q = −m p : ∇ · v (8.4)

where p is the pressure, ∇ · v is the divergence of the velocity field and m is a
multiplier (MULTIPLIER) that defaults to 1.

8.2.3 SOURCE FOR ENERGY = CURING FOAM HEAT OF RXN

Parameters VFRAC SUBINDEX = INT

EXTENT SUBINDEX = INT

H RXN = REAL

Example Source For Energy on block 1 = Curing Foam Heat of Rxn Vfrac Subindex=1
Extent Subindex=2 H rxn=250
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Description This source accounts for the heat of reaction of a curing epoxy foam, specifically:

q = ρ (1− φ) ∆Hrxn
∂ξ

∂t
(8.5)

where ρ is the density of the fluid, φ is the volume fraction, ∆Hrxn is the heat of
reaction and ξ is the extent of reaction.

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter. Likewise, the extent of reaction field is
assumed to be a SPECIES field with the subindex provided by the EXTENT SUBINDEX
parameter.

8.2.4 SOURCE FOR ENERGY = CURING FOAM LATENT HEAT

Parameters VFRAC SUBINDEX = INT

H EVAP = REAL

Example Source For Energy on block 1 = Curing Foam Latent Heat Vfrac Subindex=1
H evap=15

Description This source accounts for the loss of energy due to evaporation of a curing epoxy foam,
specifically:

q = ρHevap
∂φ

∂t
(8.6)

where ρ is the density of the fluid, Hevap is the latent heat of evaporation and φ is
the volume fraction,

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter.

8.2.5 SOURCE FOR ENERGY = CURING FOAM SPECIFIC HEAT

Parameters VFRAC SUBINDEX = INT

[CP FG = REAL ]
[CP E = REAL ]
[PHI ZERO = REAL ]

Example Source For Energy on block 1 = Curing Foam Specific Heat
Vfrac Subindex=1 Cp fG=1 Cp e=1 phi zero=0.2
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Description This source accounts for the loss of energy due to the variable specific heat for the spe-
cial case where the specific heat material model is CURING FOAM. See 10.32.2. Specif-
ically, this source term is

q = −ρT

(
∂Cp

∂t
+ v · ∇Cp

)
(8.7)

= −ρTb

(
∂φ

∂t
+ v · ∇φ

)
(8.8)

where ρ is the density of the fluid, T is the temperature, v is the velocity, φ is the
volume fraction and b is as defined in CURING FOAM specific heat material model (see
10.32.2).

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter.

8.2.6 SOURCE FOR ENERGY = JOULE HEATING

Parameters [VOLTAGE SUBINDEX = INT ]

Example SOURCE FOR Energy ON block 1 = Joule Heating

Description This source term adds the volumetric heat source due to Joule heating, a.k.a., Ohmic
heating or resitance heating. The volumetric heating is given by (see, Section 3.3)

HV = I2R (8.9)
= (−σe∇V ) · (−σe∇V ) R (8.10)

= (−σe∇V ) · (−σe∇V )
1
σe

(8.11)

= σe (∇V · ∇V ) (8.12)

where I is the current density, R is the resitivity, σe = 1/R is the electrical conduc-
tivity and V is the voltage.

8.2.7 SOURCE FOR ENERGY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example SOURCE For Energy on block 1 = Polynomial Variable=Temperature Order=1
C0=401.0 C1=88.5
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Description Arbitrary order polynomial function of a specified scalar variable.

HV =
N∑

i=0

CiX
i (8.13)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

8.2.8 SOURCE FOR ENERGY = TBC JOULE HEATING

Parameters Ua = REAL

Ub = REAL

V NS = INT

Ti = REAL

CURRENT LOAD = REAL

[VOLTAGE SUBINDEX = INT ]

Example SOURCE FOR Energy ON block 1 = TBC Joule Heating Ua=1.4251 Ub=0.0004785
V NS=1 Ti=298 CURRENT LOAD=0.0017

Description This source term adds the volumetric heat source due to Joule heating in a thermal
battery cell volumetric heating is given by (see, Section 3.3)

HV =
(

U◦ − V − Ti
∂U◦
∂T

)
I◦ (8.14)

Here, U◦ is the open circuit potential which is given as a linear function in temperature
T and Ua and Ub are the coefficents of that function. V is the cell potential which is
taken as the voltage at the node given in the single-node nodeset number V NS and
I◦ is cell load.

For more details, see Chen et al. (2000).

8.3 SOURCE FOR MOMENTUM

Syntax SOURCE FOR MOMENTUM ON MESH PART = MODEL [param1 = val1, param2 = val2

...]

Description Arbitrary source contributions for the momentum equation.

Details Adds the source provided by MODEL to the momentum equation.

Parent Block(s) ARIA REGION
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8.3.1 SOURCE FOR MOMENTUM = CONSTANT VECTOR

Parameters [X = REAL ]
[Y = REAL ]
[Z = REAL ]

Example SOURCE FOR momentum ON block 1 = CONSTANT VECTOR Z=-9.8

Description This source term only applies to the momentum equation though it is automatically
applied to the continuity equation in PSPG formulations.

X, Y, Z are the components of the vector source. This vector source is not multiplied
by the density.

8.3.2 SOURCE FOR MOMENTUM = HYDROSTATIC

Parameters GX = REAL

GY = REAL

GZ = REAL

[REF DENSITY = REAL ]

Example SOURCE FOR momentum ON block 1 = HYDROSTATIC gx = 0 gy = 0 gz = -980

Description This source term only applies to the momentum equation though it is automatically
applied to the continuity equation in PSPG formulations.

GX, GY, GZ are the components of the gravity vector g and REF DENSITY is an constant,
uniform reference density ρ◦. With density ρ, the hydrostatic source is defined as
(ρ− ρ◦)g.

The default value of the reference density is 0.

8.3.3 SOURCE FOR MOMENTUM = ROTATING BODY FORCE

Parameters G = REAL

FREQUENCY = REAL

[PHASE SHIFT = REAL ]
[REF DENSITY = REAL ]

Example Source for Momentum on block 1 = Rotating Body Force g=9.8
frequency=2.5 phase shift=90

Description This source term only applies to the momentum equation though it is automatically
applied to the continuity equation in PSPG formulations.

GX, GY, GZ are the components of the gravity vector g and REF DENSITY is an constant,
uniform reference density ρ◦. With density ρ, the hydrostatic source is defined as
(ρ− ρ◦)g.

The default value of the reference density is 0.
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8.3.4 SOURCE FOR MOMENTUM = BOUSSINESQ

Parameters TEMP REF = REAL

VOL EXP = REAL

GX = REAL

GY = REAL

GZ = REAL

Example SOURCE FOR momentum ON block 1 = BOUSSINESQ vol exp=0.1 temp ref=298.15
gx = 0 gy = 0 gz = -980

Description This source term only applies to the momentum equation though it is automatically
applied to the continuity equation in PSPG formulations.

GX, GY, GZ are the components of the gravity vector g. VOL EXP is the volume expan-
sion coefficient α and TEMP REF is the reference temperature Tref . With density ρ
and temperature T the Boussinesq source is defined as ρgα(T − Tref ).

8.4 SOURCE FOR CURRENT

Syntax SOURCE FOR CURRENT ON MESH PART = MODEL [param1 = val1, param2 = val2

...]

Description Arbitrary source contributions for the current equation.

Details Adds the source provided by MODEL to the current equation.

Parent Block(s) ARIA REGION

8.4.1 SOURCE FOR CURRENT = BUTLER VOLMER SIMPLE

Parameters A = REAL

C A = REAL

C C = REAL

U = REAL

Sign = INT

[V1 SUBINDEX = INT ]
[V2 SUBINDEX = INT ]

Example SOURCE FOR CURRENT 1 ON block 1 = Butler Volmer Simple A=1.0 C a=1.0
C c=-1.0 U=0.2 Sign=-1
SOURCE FOR CURRENT 2 ON block 1 = Butler Volmer Simple A=1.0 C a=1.0
C c=-1.0 U=0.0 Sign=+1
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Description This model implements a very simple form of the Butler-Volmer reaction kinetics. It
is intended for developmental and demonstrational purposes only.

This source term has the following form (see, also, equation 3.33)

RV,k = A
(
eca(V1−V2−U) − e−cc(V1−V2−U)

)
(8.15)

where V1 is is the first electric potential field and V2 is the second electric potential
field. By default V1 is VOLTAGE 1 and V2 is VOLTAGE 2 but the subindexes may be
changed using the optional V1 SUBINDEX and V2 SUBINDEX options.

8.4.2 SOURCE FOR CURRENT = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example SOURCE For Current on block 1 = Polynomial Variable=Temperature
Order=1 C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

HV =
N∑

i=0

CiX
i (8.16)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

8.5 SOURCE FOR SPECIES

Syntax SOURCE FOR SPECIES ON MESH PART = MODEL [param1 = val1, param2 = val2

...]

Description Arbitrary source contributions for the species equation.

Details Adds the source provided by MODEL to the current equation.

Parent Block(s) ARIA REGION
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8.5.1 SOURCE FOR SPECIES = CURING FOAM EXTENT

Parameters K = REAL

E = REAL

R = REAL

N = REAL

Example Source For Species 2 on block 1 = Curing Foam Extent k=1.145e5 E=10
R=8.314472E3 n=1.3

Description This source accounts for the reaction of a curing epoxy foam, specifically:

q = keE/RT (1− ξ)n (8.17)

where T is the temperature and ξ is the extent of reaction.

8.5.2 SOURCE FOR SPECIES = CURING FOAM VFRAC

Parameters A = REAL

B = REAL

C = REAL

T BOILING = REAL

Example Source For Species 2 on block 1 = Curing Foam Vfrac a=1 b=0 c=2e-3
T BOILING=473.15

Description This source accounts for the change in volume fraction with temperature.

q =
(
a + bT + cT 2

)
exp

∂T

∂t
(8.18)

where T is the temperature. This source term is only active when T >= Tboiling.

8.5.3 SOURCE FOR SPECIES = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Source For Species on block 1 = Polynomial Variable=Temperature
Order=1 C0=401.0 C1=88.5
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Description Arbitrary order polynomial function of a specified scalar variable.

HV =
N∑

i=0

CiX
i (8.19)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

8.6 SOURCE FOR VOLTAGE

Syntax SOURCE FOR VOLTAGE ON MESH PART = MODEL [param1 = val1, param2 = val2

...]

Description Arbitrary source contributions for the voltage equation.

Details Adds the source provided by MODEL to the current equation.

Parent Block(s) ARIA REGION

8.6.1 SOURCE FOR VOLTAGE = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Source For Voltage on block 1 = Polynomial Variable=Temperature
Order=1 C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

HV =
N∑

i=0

CiX
i (8.20)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.
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Chapter 9

Constraint Conditions

9.1 CONSTRAIN

Syntax CONSTRAIN AVERAGE VOLUME FRACTION phi = C0

Description Integral constraint for the average particle volume fraction in a SUSPENSION prob-
lem.

Details Constrains φ throughout the problem domain to achieve the specified value of average
volume particle fraction in accordance with the relation

C0 =

[∫
Vφ

dV

]−1 ∫
Vφ

φdV (9.1)

over element blocks where the SUSPENSION equation is defined.

Parent Block(s) ARIA REGION

87



88



Chapter 10

Material Properties

10.1 BETA

Syntax BETA = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the coefficient for thermal stress.

Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.1)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.2)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.3)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.4)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Parent Block(s) ARIA MATERIAL

10.1.1 BETA = CONSTANT

Parameters BETA = REAL

Example BETA = CONSTANT BETA = 1.0
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Description BETA is the value of β.

10.1.2 BETA = CONVERTED

Parameters (None)

Example BETA = Converted

Description Aria will use Young’s modulus, Poisson ratio and CTE to compute the Lamé β coeffi-
cient. Supplying the Lamé coefficients is more computationally efficient but perhaps
less convenient, especially if the material properties are varying (e.g., temperature
dependent in a non-isothermal problem).

10.1.3 BETA = LINEAR

Parameters A = REAL

B = REAL

Example BETA = LINEAR A = 1.0 B = -.005

Description β is a inear function of temperature T ,

β = A + BT (10.5)

10.2 BULK VISCOSITY

Syntax BULK VISCOSITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the fluid bulk viscosity.

Details Specifies the material model for the fluid bulk viscosity.

Parent Block(s) ARIA MATERIAL

10.2.1 BULK VISCOSITY = CONSTANT

Parameters KAPPA = REAL
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Example BULK VISCOSITY = CONSTANT KAPPA = 1.0e-5

Description KAPPA is the value of the constant fluid bulk viscosity.

10.2.2 BULK VISCOSITY = CURING FOAM

Parameters VFRAC SUBINDEX = INT

EXTENT SUBINDEX = INT

PHI ZERO = REAL

[A = REAL ]
[B = REAL ]
[C = REAL ]
[KSI C = REAL ]

Example Bulk Viscosity = Curing Foam Vfrac Subindex=1 Extent Subindex=2
Phi Zero=0.45

Description For a curing expoxy with volume fraction φ and extent of reaction ξ the viscosity is
given by

κ =
4
3
µ◦

φ◦ − φ− 1
φ◦ − φ

(10.6)

where µ◦ is given by

µ◦ = (a− bT )
(

ξ2
c − ξ2

ξ2
c

)c

(10.7)

where T is the tempature. The remaining parameters a, b, c and ξc have default
values of a = 20, b = 0.22, c = −4/3 and ξc = 0.45 though they can be overridden
with the optional model parameters.

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter. Likewise, the extent of reaction field is
assumed to be a SPECIES field with the subindex provided by the EXTENT SUBINDEX
parameter.

10.3 CTE

Syntax CTE = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the coefficient of thermal expansion.
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Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.8)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.9)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.10)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.11)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Supplying the Lamé coefficients is more computationally efficient but perhaps less
convenient, especially if the material properties are varying (e.g., temperature depen-
dent in a non-isothermal problem).

Parent Block(s) ARIA MATERIAL

10.3.1 CTE = CONSTANT

Parameters CTE = REAL

Example CTE = CONSTANT cte = 1.0

Description CTE is the value of the coefficient of thermal expansion.

10.4 CURRENT DENSITY

Syntax CURRENT DENSITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material (constitutive) model for the current density in the bulk.

Details Specifies the material (constitutive) model for the current density in the bulk.
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Parent Block(s) ARIA MATERIAL

10.4.1 CURRENT DENSITY = BASIC

This is an alias for OHMS LAW.

Example Current Density = Basic

10.4.2 CURRENT DENSITY = OHMS LAW

Parameters (none)

Example Current Density = Ohms Law

Description The current density J is given by Ohm’s Law,

J = −σe∇V (10.12)

where σe is the electrical conducitivity and V is the voltage (electric potential).

10.5 DENSITY

Syntax DENSITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the density.

Details Specifies the material model for the density.

Parent Block(s) ARIA MATERIAL

10.5.1 DENSITY = CONSTANT

Parameters RHO = REAL

Example DENSITY = CONSTANT RHO = 1.0

Description RHO is the value of the constant density.
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10.5.2 DENSITY = CURING FOAM

Parameters R = REAL

RHO E = REAL

RHO F = REAL

PHI ZERO = REAL

VFRAC SUBINDEX = INT

Example Molecular Weight = Constant Subindex=1 M = 17.0
Density = Curing Foam R=8.314472E3 RHO E=1 RHO F=1.5 PHI ZERO=0.2
VFRAC SUBINDEX=1

Description The density curing epoxy foam with volume fraction φ, molecular weight M , temper-
ature T , and pressure p is given by

ρ = (φ◦ − φ)
pM

RT
+ (1− φ◦) ρe + φρf (10.13)

where R is the gas constant, φ◦ is the reference volume fraction in the flourinert ρe

is the pure expoxy density and ρf is the pure flourinert density.

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter.

10.5.3 DENSITY = EXP DECAY

Parameters RHO INITIAL = REAL

RHO FINAL = REAL

K = REAL

Example Density = Exp Decay K=1.2 RHO INITIAL=1.0 RHO FINAL=0.2

Description This model supplies a density that is an exponential decay,

ρ = ρf + (ρi − ρf ) e−kt (10.14)

where ρi is the initial density (RHO INITIAL), ρf is the final density (RHO FINAL and
k (K) is the decay constant.

10.5.4 DENSITY = IDEAL GAS

Parameters R = REAL

[P REF = REAL ]
[T REF = REAL ]

Example Molecular Weight = Constant Subindex=1 M = 17.0
Molecular Weight = Constant Subindex=2 M = 23.0
Density = Ideal Gas R=8.314472E3 T ref=273.15 P ref=101325.0
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Description The density of a multicomponent ideal gas in kg m−3 may be written as

ρ =
Pref + P

R (Tref + T )

N∑
i

Miyi (10.15)

where N is the number of species, P is the pressure in Pascals, Pref is a reference
pressure, R is the gas constant, T is the temperature, Tref is a reference temperature,
Mi is the molecular weight of species i in kg kmol−1 and yi is the mole fraction of
species i. Note, the units given here and on the density card are si units; any units
may be used as long as internal consistency is maintained.

The optional reference values for the temperature and pressure allow you to solve
for the temperature and pressure using relative units (e.g., Celcius temperature and
gauge pressure) and but still use absolute values as required by this material model.

10.5.5 DENSITY = INCOMPRESSIBLE IDEAL GAS

Parameters R = REAL

P REF = REAL

[T REF = REAL ]

Example Molecular Weight = Constant Subindex=1 M = 17.0
Molecular Weight = Constant Subindex=2 M = 23.0
Density = Incompressible Ideal Gas R=8.314472E3 T ref=273.15
P ref=101325.0

Description The density of a multicomponent ideal gas in kg m−3 may be written as

ρ =
Pref

R (Tref + T )

N∑
i

Miyi (10.16)

where N is the number of species, Pref is a reference pressure in pascal, R is the gas
constant in J kmol−1 K−1, T is the temperature, Tref is a reference temperature,
Mi is the molecular weight of species i in kg kmol−1, and yi is the mole fraction of
species i. Note, the units given here and on the density card are si units; any units
may be used as long as internal consistency is maintained.

The optional reference value for the temperature allow you to solve for the tempera-
ture using relative units (e.g., Celcius temperature) and but still use absolute values
as required by this material model.

10.5.6 DENSITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Density = Polynomial Variable=Temperature Order=1 C0=401.0 C1=88.5
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Description Arbitrary order polynomial function of a specified scalar variable.

ρ =
N∑

i=0

CiX
i (10.17)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.5.7 DENSITY = THERMAL

Parameters [A = REAL ]
[B = REAL ]
[C = REAL ]
[D = REAL ]

Example DENSITY = THERMAL A = 1.0 B = -.005

Description Cubic polynomial function of temperature for the density.

ρ = A + BT + CT 2 + DT 3 (10.18)

10.5.8 DENSITY = USER FUNCTION

Parameters NAME = STRING

X = STRING
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Example Begin Definition for Function Water_Density
# Source Appendix 2 from "Transport Processes and
# Unit Operations" by C. J. Geankoplis
Type is Piecewise Linear
Begin Values

# K kg * m^-3
273.15 999.87
277.15 1000.00
283.15 999.73
293.15 998.23
298.15 997.08
303.15 995.68
313.15 992.25
323.15 988.07
333.15 983.24
343.15 977.81
353.15 971.83
363.15 965.34
373.15 958.38

End
End
...

Begin Aria Material Foo
...
Density = User_Function Name=Water_Density X=Temperature
...

End Aria Material Foo

Description A look-up function is used to compute the values of the density as a function of some
other variable, i.e. f(x). The function type (“piecewise linear” in the example above)
must support the differentiate() method for Newton’s method.

Here NAME is the name of the user-defined function (Water Density in the example)
and X is the Aria name of the abcissa variable (TEMPERATURE in the example). Note
that X is not necessarily the same name as the abcissa variable identified in the
user-defined function (T in the example).

10.6 ELECTRICAL CONDUCTIVITY

Syntax ELECTRICAL CONDUCTIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the electrical conductivity.

Details Specifies the material model for the electrical conductivity.

Parent Block(s) ARIA MATERIAL
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10.6.1 ELECTRICAL CONDUCTIVITY = CONSTANT

Parameters SIGMA = REAL

Example ELECTRICAL CONDUCTIVITY = CONSTANT SIGMA = 1.0

Description SIGMA is the value of the constant electrical conductivity.

10.6.2 ELECTRICAL CONDUCTIVITY = EXPONENTIAL

Parameters VARIABLE = STRING

[CONSTANT = REAL ]
[MULTIPLIER = REAL ]
EXPONENT = REAL

Example Electrical Conductivity = Exponential Variable=Temperature
Multiplier=1.0 Exponent=-0.3

Description Exponential function of in specified scalar variable. The electrical conductivity is
computed as

σe = C + MeEX (10.19)

Here, C is the constant term supplied by the CONSTANT parameter which defaults to
zero, M is the value supplied by the MULTIPLIER parameter which defaults to unity,
X is the variable supplied by the VARIABLE parameter and E is the exponential
multiplier provided by the EXPONENT parameter.

10.6.3 ELECTRICAL CONDUCTIVITY = FROM RESISTANCE

Parameters None.

Example ELECTRICAL CONDUCTIVITY = FROM RESISTANCE

Description The conductivity is computed as the inverse of the electrical resistance which must
be provided separately.

10.6.4 ELECTRICAL CONDUCTIVITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Electrical Conductivity = Polynomial Variable=Temperature Order=1
C0=401.0 C1=88.5
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Description Arbitrary order polynomial function of a specified scalar variable.

σe =
N∑

i=0

CiX
i (10.20)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.6.5 ELECTRICAL CONDUCTIVITY = TBC

Parameters Ki = REAL

Ti = REAL

E = REAL

R = REAL

Example ELECTRICAL CONDUCTIVITY = TBC Ki=1.0 Ti=273 R=8.314 E=1e-3

Description Thermal battery electrical conductivity model (see Ken Chen).

κ(T ) = κi
Ti

T
e
−E

R

“
1
T −

1
Ti

”
(10.21)

Here, T is temperature, Ti is the initial temperature provided by Ti, κi is the electrical
conductivity at Ti provided by Ki, R is the universal gas constant provided by R and
E is the energy provided by E.

10.6.6 ELECTRICAL CONDUCTIVITY = THERMAL

Parameters [A = REAL ]
[B = REAL ]
[C = REAL ]
[D = REAL ]

Example ELECTRICAL CONDUCTIVITY = THERMAL A = 1.0 B = -0.01

Description Cubic polynomial function of temperature for the conductivity.

σe = A + BT + CT 2 + DT 3 (10.22)

10.7 ELECTRIC DISPLACEMENT

Syntax ELECTRIC DISPLACEMENT = MODEL [param1 = val1, param2 = val2 ...]
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Description Specifies the material (constitutive) model for the electric displacement

Details Specifies the material (constitutive) model for the electric displacement

Parent Block(s) ARIA MATERIAL

10.7.1 ELECTRIC DISPLACEMENT = BASIC

This is an alias for LINEAR.

Example Electric Displacement = Basic

10.7.2 ELECTRIC DISPLACEMENT = LINEAR

Parameters (none)

Example Electric Displacement = Linear

Description The electric displacement D is linearly proportional to the electric field (E = −∇V )

D = −ε∇V (10.23)

where ε is the electrical permittivity and V is the voltage (electric potential).

10.8 ELECTRICAL PERMITTIVITY

Syntax ELECTRICAL PERMITTIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the electrical permittivity.

Details Specifies the material model for the electrical permittivity.

Parent Block(s) ARIA MATERIAL

10.8.1 ELECTRICAL PERMITTIVITY = CONSTANT

Parameters E = REAL
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Example ELECTRICAL PERMITTIVITY = CONSTANT E = 1.0

Description E is the value of the constant electrical permittivity.

10.9 ELECTRICAL RESISTANCE

Syntax ELECTRICAL RESISTANCE = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the electrical resistance.

Details Specifies the material model for the electrical resistance.

Parent Block(s) ARIA MATERIAL

10.9.1 ELECTRICAL RESISTANCE = CONSTANT

Parameters None.

Example ELECTRICAL RESISTANCE = CONSTANT R = 1.0

Description R is the value of the constant electrical resistance.

10.9.2 ELECTRICAL RESISTANCE = EXPONENTIAL

Parameters VARIABLE = STRING

[CONSTANT = REAL ]
[MULTIPLIER = REAL ]
EXPONENT = REAL

Example Electrical Resistance = Exponential Variable=Temperature
Multiplier=1.0 Exponent=-0.3

Description Exponential function of in specified scalar variable. The electrical resistance is com-
puted as

R = C + MeEX (10.24)

Here, C is the constant term supplied by the CONSTANT parameter which defaults to
zero, M is the value supplied by the MULTIPLIER parameter which defaults to unity,
X is the variable supplied by the VARIABLE parameter and E is the exponential
multiplier provided by the EXPONENT parameter.
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10.9.3 ELECTRICAL RESISTANCE = FROM CONDUCTIVITY

Parameters R = REAL

Example ELECTRICAL RESISTANCE = FROM CONDUCTIVITY

Description The resistance is computed as the inverse of the electrical conductivity which must
be provided separately.

10.9.4 ELECTRICAL RESISTANCE = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Electrical Resistance = Polynomial Variable=Temperature Order=1
C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

R =
N∑

i=0

CiX
i (10.25)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.9.5 ELECTRICAL RESISTANCE = USER FUNCTION

Parameters NAME = STRING

X = STRING
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Example Begin definition for function RESISTANCE_DATA
Type is piecewise linear
Abscissa is T
Ordinate is Electrical_Resistance
Begin Values

# [K] [Ohm-um]
273 1.00E-9
323 7.99E-10
...
873 1.09E-11

End Values
End definition for function RESISTANCE_DATA

...

Begin Aria Material Foo
...
Electrical Resistance = User_Function Name=RESISTANCE_DATA X=Temperature
...

End Aria Material Foo

Description A look-up function is used to compute the values of the resistance as a function of
some other variable, i.e. f(x). The function type (“piecewise linear” in the example
above) must support the differentiate() method for Newton’s method.

Here NAME is the name of the user-defined function (RESISTANCE DATA in the example)
and X is the Aria name of the abcissa variable (TEMPERATURE in the example). Note
that X is not necessarily the same name as the abcissa variable identified in the
user-defined function (T in the example).

10.10 EMISSIVITY

Syntax EMISSIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the emissivity.

Details Specifies the material model for the emissivity.

Parent Block(s) ARIA MATERIAL

10.10.1 EMISSIVITY = CONSTANT

Parameters E = REAL

Example Emissivity = Constant E = 0.8
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Description E is the value of the constant emissivity.

10.11 ENTHALPHY

Syntax ENTHALPHY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a model for the enthalphy of a material.

Details Specifies a model for the enthalphy of a material.

Parent Block(s) ARIA MATERIAL

10.11.1 ENTHALPHY = CONSTANT

Parameters H = REAL

Example Enthalphy = Constant H=1e-4

Description The value is constant in space and time.

10.12 EQUATION OF STATE

Syntax EQUATION OF STATE = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the equation of state for gas dynamics problems.

Details Specifies the equation of state for gas dynamics problems.

Parent Block(s) ARIA MATERIAL

10.12.1 EQUATION OF STATE = IDEAL GAS

Parameters R = REAL

GAMMA = REAL

Example Equation of State = Ideal Gas R=8.314 Gamma=1.4
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Description R is the gas constant and GAMMA is the ratio of heat capacities.

This model is used for gas dynamics problems where the density is an unknown. In
this case, the pressure is given by the ideal gas law,

p = RTρ (10.26)

where T is the temperature and ρ is the density. Activating this model supplies several
quantities that are related to this equation of state such as the pressure, temperature,
and other gas dynamics related quantities.

10.13 HEAT CONDUCTION

Syntax HEAT CONDUCTION = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material (constitutive) model for the heat conduction (diffusive flux) in
the bulk.

Details Specifies the material (constitutive) model for the heat conduction (diffusive flux) in
the bulk.

Parent Block(s) ARIA MATERIAL

10.13.1 HEAT CONDUCTION = BASIC

This is an alias for FOURIERS LAW.

Example Heat Conduction = Basic

10.13.2 HEAT CONDUCTION = CONVECTED ENTHALPY

Parameters (none)

Example Heat Conduction = Convected Enthalpy

Description The heat conduction (flux) q is given by,

q = −hρv (10.27)

where h is the enthalpy, ρ is the density and v is the velocity.

10.13.3 HEAT CONDUCTION = FOURIERS LAW

Parameters (none)
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Example Heat Conduction = Fouriers Law

Description The heat conduction (flux) q is given by Fourier’s Law,

q = −κ∇T (10.28)

where κ is the thermal conductivity and T is the temperature.

10.14 HEAT OF VAPORIZATION

Syntax HEAT OF VAPORIZATION = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the heat of vaporization for a material or for a particular species.

Details Quantifies the amount of energy consumed during evaporation per unit mass.

Parent Block(s) ARIA MATERIAL

10.14.1 HEAT OF VAPORIZATION = CONSTANT

Parameters Hv = REAL

[SUBINDEX = INT ]

Example HEAT OF VAPORIZATION = CONSTANT SUBINDEX=0 Hv = 1.0
HEAT OF VAPORIZATION = CONSTANT SUBINDEX=1 Hv = 2.0
HEAT OF VAPORIZATION = CONSTANT SUBINDEX=3 Hv = 3.14

Description HV is the value of the constant heat of vaporization and SUBINDEX is the optioinal
species index (used in multicomponent systems).

10.15 INTRINSIC PERMEABILITY

Syntax INTRINSIC PERMEABILITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the intrinsic permeability tensor for porous flow in
Darcy’s Law.
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Details Specifies the material model for the intrinsic permeability tensor for porous flow in
Darcy’s Law. In general, the permeability may be nonisotropic in porour media. In
that case, Darcy’s law may be written as,

ρvd = f = −ρkr

µ
K · (∇P − ρg) (10.29)

where K is the intrinsic permeability tensor, ρ is the density, vd is the Darcy velocity,
f is the mas flux, kr is the relative permeability, P is pressure and g is gravity.

Parent Block(s) ARIA MATERIAL

10.15.1 INTRINSIC PERMEABILITY = CONSTANT

Parameters [XX = REAL ]
[XY = REAL ]
[XZ = REAL ]
[YX = REAL ]
[YY = REAL ]
[YZ = REAL ]
[ZX = REAL ]
[ZY = REAL ]
[ZZ = REAL ]

Example Intrinsic Permeability = Constant XX=1 YY=2 ZZ=1

Description All components default to zero and all values are constant in space and time.

10.16 INTERNAL ENERGY

Syntax INTERNAL ENERGY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a model for the internal energy of a material.

Details Specifies a model for the internal of a material.

Parent Block(s) ARIA MATERIAL

10.16.1 INTERNAL ENERGY = GAS PHASE

Parameters (none)

Example Internal Energy = Gas Phase
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Description The internal energy e is computed using thermodynamic relation

e = h− P/ρ (10.30)

where h is the enthalpy, P is the (partial) pressure and ρ is the density.

10.17 LAMBDA

Syntax LAMBDA = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the λ Lamé coefficient.

Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.31)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.32)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.33)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.34)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Parent Block(s) ARIA MATERIAL

10.17.1 LAMBDA = CONSTANT

Parameters L = REAL

Example LAMBDA = CONSTANT L = 1.0

Description L is the value of the constant λ.

108



10.17.2 LAMBDA = CONVERTED

Parameters (None)

Example LAMBDA = Converted

Description Aria will use Young’s modulus and Poisson ratio to compute the Lamé λ coefficient.
Supplying the Lamé coefficients is more computationally efficient but perhaps less
convenient, especially if the material properties are varying (e.g., temperature depen-
dent in a non-isothermal problem).

10.18 LEVEL SET HEAVISIDE

Syntax LEVEL SET HEAVISIDE = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the functional form of the Heaviside function used with level set algorithms.
This also implies the Dirac delta function used for level set algorithms.

Details Specifies the functional form of the Heaviside function used with level set algorithms.
This also implies the Dirac delta function used for level set algorithms.

Parent Block(s) ARIA MATERIAL

10.18.1 LEVEL SET HEAVISIDE = SMOOTH

Parameters (none)

Example LEVEL SET HEAVISIDE = SMOOTH

Description The Heaviside function in this case is given as

H(f) =
1
2

[1 + f/w + sin (πf/w) /π] (10.35)

Here f is the level set distance function and w is half of the level set width (see
10.19).

10.19 LEVEL SET WIDTH

Syntax LEVEL SET WIDTH = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the total width of the level set interface. Half of this width falls on the
positive side of the zero level set and half falls on the negative side.

109



Details Specifies the total width of the level set interface. Half of this width falls on the
positive side of the zero level set and half falls on the negative side.

Parent Block(s) ARIA MATERIAL

10.19.1 LEVEL SET WIDTH = CONSTANT

Parameters WIDTH = REAL

Example LEVEL SET WIDTH = CONSTANT WIDTH=0.1

Description This is what you’d expect it to be – a uniform constant everywhere for all time.

10.20 MASS FLUX

Syntax MASS FLUX = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a constitutive model for the mass flux for porous flow applications.

Details Specifies a constitutive model for the mass flux for porous flow applications.

Parent Block(s) ARIA MATERIAL

10.20.1 MASS FLUX = DARCY

Parameters [GX = REAL ]
[GY = REAL ]
[GZ = REAL ]

Example Mass Flux = Darcy GY=-9.8

Description The macroscopic, convective mass flux in phase β, ρv is obtained from the extended
Darcy’s Law,

F = ρf = −ρkr

µ
K · (∇P − ρg) (10.36)

10.21 MESH STRESS

Syntax MESH STRESS = MODEL [param1 = val1, param2 = val2 ...]
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Description Specifies a contribution to the mesh (pseudo-solid) stress tensor. Multiple stresses
are combined additvely and may be specified by using this line command multiple
times.

Details Specifies a contribution to the mesh (pseudo-solid) stress tensor. The total stress T
is given by

T =
∑

j

T j (10.37)

Parent Block(s) ARIA MATERIAL

10.21.1 MESH STRESS = ISOTHERMAL

Parameters T = REAL

T REF = REAL

Example MESH STRESS = Isothermal T=500 T ref=325

Description This stress accounts for the mechanical stresses due to thermally induced strains.

T = −β (T − Tref ) I (10.38)

where β is the Lamé coefficient of thermal stress (related to the coefficient of thermal
expansion, α), T is the temperature and Tref is the temperature of the undeformed
reference state of the mesh (pseudo-solid). This is a specialization of the THERMAL
model that uses uniform, fixed temperature and reference temperature.

10.21.2 MESH STRESS = LINEAR ELASTIC

Parameters REFERENCE FRAME = ‘‘MOVING’’ | ‘‘UNDEFORMED’’

Example MESH STRESS = Linear Elastic Reference Frame = undeformed
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Description Supplies the linear elasticity stress tensor,

T = λ trace EI + 2µE (10.39)

where λ and µ and the Lamé coefficients and E is the strain tensor. When the
choice of refernce frame is “UNDEFORMED” then the strain is computed in the
undeformed reference state; this is commonly referred to as small strain theory. When
the reference frame is “MOVING” then the strain is computed with respect to the
deformed coordinates.

Specifically, the strain tensor is given by

E =
1
2
(
∇d + ∇dt

)
(10.40)

where d is the mesh displacement field. The choice of reference frame determines
whether the ∇ operator is computed in the undeformed or moving reference frames.

10.21.3 MESH STRESS = NEOHOOKEAN ELASTIC

Parameters (none)

Example MESH STRESS = Neohookean Elastic

Description Supplies a nonlinear hyperelastic stress of the form,

T =
µ

J
(b− I) +

λ

J
lnJI (10.41)

where λ and µ and the Lamé coefficients, b ≡ F ·F t is the left Cauchy-Green tensor,
F is the deformation gradient and J ≡ det F . See, e.g., Bonet and Wood (1997) or
Belytschko et al. (2004).

10.21.4 MESH STRESS = NONLINEAR ELASTIC

Parameters (none)

Example MESH STRESS = Nonlinear Elastic

Description Supplies a nonlinear elastic stress,

T = λ trace EI + 2µE (10.42)

where λ and µ and the Lamé coefficients and E is the strain tensor. The particular
choice of strain tensor chosen depends on where the configuration (reference frame)
which is set via the MESH MOTION command line. See section 3.11 for more
information. When the MESH MOTION is set to ARBITRARY then the Green
strain is used. Otherwise, the Almansi strain is used.
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10.21.5 MESH STRESS = RESIDUAL

Parameters [SXX | SX = REAL ]
[SYY | SY = REAL ]
[SZZ | SZ = REAL ]
[SXY = REAL ]
[SXZ = REAL ]
[SYZ = REAL ]

Example SOLID STRESS = Residual Sxx=0.02 Syy=0.02

Description This stress accounts for the initial residual stress in a solid that is constant and
uniform everywhere. The components of the residual stress tensor are supplied by
the (up-to) six components SXX, SYY, SZZ, SXY, SXZ, and SYZ.

This is directly analogous to the ISTRESS condition in ANSYS. To that end, the
diagonal components can be specified as either SXX or SX etc.

10.21.6 MESH STRESS = THERMAL

Parameters (none)

Example MESH STRESS = Thermal

Description This stress accounts for the mechanical stresses due to thermally induced strains.

T = −β (T − Tref ) I (10.43)

where β is the Lamé coefficient of thermal stress (related to the coefficient of thermal
expansion, α), T is the temperature and Tref is the temperature of the undeformed
reference state of the mesh (pseudo-solid).

10.22 MOLECULAR WEIGHT

Syntax MOLECULAR WEIGHT = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the molecular weight for a species.

Details Specifies the molecular weight for a species.

Parent Block(s) ARIA MATERIAL
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10.22.1 MOLECULAR WEIGHT = CONSTANT

Parameters M = REAL

[SUBINDEX = INT ]

Example Molecular Weight = Constant Subindex=1 M = 17.0
Molecular Weight = Constant Subindex=2 M = 23.0
Molecular Weight = Constant Subindex=5 M = 34.0

Description M is the value of the molecular weight.

SUBINDEX is the species subindex.

10.23 MOMENTUM STRESS

Syntax MOMENTUM STRESS = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a contribution to the fluid stress tensor. Multiple stresses are combined
additvely and may be specified by using this line command multiple times.

Details Specifies a contribution to the fluid momemtnum stress tensor. The total stress T is
given by

T =
∑

j

T j (10.44)

Parent Block(s) ARIA MATERIAL

10.23.1 MOMENTUM STRESS = LS CAPILLARY

Parameters (none)

Example MOMENTUM STRESS = Newtonian MOMENTUM STRESS = LS Capillary

Description This adds the capillary boundary condition contributions in the vicinity of the level
set interface.

T = σδ(F ) (I −NN) (10.45)

where σ is the surface tension, δ(F ) is the level set delta function, F is the level set
distance function and N is the level set normal field.

10.23.2 MOMENTUM STRESS = INCOMPRESSIBLE NEWTONIAN

Parameters (none)

Example MOMENTUM STRESS = Incompressible Newtonian
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Description Supplies the incompressible Newtonian stress tensor,

T = −pI + µ
(
∇v + ∇vt

)
(10.46)

where µ is the fluid viscosity, p is the pressure and v is the fluid velocity. The viscosity
µ is provided with the viscosity line command as described in section 10.40.

Note that this model does not include stress contributions that are proporational to
the divergence of the velocity. To incorporate those contributions, use the NEW-
TONIAN DILATIONAL stress model in addition to this model, or use the FOR-
MAL NEWTONIAN stress model instead of this model.

10.23.3 MOMENTUM STRESS = FORMAL NEWTONIAN

Parameters (none)

Example MOMENTUM STRESS = Formal Newtonian

Description Supplies the complete Newtonian stress tensor,

T = −pI + µ
(
∇v + ∇vt

)
+
(

κ− 2
3
µ

)
∇ · vI (10.47)

where µ is the fluid viscosity, p is the pressure and v is the fluid velocity. The viscosity
µ is provided with the viscosity line command as described in section 10.40. The bulk
viscosity κ is provided with the bulk viscosity line command as described in section
10.2.

10.23.4 MOMENTUM STRESS = NEWTONIAN DILATIONAL

Parameters (none)

Example MOMENTUM STRESS = Newtonian Dilational

Description Adds the dilational stress contribution for Newtonian fluids,

T =
(

κ− 2
3
µ

)
∇ · vI (10.48)

where κ is the bulk viscosity of the fluid, µ is the fluid (dynamic) viscosity and v
is the fluid velocity. The viscosity µ is provided with the viscosity line command as
described in section 10.40. The bulk viscosity κ is provided with the bulk viscosity
line command as described in section 10.2.

See, also, the NEWTONIAN momentum stress model.
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10.23.5 MOMENTUM STRESS = NEWTONIAN VISCOUS

Parameters (none)

Example MOMENTUM STRESS = Newtonian Viscous

Description Supplies only the viscous contribution of the Newtonian stress tensor,

T = µ
(
∇v + ∇vt

)
(10.49)

where µ is the fluid viscosity and v is the fluid velocity. The viscosity µ is provided
with the viscosity line command as described in section 10.40.

10.23.6 MOMENTUM STRESS = NEWTONIAN PRESSURE

Parameters (none)

Example MOMENTUM STRESS = Newtonian Pressure

Description Supplies only the pressure contribution of the Newtonian stress tensor,

T = −pI (10.50)

where p is the pressure.

10.24 POISSONS RATIO

Syntax POISSONS RATIO = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the Poisson’s ratio.
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Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.51)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.52)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.53)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.54)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Supplying the Lamé coefficients is more computationally efficient but perhaps less
convenient, especially if the material properties are varying (e.g., temperature depen-
dent in a non-isothermal problem).

Parent Block(s) ARIA MATERIAL

10.24.1 POISSONS RATIO = CONSTANT

Parameters PR = REAL

Example POISSONS RATIO = CONSTANT PR = 1.0

Description PR is the value of the constant Poisson’s ratio.

10.25 POROSITY

Syntax POROSITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the porosity for porous flow applications.

Details Specifies the material model for the porosity for porous flow applications.
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Parent Block(s) ARIA MATERIAL

10.25.1 POROSITY = CONSTANT

Parameters PHI = REAL

Example Porosity = Constant PHI=0.1

Description The value is constant in space and time.

10.25.2 POROSITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Porosity = Polynomial Variable=Coordinates X Order=1 C0=0.1 C1=0.01

Description Arbitrary order polynomial function of a specified scalar variable.

φ =
N∑

i=0

CiX
i (10.55)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.26 RELATIVE PERMEABILITY

Syntax RELATIVE PERMEABILITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the relative permeability (scalar) for porous flow in
Darcy’s Law.
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Details Specifies the material model for the relative permeability (scalar) for porous flow in
Darcy’s Law. In general, the permeability may be nonisotropic in porour media. In
that case, Darcy’s law may be written as,

ρvd = f =
ρkr

µ
K · (∇P + ρg) (10.56)

where K is the intrinsic permeability tensor, ρ is the density, vd is the Darcy velocity,
f is the mass flux, kr is the relative permeability, µ is the dynamic viscosity, P is
pressure and g is gravity.

Parent Block(s) ARIA MATERIAL

10.26.1 RELATIVE PERMEABILITY = CONSTANT

Parameters K = REAL

Example Relative Permeability = Constant K=1e-3

Description The value is constant in space and time.

10.26.2 RELATIVE PERMEABILITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Relative Permeability = Polynomial Variable=Temperature Order=1
C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

kr =
N∑

i=0

CiX
i (10.57)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.27 SKELETON DENSITY

Syntax SKELETON DENSITY = MODEL [param1 = val1, param2 = val2 ...]
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Description Specifies a model for the porous skeleton density of a material.

Details Specifies a model for the porous skeleton density of a material.

Parent Block(s) ARIA MATERIAL

10.27.1 SKELETON DENSITY = CONSTANT

Parameters RHO = REAL

Example Skeleton Density = Constant Rho=1e3

Description The value is constant in space and time.

10.28 SKELETON INTERNAL ENERGY

Syntax SKELETON INTERNAL ENERGY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a model for the porous skeleton internal energy of a material.

Details Specifies a model for the porous skeleton internal energy of a material.

Parent Block(s) ARIA MATERIAL

10.28.1 SKELETON INTERNAL ENERGY = CONSTANT

Parameters E = REAL

Example Skeleton Internal Energy = Constant E=2.3e-4

Description The value is constant in space and time.

10.28.2 SKELETON INTERNAL ENERGY = LINEAR

Parameters CP = REAL

T REF = REAL
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Example Skeleton Internal Energy = Linear Cp=13.7 T ref=298.15

Description The internel energy of the porous skeleton, es, is given by the simple relation,

es = Cp (T − Tref ) (10.58)

where Cp is the specific heat supplied by the CP parameter and Tref is a reference
temperature supplied by the T REF parameter. This model also supplies the time
derivative of es,

∂es

∂t
= Cp

∂T

∂t
(10.59)

10.29 SOLID STRESS

Syntax SOLID STRESS = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a contribution to the solid stress tensor. Multiple stresses are combined
additvely and may be specified by using this line command multiple times.

Details Specifies a contribution to the solid stress tensor. The total stress T is given by

T =
∑

j

T j (10.60)

Parent Block(s) ARIA MATERIAL

10.29.1 SOLID STRESS = ISOTHERMAL

Parameters T = REAL

T REF = REAL

Example SOLID STRESS = Isothermal T=500 T ref=325

Description This stress accounts for the mechanical stresses due to thermally induced strains.

T = −β (T − Tref ) I (10.61)

where β is the Lamé coefficient of thermal stress (related to the coefficient of thermal
expansion, α), T is the temperature and Tref is the temperature of the undeformed
reference state of the mesh (pseudo-solid). This is a specialization of the THERMAL
model that uses uniform, fixed temperature and reference temperature.

10.29.2 SOLID STRESS = LINEAR ELASTIC

Parameters REFERENCE FRAME = ‘‘MOVING’’ | ‘‘UNDEFORMED’’
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Example SOLID STRESS = Linear Elastic Reference Frame=Moving

Description Supplies the linear elasticity stress tensor,

T = λ trace EI + 2µE (10.62)

where λ and µ and the Lamé coefficients and E is the strain tensor. When the
choice of refernce frame is “UNDEFORMED” then the strain is computed in the
undeformed reference state; this is commonly referred to as small strain theory. When
the reference frame is “MOVING” then the strain is computed with respect to the
deformed coordinates.

Specifically, the strain tensor is given by

E =
1
2
(
∇d + ∇dt

)
(10.63)

where d is the solid displacement field. The choice of reference frame determines
whether the ∇ operator is computed in the undeformed or moving reference frames.

10.29.3 SOLID STRESS = NEOHOOKEAN ELASTIC

Parameters (none)

Example SOLID STRESS = Neohookean Elastic

Description Supplies a nonlinear hyperelastic stress of the form,

T =
µ

J
(b− I) +

λ

J
lnJI (10.64)

where λ and µ and the Lamé coefficients, b ≡ F ·F t is the left Cauchy-Green tensor,
F is the deformation gradient and J ≡ det F . See, e.g., Bonet and Wood (1997) or
Belytschko et al. (2004).

10.29.4 SOLID STRESS = NONLINEAR ELASTIC

Parameters (none)

Example SOLID STRESS = Nonlinear Elastic
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Description Supplies a nonlinear elastic stress,

T = λ trace EI + 2µE (10.65)

where λ and µ and the Lamé coefficients and E is the strain tensor. The particular
choice of strain tensor chosen depends on where the configuration (reference frame)
which is set via the MESH MOTION command line. See section 3.11 for more
information. When the MESH MOTION is set to ARBITRARY then the Green
strain is used. Otherwise, the Almansi strain is used.

10.29.5 SOLID STRESS = RESIDUAL

Parameters [SXX | SX = REAL ]
[SYY | SY = REAL ]
[SZZ | SZ = REAL ]
[SXY = REAL ]
[SXZ = REAL ]
[SYZ = REAL ]

Example SOLID STRESS = Residual Sxx=0.02 Syy=0.02

Description This stress accounts for the initial residual stress in a solid that is constant and
uniform everywhere. The components of the residual stress tensor are supplied by
the (up-to) six components SXX, SYY, SZZ, SXY, SXZ, and SYZ.

This is directly analogous to the ISTRESS condition in ANSYS. To that end, the
diagonal components can be specified as either SXX or SX etc.

10.29.6 SOLID STRESS = THERMAL

Parameters (none)

Example SOLID STRESS = Thermal

Description This stress accounts for the mechanical stresses due to thermally induced strains.

T = −β (T − Tref ) I (10.66)

where β is the Lamé coefficient of thermal stress (related to the coefficient of thermal
expansion, α), T is the temperature and Tref is the temperature of the undeformed
reference state of the solid.

10.30 SPECIES DIFFUSION

Syntax SPECIES DIFFUSION = MODEL [param1 = val1, param2 = val2 ...]
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Description Specifies the material (constitutive) model for the species diffusion (diffusive flux) in
the bulk.

Details Specifies the material (constitutive) model for the species diffusion (diffusive flux) in
the bulk.

Parent Block(s) ARIA MATERIAL

10.30.1 SPECIES DIFFUSION = BASIC

This is an alias for FICKS LAW.

Example Species Diffusion = Basic

10.30.2 SPECIES DIFFUSION = FICKS LAW

Parameters (none)

Example Species Diffusion = Ficks Law

Description The diffusive species flux q is given by Fick’s Law,

q = −D∇C (10.67)

where D is the species diffusivity and C is the species concentration.

10.31 SPECIES DIFFUSIVITY

Syntax SPECIES DIFFUSIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the species diffusivity.

Details Specifies the material model for the species diffusivity.

Parent Block(s) ARIA MATERIAL

10.31.1 SPECIES DIFFUSIVITY = CONSTANT

Parameters D = REAL

Example SPECIES DIFFUSIVITY = CONSTANT D = 1.0
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Description D is the value of the constant species diffusivity.

10.32 SPECIFIC HEAT

Syntax SPECIFIC HEAT = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the specific heat.

Details Specifies the material model for the specific heat.

Parent Block(s) ARIA MATERIAL

10.32.1 SPECIFIC HEAT = CONSTANT

Parameters CP = REAL

Example SPECIFIC HEAT = CONSTANT CP = 1.0

Description CP is the value of the constant specific heat.

10.32.2 SPECIFIC HEAT = CURING FOAM

Parameters VFRAC SUBINDEX = INT

[CP FL = REAL ]
[CP FG = REAL ]
[CP E = REAL ]
[PHI ZERO = REAL ]

Example Specific Heat = Curing Foam Vfrac Subindex=1 Cp fL=1 Cp fG=1 Cp e=1
phi zero=0.2
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Description For a curing expoxy with volume fraction φ the specific heat is given by

Cp = Cp,fL
φ + Cp,fG

(φ◦ − φ) + Cp,e (1− φ◦) (10.68)
= a + bφ (10.69)

where Cp,fL
is the specific heat of the liquid phase flourinert, Cp,fG

is the specific
heat of the gas phase flourinert, Cp,e is the specific heat of the epoxy and φ◦ is the
reference volume fraction in the flourinert. In the latter form of this relationship

a = Cp,fL
− Cp,fG

(10.70)
b = Cp,fG

φ◦ + Cp,e(1− φ◦). (10.71)

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter.

10.32.3 SPECIFIC HEAT = EXPONENTIAL

Parameters VARIABLE = STRING

[CONSTANT = REAL ]
[MULTIPLIER = REAL ]
EXPONENT = REAL

Example Specific Heat = Exponential Variable=Temperature Multiplier=1.0
Exponent=-0.3

Description Exponential function of in specified scalar variable. The specific heat is computed as

Cp = C + MeEX (10.72)

Here, C is the constant term supplied by the CONSTANT parameter which defaults to
zero, M is the value supplied by the MULTIPLIER parameter which defaults to unity,
X is the variable supplied by the VARIABLE parameter and E is the exponential
multiplier provided by the EXPONENT parameter.

10.32.4 SPECIFIC HEAT = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Specific Heat = Polynomial Variable=Temperature Order=1 C0=401.0
C1=88.5

126



Description Arbitrary order polynomial function of a specified scalar variable.

Cp =
N∑

i=0

CiX
i (10.73)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.32.5 SPECIFIC HEAT = USER FUNCTION

Parameters NAME = STRING

X = STRING

Example begin definition for function Water_Heat_Capacity
# Source Appendix 2 from "Transport Processes and
# Unit Operations" by C. J. Geankoplis
type is piecewise linear
begin values

# K J / kg K
273.15 4220
283.15 4195
293.15 4185
298.15 4182
303.15 4181
313.15 4181
323.15 4183
333.15 4187
343.15 4192
353.15 4199
363.15 4208
373.15 4219

end
end
...

Begin Aria Material Foo
...
Specific Heat = User_Function X=Temperature Name=Water_Heat_Capacity
...

End Aria Material Foo

Description A look-up function is used to compute the values of the specific heat as a function of
some other variable, i.e. f(x). The function type (“piecewise linear” in the example
above) must support the differentiate() method for Newton’s method.

Here NAME is the name of the user-defined function (Water Heat Capacity in the ex-
ample) and X is the Aria name of the abcissa variable (TEMPERATURE in the example).
Note that X is not necessarily the same name as the abcissa variable identified in the
user-defined function (T in the example).
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10.33 SURFACE TENSION

Syntax SURFACE TENSION = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the model to use for the surface (interfacial) tension.

Details Specifies the model to use for the surface (interfacial) tension.

Parent Block(s) ARIA MATERIAL

10.33.1 SURFACE TENSION = CONSTANT

Parameters SIGMA = REAL

Example Surface Tension = Constant Sigma = 72.0

Description SIGMA is the value of the surface tension.

10.33.2 SURFACE TENSION = LINEAR T

Parameters SIGMA0 = REAL

DSIGMADT = REAL

T REF = REAL

Example Surface Tension = Linear T sigma0=72. dsigmadT = -.15 T ref =
298.

Description SIGMA0 is the value of the surface tension at the reference temperature T REF and
DSIGMADT is the derivative of the surface temperature with respect to temperature,
i.e.,

σ = σ0 + m(T − Tref ) (10.74)

where m is DSIGMADT.

10.34 SUSPENSION FLUX

Syntax SUSPENSION FLUX = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the parameters for the suspension flux model.

Details Specifies the suspension flux model and its parameters for this material.
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Parent Block(s) ARIA MATERIAL

10.34.1 SUSPENSION FLUX = PHILLIPS

Parameters K mu = REAL

K c = REAL

phi max = REAL

beta = REAL

particle radius = REAL

Example SUSPENSION FLUX = Phillips K mu=0.62 K c=0.41 phi max=0.68 beta=-1.82
particle radius=0.01

Description The Phillips diffusive flux model is intended to be used in conjunction with the Krieger
viscosity model (10.40.8). Here, the flux is given by

q =
(

Kca
2 −Kµa2β

φ

φm − φ

)
γ̇φ∇φ + Kca

2φ2∇γ̇ (10.75)

where γ̇ is the shear rate, φ is the suspension concentration, φm is the maximum
suspension concentration and a is the particle radius.

10.35 THERMAL CONDUCTIVITY

Syntax THERMAL CONDUCTIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the thermal conductivity.

Details Specifies the material model for the thermal conductivity that appears in the diffusion
term of the energy equation for temperature.

Parent Block(s) ARIA MATERIAL

10.35.1 THERMAL CONDUCTIVITY = CONSTANT

Parameters K = REAL

Example THERMAL CONDUCTIVITY = CONSTANT K = 1.0

Description K is the value of the constant thermal conductivity.
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10.35.2 THERMAL CONDUCTIVITY = CURING FOAM

Parameters RHO E = REAL

K F = REAL

K E = REAL

Example Thermal Conductivity = Curing Foam rho e=1.3 k e=14 k f=2.7

Description For a curing expoxy with mixture density ρ

κ =
2
3

(
ρ

ρe

)
κe +

(
1− ρ

ρe

)
κf (10.76)

= a + bρ (10.77)

where ρe is the density of the expoxy, κe is the thermal conductivity of the epoxy and
κf is the thermal conductivity of the fourinert. In the latter form of this relationship

a = κf (10.78)

b =
1
ρe

(
2
3
κe − κf

)
(10.79)

10.35.3 THERMAL CONDUCTIVITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Thermal Conductivity = Polynomial Variable=Temperature Order=1
C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

κ =
N∑

i=0

CiX
i (10.80)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.
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10.35.4 THERMAL CONDUCTIVITY = THERMAL

Parameters [A = REAL ]
[B = REAL ]
[C = REAL ]
[D = REAL ]

Example THERMAL CONDUCTIVITY = THERMAL A = 401.0 B = 88.5

Description Cubic polynomial function of temperature for the conductivity.

κ = A + BT + CT 2 + DT 3 (10.81)

10.35.5 THERMAL CONDUCTIVITY = USER FUNCTION

Parameters NAME = STRING

X = STRING

Example begin definition for function SI_K
type is piecewise linear
begin values

20.0 5.50e7
100.0 4.60e7
...
800.0 1.30e7

2000.0 1.30e7
end values

end definition for function SI_K

...

Begin Aria Material Foo
...
Thermal Conductivity = User_Function Name=SI_K X=Temperature
...

End Aria Material Foo

Description A look-up function is used to compute the values of the thermal conductivity as a
function of some other variable, i.e. f(x). The function type (“piecewise linear” in the
example above) must support the differentiate() method for Newton’s method.

Here NAME is the name of the user-defined function (RESISTANCE DATA in the example)
and X is the Aria name of the abcissa variable (TEMPERATURE in the example). Note
that X is not necessarily the same name as the optional abcissa variable identified in
the user-defined function.
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10.36 THERMAL DIFFUSIVITY

Syntax THERMAL DIFFUSIVITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the thermal diffusivity.

Details Specifies the material model for the thermal diffusivity.

Parent Block(s) ARIA MATERIAL

10.36.1 THERMAL DIFFUSIVITY = CONSTANT

Parameters D = REAL

Example THERMAL DIFFUSIVITY = CONSTANT D = 1.0

Description D is the value of the constant thermal diffusivity.

10.37 TOTAL INTERNAL ENERGY

Syntax TOTAL INTERNAL ENERGY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies a model for the total internal energy of a material.

Details Specifies a model for the total internal of a material.

Parent Block(s) ARIA MATERIAL

10.37.1 TOTAL INTERNAL ENERGY = POROUS

Parameters (none)

Example Total Internal Energy = Porous
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Description The total internal energy e is computed as

e = (1− φ)ρses + φ ∗ ρfef (10.82)

where φ is the porosity, ρs is the density of the solid porous skeleton, es is the internal
energy of the solid porous skeleton, ρf is the density of the fluid phase and ef is the
internal energy of the fluid phase.

10.38 TWO MU

Syntax TWO MU = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for twice the µ Lamé coefficient.

Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.83)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.84)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.85)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.86)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Parent Block(s) ARIA MATERIAL

10.38.1 TWO MU = CONSTANT

Parameters TWO MU = REAL

Example TWO MU = CONSTANT TWO MU = 1.0

Description TWO MU is the value of 2µ.
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10.38.2 TWO MU = CONVERTED

Parameters (None)

Example TWO MU = Converted

Description Aria will use Young’s modulus and Poisson ratio to compute the Lamé µ coefficient.
Supplying the Lamé coefficients is more computationally efficient but perhaps less
convenient, especially if the material properties are varying (e.g., temperature depen-
dent in a non-isothermal problem).

10.39 VALENCE

Syntax VALENCE = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the valence (net charge) for a species.

Details Specifies the valence (net charge) for a species.

Parent Block(s) ARIA MATERIAL

10.39.1 VALENCE = CONSTANT

Parameters Z = REAL

[SUBINDEX = INT ]

Example Valence = Constant Subindex=1 Z = 1
Valence = Constant Subindex=2 Z = -1
Valence = Constant Subindex=5 Z = -2

Description Z is the value of the species valence.

SUBINDEX is the species subindex.

10.40 VISCOSITY

Syntax VISCOSITY = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the fluid viscosity.

Details Specifies the material model for the fluid viscosity.

134



Parent Block(s) ARIA MATERIAL

10.40.1 VISCOSITY = ARRHENIUS

Parameters mu0 = REAL

E = REAL

Example VISCOSITY = Arrhenius mu0=16.4 E=5000.

Description This model provides a viscosity with an Arrhenius temperature dependence:

µ = µ0e
−E/T (10.87)

where T is the temperature.

10.40.2 VISCOSITY = BINGHAM WLF

Parameters MU ZERO = REAL

MU INF = REAL

F = REAL

N = REAL

A = REAL

LAMBDA = REAL

TAU Y = REAL

Example VISCOSITY = Bingham WLF ...

Description

µ = µ∞ +
(

µ◦ − µ∞ + τy
1− e−γ̇F

γ̇

)
(1 + (λγ̇)a)

n−1
a (10.88)

where γ̇ is the shear rate.

10.40.3 VISCOSITY = BINGHAM WLFT

Parameters MU ZERO = REAL

MU INF = REAL

F = REAL

N = REAL

A = REAL

LAMBDA = REAL

TAU Y = REAL

C 1 = REAL

C 2 = REAL

T REF = REAL

Example VISCOSITY = Bingham WLFT ...
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Description

µ = aT

(
µ∞ +

(
µ◦ − µ∞ + τy

1− e−aT γ̇F

aT γ̇

)
(1 + (aT λγ̇)a)

n−1
a

)
(10.89)

where
aT = e

c1(T◦−T )
c2+T−T◦ (10.90)

and T is the temperature and γ̇ is the shear rate.

10.40.4 VISCOSITY = CARREAU

Parameters MU ZERO = REAL

[MU INF = REAL ]
[A = REAL ]
N = REAL

LAMBDA = REAL

Example Viscosity = Carreau ...

Description
µ− µ∞
µ◦ − µ∞

= (1 + (λγ̇)a)
n−1

a (10.91)

or
µ = µ∞ + (µ◦ − µ∞) (1 + (λγ̇)a)

n−1
a (10.92)

where µ∞ is the infinite shear viscosity (MU INF, defaults to zero), µ◦ is the zero shear
viscosity (MU ZERO), n (N) and a (A, defaults to 2) are model parameters, γ̇ is the shear
rate and λ (LAMBDA) is a time constant.

10.40.5 VISCOSITY = CARREAU T

Parameters MU ZERO = REAL

[MU INF = REAL ]
[A = REAL ]
N = REAL

K = REAL

Example Viscosity = Carreau T ...

Description
µ− µ∞
µ◦ − µ∞

=
(
1 +

(
ek/T γ̇

)a)n−1
a

(10.93)

or

µ = µ∞ + (µ◦ − µ∞)
(
1 +

(
ek/T γ̇

)a)n−1
a

(10.94)

where µ∞ is the infinite shear viscosity (MU INF, defaults to zero), µ◦ is the zero
shear viscosity (MU ZERO), n (N) and a (A, defaults to 2) are model parameters and γ̇
is the shear rate. The quantity ek/T , where T is temperature and k (K) is a reference
temperature, is a temperature dependent time scale; it takes the place of the constant
λ time scale in the CARREAU model.
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10.40.6 VISCOSITY = CONSTANT

Parameters MU = REAL

Example VISCOSITY = CONSTANT MU = 1.0

Description MU is the value of the constant fluid viscosity.

10.40.7 VISCOSITY = CURING FOAM

Parameters VFRAC SUBINDEX = INT

EXTENT SUBINDEX = INT

PHI ZERO = REAL

[A = REAL ]
[B = REAL ]
[C = REAL ]
[KSI C = REAL ]

Example Viscosity = Curing Foam Vfrac Subindex=1 Extent Subindex=2
Phi Zero=0.45

Description For a curing expoxy with volume fraction φ and extent of reaction ξ the viscosity is
given by

µ = µ◦ exp
φ◦ − φ

1− φ◦ + φ
(10.95)

where µ◦ is given by

µ◦ = (a− bT )
(

ξ2
c − ξ2

ξ2
c

)c

(10.96)

where T is the tempature. The remaining parameters a, b, c and ξc have default
values of a = 20, b = 0.22, c = −4/3 and ξc = 0.45 though they can be overridden
with the optional model parameters.

NOTE: The volume fraction is assumed to be a SPECIES field with the subindex
provided by the VFRAC SUBINDEX parameter. Likewise, the extent of reaction field is
assumed to be a SPECIES field with the subindex provided by the EXTENT SUBINDEX
parameter.

10.40.8 VISCOSITY = KRIEGER

Parameters BETA = REAL

PHI MAX = REAL

MU S = REAL

Example VISCOSITY = KRIEGER BETA = -1.65, PHI MAX = 1.0, MU S = 1.0
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Description In the viscosity model of Krieger (1972)

µ = µs

(
1− φ

φm

)β

(10.97)

BETA is the Krieger exponent, PHI MAX is the maximum suspension concentration and
MU S is the solvent viscosity.

10.40.9 VISCOSITY = POLYNOMIAL

Parameters VARIABLE = STRING

ORDER = INT

[C0 = REAL ]
[C1 = REAL ]
...
[CN = REAL ]

Example Viscosity = Polynomial Variable=Temperature Order=1 C0=401.0 C1=88.5

Description Arbitrary order polynomial function of a specified scalar variable.

µ =
N∑

i=0

CiX
i (10.98)

Here, N is the order of the polynomial provided by the ORDER parameter and X is
the variable supplied by the VARIABLE parameter and Ci are the supplied coefficients.
Coefficients that are not supplied default to a value of zero. The VARIABLE argument
can be TIME or any internal Expression that evaluates to a scalar. For the latter case,
the format of the VARIABLE argument is described in section 2.6.1.

10.40.10 VISCOSITY = POWER LAW

Parameters K = REAL

N = REAL

Example Viscosity = Power Law K=0.8 N=0.5

Description The viscosity is proportional to the shear rate, γ̇ raised to some power, e.g.,

µ = kγ̇n (10.99)

where k (K) and n (N) are model parameters.
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10.40.11 VISCOSITY = THERMAL

Parameters [A = REAL ]
[B = REAL ]
[C = REAL ]
[D = REAL ]

Example VISCOSITY = THERMAL A=1750 C=0.12 D=0

Description This model is simply a cubic polynomial in temperature where the viscosity is given
by

µ = A + BT + CT 2 + DT 3 (10.100)

where T is the temperature.

10.40.12 VISCOSITY = USER FUNCTION

Parameters NAME = STRING

X = STRING
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Example begin definition for function Water_Viscosity
# Source Appendix 2 from "Transport Processes and
# Unit Operations" by C. J. Geankoplis
type is piecewise linear
begin values

# K Pa*s (or cP)
273.15 1.7921
275.15 1.6728
277.15 1.5674
279.15 1.4728
281.15 1.3860
283.15 1.3077
285.15 1.2363
287.15 1.1709
289.15 1.1111
291.15 1.0559
293.15 1.0050
293.35 1.0000
295.15 0.9579
297.15 0.9142
299.15 0.8737
301.15 0.8360
303.15 0.8007
305.15 0.7679
307.15 0.7371
309.15 0.7085
311.15 0.6814
313.15 0.6560
315.15 0.6321
317.15 0.6097
319.15 0.5883
321.15 0.5683
323.15 0.5494
325.15 0.5315
327.15 0.5146
329.15 0.4985
331.15 0.4832
333.15 0.4688
335.15 0.4550
337.15 0.4418
339.15 0.4293
341.15 0.4174
343.15 0.4061
345.15 0.3952
347.15 0.3849
349.15 0.3750
351.15 0.3655
353.15 0.3565
355.15 0.3478
357.15 0.3395
359.15 0.3315
361.15 0.3239
363.15 0.3165
365.15 0.3095
367.15 0.3027
369.15 0.2962
371.15 0.2899
373.15 0.2838

end
end
...

Begin Aria Material Foo
...
Viscosity = User_Function Name=Water_Viscosity X=Temperature
...

End Aria Material Foo
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Description A look-up function is used to compute the values of the viscosity as a function of
some other variable, i.e. f(x). The function type (“piecewise linear” in the example
above) must support the differentiate() method for Newton’s method.

Here NAME is the name of the user-defined function (Water Viscosity in the example)
and X is the Aria name of the abcissa variable (TEMPERATURE in the example). Note
that X is not necessarily the same name as the abcissa variable identified in the
user-defined function (T in the example).

10.40.13 VISCOSITY = WELD

Parameters [BETA = REAL ]
C0 = REAL

C1 = REAL

C2 = REAL

C3 = REAL

T LIQ = REAL T 90 = REAL T MAX = REAL

Example Viscosity = Weld C0=1 C1=-1e-2 C2=0 C3=0 T LIQ=920 T MAX=1400
T 90=1000

Description This is an emprical model that emulates the melting of a solid metal during the laser
welding process.

µ =


µ90 + (µliq − µ90) T−T90

Tliq−T90
: T < Tliq

c0 + c1T̂ + c2T̂
2 + c3T̂

3 : T >= Tliq

(10.101)

where µliq is given by

µliq = c0 + c1Tliq + c2T
2
liq + c3T

3
liq, (10.102)

µ90 = βµliq and T̂ = min(T, Tmax). The default value of BETA is 1011.

10.41 YOUNGS MODULUS

Syntax YOUNGS MODULUS = MODEL [param1 = val1, param2 = val2 ...]

Description Specifies the material model for the Young’s modulus.
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Details The solid stress T is given by

T = λEkkI + 2µE − β (T − Tref ) I (10.103)

where λ and µ are the Lamé coefficients, E = 1
2

(
∇d + ∇dT

)
is the deformation

tensor, β is the coefficient of thermal stress, T is temperature and Tref is the solid
stress reference temperature.

These Lamé coefficients are related to the more standard Young’s modulus, Poisson’s
ratio and CTE (α) as follows:

2µ =
E

(1 + ν)
(10.104)

λ =
νE

(1 + ν) (1− 2ν)
= 2µ

ν

(1− 2ν)
(10.105)

β =
αE

(1− 2ν)
= α (3λ + 2µ) (10.106)

When a user supplies the Young’s modulus, Poisson’s ratio and CTE properties Aria
internally convertes them into the Lamé coefficients.

Supplying the Lamé coefficients is more computationally efficient but perhaps less
convenient, especially if the material properties are varying (e.g., temperature depen-
dent in a non-isothermal problem).

Parent Block(s) ARIA MATERIAL

10.41.1 YOUNGS MODULUS = CONSTANT

Parameters YM = REAL

Example YOUNGS MODULUS = CONSTANT YM = 1.0

Description YM is the value of the constant Young’s modulus.
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Chapter 11

Solution Control Reference

11.1 TRANSFER

Begin TRANSFER transfer name

COPY { VOLUME | SURFACE } { ELEMENTS | NODES | CONSTRAINTS } FROM from region name
TO to region name

INTERPOLATE { VOLUME | SURFACE } { ELEMENTS | NODES | CONSTRAINTS } FROM from region name
TO to region name

SEND BLOCK from blocks TO to blocks

SEND FIELD source field name STATE { NONE | NEW | OLD | NM1 | NM2 | NM3 | NM4 } TO
destination field name STATE { NONE | NEW | OLD | NM1 | NM2 | NM3 | NM4 } [ LOWER BOUND
lower bound UPPER BOUND upper bound ]

SEARCH TYPE { = | IS | ARE } [ { PARALLEL | PROXIMITY | DETAILED } { PARALLEL |
PROXIMITY | DETAILED } { PARALLEL | PROXIMITY | DETAILED } ]

NODES OUTSIDE REGION { = | IS | ARE } { IGNORE | EXTRAPOLATE }

SEARCH COORDINATE FIELD source field name STATE { NONE | NEW | OLD | NM1 | NM2 | NM3
| NM4 } TO destination field name STATE { NONE | NEW | OLD | NM1 | NM2 | NM3 | NM4 }

SEARCH SURFACE GAP TOLERANCE { = | IS | ARE } surface gap tolerance

SEARCH GEOMETRIC TOLERANCE { = | IS | ARE } geometric tolerance

FROM { ELEMENTS | NODES | CONSTRAINTS } TO { ELEMENTS | NODES | CONSTRAINTS | GAUSS POINTS }

INTERPOLATION FUNCTION User Subroutine

ALL FIELDS

EXCLUDE GHOSTED

USE PREDEFINED TRANSFER predefined transfer name FROM from region TO to region

End

Details transfer region/mesh information. the mechanics/variables information will get
sorted out by the calling procedure.
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11.1.1 COPY

Syntax COPY { VOLUME | SURFACE } { ELEMENTS | NODES | CONSTRAINTS } FROM
from region name TO to region name

from region name : no description (C)

to region name : no description (C)

Details transfer from region/block to region/block

11.1.2 INTERPOLATE

Syntax INTERPOLATE { VOLUME | SURFACE } { ELEMENTS | NODES | CONSTRAINTS }
FROM from region name TO to region name

from region name : no description (C)

to region name : no description (C)

Details transfer from region/block to region/block

11.1.3 SEND BLOCK

Syntax SEND BLOCK from blocks TO to blocks

from blocks : no description (C [, ...])

to blocks : no description (C [, ...])

Details Add element blocks to a particular same mesh element copy transfer operator.

11.1.4 SEND FIELD

Syntax SEND FIELD source field name STATE { NONE | NEW | OLD | NM1 | NM2 | NM3
| NM4 } TO destination field name STATE { NONE | NEW | OLD | NM1 | NM2 |
NM3 | NM4 } [ LOWER BOUND lower bound UPPER BOUND upper bound ]

source field name : no description (C)

destination field name : no description (C)

lower bound : no description (R)

upper bound : no description (R)

Details Specifies the mapping between source and destination field names. example SEND
FIELD velocity TO velocity SEND FIELD temp TO temperature lower bound 0
SEND FIELD x TO y lower bound 10 upper bound 100
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11.1.5 SEARCH TYPE

Details

11.1.6 NODES OUTSIDE REGION

Details

11.1.7 SEARCH COORDINATE FIELD

Syntax SEARCH COORDINATE FIELD source field name STATE { NONE | NEW | OLD | NM1
| NM2 | NM3 | NM4 } TO destination field name STATE { NONE | NEW | OLD |
NM1 | NM2 | NM3 | NM4 }

source field name : no description (C)

destination field name : no description (C)

Details

11.1.8 SEARCH SURFACE GAP TOLERANCE

Syntax SEARCH SURFACE GAP TOLERANCE { = | IS | ARE } surface gap tolerance

surface gap tolerance : no description (R)

Details

11.1.9 SEARCH GEOMETRIC TOLERANCE

Syntax SEARCH GEOMETRIC TOLERANCE { = | IS | ARE } geometric tolerance

geometric tolerance : no description (R)

Details

11.1.10 FROM

Details Allows the send/receive mesh objects to be different.

11.1.11 INTERPOLATION FUNCTION

Syntax INTERPOLATION FUNCTION User Subroutine

User Subroutine : no description (C)
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Details Allows an application defined subroutine to be used for the interpolation.

11.1.12 ALL FIELDS

Details Select all fields for transfer that have same name and state for source and destination
regions.

11.1.13 EXCLUDE GHOSTED

Details exclude ghosted nodes from a copy transfer

11.1.14 USE PREDEFINED TRANSFER

Syntax USE PREDEFINED TRANSFER predefined transfer name FROM from region TO
to region

predefined transfer name : no description (C)

from region : no description (C)

to region : no description (C)

Details Use predefine transfer semantics provided by the specified name.

11.2 SOLUTION CONTROL DESCRIPTION

Begin SOLUTION CONTROL DESCRIPTION name

USE SYSTEM name Begin SYSTEM name

End
Begin SUBSYSTEM name

End
Begin INITIALIZE name

End
Begin PARAMETERS FOR type-name

End
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End

Details Contains the commands needed to execute an analysis using the Calagio procedure
that utilizes Solver Control.

11.2.1 USE SYSTEM

Syntax USE SYSTEM name

name : no description (C [, ...])

Details This set the name of which system to use.

11.3 SYSTEM

Begin SYSTEM name

EVENT name [ WHEN when-expression ]

SIMULATION START TIME { = | IS } number

SIMULATION TERMINATION TIME { = | IS } number

SIMULATION MAX GLOBAL ITERATIONS { = | IS } number

TRANSFER name [ WHEN when-expression ]

USE INITIALIZE name

OUTPUT name [ WHEN when-expression ] Begin TRANSIENT name

End
Begin SEQUENTIAL name

End

End

Details This block wraps a solver system for a given name. The NAME parameter is the
name used to define the system. There can be more than one system block in the
Solver Control Description block. The ”use system NAME” line commmand controls
which one is to be used.
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11.3.1 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.3.2 SIMULATION START TIME

Syntax SIMULATION START TIME { = | IS } number

number : no description (R)

Details Simulation starting time. (by default 0.0)

11.3.3 SIMULATION TERMINATION TIME

Syntax SIMULATION TERMINATION TIME { = | IS } number

number : no description (R)

Details The drop dead time.

11.3.4 SIMULATION MAX GLOBAL ITERATIONS

Syntax SIMULATION MAX GLOBAL ITERATIONS { = | IS } number

number : no description (I)

Details The Total number of Solves.

11.3.5 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.
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11.3.6 USE INITIALIZE

Syntax USE INITIALIZE name

name : no description (C [, ...])

Details This set the name of which initialization to use.

11.3.7 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.4 TRANSIENT

Begin TRANSIENT name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin NONLINEAR name

End
Begin SUBCYCLE name

End
Begin MATRIX FREE NONLINEAR name

End

End

Details This block is used to wrap a time loop.
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11.4.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.4.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.4.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.4.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.4.5 INVOLVE

Syntax INVOLVE name

name : no description (C)
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Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.5 NONLINEAR

Begin NONLINEAR name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin NONLINEAR name

End
Begin SUBCYCLE name

End

End

Details This block is used to wrap a nonlinear solve loop.

11.5.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.5.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.5.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.5.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.5.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.6 NONLINEAR

Begin NONLINEAR name

End

Details This block is used to wrap a nonlinear solve loop.
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11.7 SUBCYCLE

Begin SUBCYCLE name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin SUBCYCLE name

End

End

Details This block is used to wrap a subcycle time loop.

11.7.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.7.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.
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11.7.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.7.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.7.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.8 SUBCYCLE

Begin SUBCYCLE name

End

Details This block is used to wrap a subcycle time loop.

11.9 SUBCYCLE

Begin SUBCYCLE name
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ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin SUBCYCLE name

End

End

Details This block is used to wrap a subcycle time loop.

11.9.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.9.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.9.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.
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11.9.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.9.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.10 SUBCYCLE

Begin SUBCYCLE name

End

Details This block is used to wrap a subcycle time loop.

11.11 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

USE SUBSYSTEM name

TRANSFER name [ WHEN when-expression ]

REGISTER REGION name

REGISTER TRANSFER name

USE COUPLER coupler name

INVOLVE name Begin MATRIX FREE NONLINEAR name
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End

End

Details This block is used to wrap a nonlinear solve loop.

11.11.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.11.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.11.3 USE SUBSYSTEM

Syntax USE SUBSYSTEM name

name : no description (C [, ...])

Details This set the name of which subsystem to include.

11.11.4 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.11.5 REGISTER REGION

Syntax REGISTER REGION name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.11.6 REGISTER TRANSFER

Syntax REGISTER TRANSFER name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.11.7 USE COUPLER

Syntax USE COUPLER coupler name

coupler name : no description (C)

Details Specifiy which coupler solver block to use for setting solver parameters.

11.11.8 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.12 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name

158



End

Details This block is used to wrap a nonlinear solve loop.

11.13 SEQUENTIAL

Begin SEQUENTIAL name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin NONLINEAR name

End
Begin MATRIX FREE NONLINEAR name

End

End

Details This block is used to wrap a sequential solution. It is used to wrap a sequence of
Non-Linear or pseudo time solve step solves.

11.13.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.
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11.13.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.13.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.13.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.13.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.14 NONLINEAR

Begin NONLINEAR name
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ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin NONLINEAR name

End
Begin SUBCYCLE name

End

End

Details This block is used to wrap a nonlinear solve loop.

11.14.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.14.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.14.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.14.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.14.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.15 NONLINEAR

Begin NONLINEAR name

End

Details This block is used to wrap a nonlinear solve loop.

11.16 SUBCYCLE

Begin SUBCYCLE name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]
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INVOLVE name Begin SUBCYCLE name

End

End

Details This block is used to wrap a subcycle time loop.

11.16.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.16.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.16.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.
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11.16.4 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.16.5 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.17 SUBCYCLE

Begin SUBCYCLE name

End

Details This block is used to wrap a subcycle time loop.

11.18 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

USE SUBSYSTEM name

TRANSFER name [ WHEN when-expression ]

REGISTER REGION name

REGISTER TRANSFER name

USE COUPLER coupler name

INVOLVE name Begin MATRIX FREE NONLINEAR name
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End

End

Details This block is used to wrap a nonlinear solve loop.

11.18.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.18.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.18.3 USE SUBSYSTEM

Syntax USE SUBSYSTEM name

name : no description (C [, ...])

Details This set the name of which subsystem to include.

11.18.4 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.18.5 REGISTER REGION

Syntax REGISTER REGION name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.18.6 REGISTER TRANSFER

Syntax REGISTER TRANSFER name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.18.7 USE COUPLER

Syntax USE COUPLER coupler name

coupler name : no description (C)

Details Specifiy which coupler solver block to use for setting solver parameters.

11.18.8 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.19 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name
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End

Details This block is used to wrap a nonlinear solve loop.

11.20 SUBSYSTEM

Begin SUBSYSTEM name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

USE SUBSYSTEM name
TRANSFER name [ WHEN when-expression ]

OUTPUT name [ WHEN when-expression ]

INVOLVE name Begin MATRIX FREE NONLINEAR name

End

End

Details This block wraps a solver subsystem for a given name. The NAME parameter is
the name used to define the system. There can be more than one system block in
the Solver Control Description block. The ”use subsystem NAME” line commmand
controls where it will be included in a solver system.

11.20.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.20.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.20.3 USE SUBSYSTEM

Syntax USE SUBSYSTEM name

name : no description (C [, ...])

Details This set the name of which subsystem to include.

11.20.4 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.20.5 OUTPUT

Syntax OUTPUT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Output line command which execute a perform I/O on the region.

11.20.6 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.
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11.21 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

USE SUBSYSTEM name

TRANSFER name [ WHEN when-expression ]

REGISTER REGION name

REGISTER TRANSFER name

USE COUPLER coupler name

INVOLVE name Begin MATRIX FREE NONLINEAR name

End

End

Details This block is used to wrap a nonlinear solve loop.

11.21.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.21.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.
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11.21.3 USE SUBSYSTEM

Syntax USE SUBSYSTEM name

name : no description (C [, ...])

Details This set the name of which subsystem to include.

11.21.4 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.21.5 REGISTER REGION

Syntax REGISTER REGION name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.21.6 REGISTER TRANSFER

Syntax REGISTER TRANSFER name

name : no description (C [, ...])

Details Register 1 to many regions to participate in a Matrix Free coupled solve.

11.21.7 USE COUPLER

Syntax USE COUPLER coupler name

coupler name : no description (C)

Details Specifiy which coupler solver block to use for setting solver parameters.
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11.21.8 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.22 MATRIX FREE NONLINEAR

Begin MATRIX FREE NONLINEAR name

End

Details This block is used to wrap a nonlinear solve loop.

11.23 INITIALIZE

Begin INITIALIZE name

ADVANCE name [ WHEN when-expression ]

EVENT name [ WHEN when-expression ]

TRANSFER name [ WHEN when-expression ]

INVOLVE name

End

Details This block wraps a initializer for a given name. The NAME parameter is the name
used to define the initialization block. There can be more than one initialize block
in the Solver Control Description block. The ”use initialize NAME” line commmand
controls which one is to be used.

11.23.1 ADVANCE

Syntax ADVANCE name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)
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Details Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

11.23.2 EVENT

Syntax EVENT name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to
print.

11.23.3 TRANSFER

Syntax TRANSFER name [ WHEN when-expression ]

name : no description (C [, ...])

when-expression : no description (Q)

Details A Solver Control Transfer line command which executes all transfers defined from
the specified region. All transfers with a send region of ’name’ will be executed.

11.23.4 INVOLVE

Syntax INVOLVE name

name : no description (C)

Details Specifiy a physics participant to a coupled problem solved using matrix-free nonlin-
ear.

11.24 PARAMETERS FOR

Begin PARAMETERS FOR type-name

TARGET ERROR FOR region-name MeshObjectType field-name { = | IS } target-number

INITIAL DELTAT { = | IS } number

TERMINATION TIME { = | IS } number

TOTAL CHANGE IN TIME { = | IS } number

NUMBER OF STEPS { = | IS } number

START TIME { = | IS } number
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CONVERGED WHEN convergence-expression
TIME STEP STYLE TimeStepStyle Begin PARAMETERS FOR ARIA REGION RegionName

End

End

Details A Solver Control PARAMETERS block to set up control data for the SC type param-
eter. Inside this block one sets the time step parameters or nonlinear parameters.

11.24.1 TARGET ERROR FOR

Syntax TARGET ERROR FOR region-name MeshObjectType field-name { = | IS } target-
number

region-name : no description (C)

field-name : no description (C)

target-number : no description (R)

Details Assign a target number for a mesh object in a region for convergence.

11.24.2 INITIAL DELTAT

Syntax INITIAL DELTAT { = | IS } number

number : no description (R)

Details Assign an initial delta T

11.24.3 TERMINATION TIME

Syntax TERMINATION TIME { = | IS } number

number : no description (R)

Details Assign a final time to stop

11.24.4 TOTAL CHANGE IN TIME

Syntax TOTAL CHANGE IN TIME { = | IS } number

number : no description (R)
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Details Use this number and the initial time to compute termination time.

11.24.5 NUMBER OF STEPS

Syntax NUMBER OF STEPS { = | IS } number

number : no description (I)

Details The number steps to run the time or nonlinear loop

11.24.6 START TIME

Syntax START TIME { = | IS } number

number : no description (R)

Details Assign a start time.

11.24.7 CONVERGED WHEN

Syntax CONVERGED WHEN convergence-expression

convergence-expression : no description (Q [, ...])

Details Set the convergence expression.

11.24.8 TIME STEP STYLE

Syntax TIME STEP STYLE TimeStepStyle

TimeStepStyle : no description { NOSNAP | NOCLIP | SNAP | CLIP }

Details Set the time stepping style.

Enums TimeStepStyle

NOSNAP - no description

NOCLIP - no description

SNAP - no description

CLIP - no description
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11.25 PARAMETERS FOR ARIA REGION

Begin PARAMETERS FOR ARIA REGION RegionName

INITIAL TIME STEP SIZE { = | IS } dt

MINIMUM TIME STEP SIZE { = | IS } dt

TIME STEP VARIATION { = | IS } time step variation

PREDICTOR-CORRECTOR TOLERANCE { = | IS } predictor corrector tolerance

COURANT LIMIT { = | IS } courant limit

MAXIMUM TIME STEP SIZE { = | IS } dt

End

Details Defines region specific time stepping data

11.25.1 INITIAL TIME STEP SIZE

Syntax INITIAL TIME STEP SIZE { = | IS } dt

dt : no description (R)

Details Specifies the initial time step size. This may remain constant over the run.

11.25.2 MINIMUM TIME STEP SIZE

Syntax MINIMUM TIME STEP SIZE { = | IS } dt

dt : no description (R)

Details Specifies the minimum time step size. Default is 0.0.

11.25.3 TIME STEP VARIATION

Syntax TIME STEP VARIATION { = | IS } time step variation

time step variation : no description (C)

Details Specifies how the time step sizes are to be derived. It’s nice that this can vary from
time block to time block, n’est ce pas?
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11.25.4 PREDICTOR-CORRECTOR TOLERANCE

Syntax PREDICTOR-CORRECTOR TOLERANCE { = | IS } predictor corrector tolerance

predictor corrector tolerance : no description (R)

Details The Predictor-Corrector difference tolerance. Default is 0.001.

11.25.5 COURANT LIMIT

Syntax COURANT LIMIT { = | IS } courant limit

courant limit : no description (R)

Details The Courant Number limit. Default is 0 (INACTIVE).

11.25.6 MAXIMUM TIME STEP SIZE

Syntax MAXIMUM TIME STEP SIZE { = | IS } dt

dt : no description (R)

Details Specifies the maximum time step size. Default is Real MAX.
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Chapter 12

Time Integration Commands

12.1 Setting Up a Transient Problem

Aria uses the solution control library from the SIERRA Framework configuring simulations. All
Aria input files must include a Solution Control Description block in the Procedure section of the
input file. Here’s an example of such a block:

.

.

.
Begin Procedure My_Aria_Procedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region

End
Begin Transient Time_Block_2

Advance My_Aria_Region
End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Fixed
Initial Time Step Size = 0.001

End
End

Begin Parameters For Transient Time_Block_2
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Adaptive
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Initial Time Step Size = 0.001
Predictor-Corrector Tolerance = 1e-3
Minimum Time Step Size = 1e-6

End
End

End
.
.
.

12.2 INITIAL TIME STEP SIZE

Syntax INITIAL TIME STEP SIZE = REAL

Parent Block(s) PARAMETERS FOR ARIA REGION

Description Initial time step size for the time block.

Details Initial time step size for the time block.

Example INITIAL TIME STEP SIZE = 0.001

12.3 MINIMUM TIME STEP SIZE

Syntax MINIMUM TIME STEP SIZE = REAL

Parent Block(s) PARAMETERS FOR ARIA REGION

Description Minimum time step size for this Aria region.

Details Minimum time step size for this Aria region. Regardless of what the adaptive time
step selection routine determines and regardless of what other regions request for
time step sizes (for loosely coupled simulations) the time step will not be allowed to
fall below this value.

Example Minimum Time Step Size = 1e-8
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12.4 TIME STEP VARIATION

Syntax TIME STEP VARIATION = STRING

Parent Block(s) PARAMETERS FOR ARIA REGION

Description Choose between FIXED and ADAPTIVE time step selection methods.

Details Choose between FIXED and ADAPTIVE time step selection methods.

Example Time Step Variation = FIXED

12.5 PREDICTOR-CORRECTOR TOLERANCE

Syntax PREDICTOR-CORRECTOR TOLERANCE = REAL

Parent Block(s) PARAMETERS FOR ARIA REGION

Description Specifies the tolerance for the difference between the predicted solutiona and the
implictly solved corrector solution. Used in adaptive time step selection.

Details The adaptive time step selection formula is

∆tn+1 = ∆tn

(
b

ε

dn+1

)m

(12.1)

where ∆tn ≡ tn+1 − tn is the time step size from the most recent solution, ∆tn+1 ≡
tn+2 − tn+1 is the new time step size, ε is the predictor-corrector tolerance and dn+1

is the norm of the difference between the predicted and actual solutions at time tn+1.
For first order time integration m = 1/2 and b = 2. For second order time integration
m = 1/3 and b = 3(1 + ∆tn−1/∆tn). See Gartling (1986).

Example Predictor-Corrector Tolerance = 0.001

12.6 PREDICTOR FIELDS

Syntax PREDICTOR FIELDS = [NOT] STRING [STRING ...]

Parent Block(s) ARIA REGION
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Description Specifies which fields to examine or ignore in the algorithm for adaptive time step
selection. Fields that are not predictor fields will not be predicted solutions for
the first two time steps. This is important for fields like pressure and electrostatic
potential which may exhibit large jumps in their solutions due to the absence of time
dependent terms in their governing equations.

NOTE: Unlike other time control commands, this command is specified
in the ARIA REGION block of the input file.

Details Explicitly list field names to include in the adaptive time step selection algorithm, if
it’s active. By default all fields are included. All field names following the optional
“NOT” keyword will be excluded from the selection algorithm. The selected fields
are those that contribute to the dn+1 norm discussed above, in TIME TRUNCATION
ERROR. This command line can be provided multiple times with cumulative results.

This same set of fields will have their solution predicted for the first two time steps; all
fields have their solution predicted for all subsequent time steps. This is done because
equations that do not have a time derivative in them may experience a large jump
in solution values between the initial conditions and the first solutions; predicting
the next solution based on this large jump may adversely affect convergence of the
nonlinear solver.

Example PREDICTOR FIELDS = SPECIES 2

Example PREDICTOR FIELDS = VELOCITY TEMPERATURE

Example PREDICTOR FIELDS = NOT PRESSURE
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Chapter 13

Nonlinear Solution Specifications

13.1 NONLINEAR SOLUTION STRATEGY

Syntax NONLINEAR SOLUTION STRATEGY = STRING

Description Specifies the nonlinear solution strategy.

Details Nonlinear solution strategy must be NEWTON or PICARD. Default value = NEW-
TON.

Parent Block(s) ARIA REGION

13.2 NONLINEAR CORRECTION TOLERANCE

Syntax NONLINEAR CORRECTION TOLERANCE = REAL

Description Convergence tolerance of nonlinear correction norm for the solution iteration.

Details Satisfaction of this criterion is sufficient for the iteration to be considered successfully
completed. Default value = 1.0e-6.

Parent Block(s) ARIA REGION

13.3 NONLINEAR RESIDUAL TOLERANCE

Syntax NONLINEAR RESIDUAL TOLERANCE = REAL

Description Convergence tolerance of nonlinear residual for the solution iteration.

Details Satisfaction of this criterion is sufficient for the iteration to be considered successfully
completed. Default value = 1.0e-6.
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Parent Block(s) ARIA REGION

13.4 NONLINEAR RESIDUAL RATIO TOLERANCE

Syntax NONLINEAR RESIDUAL RATIO TOLERANCE = REAL

Description Convergence tolerance of ratio of the nonlinear residual to the initial nonlinear resid-
ual for the solution iteration.

Details Satisfaction of this criterion is sufficient for the iteration to be considered successfully
completed. Default value = 0.0

Parent Block(s) ARIA REGION

13.5 NONLINEAR RELAXATION FACTOR

Syntax NONLINEAR RELAXATION FACTOR = REAL

Description Weighting factor for fraction of a new nonlinear solution that will be applied to the
linear solution update.

Details Weighting factor lies in the range 0.0 to 1.0. Default value = 1.0.

Parent Block(s) ARIA REGION

13.6 MAXIMUM NONLINEAR ITERATIONS

Syntax MAXIMUM NONLINEAR ITERATIONS = INT

Description Number of allowable nonlinear iterations in one linear solution step.

Details The solution step will terminate when the number of nonlinear iterations are exceeded.
Default value = 20.

Parent Block(s) ARIA REGION

182



13.7 MINIMUM NONLINEAR ITERATIONS

Syntax MINIMUM NONLINEAR ITERATIONS = INT

Description Minimum number of nonlinear iterations required.

Details The nonlinear solver will continue iterating until this minimum number of iterations
are performed, including solving the nonlinear matrix system. The default value is
one (1) but setting this to zero can be useful for some situations.

Parent Block(s) ARIA REGION

13.8 ACCEPT SOLUTION AFTER MAXIMUM NONLIN-
EAR ITERATIONS

Syntax ACCEPT SOLUTION AFTER MAXIMUM NONLINEAR ITERATIONS = BOOL

Description Determines whether reaching the maximum number of nonlinear iterations is a “suc-
cess” criterion.

Details Determines whether reaching the maximum number of nonlinear iterations is a “suc-
cess” criterion. By default, this is false. By the way, valid values of BOOL are TRUE
and FALSE, case insensitive.

Parent Block(s) ARIA REGION

13.9 FILTER NONLINEAR SOLUTION

Syntax FILTER NONLINEAR SOLUTION FOR DOF FILTER TYPE = REAL 1 REAL 2

Description Restrict the value of a solution variable used in the nonlinear solver iterations of a
solution step.

Details The nonlinear solution can be restricted to a range with upper and lower limits using
the FILTER TYPE = RANGE while supplying two bounding values. To set an upper
or lower bound use FILTER TYPE = MAXIMUM or FILTER TYPE = MINIMUM
while supplying a single bounding value.

Parent Block(s) ARIA REGION

183



184



Chapter 14

Writing User Plugins

14.1 About Plugins

Users are free to extend Aria’s library of material models, constitutive equations, boundary condi-
tions, distinguishing conditions and source terms through the use of plugins. In order to do this,
a user writes the C++ code to implement an Expression class. Before delving into Aria plugins
it’s worth reading section 23.1 and scanning section 23.4 for an introduction to Aria’s Expression
system.

When a user supplies their own plugin it becomes a first-class piece of Aria. Plugins have no
performance penalty over Aria’s built-in functionality and plugins have no added restrictions over
built-in Expression regarding what can and can’t be done. In fact, taking a user plugin and adding
it to Aria proper (so that it becomes “owned” by Aria) is a piece of cake.

It’s worth re-stating here that a lot of Aria’s algorithms make use of sensitivities, i.e., Aria often needs
to know the derivative of your model with respect to all of the unknowns in the problem. There are
three ways to supply the sensitivities in aria: write them by hand, use a numerical finite-difference
function, or use (forward) automatic differentiation (FAD). The FAD method is ideal for plugins
because the sensitivities are are analytical and exact though there may be a small performance
degradation. However, if only a few models use FAD there may be no measurable performance hit.
For that reason, we’ve designed our plugin system to use FAD by default. If you have different
needs, contact the developers for help.

14.2 Compiling and Using Plugins

Let’s say that we have plugin C++ code for our very own density model in a file named My Density.C.
In order to use this plugin we’ll first need to build it into Aria and to do that we’ll need a project
where we can build Aria. Here are the basic steps:

% cd ~/projects/

% create project -s SierraVOTD plugin project

% cd plugin project

% checkout --deps aria

Now, currently there’s a restriction that your plugin has to be stored in the aria/ subdirectory of
your project. We’ll fix that eventually but in the mean time we need to put our plugin code there,
e.g.,
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% mkdir aria

% cp /some/path/My Density.C aria

% build PLUGINS=My Density.C

To compile-in our plugin we use a Makefile variable called PLUGINS. We can place this right on the
SNTools’ build command line like this:

% build PLUGINS=My Density.C aria

Naturally, other options to build can be added to the command line.

Running the pluginified Aria executable can be done as normal using the SNTools’ sierra tool. If
your input files are somewhere inside the project where you built your plugin then you can run the
sierra tool as normal. If your input files are somewhere else, you can use the -x project-path

option to sierra to tell it to use your project. Continuing our example,

% cd ~/some/other/path

% sierra aria -i use my density.i -x ~/projects/plugin project

14.3 An Important Note About Model Names

In order to avoid name clashes, model names always end with the generic name of the quantity they
provide. So, density model names always end in DENSITY, viscosity model names end in VISCOSITY,
etc. For material models, it’s easy to know what that ending is because it’s the same as the left-hand
side of the “=” sign in the material input block (with spaces replaced by an underscore “ ”). For
source terms, it’s always the name of the equation plus SOURCE, e.g., ENERGY SOURCE. Clearly, it’s
important to keep this in mind when naming and referring to your plugin model or else Aria won’t
be able to find it properly.

In this example, we’ll name our density MY MODEL DENSITY (recall, it must end in DENSITY) so in
the input file we’ll have to refer to it as MY MODEL since the ending is automatically added.

14.4 The Input File

Plugins can be referenced in the input file similiar to the way Aria’s built-in Expressions are ref-
erenced. The name of the model is just whatever your plugin is named without the endign, e.g.,
MY MODEL,

Begin Aria Material Kryptonite
Density = My_Model a=1.0 b=-0.01
...

End

It’s important to note that the plugin name must not conflict with model names used internally by
Aria (the outcome would be, at least to users, ambiguous). Aria will verify this and produce and
error if there’s a name clash.
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14.5 Example Plugin Code: My Density.C

In this section we’ll write the code to supply a density function which is a cubic polynomial in
temperature (T ),

ρ = a + bT + cT 2 + dT 3.

The complete source code for this plugin is available online at http://aria.sandia.gov/My Density.C.

Normally, writing C++ code requires using a header (.h) file and an implementation (.C) file but
since no other code needs to see our class definition, we can skip the header file and place the
definition right in the .C file.

The first thing we need to do is include a header file which will give us all we need to write an
Expression. Since our plugin will live in isolation, we’ll also add a using declaration to make life
easier on ourselves; without it we’d have to declare the namespaces or prepend sierra::Aria:: to
lots of data types. So far, we have this:

#include <Aria_Plugin_Expression.h>
using namespace sierra::Aria;

Next we need the basic declaration of our class. This tells the compiler which methods and data
members we want to have. Here’s ours:

// Class definition -- could go in a header file.
class My_Density : public FAD_Expression
{
public:
My_Density(Expression_Mechanics * const mechanics,

const sierra::Identifier & expr_model_name,
const Subdomain_Tag & subdomain_tag,
const Int & subindex,
const Phase_Label & phase_label,
const sierra::String & params);

virtual ~My_Density() {}
virtual void compute_FAD_values();

private:
Real a;
Real b;
Real c;
Real d;

FAD_MDArray temperature;
};

This is mostly boiler-plate code. Here we declare a constructor and an empty destructor and the
method needed for computing our density’s values. We also add some private data to store our
polynomial coefficients.

Now it’s time to write some code. First, we write the constructor which tells Aria, in a generic sense,
what we provide (density), what we depend on (temperature) and what parameters we require from
the user (a, b, c and d).

My_Density::My_Density(Expression_Mechanics * const mechanics,
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const sierra::Identifier & expr_model_name,
const Subdomain_Tag & subdomain_tag,
const Int & subindex,
const Phase_Label & phase_label,
const sierra::String & params) :

FAD_Expression(mechanics,subdomain_tag,subindex,phase_label,params)
{
my_tensor_order = 0;
my_expression_tag = Expression_Tag(DENSITY_EXPR,NO_OP,subindex,phase_label);
my_expression_model_name = expr_model_name;

// List the expressions that are required for this model.
const Expression_Tag temperature_tag(TEMPERATURE_EXPR,NO_OP,subindex,phase_label);

add_prereq(temperature_tag,temperature);

// Get my model parameters.
a = b = c = d = 0.0;
get_optional_param("A",a);
get_optional_param("B",b);
get_optional_param("C",c);
get_optional_param("D",d);

if(a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0)
{
throw sierra::RuntimeUserError() << "ERROR: All MY_MODEL_DENSITY parameters are zero.";

}

// Make myself known to the manager.
register_myself();

}

The my tensor order tells Aria what kind of field your Expresion creates, viz. scalar, vector or
tensor. If left unspecified, the default type is scalar (my tensor order == 0). Your expression also
has a variable called my tensor dimension which is dimensionality of each tensor order. By default,
my tensor dimension is set to the physical dimension of the problem, i.e., 2 for 2D and 3 for 3D.
This variable is also set for scalar fields. Combined, these two variables define the number of values
required to fully specify your Expression at a point: pow(my tensor dimension,my tensor order).
These also define the expected signature of the values data used below.

Next, we write the code that implements our density function. Important note: the FAD values
arrays are always initialized to zero before this method is called.

void My_Density::compute_FAD_values()
{
for(Int point=0; point < num_points; ++point)
{
const FAD_Type & T = temperature(point);
FAD_values(point) = a + T*(b + T*(c + T*(d)));

}
}

Note that since our Expression is a scalar in this example, the signature of FAD values is FAD values(point).
If our result was a vector or tensor, the signature would be FAD values(point,r) and FAD values(point,r,s),
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respectively, where 0 ≤ r,s < my tensor dimension.

The last thing we need to do is the actual plugin step. This one line of code,

ExprPluginFactory<My_Density> my_density_creator("MY_MODEL_DENSITY");

takes care of making your Expression known to Aria. The quoted string is the string that is used in
your input file (except for the ending part, see section 14.3. If this string has any spaces in it, Aria
will automatically replace them with an underscore.

For completeness the whole plugin code is given here.

#include <Aria_Plugin_Expression.h>

using namespace sierra::Aria;

// Class definition -- could go in a header file.
class My_Density : public FAD_Expression
{
public:
My_Density(Expression_Mechanics * const mechanics,

const sierra::Identifier & expr_model_name,
const Subdomain_Tag & subdomain_tag,
const Int & subindex,
const Phase_Label & phase_label,
const sierra::String & params);

virtual ~My_Density() {}
virtual void compute_FAD_values();

private:
Real a;
Real b;
Real c;
Real d;

FAD_MDArray temperature;
};

My_Density::My_Density(Expression_Mechanics * const mechanics,
const sierra::Identifier & expr_model_name,
const Subdomain_Tag & subdomain_tag,
const Int & subindex,
const Phase_Label & phase_label,
const sierra::String & params) :

FAD_Expression(mechanics,subdomain_tag,subindex,phase_label,params)
{
my_tensor_order = 0;
my_expression_tag = Expression_Tag(DENSITY_EXPR,NO_OP,subindex,phase_label);
my_expression_model_name = expr_model_name;

// List the expressions that are required for this model.
const Expression_Tag temperature_tag(TEMPERATURE_EXPR,NO_OP,subindex,phase_label);

add_prereq(temperature_tag,temperature);
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// Get my model parameters.
a = b = c = d = 0.0;
get_optional_param("A",a);
get_optional_param("B",b);
get_optional_param("C",c);
get_optional_param("D",d);

if(a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0)
{
throw sierra::RuntimeUserError() << "ERROR: All MY_MODEL_DENSITY parameters are zero.";

}

// Make myself known to the manager.
register_myself();

}

void My_Density::compute_FAD_values()
{
for(Int point=0; point < num_points; ++point)
{
const FAD_Type & T = temperature(point);
FAD_values(point) = a + T*(b + T*(c + T*(d)));

}
}

ExprPluginFactory<My_Density> my_density_creator("MY_MODEL_DENSITY");

14.6 Testing Your Plugin

There are two good tests you can perform to test your plugin. The first is to run Aria in debug
mode. To do this, add -o dbg to your build command line to build a debug executble. Then, add
-d to your sierra command line to run the debug executable. In debug mode Aria will, among
other things, perform bounds checking on your FAD MDArray objects like values(...), dself(...)
and sens(...) in this example.

Secondly, if you hand-code your Newton sensitivities (not done in this example), you can test the
coding of your sensitivities by adding -O ‘‘-arialog sens check’’ to your sierra command line.
This will cause Aria to compare the computed sensitivity values with numerical approximations. The
sensitivity checker will cause your code to run slower but it will work in either debug or optimized
mode. Aria’s sensitivity checker is designed to only report discrepencies that have a high probability
of being true errors so it’s possible that it may miss some small errors. However, reported errors are
most probably real.

A lot of times the easiest way to debug your code is to just print information to the screen. Aria
provides a facility to support this. To print information to the log file, use the arialog C++ output
stream. For example,

for(Int point=0; point < num_points; ++point)
{
...
FAD_values(point) = ...
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arialog.m(LOG_PLUGIN) << "value(" << point << ") = " << value(point) << endl;
}

Then, you can activate this output by adding the option -O ‘‘-arialog plugin’’ to your sierra
command line. If you leave off the .m(LOG PLUGIN) part then it will always write your output to
the log file. There’s a performance penalty for having this code present (even if out don’t turn the
logging on) so you probably want to remove it once you’re done debugging.
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Chapter 15

NOX Nonlinear Solver Reference

See, also, the NOX parameters online reference.

15.1 NOX NONLINEAR EQUATION SOLVER

Begin NOX NONLINEAR EQUATION SOLVER Nonlinear Solver Name

SOLUTION METHOD { = | IS | ARE } NoxAztecSolverMethods

PRECONDITIONING METHOD { = | IS | ARE } NoxAztecPreconditionerMethods

NONLINEAR SOLVER METHOD { = | IS | ARE } NoxSolverMethods

NONLINEAR DIRECTION METHOD { = | IS | ARE } NoxDirectionMethods

NONLINEAR JACOBIAN OPERATOR { = | IS | ARE } NoxJacobianOperators [ allowing diagonal
correction ]

NONLINEAR LINESEARCH METHOD { = | IS | ARE } NoxLinesearchMethods

NOX NONLINEAR PRECONDITIONING METHOD { = | IS | ARE } NoxPreconditionerOperators [
allowing diagonal correction ]

NONLINEAR PRECONDITIONING COMPUTE FREQUENCY { = | IS | ARE } frequency

RESET COUNTER EACH TIME STEP { = | IS | ARE } { false | true }
MAX AGE OF JACOBIAN { = | IS | ARE } max age

FORCING TERM METHOD { = | IS | ARE } NoxNewtonSolveOptions

FORCING TERM INITIAL TOLERANCE { = | IS | ARE } init tol

FORCING TERM MINIMUM TOLERANCE { = | IS | ARE } min tol

FORCING TERM MAXIMUM TOLERANCE { = | IS | ARE } max tol

TYPE 2 FORCING TERM ALPHA { = | IS | ARE } alpha

TYPE 2 FORCING TERM GAMMA { = | IS | ARE } beta

MAXIMUM ITERATIONS { = | IS | ARE } max iters

RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

RESTART ITERATIONS { = | IS | ARE } restart iters

PRECONDITIONING STEPS { = | IS | ARE } steps

POLYNOMIAL ORDER { = | IS | ARE } order

MAXIMUM NONLINEAR ITERATIONS { = | IS | ARE } max iters

NONLINEAR ABSOLUTE RESIDUAL NORM TOLERANCE { = | IS | ARE } abs res tol
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NONLINEAR RELATIVE RESIDUAL NORM TOLERANCE { = | IS | ARE } rel res tol

ILL CONDITIONING THRESHOLD { = | IS | ARE } threshold

ILU OVERLAP { = | IS | ARE } overlap

ILU GRAPH FILL { = | IS | ARE } fill

ILUT FILL FACTOR { = | IS | ARE } fill factor

ILUT DROP TOLERANCE { = | IS | ARE } tolerance

PRECONDITIONING PACKAGE { = | IS | ARE } PreconditioningPackages [ using Teuchos Param List Name
]

MATRIX FREE FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencingOptions

FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencingOptions

PERTURBATION COEFFICIENT ALPHA { = | IS | ARE } FDalpha

PERTURBATION COEFFICIENT BETA { = | IS | ARE } FDbeta

MATRIX FREE PERTURBATION COEFFICIENT LAMBDA { = | IS | ARE } MFlambda

MATRIX FREE PERTURBATION COEFFICIENT VALUE { = | IS | ARE } MFepsilon

RESCUE BAD NEWTON SOLVE { = | IS | ARE } { false | true }
USE RCM REORDERING { = | IS | ARE } { false | true }
DISTINGUISH MATRIX FREE FILLS { = | IS | ARE } { false | true }
STAGNATION TEST TOLERANCE { = | IS | ARE } stag test tol

STAGNATION TEST STEPS { = | IS | ARE } stag test steps

LINEAR STAGNATION TEST TOLERANCE { = | IS | ARE } lin stag test tol

LINEAR STAGNATION TEST STEPS { = | IS | ARE } lin stag test steps

NONLINEAR ABSOLUTE UPDATE NORM TOLERANCE { = | IS | ARE } abs update tol

USER DEFINED CONVERGENCE { = | IS | ARE } { false | true }
MINIMUM NONLINEAR ITERATIONS { = | IS | ARE } req min nonlin iters

LINEAR SOLVER OUTPUT FREQUENCY { = | IS | ARE } lin output freq

COLORING ALGORITHM { = | IS | ARE } NoxColoringMethods

COLORING REORDERING { = | IS | ARE } NoxColoringReordering

COLOR GRAPH USING DISTANCE1 { = | IS | ARE } { false | true }
DUMP JACOBIAN MATRIX to MatrixOutputFormat

DUMP RESIDUAL VECTOR to MatrixOutputFormat

DUMP INITIAL GUESS VECTOR to MatrixOutputFormat

DUMP LINEAR SOLUTION VECTOR to MatrixOutputFormat

OUTPUT NONLINEAR OBJECTS using param list name

SETUP NONLINEAR SOLVER using setup params list name

NOX OUTPUT LEVEL { = | IS | ARE } NoxOutputLevels

NOX OUTPUT VALUE { = | IS | ARE } intValue

USE NOX OPERATOR DEBUGGER { = | IS | ARE } Debugger Name

USE NOX LINEAR SYSTEM { = | IS | ARE } Linear System Name

USE NOX LINESEARCH { = | IS | ARE } Linesearch Name

NONLINEAR ML COARSENING METHOD { = | IS | ARE } ML Nox Coarsening Schemes

NONLINEAR ML IS LINEAR PRECONDITIONER { = | IS | ARE } ML Nox Is LinearPrec
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NONLINEAR ML IS MATRIXFREE { = | IS | ARE } ML Nox Is Matrixfree

NONLINEAR ML FINITE DIFFERENCE FINE LEVEL { = | IS | ARE } ML Nox FD FineLevel

NONLINEAR ML MAX NLEVEL { = | IS | ARE } intValue

NONLINEAR ML MAX COARSE SIZE { = | IS | ARE } intValue

NONLINEAR ML COARSENING RATIO OBJECTIVE { = | IS | ARE } intValue

NONLINEAR ML USE NLNCG LEVEL FINE { = | IS | ARE } ML Nox Use nlnCG

NONLINEAR ML USE NLNCG LEVEL MED { = | IS | ARE } ML Nox Use nlnCG

NONLINEAR ML USE NLNCG LEVEL COARSEST { = | IS | ARE } ML Nox Use nlnCG

NONLINEAR ML USE BROYDEN UPDATE { = | IS | ARE } ML Nox Use Broyden

NONLINEAR ML NUM ITERATIONS LINCG FINE { = | IS | ARE } intValue

NONLINEAR ML NUM ITERATIONS LINCG MED { = | IS | ARE } intValue

NONLINEAR ML NUM ITERATIONS LINCG COARSEST { = | IS | ARE } intValue

NONLINEAR ML PROBLEM DIMENSION { = | IS | ARE } intValue

NONLINEAR ML NUMBER PDES PER NODE { = | IS | ARE } intValue

NONLINEAR ML DIMENSION NULLSPACE { = | IS | ARE } intValue

NONLINEAR ML LINEAR SMOOTHER FINE { = | IS | ARE } ML Nox Linear Smoother

NONLINEAR ML LINEAR SMOOTHER MED { = | IS | ARE } ML Nox Linear Smoother

NONLINEAR ML LINEAR SMOOTHER COARSEST { = | IS | ARE } ML Nox Linear Smoother

NONLINEAR ML LINEAR SMOOTHER SWEEPS FINE { = | IS | ARE } intValue

NONLINEAR ML LINEAR SMOOTHER SWEEPS MED { = | IS | ARE } intValue

NONLINEAR ML LINEAR SMOOTHER SWEEPS COARSEST { = | IS | ARE } intValue

NONLINEAR ML NONLINEAR SWEEPS PRE FINE { = | IS | ARE } intValue

NONLINEAR ML NONLINEAR SWEEPS PRE MED { = | IS | ARE } intValue

NONLINEAR ML NONLINEAR SWEEPS COARSEST { = | IS | ARE } intValue

NONLINEAR ML NONLINEAR SWEEPS POST MED { = | IS | ARE } intValue

NONLINEAR ML NONLINEAR SWEEPS POST FINE { = | IS | ARE } intValue

NONLINEAR ML MAX NUMBER CYCLES { = | IS | ARE } intValue

NONLINEAR ML FINITE DIFFERENCE CENTERED { = | IS | ARE } ML Nox Fd Centered

NONLINEAR ML FINITE DIFFERENCE ALPHA { = | IS | ARE } ml fd alpha

NONLINEAR ML FINITE DIFFERENCE BETA { = | IS | ARE } ml fd beta

NONLINEAR ML PRINT LEVEL { = | IS | ARE } intValue

NONLINEAR ML RECALCULATION OFFSET { = | IS | ARE } intValue Begin TEUCHOS PARAMETER
BLOCK Teuchos Parameter Block Name

End
Begin NOX DEBUGGER BLOCK Nox Debugger Block Name

End
Begin NOX EPETRA OPERATOR Nox Operator Block Name

End
Begin NOX AZTECOO LINEAR SYSTEM Nox AztecOO Linear System Block Name
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End
Begin NOX LINESEARCH BLOCK Nox Linesearch Block Name

End

End

Details A set of solver parameters for the NOX nonlinear equation solver.

15.1.1 SOLUTION METHOD

Syntax SOLUTION METHOD { = | IS | ARE } NoxAztecSolverMethods

NoxAztecSolverMethods : no description { cg | cgs | bicgstab | gmres
| tfqmr | lu }

Details Selection of the AztecOO linear solution method.

Enums NoxAztecSolverMethods

cg - no description

cgs - no description

bicgstab - no description

gmres - no description

tfqmr - no description

lu - no description

15.1.2 PRECONDITIONING METHOD

Syntax PRECONDITIONING METHOD { = | IS | ARE } NoxAztecPreconditionerMethods

NoxAztecPreconditionerMethods : no description { none | jacobi
| neumann | least-squares | dd-ilut | dd-ilu | user supplied
operator }

Details Selection of the AztecOO preconditioning methods supported by the NOX nonlinear
solver.
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Enums NoxAztecPreconditionerMethods

none - no description

jacobi - no description

neumann - no description

least-squares - no description

dd-ilut - no description

dd-ilu - no description

user supplied operator - no description

15.1.3 NONLINEAR SOLVER METHOD

Syntax NONLINEAR SOLVER METHOD { = | IS | ARE } NoxSolverMethods

NoxSolverMethods : no description { line search based }

Details Selection of the solution method for nonlinear solver.

Enums NoxSolverMethods

line search based - no description

15.1.4 NONLINEAR DIRECTION METHOD

Syntax NONLINEAR DIRECTION METHOD { = | IS | ARE } NoxDirectionMethods

NoxDirectionMethods : no description { newton | nonlinear cg |
modified newton | semi-implicit }

Details Selection of the direction method to use with a line search based nonlinear solution
method.

Enums NoxDirectionMethods

newton - no description

nonlinear cg - no description

modified newton - no description

semi-implicit - no description
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15.1.5 NONLINEAR JACOBIAN OPERATOR

Syntax NONLINEAR JACOBIAN OPERATOR { = | IS | ARE } NoxJacobianOperators [
allowing diagonal correction ]

NoxJacobianOperators : no description { matrix free | finite
difference | finite coloring | user supplied matrix | user
supplied operator }

Details Selection of the jacobian operator type

Enums NoxJacobianOperators

matrix free - no description

finite difference - no description

finite coloring - no description

user supplied matrix - no description

user supplied operator - no description

15.1.6 NONLINEAR LINESEARCH METHOD

Syntax NONLINEAR LINESEARCH METHOD { = | IS | ARE } NoxLinesearchMethods

NoxLinesearchMethods : no description { full step | polynomial |
quadratic | more thunte | nonlinear cg }

Details Selection of the linesearch method for nonlinear solver.

Enums NoxLinesearchMethods

full step - no description

polynomial - no description

quadratic - no description

more thunte - no description

nonlinear cg - no description

15.1.7 NOX NONLINEAR PRECONDITIONING METHOD

Syntax NOX NONLINEAR PRECONDITIONING METHOD { = | IS | ARE } NoxPreconditioner-
Operators [ allowing diagonal correction ]

NoxPreconditionerOperators : no description { none | use jacobian |
finite difference | finite coloring | user supplied matrix | user
supplied operator | ml }
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Details Selection of NOX nonlinear solver’s preconditioning method.

Enums NoxPreconditionerOperators

none - no description

use jacobian - no description

finite difference - no description

finite coloring - no description

user supplied matrix - no description

user supplied operator - no description

ml - no description

15.1.8 NONLINEAR PRECONDITIONING COMPUTE FREQUENCY

Syntax NONLINEAR PRECONDITIONING COMPUTE FREQUENCY { = | IS | ARE } frequency

frequency : no description (I)

Details Recompute frequency of the nonlinear preconditioner operator.

15.1.9 RESET COUNTER EACH TIME STEP

Details *** This option is currently inactive. ***

15.1.10 MAX AGE OF JACOBIAN

Syntax MAX AGE OF JACOBIAN { = | IS | ARE } max age

max age : no description (I)

Details Integer number of nonlinear iterations between recomputations of the Jacobian

15.1.11 FORCING TERM METHOD

Syntax FORCING TERM METHOD { = | IS | ARE } NoxNewtonSolveOptions

NoxNewtonSolveOptions : no description { Constant | Type 1 | Type
2 }

Details Specification of linear solver adaptive forcing term method.
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Enums NoxNewtonSolveOptions

Constant - no description

Type 1 - no description

Type 2 - no description

15.1.12 FORCING TERM INITIAL TOLERANCE

Syntax FORCING TERM INITIAL TOLERANCE { = | IS | ARE } init tol

init tol : no description (R)

Details Linear solver adaptive forcing term initial linear solve tolerance.

15.1.13 FORCING TERM MINIMUM TOLERANCE

Syntax FORCING TERM MINIMUM TOLERANCE { = | IS | ARE } min tol

min tol : no description (R)

Details Linear solver adaptive forcing term minimum linear solve tolerance.

15.1.14 FORCING TERM MAXIMUM TOLERANCE

Syntax FORCING TERM MAXIMUM TOLERANCE { = | IS | ARE } max tol

max tol : no description (R)

Details Linear solver adaptive forcing term maximum linear solve tolerance.

15.1.15 TYPE 2 FORCING TERM ALPHA

Syntax TYPE 2 FORCING TERM ALPHA { = | IS | ARE } alpha

alpha : no description (R)

Details Linear solver adaptive forcing term Type 2 value for α

15.1.16 TYPE 2 FORCING TERM GAMMA

Syntax TYPE 2 FORCING TERM GAMMA { = | IS | ARE } beta

beta : no description (R)
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Details Linear solver adaptive forcing term Type 2 value for γ

15.1.17 MAXIMUM ITERATIONS

Syntax MAXIMUM ITERATIONS { = | IS | ARE } max iters

max iters : no description (I)

Details Maximum number of solution method iterations.

15.1.18 RESIDUAL NORM TOLERANCE

Syntax RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

tol : no description (R)

Details Iterative solution method residual convergence tolerance.

15.1.19 RESTART ITERATIONS

Syntax RESTART ITERATIONS { = | IS | ARE } restart iters

restart iters : no description (I)

Details Number of iterations between GMRES restarts.

15.1.20 PRECONDITIONING STEPS

Syntax PRECONDITIONING STEPS { = | IS | ARE } steps

steps : no description (I)

Details Number of Jacobi, Gauss-Seidel, or other preconditioning methods’ applications per
iteration.

15.1.21 POLYNOMIAL ORDER

Syntax POLYNOMIAL ORDER { = | IS | ARE } order

order : no description (I)

Details Polynomial order of preconditioning method.
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15.1.22 MAXIMUM NONLINEAR ITERATIONS

Syntax MAXIMUM NONLINEAR ITERATIONS { = | IS | ARE } max iters

max iters : no description (I)

Details Maximum number of nonlinear solver iterations.

15.1.23 NONLINEAR ABSOLUTE RESIDUAL NORM TOLERANCE

Syntax NONLINEAR ABSOLUTE RESIDUAL NORM TOLERANCE { = | IS | ARE } abs res tol

abs res tol : no description (R)

Details Nonlinear absolute residual norm convergence tolerance.

15.1.24 NONLINEAR RELATIVE RESIDUAL NORM TOLERANCE

Syntax NONLINEAR RELATIVE RESIDUAL NORM TOLERANCE { = | IS | ARE } rel res tol

rel res tol : no description (R)

Details Nonlinear relative residual convergence tolerance.

15.1.25 ILL CONDITIONING THRESHOLD

Syntax ILL CONDITIONING THRESHOLD { = | IS | ARE } threshold

threshold : no description (R)

Details Ill-conditioning threshold for linear solver

15.1.26 ILU OVERLAP

Syntax ILU OVERLAP { = | IS | ARE } overlap

overlap : no description (I)

Details Overlap parameter for incomplete factorizations.

202



15.1.27 ILU GRAPH FILL

Syntax ILU GRAPH FILL { = | IS | ARE } fill

fill : no description (I)

Details Graph fill factor for incomplete factorizations.

15.1.28 ILUT FILL FACTOR

Syntax ILUT FILL FACTOR { = | IS | ARE } fill factor

fill factor : no description (R)

Details Fill factor for incomplete threshold factorizations.

15.1.29 ILUT DROP TOLERANCE

Syntax ILUT DROP TOLERANCE { = | IS | ARE } tolerance

tolerance : no description (R)

Details Drop tolerance for incomplete threshold factorizations.

15.1.30 PRECONDITIONING PACKAGE

Syntax PRECONDITIONING PACKAGE { = | IS | ARE } PreconditioningPackages [ using
Teuchos Param List Name ]

PreconditioningPackages : no description { aztecoo | ifpack |
multilevel }

Teuchos Param List Name : no description (C)

Details Specify which package to use for preconditioning.

Enums PreconditioningPackages

aztecoo - no description

ifpack - no description

multilevel - no description
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15.1.31 MATRIX FREE FINITE DIFFERENCE METHOD

Syntax MATRIX FREE FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencin-
gOptions

NoxDifferencingOptions : no description { forward difference |
backward difference | centered difference }

Details Finite differencing method used for matrix-free.

Enums NoxDifferencingOptions

forward difference - no description

backward difference - no description

centered difference - no description

15.1.32 FINITE DIFFERENCE METHOD

Syntax FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencingOptions

NoxDifferencingOptions : no description { forward difference |
backward difference | centered difference }

Details Finite differencing method.

Enums NoxDifferencingOptions

forward difference - no description

backward difference - no description

centered difference - no description

15.1.33 PERTURBATION COEFFICIENT ALPHA

Syntax PERTURBATION COEFFICIENT ALPHA { = | IS | ARE } FDalpha

FDalpha : no description (R)

Details Parameter, α, used in finite differencing perturbation value calculation.

15.1.34 PERTURBATION COEFFICIENT BETA

Syntax PERTURBATION COEFFICIENT BETA { = | IS | ARE } FDbeta

FDbeta : no description (R)
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Details Parameter, β, used in finite differencing perturbation value calculation.

15.1.35 MATRIX FREE PERTURBATION COEFFICIENT LAMBDA

Syntax MATRIX FREE PERTURBATION COEFFICIENT LAMBDA { = | IS | ARE }
MFlambda

MFlambda : no description (R)

Details Parameter, lambda, used to compute the perturbation size used in matrix-free resid-
ual evaluations.

15.1.36 MATRIX FREE PERTURBATION COEFFICIENT VALUE

Syntax MATRIX FREE PERTURBATION COEFFICIENT VALUE { = | IS | ARE } MFepsilon

MFepsilon : no description (R)

Details Direct specification for pertuebation size used in matrix-free residual evaluations.

15.1.37 RESCUE BAD NEWTON SOLVE

Details Flag to specify if an unconverged linear solve solution should be accepted or flagged
as failed.

15.1.38 USE RCM REORDERING

Details Flag to specify whether or not to reorder the matrix via the Reverse Cuthill-McGee
algorithm.

15.1.39 DISTINGUISH MATRIX FREE FILLS

Details Flag to specify whether or not to treat Matrix-Free residual fills different than fills
used as the right-hand-side in Newton methods.

15.1.40 STAGNATION TEST TOLERANCE

Syntax STAGNATION TEST TOLERANCE { = | IS | ARE } stag test tol

stag test tol : no description (R)

Details Maximum allowed ratio of nonlinear residuals used to define stagnation event.
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15.1.41 STAGNATION TEST STEPS

Syntax STAGNATION TEST STEPS { = | IS | ARE } stag test steps

stag test steps : no description (I)

Details Maximum number of consecutive nonlinear iterations that the residual ratio is allowed
to be above its maximum value.

15.1.42 LINEAR STAGNATION TEST TOLERANCE

Syntax LINEAR STAGNATION TEST TOLERANCE { = | IS | ARE } lin stag test tol

lin stag test tol : no description (R)

Details Maximum allowed ratio of linear residuals used to define stagnation event.

15.1.43 LINEAR STAGNATION TEST STEPS

Syntax LINEAR STAGNATION TEST STEPS { = | IS | ARE } lin stag test steps

lin stag test steps : no description (I)

Details Maximum number of consecutive linear iterations that the linear residual ratio is
allowed to be above its maximum value.

15.1.44 NONLINEAR ABSOLUTE UPDATE NORM TOLERANCE

Syntax NONLINEAR ABSOLUTE UPDATE NORM TOLERANCE { = | IS | ARE }
abs update tol

abs update tol : no description (R)

Details Absolute update norm convergence tolerance.

15.1.45 USER DEFINED CONVERGENCE

Details Flag to specify whether or not to allow the application to defined convergence.

15.1.46 MINIMUM NONLINEAR ITERATIONS

Syntax MINIMUM NONLINEAR ITERATIONS { = | IS | ARE } req min nonlin iters

req min nonlin iters : no description (I)
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Details Specifies a required minimum number of nonlinear iterations.

15.1.47 LINEAR SOLVER OUTPUT FREQUENCY

Syntax LINEAR SOLVER OUTPUT FREQUENCY { = | IS | ARE } lin output freq

lin output freq : no description (I)

Details Output frequency for iterative linear solvers.

15.1.48 COLORING ALGORITHM

Syntax COLORING ALGORITHM { = | IS | ARE } NoxColoringMethods

NoxColoringMethods : no description { greedy | luby }

Details Specify which coloring algorithm to use.

Enums NoxColoringMethods

greedy - no description

luby - no description

15.1.49 COLORING REORDERING

Syntax COLORING REORDERING { = | IS | ARE } NoxColoringReordering

NoxColoringReordering : no description { largest first | smallest
first | random }

Details Specify how to reorder during coloring.

Enums NoxColoringReordering

largest first - no description

smallest first - no description

random - no description

15.1.50 COLOR GRAPH USING DISTANCE1

Details Flag indicating use of distance1 coloring of matrix graph.
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15.1.51 DUMP JACOBIAN MATRIX

Syntax DUMP JACOBIAN MATRIX to MatrixOutputFormat

MatrixOutputFormat : no description { ascii | matrix market }

Details Debugging flag to allow the user to print the Jacobian matrix and then exit.

Enums MatrixOutputFormat

ascii - no description

matrix market - no description

15.1.52 DUMP RESIDUAL VECTOR

Syntax DUMP RESIDUAL VECTOR to MatrixOutputFormat

MatrixOutputFormat : no description { ascii | matrix market }

Details Debugging flag to allow the user to print the Residual vector and then exit.

Enums MatrixOutputFormat

ascii - no description

matrix market - no description

15.1.53 DUMP INITIAL GUESS VECTOR

Syntax DUMP INITIAL GUESS VECTOR to MatrixOutputFormat

MatrixOutputFormat : no description { ascii | matrix market }

Details Debugging flag to allow the user to print the initial guess for the nonlinear solution
and then exit.

Enums MatrixOutputFormat

ascii - no description

matrix market - no description

15.1.54 DUMP LINEAR SOLUTION VECTOR

Syntax DUMP LINEAR SOLUTION VECTOR to MatrixOutputFormat

MatrixOutputFormat : no description { ascii | matrix market }
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Details Debugging flag to allow the user to first compute and then dump the vector obtained
from doing a linear solve at the current nonlinear iteration and then exit.

Enums MatrixOutputFormat

ascii - no description

matrix market - no description

15.1.55 OUTPUT NONLINEAR OBJECTS

Syntax OUTPUT NONLINEAR OBJECTS using param list name

param list name : no description (C)

Details Specify nonlinear solver object output using a named teuchos parameter list.

15.1.56 SETUP NONLINEAR SOLVER

Syntax SETUP NONLINEAR SOLVER using setup params list name

setup params list name : no description (C)

Details Specify options to use when setting up the nonlinear solver.

15.1.57 NOX OUTPUT LEVEL

Syntax NOX OUTPUT LEVEL { = | IS | ARE } NoxOutputLevels

NoxOutputLevels : no description { low | medium | high }

Details Level specification for amount of output from the NOX nonlinear solver

Enums NoxOutputLevels

low - no description

medium - no description

high - no description

15.1.58 NOX OUTPUT VALUE

Syntax NOX OUTPUT VALUE { = | IS | ARE } intValue

intValue : no description (I)
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Details Integer specification for amount of output from the NOX nonlinear solver. Values
range from 0-256.

15.1.59 USE NOX OPERATOR DEBUGGER

Syntax USE NOX OPERATOR DEBUGGER { = | IS | ARE } Debugger Name

Debugger Name : no description (C)

Details Specifies which NOX operator (e.g. Jacobian) debugger to use.

15.1.60 USE NOX LINEAR SYSTEM

Syntax USE NOX LINEAR SYSTEM { = | IS | ARE } Linear System Name

Linear System Name : no description (C)

Details Specifies which NOX Linear System to use.

15.1.61 USE NOX LINESEARCH

Syntax USE NOX LINESEARCH { = | IS | ARE } Linesearch Name

Linesearch Name : no description (C)

Details Specifies which NOX Linesearch to use.

15.1.62 NONLINEAR ML COARSENING METHOD

Details Choose ML coarsening method.

15.1.63 NONLINEAR ML IS LINEAR PRECONDITIONER

Details Choose ML to act as non-/linear preconditioner.

15.1.64 NONLINEAR ML IS MATRIXFREE

Details Choose ML to be matrixfree preconditioner.
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15.1.65 NONLINEAR ML FINITE DIFFERENCE FINE LEVEL

Details Choose ML to construct fine level full Jacobian.

15.1.66 NONLINEAR ML MAX NLEVEL

Syntax NONLINEAR ML MAX NLEVEL { = | IS | ARE } intValue

intValue : no description (I)

Details Integer maximum number of levels.

15.1.67 NONLINEAR ML MAX COARSE SIZE

Syntax NONLINEAR ML MAX COARSE SIZE { = | IS | ARE } intValue

intValue : no description (I)

Details Size of coarse grid where to stop coarsening further.

15.1.68 NONLINEAR ML COARSENING RATIO OBJECTIVE

Syntax NONLINEAR ML COARSENING RATIO OBJECTIVE { = | IS | ARE } intValue

intValue : no description (I)

Details Coarsening ratio objective.

15.1.69 NONLINEAR ML USE NLNCG LEVEL FINE

Details Choose ML to use nlnCG on fine level.

15.1.70 NONLINEAR ML USE NLNCG LEVEL MED

Details Choose ML to use nlnCG on all medium levels.

15.1.71 NONLINEAR ML USE NLNCG LEVEL COARSEST

Details Choose ML to use nlnCG on coarsest level.
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15.1.72 NONLINEAR ML USE BROYDEN UPDATE

Details Choose ML to use a Broyden update on all levels that use Newton’s method.

15.1.73 NONLINEAR ML NUM ITERATIONS LINCG FINE

Syntax NONLINEAR ML NUM ITERATIONS LINCG FINE { = | IS | ARE } intValue

intValue : no description (I)

Details Number of linear CG iterations in Newton step on level fine.

15.1.74 NONLINEAR ML NUM ITERATIONS LINCG MED

Syntax NONLINEAR ML NUM ITERATIONS LINCG MED { = | IS | ARE } intValue

intValue : no description (I)

Details Number of linear CG iterations in Newton step on level med.

15.1.75 NONLINEAR ML NUM ITERATIONS LINCG COARSEST

Syntax NONLINEAR ML NUM ITERATIONS LINCG COARSEST { = | IS | ARE } intValue

intValue : no description (I)

Details Number of linear CG iterations in Newton step on level coarsest.

15.1.76 NONLINEAR ML PROBLEM DIMENSION

Syntax NONLINEAR ML PROBLEM DIMENSION { = | IS | ARE } intValue

intValue : no description (I)

Details Dimension of the problem (3D, 2D, 1D).

15.1.77 NONLINEAR ML NUMBER PDES PER NODE

Syntax NONLINEAR ML NUMBER PDES PER NODE { = | IS | ARE } intValue

intValue : no description (I)
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Details Number of PDEs (dofs) per node.

15.1.78 NONLINEAR ML DIMENSION NULLSPACE

Syntax NONLINEAR ML DIMENSION NULLSPACE { = | IS | ARE } intValue

intValue : no description (I)

Details Dimension of the Nullspace of the problem (6 in 3D, 3 in 2D, 1 in 1D).

15.1.79 NONLINEAR ML LINEAR SMOOTHER FINE

Details Choose ML linear smoother.

15.1.80 NONLINEAR ML LINEAR SMOOTHER MED

Details Choose ML linear smoother.

15.1.81 NONLINEAR ML LINEAR SMOOTHER COARSEST

Details Choose ML linear smoother.

15.1.82 NONLINEAR ML LINEAR SMOOTHER SWEEPS FINE

Syntax NONLINEAR ML LINEAR SMOOTHER SWEEPS FINE { = | IS | ARE } intValue

intValue : no description (I)

Details Number of sweeps of linear smoother.

15.1.83 NONLINEAR ML LINEAR SMOOTHER SWEEPS MED

Syntax NONLINEAR ML LINEAR SMOOTHER SWEEPS MED { = | IS | ARE } intValue

intValue : no description (I)

Details Number of sweeps of linear smoother.
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15.1.84 NONLINEAR ML LINEAR SMOOTHER SWEEPS COARS-
EST

Syntax NONLINEAR ML LINEAR SMOOTHER SWEEPS COARSEST { = | IS | ARE } intValue

intValue : no description (I)

Details Number of sweeps of linear smoother.

15.1.85 NONLINEAR ML NONLINEAR SWEEPS PRE FINE

Syntax NONLINEAR ML NONLINEAR SWEEPS PRE FINE { = | IS | ARE } intValue

intValue : no description (I)

Details Number of presmooth sweeps of nonlinear smoother fine.

15.1.86 NONLINEAR ML NONLINEAR SWEEPS PRE MED

Syntax NONLINEAR ML NONLINEAR SWEEPS PRE MED { = | IS | ARE } intValue

intValue : no description (I)

Details Number of presmooth sweeps of nonlinear smoother med.

15.1.87 NONLINEAR ML NONLINEAR SWEEPS COARSEST

Syntax NONLINEAR ML NONLINEAR SWEEPS COARSEST { = | IS | ARE } intValue

intValue : no description (I)

Details Number of sweeps of nonlinear smoother coarsest.

15.1.88 NONLINEAR ML NONLINEAR SWEEPS POST MED

Syntax NONLINEAR ML NONLINEAR SWEEPS POST MED { = | IS | ARE } intValue

intValue : no description (I)

Details Number of postsmooth sweeps of nonlinear smoother med.
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15.1.89 NONLINEAR ML NONLINEAR SWEEPS POST FINE

Syntax NONLINEAR ML NONLINEAR SWEEPS POST FINE { = | IS | ARE } intValue

intValue : no description (I)

Details Number of postsmooth sweeps of nonlinear smoother fine.

15.1.90 NONLINEAR ML MAX NUMBER CYCLES

Syntax NONLINEAR ML MAX NUMBER CYCLES { = | IS | ARE } intValue

intValue : no description (I)

Details max Number of cycles for nox ml as a solver.

15.1.91 NONLINEAR ML FINITE DIFFERENCE CENTERED

Details Choose ML finite differencing method.

15.1.92 NONLINEAR ML FINITE DIFFERENCE ALPHA

Syntax NONLINEAR ML FINITE DIFFERENCE ALPHA { = | IS | ARE } ml fd alpha

ml fd alpha : no description (R)

Details Finite Differencing perturbation parameter alpha.

15.1.93 NONLINEAR ML FINITE DIFFERENCE BETA

Syntax NONLINEAR ML FINITE DIFFERENCE BETA { = | IS | ARE } ml fd beta

ml fd beta : no description (R)

Details Finite Differencing perturbation parameter alpha.

15.1.94 NONLINEAR ML PRINT LEVEL

Syntax NONLINEAR ML PRINT LEVEL { = | IS | ARE } intValue

intValue : no description (I)
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Details Output level (0-10).

15.1.95 NONLINEAR ML RECALCULATION OFFSET

Syntax NONLINEAR ML RECALCULATION OFFSET { = | IS | ARE } intValue

intValue : no description (I)

Details Recalculation of preconditioner offset.

15.2 TEUCHOS PARAMETER BLOCK

Begin TEUCHOS PARAMETER BLOCK Teuchos Parameter Block Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

PARAM-BOOL parameter name VALUE { false | true }
PARAM-SUBLIST parameter name VALUE block name

End

Details A block to set a Teuchos parameter list.

15.2.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

15.2.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)
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Details String-Key/Real-Value pair to be passed to solver.

15.2.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.

15.2.4 PARAM-BOOL

Syntax PARAM-BOOL parameter name VALUE { false | true }

parameter name : no description (Q)

Details String-Key/Boolean-Value pair to be passed to solver.

15.2.5 PARAM-SUBLIST

Syntax PARAM-SUBLIST parameter name VALUE block name

parameter name : no description (Q)

block name : no description (C)

Details String-Key/String-Value pair to designate another Teuchos block as a sublist to this
block.

15.3 NOX DEBUGGER BLOCK

Begin NOX DEBUGGER BLOCK Nox Debugger Block Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

NOX DEBUG BASE OPERATOR { = | IS | ARE } Base Op Name

NOX DEBUG TEST OPERATOR { = | IS | ARE } Test Op Name

FLOOR VALUE { = | IS | ARE } floor value

ABSOLUTE TOLERANCE { = | IS | ARE } abs tol
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RELATIVE TOLERANCE { = | IS | ARE } rel tol

MAX REPORTED VALUES { = | IS | ARE } max to report

End

Details A block to set a NOX debugger parameter list.

15.3.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

15.3.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)

Details String-Key/Real-Value pair to be passed to solver.

15.3.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.

15.3.4 NOX DEBUG BASE OPERATOR

Syntax NOX DEBUG BASE OPERATOR { = | IS | ARE } Base Op Name

Base Op Name : no description (C)

Details Specifies which NOX operator to use as a base operator for comparisons.
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15.3.5 NOX DEBUG TEST OPERATOR

Syntax NOX DEBUG TEST OPERATOR { = | IS | ARE } Test Op Name

Test Op Name : no description (C)

Details Specifies which NOX operator to test against the base operator for comparisons.

15.3.6 FLOOR VALUE

Syntax FLOOR VALUE { = | IS | ARE } floor value

floor value : no description (R)

Details Specify a threshold floor value below which values are not compaored.

15.3.7 ABSOLUTE TOLERANCE

Syntax ABSOLUTE TOLERANCE { = | IS | ARE } abs tol

abs tol : no description (R)

Details Specify an absolute tolerance for comparing values.

15.3.8 RELATIVE TOLERANCE

Syntax RELATIVE TOLERANCE { = | IS | ARE } rel tol

rel tol : no description (R)

Details Specify a relative tolerance for comparing values.

15.3.9 MAX REPORTED VALUES

Syntax MAX REPORTED VALUES { = | IS | ARE } max to report

max to report : no description (I)

Details Specify the maximum number of values to report. Default is all.
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15.4 NOX EPETRA OPERATOR

Begin NOX EPETRA OPERATOR Nox Operator Block Name

FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencingOptions

PERTURBATION COEFFICIENT ALPHA { = | IS | ARE } FDalpha

PERTURBATION COEFFICIENT BETA { = | IS | ARE } FDbeta

MATRIX FREE PERTURBATION COEFFICIENT LAMBDA { = | IS | ARE } MFlambda

MATRIX FREE PERTURBATION COEFFICIENT VALUE { = | IS | ARE } MFepsilon

COLOR GRAPH USING DISTANCE1 { = | IS | ARE } { false | true }

OPERATOR TYPE { = | IS | ARE } NoxJacobianOperators

FIX EMPTY ROWS { = | IS | ARE } { false | true }

End

Details A block to setup a NOX Epetra operator.

15.4.1 FINITE DIFFERENCE METHOD

Syntax FINITE DIFFERENCE METHOD { = | IS | ARE } NoxDifferencingOptions

NoxDifferencingOptions : no description { forward difference |
backward difference | centered difference }

Details Finite differencing method.

Enums NoxDifferencingOptions

forward difference - no description

backward difference - no description

centered difference - no description

15.4.2 PERTURBATION COEFFICIENT ALPHA

Syntax PERTURBATION COEFFICIENT ALPHA { = | IS | ARE } FDalpha

FDalpha : no description (R)

Details Parameter, α, used in finite differencing perturbation value calculation.
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15.4.3 PERTURBATION COEFFICIENT BETA

Syntax PERTURBATION COEFFICIENT BETA { = | IS | ARE } FDbeta

FDbeta : no description (R)

Details Parameter, β, used in finite differencing perturbation value calculation.

15.4.4 MATRIX FREE PERTURBATION COEFFICIENT LAMBDA

Syntax MATRIX FREE PERTURBATION COEFFICIENT LAMBDA { = | IS | ARE }
MFlambda

MFlambda : no description (R)

Details Parameter, lambda, used to compute the perturbation size used in matrix-free resid-
ual evaluations.

15.4.5 MATRIX FREE PERTURBATION COEFFICIENT VALUE

Syntax MATRIX FREE PERTURBATION COEFFICIENT VALUE { = | IS | ARE } MFepsilon

MFepsilon : no description (R)

Details Direct specification for pertuebation size used in matrix-free residual evaluations.

15.4.6 COLOR GRAPH USING DISTANCE1

Details Flag indicating use of distance1 coloring of matrix graph.

15.4.7 OPERATOR TYPE

Syntax OPERATOR TYPE { = | IS | ARE } NoxJacobianOperators

NoxJacobianOperators : no description { matrix free | finite
difference | finite coloring | user supplied matrix | user
supplied operator }

Details Selection of the operator type
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Enums NoxJacobianOperators

matrix free - no description

finite difference - no description

finite coloring - no description

user supplied matrix - no description

user supplied operator - no description

15.4.8 FIX EMPTY ROWS

Details Flag whether or not to correct empty matrix rows

15.5 NOX AZTECOO LINEAR SYSTEM

Begin NOX AZTECOO LINEAR SYSTEM Nox AztecOO Linear System Block Name

SOLUTION METHOD { = | IS | ARE } NoxAztecSolverMethods

LINEAR SYSTEM TYPE { = | IS | ARE } NoxLinearSystemTypes

PRECONDITIONING METHOD { = | IS | ARE } NoxAztecPreconditionerMethods

PRECONDITION USING JACOBIAN { = | IS | ARE } { false | true }

NONLINEAR PRECONDITIONING COMPUTE FREQUENCY { = | IS | ARE } frequency

MAX AGE OF JACOBIAN { = | IS | ARE } max age

FORCING TERM METHOD { = | IS | ARE } NoxNewtonSolveOptions

FORCING TERM INITIAL TOLERANCE { = | IS | ARE } init tol

FORCING TERM MINIMUM TOLERANCE { = | IS | ARE } min tol

FORCING TERM MAXIMUM TOLERANCE { = | IS | ARE } max tol

TYPE 2 FORCING TERM ALPHA { = | IS | ARE } alpha

TYPE 2 FORCING TERM GAMMA { = | IS | ARE } beta

MAXIMUM ITERATIONS { = | IS | ARE } max iters

RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

RESTART ITERATIONS { = | IS | ARE } restart iters

PRECONDITIONING PACKAGE { = | IS | ARE } PreconditioningPackages [ using Teuchos Param List Name
]

RESCUE BAD NEWTON SOLVE { = | IS | ARE } { false | true }

LINEAR SOLVER OUTPUT FREQUENCY { = | IS | ARE } lin output freq

SET JACOBIAN OPERATOR { = | IS | ARE } Operator Name

SET PRECONDITIONER OPERATOR { = | IS | ARE } Operator Name
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End

Details A block to setup a NOX AztecOO Linear System.

15.5.1 SOLUTION METHOD

Syntax SOLUTION METHOD { = | IS | ARE } NoxAztecSolverMethods

NoxAztecSolverMethods : no description { cg | cgs | bicgstab | gmres
| tfqmr | lu }

Details Selection of the AztecOO linear solution method.

Enums NoxAztecSolverMethods

cg - no description

cgs - no description

bicgstab - no description

gmres - no description

tfqmr - no description

lu - no description

15.5.2 LINEAR SYSTEM TYPE

Syntax LINEAR SYSTEM TYPE { = | IS | ARE } NoxLinearSystemTypes

NoxLinearSystemTypes : no description { aztecoo | semi-implicit |
belos | generic sierra linear solver }

Details Selection of the NOX Linear System type.

Enums NoxLinearSystemTypes

aztecoo - no description

semi-implicit - no description

belos - no description

generic sierra linear solver - no description
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15.5.3 PRECONDITIONING METHOD

Syntax PRECONDITIONING METHOD { = | IS | ARE } NoxAztecPreconditionerMethods

NoxAztecPreconditionerMethods : no description { none | jacobi
| neumann | least-squares | dd-ilut | dd-ilu | user supplied
operator }

Details Selection of the AztecOO preconditioning methods supported by the NOX nonlinear
solver.

Enums NoxAztecPreconditionerMethods

none - no description

jacobi - no description

neumann - no description

least-squares - no description

dd-ilut - no description

dd-ilu - no description

user supplied operator - no description

15.5.4 PRECONDITION USING JACOBIAN

Details Flag whether or not to use tha Jacobian operator as the preconditioner operator

15.5.5 NONLINEAR PRECONDITIONING COMPUTE FREQUENCY

Syntax NONLINEAR PRECONDITIONING COMPUTE FREQUENCY { = | IS | ARE } frequency

frequency : no description (I)

Details Recompute frequency of the nonlinear preconditioner operator.

15.5.6 MAX AGE OF JACOBIAN

Syntax MAX AGE OF JACOBIAN { = | IS | ARE } max age

max age : no description (I)

Details Integer number of nonlinear iterations between recomputations of the Jacobian
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15.5.7 FORCING TERM METHOD

Syntax FORCING TERM METHOD { = | IS | ARE } NoxNewtonSolveOptions

NoxNewtonSolveOptions : no description { Constant | Type 1 | Type
2 }

Details Specification of linear solver adaptive forcing term method.

Enums NoxNewtonSolveOptions

Constant - no description

Type 1 - no description

Type 2 - no description

15.5.8 FORCING TERM INITIAL TOLERANCE

Syntax FORCING TERM INITIAL TOLERANCE { = | IS | ARE } init tol

init tol : no description (R)

Details Linear solver adaptive forcing term initial linear solve tolerance.

15.5.9 FORCING TERM MINIMUM TOLERANCE

Syntax FORCING TERM MINIMUM TOLERANCE { = | IS | ARE } min tol

min tol : no description (R)

Details Linear solver adaptive forcing term minimum linear solve tolerance.

15.5.10 FORCING TERM MAXIMUM TOLERANCE

Syntax FORCING TERM MAXIMUM TOLERANCE { = | IS | ARE } max tol

max tol : no description (R)

Details Linear solver adaptive forcing term maximum linear solve tolerance.

15.5.11 TYPE 2 FORCING TERM ALPHA

Syntax TYPE 2 FORCING TERM ALPHA { = | IS | ARE } alpha

alpha : no description (R)
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Details Linear solver adaptive forcing term Type 2 value for α

15.5.12 TYPE 2 FORCING TERM GAMMA

Syntax TYPE 2 FORCING TERM GAMMA { = | IS | ARE } beta

beta : no description (R)

Details Linear solver adaptive forcing term Type 2 value for γ

15.5.13 MAXIMUM ITERATIONS

Syntax MAXIMUM ITERATIONS { = | IS | ARE } max iters

max iters : no description (I)

Details Maximum number of solution method iterations.

15.5.14 RESIDUAL NORM TOLERANCE

Syntax RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

tol : no description (R)

Details Iterative solution method residual convergence tolerance.

15.5.15 RESTART ITERATIONS

Syntax RESTART ITERATIONS { = | IS | ARE } restart iters

restart iters : no description (I)

Details Number of iterations between GMRES restarts.

15.5.16 PRECONDITIONING PACKAGE

Syntax PRECONDITIONING PACKAGE { = | IS | ARE } PreconditioningPackages [ using
Teuchos Param List Name ]

PreconditioningPackages : no description { aztecoo | ifpack |
multilevel }

Teuchos Param List Name : no description (C)
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Details Specify which package to use for preconditioning.

Enums PreconditioningPackages

aztecoo - no description

ifpack - no description

multilevel - no description

15.5.17 RESCUE BAD NEWTON SOLVE

Details Flag to specify if an unconverged linear solve solution should be accepted or flagged
as failed.

15.5.18 LINEAR SOLVER OUTPUT FREQUENCY

Syntax LINEAR SOLVER OUTPUT FREQUENCY { = | IS | ARE } lin output freq

lin output freq : no description (I)

Details Output frequency for iterative linear solvers.

15.5.19 SET JACOBIAN OPERATOR

Syntax SET JACOBIAN OPERATOR { = | IS | ARE } Operator Name

Operator Name : no description (C)

Details Specifies which NOX Epetra operator to use as the Jacobian.

15.5.20 SET PRECONDITIONER OPERATOR

Syntax SET PRECONDITIONER OPERATOR { = | IS | ARE } Operator Name

Operator Name : no description (C)

Details Specifies which NOX Epetra operator to use as the Preconditioner.

15.6 NOX LINESEARCH BLOCK

Begin NOX LINESEARCH BLOCK Nox Linesearch Block Name
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NONLINEAR LINESEARCH METHOD { = | IS | ARE } NoxLinesearchMethods

USE PARAMETER LIST { = | IS | ARE } Teuchos Param List Name

End

Details A block to setup a NOX Linesearch.

15.6.1 NONLINEAR LINESEARCH METHOD

Syntax NONLINEAR LINESEARCH METHOD { = | IS | ARE } NoxLinesearchMethods

NoxLinesearchMethods : no description { full step | polynomial |
quadratic | more thunte | nonlinear cg }

Details Selection of the linesearch method for nonlinear solver.

Enums NoxLinesearchMethods

full step - no description

polynomial - no description

quadratic - no description

more thunte - no description

nonlinear cg - no description

15.6.2 USE PARAMETER LIST

Syntax USE PARAMETER LIST { = | IS | ARE } Teuchos Param List Name

Teuchos Param List Name : no description (C)

Details Specify use of a Teuchos Parameter list
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Chapter 16

LOCA Continuation Solver
Reference

See, also, the LOCA parameters online reference.

16.1 LOCA CONTINUATION SOLVER

Begin LOCA CONTINUATION SOLVER LOCA Solver Name

USE NOX SOLVER { = | IS | ARE } nox solver name

USE PARAMETER LIST { = | IS | ARE } param list name Begin TEUCHOS PARAMETER BLOCK
Teuchos Parameter Block Name

End

End

Details A set of solver parameters for LOCA continuation solver.

16.1.1 USE NOX SOLVER

Syntax USE NOX SOLVER { = | IS | ARE } nox solver name

nox solver name : no description (C)

Details Specify a NOX solver to use for the nonlinear solves.
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16.1.2 USE PARAMETER LIST

Syntax USE PARAMETER LIST { = | IS | ARE } param list name

param list name : no description (C)

Details Specify a Teuchos parameter list to use with the continuation solver.

16.2 TEUCHOS PARAMETER BLOCK

Begin TEUCHOS PARAMETER BLOCK Teuchos Parameter Block Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

PARAM-BOOL parameter name VALUE { false | true }
PARAM-SUBLIST parameter name VALUE block name

End

Details A block to set a Teuchos parameter list.

16.2.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

16.2.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)

Details String-Key/Real-Value pair to be passed to solver.
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16.2.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.

16.2.4 PARAM-BOOL

Syntax PARAM-BOOL parameter name VALUE { false | true }

parameter name : no description (Q)

Details String-Key/Boolean-Value pair to be passed to solver.

16.2.5 PARAM-SUBLIST

Syntax PARAM-SUBLIST parameter name VALUE block name

parameter name : no description (Q)

block name : no description (C)

Details String-Key/String-Value pair to designate another Teuchos block as a sublist to this
block.
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Chapter 17

Adaptivity and Error Estimation

17.1 Aria Region-Level Line Commands

17.1.1 ADAPT MESH ON

Syntax ADAPT MESH ON dof EquationDof

dof : no description (C)

EquationDof : no description (C [, ...])

Details Causes h-adaptivity to be based upon the specified solution dof using the error esti-
mator that appears in the error estimation controller command block. The estimated
global error will be output to the problem log file for each converged solution step.
If cases where only error estimates are desired then one should use the ESTIMATE
ERROR command instead.

17.1.2 ESTIMATE ERROR FOR

Syntax ESTIMATE ERROR FOR dof EquationDof

dof : no description (C)

EquationDof : no description (C [, ...])

Details Causes elemental error to be estimated for specified solution dof using the error esti-
mator that appears in the error estimation controller command block. The estimated
global error will be output to the problem log file for each converged solution step.

17.1.3 USE ADAPTIVITY CONTROLLER

Syntax USE ADAPTIVITY CONTROLLER adaptivity controller name

adaptivity controller name : no description (C)

Details This command is called from the application’s region block.
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17.1.4 USE ERROR ESTIMATION CONTROLLER

Syntax USE ERROR ESTIMATION CONTROLLER ee controller name

ee controller name : no description (C)

Details This command is called from the application’s region block.

17.1.5 USE UNIFORM REFINEMENT CONTROLLER

Syntax USE UNIFORM REFINEMENT CONTROLLER controller name

controller name : no description (C)

Details This command is called from the application’s region block.

17.2 ADAPTIVITY CONTROLLER

Begin ADAPTIVITY CONTROLLER

MAX OUTER ADAPT STEPS { = | IS } max outer adapt steps

MAX INNER ADAPT STEPS { = | IS } max inner adapt steps

MAX ELEMENTS { = | IS } max elements

START TIME { = | IS } start time

STOP TIME { = | IS } start time

ADAPTIVE STRATEGY { = | IS } AdaptiveStrategyType [ USING REFINE ERROR LIMIT FACTOR
refine limit factor USING UNREFINE ERROR LIMIT FACTOR unrefine limit factor ]

GLOBAL ERROR TOLERANCE { = | IS } global error tolerance

End

Details Contains the commands needed to set the adaptive strategy and associated parame-
ters, including the stopping criterion.

17.2.1 MAX OUTER ADAPT STEPS

Syntax MAX OUTER ADAPT STEPS { = | IS } max outer adapt steps

max outer adapt steps : no description (I)

Details This parameter specifies how many times the outer adaptive loop will get executed
per timestep.
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17.2.2 MAX INNER ADAPT STEPS

Syntax MAX INNER ADAPT STEPS { = | IS } max inner adapt steps

max inner adapt steps : no description (I)

Details This parameter specifies how many times the inner adaptive loop will get executed
per timestep.

17.2.3 MAX ELEMENTS

Syntax MAX ELEMENTS { = | IS } max elements

max elements : no description (I)

Details This parameter specifies a stopping criteria based on a maximum allowable number
of elements in the mesh.

17.2.4 START TIME

Syntax START TIME { = | IS } start time

start time : no description (R)

Details This command allows you to specify the solution time at which refinement will become
active, that is, before this time no elements will be refined.

17.2.5 STOP TIME

Syntax STOP TIME { = | IS } start time

start time : no description (R)

Details This command allows you to specify a solution time at which refinement will be-
come inactive, that is, on and after this time elements will no longer be refined or
unrefined.

17.2.6 ADAPTIVE STRATEGY

Syntax ADAPTIVE STRATEGY { = | IS } AdaptiveStrategyType [ USING REFINE ERROR
LIMIT FACTOR refine limit factor USING UNREFINE ERROR LIMIT FACTOR unre-
fine limit factor ]

AdaptiveStrategyType : no description { Default |
Refine fixed fraction | NONE }

refine limit factor : no description (R)

unrefine limit factor : no description (R)

235



Details The optional parameters (with valid values from 0.0 to 1.0) specify the fraction of
the (global) maximum element contribution to the global error norm to use as cutoff
values for element refinement and unrefinement, respectively.

Enums AdaptiveStrategyType

Default - no description

Refine fixed fraction - no description

NONE - no description

17.2.7 GLOBAL ERROR TOLERANCE

Syntax GLOBAL ERROR TOLERANCE { = | IS } global error tolerance

global error tolerance : no description (R)

Details This command adds a stopping criteria based on a maximum allowable value of the
global relative error norm.

17.3 ERROR ESTIMATION CONTROLLER

Begin ERROR ESTIMATION CONTROLLER CONTROLLER NAME

COMPUTE METRIC { = | IS } metricNames

COMPUTE STEP INTERVAL { = | IS } stepInterval

COMPUTE AT OUTPUT

ERROR ESTIMATOR { = | IS } ErrorEstimatorType

QUANTITY OF INTEREST { = | IS } QuantityOfInterestType [ ON SURFACE sideset name ]

TRUTH REFINE LEVEL { = | IS } Truth refine level

COMPUTE OVERKILL SOLUTION USING REFINE LEVEL { = | IS } Overkill solution level

USE DUAL SOLVER DualSolver

End

Details Contains the commands needed to set the error estimation scheme.

17.3.1 COMPUTE METRIC

Syntax COMPUTE METRIC { = | IS } metricNames

metricNames : no description (C [, ...])
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Details Lists a number of metrics within the error estimation class to compute

17.3.2 COMPUTE STEP INTERVAL

Syntax COMPUTE STEP INTERVAL { = | IS } stepInterval

stepInterval : no description (I)

Details Defines how often the error estimator is computed, by number of steps If negative
the estimate will not be computed on a step

17.3.3 COMPUTE AT OUTPUT

Details Flags the error estimator to be computed immediatly prior to the mesh output step.
If this option is used with “compute step interval = -1” the error estimate will only
be computed prior to output otherwise the error estimate will be computed prior to
output in addition to other times.

17.3.4 ERROR ESTIMATOR

Syntax ERROR ESTIMATOR { = | IS } ErrorEstimatorType

ErrorEstimatorType : no description { FluxNorm | ZZ | Truth |
Distortion | Dual | FluxJump | TransferCopy | DualZZ | NONE }

Details Contains the commands needed to specify the error estimator.

Enums ErrorEstimatorType

FluxNorm - no description

ZZ - no description

Truth - no description

Distortion - no description

Dual - no description

FluxJump - no description

TransferCopy - no description

DualZZ - no description

NONE - no description
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17.3.5 QUANTITY OF INTEREST

Syntax QUANTITY OF INTEREST { = | IS } QuantityOfInterestType [ ON SURFACE
sideset name ]

QuantityOfInterestType : no description { Error Energy Norm
| Average Displacement | Average Surface Displacement |
Average Value | Integrated Surface Flux | INVALID Q OF I }

sideset name : no description (C)

Details The quantity of interest must be a valid enumerated type. The types must match
exactly with those given by Apub Input ErrEstimator::QofI Type.

Enums QuantityOfInterestType

Error Energy Norm - no description

Average Displacement - no description

Average Surface Displacement - no description

Average Value - no description

Integrated Surface Flux - no description

INVALID Q OF I - no description

17.3.6 TRUTH REFINE LEVEL

Syntax TRUTH REFINE LEVEL { = | IS } Truth refine level

Truth refine level : no description (I)

Details The number of refinement levels used for generating the truth mesh. The truth
problems are local (elementwise) problems solved on a refinement of each coarse
element. The specified level will be used for all coarse elements. The minimum
allowable value is 1. In general, a higher level will cost more (i.e., more CPU time
required for the error estimation), but will result in a more accurate error estimate.

17.3.7 COMPUTE OVERKILL SOLUTION USING REFINE LEVEL

Syntax COMPUTE OVERKILL SOLUTION USING REFINE LEVEL { = | IS }
Overkill solution level

Overkill solution level : no description (I)

Details The number of refinement levels used for the overkill solution. The minimum allow-
able value is 1. The overkill problem is the same as the original problem, but with
a (much) finer mesh. In general the overkill solution will NOT be computed (it’s
expensive!!!). It is useful mainly for regression tests for small problems.
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17.3.8 USE DUAL SOLVER

Syntax USE DUAL SOLVER DualSolver

DualSolver : no description (C)

Details This command allows the code to connect a solver block to the dual (Quantity of
interest) error estimator in order to solve a different system for the dual/adjoint
problem than the primary solver.

17.4 UNIFORM REFINEMENT CONTROLLER

Begin UNIFORM REFINEMENT CONTROLLER

NUMBER OF OUTER STEPS { = | IS } num outer steps

NUMBER OF INNER STEPS { = | IS } num inner steps

INCLUDE MATERIALS [ list of material names ]

EXCLUDE MATERIALS [ list of material names ]

REFINE INPUT MESH USING REFINE LEVEL { = | IS } level [ THEN DELETE PARENTS ]

USE DEPRECATED HANGING NODE TET REFINEMENT

End

Details Contains the commands needed to specify uniform refinement.

17.4.1 NUMBER OF OUTER STEPS

Syntax NUMBER OF OUTER STEPS { = | IS } num outer steps

num outer steps : no description (I)

Details This parameter specifies how many times the outer adaptive loop will get executed
per timestep.

17.4.2 NUMBER OF INNER STEPS

Syntax NUMBER OF INNER STEPS { = | IS } num inner steps

num inner steps : no description (I)

Details This parameter specifies how many times the inner adaptive loop will get executed
per timestep.
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17.4.3 INCLUDE MATERIALS

Syntax INCLUDE MATERIALS [ list of material names ]

list of material names : no description (C [, ...])

Details List of materials to include in uniform refinement.

17.4.4 EXCLUDE MATERIALS

Syntax EXCLUDE MATERIALS [ list of material names ]

list of material names : no description (C [, ...])

Details List of materials to exclude in uniform refinement.

17.4.5 REFINE INPUT MESH USING REFINE LEVEL

Syntax REFINE INPUT MESH USING REFINE LEVEL { = | IS } level [ THEN DELETE
PARENTS ]

level : no description (I)

Details The number of refinement levels used for the uninitialized raw input mesh.

17.4.6 USE DEPRECATED HANGING NODE TET REFINEMENT

Details Used to request hanging node tet refinement in place of default Rivara Algorithm.

240



Chapter 18

Dynamic Load Balancing

See, also, the Zoltan homepage Boman et al. (1999), the Zoltan User’s Guide Devine et al. (1999)
and an overview of Zoltan Devine et al. (2002).

18.1 ENABLE REBALANCE

Syntax ENABLE REBALANCE WITH THRESHOLD = REAL USING ZOLTAN PARAMETERS
STRING

Description Enables load balancing for parallel simulations.

Details This command causes Aria to occassionally redistribute the mesh across the proces-
sors in a parallel run in order to (hopefully) balance the work. In order to perform
this balancing, Aria must supply a “load” for each element on each processor to
the Zoltan library. See the REBALANCE LOAD MEASURE commmand (18.2) for load
measuring options.

The loads can be output to the results database by adding the following line to the
RESULTS OUTPUT block in the input file:

Element Variables = rebalLoadMeasure as Load

The number supplied as a threshold determines how far out of balance the load can
become before load balancing is performed and the STRING argument names the
Zoltan parameter block to use. Hence, a ZOLTAN PARAMETERS block must also be
supplied in the input file.

Parent Block(s) ARIA REGION

18.2 REBALANCE LOAD MEASURE

Syntax REBALANCE LOAD MEASURE = STRING

Description Selects the method for measuring element loads for rebalancing.

241

http://www.cs.sandia.gov/Zoltan/
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html


Details Valid options are ELEMENT (default), PROCESSOR and CONSTANT.

ELEMENT : (default) assigns an element weight equal to the total cost of assembling
the element for a timestep divided by the number of nonlinear iterations.

PROCESSOR : assigns same weight to all elements on a processor equal to the average
cost of assembling an element for a timestep divided by the number of nonlinear
iterations.

CONSTANT : assigns the same weight to each element, and is useful for regession testing.

Parent Block(s) ARIA REGION

18.3 ZOLTAN PARAMETERS

Begin ZOLTAN PARAMETERS parameter block model

Load Balancing Method { = | IS } LoadBalancingMethod

Deterministic Decomposition { = | IS } { false | true }
Imbalance Tolerance { = | IS } Tol

Over Allocate Memory { = | IS } Alloc

Reuse Cuts { = | IS } { false | true }
Algorithm Debug Level { = | IS } Level

Check Geometry { = | IS } { false | true }
Keep Cuts { = | IS } { false | true }
Lock RCB Directions { = | IS } { false | true }
Set RCB Directions { = | IS } RCBSetDirections

Rectilinear RCB Blocks { = | IS } { false | true }
Renumber Partitions { = | IS } { false | true }
Octree Dimension { = | IS } Dim

Octree Method { = | IS } OctreeMethod

Octree Min Objects { = | IS } Num

Octree Max Objects { = | IS } Num

Zoltan Debug Level { = | IS } Level

Debug Processor Number { = | IS } Proc

Timer { = | IS } { wall | cpu }
Debug Memory { = | IS } Level

rcb recompute box { = | IS } bool

rcb max aspect ratio { = | IS } ratio

End
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Details The block command line parameter, parameter block model, is used to specify a
unique block of zoltan parameters for a test or model calculation. example ZOLTAN
PARAMETERS model name

18.3.1 Load Balancing Method

Syntax Load Balancing Method { = | IS } LoadBalancingMethod

LoadBalancingMethod : no description { Recursive Coordinate
Bisection | Recursive Inertial Bisection | Hilbert Space Filling
Curve | Octree }

Details Default: Load Balancing Method = Recursive Coordinate Bisection Zoltan Equiva-
lence: Load Balancing Method = LB METHOD

Dynamic load rebalancing partitioning decomposition method. Valid values are:
Recursive Coordinate Bisection (RCB), Recursive Inertial Bisection (RIB), Octree
(OCTPART), or Hilbert Space Filling Curve (HSFC). (Carter Edward’s HFFC algo-
rithm)

examples Load Balancing Method = Hilbert Space Filling Curve

Enums LoadBalancingMethod

Recursive Coordinate Bisection - no description

Recursive Inertial Bisection - no description

Hilbert Space Filling Curve - no description

Octree - no description

18.3.2 Deterministic Decomposition

Details Default: Deterministic Decomposition = true Zoltan Equivalence: Deterministic De-
composition = DETERMINISTIC

If this value is set to true, Zoltan’s computation of the new decomposition is deter-
ministic: i.e. executing the same algorithm with the same input on the same number
of processors always produces the same results.

When this parameter is false, message order and other factors may cause variations
in decompositions even under identical operating conditions.

It is highly recommended not to change the default of true.

examples Deterministic Decomposition = true Deterministic Decomposition = false
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18.3.3 Imbalance Tolerance

Syntax Imbalance Tolerance { = | IS } Tol

Tol : no description (R)

Details Default: Imbalance Tolerance = 1.1 Zoltan Equivalence: Imbalance Tolerance =
IMBALANCE TOL Greater than or equal to 1.0.

The amount of load imbalance the partitioning algorithm should deem acceptable.
The load on each processor is computed as the sum of the weights of objects it is
assigned. The imbalance is then computed as the maximum load divided by the
average load. A value for IMBALANCE TOL of 1.2 indicates that 20should not
exceed 1.2

example Imbalance Tolerance = 1.2

18.3.4 Over Allocate Memory

Syntax Over Allocate Memory { = | IS } Alloc

Alloc : no description (R)

Details Default: Over Allocate Memory = 1.1 Zoltan Equivalence: Over Allocate Memory =
RCB OVERALLOC = RIB OVERALLOC Greater than or equal to 1.0.

The amount by which to over-allocate temporary storage arrays for objects within
the algorithm when additional storage is due to changes in processor assignments.
Valid values are: 1.0 (no extra storage allocated), 1.5 (50

examples Over Allocate Memory = 1.0 Over Allocate Memory = 1.5

18.3.5 Reuse Cuts

Details Default: Reuse Cuts = true Zoltan Equivalence: Reuse Cuts = RCB REUSE

Flag to indicate whether to use previous cuts as initial guesses for the current RCB
invocation. Valid values are: false (don’t use previous cuts), or true (use previous
cuts).

examples Reuse Cuts = false Reuse Cuts = true

18.3.6 Algorithm Debug Level

Syntax Algorithm Debug Level { = | IS } Level

Level : no description (I)
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Details Default: Algorithm Debug Level = 1 Zoltan Equivalence: Algorithm Debug Level =
RCB OUTPUT LEVEL = RIB OUTPUT LEVEL = OCT OUTPUT LEVEL

Flag controlling the amount of timing and diagnostic output the specific algorithm
produces. Valid values are 0 (no output), 1 (print summary), or 2 (print data for
each processor).

examples Algorithm Debug Level = 0 Algorithm Debug Level = 1 Algorithm Debug
Level = 2

18.3.7 Check Geometry

Details Default: Check Geometry = true Zoltan Equivalence: Check Geometry =
CHECK GEOM

Flag controlling the invocation of input and output error checking. Valid values are
false (don’t do checking), or true (do checking). Default is true.

examples Check Geometry = false Check Geometry = true

18.3.8 Keep Cuts

Details Default: Keep Cuts = true Zoltan Equivalence: Keep Cuts = KEEP CUTS

Should information about the cuts determining the RCB, RIB, OCTPART, or HSFC
type decomposition be retained? It costs a bit of time to do so, but this information
is necessary if application wants to add more objects to the decomposition via calls
to Zoltan Point Assign or to Zoltan Box Assign. Valid values are: false (don’t keep
cuts), or true (keep cuts).

examples Keep Cuts = false Keep Cuts = true

18.3.9 Lock RCB Directions

Details Default : Lock RCB Directions = false Zoltan Equivalence: Lock RCB Directions =
RCB LOCK DIRECTIONS

Flag that determines whether the order of the directions of the cuts is kept constant
after they are determined the first time RCB is called. Valid values are: false (Don’t
lock directions), or true (lock directions).

examples Lock RCB Directions = false Lock RCB Directions = true
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18.3.10 Set RCB Directions

Syntax Set RCB Directions { = | IS } RCBSetDirections

RCBSetDirections : no description { Do not order cuts | xyz | xzy |
yzx | yxz | zxy | zyx }

Details Default: Set RCB Directions = Do not order cuts Zoltan Equivalence: Set RCB
Directions = RCB SET DIRECTIONS

Flag permits the order of cuts to be changed so that all of the cuts in any direction
are done as a group. The number of cuts in each direction is determined and then the
value of the parameter is used to determine the order that those cuts are made in.
When 1D and 2D problems are partitioned, the directions corresponding to unused
dimensions are ignored. Valid values are: Do not order cuts, xyz, xzy, yzx, yxz, zxy,
or zyx.

examples Set RCB Directions = Do not order cuts Set RCB Directions = xyz Set
RCB Directions = xzy Set RCB Directions = yzx Set RCB Directions = yxz Set RCB
Directions = zxy Set RCB Directions = zyx

Enums RCBSetDirections

Do not order cuts - no description

xyz - no description

xzy - no description

yzx - no description

yxz - no description

zxy - no description

zyx - no description

18.3.11 Rectilinear RCB Blocks

Details Default: Rectilinear RCB Blocks = false Zoltan Equivalence: Rectilinear RCB Blocks
= RCB RECTILINEAR BLOCKS

Flag controlling the shape of the resulting regions. If this option is specified, then
when a cut is made, all of the dots located on the cut are moved to the same side
of the cut. The resulting regions are then rectilinear. When these dots are treated
as a group, then the resulting load balance may not be as good as when the group
of dots is split by the cut. Valid values are: false (move dots individually), or true
(move dots in groups).

examples Rectilinear RCB Blocks = false Rectilinear RCB Blocks = true
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18.3.12 Renumber Partitions

Details Default: Renumber Partitions = true Zoltan Equivalence: Renumber Partitions =
REMAP

Flag to indicate whether to renumber partitions to mazimize overlap between the old
decomposition and the new decomposition (to reduce data movement from old to new
decompositions). Requests for remapping are ignored when, in the new decomposi-
tion, a partition is spread across multiple processors or partition sizes are specified
using ”Set Partition Sizes”.

examples Renumber Partitions = false Renumber Partitions = true

18.3.13 Octree Dimension

Syntax Octree Dimension { = | IS } Dim

Dim : no description (I)

Details Default: Octree Dimension = 3 Zoltan Equivalence: Octree Dimension = OCT DIM

Specifies whether the 2D or 3D Octree algorithms should be used. The 3D algorithms
can be used for 2D problems, but much memory will be wasted to allow for a non-
existent third dimension. Similarly, a 2D algorithm can be used for 3D surface meshes
provided that the surface can be projected to the xy-plane without overlapping points.
Valid values are: 2 (use 2D algorithm), or 3 (use 3D algorithm).

examples Octree Dimension = 2 Octree Dimension = 3

18.3.14 Octree Method

Syntax Octree Method { = | IS } OctreeMethod

OctreeMethod : no description { Morton Indexing | Grey Code |
Hilbert }
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Details Default: Octree Method = Hilbert Zoltan Equivalence: OCT METHOD =
oct method

The Space Filling Curve (SFC) to be used. To partition an octree, a traversal of the
tree is used to define a global ordering on the leaves of the octree. This global ordering
is often referred to as a Space-Filling Curve (SFC). The leaves of the octree can be
easily assigned to processors in a manner which equally distributes work by assigning
slices of the ordered list to processors. Different tree-traversal algorithms produce
different global orderings or SFCs, with some SFCs having better connectivity and
partition quality properties than others. Currently, Zoltan supports either Morton
Indexing (i.e., Z-curve), Grey Code, or Hilbert SFCs. Morton Indexing and Grey
Code SFCs are the simplest (and currently the fastest) of the SFC algorithms, but
they produce lower-quality partitions than the Hilbert SFC. Valid values are: Morton
Indexing, Grey Code or Hilbert.

examples Octree Method = Morton Indexing Octree Method = Grey Code Octree
Method = Hilbert

Enums OctreeMethod

Morton Indexing - no description

Grey Code - no description

Hilbert - no description

18.3.15 Octree Min Objects

Syntax Octree Min Objects { = | IS } Num

Num : no description (I)

Details Default: Octree Min Objects = 1 Zoltan Equivalence: Octree Min Objects =
OCT MINOBJECTS

The minimum number of objects to allow in a leaf octant of the octree. These
objects will be assigned as a group to a processor, so this parameter helps define the
granularity of the load-balancing problem. Values

example Octree Min Objects = 5

18.3.16 Octree Max Objects

Syntax Octree Max Objects { = | IS } Num

Num : no description (I)
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Details Default: Octree Max Objects = 1 Zoltan Equivalence: Octree Max Objects =
OCT MAXOBJECTS

The maximum number of objects to allow in a leaf octant of the octree. These
objects will be assigned as a group to a processor, so this parameter helps define the
granularity of the load-balancing problem. Values greater than or equal to one are
allowable.

example Octree Max Objects = 10

18.3.17 Zoltan Debug Level

Syntax Zoltan Debug Level { = | IS } Level

Level : no description (I)

Details Default: Zoltan Debug Level = 1 Zoltan Equivalence: Zoltan Debug Level = DE-
BUG LEVEL 0 Quiet mode; no output unless an error or warning is produced. 1
Values of all parameters set by Zoltan Set Param and used by the load-balancing
method. 2 Timing information for Zoltan’s load-balancing and auto-migration rou-
tines. 3 Timing information within load-balancing algorithms (support by algorithms
is optional). 4 5 Trace information (enter/exit) for major Zoltan interface routines
(printed by the processor specified by the DEBUG PROCESSOR parameter). 6
Trace information (enter/exit) for major Zoltan interface routines (printed by all
processors). 7 More detailed trace information in major Zoltan interface routines. 8
List of objects to be imported to and exported from each processor. 9 10 Maximum
debug output; may include algorithm-specific output. example Zoltan Debug Level
= 5

18.3.18 Debug Processor Number

Syntax Debug Processor Number { = | IS } Proc

Proc : no description (I)

Details Default: Debug Processor = 0 Zoltan Equivalence: Debug Processor Number =
DEBUG PROCESSOR

Processor number from which trace output should be printed when the zoltan pa-
rameter, DEBUG LEVEL, is set to 5.

example Debug Processor Number = 2
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18.3.19 Timer

Details Default: Timer = wall Zoltan Equivalence: Timer = TIMER

The timer with which you wish to measure time. Valid values are WALL and CPU.

examples Timer = wall Timer = cpu

18.3.20 Debug Memory

Syntax Debug Memory { = | IS } Level

Level : no description (I)

Details Default: Debug Memory = 1 Zoltan Equivalence: Debug Memory = DE-
BUG MEMORY

Integer indicating the amount of low-level debugging information about memory-
allocation should be kept by Zoltan’s Memory Management utilities. Valid values are
0, 1, 2, and 3

examples Debug Memory = 0 Debug Memory = 1 Debug Memory = 2 Debug Memory
= 3

18.3.21 rcb recompute box

Syntax rcb recompute box { = | IS } bool

bool : no description (I)

Details Default: rcb recompute box = 0 Zoltan Equivalence: RCB RECOMPUTE BOX =
bool

0, leave box computations off 1, turn box computations on

examples rcb recompute box = 1

18.3.22 rcb max aspect ratio

Syntax rcb max aspect ratio { = | IS } ratio

ratio : no description (I)

Details Default: rcb max aspect ratio = 10 Zoltan Equivalence:
RCB MAX ASPECT RATIO = ratio

The maximum aspect ratio for a given part

examples rcb max aspect ratio = 5
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Chapter 19

Linear Solver Reference

19.1 TRILINOS EQUATION SOLVER

Begin TRILINOS EQUATION SOLVER Solver Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

PARAM-BOOL parameter name VALUE { false | true }
PRECONDITIONING METHOD { = | IS | ARE } TrilinosPrecondMethods

SOLUTION METHOD { = | IS | ARE } TrilinosSolverMethods

MAXIMUM ITERATIONS { = | IS | ARE } max iters

RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

RESTART ITERATIONS { = | IS | ARE } restart iters

PRECONDITIONING STEPS { = | IS | ARE } steps

POLYNOMIAL ORDER { = | IS | ARE } order

ILU FILL { = | IS | ARE } fill level

ILU THRESHOLD { = | IS | ARE } threashold

RESIDUAL NORM SCALING { = | IS | ARE } AztecResidualNormScaling

DEBUG OUTPUT LEVEL { = | IS | ARE } level

DEBUG OUTPUT PATH { = | IS | ARE } debugOutput

FEI OUTPUT LEVEL { = | IS | ARE } FeiOutputLevels

BC ENFORCEMENT { = | IS | ARE } BcEnforcement

MATRIX SCALING { = | IS | ARE } MatrixScaling

SHARED OWNERSHIP RULE { = | IS | ARE } SharedOwnershipRule

MATRIX FORMAT { = | IS | ARE } MatrixFormat

MATRIX REDUCTION { = | IS | ARE } AztecReductionType

SOLVE TRANSPOSE { = | IS | ARE } true—false

NUM LEVELS { = | IS | ARE } num levels

PRECONDITIONER SUBDOMAIN OVERLAP { = | IS | ARE } overlap

MATRIX VIEWER { = | IS | ARE } machine:port

select fei { = | IS | ARE } WhichFEI
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FEI ERROR BEHAVIOR { = | IS | ARE } FeiErrorBehavior Begin TEUCHOS PARAMETER BLOCK
Teuchos Parameter Block Name

End

End

Details A set of solver parameters for Trilinos equation solver.

19.1.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

19.1.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)

Details String-Key/Real-Value pair to be passed to solver.

19.1.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.

19.1.4 PARAM-BOOL

Syntax PARAM-BOOL parameter name VALUE { false | true }

parameter name : no description (Q)
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Details String-Key/Boolean-Value pair to be passed to solver.

19.1.5 PRECONDITIONING METHOD

Syntax PRECONDITIONING METHOD { = | IS | ARE } TrilinosPrecondMethods

TrilinosPrecondMethods : no description { none | jacobi | neumann |
least-squares | dd-lu | dd-ilut | dd-ilu | dd-rilu | dd-bilu |
dd-icc | multilevel }

Details Selection of the preconditioning method.

Enums TrilinosPrecondMethods

none - no description

jacobi - no description

neumann - no description

least-squares - no description

dd-lu - no description

dd-ilut - no description

dd-ilu - no description

dd-rilu - no description

dd-bilu - no description

dd-icc - no description

multilevel - no description

19.1.6 SOLUTION METHOD

Syntax SOLUTION METHOD { = | IS | ARE } TrilinosSolverMethods

TrilinosSolverMethods : no description { cg | cgs | bicgstab | gmres
| tfqmr | lu | amesos-klu | amesos-mumps | amesos-scalapack |
amesos-umfpack | amesos-dscpack | amesos-superludist }

Details Selection of the linear-system solution algorithm.
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Enums TrilinosSolverMethods

cg - no description

cgs - no description

bicgstab - no description

gmres - no description

tfqmr - no description

lu - no description

amesos-klu - no description

amesos-mumps - no description

amesos-scalapack - no description

amesos-umfpack - no description

amesos-dscpack - no description

amesos-superludist - no description

19.1.7 MAXIMUM ITERATIONS

Syntax MAXIMUM ITERATIONS { = | IS | ARE } max iters

max iters : no description (I)

Details Maximum number of solution method iterations.

19.1.8 RESIDUAL NORM TOLERANCE

Syntax RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

tol : no description (R)

Details Iterative solution method residual convergence tolerance.

19.1.9 RESTART ITERATIONS

Syntax RESTART ITERATIONS { = | IS | ARE } restart iters

restart iters : no description (I)

Details Number of iterations between GMRES restarts.
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19.1.10 PRECONDITIONING STEPS

Syntax PRECONDITIONING STEPS { = | IS | ARE } steps

steps : no description (I)

Details Number of Jacobi, Gauss-Seidel, or other preconditioning methods’ applications per
iteration.

19.1.11 POLYNOMIAL ORDER

Syntax POLYNOMIAL ORDER { = | IS | ARE } order

order : no description (I)

Details Polynomial order of preconditioning method.

19.1.12 ILU FILL

Syntax ILU FILL { = | IS | ARE } fill level

fill level : no description (I)

Details Fill-in parameter for incomplete factorizations.

19.1.13 ILU THRESHOLD

Syntax ILU THRESHOLD { = | IS | ARE } threashold

threashold : no description (R)

Details Threshold parameter for incomplete factorizations.

19.1.14 RESIDUAL NORM SCALING

Syntax RESIDUAL NORM SCALING { = | IS | ARE } AztecResidualNormScaling

AztecResidualNormScaling : no description { none | RHS | R0 |
Anorm }

Details Scaling method for the residual norm.
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Enums AztecResidualNormScaling

none - no description

RHS - no description

R0 - no description

Anorm - no description

19.1.15 DEBUG OUTPUT LEVEL

Syntax DEBUG OUTPUT LEVEL { = | IS | ARE } level

level : no description (I)

Details Output level for debugging. Generally 0 means no solver screen output, and higher
values of this parameter correspond to more screen output.

19.1.16 DEBUG OUTPUT PATH

Syntax DEBUG OUTPUT PATH { = | IS | ARE } debugOutput

debugOutput : no description (C)

Details Specify path where debug-logs and other debug output files will be placed.

19.1.17 FEI OUTPUT LEVEL

Syntax FEI OUTPUT LEVEL { = | IS | ARE } FeiOutputLevels

FeiOutputLevels : no description { none | matrix files | stats |
brief logs | full logs | all }

Details Control the amount of output produced by FEI.

Enums FeiOutputLevels

none - no description

matrix files - no description

stats - no description

brief logs - no description

full logs - no description

all - no description
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19.1.18 BC ENFORCEMENT

Syntax BC ENFORCEMENT { = | IS | ARE } BcEnforcement

BcEnforcement : no description { solver | exact | remove |
solver no column mod | exact no column mod }

Details Controls the way Dirichlet BCs are enforced.

Enums BcEnforcement

solver - no description

exact - no description

remove - no description

solver no column mod - no description

exact no column mod - no description

19.1.19 MATRIX SCALING

Syntax MATRIX SCALING { = | IS | ARE } MatrixScaling

MatrixScaling : no description { none | jacobi | block-jacobi
| row-sum | symmetric-diagonal | symmetric-row-sum | user
supplied }

Details Scaling to be applied to the matrix.

Enums MatrixScaling

none - no description

jacobi - no description

block-jacobi - no description

row-sum - no description

symmetric-diagonal - no description

symmetric-row-sum - no description

user supplied - no description

19.1.20 SHARED OWNERSHIP RULE

Syntax SHARED OWNERSHIP RULE { = | IS | ARE } SharedOwnershipRule

SharedOwnershipRule : no description { low-numbered-proc |
proc-with-local-elem }

Details Controls the way owning processors are chosen for shared nodes in the FEI.
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Enums SharedOwnershipRule

low-numbered-proc - no description

proc-with-local-elem - no description

19.1.21 MATRIX FORMAT

Syntax MATRIX FORMAT { = | IS | ARE } MatrixFormat

MatrixFormat : no description { MSR | VBR | CSR }

Details Storage format for the matrix.

Enums MatrixFormat

MSR - no description

VBR - no description

CSR - no description

19.1.22 MATRIX REDUCTION

Syntax MATRIX REDUCTION { = | IS | ARE } AztecReductionType

AztecReductionType : no description { fei-remove-slaves }

Details Remove constraint equations from matrix.

Enums AztecReductionType

fei-remove-slaves - no description

19.1.23 SOLVE TRANSPOSE

Syntax SOLVE TRANSPOSE { = | IS | ARE } true—false

true|false : no description (C)

Details Whether to solve for transpose of system matrix.

19.1.24 NUM LEVELS

Syntax NUM LEVELS { = | IS | ARE } num levels

num levels : no description (I)
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Details Number of levels for multi-level/multi-grid solvers.

19.1.25 PRECONDITIONER SUBDOMAIN OVERLAP

Syntax PRECONDITIONER SUBDOMAIN OVERLAP { = | IS | ARE } overlap

overlap : no description (I)

Details Ovrlap of Schwarz subdomains (eg, 0,1 or 2).

19.1.26 MATRIX VIEWER

Syntax MATRIX VIEWER { = | IS | ARE } machine:port

machine:port : no description (C)

Details Host and port-number where matvis is running.

19.1.27 select fei

Syntax select fei { = | IS | ARE } WhichFEI

WhichFEI : no description { old | new }

Details Selection of old vs new fei.

Enums WhichFEI

old - no description

new - no description

19.1.28 FEI ERROR BEHAVIOR

Syntax FEI ERROR BEHAVIOR { = | IS | ARE } FeiErrorBehavior

FeiErrorBehavior : no description { returncode | abort }

Details Set FEI error behavior to abort (rather than the default which is to simply print a
message and return an integer error code).

Enums FeiErrorBehavior

returncode - no description

abort - no description
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19.2 TEUCHOS PARAMETER BLOCK

Begin TEUCHOS PARAMETER BLOCK Teuchos Parameter Block Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

PARAM-BOOL parameter name VALUE { false | true }
PARAM-SUBLIST parameter name VALUE block name

End

Details A block to set a Teuchos parameter list.

19.2.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

19.2.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)

Details String-Key/Real-Value pair to be passed to solver.

19.2.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.
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19.2.4 PARAM-BOOL

Syntax PARAM-BOOL parameter name VALUE { false | true }

parameter name : no description (Q)

Details String-Key/Boolean-Value pair to be passed to solver.

19.2.5 PARAM-SUBLIST

Syntax PARAM-SUBLIST parameter name VALUE block name

parameter name : no description (Q)

block name : no description (C)

Details String-Key/String-Value pair to designate another Teuchos block as a sublist to this
block.

19.3 AZTEC EQUATION SOLVER

Begin AZTEC EQUATION SOLVER Solver Name

PARAM-STRING parameter name VALUE string value

PARAM-REAL parameter name VALUE real value

PARAM-INT parameter name VALUE integer value

SOLUTION METHOD { = | IS | ARE } AztecSolverMethods

PRECONDITIONING METHOD { = | IS | ARE } AztecPrecondMethods

MAXIMUM ITERATIONS { = | IS | ARE } max iters

RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

RESTART ITERATIONS { = | IS | ARE } restart iters

PRECONDITIONING STEPS { = | IS | ARE } steps

POLYNOMIAL ORDER { = | IS | ARE } order

ILU FILL { = | IS | ARE } fill level

ILU THRESHOLD { = | IS | ARE } threashold

RESIDUAL NORM SCALING { = | IS | ARE } AztecResidualNormScaling

ILU OMEGA { = | IS | ARE } value

DEBUG OUTPUT LEVEL { = | IS | ARE } level

DEBUG OUTPUT PATH { = | IS | ARE } debugOutput

FEI OUTPUT LEVEL { = | IS | ARE } FeiOutputLevels

ORTHOG METHOD { = | IS | ARE } OrthogMethod

BC ENFORCEMENT { = | IS | ARE } BcEnforcement
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MATRIX SCALING { = | IS | ARE } MatrixScaling

SHARED OWNERSHIP RULE { = | IS | ARE } SharedOwnershipRule

MATRIX FORMAT { = | IS | ARE } MatrixFormat

MATRIX REDUCTION { = | IS | ARE } AztecReductionType

NUM LEVELS { = | IS | ARE } num levels

PRECONDITIONER SUBDOMAIN OVERLAP { = | IS | ARE } overlap

MATRIX VIEWER { = | IS | ARE } machine:port

select fei { = | IS | ARE } WhichFEI

FEI ERROR BEHAVIOR { = | IS | ARE } FeiErrorBehavior

End

Details A set of solver parameters for Aztec equation solver.

19.3.1 PARAM-STRING

Syntax PARAM-STRING parameter name VALUE string value

parameter name : no description (Q)

string value : no description (Q)

Details Key/Value string-pair to be passed to solver.

19.3.2 PARAM-REAL

Syntax PARAM-REAL parameter name VALUE real value

parameter name : no description (Q)

real value : no description (R)

Details String-Key/Real-Value pair to be passed to solver.

19.3.3 PARAM-INT

Syntax PARAM-INT parameter name VALUE integer value

parameter name : no description (Q)

integer value : no description (I)

Details String-Key/Integer-Value pair to be passed to solver.
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19.3.4 SOLUTION METHOD

Syntax SOLUTION METHOD { = | IS | ARE } AztecSolverMethods

AztecSolverMethods : no description { cg | cgs | bicgstab | gmres |
tfqmr | lu }

Details Selection of the linear-system solution algorithm.

Enums AztecSolverMethods

cg - no description

cgs - no description

bicgstab - no description

gmres - no description

tfqmr - no description

lu - no description

19.3.5 PRECONDITIONING METHOD

Syntax PRECONDITIONING METHOD { = | IS | ARE } AztecPrecondMethods

AztecPrecondMethods : no description { none | jacobi | neumann |
least-squares | symmetric-gauss-seidel | dd-lu | dd-ilut | dd-ilu
| dd-rilu | dd-bilu | dd-icc }

Details Selection of the equation preconditioning method.

Enums AztecPrecondMethods

none - no description

jacobi - no description

neumann - no description

least-squares - no description

symmetric-gauss-seidel - no description

dd-lu - no description

dd-ilut - no description

dd-ilu - no description

dd-rilu - no description

dd-bilu - no description

dd-icc - no description
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19.3.6 MAXIMUM ITERATIONS

Syntax MAXIMUM ITERATIONS { = | IS | ARE } max iters

max iters : no description (I)

Details Maximum number of solution method iterations.

19.3.7 RESIDUAL NORM TOLERANCE

Syntax RESIDUAL NORM TOLERANCE { = | IS | ARE } tol

tol : no description (R)

Details Iterative solution method residual convergence tolerance.

19.3.8 RESTART ITERATIONS

Syntax RESTART ITERATIONS { = | IS | ARE } restart iters

restart iters : no description (I)

Details Number of iterations between GMRES restarts.

19.3.9 PRECONDITIONING STEPS

Syntax PRECONDITIONING STEPS { = | IS | ARE } steps

steps : no description (I)

Details Number of Jacobi, Gauss-Seidel, or other preconditioning methods’ applications per
iteration.

19.3.10 POLYNOMIAL ORDER

Syntax POLYNOMIAL ORDER { = | IS | ARE } order

order : no description (I)

Details Polynomial order of preconditioning method.
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19.3.11 ILU FILL

Syntax ILU FILL { = | IS | ARE } fill level

fill level : no description (I)

Details Fill-in parameter for incomplete factorizations.

19.3.12 ILU THRESHOLD

Syntax ILU THRESHOLD { = | IS | ARE } threashold

threashold : no description (R)

Details Threshold parameter for incomplete factorizations.

19.3.13 RESIDUAL NORM SCALING

Syntax RESIDUAL NORM SCALING { = | IS | ARE } AztecResidualNormScaling

AztecResidualNormScaling : no description { none | RHS | R0 |
Anorm }

Details Scaling method for the residual norm.

Enums AztecResidualNormScaling

none - no description

RHS - no description

R0 - no description

Anorm - no description

19.3.14 ILU OMEGA

Syntax ILU OMEGA { = | IS | ARE } value

value : no description (R)

Details Omega parameter, dd-rilu uses ILU(k,w), w==omega
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19.3.15 DEBUG OUTPUT LEVEL

Syntax DEBUG OUTPUT LEVEL { = | IS | ARE } level

level : no description (I)

Details Output level for debugging. Generally 0 means no solver screen output, and higher
values of this parameter correspond to more screen output.

19.3.16 DEBUG OUTPUT PATH

Syntax DEBUG OUTPUT PATH { = | IS | ARE } debugOutput

debugOutput : no description (C)

Details Specify path where debug-logs and other debug output files will be placed.

19.3.17 FEI OUTPUT LEVEL

Syntax FEI OUTPUT LEVEL { = | IS | ARE } FeiOutputLevels

FeiOutputLevels : no description { none | matrix files | stats |
brief logs | full logs | all }

Details Control the amount of output produced by FEI.

Enums FeiOutputLevels

none - no description

matrix files - no description

stats - no description

brief logs - no description

full logs - no description

all - no description

19.3.18 ORTHOG METHOD

Syntax ORTHOG METHOD { = | IS | ARE } OrthogMethod

OrthogMethod : no description { modified | classical }

Details User can choose orthogonalization method used by Aztec GMRES.
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Enums OrthogMethod

modified - no description

classical - no description

19.3.19 BC ENFORCEMENT

Syntax BC ENFORCEMENT { = | IS | ARE } BcEnforcement

BcEnforcement : no description { solver | exact | remove |
solver no column mod | exact no column mod }

Details Controls the way Dirichlet BCs are enforced.

Enums BcEnforcement

solver - no description

exact - no description

remove - no description

solver no column mod - no description

exact no column mod - no description

19.3.20 MATRIX SCALING

Syntax MATRIX SCALING { = | IS | ARE } MatrixScaling

MatrixScaling : no description { none | jacobi | block-jacobi
| row-sum | symmetric-diagonal | symmetric-row-sum | user
supplied }

Details Scaling to be applied to the matrix.

Enums MatrixScaling

none - no description

jacobi - no description

block-jacobi - no description

row-sum - no description

symmetric-diagonal - no description

symmetric-row-sum - no description

user supplied - no description
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19.3.21 SHARED OWNERSHIP RULE

Syntax SHARED OWNERSHIP RULE { = | IS | ARE } SharedOwnershipRule

SharedOwnershipRule : no description { low-numbered-proc |
proc-with-local-elem }

Details Controls the way owning processors are chosen for shared nodes in the FEI.

Enums SharedOwnershipRule

low-numbered-proc - no description

proc-with-local-elem - no description

19.3.22 MATRIX FORMAT

Syntax MATRIX FORMAT { = | IS | ARE } MatrixFormat

MatrixFormat : no description { MSR | VBR | CSR }

Details Storage format for the matrix.

Enums MatrixFormat

MSR - no description

VBR - no description

CSR - no description

19.3.23 MATRIX REDUCTION

Syntax MATRIX REDUCTION { = | IS | ARE } AztecReductionType

AztecReductionType : no description { fei-remove-slaves }

Details Remove constraint equations from matrix.

Enums AztecReductionType

fei-remove-slaves - no description

19.3.24 NUM LEVELS

Syntax NUM LEVELS { = | IS | ARE } num levels

num levels : no description (I)
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Details Number of levels for multi-level/multi-grid solvers.

19.3.25 PRECONDITIONER SUBDOMAIN OVERLAP

Syntax PRECONDITIONER SUBDOMAIN OVERLAP { = | IS | ARE } overlap

overlap : no description (I)

Details Ovrlap of Schwarz subdomains (eg, 0,1 or 2).

19.3.26 MATRIX VIEWER

Syntax MATRIX VIEWER { = | IS | ARE } machine:port

machine:port : no description (C)

Details Host and port-number where matvis is running.

19.3.27 select fei

Syntax select fei { = | IS | ARE } WhichFEI

WhichFEI : no description { old | new }

Details Selection of old vs new fei.

Enums WhichFEI

old - no description

new - no description

19.3.28 FEI ERROR BEHAVIOR

Syntax FEI ERROR BEHAVIOR { = | IS | ARE } FeiErrorBehavior

FeiErrorBehavior : no description { returncode | abort }

Details Set FEI error behavior to abort (rather than the default which is to simply print a
message and return an integer error code).

Enums FeiErrorBehavior

returncode - no description

abort - no description
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Chapter 20

Postprocessing Operations

20.1 POSTPROCESS

The POSTPROCESS line command is used to add extra calculations to a region, that are carried
out after the region’s main calculations. They also add extra fields to the Exodus II output file.

Syntax POSTPROCESS OPERATION [[] SUBINDEX] ON MESH PART [param1 spec1]

Description Performs the postprocessing operation OPERATION on the mesh entity associated with
MESH PART .

Details The MESH PART may be sideset (e.g., “surface 10”) or element block (e.g.,
“block 1”).

Parent Block(s) ARIA REGION

Operation

FLUID TRACTION

Description Computes the value of n · σ on a surface where n is the unit normal to
the surface and σ is the fluid stress tensor.

Details The fluid tractions are computed on the surface element nodes of
MESH PART . The surface element corresponds to a face of the parent
element for the fluid MOMENTUM equation.
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Operation

FLUID FORCE

Parameters [USING INTERP ]

Description Computes the equivalent nodal point fluid force based upon the integral
of n · σ on a surface where n is the unit normal to the surface and σ is
the fluid stress tensor.

Details By default the equivalent nodal forces are computed on the parent ele-
ment for the fluid MOMENTUM equation. The USING INTERP option is
provided to allow projection of the equivalent nodal force onto element
nodes corresponding to the INTERP surface element. A valid INTERP

entry can only be the parent element or a sub-element of the parent
element. Admissible values of INTERP are Q1, Q2, QS2, T1 and T2.

Operation

ELECTRIC FIELD

Parameters [USING INTERP ]

Description Computes the electric field.

Details Computes the electric field as

E = −∇V

Currently, this only works on the default voltage (subindex=-1)

Operation

CURRENT

Parameters [USING INTERP ]

Example Postprocess Current on block 1

Description Computes the electrical current.

Details Computes the current as
J = −σe∇V

where V is the voltage (electric potential) and σe is the electrical con-
ductivity.
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Operation

PRESSURE

Parameters [USING INTERP ]

Description Computes the pressure at all of the nodes. This is useful if the pressure
degree of freedom uses a lower order finite element interpolation than the
mesh, e.g., linear (Q1) pressure on a quadratic (Q2) mesh, or constant-
over-the-element (P0) vs. linear (Q1).

Details Currently, the value assigned to a node is the average value based on the
number of elements that share that node. There’s no slick projection or
weighting involved. Therefore, convergence studies based on the pressure
will seriously underestimate the fidelity of a calculation, until this is
fixed.

Operation

TEMPERATURE

Parameters [USING INTERP ]

Description Computes the temperature on all of the nodes. This is useful if the
temperature degree of freedom uses a lower order interpolation that the
mesh, e.g., linear (Q1) temperature on a quadratic (Q2) mesh.

Details Currently, the value assigned to a node is the average value based on the
number of elements that share that node. There’s no slick projection or
weighting scheme involved.

Operation

DENSITY

Parameters [USING INTERP ]

Description Computes the density material property so that it’s available for out-
put.

Details The value assigned to a node is the average value based on the number of
elements that share that node. There’s no slick projection or weighting
involved.
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Operation

VISCOSITY

Parameters [USING INTERP ]

Description Computes the viscosity material property so that it’s available for out-
put.

Details No details to speak of. Oh, well there’s one detail you may care about:
The value assigned to a node is the average value based on the number of
elements that share that node. There’s no slick projection or weighting
involved.

Operation

THERMAL CONDUCTIVITY

Parameters [USING INTERP ]

Description Computes the thermal conductivity material property so that it’s avail-
able for output.

Details No details to speak of. Oh, well there’s one detail you may care about:
The value assigned to a node is the average value based on the number of
elements that share that node. There’s no slick projection or weighting
involved.

Operation

SPECIFIC HEAT

Parameters [USING INTERP ]

Description Computes the specific heat material property so that it’s available for
output.

Details No details to speak of. Oh, well there’s one detail you may care about:
The value assigned to a node is the average value based on the number of
elements that share that node. There’s no slick projection or weighting
involved.
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Operation

PROJECTED FLUID STRESS XX

Parameters [USING INTERP ]

Description Computes one of the stress tensor components, calculated from the stress
projection equation, at all of the nodes. This is useful if this degree of
freedom uses a lower order finite element interpolation than the mesh,
e.g., linear (Q1) pressure on a quadratic (Q2) mesh, or constant-over-
the-element (P0) vs. linear (Q1).

Details XX, here, may be equal to XX, XY, YX, and YY for 2D, and XX,
XY, XZ, YX, YY, YZ, ZX, ZY, and ZZ for 3D. In other words each
component of the tensor must be individually postprocessed and output
to an exodus file.
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Chapter 21

Enclosure Radiation Reference

21.1 VIEWFACTOR CALCULATION

Begin VIEWFACTOR CALCULATION vf calc

BSP TREE MAX DEPTH { = | IS } DEPTH AND MIN LIST LENGTH { = | IS } L

GEOMETRIC TOLERANCE { = | IS } n

COMPUTE RULE { = | IS } VFComputeRule

HEMICUBE RESOLUTION { = | IS } n

HEMICUBE MAX SUBDIVIDES { = | IS } n

HEMICUBE MIN SEPARATION { = | IS } n

PAIRWISE NUMBER OF VISIBILITY SAMPLES { = | IS } n

PAIRWISE VISIBILITY SAMPLE RULE { = | IS } AVSampleRule

PAIRWISE NUMBER OF MONTE CARLO SAMPLES { = | IS } n

PAIRWISE MONTE CARLO SAMPLE RULE { = | IS } AMCSampleRule

PAIRWISE MONTE CARLO TOL1 { = | IS } real value

PAIRWISE MONTE CARLO TOL2 { = | IS } real value

OUTPUT RULE { = | IS } OutputRule

NUMBER OF ROTATIONS { = | IS } n

X-Y PLANE SYMMETRY

X-Z PLANE SYMMETRY

Y-Z PLANE SYMMETRY

End

Details This block command specifies a radiation enclosure and is used to define a method
for calculating view factors. The parameter for this block corresponds to an instance
of a radiation enclosure mechanics.

277



21.1.1 BSP TREE MAX DEPTH

Syntax BSP TREE MAX DEPTH { = | IS } DEPTH AND MIN LIST LENGTH { = | IS }
L

DEPTH : no description (I)

L : no description (I)

Details This line command sets the BSP tree parameters.

21.1.2 GEOMETRIC TOLERANCE

Syntax GEOMETRIC TOLERANCE { = | IS } n

n : no description (R)

Details Set the geometric tolerance

21.1.3 COMPUTE RULE

Syntax COMPUTE RULE { = | IS } VFComputeRule

VFComputeRule : no description { PAIRWISE | HEMICUBE | READ }

Details This line command sets the method for computing the view factors for this enclosure.
Default value is HEMICUBE

Enums VFComputeRule

PAIRWISE - no description

HEMICUBE - no description

READ - no description

21.1.4 HEMICUBE RESOLUTION

Syntax HEMICUBE RESOLUTION { = | IS } n

n : no description (I)

Details Set the hemicube resolution
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21.1.5 HEMICUBE MAX SUBDIVIDES

Syntax HEMICUBE MAX SUBDIVIDES { = | IS } n

n : no description (I)

Details Set the upper limit of hemicube subdivides

21.1.6 HEMICUBE MIN SEPARATION

Syntax HEMICUBE MIN SEPARATION { = | IS } n

n : no description (R)

Details Set the hemicube minimum seperation

21.1.7 PAIRWISE NUMBER OF VISIBILITY SAMPLES

Syntax PAIRWISE NUMBER OF VISIBILITY SAMPLES { = | IS } n

n : no description (I)

Details Set the pairwise number visibility sample points

21.1.8 PAIRWISE VISIBILITY SAMPLE RULE

Syntax PAIRWISE VISIBILITY SAMPLE RULE { = | IS } AVSampleRule

AVSampleRule : no description { RANDOM | UNIFORM | JITTER |
HALTON }

Details Set the pairwise visibility sample rule

Enums AVSampleRule

RANDOM - no description

UNIFORM - no description

JITTER - no description

HALTON - no description
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21.1.9 PAIRWISE NUMBER OF MONTE CARLO SAMPLES

Syntax PAIRWISE NUMBER OF MONTE CARLO SAMPLES { = | IS } n

n : no description (I)

Details Set the pairwise number of Monte Carlo sample points

21.1.10 PAIRWISE MONTE CARLO SAMPLE RULE

Syntax PAIRWISE MONTE CARLO SAMPLE RULE { = | IS } AMCSampleRule

AMCSampleRule : no description { RANDOM | UNIFORM | JITTER |
HALTON }

Details

Enums AMCSampleRule

RANDOM - no description

UNIFORM - no description

JITTER - no description

HALTON - no description

21.1.11 PAIRWISE MONTE CARLO TOL1

Syntax PAIRWISE MONTE CARLO TOL1 { = | IS } real value

real value : no description (R)

Details Set first of two convergence checks for Monte Carlo integration

21.1.12 PAIRWISE MONTE CARLO TOL2

Syntax PAIRWISE MONTE CARLO TOL2 { = | IS } real value

real value : no description (R)

Details Set second of two convergence checks for Monte Carlo integration
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21.1.13 OUTPUT RULE

Syntax OUTPUT RULE { = | IS } OutputRule

OutputRule : no description { NONE | SUMMARY | VERBOSE }

Details Toggle verbose reporting

Enums OutputRule

NONE - no description

SUMMARY - no description

VERBOSE - no description

21.1.14 NUMBER OF ROTATIONS

Syntax NUMBER OF ROTATIONS { = | IS } n

n : no description (I)

Details Set the number of internal rotations for 2D axisymmetric geometry or 3D geometry
with rotation symmetry. The default value is 1

21.1.15 X-Y PLANE SYMMETRY

Details Specifies symmetry about the X-Y plane.

21.1.16 X-Z PLANE SYMMETRY

Details Specifies symmetry about the X-Z plane.

21.1.17 Y-Z PLANE SYMMETRY

Details Specifies symmetry about the Y-Z plane.

21.2 RADIOSITY SOLVER

Begin RADIOSITY SOLVER Boundary condition instance name

COUPLING { = | IS } RadCouplingRule
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SOLVER { = | IS } RadSolveRule

CONVERGENCE TOLERANCE { = | IS } tolerance

MAXIMUM ITERATIONS { = | IS } M

OUTPUT RULE { = | IS } OutputRule

End

Details Specifies a radiation enclosure. Corresponds to an instance of radiation enclosure
mechanics.

21.2.1 COUPLING

Syntax COUPLING { = | IS } RadCouplingRule

RadCouplingRule : no description { MASON | LAGGED }

Details Specifies linearization method. Default is MASON.

Enums RadCouplingRule

MASON - no description

LAGGED - no description

21.2.2 SOLVER

Syntax SOLVER { = | IS } RadSolveRule

RadSolveRule : no description { CHAPARRAL GMRES | CHAPARRAL CG |
COUPLED }

Details Chaparal solver selection for radiosity system. Default is CHAPARRAL CG.

Enums RadSolveRule

CHAPARRAL GMRES - no description

CHAPARRAL CG - no description

COUPLED - no description

21.2.3 CONVERGENCE TOLERANCE

Syntax CONVERGENCE TOLERANCE { = | IS } tolerance

tolerance : no description (R)
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Details Sets convergence tolerance. Default value is 1.0e-6.

21.2.4 MAXIMUM ITERATIONS

Syntax MAXIMUM ITERATIONS { = | IS } M

M : no description (I)

Details Sets maximum number of iterations. Default value is 300.

21.2.5 OUTPUT RULE

Syntax OUTPUT RULE { = | IS } OutputRule

OutputRule : no description { NONE | SUMMARY | VERBOSE }

Details Sets the information reporting level. Default is NONE.

Enums OutputRule

NONE - no description

SUMMARY - no description

VERBOSE - no description

21.3 ENCLOSURE DEFINITION

Begin ENCLOSURE DEFINITION Boundary condition instance name

ACTIVE PERIODS { = | IS } PeriodNames

INACTIVE PERIODS { = | IS } PeriodNames

EMISSIVITY { = | IS } value [ ON surfaceName ]

EMISSIVITY FUNCTION { = | IS } functionName [ ON surfaceName ]

EMISSIVITY SUBROUTINE { = | IS } mySub [ ON surfaceName ]

ADD SURFACE surfaceList

INTEGRATED POWER OUTPUT variableName

INTEGRATED FLUX OUTPUT variableName

NONBLOCKING SURFACES

BLOCKING SURFACES

PARTIAL ENCLOSURE AREA { = | IS } A

PARTIAL ENCLOSURE TEMPERATURE { = | IS } T
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PARTIAL ENCLOSURE TEMPERATURE TIME FUNCTION { = | IS } fName

PARTIAL ENCLOSURE TEMPERATURE SUBROUTINE { = | IS } fName

PARTIAL ENCLOSURE EMISSIVITY { = | IS } E

PARTIAL ENCLOSURE EMISSIVITY TIME FUNCTION { = | IS } fName

PARTIAL ENCLOSURE EMISSIVITY TEMPERATURE FUNCTION { = | IS } fName

PARTIAL ENCLOSURE EMISSIVITY SUBROUTINE { = | IS } fName

USE VIEWFACTOR CALCULATION

USE VIEWFACTOR SMOOTHING

USE RADIOSITY SOLVER

INPUT DATABASE NAME { = | IS } filename

OUTPUT DATABASE NAME { = | IS } filename IN VFfileFormat FORMAT

DATABASE NAME { = | IS } filename IN VFfileFormat FORMAT

TOPOLOGY DATABASE NAME { = | IS } filename

ROWSUM DATABASE NAME { = | IS } filename

RADIOSITY DATABASE NAME { = | IS } filename

VIEWFACTOR UPDATE { = | IS } UpdateMethod [ USING times ]

End

Details Specifies a radiation enclosure. Corresponds to an instance of radiation enclosure
mechanics.

21.3.1 ACTIVE PERIODS

Syntax ACTIVE PERIODS { = | IS } PeriodNames

PeriodNames : no description (C [, ...])

Details Lists the solution periods during which the given BC, solver, preconditioner, etc. is
active. Multiple uses of this line command within a single block will have a cumulative
affect.

21.3.2 INACTIVE PERIODS

Syntax INACTIVE PERIODS { = | IS } PeriodNames

PeriodNames : no description (C [, ...])

Details Lists the solution periods during which the given BC, solver, preconditioner, etc.
is inactive. Multiple uses of this line command within a single block will have a
cumulative affect.
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21.3.3 EMISSIVITY

Syntax EMISSIVITY { = | IS } value [ ON surfaceName ]

value : no description (R)

surfaceName : no description (C)

Details Sets a constant value of emissivity for a defined surface. If the optional parameters
are not included, then this is the default emissivity for the enclosure. Otherwise it is
only applied to the indicated surface.

**Note that if a surface is called out more than once, the emissivity definition it is
overwritten: last one in wins.

21.3.4 EMISSIVITY FUNCTION

Syntax EMISSIVITY FUNCTION { = | IS } functionName [ ON surfaceName ]

functionName : no description (C)

surfaceName : no description (C)

Details Sets a emissivity function for a defined surface. If the optional parameters are not
included, then this is the default emissivity for the enclosure. Otherwise it is only
applied to the indicated surface.

**Note that if a surface is called out more than once, the emissivity definition it is
overwritten: last one in wins.

21.3.5 EMISSIVITY SUBROUTINE

Syntax EMISSIVITY SUBROUTINE { = | IS } mySub [ ON surfaceName ]

mySub : no description (C)

surfaceName : no description (C)

Details Sets a emissivity user subroutine for a defined surface. If the optional parameters
are not included, then this is the default emissivity for the enclosure. Otherwise it is
only applied to the indicated surface.

Also, the software supports using locally scoped user data for most user subroutines,
but I haven’t figured out a syntax for it here yet. So it is not yet supported. If you
need to get data into this subroutine, use the region’s ”REAL DATA” and ”INTEGER
DATA” line commands.

**Note that if a surface is called out more than once, the emissivity definition it is
overwritten: last one in wins.
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21.3.6 ADD SURFACE

Syntax ADD SURFACE surfaceList

surfaceList : no description (C [, ...])

Details Adds surfaces, by name, to a boundary condition’s extent.

21.3.7 INTEGRATED POWER OUTPUT

Syntax INTEGRATED POWER OUTPUT variableName

variableName : no description (C)

Details Calculate the total power associated with this flux boundary condition.

21.3.8 INTEGRATED FLUX OUTPUT

Syntax INTEGRATED FLUX OUTPUT variableName

variableName : no description (C)

Details Calculate the average flux associated with this flux boundary condition.

21.3.9 NONBLOCKING SURFACES

Details Specifies a blocking enclosure

21.3.10 BLOCKING SURFACES

Details Specifies a non-blocking enclosure

21.3.11 PARTIAL ENCLOSURE AREA

Syntax PARTIAL ENCLOSURE AREA { = | IS } A

A : no description (R)

Details Constant value for the partial enclosure area associated with this enclosure radiation
flux boundary condition.
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21.3.12 PARTIAL ENCLOSURE TEMPERATURE

Syntax PARTIAL ENCLOSURE TEMPERATURE { = | IS } T

T : no description (R)

Details Constant value for the partial enclosure temperature associated with this enclosure
radiation flux boundary condition.

21.3.13 PARTIAL ENCLOSURE TEMPERATURE TIME FUNCTION

Syntax PARTIAL ENCLOSURE TEMPERATURE TIME FUNCTION { = | IS } fName

fName : no description (C)

Details Time-dependent function name for the partial enclosure temperature associated with
this enclosure radiation flux boundary condition.

21.3.14 PARTIAL ENCLOSURE TEMPERATURE SUBROUTINE

Syntax PARTIAL ENCLOSURE TEMPERATURE SUBROUTINE { = | IS } fName

fName : no description (C)

Details User-defined function name for the partial enclosure temperature associated with this
enclosure radiation flux boundary condition.

21.3.15 PARTIAL ENCLOSURE EMISSIVITY

Syntax PARTIAL ENCLOSURE EMISSIVITY { = | IS } E

E : no description (R)

Details Constant value for the partial enclosure emissivity associated with this enclosure
radiation flux boundary condition.

21.3.16 PARTIAL ENCLOSURE EMISSIVITY TIME FUNCTION

Syntax PARTIAL ENCLOSURE EMISSIVITY TIME FUNCTION { = | IS } fName

fName : no description (C)

Details Time-dependent function name for the partial enclosure emissivity associated with
this enclosure radiation flux boundary condition.
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21.3.17 PARTIAL ENCLOSURE EMISSIVITY TEMPERATURE FUNC-
TION

Syntax PARTIAL ENCLOSURE EMISSIVITY TEMPERATURE FUNCTION { = | IS } fName

fName : no description (C)

Details Temperature-dependent function name for the partial enclosure emissivity associated
with this enclosure radiation flux boundary condition.

21.3.18 PARTIAL ENCLOSURE EMISSIVITY SUBROUTINE

Syntax PARTIAL ENCLOSURE EMISSIVITY SUBROUTINE { = | IS } fName

fName : no description (C)

Details User-defined function name for the partial enclosure emissivity associated with this
enclosure radiation flux boundary condition.

21.3.19 USE VIEWFACTOR CALCULATION

Syntax USE VIEWFACTOR CALCULATION

unnamed param : no description (C)

Details Specifies which view factor calculation to use.

21.3.20 USE VIEWFACTOR SMOOTHING

Syntax USE VIEWFACTOR SMOOTHING

unnamed param : no description (C)

Details Specifies which view factor smoother to use.

21.3.21 USE RADIOSITY SOLVER

Syntax USE RADIOSITY SOLVER

unnamed param : no description (C)

Details Specifies which radiosity solver to use.
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21.3.22 INPUT DATABASE NAME

Syntax INPUT DATABASE NAME { = | IS } filename

filename : no description (C)

Details Specifies filename to read viewfactors from

21.3.23 OUTPUT DATABASE NAME

Syntax OUTPUT DATABASE NAME { = | IS } filename IN VFfileFormat FORMAT

filename : no description (C)

VFfileFormat : no description { ASCII | BINARY }

Details Specify filename to write viewfactors to

Enums VFfileFormat

ASCII - no description

BINARY - no description

21.3.24 DATABASE NAME

Syntax DATABASE NAME { = | IS } filename IN VFfileFormat FORMAT

filename : no description (C)

VFfileFormat : no description { ASCII | BINARY }

Details Specifies common filename to read/write viewfactors

Enums VFfileFormat

ASCII - no description

BINARY - no description

21.3.25 TOPOLOGY DATABASE NAME

Syntax TOPOLOGY DATABASE NAME { = | IS } filename

filename : no description (C)

Details Specify filename to write enclosure topology to
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21.3.26 ROWSUM DATABASE NAME

Syntax ROWSUM DATABASE NAME { = | IS } filename

filename : no description (C)

Details Specify filename to write enclosure rowsum error results to

21.3.27 RADIOSITY DATABASE NAME

Syntax RADIOSITY DATABASE NAME { = | IS } filename

filename : no description (C)

Details Specify filename to write enclosure rowsum error and radiosity results to

21.3.28 VIEWFACTOR UPDATE

Syntax VIEWFACTOR UPDATE { = | IS } UpdateMethod [ USING times ]

UpdateMethod : no description { STANDARD | FREEZE | INTERVAL |
TIMES }

times : no description (R [, ...])

Details Specify the viewfactor re-compute strategy.

Enums UpdateMethod

STANDARD - no description

FREEZE - no description

INTERVAL - no description

TIMES - no description
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Chapter 22

IO Reference

22.1 RESTART DATA

Begin RESTART DATA Label

DATABASE NAME { is | = | are } StreamName

INPUT DATABASE NAME { is | = | are } StreamName

OUTPUT DATABASE NAME { is | = | are } StreamName

DATABASE TYPE { is | = | are } DatabaseTypes

OVERLAY COUNT { is | = | are } count

CYCLE COUNT { is | = | are } count

OVERWRITE { is | = } { OFF | ON | TRUE | FALSE | YES | NO }
ADDITIONAL TIMES { is | = | are } list of times

ADDITIONAL STEPS { is | = | are } list of steps

TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

START TIME { is | = | are } start time

TERMINATION TIME { is | = | are } final time

AT TIME dt { Increment | Interval } { is | = | are } dt

AT STEP n { Increment | Interval } { is | = | are } m

OUTPUT ON SIGNAL { is | = | are } signals

USE OUTPUT SCHEDULER timer name

End

Details Describes the data required to output and input restart data for the enclosing re-
gion.

22.1.1 DATABASE NAME

Syntax DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)
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Details The database containing the input and/or output restart data. If this analysis is
being restarted, restart data will be read from this file. If the analysis is writing
restart data, the data will be written to this file. It will be overwritten if it exists
(after being read if applicable). If the filename begins with the ’/’ character, it is an
absolute path; otherwise, the path to the current directory will be prepended to the
name. See also the ’Input Database’ and ’Output Database’ commands.

22.1.2 INPUT DATABASE NAME

Syntax INPUT DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)

Details The database containing the input restart data. If this analysis is being restarted,
restart data will be read from this file. See also the ’Database’ and ’Output Database’
commands.

22.1.3 OUTPUT DATABASE NAME

Syntax OUTPUT DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)

Details The database containing the output restart data. If the analysis is writing restart
data, the data will be written to this file. It will be overwritten if it exists. See also
the ’Database’ and ’Input Database’ commands.

22.1.4 DATABASE TYPE

Syntax DATABASE TYPE { is | = | are } DatabaseTypes

DatabaseTypes : no description { exodusII | SAF | xdmf }

Details The database type/format used for the restart file.

Enums DatabaseTypes

exodusII - no description

SAF - no description

xdmf - no description

22.1.5 OVERLAY COUNT

Syntax OVERLAY COUNT { is | = | are } count

count : no description (I)
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Details Specify the number of restart outputs which will be overlayed on top of the last
written step. For example, if restarts are being output every 0.1 seconds and the
overlay count is specified as 2, then restart will write times 0.1 to step 1 of the
database. It will then write 0.2 and 0.3 also to step 1. It will then increment the
database step and write 0.4 to step 2; overlay 0.5 and 0.6 on step 2... At the end
of the analysis, assuming it runs to completion, the database would have times 0.3,
0.6, 0.9, ... However, if there were a problem during the analysis, the last step on the
database would contain an intermediate step.

22.1.6 CYCLE COUNT

Syntax CYCLE COUNT { is | = | are } count

count : no description (I)

Details Specify the number of restart steps which will be written to the restart database
before previously written steps are overwritten. For example, if the cycle count is 5
and restart is written every 0.1 seconds, the restart system will write 0.1, 0.2, 0.3,
0.4, 0.5 to the database. It will then overwrite the first step with data from time 0.6,
the second with time 0.7. At time 0.8, the database would contain data at times 0.6,
0.7, 0.8, 0.4, 0.5. Note that time will not necessarily be monotonically increasing on
a database that specifies the cycle count.

22.1.7 OVERWRITE

Details Specify whether the restart database should be overwritten if it exists. The default
behavior is to overwrite unless this command is specified in the restart block and
either off, false, or no is specified.

22.1.8 ADDITIONAL TIMES

Syntax ADDITIONAL TIMES { is | = | are } list of times

list of times : no description (R [, ...])

Details Additional simulation times when output should occur.

22.1.9 ADDITIONAL STEPS

Syntax ADDITIONAL STEPS { is | = | are } list of steps

list of steps : no description (I [, ...])

Details Additional simulation steps when output should occur.
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22.1.10 TIMESTEP ADJUSTMENT INTERVAL

Syntax TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

nsteps : no description (I)

Details Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that
the specified output times or simulation end time will be hit ’exactly’.

22.1.11 START TIME

Syntax START TIME { is | = | are } start time

start time : no description (R)

Details Specify the time to start outputting results from this output request block. This time
overrides all ’at time’ and ’at step’ specifications.

22.1.12 TERMINATION TIME

Syntax TERMINATION TIME { is | = | are } final time

final time : no description (R)

Details Specify the time to stop outputting results from this output request block.

22.1.13 AT TIME

Syntax AT TIME dt { Increment | Interval } { is | = | are } dt

dt : no description (R)

dt : no description (R)

Details Specify an output interval in terms of the internal simulation time. The first time
specifies the time at the beginning of this time interval and the second time specifies
the output frequency to be used within this interval.

22.1.14 AT STEP

Syntax AT STEP n { Increment | Interval } { is | = | are } m

n : no description (I)

m : no description (I)
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Details Specify an output interval in terms of the internal iteration step count. The first step
specifies the step count at the beginning of this interval and the second step specifies
the output frequency to be used within this interval.

22.1.15 OUTPUT ON SIGNAL

Syntax OUTPUT ON SIGNAL { is | = | are } signals

signals : no description { SIGALRM | SIGFPE | SIGHUP | SIGINT |
SIGPIPE | SIGQUIT | SIGTERM | SIGUSR1 | SIGUSR2 | SIGABRT |
SIGKILL | SIGILL | SIGSEGV }

Details When the specified signal is raised, the output stream associated with this block will
be output.

Enums signals

SIGALRM - no description

SIGFPE - no description

SIGHUP - no description

SIGINT - no description

SIGPIPE - no description

SIGQUIT - no description

SIGTERM - no description

SIGUSR1 - no description

SIGUSR2 - no description

SIGABRT - no description

SIGKILL - no description

SIGILL - no description

SIGSEGV - no description

22.1.16 USE OUTPUT SCHEDULER

Syntax USE OUTPUT SCHEDULER timer name

timer name : no description (C)

Details Associates a predefined output scheduler with this output block (results, restart,
heartbeat, or history).

22.2 RESULTS OUTPUT

Begin RESULTS OUTPUT Label
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DATABASE NAME { is | = | are } StreamName

DATABASE TYPE { is | = | are } DatabaseTypes

TITLE

GLOBAL VARIABLES { is | = | are } [ variable list ]

NODE VARIABLES { is | = | are } [ variable list ]

NODAL VARIABLES { is | = | are } [ variable list ]

ELEMENT VARIABLES { is | = | are } [ variable list ]

OUTPUT MESH { is | = } OutputMesh

EDGE VARIABLES { is | = | are } [ variable list ]

FACE VARIABLES { is | = | are } [ variable list ]

NODESET VARIABLES { is | = | are } [ variable list ]

COMPONENT SEPARATOR CHARACTER { is | = } separator

ADDITIONAL TIMES { is | = | are } list of times

ADDITIONAL STEPS { is | = | are } list of steps

TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

START TIME { is | = | are } start time

TERMINATION TIME { is | = | are } final time

AT TIME dt { Increment | Interval } { is | = | are } dt

AT STEP n { Increment | Interval } { is | = | are } m

OUTPUT ON SIGNAL { is | = | are } signals

USE OUTPUT SCHEDULER timer name

OVERWRITE { is | = } { OFF | ON | TRUE | FALSE | YES | NO }

End

Details Describes the location and type of the output stream used for outputting results for
the enclosing region.

22.2.1 DATABASE NAME

Syntax DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)

Details The base name of the database containing the output results. If the filename begins
with the ’/’ character, it is an absolute path; otherwise, the path to the current
directory will be prepended to the name.
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22.2.2 DATABASE TYPE

Syntax DATABASE TYPE { is | = | are } DatabaseTypes

DatabaseTypes : no description { exodusII | SAF | xdmf }

Details The database type/format to be used for the output results.

Enums DatabaseTypes

exodusII - no description

SAF - no description

xdmf - no description

22.2.3 TITLE

Syntax TITLE the title

the title : no description

Details Specify the title to be used for this specific output block.

22.2.4 GLOBAL VARIABLES

Syntax GLOBAL VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the global variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.

22.2.5 NODE VARIABLES

Syntax NODE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the nodal variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.
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22.2.6 NODAL VARIABLES

Syntax NODAL VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the nodal variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.

22.2.7 ELEMENT VARIABLES

Syntax ELEMENT VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited or
specified with ”exclude list of entities” or ”include list of entities”

22.2.8 OUTPUT MESH

Syntax OUTPUT MESH { is | = } OutputMesh

OutputMesh : no description { refined | unrefined | block surface |
exposed surface }

Details Use this command to turn on ”unrefined” as the output mesh. The default behavior
is ”refined”, in which field variables are output on the current mesh, which may have
been refined (either uniformly or adaptively) or had its topology altered in some way
(e.g., dynamic load balancing) with respect to the original mesh read from the the
input file. By specifying ”Output Mesh = unrefined”, all output variables are output
only on the original mesh objects read from the input file.

Enums OutputMesh

refined - no description

unrefined - no description

block surface - no description

exposed surface - no description
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22.2.9 EDGE VARIABLES

Syntax EDGE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited
or specified with ”exclude list of entities” or ”include list of entities”. Edge variables
are not supported for all database types.

22.2.10 FACE VARIABLES

Syntax FACE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited
or specified with ”exclude list of entities” or ”include list of entities”. Face variables
are not supported for all database types.

22.2.11 NODESET VARIABLES

Syntax NODESET VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited or
specified with ”exclude list of entities” or ”include list of entities”. Nodeset variables
are not supported for all database types.

22.2.12 COMPONENT SEPARATOR CHARACTER

Syntax COMPONENT SEPARATOR CHARACTER { is | = } separator

separator : no description (C)
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Details The separator is the single character used to separate the output variable basename
(e.g. ”stress”) from the suffices (e.g. ”xx”, ”yy”) when displaying the names of the
individual variable components. For example, the default separator is ” ”, which
results in names similar to ”stress xx”, ”stress yy”, ... ”stress zx”. To eliminate the
separator, specify an empty string (””) or NONE.

22.2.13 ADDITIONAL TIMES

Syntax ADDITIONAL TIMES { is | = | are } list of times

list of times : no description (R [, ...])

Details Additional simulation times when output should occur.

22.2.14 ADDITIONAL STEPS

Syntax ADDITIONAL STEPS { is | = | are } list of steps

list of steps : no description (I [, ...])

Details Additional simulation steps when output should occur.

22.2.15 TIMESTEP ADJUSTMENT INTERVAL

Syntax TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

nsteps : no description (I)

Details Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that
the specified output times or simulation end time will be hit ’exactly’.

22.2.16 START TIME

Syntax START TIME { is | = | are } start time

start time : no description (R)

Details Specify the time to start outputting results from this output request block. This time
overrides all ’at time’ and ’at step’ specifications.

22.2.17 TERMINATION TIME

Syntax TERMINATION TIME { is | = | are } final time

final time : no description (R)
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Details Specify the time to stop outputting results from this output request block.

22.2.18 AT TIME

Syntax AT TIME dt { Increment | Interval } { is | = | are } dt

dt : no description (R)

dt : no description (R)

Details Specify an output interval in terms of the internal simulation time. The first time
specifies the time at the beginning of this time interval and the second time specifies
the output frequency to be used within this interval.

22.2.19 AT STEP

Syntax AT STEP n { Increment | Interval } { is | = | are } m

n : no description (I)

m : no description (I)

Details Specify an output interval in terms of the internal iteration step count. The first step
specifies the step count at the beginning of this interval and the second step specifies
the output frequency to be used within this interval.

22.2.20 OUTPUT ON SIGNAL

Syntax OUTPUT ON SIGNAL { is | = | are } signals

signals : no description { SIGALRM | SIGFPE | SIGHUP | SIGINT |
SIGPIPE | SIGQUIT | SIGTERM | SIGUSR1 | SIGUSR2 | SIGABRT |
SIGKILL | SIGILL | SIGSEGV }

Details When the specified signal is raised, the output stream associated with this block will
be output.
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Enums signals

SIGALRM - no description

SIGFPE - no description

SIGHUP - no description

SIGINT - no description

SIGPIPE - no description

SIGQUIT - no description

SIGTERM - no description

SIGUSR1 - no description

SIGUSR2 - no description

SIGABRT - no description

SIGKILL - no description

SIGILL - no description

SIGSEGV - no description

22.2.21 USE OUTPUT SCHEDULER

Syntax USE OUTPUT SCHEDULER timer name

timer name : no description (C)

Details Associates a predefined output scheduler with this output block (results, restart,
heartbeat, or history).

22.2.22 OVERWRITE

Details Specify whether the database should be overwritten if it exists. The default behavior
is to overwrite unless this command is specified in the output block and either off,
false, or no is specified.

22.3 HEARTBEAT

Begin HEARTBEAT Label

ADDITIONAL TIMES { is | = | are } list of times

ADDITIONAL STEPS { is | = | are } list of steps

TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

START TIME { is | = | are } start time

TERMINATION TIME { is | = | are } final time

AT TIME dt { Increment | Interval } { is | = | are } dt
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AT STEP n { Increment | Interval } { is | = | are } m

OUTPUT ON SIGNAL { is | = | are } signals

USE OUTPUT SCHEDULER timer name

STREAM NAME { is | = | are } StreamName

PRECISION { is | = | are } precision

LABELS { is | = | are } { on | off }

MONITOR { is | = | are | the } { results | restart | history }

TIMESTAMP FORMAT

LEGEND { is | = | are } { on | off }

VARIABLE { is | = | are } { global | node | nodal | element | face | edge } [ vari-
able list ]

End

Details Describes the location and type of the output stream used for outputting the heart-
beat information for the enclosing region.

22.3.1 ADDITIONAL TIMES

Syntax ADDITIONAL TIMES { is | = | are } list of times

list of times : no description (R [, ...])

Details Additional simulation times when output should occur.

22.3.2 ADDITIONAL STEPS

Syntax ADDITIONAL STEPS { is | = | are } list of steps

list of steps : no description (I [, ...])

Details Additional simulation steps when output should occur.

22.3.3 TIMESTEP ADJUSTMENT INTERVAL

Syntax TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

nsteps : no description (I)

Details Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that
the specified output times or simulation end time will be hit ’exactly’.
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22.3.4 START TIME

Syntax START TIME { is | = | are } start time

start time : no description (R)

Details Specify the time to start outputting results from this output request block. This time
overrides all ’at time’ and ’at step’ specifications.

22.3.5 TERMINATION TIME

Syntax TERMINATION TIME { is | = | are } final time

final time : no description (R)

Details Specify the time to stop outputting results from this output request block.

22.3.6 AT TIME

Syntax AT TIME dt { Increment | Interval } { is | = | are } dt

dt : no description (R)

dt : no description (R)

Details Specify an output interval in terms of the internal simulation time. The first time
specifies the time at the beginning of this time interval and the second time specifies
the output frequency to be used within this interval.

22.3.7 AT STEP

Syntax AT STEP n { Increment | Interval } { is | = | are } m

n : no description (I)

m : no description (I)

Details Specify an output interval in terms of the internal iteration step count. The first step
specifies the step count at the beginning of this interval and the second step specifies
the output frequency to be used within this interval.

22.3.8 OUTPUT ON SIGNAL

Syntax OUTPUT ON SIGNAL { is | = | are } signals

signals : no description { SIGALRM | SIGFPE | SIGHUP | SIGINT |
SIGPIPE | SIGQUIT | SIGTERM | SIGUSR1 | SIGUSR2 | SIGABRT |
SIGKILL | SIGILL | SIGSEGV }
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Details When the specified signal is raised, the output stream associated with this block will
be output.

Enums signals

SIGALRM - no description

SIGFPE - no description

SIGHUP - no description

SIGINT - no description

SIGPIPE - no description

SIGQUIT - no description

SIGTERM - no description

SIGUSR1 - no description

SIGUSR2 - no description

SIGABRT - no description

SIGKILL - no description

SIGILL - no description

SIGSEGV - no description

22.3.9 USE OUTPUT SCHEDULER

Syntax USE OUTPUT SCHEDULER timer name

timer name : no description (C)

Details Associates a predefined output scheduler with this output block (results, restart,
heartbeat, or history).

22.3.10 STREAM NAME

Syntax STREAM NAME { is | = | are } StreamName

StreamName : no description (C)

Details The base name of the stream containing the output results. If the filename begins
with the ’/’ character, it is an absolute path; otherwise, the path to the current
directory will be prepended to the name. In addition, there are several predefined
streams that can be specified. The predefined streams are ’cout’ or ’stdout’ specifies
standard output; ’cerr’, ’stderr’, ’clog’, or ’log’ specifies standard error; ’output’ or
’outputP0’ specifies Sierra’s standard output which is redirected to the file specified
by the ’-o’ option on the command line. If the file already exists, it is overwritten.
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22.3.11 PRECISION

Syntax PRECISION { is | = | are } precision

precision : no description (I)

Details The precsion to be used for the output of real variables.

22.3.12 LABELS

Details Specifies whether labels will be displayed or just the value of the variable. Labels will
be shown if this line is not present.

22.3.13 MONITOR

Details Specifies whether a line will be written to the heartbeat stream when either the
results, history, and/or restart data are output.

22.3.14 TIMESTAMP FORMAT

Syntax TIMESTAMP FORMAT FormatString

FormatString : no description

Details The format to be used for the timestamp. See ’man strftime’ for more information.

22.3.15 LEGEND

Details Specifies whether a legend will be displayed prior to outputting any variables. The
legend will not be shown unless this line is present. The legend shows the names
of the variables that will be written to the heartbeat output stream. If the variable
has multiple components, then the component count is shown after the variable e.g.,
velocity(3).

22.3.16 VARIABLE

Syntax VARIABLE { is | = | are } { global | node | nodal | element | face |
edge } [ variable list ]

variable list : no description (C [, ...])
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Details Define the variables that should be written to the heartbeat output. The user can
request that the values of certain variables be output on the heartbeat line. These
variables are limited to region and framework control data currently. The syntax is:

variable = {entity_type} {internal_name} at
{entity_type} {entity_id} as {external_name}

variable = {entity_type} {internal_name} nearest location
{x,y,z} as {external_name}

For global variables, use:

variable = global {internal_name} [as {external_name}]

Where:

entity_type = node, element, face, edge, global
internal_name = Sierra variable name
entity_id = id of the node, element, face, edge that you want

the specified variable output at.
external_name = name of variable on the database.

The names ’timestep’, and ’time’ can be specified as variables also. They are the
current timestep and simulation time. This line can appear multiple times.

22.4 HISTORY OUTPUT

Begin HISTORY OUTPUT Label

ADDITIONAL TIMES { is | = | are } list of times

ADDITIONAL STEPS { is | = | are } list of steps

TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

START TIME { is | = | are } start time

TERMINATION TIME { is | = | are } final time

AT TIME dt { Increment | Interval } { is | = | are } dt

AT STEP n { Increment | Interval } { is | = | are } m

OUTPUT ON SIGNAL { is | = | are } signals

USE OUTPUT SCHEDULER timer name

OVERWRITE { is | = } { OFF | ON | TRUE | FALSE | YES | NO }
DATABASE NAME { is | = | are } StreamName

DATABASE TYPE { is | = | are } DatabaseTypes

TITLE
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VARIABLE { is | = | are } { global | node | nodal | element | face | edge } [ vari-
able list ]

End

Details Describes the location and type of the output stream used for outputting history for
the enclosing region.

22.4.1 ADDITIONAL TIMES

Syntax ADDITIONAL TIMES { is | = | are } list of times

list of times : no description (R [, ...])

Details Additional simulation times when output should occur.

22.4.2 ADDITIONAL STEPS

Syntax ADDITIONAL STEPS { is | = | are } list of steps

list of steps : no description (I [, ...])

Details Additional simulation steps when output should occur.

22.4.3 TIMESTEP ADJUSTMENT INTERVAL

Syntax TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

nsteps : no description (I)

Details Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that
the specified output times or simulation end time will be hit ’exactly’.

22.4.4 START TIME

Syntax START TIME { is | = | are } start time

start time : no description (R)

Details Specify the time to start outputting results from this output request block. This time
overrides all ’at time’ and ’at step’ specifications.
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22.4.5 TERMINATION TIME

Syntax TERMINATION TIME { is | = | are } final time

final time : no description (R)

Details Specify the time to stop outputting results from this output request block.

22.4.6 AT TIME

Syntax AT TIME dt { Increment | Interval } { is | = | are } dt

dt : no description (R)

dt : no description (R)

Details Specify an output interval in terms of the internal simulation time. The first time
specifies the time at the beginning of this time interval and the second time specifies
the output frequency to be used within this interval.

22.4.7 AT STEP

Syntax AT STEP n { Increment | Interval } { is | = | are } m

n : no description (I)

m : no description (I)

Details Specify an output interval in terms of the internal iteration step count. The first step
specifies the step count at the beginning of this interval and the second step specifies
the output frequency to be used within this interval.

22.4.8 OUTPUT ON SIGNAL

Syntax OUTPUT ON SIGNAL { is | = | are } signals

signals : no description { SIGALRM | SIGFPE | SIGHUP | SIGINT |
SIGPIPE | SIGQUIT | SIGTERM | SIGUSR1 | SIGUSR2 | SIGABRT |
SIGKILL | SIGILL | SIGSEGV }

Details When the specified signal is raised, the output stream associated with this block will
be output.
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Enums signals

SIGALRM - no description

SIGFPE - no description

SIGHUP - no description

SIGINT - no description

SIGPIPE - no description

SIGQUIT - no description

SIGTERM - no description

SIGUSR1 - no description

SIGUSR2 - no description

SIGABRT - no description

SIGKILL - no description

SIGILL - no description

SIGSEGV - no description

22.4.9 USE OUTPUT SCHEDULER

Syntax USE OUTPUT SCHEDULER timer name

timer name : no description (C)

Details Associates a predefined output scheduler with this output block (results, restart,
heartbeat, or history).

22.4.10 OVERWRITE

Details Specify whether the database should be overwritten if it exists. The default behavior
is to overwrite unless this command is specified in the output block and either off,
false, or no is specified.

22.4.11 DATABASE NAME

Syntax DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)

Details The base name of the database containing the output history. If the filename begins
with the ’/’ character, it is an absolute path; otherwise, the path to the current
directory will be prepended to the name.
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22.4.12 DATABASE TYPE

Syntax DATABASE TYPE { is | = | are } DatabaseTypes

DatabaseTypes : no description { exodusII | SAF | xdmf }

Details The database type/format to be used for the output history.

Enums DatabaseTypes

exodusII - no description

SAF - no description

xdmf - no description

22.4.13 TITLE

Syntax TITLE the title

the title : no description

Details Specify the title to be used for this specific output block.

22.4.14 VARIABLE

Syntax VARIABLE { is | = | are } { global | node | nodal | element | face |
edge } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the history database. The syntax is:

variable = entity {internal_name} at entity {id} as {DBname}

or

variable = entity {internal_name} nearest location X, Y, Z as {DBname}

or

variable = entity {internal_name} at location X, Y, Z as {DBname}.

Where {entity} is ’node’, ’element’, ’face’, or ’edge’; {internal name} is the name of
the variable in the Sierra application; and {DBname} is the name as it should appear
on the history database.

311



22.5 RESULTS OUTPUT

Begin RESULTS OUTPUT Label

DATABASE NAME { is | = | are } StreamName

DATABASE TYPE { is | = | are } DatabaseTypes

TITLE

GLOBAL VARIABLES { is | = | are } [ variable list ]

NODE VARIABLES { is | = | are } [ variable list ]

NODAL VARIABLES { is | = | are } [ variable list ]

ELEMENT VARIABLES { is | = | are } [ variable list ]

OUTPUT MESH { is | = } OutputMesh

EDGE VARIABLES { is | = | are } [ variable list ]

FACE VARIABLES { is | = | are } [ variable list ]

NODESET VARIABLES { is | = | are } [ variable list ]

COMPONENT SEPARATOR CHARACTER { is | = } separator

ADDITIONAL TIMES { is | = | are } list of times

ADDITIONAL STEPS { is | = | are } list of steps

TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

START TIME { is | = | are } start time

TERMINATION TIME { is | = | are } final time

AT TIME dt { Increment | Interval } { is | = | are } dt

AT STEP n { Increment | Interval } { is | = | are } m

OUTPUT ON SIGNAL { is | = | are } signals

USE OUTPUT SCHEDULER timer name

OVERWRITE { is | = } { OFF | ON | TRUE | FALSE | YES | NO }

End

Details Describes the location and type of the output stream used for outputting results for
the enclosing region.

22.5.1 DATABASE NAME

Syntax DATABASE NAME { is | = | are } StreamName

StreamName : no description (C)

Details The base name of the database containing the output results. If the filename begins
with the ’/’ character, it is an absolute path; otherwise, the path to the current
directory will be prepended to the name.
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22.5.2 DATABASE TYPE

Syntax DATABASE TYPE { is | = | are } DatabaseTypes

DatabaseTypes : no description { exodusII | SAF | xdmf }

Details The database type/format to be used for the output results.

Enums DatabaseTypes

exodusII - no description

SAF - no description

xdmf - no description

22.5.3 TITLE

Syntax TITLE the title

the title : no description

Details Specify the title to be used for this specific output block.

22.5.4 GLOBAL VARIABLES

Syntax GLOBAL VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the global variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.

22.5.5 NODE VARIABLES

Syntax NODE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the nodal variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.
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22.5.6 NODAL VARIABLES

Syntax NODAL VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the nodal variables that should be written to the results database. If ”variable”
is entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line.

22.5.7 ELEMENT VARIABLES

Syntax ELEMENT VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited or
specified with ”exclude list of entities” or ”include list of entities”

22.5.8 OUTPUT MESH

Syntax OUTPUT MESH { is | = } OutputMesh

OutputMesh : no description { refined | unrefined | block surface |
exposed surface }

Details Use this command to turn on ”unrefined” as the output mesh. The default behavior
is ”refined”, in which field variables are output on the current mesh, which may have
been refined (either uniformly or adaptively) or had its topology altered in some way
(e.g., dynamic load balancing) with respect to the original mesh read from the the
input file. By specifying ”Output Mesh = unrefined”, all output variables are output
only on the original mesh objects read from the input file.

Enums OutputMesh

refined - no description

unrefined - no description

block surface - no description

exposed surface - no description
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22.5.9 EDGE VARIABLES

Syntax EDGE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited
or specified with ”exclude list of entities” or ”include list of entities”. Edge variables
are not supported for all database types.

22.5.10 FACE VARIABLES

Syntax FACE VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited
or specified with ”exclude list of entities” or ”include list of entities”. Face variables
are not supported for all database types.

22.5.11 NODESET VARIABLES

Syntax NODESET VARIABLES { is | = | are } [ variable list ]

variable list : no description (C [, ...])

Details Define the variables that should be written to the results database. If ”variable” is
entered, then its name will be used on the output database. If ”variable as db name”
is entered, then ”db name” will be the name used on the database for the internal
variable ”variable”. Multiple ”variable” or ”variable as db name” entries are allowed
on the same line. The entities that this variable are written to can also be limited or
specified with ”exclude list of entities” or ”include list of entities”. Nodeset variables
are not supported for all database types.

22.5.12 COMPONENT SEPARATOR CHARACTER

Syntax COMPONENT SEPARATOR CHARACTER { is | = } separator

separator : no description (C)
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Details The separator is the single character used to separate the output variable basename
(e.g. ”stress”) from the suffices (e.g. ”xx”, ”yy”) when displaying the names of the
individual variable components. For example, the default separator is ” ”, which
results in names similar to ”stress xx”, ”stress yy”, ... ”stress zx”. To eliminate the
separator, specify an empty string (””) or NONE.

22.5.13 ADDITIONAL TIMES

Syntax ADDITIONAL TIMES { is | = | are } list of times

list of times : no description (R [, ...])

Details Additional simulation times when output should occur.

22.5.14 ADDITIONAL STEPS

Syntax ADDITIONAL STEPS { is | = | are } list of steps

list of steps : no description (I [, ...])

Details Additional simulation steps when output should occur.

22.5.15 TIMESTEP ADJUSTMENT INTERVAL

Syntax TIMESTEP ADJUSTMENT INTERVAL { is | = | are } nsteps

nsteps : no description (I)

Details Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that
the specified output times or simulation end time will be hit ’exactly’.

22.5.16 START TIME

Syntax START TIME { is | = | are } start time

start time : no description (R)

Details Specify the time to start outputting results from this output request block. This time
overrides all ’at time’ and ’at step’ specifications.

22.5.17 TERMINATION TIME

Syntax TERMINATION TIME { is | = | are } final time

final time : no description (R)
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Details Specify the time to stop outputting results from this output request block.

22.5.18 AT TIME

Syntax AT TIME dt { Increment | Interval } { is | = | are } dt

dt : no description (R)

dt : no description (R)

Details Specify an output interval in terms of the internal simulation time. The first time
specifies the time at the beginning of this time interval and the second time specifies
the output frequency to be used within this interval.

22.5.19 AT STEP

Syntax AT STEP n { Increment | Interval } { is | = | are } m

n : no description (I)

m : no description (I)

Details Specify an output interval in terms of the internal iteration step count. The first step
specifies the step count at the beginning of this interval and the second step specifies
the output frequency to be used within this interval.

22.5.20 OUTPUT ON SIGNAL

Syntax OUTPUT ON SIGNAL { is | = | are } signals

signals : no description { SIGALRM | SIGFPE | SIGHUP | SIGINT |
SIGPIPE | SIGQUIT | SIGTERM | SIGUSR1 | SIGUSR2 | SIGABRT |
SIGKILL | SIGILL | SIGSEGV }

Details When the specified signal is raised, the output stream associated with this block will
be output.
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Enums signals

SIGALRM - no description

SIGFPE - no description

SIGHUP - no description

SIGINT - no description

SIGPIPE - no description

SIGQUIT - no description

SIGTERM - no description

SIGUSR1 - no description

SIGUSR2 - no description

SIGABRT - no description

SIGKILL - no description

SIGILL - no description

SIGSEGV - no description

22.5.21 USE OUTPUT SCHEDULER

Syntax USE OUTPUT SCHEDULER timer name

timer name : no description (C)

Details Associates a predefined output scheduler with this output block (results, restart,
heartbeat, or history).

22.5.22 OVERWRITE

Details Specify whether the database should be overwritten if it exists. The default behavior
is to overwrite unless this command is specified in the output block and either off,
false, or no is specified.

22.6 PARAMETERS FOR BLOCK

Begin PARAMETERS FOR BLOCK Blockname

ACTIVE FOR PROCEDURE procedureName during periods periodNames

INACTIVE FOR PROCEDURE procedureName during periods periodNames

MATERIAL MatName

PHASE Phase Label { = | IS | ARE } Material Name

DEACTIVATE CodeName

SHELL INTEGRATION POINTS { = | IS | ARE } npoints
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SHELL SCALE THICKNESS { = | IS | ARE } tscale
HOURGLASS { Stiffness | Viscosity } { = | IS | ARE } hgval
MEMBRANE SCALE THICKNESS { = | IS | ARE } tscale
LINEAR BULK VISCOSITY { = | IS | ARE } lbv
QUADRATIC BULK VISCOSITY { = | IS | ARE } qbv
SOLID MECHANICS USE MODEL modelname
DEPOSIT SPECIFIC INTERNAL ENERGY edep [ OVER TIME tdep STARTING AT TIME tinit ]

ELEMENT NUMERICAL FORMULATION { = | IS | ARE } { Old | New }
SHELL INTEGRATION SCHEME { = | IS | ARE } { Gauss | Lobatto | Trapezoid }
LOFTING FACTOR { = | IS | ARE } tscale
DEVIATORIC PARAMETER { = | IS | ARE } alpha
TRUSS AREA { = | IS | ARE } TrussArea
DAMPER AREA { = | IS | ARE } DamperArea
ELEMENT INITIAL STRAINXX { = | IS | ARE } istrainxx
ELEMENT INITIAL STRAINYY { = | IS | ARE } istrainyy
ELEMENT INITIAL STRAINZZ { = | IS | ARE } istrainzz
ELEMENT INITIAL STRAINXY { = | IS | ARE } istrainxy
ELEMENT INITIAL STRAINXZ { = | IS | ARE } istrainxz
ELEMENT INITIAL STRAINYZ { = | IS | ARE } istrainyz
ELEMENT COORDINATE SYSTEM { = | IS | ARE } { rectangular | cylindrical | spherical }
POINT AX { = | IS | ARE } ax
POINT AY { = | IS | ARE } ay
POINT AZ { = | IS | ARE } az
POINT BX { = | IS | ARE } bx
POINT BY { = | IS | ARE } by
POINT BZ { = | IS | ARE } bz
BEAM SECTION { = | IS | ARE } { ROD | TUBE | BAR | BOX | I }
BEAM WIDTH { = | IS | ARE } BeamWidth
BEAM HEIGHT { = | IS | ARE } BeamHeight
BEAM WALL THICKNESS { = | IS | ARE } BeamWallThickness
BEAM FLANGE THICKNESS { = | IS | ARE } BeamFlangeThickness
BEAM REFERECNE AXIS { = | IS | ARE } { CENTER | RIGHT | TOP | LEFT | BOTTOM }
SPRING AREA { = | IS | ARE } SpringArea
RIGID BODY { = | IS | ARE } RigidBodyName
EFFECTIVE MODULI MODEL { = | IS | ARE } { elastic | current | presto | pronto }
THICKNESS MESH VARIABLE { = | IS | ARE } var name
THICKNESS TIME STEP { = | IS | ARE } time value
SECTION { = | IS | ARE } SectionName

End

Details Specifies analysis parameters associated with each element block.
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22.6.1 ACTIVE FOR PROCEDURE

Syntax ACTIVE FOR PROCEDURE procedureName during periods periodNames

procedureName : no description (C)

periodNames : no description (C [, ...])

Details Lists the solution periods during which the given BC, solver, preconditioner, etc. is
active. Multiple uses of this line command within a single block will have a cumulative
affect.

22.6.2 INACTIVE FOR PROCEDURE

Syntax INACTIVE FOR PROCEDURE procedureName during periods periodNames

procedureName : no description (C)

periodNames : no description (C [, ...])

Details Lists the solution periods during which the given BC, solver, preconditioner, etc.
is inactive. Multiple uses of this line command within a single block will have a
cumulative affect.

22.6.3 MATERIAL

Syntax MATERIAL MatName

MatName : no description (C)

Details Associates this element block with its material properties.

22.6.4 PHASE

Syntax PHASE Phase Label { = | IS | ARE } Material Name

Phase Label : no description (C)

Material Name : no description (C)

Details Associate phase Phase Label with material Material Name on this block.

22.6.5 DEACTIVATE

Syntax DEACTIVATE CodeName

CodeName : no description (C)
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Details Deactivate this elemenent block for this mechanics.

22.6.6 SHELL INTEGRATION POINTS

Syntax SHELL INTEGRATION POINTS { = | IS | ARE } npoints

npoints : no description (I)

Details Specify the number of integration points through the thickness of the shells in this
block. This is a deprecated command and should be defined in a element section.

22.6.7 SHELL SCALE THICKNESS

Syntax SHELL SCALE THICKNESS { = | IS | ARE } tscale

tscale : no description (R)

Details Supplies a scale factor to be applied to the thickness attribute on the mesh file. This
is a deprecated command and should be defined in a element section.

22.6.8 HOURGLASS

Syntax HOURGLASS { Stiffness | Viscosity } { = | IS | ARE } hgval

hgval : no description (R)

Details Supplies the hourglass parameters for this element block.

22.6.9 MEMBRANE SCALE THICKNESS

Syntax MEMBRANE SCALE THICKNESS { = | IS | ARE } tscale

tscale : no description (R)

Details Supplies a scale factor to be applied to the thickness attribute on the mesh file. This
is a deprecated command and should be defined in a element section.

22.6.10 LINEAR BULK VISCOSITY

Syntax LINEAR BULK VISCOSITY { = | IS | ARE } lbv

lbv : no description (R)

Details Supplies the linear coefficient for the bulk viscosity computations.
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22.6.11 QUADRATIC BULK VISCOSITY

Syntax QUADRATIC BULK VISCOSITY { = | IS | ARE } qbv

qbv : no description (R)

Details Supplies the quadratic coefficient for the bulk viscosity computations.

22.6.12 SOLID MECHANICS USE MODEL

Syntax SOLID MECHANICS USE MODEL modelname

modelname : no description (C)

Details Associates a solid mechanics material model with this element block. The material
parameters for this block are specified in the material denoted by the MATERIAL
command.

22.6.13 DEPOSIT SPECIFIC INTERNAL ENERGY

Syntax DEPOSIT SPECIFIC INTERNAL ENERGY edep [ OVER TIME tdep STARTING AT TIME
tinit ]

edep : no description (R)

tdep : no description (R)

tinit : no description (R)

Details Defines the amount of specific (per unit mass) internal energy to be deposited in
the material. The energy is deposited over time tdep, beginning at time tinit. The
optional parameters tdep and tinit both default to zero, so the energy will be deposited
instantaneously at time zero if they are not specified. The deposition is uniform in
space, so each element in the block has the same amount edep added to its specific
internal energy.

22.6.14 ELEMENT NUMERICAL FORMULATION

Details Specifies which element numerical formulation to use for this block.

22.6.15 SHELL INTEGRATION SCHEME

Details Specify the type of integration scheme through the thickness of the shells in this
block. This is a deprecated command and should be defined in a element section.
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22.6.16 LOFTING FACTOR

Syntax LOFTING FACTOR { = | IS | ARE } tscale

tscale : no description (R)

Details Supplies a lofting factor to be applied to shells or membranes. A value of 0.5 means no
lofting (the default), 0.0 means the meshed shell/membrane is the top of the surface,
and 1.0 means it is the bottom of the surface. This is a deprecated command and
should be defined in a element section.

22.6.17 DEVIATORIC PARAMETER

Syntax DEVIATORIC PARAMETER { = | IS | ARE } alpha

alpha : no description (R)

Details This line command is required for selective deviatoric hexahedron or the selective
deviatoric membrane. Its value, which is valid from 0.0 to 1.0, indicates how much
of the deviatoric response should be taken from a uniform gradient integration and
how much should be taken from a full integration of the element. A value of 0.0 will
give a pure uniform gradient response with no hourglass control. Thus, this value is
of little practical use. A value of 1.0 will give a fully-integrated deviatoric response.
Although any value between 0.0 and 1.0 is perfectly valid, lower values are generally
preferred.

The selective deviatoric elements, when used with a parameter greater than 0.0,
provide hourglass control without artificial hourglass parameters.

22.6.18 TRUSS AREA

Syntax TRUSS AREA { = | IS | ARE } TrussArea

TrussArea : no description (R)

Details Specifies the cross-sectional area for a uniform result three-dimensional truss with
uniform results (constant stress). This is a deprecated command and should be
defined in a element section.

22.6.19 DAMPER AREA

Syntax DAMPER AREA { = | IS | ARE } DamperArea

DamperArea : no description (R)

Details Specifies the cross-sectional area for a damper element. The cross-sectional area is
used only for mass calculations. The length times the area and density is used to
generate nodal mass if needed. This is a deprecated command and should be defined
in a element section.
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22.6.20 ELEMENT INITIAL STRAINXX

Syntax ELEMENT INITIAL STRAINXX { = | IS | ARE } istrainxx

istrainxx : no description (R)

Details Specifies element initial strainxx to use for this block.

22.6.21 ELEMENT INITIAL STRAINYY

Syntax ELEMENT INITIAL STRAINYY { = | IS | ARE } istrainyy

istrainyy : no description (R)

Details Specifies element initial strainyy to use for this block.

22.6.22 ELEMENT INITIAL STRAINZZ

Syntax ELEMENT INITIAL STRAINZZ { = | IS | ARE } istrainzz

istrainzz : no description (R)

Details Specifies element initial strainzz to use for this block.

22.6.23 ELEMENT INITIAL STRAINXY

Syntax ELEMENT INITIAL STRAINXY { = | IS | ARE } istrainxy

istrainxy : no description (R)

Details Specifies element initial strainxy to use for this block.

22.6.24 ELEMENT INITIAL STRAINXZ

Syntax ELEMENT INITIAL STRAINXZ { = | IS | ARE } istrainxz

istrainxz : no description (R)

Details Specifies element initial strainxz to use for this block.
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22.6.25 ELEMENT INITIAL STRAINYZ

Syntax ELEMENT INITIAL STRAINYZ { = | IS | ARE } istrainyz

istrainyz : no description (R)

Details Specifies element initial strainyz to use for this block.

22.6.26 ELEMENT COORDINATE SYSTEM

Details Provides a model name for the coordinate system specification: (1) xyz (2) cylindrical
(3) spherical

22.6.27 POINT AX

Syntax POINT AX { = | IS | ARE } ax

ax : no description (R)

Details Global x-component of vector defining coordinate system direction A. It is not nec-
essary to input A as a unit vector.

22.6.28 POINT AY

Syntax POINT AY { = | IS | ARE } ay

ay : no description (R)

Details Global y-component of vector defining coordinate system direction A. It is not nec-
essary to input A as a unit vector.

22.6.29 POINT AZ

Syntax POINT AZ { = | IS | ARE } az

az : no description (R)

Details Global z-component of vector defining coordinate system direction A. It is not nec-
essary to input A as a unit vector.

22.6.30 POINT BX

Syntax POINT BX { = | IS | ARE } bx

bx : no description (R)
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Details Nominally the global x-component of vector defining coord system direction B. How-
ever, it is only necessary that the supplied B vector lie in the A-B plane, because C is
constructed as (A x B) and B is redefined to be (C x A). It is not necessary to input
B as a unit vector.

22.6.31 POINT BY

Syntax POINT BY { = | IS | ARE } by

by : no description (R)

Details Nominally the global y-component of vector defining coord system direction B. How-
ever, it is only necessary that the supplied B vector lie in the A-B plane, because C is
constructed as (A x B) and B is redefined to be (C x A). It is not necessary to input
B as a unit vector.

22.6.32 POINT BZ

Syntax POINT BZ { = | IS | ARE } bz

bz : no description (R)

Details Nominally the global z-component of vector defining coord system direction B. How-
ever, it is only necessary that the supplied B vector lie in the A-B plane, because C is
constructed as (A x B) and B is redefined to be (C x A). It is not necessary to input
B as a unit vector.

22.6.33 BEAM SECTION

Details Specifies the sectional type (rod, tube, bar, box, i) for a three-dimensional beam with
uniform results (constant stress along length). This is a deprecated command and
should be defined in a element section.

22.6.34 BEAM WIDTH

Syntax BEAM WIDTH { = | IS | ARE } BeamWidth

BeamWidth : no description (R)

Details Specifies the dimension perpendicular to the beam section z-axis (t-axis). This is a
deprecated command and should be defined in a element section.

22.6.35 BEAM HEIGHT

Syntax BEAM HEIGHT { = | IS | ARE } BeamHeight

BeamHeight : no description (R)

326



Details Specifies the dimension parallel to the beam section z-axis (t-axis). This is a depre-
cated command and should be defined in a element section.

22.6.36 BEAM WALL THICKNESS

Syntax BEAM WALL THICKNESS { = | IS | ARE } BeamWallThickness

BeamWallThickness : no description (R)

Details Specifies the wall thickness for tube and box sections; specifies the flange thickness
for an i section. This is a deprecated command and should be defined in a element
section.

22.6.37 BEAM FLANGE THICKNESS

Syntax BEAM FLANGE THICKNESS { = | IS | ARE } BeamFlangeThickness

BeamFlangeThickness : no description (R)

Details Specifies the flange thickness for an i section. This is a deprecated command and
should be defined in a element section.

22.6.38 BEAM REFERECNE AXIS

Details Specifies the reference axis location with respect to the beam geometric center line.
This is a deprecated command and should be defined in a element section.

22.6.39 SPRING AREA

Syntax SPRING AREA { = | IS | ARE } SpringArea

SpringArea : no description (R)

Details Specifies the cross-sectional area for a spring element. This is a deprecated command
and should be defined in a element section.

22.6.40 RIGID BODY

Syntax RIGID BODY { = | IS | ARE } RigidBodyName

RigidBodyName : no description (C)

Details Specifies the rigid body name to use for this element block.
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22.6.41 EFFECTIVE MODULI MODEL

Details Specifies the method used to determine the effective moduli. This choice can have
a significant effect on the resulting hourglassing behavior. The models are: elastic:
use the initial elastic moduli current: use the tangent moduli without correction
for edge conditions (e.g. very small stiffnesses, softening materials) presto: use the
PRESTO version of the pronto routine, which includes some fairly clear errors. This
is included only for backward compatibility with old PRESTO runs. pronto: use the
old PRONTO method for computing elastic moduli this approach is straight out of
PRONTO, PRESTO’s predecessor.

22.6.42 THICKNESS MESH VARIABLE

Syntax THICKNESS MESH VARIABLE { = | IS | ARE } var name

var name : no description (C)

Details This line defines a mesh variable to read the thicknesses from

22.6.43 THICKNESS TIME STEP

Syntax THICKNESS TIME STEP { = | IS | ARE } time value

time value : no description (R)

Details This line defines the time step at which to read the thickness variable from

22.6.44 SECTION

Syntax SECTION { = | IS | ARE } SectionName

SectionName : no description (C)

Details Specifies the section to use for this element block.
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Chapter 23

Developer Documentation

23.1 An Introduction to Aria’s Expression System

The following is the conference paper from the Coupled Problems 2005 conference, See Notz et al.
(2005).

This section provides a brief overview of a core element of Aria’s design called the Expression system.
Understanding the Expression system is not essential for using Aria but it is useful in understanding
how some of Aria’s features. It is also the simplest point of entry for developing and extending
Aria with new material properties and boundary conditions. In short, the Expression system is
the abstraction of low- to mid-level numerical calculations so as to make the code highly general,
reusable, extensible and scalable.

In order to provide a low entry barrier for user extensions we have chosen a design where the essential
numerical entities of boundary conditions, material properties, etc., are all implemented the same
way. Specifically, these are implemented as C++ classes called Expressions. In addition to supplying
the functional evaluation of the numerical quantity, Expression implementers provide information
regarding what the Expression provides, what other Expressions it may depend on, the tensorial
order of the provided quantity, etc. A higher-level Expression Manager is then able to determine
the minimal and sufficient set of Expressions required to perform the simulation and to ensure that
they are evaluated in the proper order. In addition to providing a simple extension technique, this
makes the core development of Aria very clean and abstracts nonessential details from many of the
basic algorithms, while still employing the most efficient numerical kernels and data management
techniques at the lowest levels.

To motivate our approach, we start with a simple example. In the FEM solution of the Navier-Stokes
equations the following integral, among others, is computed.∫

V

ρv · ∇vφi dV =
∑

e

∫
Ve

ρv · ∇vφi|j|dVe (23.1)

Here ρ is the density, v is the fluid velocity and φi is weight function associated with local node i. V
is the domain of integration in the physical space and Ve is that in the space of the element with |j|
being the Jacobian of transformation from Ve to V. Thus, the assembly kernel responsible for this
calculation needs access to all of these quantities. We will show that the kernel, however, does not
need to know the particulars of, say, the density model or of the weight function, especially regarding
which other quantities they may depend on. Moreover, there are likely to be other assembly kernels
that may also require these same quantities, such as the advection term of the energy transport
equation, ∫

V

ρCpv · ∇Tφi dV =
∑

e

∫
Ve

ρCpv · ∇Tφi|j|dVe (23.2)

where Cp is the specific heat and T is the temperature. Efficient evaluation of (23.2) should make
use of ρ, |j|,v and any other quantities that might have previously been computed in the assembly
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of (23.1). Keeping track of which quantities are needed and which quantities have already been
evaluated in a previous part of the assembly, regardless of the equation system that is being solved,
is the purpose of Aria’s Expression Manager.

In Aria, all of the quantities presented above, ρ, ∇v, |j|, φi, etc., are implemented as C++ classes
derived from the base class Expression. Each Expression has these basic responsibilities:

• Identification. Each Expression identifies itself with a generic description, such as density
and, when applicable, a specific model description, such as cubic in temperature.

• Prerequisites. Each Expression (and Expression user) provides a list of other Expressions (using
the generic identifiers) that are required for its own calculations. To continue the example,
the Expression which implements the cubic in temperature model would have temperature as a
prerequisite. Arbitrarily complex terms may be built of successively simpler components which
ultimately result in a dependency tree with the simplest ingredients being the leaves of the
graph.

• Tensor Properties. Each Expression states its tensor order (scalar, vector, second order ten-
sor, etc.) and dimension. With this information, Expression users can dynamically determine
how to index the values provided by the expression. For example, some thermal conductivi-
ties may be scalars while others may be second order tensors as is the case with anisotropic
materials.

• Evaluation. Each Expression implements a virtual function for computing its values. Depend-
ing upon the nonlinear solution strategy, additional methods may be required for computing,
for example, Newton sensitivities.

When an Expression is created, it makes itself known to an Expression Manager. The Expression
Manager is responsible for establishing the minimal but sufficient list of Expressions required for the
calculation. This is done utilizing the lists of prerequisites provided by Expression users and other
Expressions. The relationships among Expressions, Expression users, and the Expression Manager
is illustrated schematically in figure 23.1 with the use of UML. This figure illustrates two salient
features of our Expression subsystem: Expressions are themselves Expression users and Expression
users, such as assembly kernels, are the original source for all prerequisites.

The richness of the information provided in these lists of prerequisites quickly becomes apparent.
For example, the Expression Manager is able to further utilize the prerequisite information to order
the list of Expressions for evaluation. This is done so that when an Expression is evaluated, all
of its prerequisite Expressions have already been evaluated. Regardless of how complicated the
multiphysics problem happens to be, there are no duplicate evaluations and no overhead costs that
would be incurred with lazy-evaluation. Another powerful use for the prerequisite information is in
dynamically determining and computing sensitivities for Newton’s method. Since primitive variables,
or degrees of freedom, are also represented as Expressions, the prerequisites for any given Expression
are recursively checked to see if any of them represents a primitive variable. In combination with
runtime-queried tensor properties (see above), an Expression developer can implement and evaluate
the Expression’s sensitivities without ever having direct knowledge of the degrees of freedom in the
system. Lastly, Aria utilizes this information for additional purposes such as sparse matrix allocation
and automated memory management.

23.2 Nonlinear Coupling Strategies in Aria

One of the difficulties with writing broadly applicable computational mechanics software is that
developers can’t take advantage of specific knowledge of the application domain in order to optimize
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Figure 23.1. Schematic UML class diagram for the Expression sub-
system.

the algorithm. Thus, in providing generality one sometimes sacrifices efficiency. One place this is
evident in multiphysics modeling is in the choice of coupling strategies. While it is well understood
that a fully coupled system solved with Newton’s method utilizing analytic sensitivities is formally
the most robust and correct approach to solving multiphysics applications it is also computationally
expensive and complex to implement. Furthermore, while Newton’s method has the fastest rate of
asymptotic convergence it’s domain of convergence is often empirically observed to be smaller than
other methods. Lastly, in some applications, certain subsets of the physics may be only weakly
coupled so that a loosely coupled approach may be more computationally efficient. To address these
concerns while remaining general and flexible Aria offers a number of options for nonlinear solution
strategies and physics coupling.

In defining a problem in Aria, users configure one or more Regions. Each Region consists of one or
more PDEs to be solved on some or all of the input mesh. All of the PDEs in each Region are solved
in a tightly coupled (i.e., single matrix) manner using one of several nonlinear solution strategies
available. Users may then define loose couplings between two or more Regions. For example, some
or all of a solution from one Region may be transferred to another Region where it is treated as a
constant, external field. The aggregate nonlinear problem including the contributions from all of
the Regions may be iterated to convergence. The particulars of which physics are solved in each
Region and the nonlinear solution strategy used within and between Regions is completely specified
through the input file. Furthermore, an Aria user may pick a simple, minimal algorithm without
needing to fit it into an overly-generalized worst-case scenario that represents the union of all possible
algorithms.

Dynamically-specified loose coupling has many potential advantages that users may leverage. First,
the resulting linear system is considerably smaller and contains far fewer off-diagonal contributions
which can significantly increase the performance of linear solvers. Also, a resulting linear system may
have a more attractive form, such as symmetric positive-definite, that permits the use of tailored
iterative solutions techniques. Other extensions to loose coupling include subcycling of transient
simulations where each Region may advance in time with its own time step size and in-core coupling
to other applications based upon the Sierra framework.
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23.3 Developer Recipes

23.3.1 Adding a New Flux Boundary Condition

1. Add a new name for your model

(a) Add a new Identifier entry to Aria Model Names.h

(b) Add the string in Aria Model Names.C

2. Add your new Expression class.

(a) Copy-paste-rename a similar Expression definition. See, e.g., Aria Material Models.h.

(b) Copy-paste-rename a similar Expression implementation. See, e.g., Aria Material Models.C.

3. Add an entry to the Expression Factory::create model expression().

(a) Copy-paste-rename a similar entry in Aria Expression Factory.C.

23.3.2 Adding a New Material Model

1. Add a new name for your model

(a) Add a new Identifier entry to Aria Model Names.h

(b) Add the string in Aria Model Names.C

2. Add your new Expression class.

(a) Copy-paste-rename a similar Expression definition. See, e.g., Aria Material Models.h.

(b) Copy-paste-rename a similar Expression implementation. See, e.g., Aria Material Models.C.

3. Add an entry to the Expression Factory::create model expression().

(a) Copy-paste-rename a similar entry in Aria Expression Factory.C.

23.4 Expression Reference and API

This section provides a high-level view of how Expressions are run by Aria, from creation to com-
putation. This section also provides a brief description of the Expression methods that a user either
must or can optionally supply.

23.4.1 Execution Sequence

1. Initialization Phase (Input Parsing Time)

(a) Expression::Expression() (See 23.4.2) : Constructor. Called at creation time. Defines
identity, dependents and parameters. Required.

(b) Expression Manager::preprocess expressions() : Called after all expressions have
been created and all dependencies have been registered/requested. Unused expressions
are destroyed. Dependency based ordering established.

(c) Expression::set nonlinear method() : Sets the nonlinear method that will be used.
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(d) Expression::create dynamic storage() : Initializes storage for values, Newton sensi-
tivies, Picard factors but does not actually allocate memory.

(e) Expression::postregistration setup() (See 23.4.3) : Called once, after the Expres-
sion Manager has determined that the Expression will indeed be used but before simu-
lation begins. Called in depdendency order. Can get references to dependent’s storage
(values, Newton sensitivities, Picard factors, etc.).

(f) Kernel::postregistration setup() : Assembly kernels can interrogate the Expressions
available to them and get references to values, Newton sensitivies and Picard factoriza-
tions. For Picard’s method, Kernels notify Expression Manager which expressions they
will factor.

(g) Expression::register picard call() (See 23.4.4) : Called when a Kernel notifies the
Expression Manager that it will factor this Expression for Picard’s method. Here, the
Expression can register which Expressions it will, in turn, use in its factorization.

2. Simulation Phase

(a) Expression::prepare to recompute() (See 23.4.5): Called once for each workset, im-
mediately prior to compute values(). Can be used to resize or reinitialize storage (usually
done by base class), inquire about simulation time, etc.

(b) Expression::compute values() (See 23.4.6) : Computes the values of the Expression.
Required to compile.

(c) Expression::compute sensitivities() (See 23.4.7) : Computes the Newton sensitivi-
ties of the Expression. Required to compile.

(d) Expression::compute picard factors() (See 23.4.8) : Computes the Picard factoriza-
tions of the Expression. Generally only used for DoF-based Expressions and constitutive
models. Required dynamically, if Kernels ask for it.

3. Shutdown Phase

(a) Expression:: Expression() (See 23.4.9) : Destructor. Can be used to free memory
allocations (note: Real MDArray storage is automatically deallocated). Required but
normally empty.
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23.4.2 Constructor

23.4.3 postregistration setup()

23.4.4 register picard prerequisites()

23.4.5 prepare to recompute()

23.4.6 compute values()

23.4.7 compute sensitivities()

23.4.8 compute picard factors()

23.4.9 Destructor

23.5 Newton Sensitivity Checking for Expressions

When you run Aria you can ask it to look for sensitivity errors in every Expression if you’re using
Newton’s method. If activated, Aria will compare the analytic sensitivities provided by each expres-
sion with numerically computed values. This feature is enabled by adding the command line option
-arialog sens check to Aria. If you’re using the sierra tool to run Aria, then add -O ‘‘-arialog
sens check’’ (including quotes) to the sierra command line. The same holds if you’re running
the Arpeggio application.

You can also run the entire test suite with Jacobian checking enabled by adding -u aria args =
‘‘-arialog sens check’’ to the runtest command line.

23.6 Profiling

It’s a good idea to profile the code before spending time trying to optimizing and performance
tuning. Fortunately, profiling is pretty easy to do. On Linux, one approach is to use the gprof
tool. To profile code with gprof, you’ll need to compile with the -pg option. The easiest way to do
this is to set environment variables USER CFLAGS and USER LDFLAGS to -pg. In the bash/ksh/zsh
shell, use, e.g., export USER CFLAGS=-pg and in tcsh/csh use setenv USER CFLAGS -pg. You’ll
only get detailed profileing information for code compiled and linked with this flag so you may want
to recompile some of the framework too. You can profile debug or optimized code.

With the instrumented executable, run Aria as you normally would. This will generate a file
called gmon.out. Lastly, run gprof to analyze the data: gprof executable > gprof.txt where
executable is the executable (probably including an absolute or relative path) used in the run.
The output stored in gprof.txt will give you some real data telling where the real bottle necks are.

334



23.7 Purify: Memory Analysis and Debugging

1. Build Aria on Linux. This works for both optimized and debug modes but use debug if you
want to see line numbers in Purify.

2. Copy the complete link line into a file.

3. Add -show option to mpiCC.

4. Remove the -static option from the link line arguments.

5. Adjust any path to Apps aria.o if necessary.

6. Put which mpiCC on the previous line to verify you’re getting
mpiCC from /usr/local/mpi/sierra/mpich/1.2.5.2/gcc-3.2.2/bin/.

7. You might also verify gcc is version 3.2.2 (gcc -v).

8. Source the script.

9. Copy the link line (start with g++ ...) and paste it into a file.

10. Preface g++ with purify, e.g., purify -always-use-cache-dir -cache-dir=‘pwd‘/ g++
...

11. Source this script and it will instrument your executable. It takes a while...

12. Optionally verify that the executable is purifyed by running ldd aria.x

13. Copy executable to aria/bin directory, removing the .tmp extension.

14. Run it standalone (via sierra, runtest or by hand) or with TotalView.

23.8 Building Against Other Projects

Sometimes it can be very usefull to build against changes that have been made in a different project.
For example, if you are waiting for a project’s changes to be checked in but would like to start
developing against those changes in another project. To do this with the SNTools build tool you
can use the -a option to build. The argument to this option is the XML file for each product you
want to include in your build. So, if you want to use the version of Krino found in a project located
in /path/to/project/ then you would add -a /path/to/project/krino/krino sn.xml to your
normal build command line.

23.9 Interfacing with MATLAB

23.9.1 Reading Aria Matrices Into MATLAB

This is sort of an “old” way of getting matrices into MATLAB but it still works just fine.

From Matt Hopkins:

You can read a .mtx matrix into MATLAB via the following. Let my matrix.mtx be the matrix
sitting in the debug output path you’re interested in.
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>> A_ascii = load(’my_matrix.mtx’);
>> A = spconvert(A_ascii(2:end,:));

And now A is in MATLAB’s sparse matrix format. It even ignores the zeros in the .mtx file (does
not allocate space for them).

From there you can do some pretty nifty things. spy(A) does sort of what matvis does (graphical
view of matrix nonzeros). condest(A) estimates the 1-norm condition number of A (might take a
while for large A). Etc.

23.9.2 Interfacing Aria from within MATLAB

Russell Hooper is developing a pretty sophisticated MATLAB interace that allows you to control
Aria and probe nonlinear and linear solver data structures directly from within MATLAB. This is
rapidly evolving so no details are given here... except for how to build and run Aria/MATLAB.

This recipe is taken from an email exchange between Matt Hopkins and Russell Hooper in early
April 2006. It most likely only works on Linux.

% setenv LD_LIBRARY_PATH /usr/local/matlab/7.2/bin/glnx86:\${LD_LIBRARY_PATH}

% build aria -j8 -a /home/rhoope/Trilinos_6.0 \
CXXFLAGS="-I/usr/local/matlab/7.2/extern/include/" \
-a /home/rhoope/projects/noxMatlabStable/equationsolver \
LDFLAGS="-L/usr/local/matlab/7.2/bin/glnx86 -leng"

If you want to build a debug version, add “-g” to both the CXXFLAGS and LDFLAGS.

To execute aria, first invoke sierra aria -i input.i --script-only. Then copy the file sierra.sh
into another, ie opt.sh. Finally, remove the “-o logfilename” argument from opt.sh so that your
run is truly interactive.

23.10 Error Handling

Traditional techniques for error handling of numerous and varried. Sometimes functions will return
special values indicating success or failure of the call. Sometimes global variables or flags are set to
indicate an error has occurred. Sometimes abort() is simply called (bad!).

C++ and the SIERRA Framework offer facilities to support error handling. The two primary
error handling techniques are exception handling and assertions. Both of these can be combined to
implement Design by Contract though this is not formally done in Aria.

Whether one should use an exception or an assertion is sometimes a subtle question. In general,
assertions should be used for cases where the error is not likely to occur due merely to user input.
However, assertions can also be useful for computationally expensive tests which would adversely
affect production calculations.
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23.10.1 Exception Handling

C++ offers exception handling and the SIERRA Framework utility library provides a parallel-safe
layer for exception handling. Because exceptions in C++ are ordinary classes, applications may
choose to specialize exceptions for handling and detecting specific failure modes. When SIERRA
exceptions are used in conjuction with the SIERRA diagnostic tracing facility, it is possibly to get
a stacktrace (or sometimes a partial one) that illustrates the code path the where the exeption was
thrown.

In most cases, Aria developers do not need to worry about catching exceptions (they’re noramlly
fatal errors). The top-level SIERRA Framework routine run sierra() handles the responsibility
of catching any uncaught exceptions, converting them into parallel exceptions if necessary, and
propogating the exception to any other processors.

If the reader is not already familiar with exception handling in C++, a good place to start is with
Stroustrup (2000). In it’s simplest form, SIERRA exceptions can be used as follows.

#include <util/Exception.h>
// ...
if(something_bad_happened)
{
sierra::Exception x("Nice descriptive error message.");
throw x;

}

The sierra::Exception class inherrits from std::string and so it supports all of std::string’s
operations, most notably the + (concatentaion) operator.

#include <util/Exception.h>
// ...
if(something_bad_happened)
{
sierra::Exception x("Nice descriptive error message.");
x += " More info here.";
throw x;

}

Additionally, the sierra::Exception class supports the put-to operator, <<, for stream-like han-
dling.

#include <util/Exception.h>
// ...
if(something_bad_happened)
{
sierra::Exception x;
x << "Nice descriptive error message."
<< " More info here.";

throw x;
}

However, in order to keep the sierra::Exception class light weight, it does not inherrit from
std::ostringstream. Instead, operator<< is only defined for the most common objects, such as
strings, integers, floats/doubles, etc. The consequence of this is that if you define a class with
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operator<< for ostream, that operator will not work with sierra::Exception objects. In these
cases, it is sometimes useful to use a std::ostringstream to construct the error message and then
pass the resulting std::string to the exception.

#include <util/Exception.h>
#include <sstream>
// ...
if(something_bad_happened)
{
std::ostringstream os;
os << "Nice descriptive error message."

<< " Object foo: ";
<< some_object
<< " is unusable";

sierra::Exception x;
x << os.str();
throw x;

}

Finally, the construction and throwing of the exception can occur on the same line for brevity. In
this case, all we need is a temporary object which is unnamed.

#include <util/Exception.h>
// ...
if(something_bad_happened)
{
throw sierra::Exception() << "Nice descriptive error message."

<< " Integer out of bounds: j = "
<< j;

}

23.10.2 Assertions

Assertions are a common way to ensure that certain conditions that are assumed by the code to
be true are indeed true. For example, a function or piece of code may require that a pointer be
non-NULL, an integer be greater than zero, etc. Using the C++ assert() macro is a good way to
test such conditions that should hold under normal circumstances. By using assert(), the enclosed
test will only be perfomed if the code is compiled in debug mode; in optomized mode, the macros
expand to nothing. Thus, developers can use asserts extensively to test conditions assumed by their
code without affecting production-mode performance. Assertions also provide an excellent way to
document and enforce the assumptions that the developer made in writing the code.

The SIERRA Framework provides an alternate implementation of the assert() macro that utilizes
the parallel-safe exception handling described above. The macro, ThrowAssert(), is defined in the
same header file as the exception class.

#include <util/Exception.h>
// ...
void
some_function(const MyClass * myclass_ptr)
{
ThrowAssert(0 != myclass_ptr);
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// It should be OK to use the pointer.
// ...

Because assertions expand to empty code in optimized mode, developers must be careful to never
put variable assignments or other state-altering code inside an assert.

#include <util/Exception.h>
// ...
// This is a bug:
ThrowAssert(j = i + 2 > 4);

A common trick to getting more useful messages from a failed assertion is to add a help string like
this:

#include <util/Exception.h>
// ...
void
some_function(const Int & num)
{
ThrowAssert(num > 10 &&

"This function only works propertly when num is larger than 10");
// It should be OK to use the pointer.
// ...

Lastly, another macro, ThrowRequire() is available. This macro is identical to the ThrowAssert()
macro except this it is always enabled, even in optimized builds. This macro is currently not used
in Aria but use it if you want. The concise and readable form of these macros can help keep code
short while still being readable and expressive.

23.11 Outputting User Information (Logging)

The SIERRA Framework utility library supplies a flexible logging facility. The problem with normal
printf and cout output functions is that they get really annoying in parallel. Further, these
messages simply roll off the top of the user’s screen unless they are careful to redirect the standard
output and error streams to a file. Lastly, it’s difficult, and may involve recompiling the application,
to tailor these messages depending on the kind of information a user is interested in.

23.11.1 The DiagWriter Logging Facility

SIERRA’s logging facility, DiagWriter, is designed to address these three issues. The DiagWriter
class, in the simplest sense, is a std::ostream class that supports the put-to (<<) operator for
writing messages.

#include <Aria_DiagWriter.h>
//...
namespace Aria
{
arialog << "This is a message the user will always see." << std::endl;

}
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Note the use of std::endl instead of std::endl (the standard and portable newline). This is an
unfortunate but important point; using std::endl will result in ugly compiler errors.

The most interesting feature of the DiagWriter class is that the output can be tagged with a bit field
called a message mask. These masks are defined in Aria DiagWriter fwd.h as enums with meaningful
names, e.g., LOG EXPRESSION and LOG NONLINEAR. To mask your output message, you can use the
m() method on the DiagWriter object.

#include <Aria_DiagWriter.h>
//...
namespace Aria
{
arialog.m(LOG_EXPRESSION)

<< "This message is supposedly related to Expressions."
<< std::endl;

arialog.m(LOG_EXPRESSION | LOG_NONLINEAR)
<< "This message is supposedly related to Expressions "
<< "and/or the nonlinear solver"
<< std::endl;

}

Messages that contain a mask are only written if that is enabled via the print mask and messages
that don’t have a specified mask are always written. The user can define a print mask using the
“-arialog string” command line argument where the provided string maps to one (or more) of the
bit masks. The file Aria DiagWriter.C contains the mapping between the string names and the bit
mask values. For example, “expression” is assigned to LOG EXPRESSION. When the user supplies
the command line argument “-arialog expression” then the messages written are those masked with
LOG EXPRESSION and those with no bit masks.

The DiagWriter class contains many more features that are beyond the scope of this section. Explore
the header files and the code for more examples.

23.11.2 The Tracing Facility

Tracing is a common and extremely useful debugging utility. With tracing enabled, the code prints
the name of each function as it enters and exits the function. C++ doesn’t provide any standard
way to accomplish this so the Trace class is provided by the SIERRA Framework utility library.

The Trace class works by creating an instance (object) as the first line of a. The object constructor
takes as an argument a string (char *) containing the name of the function. When tracing is enabled
the constructor prints this name. When the application leaves this function, the local Trace object
is automatically destroyed as it goes out of scope. When tracing is enabled, the automatically-called
destructor re-prints the function name. The output of nested functions is nested so the output
provides a hierarchical view of the flow of control. The most basic usage looks like this:

#include <Aria_DiagWriter.h>
//...
namespace Aria
{
void my_func(const Int & i)
{
Trace diag_trace("Aria::my_func(const Int & i)");
//... normal code follows
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}
}

The Trace class utilizes the DiagWriter class for writing and for determining if tracing is enabled.
So, tracing may be enabled using “-arialog trace” on the command line and Aria::Trace objects
mask all output with LOG TRACE.

Though it’s not discussed here, tracing can be turned on and off during the normal execution so
that tracing information can be gathered only when it’s desired. Read through the header files and
the code for examples of doing that. One example of where this is used is in the exception handling.
When an exception is thrown, the tracing bit mask is automatically turned on. As the function stack
unwinds during the throw, any functions instrumented with Trace objects will get destructed and
hence they will print their owning function name. The result is a stacktrace, or traceback, which
can be extremely useful for debugging.

Adding all of the Trace objects to a code can be a daunting task, especially if you’re really anal and
want the function arguments and namespace to be a part of the function’s printed name (which can be
important with polymorphic functions). Aria uses the traceString tool (http://tracestring.sourceforge.net/)
to automatically instrument the code with the Trace objects. The traceString tool will enclose the
Trace objects in a pair of special strings so that it can safely update or remove the inserted code
later on. Typically, it looks like this:

#include <Aria_DiagWriter.h>
//...
namespace Aria
{
void my_func(const Int & i)
{
/* %TRACE[ON]% */ Trace diag_trace("Aria::my_func(const Int & i)"); /* %TRACE% */
//... normal code follows

}
}

To learn more about traceString, talk to Pat...

23.12 Catalogue of Assembly Kernel Expressions

Aria supplies several generic expressions that can be used for top-level assembly kernels for equa-
tion terms. When adding new equations or terms to existing equations, one of the follow generic
expressions can often be used.

23.12.1 Scalar Source Kernel Expression

This Expression assembles a source term for a scalar transport equation. Note that the MASS and
SRC terms can both be cast in this form. The general form is:

−m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)(
Ns∑
s=1

fs(xg)

)
φi(xg)|j|wg (23.3)

Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients and Ns is the number of sources provided. As an example, consider
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the term, ∫
Ωe

ρCp
∂T

∂t
|j|φi dΩe =

Ng∑
g=1

ρCp
∂T

∂t
|j|φiwg (23.4)

In this example, Nr = 2 with c1 = ρ and c2 = Cp; Ns = 1 with f1 = ∂T
∂t ; and m = −1. As a side

note, in the code the quantities |j| and wg are treated as additional coefficients for convenience.

23.12.2 Scalar Advection Kernel Expression

This Expression assembles an advection term for a scalar transport equation. The general form is:

m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)
va · ∇S(xg)φi(xg)|j|wg (23.5)

Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients, va is a configurable advection velocity and S is a scalar field. As
an example, consider the term,

∫
Ωe

ρCpv · ∇T |j|φi dΩe =
Ng∑
g=1

ρCpv · ∇T |j|φiwg (23.6)

In this example, Nr = 2 with c1 = ρ and c2 = Cp; S = T ; va = v; and m = 1. As a side note, in
the code the quantities |j| and wg are treated as additional coefficients for convenience.

23.12.3 Scalar Diffusion Kernel Expression

This Expression assembles a diffusion term for a scalar transport equation. The general form is:

m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)(
NF∑
k=1

F k(xg)

)
· ∇φi(xg)|j|wg (23.7)

Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients and NF is the number of flux models provided. As an example,
consider the term, ∫

Ωe

q∇φi|j|dΩe =
Ng∑
g=1

q · ∇φi|j|wg (23.8)

In this example, Nr = 0; NF = 1 with F1 = q where q is the Fourier heat flux, q = −κ∇T ; and
m = 1. As a side note, in the code the quantities |j| and wg are treated as additional coefficients
for convenience.

23.12.4 Vector Source Kernel Expression

This Expression assembles a source term for a vector transport equation. Note that the MASS and
SRC terms can both be cast in this form. The general form is:

−m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)(
Ns∑
s=1

fs(xg)

)
φi(xg)|j|wg (23.9)
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Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients and Nk is the number of sources provided. In this case, the sources
fs are vector quantities. As an example, consider the term,∫

Ωe

ρ
∂v

∂t
|j|φi dΩe =

Ng∑
g=1

ρ
∂v

∂t
|j|φiwg (23.10)

In this example, N1 = 2 with c1 = ρ, Ns = 1 with f1 = ∂v
∂t ; and m = −1. As a side note, in the

code the quantities |j| and wg are treated as additional coefficients for convenience.

23.12.5 Vector Advection Kernel Expression

This Expression assembles an advection term for a vector transport equation. The general form is:

m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)
va · ∇V (xg)φi(xg)|j|wg (23.11)

Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients, va is a configurable advection velocity and V is a vector field. As
an example, consider the term,∫

Ωe

ρv · ∇v|j|φi dΩe =
Ng∑
g=1

ρv · ∇v|j|φiwg (23.12)

In this example, Nr = 1 with c1 = ρ; V = v; va = v; and m = 1. As a side note, in the code the
quantities |j| and wg are treated as additional coefficients for convenience.

23.12.6 Vector Diffusion Kernel Expression

This Expression assembles a diffusion term for a vector transport equation. The general form is:

m

Ng∑
g=1

(
Nc∏
r=1

cr(xg)

)(
NF∑
k=1

F t
k(xg)

)
: ∇

(
ejφ

i(xg)
)
|j|wg (23.13)

Here, m is a multipler that defaults to 1, Ng is the number of Gauss points in the quadrature rule,
Nc is the number of coefficients and NF is the number of flux models provided. As an example,
consider the term, ∫

Ωe

T t : ∇
(
ejφ

i
)
|j|dΩe =

Ng∑
g=1

T t : ∇
(
ejφ

i
)
|j|wg (23.14)

In this example, Nr = 0; NF = 1 with F1 = T where T is the Newtonian stress, T = µ (∇v + ∇vt)−
pI; and m = 1. As a side note, in the code the quantities |j| and wg are treated as additional
coefficients for convenience.

23.13 Errors and Warnings How-To

Editorial note: This How-To is mostly taken from Dave Bauer’s collection of How-Tos. Minor
changes include formatting, editorial corrections and possibly additioinal information related to Aria.
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23.13.1 Reporting

There are several types of warnings and exceptions that occur in sierra. Warnings are informational
messages to the user which may effect the results, but which will allow the execution to complete.
Dooms are error conditions which will allow the program to continue to a point, but will not allow
it to complete. Often these are within the parser when you want the parser to continue to plod on
ahead but not actually execute the code. Exceptions occur when all bets are off.

The Warning and Doom classes send their assembled message to the sierra reporter at destruction.
The Exception classes send their assembled message to the sierra reporter within the catch block.

The warning and exception classes will all accept the put-to operator (<<) with plain old data. Since
it is easy to put useful information to the user/developer in the message, please do so. For warnings
directed to developers, it is recommended that the message be terminated with a

<< std::endl << WarnTrace;

For exceptions, always use

<< std::endl << StackTrace;

WarnTrace and StackTrace generate a ”pretty” source file and line number message. If the message
is purely informational for the user the std::endl and WarnTrace for the message should be omitted.

These are the include files:

#include <util/Exception.h>// throw sierra
#exception declarations
#include <util/ExceptionReport.h>// sierra reporter and
#RuntimeWarning declarations

The RuntimeUserError class should be thrown in place of RuntimeError when it was the user’s fault
that the program died. This generally means that the input deck has an error that a RuntimeDoomed,
the preferred method since it allows the parser, etc to continue, cannot handle since a seg fault or
the like is imminent. It kills the output of the traceback since the user really does care and will only
cause confusion.

Also, don’t put the WarnTrace or StackTrace to the RuntimeUserError.

The following code snippets serve as examples for the warning, doomed and exception conditions.

class_tag *
Parser::prsr_handler_x(
const Prsr_CommandValues & value)
{

if (runtime_warning_condition)
sierra::RuntimeWarning() << "My useful message about " <<
some_data << std::endl << WarnTrace;

if (runtime_exception_condition)
throw sierra::RuntimeError() << "My useful message about " <<
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some_data << std::endl << StackTrace;

if (runtime_exception_condition)
throw sierra::RuntimeUserError() << "My useful message about "
<< some_data;

if (parse_handler_warning_condition)
sierra::RunWarning() << "My useful message about " <<
some_data << std::endl << WarnTrace;

if (parse_handler_doomed_condition)
sierra::RuntimeDoomed() << "My useful message about " <<
some_data << std::endl << WarnTrace;

}

23.13.2 Throttling a Specific Warning or Doom

If a particular warnings is going to be repeated countless times, you can request a unique message
id from sierra using

int message_id = sierra::get_next_message_id();
int message_id = sierra::get_next_message_id(int max_messages_displayed);

and pass message id to the message constructor. This value is often stored within the function that
generates the message using a static variable. This technique may not be suitable for all situations.
Only a limited number of messages of each id are sent to the sierra reporter.

if (runtime_warning_condition) {
static message_id = get_next_message_id();

sierra::RuntimeWarning(message_id) << "My useful message about
" << some_data << std::endl << WarnTrace;

}

if (parse_handler_warning_condition) {
static message_id = get_next_message_id();
sierra::Prsr::ParseWarning(value, message_id) << "My useful
message about " << some_data << std::endl << WarnTrace;

}

if (parse_handler_doomed_condition) {
static message_id = get_next_message_id();
sierra::Prsr::ParseDoomed(value, message_id) << "My useful
message about " << some_data << std::endl << WarnTrace;

}
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if (parse_handler_exception_condition) {
static message_id = get_next_message_id();
sierra::Prsr::ParseError(value, message_id) << "My useful
message about " << some_data << std::endl << WarnTrace;

}

23.13.3 Setting Output Throttles

There are several functions which can throttle the amount of data which is displayed.

To set the maximum number of warnings or dooms before an exception is thrown:

void sierra::set_max_warnings(int max_warnings);
void sierra::set_max_dooms(int max_dooms);

int sierra::get_max_warnings();
int sierra::get_max_dooms();

To set the maximum number of warnings displayed. Each occurance is still counted, but not dis-
played. Dooms are always displayed.

void sierra::set_max_displayed_warnings(int max_display_warnings);
int sierra::get_max_displayed_warnings();

To set the default maximum id messages to display, set get next message id() below:

int sierra::set_default_max_id_dispaly(int
default_max_id_displayed)
int sierra::set_default_max_id_dispaly(int
default_max_id_displayed)

23.13.4 Sierra Exception Reporter

What is this sierra reporter thing you ask? It goes like this: When a Warning or a Doom class
is destroyed, report exception() is called with the message. report exception() then calls the
registered report exception handler. The report exception handler has a signature of

(*)(const char *message, int type)

and is set with set report exception handler(). Sierra sets this to use the sierra report exception handler()
which writes the message to sierra::Env::output().

If you want special decorations around your messages during executeion, you can change the reporter.
The parse, instantiation and commit handlers are set by run sierra().

23.13.5 The Output versus OutputP0 Dilema

Unfortunately, determining what to do with the output from multiple processors can be an issue.
If a warning is going to happen on all processors, you may want to wrapper it with a test for
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processor zero and only output it there. The default report exception handler sends the output
to Env::output()

23.13.6 Getting Counts

To get the number of warnings issued, even if not displayed:

get_warning_count()

To get the number of dooms issued, even if not displayed:

get_doomed_count()

23.13.7 Traceback and Tracing

The traceback messages are generated by the Trace and Traceback classes upon there destruction.
So, if the source code has had trace objects constructed, the stack trace will show them. If efficiency
becomes an issue, the #define app TRACE ENABLED can be undefined which will cause the Trace
and Traceback classes to be empty.

The trace object can be used to extract function signature information. The getFunctionSpec(),
getFunctionName(), getFunctionShortName(), getFunctionClass(), getFunctionShortClass()
and getFunctionNamespace() functions will all extract appropriate information from the function
signature.

The program /usr/netpub/traceString/traceString (on Linux) can be used to quickly place the
trace objects in your source code. I suggest editing the results and placing [ON], [TRACEBACK] or
[NONE] after the first %TRACE as in %TRACE[NONE]%. These will instruct traceString which object
type to create. Then, rerun traceString. I set it to NONE for functions which will execute many
many times or cannot throw an error or not have much value in a stack trace (accessors, etc). I set
it to TRACEBACK if it will not be useful to see traced during a trace run, but be useful in a traceback.
And ON otherwise which incurs some overhead that enables the conditional runtime trace.

Here is the .traceString file I use and suggest be used throughout sierra.

[START_OF_ROUTINE_PATTERNS]
default : Trace trace__("$(FQNAME)");
off :
Off :
OFF :
none :
None :
NONE :
spec : static Tracespec trace__("$(FQNAME)");
Spec : static Tracespec trace__("$(FQNAME)");
SPEC : static Tracespec trace__("$(FQNAME)");
on : Trace trace__("$(FQNAME)");
On : Trace trace__("$(FQNAME)");
ON : Trace trace__("$(FQNAME)");
traceback : Traceback trace__("$(FQNAME)");
Traceback : Traceback trace__("$(FQNAME)");
TRACEBACK : Traceback trace__("$(FQNAME)");
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23.13.8 Deriving from a Sierra Exception

When deriving a new exception from the framework exceptions and using the put-to (<<) operator,
you must include the following template functions in your class or

throw MyError() << "My error message cause of " << x;

will certainly fail. It only took me a day to relearn this, but:

If MyError does not implement a put-to operator, it uses the base classes put to operator, say
RuntimeError. Well, the RuntimeError put-to operator returns a reference to a RuntimeError, so
now you are going to be throwing a RuntimeError exception not a MyError exception. This is only
an issue when using the temporaries. By putting the MyError() construction on the same line as
the throw. I.e.,

MyError x;
x << "My error message cause of " << x;
throw x;

works fine since we are actually throwing x, a MyError object.

So, add these if you derive from a sierra exception and wish to throw the temporary object and use
the put operator all in one pretty line:

class MyError : public RuntimeError {

.

.

.
inline MyError& operator<<(ExceptionString& (*f)(ExceptionString

&)) {
f(*this);
return *this;

}

template <class T>
inline MyError &operator<<(const T &t) {
RuntimeError::operator<<(t);
return *this;

}
};

23.13.9 path name()

When generating error messages with object names, use the path name() form rather than just
name. This generates a dot (.) separated list of names from the Procedure on down.

23.13.10 abort() – Don’t use it

abort() does not provide any useful information when the application dies. By replacing abort calls
with Warnings, Dooms and Exceptions, the code will be easier to maintain and the user will get
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better diagnostic output.

23.13.11 Apub Parser Base – Useful for parsing, not needed for error re-
porting

This class stashes useful information from within a parser that is likely to be needed after parsing.
The runtime error reporting routines handle error reporting making the line number and command
value information redundant for error reporting.

23.14 Diagnostic Writer How-To

Editorial note: This How-To is mostly taken from Dave Bauer’s collection of How-Tos. Minor
changes include formatting, editorial corrections and possibly additioinal information related to Aria.

This document briefly describes the implementation of the diagnostic writer and masked based
output. The diagnostic writer is intended to replace debug level output with but masked based
diagnostic output. By utilizing the diagnostic writer, your normal output can be separated or
interleaved with the diagnostic output, the diagnostic output can the enabled/disabled at specific
times during a run, and entire classes can be output by simply putting the object to the diagnostic
writer.

23.14.1 Output

Application output falls into three classes. Normal execution output, warning and error out-
put, and diagnostic output. Normal execution output is handled via the Env::outputP0() and
Env::output() functions and by the application diagnostic writer. Warning and error output is
handled by the RuntimeWarning, RuntimeDoomed and runtime exception classes (RuntimeError,
LogicError, etc), which is eventually written to the env output stream and the diagnostic outptu
stream. And diagnostic output is for selected operationally descriptive output.

In many cases, the diagnostic output is utilized as the primary output stream when selectable level
of user output is desired. With thay in mind, an InfoWriter class has been written. However,
additional discussion is required to complete the design and implementation of this class for primary
application output.

23.14.2 Diagnostic Writer

The diagnostic writer allows you to write diagnostic information to the diagnostics stream by spec-
ifying the content from the command line or the input deck. It a debug level built on a bit mask.

Since there are many applications and libraries, there are several diagnostic writers. Each diagnostic
writer has its own bit mask, command line parser and writer. However, they all share a common
diagnostic stream. So, output from each diagnostic writer is properly interleaved.

Each application defines it own diagnostic writer. This is generally defined within the app DiagWriter fwd.h,
app DiagWriter.h, app DiagWriter.C files. The app DiagWriter fwd.h file defines the LOG xxx bit
assignments. These values are used to specify the type of message to be written. The app DiagWriter.h
rarely needs to be modified. It declares the daignostic writer for the application or library. The
app DiagWriter.C files defines the parser which provides names for the LOG xxx bit masks.
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23.14.3 Using The Diagnostic Writer

To have your program send output whenever a specified log bit is set, add the following to your
code:

dwout.m(LOG_xxx) << "description, " << value << std::endl;

or, if much computation or MPI is involved:

if (dwout.shouldPrint(LOG_xxx)) {
dout << "really_spendy_function(), " <<
really_spendy_function() << std::endl;

}

Where dwout is the name of the diagnostic writer, LOG xxx is the bit which describes the type of
message, description is a description of the data. value is the value of interest. And, std::endl
ends the message.

Note that nearly all (please let me know what’s missing) containers have output operators. So to
write an entire vector, just write the vector variable, the diagnostic writer will take case of the rest.

23.14.4 Turning on the LOG xxx Bits

Each application has its own command line option and line commands for flipping on the bits. The
command line option has limited functionality in that the parameters cannot be switched on and
off during an application execution. However, it is useful for a quick look.

For sierra framework, the command line option is -m, and each application has it’s own option name.
Use the -h option to display a table of command line options and parameters.

The Diagnostic Control command block in the sierra block controls each the diagnostic writers:

Begin Diagnostic Control <diagwriter>
From time t0 to t1 enable <parameters>
From step s0 to s1 enable <parameters>
On condition c enable <parameters>
Enable <parameters>

End Diagnostic Control <diagwriter>

Please refer to Diagnostic Control for implementation details.

The diagnostic output can be selectively enabled based on time, step or an application specified
condition. During the application’s procedure execution loop, the diagnostic controller evaluates the
enclosed line commands in the order specified in the input deck. The diagnostic options specified in
the first line command that meets its criteria are applied.

Since control parameters are only applied when the criteria is met, it is important to include an
ENABLE line command with the base settings to be applied as a baseline.

Table 23.14.4 lists some of the options available for the framework diagnostic writer fmwkout and
options for the Aria diagnostic writer arialog are given in table 23.14.4. Other application will
likely implement additional diagnostic writers.
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Option Description
error Display error messages
warning Display warning messages
members Display data structure members
timer Display execution time during trace
trace Display execution trace
contact Display contact diagnostic information
geometry Display geometry diagnostic information
scontrol Display solver control diagnostic information
search Display search diagnostic information
transfer Display transfer diagnostic information
parser Display parser diagnostic information
parameters Display parameter diagnostic information
io Display contact I/O information
plugins Display user function and plugin diagnostic information

Table 23.1. Diagnostic writer options for Framework (fmwkout).

Option Description
bc Display boundary condition information
debug Display extra debugging information
eq Display equation information
expression Display Expression information
hadapt Display h-adaptivity information
linsolve Display linear solver information
nonlinear Display nonlinear solver information
pp Display postprocessor information
sens check Enable the Expression Newton sensitivity checker
species Display species information
transfer Display transfer related information
plugin Display plugin information

Table 23.2. Diagnostic writer options for Aria (arialog).
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23.14.5 Diagnostic Stream

The disagnostic stream specified the output destination for all the active diagnostic writers. The
stream allows the output from the diagnostic writers to be interleaved.

The command line option

-dout <destination>David,

and the sierra block line command

diagnostic stream <destination>

determines the output. <destination> may be cout, cerr, outputp0, output or a path. If a path
is given, each processor creates its own file suffixing the path with .n.p where n is the number of
processors and p is the rank of each processor. See Diagnostic Stream for specifying the output
destination.

23.14.6 Coding Objects

To code your own objects to play with the diagnostic writer, you only need to add a verbose print()
member function to your class. And, a operator<<() function to your namespace. Naturally the
implementation for verbose print() is generally in the .C file, not the header.

class MyClass : public ParentClass
{
public:
DiagWriter &verbose_print(DiagWriter &dout) const {
if (dout.shouldPrint()) {

dout << "MyClass " << m_name << push << std::endl;
ParentClass::verbose_print(dout).std::endl();
dout << "m_var1, " << m_var1 << std::endl;
dout << "m_var2, " << m_var2 << std::endl;
dout << "m_ptr1, " << c_ptr(m_ptr1) << std::endl;
dout << "m_ptr2, " << c_ptr_name(m_ptr2) << std::endl;
dout << pop;

}
return dout;

}
};

inline DiagWriter &operator<<(Diagwriter &dout, const MyClass
&my_class) {
return my_class.verbose_print(dout);

}

If your class is polymorphic, be sure to define verbose print() as virtual.

When writing a subclass from your class, the put-to operator (<<) will by do what you expect, eevn
when you cast. So you need to use the direct call form.
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23.14.7 Writing Containers

You can write an STL container by simple putting it to the diagnostic writer. This is implemented
using templates in utility/include/DiagWriter.h.

23.14.8 Writing Pointers

Writing of pointers is usually quite ugly since you need to check if the pointer is null first. Instead,
use the c ptr() function. If the pointer is null it writes ”(pointer), ¡not created¿”. Or, you can use
c ptr name() function which will call the name() function of the pointed to object if the pointer is
not null.

You can have you own pointed object function called by replacing name with your member function
name below.

template <class T>
inline c_ptr_func_<T, const String &> c_ptr_name(const T *t) {
return c_ptr_func_<T, const String &>(t, &T::name);

}

23.14.9 Diagnostic Control

The diagnostic control block in the sierra command block is handled by the Fmwk::DiagControl::Control
class. Simply add

Fmwk::DiagControl::Control diag_control(step_cntr(),
time(Fmwk::STATE_OLD), 0);

at the beginning of your main procedure control loop. This line exists in the Solver Control proce-
dure.

23.15 Timers and Timing How-To

Editorial note: This How-To is mostly taken from Dave Bauer’s collection of How-Tos. Minor
changes include formatting, editorial corrections and possibly additioinal information related to Aria.

This document briefly describes the time metrics collection features available to sierra applications.

The DiagTimer and Timer classes provide runtime metric information for properly rigged objects.

The system has a root ”System” timer. This timer is started when run sierra() is called and
stopped before the successful completion information is displayed.

23.15.1 DiagTimer and Timer

The DiagTimer class implements the basic developer interface to the timers. Generally, the frame-
work form, Timer, will be used to implement timers within a framework derived class.
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Timers are intended to be members of your classes or static objects created within a function or
member function. Each timer has a name, a parent and a timer class. The name is used to find a
child timer of a parent and to display the collected metrics. The parent is used to build the hierarchy
of metrics gathered in a application. And the timer class or type categorizes the timers so they may
be enabled, disabled and selected for display.

The timing information is actually maintained in a separate tree. So, during timer construction
within a class, the timer is a reference to the real timing metric information in the tree. This design
means that timers are not destroyed when an object is destroyed.

The timers are hierarchical by name. So, by giving a timer a unique name among its siblings, each
object has it’s own timer and it’s children timers are also unique.

23.15.2 Add a Timer to a Class

To add a timer to a class, include the header file and add the timer as a member of the class. Then,
during construction initialization, specify the timer’s name and parent timer. You can also specify
a timer class if it is different from the parents.

Then, to start/stop the timer, use the TimeBlock and TimeBlockSynchronized to ensure that a
started timer is stopped.

#include <util/Timer.h>

class MyClass
{
public:

// etc.

Timer &getMyTimer() {
return m_myTimer;

}

Timer &getMySubTimer() {
return m_mySubTimer;

}

private:

Timer m_myTimer;
Timer m_mySubTimer;
// etc.

};

MyClass::MyClass(
Region & region)

: m_myTimer("My Timer", region.getRegionTimer()),
m_mySubTimer("My SubTimer", m_myTimer)

{
// etc.

}
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// When controlling timers using the TimeBlocks, be sure to give the
// object a name. Some compilers destroy unnamed objects immediately,
// other destroy them at the end of the block. I usually use timer__

MyClass::someFunction()
{

Timer::TimeBlock timer__(m_myTimer); // Metrics in block are
// collected to m_myTimer;
}

MyClass::someFunction()
{

Timer::TimeBlockSynchronized timer__(m_myTimer);
// MPI_Barrier then start timer
}

MyClass::someOtherFunction()
{

m_myTimer.start(); // Works, but is dangerous if stop() is not called.
m_myTimer.stop();

}

23.15.3 Adding a Timer to a Function

To add a timer to a function, create a static Timer in the function, then start/stop it using the
Timer::TimeBlock. Note that if there is no parent specified, the root timer ”System” will be the
timer’s parent.

int
myFunction()
{

static Timer my_timer("My Timer");
Timer::TimerBlock(my_timer);
// etc.

}

23.15.4 Getting Information from a Timer

Each timer has an accumulation time/count, a checkpoint time/count and a recent lap time/count.
The accumulation time is the overall time/count since the start of the application. The checkpoint
time/count records the current values when set, then the difference from that time/count can be ob-
tained. This is useful for displying delta times for interations. The lap time is the time accumulated
during the last start()/stop() cycle for the timer.

The metrics available are getCPUTime(), getWallTime(), getFlopCount(), getIOCount(), getMsgCount().
Flop, IO, and Msg are not implemented on most platforms (any really).
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m_myTimer.getCpuTime().getStart(); // Timer most recent start time
m_myTimer.getCpuTime().getStop(); // Timer most recent stop time
m_myTimer.getCpuTime().getLap(); // Most recent stop - start
m_myTimer.getCpuTime().getTotal(); // Accumulated time
m_myTimer.getCpuTime().getTotal(false); // Accumulated time less checkpoint time

I could add getCheckpoint() and getCheckpointTotal() as variations on a theme, but...

23.15.5 Displaying the Timers

To display a table of the collected timing information, use the Timer::printTable() function. The
function lets you specify the classes and the metrics to output. Note that only enabled timers
and metrics are displayed. Use TIMER CHECKPOINT to display checkpointed time. It also resets the
checkpoint time/count after display.

std::cout << Timer::printTable(TIMER_CPU | TIMER_ALL);

23.15.6 Enabling/Disabling the Timers

Timers are enabled by timer class. They can be enabled using the Timer::setEnabledTimers()
function, by the -timer command line option or by the ENABLE TIMER input deck line command.

23.15.7 Timers in the Framework

The framework creates several timers and starts/stops them when it has control of the operations.

header timers are given the name associated with the name of the object automatic timers are
handled within framwork and required no additional coding otherwise, instructions are given on
how to collect the data for the timer

Domain:
Domain header
LinearSystem automatic
Initialize automatic
Execute automatic
Load automatic
Solve automatic

Procedure:
Procedure header
Initialize automatic
Restart automatic
Execute automatic
MeshInput automatic
MeshOutput automatic
Transfer automatic

Region:
Region header
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Initialize call Timer::TimeBlock timer__(getRegionInitializeTimer()); at beginning of initialize()
Execute call Timer::TimeBlock timer__(getRegionExecuteTimer()); at beginning of execute()

Mechanics:
Mechanics header

Algorithm:
Algorithm header
Apply automatic

WorksetAlgorithm: (sub class of Algorithm)
Gather automatic
ScatterAssemble automatic

NonLinearCoupler:
NonLinearSolver automatic
Initialize automatic
Scatter automatic
Solve automatic

NonLinearSolver:
NonLinearSolve automatic
Initialize automatic
Scatter automatic
Solve automatic

UserInputFunction:
UserInputFunction automatic
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Glossary

coefficient: Each field that is represented by a basis function expansion has a set of coefficients that
are used in that expansion. For example, the three dimensional velocity vector represented by
an eight node, tri-linear hex element has eight coefficients. In this example, each coefficient is
also a vector with three components.

This is consistent with the Sierra data model wherein vectors and tensors are single-entity data
types.

Although for certain basis function representations the coefficients may be the exact value of
the field at a point this is not the case in general.

component: The number of values required to describe a field at a point. Equal to the tensor di-
mension raised to the power of the tensor order. For example, temperature has one component,
velocity has 3 components (in 3 dimensions) and stress has 9 components.

dof: An entry in the vector of uknowns, i.e. , in the linear solver solution vector.

field: The physical variable of interest, e.g. , temperature or velocity.

multidof: A field is a multidof if it contains more than one component
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NEOHOOKEAN ELASTIC, 122
NONLINEAR ELASTIC, 122
RESIDUAL, 123
THERMAL, 123

Solution Control, 177
SOLUTION CONTROL DESCRIPTION, 146
SOLUTION METHOD, 193, 196, 222, 223, 251, 253, 261,

263
SOLVE TRANSPOSE, 251, 258
SOLVER, 282
SOURCE FOR CURRENT, 83

BUTLER VOLMER SIMPLE, 83
POLYNOMIAL, 84

SOURCE FOR ENERGY, 77
COMPRESSIVE WORK, 78

367



CURING FOAM HEAT OF RXN, 78
CURING FOAM LATENT HEAT, 79
CURING FOAM SPECIFIC HEAT, 79
JOULE HEATING, 80
POLYNOMIAL, 80
TBC JOULE HEATING, 81
VISCOUS DISSIPATION, 78

SOURCE FOR MOMENTUM, 81
BOUSSINESQ, 83
CONSTANT VECTOR, 82
HYDROSTATIC, 82
ROTATING BODY FORCE, 82

SOURCE FOR SPECIES, 84
CURING FOAM EXTENT, 85
CURING FOAM VFRAC, 85
POLYNOMIAL, 85

SOURCE FOR VOLTAGE, 86
POLYNOMIAL, 86

SPECIES DIFFUSION, 123
BASIC, 124
FICKS LAW, 124

SPECIES DIFFUSIVITY, 124
CONSTANT, 124

SPECIFIC HEAT, 125
CONSTANT, 125
CURING FOAM, 125
EXPONENTIAL, 126
POLYNOMIAL, 126
USER FUNCTION, 127

SPRING AREA, 319, 327
stabilization, 50
STAGNATION TEST STEPS, 194, 206
STAGNATION TEST TOLERANCE, 194, 205
START TIME, 172, 174, 234, 235, 291, 294, 296, 300, 302,

304, 307, 308, 312, 316
STOP TIME, 234, 235
STREAM NAME, 303, 305
SUBCYCLE, 149, 151, 153–156, 161–164
SUBSYSTEM, 146, 167
SURFACE TENSION, 128

CONSTANT, 128
LINEAR T, 128

SUSPENSION FLUX, 128
PHILLIPS, 129

SYSTEM, 146, 147

T
TARGET ERROR FOR, 172, 173
TERMINATION TIME, 172, 173, 291, 294, 296, 300, 302,

304, 307, 309, 312, 316
TEUCHOS PARAMETER BLOCK, 195, 216, 229, 230,

252, 260
THERMAL CONDUCTIVITY, 129

CONSTANT, 129
CURING FOAM, 130
POLYNOMIAL, 130
THERMAL, 131
USER FUNCTION, 131

THERMAL DIFFUSIVITY, 132
CONSTANT, 132

thermal stress, 37
THICKNESS MESH VARIABLE, 319, 328
THICKNESS TIME STEP, 319, 328
ThrowAssert, 338
TIME STEP STYLE, 173, 174
TIME STEP VARIATION, 175, 179
Timer, 242, 250
TIMESTAMP FORMAT, 303, 306

TIMESTEP ADJUSTMENT INTERVAL, 291, 294, 296,
300, 302, 303, 307, 308, 312, 316

TITLE, 296, 297, 307, 311–313
TOPOLOGY DATABASE NAME, 284, 289
TOTAL CHANGE IN TIME, 172, 173
TOTAL INTERNAL ENERGY, 132

POROUS, 132
Trace, 340
traceString, 341
tracing, 340
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