

SANDIA REPORT

SAND2007-2462
Unlimited Release
Printed January 2007

SLAM Using Camera and IMU Sensors

Fred Rothganger and Maritza Muguira

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2007-2462
Unlimited Release

Printed January 2007

SLAM Using Camera and IMU Sensors

Fred Rothganger and Maritza Muguira
Cognitive and Exploratory Systems Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1009

Abstract

Visual simultaneous localization and mapping (VSLAM) is the problem of using video input to reconstruct
the 3D world and the path of the camera in an “on-line” manner. Since the data is processed in real time,
one does not have access to all of the data at once. (Contrast this with structure from motion (SFM),
which is usually formulated as an “off-line” process on all the data seen, and is not time dependent.) A
VSLAM solution is useful for mobile robot navigation or as an assistant for humans exploring an unknown
environment. This report documents the design and implementation of a VSLAM system that consists of a
small inertial measurement unit (IMU) and camera. The approach is based on a modified Extended Kalman
Filter. This research was performed under a Laboratory Directed Research and Development (LDRD) effort.

3

4

1 Introduction

The Simultaneous Localization and Mapping (SLAM) problem usually starts with an unknown environment
where one hopes to generate a map and localize within the map. In addition, there is uncertainty in the
sensor data that must be used. The development of SLAM is generally credited to Smith and Cheeseman [1].
They were interested in how the relative position estimate of a landmark or the robot degraded by the motion
of the robot. They also wanted to determine how the relative position estimate of the landmark or robot
was upgraded by new measurements. They framed this mapping and localization problem in probabilistic
terms and introduced Monte Carlo Localization and the Extended Kalman Filter for robot localization.
Advantages of the Extended Kalman Filter are that the map becomes fully correlated in the limit and it is
an analytical approach. Disadvantages include the Gaussian assumptions, computational complexity, and
problems with false data association. An Extended Kalman Filter is a recursive Baysian Filter. Particle
filters are another type of recursive Baysian Filter. One of the advantages of the particle filter approach is
the ability to model non-gaussian probability density functions. In fact, any probability density function may
be approximated by a set of weighted particles [2]. This paper describes an approach based on a modified
Extended Kalman Filter. The steps in this algorithm are

Step 1 Prediction

Step 2 Update from visual features

Step 3 Update from inertial measurement unit

Step 4 Addition of new landmarks

Step 5 Bootstrapping the map

Step 6 Bundle adjustment

These steps are described in more detail in each of the subsequent sections. Test results are briefly presented
in Section 8.

2 Prediction

1. X = [q T v w L1 . . . Ln]T is the current state of the system. q = [r i j k]T is the quaternion that
rotates coordinates in the camera frame into the world frame, and T = [x y z]T translates camera
coordinates into world coordinates. (T effectively gives the position of the camera in the world.) v
is the velocity vector in m/s, and w is the Rodriguez vector giving the axis and rate of rotation in
rad/s. L = [x y z]T are the coordinates of the stationary landmarks in the world. All translational
coordinates are in meters.

2. X ← f(X, V, W, t) is the state transition function, where V and W are the unknown errors in velocity

5

and rotation rate respectively, and t is the amount of time since the last state update. In explicit form:

X = f(X, V, W, t) =

M (Q((w + W) · t))q

T + (v + V) · t

v + V

w + W

L1

...

Ln

(1)

where Q() is a function that converts a Rodriguez vector into a quaternion, and M () is a function
that converts a quaternion into a quaternion multiplication matrix. Note that the landmarks remain
constant. That is, only the camera moves relative to the world frame. In practice, we compute the
predicted state vector as X ← f(X, 0, 0, t) since V and W are unknown. For that reason, we will omit
them wherever they are always zero in the equations below.

We will need the following Jacobians of f :

∂f

∂X
=

M (Q(wt)) 0 0 ∂
∂w

M (Q(wt))q 0

0 I3 tI3 0 0

0 0 I3 0 0

0 0 0 I3 0

0 0 0 0 I3n

(2)

∂f

∂V
=

0

tI3

I3

0

...

(3)

6

∂f

∂W
=

∂
∂W

M (Q((w + W) · t))q

0

0

I3

0

...

(4)

Let wt = [x y z]T , a = |wt| and [b c d e]T = Q(wt). We have

∂

∂w
M (Q(wt))q =

∂Mq

∂(Q/|Q|)
∂(Q/|Q|)

∂Q

∂Q

∂(wt)
∂(wt)
∂w

(5)

where

∂Mq

∂(Q/|Q|) =

r −i −j −k

i r k −j

j −k r i

k j −i r

(6)

∂(Q/|Q|)
∂Q

=

1− b2 −bc −bd −be

−bc 1− c2 −cd −ce

−bd −cd 1− d2 −de

−be −ce −de 1− e2

, and (7)

∂Q

∂(wt)
=

1
a

−x
2 sin a

2
−y
2 sin a

2
−z
2 sin a

2

x2

2a cos a
2 + (1− x2

a2) sin a
2 (1

2a cos a
2 −

1
a2 sin a

2)xy (1
2a cos a

2 −
1
a2 sin a

2)xz

(1
2a

cos a
2
− 1

a2 sin a
2
)xy x2

2a
cos a

2
+ (1 − x2

a2) sin a
2

(1
2a

cos a
2
− 1

a2 sin a
2
)yz

(1
2a cos a

2 −
1
a2 sin a

2)xz (1
2a cos a

2 −
1
a2 sin a2)yz x2

2a cos a
2 + (1− x2

a2) sin a
2

(8)

We also have ∂
∂W

M (Q((w+W) · t))q = ∂
∂w

M (Q(wt))q since ∂((w+W)·t)
∂W

= t = ∂(wt)
∂w

, and the derivative
is taken around W = 0.

7

3. P ← ∂f
∂X P ∂f

∂X

T
+ ∂f

∂V ΣV
∂f
∂V

T
+ ∂f

∂W ΣW
∂f
∂W

T
is the predicted process error covariance matrix. P has

the block form

P =

Σ[q T v w] 0 · · · 0

0 ΣL1 · · · 0

...
...

. . . 0

0 0 · · · ΣLn

(9)

Σ[q T v w] is a 13 × 13 covariance matrix that describes the uncertainty in the location orientation of
the camera, along with the uncertainty in its rotation rate and velocity. Each ΣL is a 3× 3 covariance
matrix that describes the uncertainty in the location of the landmark. Note that we are forcing the
off-diagonals of the covariance to zero. This is technically incorrect, and yields only an approximation
of the optimal Kalman filter. We are throwing away two kinds of information:

(a) How to revise the position of a landmark when the current position of the sensor rig is revised,
and vice-versa. This information extends to all landmarks, not just those currently seen by the
camera.

(b) How to revise the position of a landmark when another landmark is revised.

What we retain is:

(a) The dependency between landmarks currently seen by the camera due to uncertainty in the posi-
tion of the camera. The information is generated from Σ[q T v w] when constructing the Kalman
gain matrix.

(b) The mobility of landmarks, that is, the uncertainty of their locations.

We can compensate for the lost information using a numerical process other than Kalman filtering,
such as resection-intersection. The advantage of this approach is that data management is simpler and
costs only O(n) rather than O(n2) space. Note that throwing away all dependence between landmarks
is the basis of FastSLAM, where it is justified by claiming full certainty about camera positions within
a given “particle”.

ΣV = σ2
V I3 and ΣW = σ2

W I3 are the estimated covariances of the errors V and W respectively. Note
that we never posses V and W explicitly, but instead model them implicitly via their covariances. We
pretend that all parameters are independent, so the covariances only have values on the diagonal, and
we pretend that all parameters have equal amounts of error. The values σV and σW give estimates of
how far off the velocity and rotation rate are at a given moment. Reasonable numbers are 0.1m/s (1%
of the maximum human land-speed of about 10m/s) and 0.01rad/s (about 0.1rpm).

8

3 Update from Visual Features

1. h(X) is the sensor function, which maps the state vector to expected positions of feature points in the
image. It has the form

h(X) =

u

v

1

...

u

v

m

(10)

The form of h varies from one image to the next due to the varying subsets of visible landmarks. It
outputs a vector containing a pair of rows for each of m visible landmarks in the current image. The
predicted image positions [u v]Ti are computed by perspective projection. Let R be the rotation matrix
associated with q (the current orientation of the camera):

R =

1− 2j2 − 2k2 2ij − 2rk 2ik + 2rj

2ij + 2rk 1− 2i2 − 2k2 2jk − 2ri

2ik − 2rj 2jk + 2ri 1− 2i2 − 2j2

=

r11 r12 r13

r21 r22 r23

r31 r32 r33

(11)

For a given feature i and its associated landmark L(i), the sensor function is

h(X)i =

u

v

 =

1
c

a

b

 (12)

where
[a b c]T = RT (L(i) − T) (13)

We assume that the feature coordinates have already been multiplied by the camera’s intrinsic matrix
normalized to the unit plane. To simplify the expression below, let [x y z]T = L(i) − T so we have
[a b c]T = RT [x y z]T .

We will need the Jacobian of h to compute the Kalman update. The Jacobian H has a pair of rows
for each visible landmark in the current image, and columns equal to the size of X. Its block form is

H =

∂h1
∂q

∂h1
∂T 0 0 ∂h1

∂L(1)
0 0 0

∂h2
∂q

∂h2
∂T

0 0 0 ∂h2
∂L(2)

0 0

...
...

...
... 0 0

. . . 0

∂hm

∂q
∂hm

∂T
0 0 0 0 0 ∂hm

∂L(m)

(14)

9

Any column associated with a non-visible landmark contains all zeros. The definitions of the sub-blocks
in H are

∂hi

∂q
=

∂hi

∂R

∂R

∂q
=

x
c

y
c

z
c 0 0 0 −ax

c2
−ay
c2

−az
c2

0 0 0 x
c

y
c

z
c

−bx
c2

−by
c2

−bz
c2

∂R

∂q
, (15)

∂hi

∂T
=

1
c2

ar13 −cr11 ar23 −cr21 ar33 −cr31

br13 −cr12 br23 −cr22 br33 −cr32

 and (16)

∂hi

∂L(i)
= −∂hi

∂T
. (17)

We also have

∂R

∂q
=

∂R

∂(q/|q|)
∂(q/|q|)

∂q
=

0 0 −4j −4k

2k 2j 2i 2r

−2j 2k −2r 2i

−2k 2j 2i −2r

0 −4i 0 −4k

2i 2r 2k 2j

2j 2k 2r 2i

−2i −2r 2k 2j

0 −4i −4j 0

1− r2 −ri −rj −rk

−ri 1− i2 −ij −ik

−rj −ij 1− j2 −jk

−rk −ik −jk 1− k2

(18)

based on the observation that q must always have a norm of 1, so any perturbation in one of its
parameters produces changes in the other three.

2. K = PHT (HPHT + S)−1 is the Kalman gain, where H is the Jacobian of the sensor function h with
respect to the state vector X and S is the covariance of the sensor error. Note that this is equivalent
to solving (HPHT + S)KT = HP for KT , since P and S are symmetric. The sensor covariance S is
defined as σ2

CI2m, where σC gives the uncertainty in pixel location of the features. A possible choice is
the radius of the pixel (in the unit plane). This assumes the only source of uncertainty is noise in the
retina of the camera. Other sources to consider are errors in tracking points between images. These
can be detected as discontinuities in the trajectories of various parameters associated with a given
point. It can also be detected after the fact by measuring the reprojection error.

3. X ← X + K(zc − h(X)) updates the estimate with image measurement zc, which consists of a stack
of (u, v) positions for the feature points. After computing X, the quaternion q must be normalized to
unit length.

4. P ← P −KHP updates the error covariance matrix.

10

4 Update from IMU

The Xsens IMU provides acceleration, angular velocity, and magnetic field measurements. In addition the
Xsens device driver computes a filtered orientation value, which we also treat as a sensor. The sensor value
from the IMU is then

zimu =

a

ω

β

θ

(19)

where a contains the three components of linear acceleration, ω is a Rodriguez vector with the same semantics
as w, β contains the three components of the magnetic field, and ω is a 3× 3 rotation matrix with the same
semantics as R.

1. A Kalman update step on these values would be mostly vacuous, since there is no reasonable way
to predict them. Instead we integrate them and place the results directly in X. This is essentially a
prediction step that uses information from the IMU in addition to / instead of the current state:

X ← e(X, zimu, V, A, Θ, t) =

M (Q((ω + Θ) · t))q

T + (v + V) · t + 1
2(a + A) · t2

(v + V) + (a + A) · t

ω + Θ

L1

...

Ln

. (20)

The error vector V is defined as above, the vector A is the error in the IMU acceleration measurement,
and the Rodriguez vector Θ is the error in the IMU angular velocity measurement. Note that we use
the angular velocity rather than simply assigning the quaternion equivalent of θ to q because the IMU
measures changes in angle very well, but is subject to error in the absolute angle due to magnetic
disturbances.

In practice we use a slightly more sophisticated model when there is sufficient radial acceleration (that

11

is, acceleration perpendicular to the direction of travel):

x = v
|v| , y = z×v

|z×v| , z = x×a
|x×a|

a‖ = a · x, a⊥ = a · y

l = vT v
a⊥

, α = |v|t
l + a‖t2

2l

T ← T + x(l sin α) + y(l − l cos α)

v ← (|v|+ a‖t)(x cos α + y sin α)

(21)

First, we calculate orthonormal basis vectors x and y in the plane of the angular motion, with x
pointing in the direction of forward (tangential) motion and y pointing in the direction of centripetal
(radial) motion. We then compute the components of acceleration that will contribute to the tangential
and radial motion. Next we determine the radius and length of the arc traced out in the given time.
The new position T is the endpoint of this arc, and the final velocity vector v is the exit speed pointing
in the direction of the tangent at the end of the arc. In the limit (for very small radial acceleration
components) this reduces to the simple formula given for T and v in (20).

2. P ← ∂e
∂X

P ∂e
∂X

T
+ ∂e

∂V
ΣV

∂e
∂V

T
+ ∂e

∂A
ΣA

∂e
∂A

T
+ ∂e

∂Θ
ΣΘ

∂e
∂Θ

T
is the update to the state covariance associated

with the IMU-based prediction. To compute it, we need the following Jacobians:

∂e

∂X
=

M (Q(wt)) 0 0 0 0

0 I3 tI3 0 0

0 0 I3 0 0

0 0 0 0 0

0 0 0 0 I3n

(22)

∂e

∂V
=

0

tI3

I3

0

...

, (23)

12

∂e

∂A
=

0

t2

2 I3

tI3

0

...

, (24)

and

∂e

∂Θ
=

∂
∂W M (Q((ω + Θ) · t))q

0

0

I3

0

...

(25)

with

∂

∂Θ
M (Q((ω + Θ) · t))q

∣∣∣∣
Θ=0

=
∂(Mq)

∂(Q/|Q|)
∂(Q/|Q|)

∂Q

∂Q

∂((ω + Θ) · t)
((ω + Θ) · t)

∂Θ

∣∣∣∣
Θ=0

=
∂(Mq)

∂(Q/|Q|)
∂(Q/|Q|)

∂Q

∂Q

∂(ωt)
t

(26)
.

Let ΣA = σ2
AI3 and ΣΘ = σ2

ΘI3. The value σA gives the expected amount of error in the IMU
accelerometer measurements. The Xsens documentation places this at 0.01m/s2, although experiment
shows it to be around 0.03m/s2. The value σΘ gives the expected amount of error in the IMU angular
velocity measurements. The Xsens documentation places this at 0.01rad/s.

5 Adding new Landmarks

1. As we start tracking the same feature point in multiple 2D images, we can extract the 3D position of
the feature. The standard projection equation is

p

1

 =

1
z

[
RT −RT T

]

L

1

 , (27)

13

where z is the value of the third row of the product on the right hand side. Let

A B

a b

 =

[
RT −RT T

]
, (28)

where A is the first two rows of the rotation matrix RT and B is the first two rows of the translation
vector −RT T . The projection equation can be expressed as the function

p = f(L) =
AL + B

aL + b
, (29)

which can be rearranged to solve for L in terms of the known camera positions and 2D image mea-
surements:

(A − pa)L = pb−B. (30)

Given two or more views of L, we can solve for it by minimizing the squared error in a set of such
equations. Alternately, we can solve for multiple landmarks and camera positions simultaneously using
non-linear least squares on a set of standard projection equations. (This setup is typically referred
to as projective structure from motion, and solving it with some non-linear method is called “bundle
adjustment”.)

2. After calculating the 3D world position, we need to add the process covariance for the new landmark:
ΣL. Since L is computed from several measurements, each appearing in a different image, we define a
modified sensor function

g(L, [q T]1, . . . , [q T]m) (31)

which expresses the projection of L into each of the m images where it appears. Since v and w have no
direct effect on perspective projection, they are not included. Also, we are abusing the notation [q T]i
to mean [qT T T]Ti . The associated Jacobian is

G =

∂h1
∂L

∂h1
∂[q T]1

0 . . . 0

∂h2
∂L

0 ∂h2
∂[q T]2

. . . 0

...
...

...
. . .

...

∂hm

∂L 0 0 . . . ∂hm

∂[q T]m

, (32)

computed using the same basic blocks described in Section 3. The landmark covariance is

ΣL =
1
m

[
∂L

∂[q T]
Σ[q T]

∂L

∂[q T]

T

+
∂h

∂L

T

S
∂h

∂L

]
, (33)

where [q T] stands for the combined parameters of all the camera positions where L was seen. The factor
1/m compensates for the fact the Σ[q T] and S have zero off-diagonals. Effectively, the matrix products
shown above amount to sums of m smaller matrix products, each adding the covariance associated with
one measurement. If the off-diagonals were present, they would adjust for the relationships between
the measurements. Instead, we approximate this by taking the average.

14

We must find the Jacobian of L with respect to the camera parameters. One possible solution is to
assert that the value of the sensor function h does not vary when any of [q T] or L vary, and determine
how these variables relate to each other:

∂h

∂[L q T]
4[L q T] = 0 (34)

∂h

∂L
4L = − ∂h

∂[q T]
4[q T] (35)

4L = − ∂h

∂L

+ ∂h

∂[q T]
4[q T] (36)

∂L

∂[q T]
= − ∂h

∂L

+ ∂h

∂[q T]
. (37)

At this point in the process, we can directly compute S as the reprojection error rather than estimating
it. That is, we set the diagonal elements of S to the difference between g and the actual image
measurements. We do not allow this value to go below the pixel quantizing error (0.5 pixels, adjusted
by radial distortion).

6 Bootstrapping the Map

When the system starts up, there are a couple of options for initializing the first few landmarks. One choice
is to rely on the IMU for camera positions and simply triangulate the landmarks as described in Section 5.
Unfortunately, we do not know the initial velocity, and the only available way to estimate it is from the
landmarks, creating a circular dependency. Another choice, which resolves the circular dependency, is to use
a calibration pattern as the starting point. A third choice, which does not require any special affordances
from the environment, is to simultaneously estimate the camera positions and landmarks from a set of image
measurements, using factorization to solve the structure from motion (SFM) problem. This is an off-line
technique because it requires all the data to be present before running, in contrast to Kalman filtering, which
works through the data sequentially. However, we can collect measurements from the first few images and
process them very quickly before moving into Kalman filtering.

Here is a quick summary of the method [Tomasi and Kanade]: As a simplification, we use an affine
setup. Each camera position has only 6 parameters, essentially the first two rows of its rotation matrix. All
coordinates are relative to their respective centroids, so the setup includes no translation vectors. Rather,
these are inferred and added in later. We assemble n measurements from m images into a single matrix

D =

u

v

11

. . .

u

v

1n
...

. . .
...

u

v

m1

. . .

u

v

mn

=

A1

...

Am

[
L1 . . . Ln

]
= MN (38)

which is the product of the landmark positions and the truncated rotation matrices for each camera position.
Because of its structure, D has rank 3. We apply a singular value decomposition (SVD) to D, and use only

15

the first three singular values and their associated eigenvectors to construct a set of camera matrices and
landmarks:

D = UΣV T = (U
√

Σ)(
√

ΣV T) = M̂N̂ . (39)

The SVD produces a model that is generally separated from the “true” Euclidean one by an affine transfor-
mation Q: M̂QQ−1N̂ = MN . We correct (“upgrade”) the model using the value of Q that brings M̂ closest
to a set of truncated rotation matrices with scale (that is, where each camera matrix is a pair of orthogonal
vectors with equal norm). Specifically, we solve the least squares problem

aT
1 QQT a2

aT
1 QQTa1 − aT

2 QQT a2

 =

0

0

 (40)

over all m camera matrices, where a1 and a2 are the first and second rows of a given matrix A. We rotate
the upgraded set of camera matrices to best align with the orientations measured by the IMU. This rotation
is the solution X to the least squares problem XR = θ over all the camera positions, where R is the camera
rotation and θ is the IMU rotation.

To build a full set of camera parameters, it is necessary to add back the offsets to the centroids of the
various point clouds. We place the first camera position at the origin, and arbitrarily place the centroid of
the landmarks 1 meter in front of it (that is, in its unit plane). The scales and orientations of the remaining
camera matrices determine their positions relative to the first one. The resulting model generally does
not match the real world, but it provides a reasonable starting point which can then be refined by bundle
adjustment.

Finally, for the sake of the Kalman filter, we assign a covariance to each camera position and landmark.
A method for computing landmark covariance from reprojection errors is given in Section 5. A method for
computing camera covariance appears in Section 7.

7 Bundle Adjustment

After each image update, it is useful to propagate information from new image measurements to improve
estimates of previous camera positions and of the landmarks. Normally, the Kalman filter will adjust all
the landmarks via their relationships in the state covariance matrix P . If we kept all the previous camera
positions in the state X, they would be updated as well. However, we have sparsified P by throwing away
the off-diagonal blocks, and we don’t keep any but the current camera position. Instead, we use a technique
called “resection-intersection” or “alternation”, in which each camera or landmark is re-estimated from the
current best values of the others.

To enable efficient operation, we only re-estimate a camera position or landmark when its error exceeds
some threshold. Specifically, for each image (and associated camera position) we keep track of the average
reprojection error over all of the features seen in it. Likewise, for each landmark we keep track of the average
reprojection error over all images where it appears. If, for example, a landmark moves, then we must update
the average reprojection error of each camera position that saw the landmark.

Section 5 gave a method for estimating the position of a landmark from several image measurements.
Whenever a landmark’s average reprojection error exceeds the threshold, we re-estimate it with all currently
available measurements and then update its covariance and reprojection errors.

The method for updating a camera position and is very similar to the Kalman filter for position. The
key difference is that we only evaluate the update for the camera position itself and ignore those parts of
the calculation that exclusively affect the landmarks. The method for updating camera position covariance
is a little different, in that it is computed directly from reprojection error rather than a Kalman update.

16

Specifically, the covariance for the camera position of an image that contains n measurements (projected
landmarks) is

Σ[q T] =
1
n

[
∂[q T]

∂L
ΣL

∂[q T]
∂L

T

+
∂h

∂[q T]

T

S
∂h

∂[q T]

]
, (41)

where L stands for the combined parameters of all the landmarks seen by the camera. The reasoning behind
(41) is similar to that behind (33). We divide by n to compensate for the lack of off-diagonals in ΣL and S.
The Jacobian relating [q T] to L is

∂[q T]
∂L

= − ∂h

∂[q T]

+ ∂h

∂L
(42)

8 Implementation Results

Prototype hardware was developed using a small inertial measurement unit (IMU) mounted to a camera.
A picture of the test hardware is shown in Figure 1. The algorithm described in the previous section was
implemented on a personal computer (pc). The algorithm in action is shown in Figure 2. The dots in the
computer screen in Figure 2 represent the algorithm’s estimate of the location of the book shown in the
picture.

References

[1] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” The
International Journal of Robotics Research, vol. 5, no. 4, pp. 56–68, 1987.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: The MIT Press, 2005.

17

Figure 1: Camera and IMU Hardware

18

Figure 2: SLAM Software Running on a Personal Computer

19

Distribution

1 MS1104 Rush Robinett, 6330

1 MS1002 Philip Heermann, 6470

5 MS1003 John Feddema, 6473

1 MS1003 Ray Byrne, 6473

10 MS1009 Fred Rothganger, 6341

1 MS1007 Larry Shipers, 6471

1 MS1125 Phil Bennett, 6472

1 MS1188 John Wagner, 6341

2 MS9018 Central Technical Files, 8944

2 MS0899 Technical Library, 4536

20

