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Abstract 

A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy 
at Yucca Mountain (YM), Nevada.  As mandated in the Energy Policy Act of 1992, the U.S. Environmental 
Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM 
repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 
19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to 
be licensed for operation.  Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the 
determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the 
incorporation of uncertainty into this determination.  This presentation describes and illustrates how general and 
typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal 
mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate 
separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as 
igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly 
known but assumed to have constant values in the calculation of expected dose to the RMEI).  
  
Key Words:    Aleatory uncertainty; Epistemic uncertainty; Expected dose; Performance assessment; Radioactive 
waste disposal; Uncertainty analysis; Yucca Mountain; 10 CFR Parts 2, 19, 20, etc.; 40 CFR Part 197  
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1.  Introduction 

The appropriate disposal of radioactive waste from military and commercial activities is a challenge of national 
and international importance.1-13  As part of the solution to this challenge, a proposed deep geologic repository for 
high-level radioactive waste is under development by the U.S. Department of Energy (DOE) at Yucca Mountain 
(YM), Nevada.14-18  The development of the YM repository is the single most important radioactive waste disposal 
project currently being undertaken in the United States. 

As mandated in the Energy Policy Act of 1992,19 the U.S. Environmental Protection Agency (EPA) is required 
to promulgate public health and safety standards for radioactive material stored or disposed of in the YM repository; 
the U.S. Nuclear Regulatory Commission (NRC) is required to incorporate the EPA standards into licensing stan-
dards for the YM repository; and the DOE is required to show compliance with the NRC standards.  The regulatory 
requirements for the YM repository that resulted from these mandates have three primary sources:  (i) Public Health 
and Environmental Protection Standards for Yucca Mountain, NV; Final Rule (40 CFR Part 197),20 which has been 
promulgated by the EPA, (ii) Disposal of High-Level Radioactive Wastes in a Proposed Geologic Repository at 
Yucca Mountain, Nevada; Final Rule (10 CFR Parts 2, 19, 20, etc.),21 which has been promulgated by the NRC, 
and (iii) Yucca Mountain Review Plan; Final Report (YMRP),22 which has been published by the NRC to guide 
assessing compliance with 10 CFR Parts 2, 19, 20, etc.  In turn, the DOE is required to carry out a performance as-
sessment (PA) for the YM repository that satisfies the requirements specified in the preceding three documents. 

A major requirement imposed by the preceding three documents on PAs carried out by the DOE for the YM re-
pository is to determine expected dose to a reasonably maximally exposed individual (RMEI).  However, the indi-
cated documents are not completely clear from a mathematical, and hence computational, perspective as to exactly 
what this expected dose should be.  In particular, the determination of an expected value requires the introduction of 
an appropriate probabilistic structure (i.e., a probability space) and then the evaluation of an integral involving this 
probabilistic structure.  However, rather than making precise statements about the probabilistic structure that must 
underlie the determination of the expected dose to the RMEI and also about the nature of the integration processes 
that must be carried out to obtain this expected dose, the indicated documents rely on very general statements to 
express what is desired.  This generality has the benefit of allowing a significant level of freedom in planning and 
implementing a PA for the YM repository and thus in determining expected dose to the RMEI.  Unfortunately, this 
generality has also resulted in a considerable amount of confusion with respect to exactly what the desired expected 
dose is and how it should be calculated. 

The purpose of this presentation is to clearly describe how expected dose can be defined and calculated.  Par-
ticular attention is paid to the roles that the probabilistic characterizations of aleatory and epistemic uncertainty23-32 
play in the definition, calculation and display of expected dose.  Expected dose is formally defined by appropriate 
integrals and then several alternative procedures for the evaluation of these integrals are presented and discussed.  
Much of the confusion involving the definition and determination of expected dose has resulted from the use of dif-
ferent procedures to evaluate these integrals.  Because these procedures are based on different numerical algorithms, 
superficially similar intermediate results obtained in the determination of expected dose to the RMEI with these 
procedures can correspond to very different quantities.  A failure to recognize these differences has led, at times, to 
misinterpretations of results and, at other times, to outright errors.  For example, the use of importance sampling in 
the evaluation of the integrals defining expected dose has been a source of considerable confusion and misinterpre-
tation because of misconceptions about the properties of individual observations generated in this sampling process.  
A major emphasis of this presentation is the appropriate interpretation of intermediate “dose curves” obtained in the 
numerical calculation of expected dose to the RMEI.  To allow concentration on concept rather than computational 
detail and to simplify the presentation, simple illustrative examples are used rather than actual results from a full PA 
for the YM repository. 

The presentation is organized as follows.  First, the regulatory requirements that result in the need to determine 
expected dose to the RMEI in PAs for the YM repository are summarized (Sect. 2).  Then, a brief discussion is 
given on the connections between the uncertainty representations requested by the EPA and the NRC and basic con-
cepts in the representation of uncertainty with probability (Sect. 3).  Next, because of their importance in the deter-
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mination of expected dose to the RMEI, properties of Poisson processes are briefly summarized (Sect. 4).  Then, the 
following core topics are considered:  (i) determination of expected dose without consideration of epistemic uncer-
tainty (Sect. 5), (ii) determination of expected dose with consideration of epistemic uncertainty (Sect. 6), (iii) calcu-
lation of expected dose and display of epistemic uncertainty for nominal (i.e., undisturbed) conditions (Sect.7), and 
(iv) calculation of expected dose and display of epistemic uncertainty for disturbed conditions (Sect. 8).  The impor-
tant distinction between the results in Sects. 7 and 8 is that the nominal conditions considered in Sect. 7 do not in-
volve a treatment of aleatory uncertainty while the disturbed conditions considered in Sect. 8 involve a treatment of 
both aleatory and epistemic uncertainty.  In addition, three different computational strategies are discussed in Sect. 8 
for the evaluation of the integrals that define expected dose in the presence of both aleatory and epistemic uncer-
tainty.  A description is also given on the use of results obtained with the individual computational strategies in the 
determination of expected dose conditional on the assumption that exactly one disruption has occurred in a specified 
time interval (Sect. 9).  Finally, the presentation ends with a concluding discussion (Sect. 10). 

Additional background on the proposed YM repository is available in a series of technical reports (e.g., 14-18) 
and also in a rapidly growing body of journal literature (e.g., 33-50). 
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2.  Regulatory Requirements Underlying Conceptual Structure of PAs for YM 
Repository 

2.1 EPA Requirements:  40 CFR Part 197 

The EPA mandates standards for the YM repository addressing individual protection (i.e., 40 CFR 197.20), 
human intrusion (i.e., 40 CFR 197.25), and groundwater protection (i.e., 40 CFR 197.30).  The individual protection 
standard is the core requirement in 40 CFR 197 in that it ultimately gives rise to the overall conceptual and compu-
tational structure of PAs for the YM repository.  Specifically, the following individual-protection standard is man-
dated (Ref. [20], p. 32134): 

§ 197.20  What standard must DOE meet? 

The DOE must demonstrate, using performance assessment, that there is a reasonable expectation 
that, for 10,000 years following disposal, the reasonably maximally exposed individual receives 
no more than an annual committed effective dose equivalent of 150 microsieverts (15 millirems) 
from releases from the undisturbed Yucca Mountain disposal system.  The DOE’s analysis must 
include all potential pathways of radionuclide transport and exposure. (EPA1) 

A reading of the preceding requirement immediately gives rise to four questions:  (i) What is a PA?, (ii) What is 
reasonable expectation?, (iii) What is the reasonably maximally exposed individual (RMEI)?, and (iv) What is the 
undisturbed YM disposal system?. 

In answer to the first question, the EPA defines a PA in 40 CFR Part 197 in the statement (Ref. [20], p. 32133): 

Performance assessment means an analysis that: 

(1) Identifies the features, events, processes, (except human intrusion), and sequences of events 
and processes (except human intrusion) that might affect the Yucca Mountain disposal 
system and their probabilities of occurring during 10,000 years after disposal; 

(2) Examines the effects of those features, events, processes, and sequences of events and 
processes upon the performance of the Yucca Mountain disposal system; and  

(3) Estimates the annual committed effective dose equivalent incurred by the reasonably 
maximally exposed individual, including the associated uncertainties, as a result of releases 
caused by all significant features, events, processes, and sequences of events  and 
processes, weighted by their probability of occurrence. (EPA2) 

In answer to the second question, the EPA defines reasonable expectation in 40 CFR Part 197 in the statement 
(Ref. [20], p. 32133): 

§ 197.14 What is a reasonable expectation? 

Reasonable expectation means that NRC is satisfied that compliance will be achieved based upon 
the full record before it. Characteristics of reasonable expectation include that it: 

(a) Requires less than absolute proof because absolute proof is impossible to attain for disposal 
due to the uncertainty of projecting long-term performance; 

(b) Accounts for the inherently greater uncertainties in making long-term projections of the 
performance of the Yucca Mountain disposal system; 
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(c) Does not exclude important parameters from assessments and analyses simply because they 
are difficult to precisely quantify to a high degree of confidence; and 

(d) Focuses performance assessments and analyses upon the full range of defensible and 
reasonable parameter distributions rather than only upon extreme physical situations and 
parameter values. (EPA3) 

In answer to the third question, the EPA defines the RMEI in 40 CFR Part 197 in the statement (Ref. [20], 
p. 32134): 

§ 197.21 Who is the reasonably maximally exposed individual? 

The reasonably maximally exposed individual is a hypothetical person who meets the following 
criteria: 

(a) Lives in the accessible environment above the highest concentration of radionuclides in the 
plume of contamination; 

(b) Has a diet and living style representative of the people who now reside in the Town of 
Amargosa Valley, Nevada. The DOE must use projections based upon surveys of the 
people residing in the Town of Amargosa Valley, Nevada, to determine their current diets 
and living styles and use the mean values of these factors in the assessments conducted for 
§§ 197.20 and 197.25; and 

(c) Drinks 2 liters of water per day from wells drilled into the ground water at the location 
specified in paragraph (a) of this section. (EPA4) 

Finally, in answer to the fourth question, the EPA defines the undisturbed YM disposal system in the statement 
(Ref. [20], p. 32133): 

Undisturbed Yucca Mountain disposal system means that the Yucca Mountain disposal system is 
not affected by human intrusion. (EPA5) 

With respect to the preceding statements, the definitions of PA and reasonable expectation are particularly im-
portant with respect to the conceptual structure of PAs for the YM facility because they relate to requirements that 
affect the overall organization of the analysis.  In contrast, the definition of the RMEI is less important to the con-
ceptual structure of the analysis because it simply relates to a particular result that must be calculated.  Further, it is 
important to recognize that the requirement to consider “the undisturbed Yucca Mountain disposal system” only 
pertains to human disturbances; natural disturbances such as seismic and igneous events are not excluded.  How-
ever, the following provision places a bound on the likelihood of such occurrences for inclusion in a PA for the YM 
repository (Ref. [20], p. 32135): 

The DOE’s performance assessments shall not include very unlikely features, events, or 
processes, i.e., those that are estimated to have less than one chance in 10,000 of occurring within 
10,000 years of disposal. (EPA6) 

A PA is often described as an analysis intended to answer three questions about a system and one additional 
question about the analysis itself.32, 51-53  The first three questions are: 

(i) What could happen? (Q1) 

(ii) How likely is it to happen? (Q2) 

and 
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(iii) What are the consequences if it does happen? (Q3) 

The fourth question is: 

(iv) What is the uncertainty (or equivalently, how much confidence do you have) in the answers 
to the first three questions? (Q4) 

The posing of the first three questions in the definition of a PA in Quote (EPA2) is clearly evident.  Specifically, 
“Identifies features, events and processes” corresponds to answering Question (Q1) and “Identifies … their prob-
abilities of occurring” corresponds to answering Question (Q2).  Similarly, “Examines the effects of those features, 
events and processes” and “Estimates the annual committed effective dose equivalent” correspond to answering 
Question (Q3).  The presence of Question (Q4) is not as immediately obvious but is imbedded in the definition of 
PA in Quote (EPA2) in the statement “including the associated uncertainties” and in the definition of reasonable 
expectation in Quote (EPA3) in the statements “Accounts for the inherently greater uncertainties in making long-
term projections” and “Focuses performance assessments upon the full range of defensible and reasonable parame-
ter values”.  Questions (Q1) – (Q4) are introduced here because they will later be used as an intuitive lead into the 
conceptual structure of PAs for the YM repository. 

The EPA provides the following guidance on the implementation of the post-closure requirements in 40 CFR 
197.13 (Ref. [20], p. 32133): 

§ 197.13 How is subpart B implemented? 

The NRC implements this subpart B. The DOE must demonstrate to NRC that there is a 
reasonable expectation of compliance with this subpart before NRC may issue a license. In the 
case of the specific numerical requirements in § 197.20 of this subpart, and if performance 
assessment is used to demonstrate compliance with the specific numerical requirements in §§ 
197.25 and 197.30 of this subpart, NRC will determine compliance based upon the mean of the 
distribution of projected doses of DOE’s performance assessments which project the performance 
of the Yucca Mountain disposal system for 10,000 years after disposal. (EPA7) 

Of particular importance is the statement that “In the case of the specific numerical requirements in § 197.20…, 
NRC will determine compliance based upon the mean of projected doses.”  This is a very important requirement 
with respect to the conceptual and computational structure of a PA for the YM repository, and a requirement that is 
not easy to interpret.  In particular, a mean is a quantity that is defined by an integral, and it is not immediately ob-
vious exactly what set of values this integral should be taken over. 

The requirement to consider means can be traced back to guidance given in the report Technical Bases for 
Yucca Mountain Standards prepared under the auspices of the National Research Council (Ref. [54], p. 123).  As 
directed in the Energy Policy Act of 1992 (Ref. [19], Sect. 801), this report was prepared to assist the EPA in devel-
oping standards for the YM repository. 

Identifying what is intended by the “mean” indicated in Quote (EPA7) is complicated by the required consid-
eration of two types of uncertainty in the EPA mandated PA for the YM repository.  First, there is the uncertainty 
that arises from the different types of disruptions that could occur at the YM repository in the future.  This uncer-
tainty appears in the EPA’s definition of PA in Quote (EPA2) in the statements “Identifies features, events and 
processes … and their probabilities of occurring during 10,000 years after disposal” and “Estimates the annual ef-
fective dose equivalent … as a result of releases caused by all significant features, events and processes, and se-
quences of events and processes, weighted by their probability of occurrence.”  The latter statement appears to im-
ply a mean, i.e., an integral, over what could happen in the future.  This is the uncertainty associated with Questions 
(Q1) and (Q2).  Second, there is the uncertainty that arises from a lack of knowledge about properties of the YM 
site.  This uncertainty appears in the EPA’s definition of PA in Quote (EPA2) in the statement “including the asso-
ciated uncertainties” and in the definition of reasonable expectation in Quote (EPA3) in the statements “due to the 
uncertainty of projecting long-term performance” and “the full range of defensible and reasonable parameter distri-
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butions.”  Given that these uncertainties are to be characterized probabilistically as implied by the last quote, then 
there would also be a mean over these uncertainties.  These are the uncertainties associated with Question (Q4). 

Possibilities include a mean over what could happen in the future, a mean over uncertainty with respect to pa-
rameter values and other modeling assumptions, and a mean over both types of uncertainty.  When read in full, the 
following final part of the definition of PA in Quote (EPA2) suggests, but does not explicitly state, the last of the 
three indicated possibilities:  “Estimates the annual committed effective dose equivalent incurred by the reasonably 
maximally exposed individual, including the associated uncertainties, as a result of releases caused by all signifi-
cant features, events, processes and sequences of events and processes, weighted by their probability of occur-
rence,” with the italics added for emphasis.  As a further consideration, doses to the RMEI vary as a function of 
time, and this variation must be incorporated in some manner in the determination of mean doses. 

The EPA does not provide a definitive statement in 40 CFR Part 197 of what is intended by a mean dose.  
However, a number of additional statements are included in the supplementary information accompanying 40 CFR 
Part 197 in the Federal Register that indicate the EPA’s emphasis on consideration of a mean dose in assessing 
compliance: 

In line with our use of the term ‘‘reasonable expectation,’’ the fundamental compliance measure 
consistent with a literal mathematical interpretation of this term would be the mean value of the 
distribution of calculated doses.  (Ref. [20], p. 32125) (EPA8) 

By specifying the mean as the performance measure and probability limits for the processes and 
events to be considered (§ 197.36), and in concert with the intent of our ‘‘reasonable expectation’’ 
approach in general, we have implied that probabilistic approaches for the disposal system 
performance assessments are expected. (Ref. [20], p. 32125) (EPA9) 

The mean or median are reasonably conservative measures because they are influenced by high 
exposure estimates found when analyzing the full range of site conditions and relevant processes, 
without being geared to exclusively reflect high-end results, as would be the case if we selected as 
the measure a high-end percentile of the calculated dose distribution (such as the 95th or 99th 
percentile). Our final rule for Yucca Mountain specifies only that the mean be used, as we believe 
that it is appropriately conservative in this situation. (Ref. [20], p. 32126) (EPA10) 

Thus, although some ambiguity exists with respect to exactly how a mean dose is to be defined and calculated, there 
is no ambiguity in the EPA’s intent that compliance with its dose standard for the RMEI is to be determined with a 
mean dose.  As an aside, it is perhaps worth noting that the statement with respect to the median in Quote (EPA10) 
is not correct for distributions that are skewed toward large values; for such distributions, the median unlike the 
mean is not particularly influenced by the high values associated with the upper tail of the distribution. 

The discussion of the requirements promulgated by the EPA in 40 CFR Part 197 ends with several additional 
quotes that provide insights into the nature of the desired properties of a PA used to assess compliance with the 
EPA’s YM standard: 

It is NRC’s responsibility to determine how DOE must demonstrate compliance with our 
standards; however, we envision the use of a probabilistic assessment for the compliance 
demonstration. (Ref. [20], p. 32086)) (EPA11) 

DOE and NRC may not assume that future geologic, hydrologic, and climatic conditions will be 
the same as they are at present. We require that these conditions be varied within reasonably 
ascertainable bounds over the required compliance period. (Ref. [20], p. 32096) (EPA12) 

If choices are made that make the simulations very unrealistic, the confidence that can be placed 
on modeling results is very limited.  Inappropriate simplifications can mask the effects of 
processes that will in reality determine disposal system performance, if the uncertainties involved 
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with these simplifications are not recognized. Overly conservative assumptions made in 
developing performance scenarios can bias the analyses in the direction of unrealistically extreme 
situations, which in reality may be highly improbable, and can deflect attention from questions 
critical to developing an adequate understanding of the expected features, events, and processes. 
(Ref. [20], p. 32102) (EPA13) 

The reasonable expectation approach is aimed simply at focusing attention on understanding the 
uncertainties in projecting disposal system performance so that regulatory decision making will be 
done with a full understanding of the uncertainties involved. (Ref. [20], p. 32102) (EPA14) 

Quote (EPA11) clearly indicates that the EPA expects a probabilistic analysis.  Quote (EPA12) indicates the need to 
consider events that can happen in the future (e.g., volcanic eruptions, earthquakes, climatic changes).  Quote 
(EPA13) is important because it clearly indicates that the EPA does not desire a conservative analysis.  Quote 
(EPA14) indicates the EPA’s desire for an appropriate representation of the uncertainties associated with a PA for 
the YM site.  However, the EPA’s desire “that regulatory decision making will be done with a full understanding of 
the uncertainties involved” as stated in Quote (EPA14) is not fully consistent with the intent to regulate on mean 
results as the calculation of means suppresses the implications of uncertainty.   

2.2 NRC Requirements:  10 CFR Parts 2, 19, 20, etc. 

As mandated in the Energy Policy Act of 1992, the NRC has promulgated licensing standards for the disposal 
of radioactive waste at the YM repository that are consistent with the EPA public health and safety standards in 40 
CFR Part 197.  Selected requirements and explanatory material from 10 CFR Parts 2, 19, 20, etc. that influence the 
conceptual and computational structure of PAs for the YM repository for post-closure conditions follow.  In particu-
lar, the primary focus is on Subpart L of 10 CFR Part 63, which relates to post-closure requirements. 

The core requirement in 10 CFR Part 63 that ultimately gives rise to the conceptual and computational structure 
of PAs for the YM repository is an individual protection standard.  Specifically, the following standard is mandated 
(Ref. [21], p. 55814): 

§ 63.311 Individual protection standard after permanent closure. 

DOE must demonstrate, using performance assessment, that there is a reasonable expectation that, 
for 10,000 years following disposal, the reasonably maximally exposed individual receives no 
more than an annual dose of 0.15 mSv (15 mrem) from releases from the undisturbed Yucca 
Mountain disposal system. DOE’s analysis must include all potential pathways of radionuclide 
transport and exposure. (NRC1) 

The preceding mandate is essentially identical to the corresponding mandate from the EPA in Quote (EPA1) pro-
vided the terminology in the two mandates has the same meaning.  In particular, the phrases performance assess-
ment, reasonable expectation, reasonably maximally exposed individual (RMEI), and undisturbed YM disposal sys-
tem appear in both mandates. 

Specifically, the NRC defines PA in 10 CFR Part 63.2 in the statement (Ref. [21], p. 55794): 

Performance assessment means an analysis that: 

(1) Identifies the features, events, processes (except human intrusion), and sequences of events 
and processes (except human intrusion) that might affect the Yucca Mountain disposal 
system and their probabilities of occurring during 10,000 years after disposal; 

(2) Examines the effects of those features, events, processes, and sequences of events and 
processes upon the performance of the Yucca Mountain disposal system; and 
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(3) Estimates the dose incurred by the reasonably maximally exposed individual, including the 
associated uncertainties, as a result of releases caused by all significant features, events, 
processes, and sequences of events and processes, weighted by their probability of 
occurrence. (NRC2) 

The preceding definition of PA is identical to the definition given by the EPA in Quote (EPA2) except for the use of 
“dose” rather than “annual committed effective dose”; presumably, the NRC intends the same dose measure as 
specified by the EPA.   

Further, the NRC defines reasonable expectation in the statement (Ref. [21], p. 55813): 

§ 63.304 Reasonable expectation. 

Reasonable expectation means that the Commission is satisfied that compliance will be achieved 
based upon the full record before it.  Characteristics of reasonable expectation include that it: 

(1) Requires less than absolute proof because absolute proof is impossible to attain for disposal 
due to the uncertainty of projecting long-term performance; 

(2) Accounts for the inherently greater uncertainties in making long-term projections of the 
performance of the Yucca Mountain disposal system; 

(3) Does not exclude important parameters from assessments and analyses simply because they 
are difficult to precisely quantify to a high degree of confidence; and  

(4) Focuses performance assessments and analyses on the full range of defensible and 
reasonable parameter distributions rather than only upon extreme physical situations and 
parameter values. (NRC3) 

The preceding is identical to the EPA’s definition of reasonable expectation in Quote (EPA3) except for the re-
placement of “NRC” by “the Commission.”   

The RMEI defined by the NRC in the statement (Ref. [21], p. 55814): 

§ 63.312 Required characteristics of the reasonably maximally exposed individual. 

The reasonably maximally exposed individual is a hypothetical person who meets the following 
criteria: 

(a) Lives in the accessible environment above the highest concentration of radionuclides in the 
plume of contamination; 

(b) Has a diet and living style representative of the people who now reside in the Town of 
Amargosa Valley, Nevada. DOE must use projections based upon surveys of the people 
residing in the Town of Amargosa Valley, Nevada, to determine their current diets and 
living styles and use the mean values of these factors in the assessments conducted for §§ 
63.311 and 63.321; 

(c) Uses well water with average concentrations of radionuclides based on an annual water 
demand of 3000 acre-feet; 

(d) Drinks 2 liters of water per day from wells drilled into the ground water at the location 
specified in paragraph (a) of this section; and  
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(e) Is an adult with metabolic and physiological considerations consistent with present 
knowledge of adults. (NRC4) 

Except for some additional guidance on the determination of exposure, the definition of the RMEI given by the 
NRC is the same as the definition given by the EPA in Quote (EPA4). 

Finally, the NRC defines the undisturbed YM disposal system in the statement (Ref. [21], p. 55813): 

Undisturbed Yucca Mountain disposal system means that the Yucca Mountain disposal system is 
not affected by human intrusion. (NRC5) 

The preceding definition for the undisturbed YM disposal system is the same as the EPA definition in Quote 
(EPA5). 
 

Further, like the EPA, the NRC excludes very unlikely features, events and processes from consideration in 
PAs for the YM repository (Ref. [21], p. 55815; see also Ref. [55], p. 62634): 

DOE’s performance assessments should not include very unlikely features, events, or processes, 
i.e., those estimated to have less than one chance in 10,000 of occurring within 10,000 years of 
disposal. (NRC6) 

As a result of the effectively identical content of the requirements/definitions given by the NRC in Quotes 
(NRC1) – (NRC5) and the EPA in Quotes (EPA1) – (EPA5), both organizations are specifying the same analysis.  
Hence, the four core questions underlying a PA indicated in Questions (Q1) – (Q4) are present in the requirements 
of both the NRC and the EPA. 

Because the NRC has regulatory authority for the YM repository, it is important to examine any additional re-
quirements and/or specifications that it has made with respect to PA in support of a license application for this facil-
ity.  In particular, the following guidance on the implementation of post-closure requirements provides a high-level 
summary of what the NRC expects in a PA for the YM repository (Ref. [21], p. 55813): 

§ 63.303 Implementation of Subpart L. 

DOE must demonstrate that there is a reasonable expectation of compliance with this subpart 
before a license may be issued. In the case of the specific numerical requirements in § 63.311 of 
this subpart, and if performance assessment is used to demonstrate compliance with the specific 
numerical requirements in §§ 63.321 and 63.331 of this subpart, compliance is based upon the 
mean of the distribution of projected doses of DOE’s performance assessments which project the 
performance of the Yucca Mountain disposal system for 10,000 years after disposal. (NRC7) 

Except for minor changes in wording, the preceding implementation guidance is identical with the guidance given 
by the EPA in Quote (EPA7).  Of particular importance is the statement that “compliance is based upon the mean of 
the distribution of projected doses.”  As discussed in conjunction with Quote (EPA7), this requirement has a major 
effect on the conceptual and computational structure of the TSPA-LA. 

Like the EPA in 40 CFR Part 197, the NRC does not provide a definitive statement of what is intended by a 
mean dose.  However, it seems reasonable to assume that the NRC was guided by the same perspectives with re-
spect to the concept of a mean as expressed by the EPA in Quotes (EPA8) – (EPA10).  The following statement by 
the NRC from the supplementary information accompanying 10 CFR Parts 2, 19, 20, etc., in the Federal Register 
actually provides a more specific indication of what is intended by a mean than any of the statements from the EPA 
(Ref. [21], p. 55752): 

The Commission expects that performance assessments conducted by the applicant in support of 
any potential license application will use probabilistic methods to simulate a wide range of 
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possible future behaviors of the repository system. Each possible future behavior of the repository 
system is represented by a curve describing the annual dose to the RMEI as a function of time. 
Generally, but not necessarily, each of the possible curves is assumed to be equally likely. 
Because none of these possible futures can be demonstrated to describe the actual future behavior 
of the repository system, the Commission requires that the applicant calculate the mean of these 
dose versus time curves, properly weighted by their individual probabilities. (NRC8) 

This statement specifically describes the weighting of doses by their likelihood of occurrence (i.e., a calculation 
involving answers to Questions (Q1), (Q2) and (Q3)).  However, no specific mention is made of uncertainty in the 
sense of Question (Q4). 

It is perhaps worth noting that the statements in Quote (NRC8) relating to the weighting of results for an indi-
vidual future by the probability of that future are intuitively informative but are not correct in a literal mathematical 
sense.  In general, individual “futures” will have a probability of zero.  Thus, it does not make sense to weight the 
dose curve associated with an individual future by the probability of that future as indicated in Quote (NRC8).  
Most likely, the NRC had one, or perhaps both, of the following two situations in mind and simply did not word 
Quote (NRC8) explicitly.  First, nonzero probabilities exist for sets of futures, not individual futures.  Thus, a com-
putational strategy to obtain a mean dose curve consistent with the apparent intent, but not the exact wording, of 
Quote (NRC8) is to (i) divide the possible futures into a collection of disjoint sets (i.e., the answer to Question 
(Q1)), (ii) determine the probability of each of these sets (i.e., the answer to Question (Q2)), (iii) select a single rep-
resentative future from each set and calculate its associated dose curve (i.e., the answer to Question (Q3)), and then 
(iv) weight the individual dose curves by the probabilities of the associated sets.  Second, in an analysis based on 
simple random sampling, a mean is estimated by weighting the results associated with each sample element by the 
reciprocal of the sample size.  Thus, another computational strategy to obtain a mean dose curve consistent with the 
apparent intent, but not the exact wording, of Quote (NRC8) is to (i) generate a random sample from the set of all 
possible futures, (ii) calculate a dose curve for each sampled future, and then (iii) weight the individual dose curves 
by the reciprocal of the sample size.  Both of the preceding approaches produce a mean dose curve in apparent con-
sistency with the intent of Quote (NRC8).  However, neither approach involves the weighting of dose curves by the 
probability of individual futures. 
 

The description of a PA by the NRC in Quote (NRC2) is at a very high level.  Owing to the central role played 
by PA in the licensing of the YM repository, it is important to examine any additional statements made by the NRC 
with respect to the desired characteristics of a PA carried out for this purpose.  Such statements help provide guid-
ance with respect to the conceptual and computational structure of PAs for the YM repository.  Specifically, the 
following statement given in 10 CFR 63.102 helps provide insights with respect to what the NRC considers to be an 
appropriately designed and conducted PA (Ref. [21], p. 55805): 

(j) Performance assessment.  Demonstrating compliance with the postclosure performance 
objective specified at § 63.113(b) requires a performance assessment to quantitatively 
estimate radiological exposures to the reasonably maximally exposed individual at any time 
during the compliance period. The performance assessment is a systematic analysis that 
identifies the features, events, and processes (i.e., specific conditions or attributes of the 
geologic setting, degradation, deterioration, or alteration processes of engineered barriers, 
and interactions between the natural and engineered barriers) that might affect performance 
of the geologic repository; examines their effects on performance; and estimates the 
radiological exposures to the reasonably maximally exposed individual. The features, 
events, and processes considered in the performance assessment should represent a wide 
range of both beneficial and potentially adverse effects on performance (e.g., beneficial 
effects of radionuclide sorption; potentially adverse effects of fracture flow or a criticality 
event).  Those features, events, and processes expected to materially affect compliance with 
§ 63.113(b) or be potentially adverse to performance are included, while events (event 
classes or scenario classes) that are very unlikely (less than one chance in 10,000 over 
10,000 years) can be excluded from the analysis. An event class consists of all possible 
specific initiating events that are caused by a common natural process (e.g., the event class 
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for seismicity includes the range of credible earthquakes for the Yucca Mountain site). 
Radiological exposures to the reasonably maximally exposed individual are estimated using 
the selected features, events, and processes, and incorporating the probability that the 
estimated exposures will occur. (NRC9) 

The first three questions, (Q1) – (Q3), related to PA are clearly imbedded in the preceding description.  For exam-
ple, references to “events” and “event classes” involve Question (Q1):  “What can happen?”; the statement “incor-
porating the probability that the estimated exposures will occur” involves Question (Q2):  “How likely is it to hap-
pen?”; and statements such as “quantitatively estimate radiological exposures” and “examines their effects on 
performance” involve answering Question (Q3):  “What are the consequences if it does happen?”. 

The NRC’s description of PA in Quote (NRC9) does not include any statement that can be identified with 
Question (Q4):  “What is the uncertainty in the answers to the first three questions?”.  However, the answering of 
this question is clearly intended to be part of the NRC’s concept of what a PA should be as indicted in the following 
statement (Ref. [21], p. 55807): 

§ 63.114 Requirements for performance assessment. 

Any performance assessment used to demonstrate compliance with § 63.113 must: 

(a) Include data related to the geology, hydrology, and geochemistry (including disruptive 
processes and events) of the Yucca Mountain site, and the surrounding region to the extent 
necessary, and information on the design of the engineered barrier system used to define 
parameters and conceptual models used in the assessment. 

(b) Account for uncertainties and variabilities in parameter values and provide for the technical 
basis for parameter ranges, probability distributions, or bounding values used in the 
performance assessment. 

(c) Consider alternative conceptual models of features and processes that are consistent with 
available data and current scientific understanding and evaluate the effects that alternative 
conceptual models have on the performance of the geologic repository. 

(d) Consider only events that have at least one chance in 10,000 of occurring over 10,000 
years. 

(e) Provide the technical basis for either inclusion or exclusion of specific features, events, and 
processes in the performance assessment. Specific features, events, and processes must be 
evaluated in detail if the magnitude and time of the resulting radiological exposures to the 
reasonably maximally exposed individual, or radionuclide releases to the accessible 
environment, would be significantly changed by their omission. 

(f) Provide the technical basis for either inclusion or exclusion of degradation, deterioration, or 
alteration processes of engineered barriers in the performance assessment, including those 
processes that would adversely affect the performance of natural barriers. Degradation, 
deterioration, or alteration processes of engineered barriers must be evaluated in detail if 
the magnitude and time of the resulting radiological exposures to the reasonably maximally 
exposed individual, or radionuclide releases to the accessible environment, would be 
significantly changed by their omission. 

(g) Provide the technical basis for models used in the performance assessment such as 
comparisons made with outputs of detailed process-level models and/or empirical 
observations (e.g., laboratory testing, field investigations, and natural analogs). (NRC10) 
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Statements (b) and (c) clearly involve asking and answering Question (Q4).  Further, much of the above statement 
involves the formulation of models used to answer Question (Q3), and statement (d) involves obtaining answers to 
Questions (Q1) and (Q2). 

The following two statements from 10 CFR 63.101 also indicate the importance that the NRC attaches to an 
adequate treatment of uncertainty: 

For such long-term performance, what is required is reasonable expectation, making allowance for 
the time period, hazards, and uncertainties involved, that the outcome will conform with the 
objectives for postclosure performance for the geologic repository. Demonstrating compliance 
will involve the use of complex predictive models that are supported by limited data from field 
and laboratory tests, site-specific monitoring, and natural analog studies that may be supplemented 
with prevalent expert judgment. Compliance demonstrations should not exclude important 
parameters from assessments and analyses simply because they are difficult to precisely quantify 
to a high degree of confidence. The performance assessments and analyses should focus upon the 
full range of defensible and reasonable parameter distributions rather than only upon extreme 
physical situations and parameter values. (Ref. [21], p. 55804) (NRC11) 

Once again, although the criteria may be written in unqualified terms, the demonstration of 
compliance must take uncertainties and gaps in knowledge into account so that the Commission 
can make the specified finding with respect to paragraph (a)(2) of § 63.31. (Ref. [21], p. 55804) (NRC12) 

Both the preceding statements clearly indicate that a realistic treatment of uncertainty should be a fundamental part 
of a PA used to support a licensing application for the YM repository and thus entail providing credible answers to 
Question (Q4). 

In addition, a number of statements provided by the NRC as supplementary information with respect to 10 CFR 
Parts 2, 19, 20, etc., emphasize the importance that the NRC places on the assessment and representation of uncer-
tainty and thus on the answering of Question (Q4): 

Part 63 requires consideration of uncertainties in DOE’s representation of the repository 
(uncertainty and variability in parameter values must be taken into account—§63.114(b)) and the 
events that can happen during the compliance period (consideration of potentially disruptive 
events  with a probability of occurrence as low as one chance in 10,000 of occurring over 10,000 
years—§ 63.114(d)) to be directly included in the quantitative estimate of performance. (Ref. [21], 
p. 55747) (NRC13) 

DOE is expected to conduct uncertainty analyses (i.e., evaluation of how uncertainty in parameter 
values affects uncertainty in the estimate of dose), including the consideration of disruptive events 
and associated probability of occurrence. (Ref. [21], p. 55747) (NRC14) 

The approach defined in part 63, which requires DOE to fully address uncertainties in its 
performance assessment rather than requiring DOE to meet a specific level of uncertainty, is 
appropriate. The treatment of uncertainty in DOE’s performance assessment will be an important 
part of NRC’s review. (Ref. [21], p. 55748) (NRC15) 

Quote (NRC13) is particularly interesting because it involves three distinct concepts related to uncertainty:  (i) un-
certainty in the epistemic or subjective sense related to knowledge about the appropriateness of assumptions used in 
an analysis, (ii) spatial variability, and (iii) uncertainty in the aleatory sense related to events that may, or may not, 
occur in the future.  Quote (NRC14) is informative because it goes beyond asking for an analysis that simply calcu-
lates a mean outcome; in particular, it asks for an uncertainty analysis which evaluates “how uncertainty in parame-
ter values affects uncertainty in the estimate of dose,” which involves a more complex analysis than simply calculat-
ing a mean dose.  Finally, Quote (NRC15) expresses the importance that the NRC places on an adequate treatment 
of uncertainty. 
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The concepts of “event sequence” and “initiating event” are very important in organizing the underlying struc-
ture of PAs for the YM repository and are defined by the NRC as follows: 

Event sequence means a series of actions and/or occurrences within the natural and engineered 
components of a geologic repository operations area that could potentially lead to exposure of 
individuals to radiation. An event sequence includes one or more initiating events and associated 
combinations of repository system component failures, including those produced by the action or 
inaction of operating personnel. (Ref. [21], p. 55793) (NRC16) 

Initiating event means a natural or human induced event that causes an event sequence. (Ref. [21], 
p. 55794) (NRC17) 

Quotes (NRC16) and (NRC17) relate to the operational phase of the repository rather than to the post-closure phase 
that is the focus of this presentation.  However, these quotes are included because they in effect define what is 
known as an elementary event in a careful development of probability.  In such a development and as must be the 
case in a PA for the YM repository, probabilities are assigned to sets of elementary events (i.e., sets of event se-
quences as indicated in Quote (NRC16), which in turn correspond to “event classes or scenario classes” as used in 
Quote (NRC9)) rather than to individual elementary events.  Thus, the concept of event sequence is of fundamental 
importance to the analysis of both operational and post-closure performance of the YM repository.  Quotes 
(NRC16) and (NRC17) are included from the operational requirements because, although the concept of an event 
sequence is equally important to the analysis of post-closure performance, similar statements defining event se-
quences do not appear in the post-closure requirements for the YM repository.  However, as indicated by the refer-
ence to “sequences of events and processes” in Part (i) of Quote (NRC2), the concept of an event sequence is clearly 
intended by the NRC to be part of the conceptual structure that underlies a PA for the YM repository.  For post-
closure performance, the “Initiating event” of Quote (NRC17) could, for example, be an igneous or seismic occur-
rence taking place at a specific time and with specified properties. 

This section now records a sequence of statements by the NRC that relate to the nature of occurrences (i.e., the 
events of the phrase “features, events and processes”) that should, and should not, be included in a PA for the YM 
repository: 

§ 63.305 Required characteristics of the reference biosphere. 

(a) Features, events, and processes that describe the reference biosphere must be consistent 
with present knowledge of the conditions in the region surrounding the Yucca Mountain 
site. 

(b) DOE should not project changes in society, the biosphere (other than climate), human 
biology, or increases or decreases of human knowledge or technology. In all analyses done 
to demonstrate compliance with this part, DOE must assume that all of those factors remain 
constant as they are at the time of submission of the license application. 

(c) DOE must vary factors related to the geology, hydrology, and climate based upon cautious, 
but reasonable assumptions consistent with present knowledge of factors that could affect 
the Yucca Mountain disposal system over the next 10,000 years. 

(d) Biosphere pathways must be consistent with arid or semi-arid conditions. (Ref. [21], 
p. 55813)  (NRC18) 

These statements are included because they relate to what is to be included in the conceptual and computational 
structure of a PA for the YM repository.  In particular, these statements help determine the actual modeling of 
physical and biological processes that will take place in a PA for the YM repository. 
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Finally, it is important to realize that the NRC does not view a PA in support of a licensing application for the 
YM repository as a risk assessment in the traditional sense of the phrase (i.e., as an analysis that is intended to cal-
culate the actual consequences, and thus the actual risks, associated with the myriad possible future behaviors of a 
natural or engineered system).  In particular, the dose to the RMEI is used as a means to convert potential radionu-
clide releases into intuitively interpretable quantities (i.e., doses).  However, owing to the prescribed and stylized 
manner in which doses to the RMEI are defined and calculated, they do not realistically represent actual doses to 
individuals in the future and thus should not be viewed as the consequence component of a risk calculation.  This 
point is emphasized by the NRC in the following statement: 

However, it should be kept in mind that the performance assessment evaluates “potential” doses, 
not “actual” doses. For example, part 63 requires the performance assessment to assume for the 
next 10,000 years that the reasonably maximally exposed individual (RMEI) is a member of a 
community that: (1) Exists where it will intercept potential releases from the repository and (2) 
uses ground water but never tests the quality of this water nor treats the ground water to remove 
any contaminants. This specification is considered appropriately conservative for evaluating 
performance but most likely is not an “accurate” prediction of what will happen during the next 
10,000 years (see discussion under RMEI Characteristics and Reference Biosphere for more 
information on the RMEI). Although the Commission does not require an ‘‘accurate’’ prediction 
of the future, uncertainty in performance estimates cannot be so large that the Commission cannot 
find a reasonable expectation that the postclosure performance objectives will be met (see 
discussion under Reasonable Expectation). (Ref. [21], p. 55748) (NRC19) 

Thus, although a PA in support of a licensing application for the YM repository will have the same conceptual and 
computational structure as a risk assessment, the actual dose results cannot be given a risk-based interpretation. 

2.3 NRC Review Criteria:  Yucca Mountain Review Plan (YMRP) 

Selected portions of the YMRP that specifically relate to the conceptual and computational structure of PAs for 
the YM repository are presented in this section.  The YMRP is a large and detailed document.  No attempt is made 
to summarize everything in it that relates to PA for the YM repository.  Rather, only selected material that specifi-
cally relates to the overall structure of PAs for the YM repository is presented. 

Early in the YMRP, the NRC specifically acknowledges that the DOE’s license application is to be based on a 
detailed PA (Ref. [22], p. 2.2-1): 

Risk-Informed Review Process for Performance Assessment—The performance assessment 
quantifies repository performance, as a means of demonstrating compliance with the postclosure 
performance objectives at 10 CFR 63.113. The U.S. Department of Energy performance 
assessment is a systematic analysis that answers the triplet risk questions: what can happen; how 
likely is it to happen; and what are the consequences. (YMRP1) 

The “triplet” referred to above is the classic Kaplan-Garrick ordered triple definition of risk32 that evolved out of 
the Reactor Safety Study56 conducted by the NRC in the mid 1970s and other reactor probabilistic risk assessments 
carried out in the late 1970s and early 1980s.57, 58  This risk representation also provided the conceptual and organ-
izational basis for the NRC’s reassessment of the risk from commercial nuclear power reactors carried out in the late 
1980s (i.e., NUREG-1150)59, 60 and the DOE’s PA in support of a successful compliance certification application to 
the EPA for the Waste Isolation Pilot Plant (WIPP) in the mid 1990s.61, 62  The three indicated questions have al-
ready been referred to as Questions (Q1), (Q2) and (Q3) in Sect. 2.1.  As a reminder, there is also a fourth question 
(i.e., Q4):  “What is the uncertainty in the answers to the first three questions?”, or equivalently, “How much confi-
dence do you have in the answers to the first three questions?”. 
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The NRC provides three acceptance criteria, with multiple subparts, to be used in reviewing the DOE’s use of 
PA to assess compliance with the postclosure individual protection requirement (i.e., Quote (NRC1)).  These criteria 
follow (Ref. [22], pp. 2.2-133 and 2.2-134): 

Acceptance Criterion 1:  Scenarios Used in the Calculation of the Annual Dose as a Function of 
Time Are Adequate. 

(1) The annual dose as a function of time includes all scenario classes that have been 
determined to be sufficiently probable, or to have a sufficient effect on overall performance 
that they could not be screened from the total system performance assessment analyses;  
and (YMRP2) 

(2) The calculation of the annual dose curve appropriately sums the contribution of each of the 
disruptive event scenario classes. The contribution to the annual dose from each scenario 
class calculation properly accounts for the effects that the time of occurrence of the 
disruptive events comprising the scenario class has on the consequences. The annual 
probability of occurrence of the events used to calculate the contribution to the annual dose 
is consistent with the results of the scenario analysis. The probabilities of occurrence of all 
scenario classes, included in calculating the annual dose curve, sum to one. (YMRP3) 

Acceptance Criterion 2:  An Adequate Demonstration Is Provided That the Annual Dose to the 
Reasonably Maximally Exposed Individual in Any Year During the Compliance Period Does Not 
Exceed the Exposure Standard. 

(1) A sufficient number of realizations has been obtained, for each scenario class, using the 
total system performance assessment code, to ensure that the results of the calculations are 
statistically stable; (YMRP4) 

(2) The annual dose curve includes confidence intervals (e.g., 95th and 5th percentile) to 
represent the uncertainty in the dose calculations; (YMRP5) 

(3) Repository performance and the performance of individual components or subsystems are 
consistent and reasonable; and (YMRP6) 

(4) The total system performance assessment results confirm that the repository performance 
results in annual dose, to the reasonably maximally exposed individual, in any year, during 
the compliance period, that does not exceed the postclosure individual protection standard. (YMRP7) 

Acceptance Criterion 3:  The Total System Performance Assessment Code Provides a Credible 
Representation of Repository Performance. 

(1) Assumptions made within the total system performance assessment code are consistent 
among different modules of the code. The use of assumptions and parameter values that 
differ among modules of the code is adequately documented; (YMRP8) 

(2) The total system performance assessment code is properly verified, such that there is 
confidence that the code is modeling the physical processes in the repository system in the 
manner that was intended. The transfer of data between modules of the code is conducted 
properly; (YMRP9) 

(3) The estimate of the uncertainty in the performance assessment results is consistent with the 
model and parameter uncertainty; and  (YMRP10) 
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(4) The total system performance assessment sampling method ensures that sampled 
parameters have been sampled across their ranges of uncertainty. (YMRP11) 

The preceding acceptance criteria are basically describing what should be expected of any modern PA.  Exam-
ples of such PAs include the NRC’s reassessment of the risk from nuclear power plants59, 60 and the DOE’s Com-
pliance Certification Application for the WIPP.61, 62 
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3.  Tutorial on Probability, Uncertainty and Variability 

As clearly indicated by the material presented in Sect. 2, probability and the treatment of uncertainty are fun-
damental components of a PA in support of a licensing application for the YM repository. In particular, determina-
tion of expected (i.e., mean) dose to the RMEI is an inherently probabilistic calculation.  For convenience and to 
standardize the use of certain terminology, a brief tutorial on probability and uncertainty follows. 

Three basic components are involved in a formal definition of probability:  a set S that contains everything that 
could occur in the particular universe under consideration; a suitably restricted collection S of subsets of S for 
which probability is defined; and a function p that defines probability for the elements of S (Ref. [63], Section 
IV.3).  At an intuitive level, S can be thought of as containing all possible subsets of S.  However, to obtain a 
mathematically rigorous development of probability, S and p must have the following properties:  (i) if E ∈ S, then 
E c ∈ S, where the superscript c is used to denote the complement of E, (ii) if {Ei} is a countable collection of ele-
ments of S, then ∪iE i and ∩E i are also elements of S, (iii) p(S) = 1, (iv) if E ∈ S, then 0 ≤ p(E) ≤ 1, and (v) if {E 

i} is a countable collection of disjoint elements of S (i.e., E i∩E j = ∅ for i ≠ j), then p(∪iE i) = ( )ii p∑ E .  The 
triple (S, S, p) is called a probability space and is the fundamental mathematical structure that underlies a careful 
development of probability.  In the usual terminology of probability theory, S is called the sample space; elements 
of S are called elementary events; elements of S are called events; and p is called a probability measure.  The idea of 
a probability space is introduced in this presentation primarily as a notational convenience to facilitate in distin-
guishing between different uses of probability and in describing the calculation of expected values and distributions.  
The authors have neither intent nor desire to carry out a measure-theoretic development of probabilistic results. 

Although the concept of a probability space is important conceptually and convenient notationally, calculations 
involving a probability space (S, S, p) are often described with a density function d, where 

( ) ( ) dp d E= ∫EE x  (3.1) 

for E ∈ S, x ∈ E, and dE corresponding to an increment of volume from E.  Then, the expected value, variance, 
cumulative distribution function (CDF), and complementary cumulative distribution function (CCDF) associated 
with a real-valued function y = f(x) defined on S are given by 

( ) ( ) ( ) dE f f d S= ∫S x x , (3.2) 

( ) ( ) ( ) ( )2 d ,V y f E f d S= −⎡ ⎤⎣ ⎦∫S x x  (3.3) 

( ) ( ) ( ) d ,yprob y y f d Sδ≤ = ⎡ ⎤⎣ ⎦∫� x xS  (3.4) 

and 

( ) ( ) ( ) d ,yprob y y f d Sδ> = ⎡ ⎤⎣ ⎦∫� x xS  (3.5) 

respectively, where 

( ) ( )1 if 
0 otherwise,y

f y
fδ ≤⎧

=⎡ ⎤ ⎨⎣ ⎦
⎩

x
x  

( ) ( )1 if 
0 otherwise,y

f y
fδ >⎧

=⎡ ⎤ ⎨⎣ ⎦
⎩

x
x  
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and dS represents an increment of volume from S.  A CCDF is defined in Eq. (3.5) because of the typical usage of 
CCDFs rather than CDFs to represent uncertainty in risk assessments.  In particular, a CCDF answers the question 
“How likely is it to be this bad or worse?”, which is usually the question asked with respect to individual conse-
quences in a risk assessment.  However, conversion between CCDFs and CDFs is straightforward as a CDF is sim-
ply one minus the corresponding CCDF.   

The expected value in Eq. (3.2) is of central importance in the EPA’s and the NRC’s regulations for the YM re-
pository, where y corresponds to dose to the RMEI at a particular time.  Specifically, because the expected (i.e., mean) 
value of a function is defined by an integral, any calculation of expected dose to the RMEI as specified in Quotes 
(EPA7) and (NRC7) must in some way involve the evaluation of an integral of the form indicated in Eq. (3.2). 

The representation and incorporation of uncertainty figures prominently in the EPA’s and NRC’s standards for 
the YM repository.  For example, see references to uncertainty in Quotes (EPA2), (EPA3) and (EPA5) – (EPA12) 
from the EPA and in Quotes (NRC2), (NRC3) and (NRC5) – (NRC13) from the NRC.  In addition, Quotes 
(YMRP1) – (YMRP5), (YMRP10) and (YMRP11) from the NRC’s YMRP also relate to the importance attached to 
the representation of uncertainty.  Examination of the indicated statements shows that three different concepts of 
uncertainty are involved in PA for the YM repository:  (i) uncertainty about what will happen in the future, (ii) un-
certainty about parameters, models, and other analysis assumptions, and (iii) variability. 

Uncertainty about what will happen in the future can be seen in statements such as (i) “weighted by their prob-
ability of occurrence” in Quotes (EPA2) and (NRC2), (ii) “Because none of these possible futures can be demon-
strated to describe the actual future behavior of the repository system, the Commission requires that the applicant 
calculate the mean of these dose curves, properly weighted by their individual probabilities” in Quote (NRC6), and 
(iii) “The probabilities of occurrence of all scenario classes, included in calculating the annual dose curve, sum to 
one” in Quote (YMRP3).  Uncertainty of the type indicated in the preceding statements about events whose future 
occurrence is assumed to be random, at least insofar as our ability to forecast such occurrences is concerned, is 
called aleatory uncertainty.23-25  Other descriptors sometimes used in the designation of aleatory uncertainty include 
stochastic, type A and irreducible.  The preceding statements indicate that the EPA and the NRC intend for prob-
ability to be used in the mathematical characterization of aleatory uncertainty.  Thus, underlying PAs for the YM 
repository, there must be a probability space (A, A, pA) for aleatory uncertainty.  The general nature of the probabil-
ity space (A, A, pA) is discussed in more detail in Sect. 5. 

Uncertainty about parameters, models and other analysis assumptions can be seen in statements such as (i) “fo-
cuses performance assessments and analyses upon the full range of defensible and reasonable parameter distribu-
tions” in Quotes (EPA3) and (NRC3), (ii) “Account for uncertainties and variabilities in parameter values and pro-
vide for the technical basis for parameter ranges, probability distributions, or bounding values used in the 
performance assessment” in Quote (NRC8), (iii) “performance assessments and analyses should focus on the full 
range of defensible and reasonable parameter distributions” in Quote (NRC9), and (iv) “The estimate of the uncer-
tainty in the performance assessment results is consistent with the model and parameter uncertainty” in Quote 
(YMRP10).  Uncertainty of the type indicated in the preceding statements derives from a lack of knowledge about a 
quantity, a model, or an assumption assumed to have a fixed value in the context of a specific analysis and is usually 
referred to as epistemic uncertainty.23-25  Other descriptors sometimes used in the designation of epistemic uncer-
tainty include subjective, state of knowledge, type B and reducible.  The preceding statements indicate that the EPA 
and the NRC intend for probability to be used in the mathematical characterization of epistemic uncertainty.  Thus, 
underlying the PAs for the YM repository, there must be a probability space (E, E, pE) for epistemic uncertainty.  
The general nature of the probability space (E, E, pE) is discussed in more detail in Sect. 6.  As an aside, it is inter-
esting to note that there is evidence that individuals process information related to aleatory uncertainty differently 
from information related to epistemic uncertainty.64 

The parameter distributions that give rise to a probability space (E, E, pE) used to represent epistemic uncertainty 
are usually developed through some form of expert review process.65-76  The purpose of this review process is to as-
semble available information about parameters into a mathematical structure that can be incorporated into subsequent 
analyses.  The extent of this review process can vary widely depending on the purpose of the analysis, the size of the 
analysis, and the resources available to carry out the analysis.  At one extreme is a relatively small study in which a 
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single analyst both develops the uncertainty characterizations (e.g., on the basis of personal knowledge or a cursory 
literature review) and carries out the analysis.  At the other extreme is a large analysis on which important societal deci-
sions will be based and for which uncertainty characterizations are carried out for a large number of variables by teams 
of outside experts who support the analysts actually performing the analysis.  Examples of very extensive expert review 
processes carried out to characterize epistemic uncertainty are provided by the NRC’s reassessment of reactor risk (i.e., 
NUREG-1150)76-82 and the joint NRC/Commission of European Communities (CEC) assessment of the uncertainties 
associated with parameters used in reactor accident consequence models.83-87   

Although other mathematical structures for the representation of epistemic uncertainty exist (e.g., interval 
analysis, fuzzy set theory, possibility theory, evidence theory),88-97 the NRC has clearly indicated an intent that 
probability be used to characterize epistemic uncertainty in PAs for the YM repository (e.g., see Quotes (NRC2), 
(NRC3), (NRC7), (NRC10), (NRC11)). 

In developing the parameter distributions that give rise to the probability space (E, E, pE), the goal is to de-
velop distributions that provide an unbiased characterization of the uncertainty with respect to the appropriate value 
to use for each parameter under consideration.  In particular, such distributions should provide uncertainty charac-
terizations that are neither deliberately pessimistic (i.e., conservative) nor deliberately optimistic (i.e., nonconserva-
tive).  As indicated in statements quoted in Sects. 2.1 and 2.2, both the EPA and the NRC desire a realistic rather 
than a conservative PA for the YM repository.  As examples, the statements “If choices are made that make the 
simulations very unrealistic, the confidence that can be placed in the modeling results is very limited.” and “Overly 
conservative assumptions made in developing performance scenarios can bias the analyses in the direction of unre-
alistically extreme situations, which in reality may be highly improbable, and can deflect attention from questions 
critical to developing an adequate understanding of the expected features, events and processes.” appear in Quote 
(EPA13), and the statement “The performance assessments and analyses should focus upon the full range of defen-
sible and reasonable parameter distributions rather than only upon extreme physical situations and parameter val-
ues” appears in Quote (NRC11).  The indicated statements clearly indicate a desire for a PA that has not been biased 
by conservative assumptions.  The importance of avoiding conservative analyses has been emphasized by a number 
of individuals, including a chairman of the NRC.98-102 

Ideally, if deliberate conservatism is to be included in a PA for the YM repository, this conservatism should be 
incorporated after a nonconservative PA has been performed.  With this approach, the shifting of the results of the 
PA by the addition of one or more conservative assumptions can be clearly identified and understood.  Such an 
analysis could be of benefit in making a convincing argument for the safety of the YM repository.  However, with-
out first carrying out an unbiased PA, there is no way to meaningfully assess the effects, and hence the potential 
benefits and detriments, of skewing PA results through the imposition of conservative assumptions.  As an example, 
this approach underlies the compliance certification for the WIPP, where an initial PA was carried out by the 
DOE61, 62 and then a modification of this PA was carried out with changes specifically requested by the EPA.103 

Recognition of the potential importance of variability in assessing the compliance of the YM facility with ap-
plicable standards is demonstrated by references to “variability” in Quotes (NRC8) and (NRC11).  In the two indi-
cated quotes, variability appears in conjunction with uncertainty in the statements “Account for uncertainties and 
variabilities in parameter values” in Quote (NRC8) and “uncertainty and variability in parameter values must be 
taken into account” in Quote (NRC11).  However, uncertainty in the sense of epistemic uncertainty and variability 
in the sense of a quantity having different values as a function of space and/or time are very different concepts.  In 
particular, epistemic uncertainty involves a lack of knowledge about the appropriate value to use for a quantity that 
is assumed to have a fixed value in the context of a particular analysis.  Probability provides the mathematical struc-
ture that is used in most analyses to characterize such uncertainty.  In contrast, variability in a quantity is character-
ized as a function of space and/or time (e.g., f(x, y), f(x, y, z), f(x, y, z, t), f(t), …, where x, y and z correspond to spa-
tial coordinates and t corresponds to time).  For some quantities, functions of the form just indicated will likely be 
used as input to PAs for the YM repository; for other quantities, spatial and/or temporal variability will likely be 
reduced to an expected value over space and/or time, and then this expected value used as input to a PA. 

An important point to recognize is that there is almost always epistemic uncertainty in the characterization of 
variability.  For example, if a function f(x, y) characterizes the two-dimensional variability of some quantity, there 
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are most likely many possible values for this function of varying levels of credibility.  Thus, the function f(x, y) 
characterizes spatial variability, but a lack of knowledge with respect to how to exactly define f(x, y) is epistemic 
uncertainty.  Similarly, there can be, and almost always is, epistemic uncertainty with respect to the values of quan-
tities used in the characterization of aleatory uncertainty.  For example, the occurrence of a certain process (e.g., 
volcanism) might be assumed to follow a Poisson process with a rate constant λ (units:  yr−1).  The rate constant λ 
characterizes aleatory uncertainty and gives rise to probabilities of volcanic events occurring over time intervals of 
different lengths.  However, the inability to confidently assign an exact value for λ is epistemic uncertainty. 

 
It is worthwhile to briefly consider the phrases “features, events, and processes, and sequences of events and 

processes” and “features, events and processes” that appear often in the EPA and NRC standards for the YM reposi-
tory (e.g., see Quotes (EPA2), (NRC2), (NRC7), (NRC8), (NRC16)).  As suggested by its name, a feature is a large-
scale property of the system under consideration (e.g., a fault, a geologic formation, an aquifer, …).  A feature ei-
ther exists or it does not exist.  There can be epistemic uncertainty about whether or not a feature exists (i.e., maybe 
it is there or maybe it is not there) and also epistemic uncertainty about the properties of a feature (e.g., permeabil-
ity, porosity, fracture spacing, thermal conductivity, …).  Often, there is spatial variability in the properties of a fea-
ture.  There can also be epistemic uncertainty in how to define such variability.  However, as previously discussed, 
variability and epistemic uncertainty are distinct concepts.  An event is something that occurs over a period of time 
that is short relative to the period of analysis (e.g., igneous or seismic occurrences); in essence, an event is a discon-
tinuity in the behavior of the system that occurs at a specific point in time.  The occurrence, or nonoccurrence, of 
events is considered to be aleatory uncertainty and is distinct from epistemic uncertainty.  However, there can be 
epistemic uncertainty in quantities used to characterize aleatory uncertainty (e.g., means, standard deviations, occur-
rence rates, …).  The reference to “sequence of events” derives from the fact that the occurrence of one or more 
aleatory events is always considered over some period of time (e.g., 0 to 10,000 yr in parts of the regulations for the 
YM repository); such sequences of events correspond to elementary events associated with the probability space for 
aleatory uncertainty.  A process is something that takes place continuously over a period of time that is long relative 
to the period of analysis (e.g., groundwater flow, heat flow, corrosion, …).  Although a process may be, but is not 
necessarily, initiated by a specific aleatory event, it is usually represented by a model (e.g., a system of ordinary or 
partial differential equations) that predicts the time-dependent, and often spatially dependent, behavior of the proc-
ess.  Often, there is substantial epistemic uncertainty associated with the model inputs used in modeling complex 
processes (e.g., dual porosity fluid flow and solute transport in a fractured geologic medium) and there can also be 
epistemic uncertainty with respect to the choice of a model itself (i.e., model uncertainty as it is sometimes called, 
e.g., see Ref [104]). 

 
The dual use of probability to represent both aleatory uncertainty and epistemic uncertainty, as is specified by 

both the EPA and the NRC for use in PAs for the YM repository, can be traced back to the beginnings of the formal 
development of probability theory in the late sixteen hundreds.7, 105-107  The use of probability in PAs for complex 
systems is a topic of wide interest and many references are available that provide additional information and per-
spectives on this use.23, 25-29, 31, 108-110 
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4.  Properties of Poisson Processes 

At least two types of disruptions must be considered in PAs for the proposed YM repository:  igneous events 
and seismic events.  Both of these disruptions are assumed to have a pattern of occurrence that can be represented as 
a Poisson process.  Because the properties of Poisson processes will play an important role in determining expected 
dose to the RMEI in PAs for the YM repository, it is useful to briefly review these properties at the beginning of 
this presentation.  Then, these properties can be referred to as needed in the subsequent derivation and calculation of 
expected dose to the RMEI. 

The descriptor Poisson process is used to designate a set of potentially realizable sequences of occurrences 
(e.g., sequences of seismic events occurring at different times in the future) with certain special probabilistic charac-
teristics.  For the purposes of this presentation, a Poisson process can be described in terms of a function N(r, s) 
defined for 0 ≤ r < s < ∞, where 

( ),N r s  = number of occurrences in the time interval [r, s]. (4.1) 

Specifically, the potential sequences of occurrences that give rise to different possible values for N(r, s) are said to 
follow a (stationary or homogeneous) Poisson process provided 

( ) ( ), 1 ,prob N r r t t o tλ⎡ ⎤+ ∆ = = ∆ + ∆⎣ ⎦  (4.2) 

( ) ( ), 2prob N r r t o t⎡ ⎤+ ∆ ≥ = ∆⎣ ⎦  (4.3) 

and 

( ) ( ) [ ] [ ] ( ) ( ),  and , , , , , ,prob N r s k N u v l r s u v prob N r s k prob N u v l⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = ∩ = ∅ = = =⎣ ⎦ ⎣ ⎦⎣ ⎦  (4.4) 

where (i) prob denotes probability and the associated vertical line indicates conditionality, (ii) λ is independent of r, 
and (iii) the o(∆t) notation is an abbreviation for  

( )
0

lim , 1
t

prob N r r t t λ+∆ →
⎡ ⎤+ ∆ = ∆ =⎣ ⎦  (4.5) 

and 

( )
0

lim , 2 0
t

prob N r r t t+∆ →
⎡ ⎤+ ∆ ≥ ∆ =⎣ ⎦  (4.6) 

in Eqs. (4.2) an (4.3), respectively. 

The conditions in Eqs. (4.2) and (4.3) require that, in a small interval of length ∆t, the probability of one event 
occurring is approximately λ∆t and the probability of two or more events occurring is approximately zero.  The con-
dition in Eq. (4.4) requires independence for the numbers of events occurring in two disjoint intervals.  The quantity 
λ is the defining rate for the process and has units of inverse time (e.g., yr−1). 

The following important properties hold for the Poisson process defined by the conditions in Eqs. (4.2) – (4.4): 

( ) ( ), 0 exp ,prob N r s s rλ⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦  (4.7) 

( ) ( ) ( ), 1 exp ,prob N r s s r s rλ λ⎡ ⎤ ⎡ ⎤= = − − −⎣ ⎦ ⎣ ⎦  (4.8) 
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( ) ( ) ( ), 1 1 , 0 1 exp ,prob N r s prob N r s s rλ⎡ ⎤ ⎡ ⎤ ⎡ ⎤≥ = − = = − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.9) 

and, in general, 

( ) ( ){ } ( ), ! exp
k

prob N r s k s r k s rλ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.10) 

for k = 0, 1, 2, ….  Further, 

( ) ( ), ,E N r s s rλ⎡ ⎤ = −⎣ ⎦  (4.11) 

where E denotes expected value.  When λ(s – r) is small (i.e., much less than one), then λ(s – r) approximates 
prob[N(r, s) = 1]; however, λ(s – r) ceases to be a valid approximation to prob[N(r, s) = 1] as it increases in size.   

An important property of stationary Poisson processes is that, if the process occurs exactly one time in the in-
terval [r, s] (i.e., if N(r, s) = 1), then the occurrence time has a uniform distribution on [r, s].  Specifically, 

( ) ( ), 1 1d t N r s s r⎡ ⎤= = −⎣ ⎦  (4.12) 

is the density function defined on [r, s] for time of occurrence. 

A new Poisson process with rate 

1 2 nλ λ λ λ= + + +…  (4.13) 

can be created by combining n Poisson processes with rates λ1, λ2, …, λn provided the occurrences across the rates 
are independent (i.e., the occurrence of an event associated with process i has no effect on the potential occurrence 
of an event associated with process j and vice versa).  Then, λ is the occurrence rate for the process that results 
when no distinction is made between occurrences associated with the processes characterized by λ1, λ2, …, λn. 

The Poisson process defined by the conditions in Eqs. (4.2) – (4.4) is referred to as a stationary or homogeneous 
Poisson to emphasize that the value for λ is constant.  A generalization is to replace the condition in Eq. (4.2) with 

( ) ( ) ( ), 1 .prob N r r t r t o tλ⎡ ⎤+ ∆ = = ∆ + ∆⎣ ⎦  (4.14) 

With this formulation, λ(r) is now a function of time, and the resultant Poisson process is referred to as a nonsta-
tionary or nonhomogeneous Poisson process to emphasize that λ is no longer constant with time.  For example, it 
has been proposed that the occurrence of igneous events in the vicinity of the YM repository can be characterized 
by a nonstationary Poisson process.111 

When nonstationary Poisson processes are under consideration, the relationships in Eqs. (4.7) – (4.13) have 
similar but slightly more complicated forms.  Specifically, 

( ) ( ), 0 exp ,
s
r

prob N r s t dtλ⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎢ ⎥⎣ ⎦∫  (4.15) 

( ) ( ) ( ), 1 exp ,
s s
r r

prob N r s t dt t dtλ λ⎡ ⎤ ⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  (4.16) 

( ) ( ), 1 1 exp ,
s
r

prob N r s t dtλ⎡ ⎤⎡ ⎤≥ = − −⎣ ⎦ ⎢ ⎥⎣ ⎦∫  (4.17) 
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( ) ( ) ( ), ! exp ,
ks s

r r
prob N r s k t dt k t dtλ λ

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎡ ⎤= = −⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∫ ∫  (4.18) 

( ) ( ),
s
r

E N r s t dtλ⎡ ⎤ =⎣ ⎦ ∫  (4.19) 

and 

( ) ( ) ( ) ( )1 2 .nt t t tλ λ λ λ= + + +…  (4.20) 

Further, if a nonstationary Poisson process with rate λ(t) occurs exactly one time in the interval [r, s], then 

( ) ( ) ( ), 1
s
r

d t N r s t dλ λ τ τ⎡ ⎤= =⎣ ⎦ ∫  (4.21) 

is the density function defined on [r, s] for time of occurrence.  The results in Eqs. (4.14) – (4.21) reduce to those in 
Eqs. (4.7) – (4.13) when the time-dependent λ’s are replaced by constant values. 

Additional introductory information on Poisson processes is available in the text by Ross (Ref. [112], Chapt. 5).  
More advanced treatments are also available.113-116 
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5.  Expected Dose Without Epistemic Uncertainty 

An intuitive development of expected dose to the RMEI without the inclusion of epistemic uncertainty follows.  
The incorporation of epistemic uncertainty into expected dose to the RMEI is then described in the next section 
(Sect. 6).  The presentation begins with the consideration of a single class of disruptive events (e.g., igneous events) 
whose occurrence through time is characterized by a Poisson process with a rate constant λD (yr−1).  Each individ-
ual event is defined by a time t (yr) of occurrence and a vector p of additional properties (e.g., number of waste 
packages contacted by intruding magma, whether or not a surface eruption occurs, … if igneous events are under 
consideration).  Further, a time interval [a, b] is under consideration (e.g., [a, b] = [0, 10,000 yr], where time 0 yr 
corresponds to closure of the repository).  In general, any number of events could occur over the time interval [a, b], 
although the probability of various numbers of occurrences will depend on the size of λD relative to the length of [a, 
b] (i.e., on the value of the product λD(b − a); see Eq. (4.10)). 

For notational convenience, let 

[ ]1 1 2 2, , , , , , ,= … n nn t t ta p p p  (5.1) 

denote a sequence of n occurrences at times t1 ≤ t2 ≤ … ≤ tn and associated property vectors p1, p2, …, pn.  Then, 

( ) [ ]{ }1 1 2 2 1 2, : , , , , , , , for 0, 1, 2, and n n na b n t t t n a t t t b= = = ≤ ≤ ≤ ≤ ≤… … …a a p p pA  (5.2) 

represents the set of all sequences of occurrences (i.e., futures) over the time interval [a, b], with 

( ) [ ], 0= =N a ba a  (5.3) 

understood to represent the future with no occurrence of the disruption under consideration over the time interval 
[a, b] (i.e., the nominal future).  The simpler representations 

[ ]1 2, , , ,= … nn t t ta  (5.4) 

and 

[ ]1 1 2 2, , , , , , ,n nn t p t p t p= …a  (5.5) 

for a, and thus correspondingly for A(a, b), result when the disruption is defined by time of occurrence only and 
time of occurrence and a single property, respectively. 

Given that only the single indicated disruption is under consideration, A(a, b) represents the set of all possible 
futures for the time interval [a, b].  Thus, in standard terminology from probability theory, A(a, b) would be the 
sample space for sequences of occurrences over the time interval [a, b], and each sequence a of occurrences in A(a, 
b) would be an elementary event.  Although never expressly identified, the existence of sets analogous to A(a, b) is 
alluded to by the NRC in the statements such as “Identifies… sequences of events and processes” (see Quote 
(NRC2)) and “wide range of possible future behaviors” (see Quote (NRC7)).  Further, the existence of sets of the 
form A(a, b) is fundamental to the determination of probabilities (see Quotes (NRC2), (NRC6), (NRC9), (NRC10), 
(NRC13), (YMRP2), (YMRP3)) and expected (i.e., mean) dose (see Quotes (NRC7), (NRC8), (YMRP2), 
(YMRP3)) specified by the NRC. 

Probabilities are defined for subsets of A(a, b).  Of particular interest are the subsets 

( ) [ ]{ }1 1 2 2 1 2, : , , , , , , , ,= = ≤ ≤ ≤ ≤ ≤… …n n n na b n t t t a t t t ba a p p pA  (5.6) 
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for n = 0, 1, 2, …, with each set An(a, b) containing all futures in which exactly n occurrences take place over the 
time interval [a, b].  In terminology used by the NRC, each set An(a, b) is a scenario class (or, sometimes, an event 
or event class; see Quotes (NRC9), (NRC10d), (YMRP2), (YMRP3), (YMRP4)) and corresponds to what is usually 
called an event in standard terminology from probability theory.  More generally, any subset of A(a, b) corresponds 
to what the NRC refers to as a scenario class.  The probability pA[An(a, b)] of An(a, b) is given by 

( ) ( ){ } ( ), ! expλ λ= − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
n

A n D Dp a b b a n b aA  (5.7) 

as indicated in Eq. (4.10).  The subscript A appears in pA[An(a, b)] to emphasize that this probability derives from 
aleatory uncertainty.   

A probability space (A, A, pA) of the form indicated in Sect. 3 characterizing aleatory uncertainty has now ef-
fectively been introduced.  The sample space A is the set A(a, b) defined in Eq. (5.2); the elementary events are the 
elements a of A(a, b) defined in Eq. (5.1); the events contained in A = A(a, b) are subsets of A(a, b) as exemplified 
by the sets An(a, b) defined in Eq. (5.6); and the probability measure pA is defined for elements of A(a, b) as exem-
plified by the defining relationship for pA[An(a, b)] in Eq. (5.7).  In the preceding, the descriptor “exemplified” is 
used in conjunction with the sets An(a, b) and the probabilities pA[An(a, b)] because, in general, A(a, b) will contain 
many more sets than just the sets An(a, b) (i.e., intuitively, but not in a formally correct sense, all subsets of A(a, b)) 
and the probability pA(E) for an arbitrary element E of A(a, b) can involve a more complex definition than shown 
in Eq. (5.7) (e.g., the probability of E can be affected by restrictions in the definition of E involving the elements of 
the property vector p and by the probability distributions assigned to these elements).  In most analyses, pA is im-
plicitly defined by assigning distributions to the individual elements of the vector a, and probabilities are actually 
defined and calculated for only a limited number of subsets of the sample space A that have special significance to 
the analysis. 

Each element a of A(a, b) gives rise to a time dependent dose D(τ|a) to the RMEI, where 

( )|τD a  = dose (mrem/yr) to the RMEI at time τ (yr) associated with the element (i.e., future) a of A(a, b). 
  (5.8) 

The NRC regulations for the YM repository specify a bound of 15 mrem/yr on the expected (i.e., mean) value for 
D(τ |a) (see Quotes (NRC7), (NRC8), (YMRP2), (YMRP3)).  In the example of this section, the required expected 
value derives from the possible values for a and the “likelihood” of these values.  In an actual PA for the YM re-
pository, D(τ |a) would be a very complicated function involving the representation of many physical processes 
(e.g., fluid flow, heat flow, waste package degradation, radionuclide transport, …); however, this level of detail in 
the definition of D(τ |a) is not needed in this presentation and would actually be a distraction that obscured the basic 
conceptual ideas being described.  The necessity of using computational models symbolically represented by D(τ |a) 
to estimate dose to the RMEI is recognized by the NRC (e.g., see Quotes (NRC9), (NRC10), (NRC11)). 

With respect to terminology, the mean dose to the RMEI referred to by the NRC is what most English language 
texts on probability refer to as the expected value of a random variable and designate with a capital E as done in Eq. 
(3.2) (e.g., see, at increasing levels of sophistication, Chapt. 2, Ref. [112], Chapts. 7 and 8, Ref. [117], and Sect. 
IV.4, Ref. [63]).  As a reminder, a random variable is a function defined on the sample space A associated with a 
probability space such as (A, A, pA) indicated above.  In the context of dose to the RMEI in the NRC’s regulations 
for the YM repository, the primary random variable under consideration is a function of the form D(τ |a) introduced 
in Eq. (5.8) for elements a of the sample space A(a, b).  For consistency with standard usage, this presentation re-
fers to expected dose to the RMEI rather than mean dose to the RMEI and uses a capital E as the designator for the 
expectation operator. 

In concept, the expected value EA[D(τ |a)] for D(τ |a) can be approximated by generating a sequence 

ai, i = 1, 2, …, nS, (5.9) 
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of random samples from A(a, b) in consistency with the distributions assigned to the individual elements of a and 
then estimating EA[D(τ |a)] by 

( ) ( )
1

| | .
nS

A i
i

E D D nSτ τ
=

≅⎡ ⎤⎣ ⎦ ∑a a  (5.10) 

As for pA[An(a, b)], the subscript A appears in EA[D(τ |a)] to emphasize that this expected value derives from alea-
tory uncertainty.   

Estimating EA[D(τ |a)] by random sampling directly from A(a, b) as indicated in Eq. (5.9) is conceptually 
straightforward and thus very appealing.  Unfortunately, this approach does not provide a computationally effective 
way to estimate EA[D(τ |a)] because of the very large sample sizes required to assure adequate representation of the 
elements of A(a, b) that involve the occurrence of one or more disruptions.  For example, if λD = 10−7 yr−1 and 
[a, b] = [0, 10,000 yr], then 

( ) ( ) ( )07 4 7 4 1
0 , 10 10 0 0! exp 10 10 0 9.99 10 ,Ap a b − − −⎧ ⎫⎡ ⎤ ⎡ ⎤= − − − ≅ ×⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

A  (5.11) 

( ) ( ) ( )17 4 7 4 4
1 , 10 10 0 1! exp 10 10 0 9.99 10 ,Ap a b − − −⎧ ⎫⎡ ⎤ ⎡ ⎤= − − − ≅ ×⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

A  (5.12) 

( ) ( ) ( )27 4 7 4 7
2 , 10 10 0 2! exp 10 10 0 5.00 10 ,Ap a b − − −⎧ ⎫⎡ ⎤ ⎡ ⎤= − − − ≅ ×⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

A  (5.13) 

and, as a result, a random sample from A(a, b) of size nS = 100,000 would have approximately 99,900 sample ele-
ments that involved no disruption, approximately 100 sample elements that involved the occurrence of exactly one 
disruption, and most likely no elements that involved the occurrence of two or more disruptions.  Because of this 
sparse coverage of potential disruptions even for very large sample sizes, random sampling directly from A(a, b) is 
not an effective numerical procedure for the estimation of EA[D(τ |a)]. 

As recognized by the NRC, a solution to obtaining an adequate coverage of A(a, b) in the estimation of 
EA[D(τ |a)] is to (i) divide A(a, b) into disjoint subsets (i.e., scenario classes), (ii) estimate expected doses for these 
sets individually, and then (iii) estimate EA[D(τ |a)] from the expected doses for the individual sets and the prob-
abilities for these sets (e.g., see Quote (YMRP1)).  This estimation procedure for EA[D(τ |a)] can be formally repre-
sented by 

( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( )

,
d

d

d

d d d

,

A Aa b

A
n

An n

A A An n n n

A n A nn

E D D d A

D d A

D d A

D d d A A d A

E D p

τ τ

τ

τ

τ

τ

⎡ ⎤ =⎣ ⎦

= ∪

=

⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

⎡ ⎤= ∈⎣ ⎦

∫

∫

∑ ∫

∑ ∫ ∫ ∫

∑

a a a

a a

a a

a a a a

a

A

A

A

A A A

A A

 

(5.14)
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where (i) A1, A2, …, is a sequence of sets satisfying A(a, b) = ∪n An and Ai ∩ Aj = ∅ for i ≠ j (e.g., sets of the 
form defined in Eq. (5.6)), (ii) dA(a) is the density function associated with the probability space for a and 

( ) ( )d 0A n A
n

p d A= ≠∫ aAA  (5.15) 

is the probability of the set An, and (iii) EA[D(τ |a ∈ An)] is the expected value of D(τ |a) conditional on a ∈ An. 

As an example, 

( ) ( ){ } ( )

( ){ } ( )

0

0

, ,

ˆ , , ,

A A n A n
n

A n A n
n

E D E D a b p a b

E D a b p a b

τ τ

τ

∞

=
∞

=

⎡ ⎤ = ⎡ ∈ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

≅ ⎡ ∈ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

∑

∑

a a

a

A A

A A

 

(5.16)

 

where 

( ){ },A nE D a bτ⎡ ∈ ⎤⎣ ⎦Aa  = expected dose (mrem/yr) to the RMEI at time t (yr) conditional on the  
occurrence of scenario class An(a, b) (5.17) 

and ÊA{D[τ |a ∈ An(a, b)]} is an estimate of EA{D[τ |a ∈ An(a, b)]} obtained in some appropriate manner (e.g., by 
random sampling from An(a, b)).  The expected dose EA{D[τ |a ∈ An(a, b)]} is conditional in the sense that it is 
calculated with the assumption that An(a, b) has occurred; the actual probability for An(a, b) enters into the estima-
tion of EA[D(τ |a)] through the factor pA[An(a, b)] in Eq. (5.16).  In the context of the triplet risk questions indicated 
in Questions (Q1) – (Q3) and again in Quote (YMRP1), the sets An(a, b) are the answer to the question “What can 
happen?,” the probabilities pA[An(a, b)] are the answer to the question “How likely is it to happen?”, and the ex-
pected doses EA{D[τ |a ∈ An(a, b)]} are the answer to the question “What are the consequences?”. 

Although formally correct, the approximation for EA[D(τ |a)] in Eq. (5.16) has more detail than is needed in 
practice.  In particular, when λD(b − a) is “small” and as a result the probabilities pA[An(a, b)] for n = 2, 3, …, are 
also “small”, EA[D(τ |a)] can be adequately represented by 

( ) ( ){ } ( )

( ){ } ( )

1

0
1

0

, ,

ˆ , ,

A A n A n
n

A n A n
n

E D E D a b p a b

E D a b p a b

τ τ

τ

=

=

⎡ ⎤ ≅ ⎡ ∈ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

≅ ⎡ ∈ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

∑

∑

a a

a

A A

A A

 

(5.18)

 

as the omitted terms have a negligible effect on the value of EA[D(τ |a)].  Further, when λD(b – a) is “small,” such 
omission is consistent with NRC guidance on omitting “very unlikely features, events, or processes” (e.g., see 
Quotes (NRC6), (NRC9), (NRC13)).   However, the representation for EA[D(τ |a)] in Eq. (5.16) is useful because it 
leads to an alternative representation for EA[D(τ |a)] that forms the basis for an efficient computational structure that 
can be used in PA for the YM repository. 

The indicated alternative representation for EA[D(τ |a)] is now derived.  This derivation is predicated on the as-
sumption that the dose D(τ |a) for the element a = [n, t1, p1, t2, p2, …, tn, pn] of A (a, b) can be represented in the 
following form: 
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( ) [ ]( ) [ ]( )

( ) ( )

1

1

0 1, ,

, ,

n

N D i i i
i

n

N D i i
i

D D D t

D D t

τ τ τ

τ τ

=

=

= = + =

= +

∑

∑

a a a p

p
 

(5.19) 

where 

 [ ]( )0N ND τ =a  = dose (mrem/yr) to the RMEI at time τ (yr) for nominal (i.e., undisturbed)  
conditions, (5.20) 

[ ]( )1, ,D i i iD tτ =a p  = incremental dose (mrem/yr) to the RMEI at time τ (yr) for disturbed conditions 
defined by element ai = [1, ti, pi] of A(a, b) corresponding to one event 
occurring at time ti with property vector pi, (5.21) 

and DN(τ) and DD(τ |ti, pi) are used as more compact representations for DD(τ |aN = [0]) and DD(τ |ai = [1, ti, pi]), re-
spectively.  The adjective incremental is used in the definition of DD(τ |ai = [1, ti, pi]) = DD(τ |ti, pi) to emphasize that 
the indicated dose is in addition to (i.e., incremental to) the dose DN(τ |a = [0]) = DN(τ ) from nominal conditions. 
 

The representation for D(τ |a) in Eq. (5.19) is based on the following three assumptions:  (i) the processes that 
give rise to the nominal dose DN(τ ) are always present and are unaffected by the occurrence of disruptive events; 
(ii) the disruptive dose DD(τ |ti, pi) derives from changed conditions associated with the element ai = [1, ti, pi] of 
A(a, b) and does not contain any contributions to dose that are already incorporated into DN(τ); and (iii) there are no 
synergisms between the individual disruptive occurrences associated with a.  Assumptions (i) and (ii) result in 
DN(τ) occurring once, and only once, in the representation for D(τ |a).  Assumptions (ii) and (iii) result in the sum 
of the doses from individual disruptive events that are present in the representation for D(τ |a). 

The expected value EA[DD(τ |t, p)] for DD(τ |t, p) is given by 

( ) ( ) ( )

( ) ( )

1, , d d

1 , d d ,

A D Pa

Pa

E D t D t d P t
a

D t d P t
a

τ

τ

τ τ
τ

τ
τ

⎡ ⎤⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎣ ⎦

=
−

∫ ∫

∫ ∫

p p p

p p

P

P

 

(5.22)

 

where 1/(τ – a) is the density function for t as indicated in conjunction with Eq. (4.12), P is the set of possible val-
ues for p (i.e., P is the sample space for p), and dP(p) is the density function for p defined on P.  In effect, P and 
dP(p) define a probability space (P, P, pP) for p conditional on the occurrence of the disruptive event under consid-
eration (e.g., an igneous event) and also under the assumption that the properties of (P, P, pP) are independent of 
event time.  With respect to the first equality in Eq. (5.22), the inner integral over P determines expected dose at 
time τ given that the event occurred at time t and the outer integral over [a, τ] incorporates the probability of the 
event occurring at different times; the second equality results from a simple rearrangement of the first equality.  The 
expected value EA[DD(τ |t, p)] is a conditional result; specifically, EA[DD(τ |t, p)] is the expected dose to the RMEI 
at time τ conditional on the assumption that exactly one event occurred in the time interval [a, τ] with properties 
characterized by the probability space (P, P, pP). 

A general and compact representation for EA[D(τ |a)] is now developed.  In particular, this representation for 
EA[D(τ |a)] derives from the following representation for EA{D[τ |a ∈ An(a, τ)]}: 
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(5.23)

 

where (i) the first equality follows from the assumed form for D(τ |a) in Eq. (5.19) and An(a, τ) is defined analo-
gously to An(a, b) in Eq. (5.6) for the interval [a, τ] rather than the interval [a, b], (ii) the second equality follows 
from the linearity of expected values, (iii) the third equality follows because the pairs [ti, pi] in each dose function 
DD(τ |ti, pi) have the same distribution, and (iv) the fourth and final equality follows from Eq. (5.22).  The manipu-
lations in Eq. (5.3) are beneficial in that they convert a complex sum into a relatively simple integral. 

The desired representation for EA[D(τ |a)] is now given by 
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 = ( ) ( ) ( ), d d ,N D D Pa
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τ τ λ+ ∫ ∫ p p

P
 (5.24) 

where (i) the first equality follows from the representation for EA[D(τ |a)] in Eq. (5.14), (ii) the second equality fol-
lows from the representations for EA{D[τ |a ∈ An(a, τ)]} and pA[An(a, τ)] in Eqs. (5.23) and (5.7), respectively, 
(iii) the third equality results from the identity 

( ){ } ( )
0

1 ! exp
n

D D
n

a n aλ τ λ τ
∞

=
⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦∑  (5.25) 

and an algebraic reformulation of the second equality, and (iv) the fourth and final equality again results from the 
identity in Eq. (5.25). 

The steps leading to the representation for EA[D(τ |a)] in Eq. (5.24) are summarized in Table 1, with (i) the first 
column showing the number n of occurrences that defines scenario class An(a, τ), (ii) the second column summariz-
ing the scenario class probabilities pA[An(a, τ)], (iii) the third column presenting the form of the dose function 
D(τ |a) for individual elements of An(a, τ), (iv) the fourth column showing the expected conditional doses 
EA{D[τ |a ∈ An(a, τ)]}, and (v) the fifth and final column showing the product of EA{D[τ |a ∈ An(a, τ)]} and 
pA[An(a, τ)], which is the unconditional expected dose associated with scenario class An(a, τ) at time τ.  In turn, the 
expected dose EA[D(τ |a)] is given by the sum of the unconditional expected doses in the final column of the table. 
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Table 1.  Illustration of Steps Leading to Integral Representation for EA[D(τ |a)] in Eq. (5.24) 

na pA[An(a, τ)]b D(τ |a)c EA{D[τ |a ∈ An(a, τ)]}d EA{D[τ |a ∈ An(a, τ)]}  pA[An(a, τ)]e 
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__________________________  
a Number n of occurrences that defines scenario class An(a, τ); see Eq. (5.6). 
b Probability pA[An(a, τ)] of scenario class An(a, τ); see Eq. (5.7). 
c Form of dose function D(τ |a) for individual elements of scenario class An(a, τ); see Eq. (5.19). 
d Conditional expected dose EA{D[τ |a ∈ An(a, τ)]} for scenario class An(a, τ); see Eq. (5.23). 
e Unconditional expected dose EA{D[τ |a ∈ An(a, τ)]}  pA[An(a, τ)] for scenario class An(a, τ). 
f Expected dose EA[D(τ |a)]; see Eq. (5.24). 
 



 

 42

As indicated in Eq. (5.18), the representation for EA[D(τ |a)] can be simplified by only considering the scenario 
classes A0(a, b) and A1(a, b).  However, as can be seen from the derivation leading to Eq. (5.24), representations of 
this type are not always advantageous.  In particular, retention of the scenario classes An(a, b), n = 2, 3, …, provides 
the basis for a clear mathematical path to the integral representation for EA[D(τ |a)] in Eq. (5.24) that can be used as 
the basis for the calculation of approximations ÊA[D(τ |a)] to EA[D(τ |a)] in PAs for the YM repository.  Thus, even 
though the scenario classes An(a, b), n = 2, 3, …, may not contribute significantly to EA[D(τ |a)], their retention 
helps in developing an unambiguous representation for the structure of a PA for the YM repository.  Further, use of 
the representation for EA[D(τ |a)] in Eq. (5.24) makes it possible to state correctly that multiple disruptive events are 
included in the analysis. 

Given the just completed derivation for EA[D(τ |a)] in Eq. (5.24), this is a convenient point to consider the rep-
resentation of different types of disruptions in PAs for the YM repository.  As previously indicated in Sect. 3, PAs 
for the YM repository need to consider two types of disruptions:  (i) igneous occurrences that follow a Poisson 
process with a rate constant λI, and (ii) seismic occurrences that follow a Poisson process with a rate constant λS.  
Further, the properties of an igneous occurrence are characterized by a vector pI from a set I with a density function 
dI(pI), and similarly, the properties of a seismic occurrence are characterized by a vector pS from a set S with a den-
sity function dS(pS). 

With both igneous and seismic occurrences under consideration, possible futures that could occur over the time 
interval [a, b] can be represented by vectors of the form 

[ ]1 1 1 1, , , , , , , , , , ,I I Im Im S S Sn Snm n t t t t= … …a p p p p  (5.26) 

where (i) m and n are numbers of igneous and seismic occurrences, respectively, (ii) a ≤ tI1 ≤ … tIm ≤ b and pI1, …, 
pIm are the times and property vectors for the individual igneous occurrences, and (iii) a ≤ tS1 ≤ … tSn ≤ b and pS1, 
…, pSn are the times and property vectors for the individual seismic occurrences.  Then, 

( ) [ ]{ }, : , ,  is a vector of the form in Eq. (5.26) for 0, 1, 2, , 0, 1, 2,a b m n m n= = = =… … …a aA  (5.27) 

represents the set of all sequences of occurrences (i.e., futures) over the time interval [a, b], with 

( ) [ ], 0, 0N N a b= =a a  (5.28) 

understood to represent the future with no disruptive occurrences over the time interval [a, b] (i.e., the nominal fu-
ture).  Further, individual scenario classes can be defined by 

( ) [ ]{ }, : , ,  is a vector of the form in Eq. (5.26)mn a b m n= = …a aA  (5.29) 

for m = 0, 1, 2, … and n = 0, 1, 2, …. 

Similarly to the assumptions that underlie the derivation leading to the representation for EA[D(τ |a)] in Eq. (5.24), 
it is assumed that D(τ |a) can be represented in the following form for elements a of the set A(a, b) in Eq. (5.27): 

( )D τ a = [ ]( ) [ ]( ) [ ]( )
1 1

0, 0 1, 0, , 0, 1, ,
m n

N I i Ii Ii S i Si Si
i i

D D t D tτ τ τ
= =

= + = + =∑ ∑a a p a p  

 = ( ) ( ) ( )
1 1

, , ,
m n

N I Ii Ii S Si Si
i i

D D t D tτ τ τ
= =

+ +∑ ∑p p  (5.30) 

where 
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 [ ]( )0, 0N ND τ =a  = dose (mrem/yr) to the RMEI at time τ (yr) for nominal (i.e., undisturbed) 
    conditions, (5.31) 

[ ]( )1, 0, ,I i Ii IiD t pτ =a  = incremental dose (mrem/yr) to the RMEI at time τ (yr) for disturbed (i.e., igneous) 
    conditions defined by element [ ] ( )1, 0, ,  of ,i Ii Iit a b=a p A , (5.32) 

[ ]( )0, 1, ,S i Si SiD tτ =a p = incremental dose (mrem/yr) to the RMEI at time τ (yr) for disturbed (i.e., seismic) 
    conditions defined by element [ ] ( )0, 1, ,  of ,i Si Sit a b=a p A , (5.33) 

and DN(τ), DI(τ |tIi, pIi) and DS(τ |tSi, pSi) are used as compact representations for DN(τ |aN = [0, 0]), DI(τ |ai = [1, 0, 
tIi, pIi]) and DS(τ |ai = [1, 0, tSi, pSi]), respectively. 

Given the representation for D(τ |a) in Eq. (5.30), EA[D(τ |a)] can be determined for elements of the set A(a, b) 
defined in Eq. (5.27) in the same manner as EA[D(τ |a)] was determined in Eq. (5.24) for elements of the set A(a, b) 
defined in Eq. (5.2).  Specifically, 

( ) ( )({ } ( )
0 0

, ,A A mn A mn
m n

E D E D a p aτ τ τ τ
∞ ∞

= =

⎡ ⎤ = ∈ ⎤ ⎡ ⎤⎣ ⎦⎦⎣ ⎦ ∑ ∑a a A A  
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− −⎩ ⎭
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I S
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 ( ) ( ) ( ) ( ) ( ), d d , d d .N I I I I I S S S S Sa a
D D t d I t D t d S t

τ τ
τ τ λ τ λ= + +∫ ∫ ∫ ∫p p p p

I S
 (5.34) 

The preceding decomposition of expected dose EA[D(τ |a)] into dose from nominal conditions and incremental 
doses from igneous and seismic occurrences and the conversion of infinite sums into integrals provides an overarch-
ing computational structure on which a PA for the YM repository can be based.  In particular, it is possible to esti-
mate the three dose components in Eq. (5.34) separately and then add these estimates to obtain an estimate for 
EA[D(τ |a)]. 
 

Probability is neither lost nor gained in the derivation leading to the representation for EA[D(τ |a)] in Eq. (5.34).  
As a result, this representation for EA[D(τ |a)] is consistent with the guidance in Quote (YMRP3) that “The prob-
abilities of occurrence of all scenario classes, included in calculating the annual dose curve, sum to one.”  However, 
the assumption is made that there are no synergisms between the effects associated with multiple disruptive occur-
rences.  As long as the occurrence rates λI and λS are small relative to the time interval under consideration, the like-
lihood of multiple occurrences is also small and the indicated assumption of no synergisms is of little consequence. 
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6.  Expected Dose with Epistemic Uncertainty 

Many quantities used in PA for the YM repository are uncertain in an epistemic sense.  Some of these uncertain 
quantities are involved in the calculation of the doses DN(τ), DI(τ |t, pI) and DS(τ |t, pS) appearing in Eq. (5.34); 
others of these quantities relate to uncertainty in the PA inputs used to characterize aleatory uncertainty such as λI, 
λS, dI(pI) and dS(pS).  The importance of an appropriate treatment of epistemic uncertainty is emphasized by the 
NRC in a number of statements (e.g., see Quotes (NRC3), (NRC10) – (NRC15), (YMRP10)).  Further, an appropri-
ate treatment of epistemic uncertainty is basic to answering Question (Q4). 

For notational convenience, uncertain quantities involved in the characterization of aleatory uncertainty will be 
represented by a vector 

1 2 ,, , , ,A A A A nAe e e⎡ ⎤= ⎣ ⎦…e  (6.1) 

and uncertain quantities involved in the evaluation of DN(τ), DI(τ |t, pI) and DS(τ |t, pS) will be represented by a 
vector 

1 2 ,, , , .D D D D nDe e e⎡ ⎤= ⎣ ⎦…e  (6.2) 

Then, the vector 

[ ] [ ]1 2, , , ,A D nEe e e= = …e e e  (6.3) 

contains the nE = nA + nD epistemically uncertain variables considered in a PA for the YM repository . 

Different values for the elements of the vector e = [eA, eD] defined in conjunction with Eqs. (6.1) – (6.3) lead 
to different values for the expected dose EA[D(τ |a)].  Thus, EA[D(τ |a)] is actually a function of e; or put another 
way, the value for EA[D(τ |a)] is conditional on e.  When this conditionality is explicitly recognized, the representa-
tion for EA[D(τ |a)] in Eq. (5.24) becomes 

( ) ( ) ( ) ( ), , , d d ,A D A N D D D D P Aa
E D D D t d P t

τ
τ τ τ λ⎡ ⎤ = +⎣ ⎦ ∫ ∫a e e e p e p e

P
 (6.4) 

and the more general representation for EA[D(τ |a)] in Eq. (5.34) becomes 

( ) ( ) ( ) ( )

( ) ( )

, , , d d

    , , d d ,

A D A N D I I D I I I Aa

S S D S S S Aa

E D D D t d I t

D t d S t

τ

τ

τ τ τ λ

τ λ

⎡ ⎤ = +⎣ ⎦

+

∫ ∫

∫ ∫

a e e e p e p e

p e p e
S

I  
(6.5)

 

with the notation indicating that the dose functions DN(τ |eD), DD(τ |t, p, eD), DI(τ |t, pI, eD) and DS(τ |t, pS, eD) 
have values that depend on eD and that the density functions dD(p|eA), dI(pI |eA) and dS(pS |eA) have values that 
depend on eA.  Further, it is tacitly assumed that the values for λD, λI and λS could be elements of eA. 

When needed, the notations 

( ) ( ) ( ), , , d d ,A D D A D D D P Aa
E D D t d P t

τ
τ τ λ⎡ ⎤ =⎣ ⎦ ∫ ∫a e e p e p e

P
 (6.6) 

( ) ( ) ( ), , , d d ,A I D A I I D I I I Aa
E D D t d I t

τ
τ τ λ⎡ ⎤ =⎣ ⎦ ∫ ∫a e e p e p e

I
 (6.7) 

and 
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( ) ( ) ( ), , , d dA S D A S S D S S S Aa
E D D t d S t

τ
τ τ λ⎡ ⎤ =⎣ ⎦ ∫ ∫a e e p e p e

S
 (6.8) 

are used to represent incremental expected dose from individual disruptive scenario classes conditional on a specific 
vector e = [eA, eD] of values for epistemically uncertain analysis inputs. 

The NRC indicates that PAs for the YM repository should use probability to provide a mathematical characteri-
zation of the epistemic uncertainty associated with the elements of e = [eA, eD] (e.g., see Quotes (NRC3), (NRC10), 
(NRC11)).  In particular, the epistemic uncertainty associated with each element ei, i = 1, 2, …, nA + nD, of e is 
characterized by a probability distribution Di.  Thus, the epistemic uncertainty associated with a PA for the YM fa-
cility is characterized by a sequence 

Di, i = 1, 2, …, nA + nD = nE, (6.9) 

of probability distributions.  For notational convenience, the preceding distributions can be represented by a corre-
sponding density function 

( ) ( ) ( ) ,E A A D Dd d d=e e e  (6.10) 

where dA(eA) and dD(eD) are density functions associated with eA and eD, respectively.  Further, the set of all pos-
sible values for e consistent with the distributions in Eq. (6.9) can be represented by  

E = EA × ED, (6.11) 

where EA and ED are the sets of all possible values for eA and eD, respectively.  Thus, E is the sample space for epis-
temic uncertainty containing the possible values for e, and EA and ED are the corresponding sample spaces for eA and 
eD.  In effect, a probability space (E, E, pE) for epistemic uncertainty is being defined as indicated in Sect. 3. 

The presence and associated probabilistic characterization of epistemic uncertainty means that expected dose to 
the RMEI derives from both aleatory and epistemic uncertainty.  When the epistemic uncertainty associated with the 
expected dose EA[D(τ |a, eD)|eA] is taken into account, a new expected dose EE{EA[D(τ |a, eD)|eA]} is obtained 
that incorporates the effects of both aleatory and epistemic uncertainty.  Specifically, 

( ){ } ( ) ( ), , d .E A D A A D A EE E D E D d Eτ τ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫a e e a e e e
E

 (6.12) 

In turn, 

( ){ } ( ) ( ) ( ){ } ( ), , , d d dE A D A N D D D D P A Ea
E E D D D t d P t d E

τ
τ τ τ λ⎡ ⎤ = +⎣ ⎦ ∫ ∫ ∫a e e e p e p e e

E P
 

 ( ) ( ) ( ) ( ) ( )d , , d d dN D D D D D D P A Ea
D d ED D t d d P t E

τ
τ τ λ= +∫ ∫ ∫ ∫e e p e p e e

ED E P
 (6.13) 

for the representation for EA[D(τ |a, eD)|eA] in Eq. (6.4), and 

( ){ } ( ) ( ) ( ){, , , d dE A D A N D I I D I I I Aa I
E E D D D t d P t

τ
τ τ τ λ⎡ ⎤ = +⎣ ⎦ ∫ ∫ ∫E

a e e e p e p e  
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τ
τ λ+∫ ∫ p e p e e
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 ( ) ( ) ( ) ( ) ( )d , , d d dN D D D I I D I I I A Ea I
D d ED D t d d I t E
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τ τ λ= +∫ ∫ ∫ ∫e e p e p e e
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 ( ) ( ) ( ), , d d dS S D S S S A Ea
D t d d S t E
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τ λ+∫ ∫ ∫ p e p e e

E S
 (6.14) 
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for the representation for EA[D(τ |a, eD)|eA] in Eq. (6.5). 

When needed, the notation 

( ) ( ) ( ) dE N D N D D DE D D d EDτ τ⎡ ⎤ =⎣ ⎦ ∫e e e
ED

 (6.15) 

is used to represent expected dose for the nominal scenario class deriving from epistemic uncertainty.  Further, 

( ){ } ( ) ( )

( ) ( ) ( )

, d

, , d d d

E A D D A A D E

D D D P A Ea

E E D E D d E

D t d p d P t E
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τ λ

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

=

∫
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a e e a e e

p e e e

E

E P

 
(6.16)

 

and the similarly defined notations EE{EA[DI(τ |a, eD)|eA]} and EE{EA[DS(τ |a, eD)|eA]} are used to represent in-
cremental expected doses from individual disruptive scenario classes that incorporate both aleatory and epistemic 
uncertainty. 
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7.  Calculation of Expected Dose and Display of Epistemic Uncertainty for 
DN(τ |eD) 

In concept, the expected value EE[DN(τ |eD)] for DN(τ |eD) defined in Eq. (6.15) could be estimated by some type 
of traditional quadrature-based numerical procedure.  As a simple example, EE[DN(τ |eD)] could be estimated by 

( ) ( ) ( ) ( )
1

ˆ
nV

E N D N Di D Di i
i

E D D d Vτ τ
=

⎡ ⎤ =⎣ ⎦ ∑e e e ED  (7.1) 

where (i) EDi, i = 1, 2, …, nV, is a sequence of rectangular volumes that potentially intersect only along their 
boundaries and satisfy the equality 1 ,nV

ii==∪ED ED  (ii) eDi is a point from EDi, and (iii) V(EDi) is the volume of 
EDi. Then, if DN(τ |eD) and dD(eD) are reasonably well-behaved, the summation in Eq. (7.1) converges to 
EE[DN(τ |eD)] as V(EDi) goes to zero.  Approximations that are more complex and more rapidly convergent are 
also possible.118  Unfortunately, a closed form evaluation for EE[DN(τ |eD)] (i.e., by taking antiderivatives and use 
of the fundamental theorem of calculus) is unlikely to be possible in any real analysis. 

The cumulative distribution function (CDF) that characterizes the epistemic uncertainty in the possible values 
for DN(τ |eD) is defined by 

( )E N Dp D Dτ⎡ ⎤≤⎣ ⎦e  = epistemic probability of a dose DN(τ |eD) less than D at time τ 

 = ( ) ( )d ,D N D D DD d EDδ τ⎡ ⎤⎣ ⎦∫ e e
ED

 (7.2) 

where 

( ) ( )
( )

1 if 

0 if 
N D

D N D
N D

D D
D

D D

τ
δ τ

τ

⎧ ≤⎪⎡ ⎤ = ⎨⎣ ⎦ >⎪⎩

e
e

e
 

(7.3)
 

as previously indicated in conjunction with Eq. (3.4).  Similarly to the expected value EE[DN(τ |eD)], the probability 
pE[DN(τ |eD) ≤ D] can be approximated by 

( ) ( ) ( ) ( )
1

ˆ ,
nS

E N D D N Di D Di i
i

p D D D d Vτ δ τ
=

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦∑e e e ED  (7.4) 

where the individual terms are defined the same as in Eq. (7.1). 

In practice, the complexity of DN(τ |eD) and the high dimensionality of eD make quadrature-based approaches 
unlikely candidates for the evaluation of the integrals that define EE[DN(τ |eD)] and pE[DN(τ |eD) ≤ D].  Rather, the 
usual approach is to use a sampling-based procedure.  In particular, a random sample or a Latin hypercube sample 
(LHS)119, 120 

eDi, i = 1, 2, …, nS,  (7.5) 

is generated from ED in consistency with the distributions associated with the density functions for the individual 
elements of eD.  Then, EE[DN(τ |eD)] and pE[DN(τ |eD) ≤ D] are approximated by 

( ) ( )
1

ˆ
nS

E N D N Di
i

E D D nSτ τ
=

⎡ ⎤ =⎣ ⎦ ∑e e  (7.6) 

and 
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( ) ( )
1

ˆ ,
nS

E N D D N Di
i

p D D D nSτ δ τ
=

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦∑e e  (7.7) 

respectively.  In most real analyses, this approach is simpler and computationally more efficient than a quadrature-
based approach to the evaluation of the integrals that define EE[DN(τ |eD)] and pE[DN(τ |eD) ≤ D].  Further, it also 
provides a mapping 

( ), , 1, 2, , ,Di N DiD i nSτ⎡ ⎤ =⎣ ⎦ …e e  (7.8) 

between analysis inputs and analysis results that constitutes the starting point for a variety of sampling-based sensi-
tivity analysis procedures.121-129 

The use of sampling-based procedures for the propagation of uncertainty is indicated several times by the NRC 
(e.g., see Quotes (YMRP4), (YMRP11)).  The development of sampling-based procedures for the propagation of 
epistemic uncertainty in the PAs for radioactive waste disposal can be traced back to work performed in support of 
the NRC’s original program to develop a risk assessment methodology for radioactive waste disposal.130-140  The 
impetus for this work was criticisms by a review committee141 that the Reactor Safety Study56 carried out by the 
NRC had inadequately represented the epistemic uncertainty associated with its results.  This work was then contin-
ued in the NRC’s MELCOR program to develop software for use in analyses of potential accidents at nuclear power 
plants.142-149  Subsequently, the NRC used sampling-based procedures for the propagation of epistemic uncertainty 
in its reassessment of results obtained in the Reactor Safety Study (i.e., in the NUREG-1150 reactor probabilistic 
risk assessments)59, 60, 150-154 and also in its following Risk Methods Integration and Evaluation Program 
(RMIEP).155  In addition, the NRC has used sampling-based uncertainty and sensitivity analysis procedures in a 
sequence of studies involving reactor accident consequence models.156-159  Similar uncertainty propagation proce-
dures were also used in the DOE’s successful compliance certification application to the EPA for the Waste Isola-
tion Pilot Plant.61, 62  

 
A simple example is now presented using the following definition for DN(τ |eD), which is introduced solely for 

illustrative purposes: 

( ) ( ) ( ){ } ( ) 5
1 1 2 3 41 exp exp 1 exp ,

1
D

N D D D D D D
e

D e e e e eτ δ τ τ τ
τ

⎧ − ⎫⎡ ⎤= − − − −⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎢ ⎥+⎣ ⎦⎩ ⎭
e  (7.9) 

where 

( ) 1
1

1

0 if 0
1 if 0

D
D

D

e
e

e
τ

δ τ
τ
− ≤⎧

− = ⎨ − >⎩
 

and 

[ ]1 2 3 4 5, , , ,D D D D D De e e e e=e  

is a vector of epistemically uncertain analysis inputs with the distributions specified in Table 2. 
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Table 2. Distributions Characterizing Epistemic Uncertainty in the Variables eD1, eD2, …, eD5 Used in 
the Definition of DN(τ |eD) in Eq. (7.9) 

Variable Distribution Density Function 

eD1 Uniform on [100, 1000 yr] ( ) ( )1 1 1 1000 100D Dd e = −  

eD2 Loguniform on [10−4, 10−2 yr−1] ( ) ( )2 4
2 2 21 ln 10 10D D Dd e e − −⎡ ⎤= ⎢ ⎥⎣ ⎦

 

eD3 Uniform on [0.1, 1 mrem/yr] ( ) ( )3 3 1 1 0.1D Dd e = −  

eD4 Loguniform on [10−6, 10−4 yr−1] ( ) ( )4 6
4 4 41 ln 10 10D D Dd e e − −⎡ ⎤= ⎢ ⎥⎣ ⎦

 

eD5 Uniform on [103, 104 yr] ( ) ( )4 3
5 5 1 10 10D Dd e = −  

 

The expected value EE[DN(τ |eD)] for the function DN(τ |eD) defined in Eq. (7.9) is formally given by 
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An analogous representation holds for pE[DN(τ |eD) ≤ D] with DN(τ |eD) replaced by δD[DN(τ |eD)].  Although it 
would be messy, the representation for EE[DN(τ |eD)] in Eq. (7.10) is amenable to both a closed form representation 
and a quadrature-based approximation.  A closed form representation for pE[DN(τ |eD) ≤ D] is difficult to obtain 
because of the indicator function Dδ  but a quadrature-based approximation is possible.  As DN(τ |eD) increases in 
complexity (e.g., involves the solution of multiple systems of partial differential equations) and eD increases in di-
mensionality (e.g., involves from 10’s to 100’s of elements), representations of the form appearing in Eq. (7.10) 
become too complex to deal with directly. 

As previously indicated, increasing complexity in DN(τ |eD) and dimensionality in eD results in a need to use 
sampling-based procedures to estimate EE[DN(τ |eD)] and pE[DN(τ |eD) ≤ D] as indicated in conjunction with Eqs. 
(7.5) – (7.7).  The results of this approach for the function DN(τ |eD) in Eq. (7.9) are illustrated for a LHS 

[ ]1 2 5, , , , 1, 2, , 200,Di D i D i D ie e e i nS= = =… …e  (7.11) 

generated in consistency with the distributions defined in Table 2.  The resultant 200 dose curves DN(τ |eDi) for 0 ≤ 
τ ≤ 20,000 yr appear in Fig. 1a, and the corresponding estimates for the expected dose curve EE[DN(τ |eD)] and as-
sociated quantile curves (i.e., 0.05, 0.5 ~ median, 0.95) appear in Fig. 1b.  The expected dose curve in Fig. 1b is a 
plot of the points 

( ) ( )
1

ˆ, ,
nS

E N D N Di
i

E D D nSτ τ τ τ
=

⎡ ⎤
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

∑e e  (7.12) 

for 0 ≤ τ ≤ 20,000 yr, with the summation corresponding to the approximation in Eq. (7.6).   
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Fig. 1. Results for hypothetical dose function DN(τ |eD) defined in Eq. (7.9) obtained with a LHS of size nS = 200: 
(a, c) Individual dose curves [τ, DN(τ |eDi)], i = 1, 2, …, nS = 200, and (b, d) Estimated expected and quan-
tile curves. 

The quantile curves in Fig. 1b derive from the quantiles of distributions of the form illustrated in Fig. 2 for τ = 
5,000 yr.  Specifically, the estimated CDF in Fig. 2 is a plot of the points 

( ) ( )
1

ˆ, 5000 , 5000 ,
nS

E N D D N Di
i

D p D D D D nSδ
=

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤≤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

∑e e  (7.13) 

with the summation corresponding to the approximation in Eq. (7.7).  An analogous definition holds for the CCDF (see 
Eq. (3.5)).  Quantile curves of the form illustrated in Fig. 1b are local in the sense that they are expressing the uncer-
tainty in dose at a specific point in time as characterized by estimated distributions of the form shown in Fig. 2. 

For perspective, the results in Fig. 1 are presented for both raw (i.e., untransformed) dose (Figs. 1a, 1b) and 
log-transformed dose (Figs. 1c, 1d).  Even though the same results are being presented, plots with raw and log-
transformed data can look quite different and sometimes lead to different impressions about the nature of the data.  
Thus, care must be used in interpreting data to avoid misimpressions that can arise from transformations used to 
facilitate plotting.  The use of the log-transformation is common, and often essential, when the data to be plotted 
extend over many orders of magnitude. 
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Fig. 2. Estimated CDF and CCDF for hypothetical dose function DN(τ |eD) defined in Eq. (7.9) at τ = 5000 yr 

obtained with a LHS of size nS = 200. 

The dose curves in Figs. 1a and 1c and associated quantile curves in Figs. 1b and 1d are displaying the epis-
temic uncertainty in DN(τ |eD) that derives from uncertainty in eD as characterized by the distributions specified in 
Table 2.  There is no epistemic uncertainty associated with the unique value for EE[DN(τ |eD)] as this quantity is 
completely determined once DN(τ |eD) and the distributions associated with the elements of eD are specified.  How-
ever, the unique value for EE[DN(τ |eD)] is unlikely to be ascertainable in any real analysis because of the numerical 
approximations used in its estimation.  If the numerical error in the calculation of DN(τ |eD) is assumed to be negli-
gible (e.g., the error in the numerical solution of a partial differential equation that constitutes part of DN(τ |eD); see 
Refs. [160-162] for discussions of this form of error) and EE[DN(τ |eD)] is estimated with the sampling-based ap-
proach indicated in conjunction with Eq. (7.6), then the error in the estimation of EE[DN(τ |eD)] results from the 
variability in outcomes inherent in the use of samples from a population to estimate the expected value of that popu-
lation.  In this case, the population is the set of all possible values for DN(τ |eD) that derive from the possible values 
for eD, and the expected value is EE[DN(τ |eD)]. 

If random sampling is used in the estimation of EE[DN(τ |eD)], then the normal distribution can be used to esti-
mate a confidence interval for the estimate ÊE[DN(τ |eD)].  Specifically, the 1 – α confidence interval for 
ÊE[DN(τ |eD)] is given by 

( ) ( )( )
( ) ( )( ) ( ) ( )( )
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e e e e (7.14)
 

where (i) ÊE[DN(τ |eD)] is the estimated value for EE[DN(τ |eD)] obtained with a random sample from the epistemi-
cally uncertain values for eD as indicated in conjunction with Eqs. (7.5) and (7.6), (ii) SE(ÊE[DN(τ |eD)]) is the 
standard error associated the estimation of EE[DN(τ |eD)] given by 

( )( ) ( ) ( ){ } ( )
1/ 2

2

1

ˆ ˆ 1 ,
nS

E N D N Di E N D
i

SE E D D E D nS nSτ τ τ
=

⎛ ⎞
⎡ ⎤ ⎡ ⎤= − −⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑e e e  (7.15) 

(iii) z1−α/2 is the 1 − α/2 quantile of the standard normal distribution, and (iv) the inequality nS ≥ 30 holds so that, as 
a result of the Central Limit Theorem, ÊE[DN(τ |eD)] will approximately follow a normal distribution under re-
peated estimations with different random samples of size nS (see Ref. [163], Sect. 7.3).  For example, if α = 0.05, 
then the relationship in Eq. (7.14) defines a 0.95 (or 95%) confidence interval for ÊE[DN(τ |eD)], which means that 
the construction process that lead to the interval in Eq. (7.14) will produce an interval containing the true value for 
EE[DN(τ |eD)] in 95 out of every 100 repetitions if the process is repeated a large number of times.  However, it is 
important to recognize that the confidence interval given by Eq. (7.14) is local in the sense that it applies for a spe-
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cific value of τ ; in particular, joining the confidence intervals for individual values of τ does not produce a confi-
dence interval for the curve defined in Eq. (7.12). 

Because of its efficient stratification properties, it is common in analyses of complex systems to use Latin hy-
percube sampling rather than random sampling in the generation of the sample in Eq. (7.5).  In this situation, a con-
fidence interval for ÊE[DN(τ |eD)] cannot be estimated as in Eq. (7.14) because the underlying assumption that a 
random sample is under consideration is not satisfied.  However, a confidence interval for ÊE[DN(τ |eD)] when 
Latin hypercube sampling is used can be estimated with a replicated sampling procedure proposed by R.L. Iman 
(Ref. [164]; Sect. 7, Ref. [165]).   

In this approach, the analysis is replicated nR times with nR independently generated LHSs of size nS as indi-
cated in Eq. (7.5).  This produces nR estimates for ˆ

EE [DN(τ |eD)] of the form 

( ) ( )
1

ˆ
nS

Er N D N Dri
i

E D D nSτ τ
=

⎡ ⎤ =⎣ ⎦ ∑e e  (7.16) 

where eDri, i = 1, 2, …, nS, is the LHS generated for replicate r.  Then, 

( ) ( )
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ˆ ˆ
nS

E N D Er N D
r

E D E D nRτ τ
=

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∑e e  (7.17) 

and 
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟
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∑e e e  (7.18) 

provide an additional estimate for EE[DN(τ |eD)] and an estimate of the standard error associated with this estimate 
of EE[DN(τ |eD)].  The t-distribution with nR − 1 degrees of freedom can now be used to obtain a confidence inter-
val for the estimate ÊE[DN(τ |eD)] for EE[DN(τ |eD)] in Eq. (7.17).  Specifically, the 1 − α confidence interval for 
ÊE[DN(τ |eD)] obtained with replicated Latin hypercube sampling is given by 
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(7.19)
 

where (i) ÊE[DN(τ |eD)] and SE(ÊE[DN(τ |eD)]) are defined in Eqs. (7.17) and (7.18) and (ii) t1−α/2 is the 1 − α/2 
quantile of the t-distribution with nR − 1 degrees of freedom (e.g., t1−α/2 = 2.776 for α = 0.05 and nR = 5).  As indi-
cated for the confidence interval in Eq. (7.14) obtained with random sampling, the confidence interval in Eq. (7.19) 
obtained with Latin hypercube sampling also applies locally rather than globally. 

The use of replicated Latin hypercube sampling in the assessment of numerical stability is illustrated with the 
function DN(τ |eD) defined in Eq. (7.9).  Specifically, nR = 5 replicated LHSs of size nS = 100 are generated from 
the possible values for eD in consistency with the distributions defined in Table 2.  The resultant five sets of mean 
and quantile curves are presented in Fig. 3a.  Further, the five estimated distributions for pE[DN(5000|eD) < D] de-
fined in Eq. (7.7) are presented in Fig. 3c, and the confidence intervals for DN(τ) defined as indicated in Eq. (7.19) 
are presented in Fig. 3e.   



 

 55

Time (yr)
0 5000 10000 15000 20000

H
yp

ot
he

tic
al

 D
os

e 
to

 R
M

EI
 (m

re
m

/y
r)

0.0

0.2

0.4

0.6

0.8

1.0 95th Quantile
Expected (Mean)
Median
5th Quantile

100 LHS

        Time (yr)

0 5000 10000 15000 20000

H
yp

ot
he

tic
al

 D
os

e 
to

 R
M

EI
 (m

re
m

/y
r)

0.0

0.2

0.4

0.6

0.8

1.0
95th Quantile
Expected (Mean)
Median
5th Quantile

100 Random

 
 (a) (b) 

D: Hypothetical Dose to RMEI (mrem/yr)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Pr
ob

ab
ilit

y 
H

yp
ot

he
tic

al
 D

os
e 

<=
 D

0.0

0.2

0.4

0.6

0.8

1.0 100 LHS
5000 yr

        D:  Hypothetical Dose to RMEI (mrem/yr)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Pr
ob

ab
ilit

y 
H

yp
ot

he
tic

al
 D

os
e 

<=
 D

0.0

0.2

0.4

0.6

0.8

1.0 100 Random
5000 yr

 
 (c) (d) 

Time (yr)
0 5000 10000 15000 20000

H
yp

ot
he

tic
al

 D
os

e 
to

 R
M

EI
 (m

re
m

/y
r)

0.0

0.1

0.2

0.3

0.4

0.5

Upper End 95% CI
Expected (Mean)
Lower End 95% CI

100 LHS

        Time (yr)
0 5000 10000 15000 20000

H
yp

ot
he

tic
al

 D
os

e 
to

 R
M

EI
 (m

re
m

/y
r)

0.0

0.1

0.2

0.3

0.4

0.5

Upper End 95% CI
Expected (Mean)
Lower End 95% CI

100 Random

 
 (e) (f) 

Fig. 3. Results for hypothetical dose function DN(τ |eD) defined in Eq. (7.9) obtained with nR = 5 replicated sam-
ples of size nS = 100 with Latin hypercube sampling (a, c, e) and random sampling (b, d, f):  (a, b) Esti-
mated expected and quantile curves for individual replicates, (c, d) Estimated CDFs for dose at 5000 yr for 
individual replicates, and (e, f) 95% confidence intervals (CIs) for estimated expected values. 
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For comparison, the analysis was also performed with nR = 5 replicated random samples of size nS = 100 (Figs. 
3b, 3d, 3f).  As comparison of the results obtained with Latin hypercube sampling (Figs. 3a, 3c, 3e) and random 
sampling (Figs. 3b, 3d, 3f) shows, the use of Latin hypercube sampling is producing more stable results than the use 
of random sampling.  Because of this stability, Latin hypercube sampling is usually preferred over random sampling 
when performing uncertainty and sensitivity analyses of computationally demanding models. 

One of the acceptance criteria specified by the NRC is “A sufficient number of realizations has been obtained … to 
ensure that the results of the calculation are numerically stable” (see Quote (YMRP4)).  An additional acceptance crite-
rion is “the annual dose curve includes confidence intervals (e.g., 95th and 5th percentile) to represent the uncertainty in 
the dose calculations” (see Quote (YMRP5)).  Presumably, these criteria apply to dose curves that involve both nominal 
and disturbed conditions (e.g., see Quotes (YMRP2) and (YMRP3)).  However, it is interesting at this point to examine 
possible implications of these criteria with respect to the nominal dose results DN(τ |eD) and EE[DN(τ |eD)].  The crite-
rion in Quote (YMRP4) relates to numerical stability.  It is this type of stability that is being assessed by the confidence 
intervals defined in Eqs. (7.14) and (7.19) and illustrated in Figs. 3e and 3f.  Specifically, the indicated confidence in-
tervals are providing a representation of the numerical error in a sampling-based estimate for EE[DN(τ |eD)].  In con-
trast, the criterion in Quote (YMRP5) seems to relate to uncertainty in the epistemic sense, which is the type of uncer-
tainty that is being characterized by the quantile curves in Figs. 1b and 1d.  Specifically, the confidence intervals (i.e., 
quantile curves) in Figs. 1b and 1d characterize the uncertainty in the possible values for DN(τ |eD) that derives from 
epistemic uncertainty with respect to the appropriate value to use for eD. 

 
An alternative interpretation is that both criteria relate to the assessment of sampling error as quantified by con-

fidence intervals of the form shown in Eqs. (7.14) and (7.19).  However, under this interpretation, the effects of 
epistemic uncertainty are removed from consideration.  With regard to the preceding, the reader is emphatically 
reminded that uncertainty in the sense of numerical error and uncertainty in the sense of lack of knowledge about 
values for analysis inputs are entirely different aspects of an analysis.  In a large analysis for a complex system, the 
uncertainty in the final results is more likely to be dominated by epistemic uncertainty than by numerical error.  In-
deed, if this is not the case, then the numerical implementation of the analysis is not appropriately converged. 

The discussions of the implications of epistemic uncertainty here and elsewhere in this presentation are predi-
cated on the assumption that the analysis under consideration has undergone appropriate verification and validation, 
with the result that the analysis is error free.  In the preceding, verification designates obtaining assurance that an 
analysis and its associated models are correctly implemented, and validation designates obtaining assurance that the 
models used in an analysis appropriately represent the physical processes under consideration.  The selection and 
implementation of appropriate verification and validation procedures is an important and challenging part of any 
large analysis,160-162, 166-172 but is outside the primary focus of this presentation.  However, certain connections 
with verification and validation are present.  Specifically, the stability results presented in connection with Eqs. 
(7.14) and (7.19) constitute a special type of numerical verification; sensitivity analyses of mappings between 
analysis inputs and analysis results of the form shown in Eq. (7.8) provide another form of analysis verification; and 
model validation studies can be expected to influence the uncertainty distributions assigned to many analysis inputs. 
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8.  Calculation of Expected Value and Display of Epistemic Uncertainty for 
EA[DD(τ |a, eD)|eA] 

The calculation of expected value and the display of epistemic uncertainty is now considered for EA[DD(τ |a, 
eD)|eA], which is the expected dose over aleatory uncertainty conditional on a specific value for the epistemically 
uncertain vector e = [eA, eD] defined in Eq. (6.6).  In concept, EA[DD(τ |a, eD)|eA] could be either of the expected 
doses EA[DI(τ |a, eD)|eA] and EA[DS(τ |a, eD)|eA] defined in Eqs. (6.7) and (6.8). 

Epistemic uncertainty with respect to the appropriate value to use for e results in many possible values for 
EA[DD(τ |a, eD)|eA], with a different value for EA[DD(τ |a, eD)|eA] resulting for each possible value for e.  These 
possible values for EA[DD(τ |a, eD)|eA] have a distribution that derives from the distributions that characterize the 
epistemic uncertainty associated with the elements of e.  Specifically, the distribution for EA[DD(τ |a, eD)|eA] repre-
sents the epistemic uncertainty in the expected dose that derives from aleatory uncertainty (i.e., from the assumed 
randomness of disruptive events that could, but may not, occur at some time in the future). 

The distribution of possible values for EA[DD(τ |a, eD)|eA] has an expected value that can be formally repre-
sented by 
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(8.1)

 

as previously indicated in Eq. (6.16).  Further, the CDF that characterizes the epistemic uncertainty in the possible 
values for EA[DD(τ |a, eD)|eA] is formally defined by 

( ){ },E A D D Ap E D Dτ⎡ ⎤ ≤⎣ ⎦a e e  = epistemic probability of an expected dose ( ),A D D AE D τ⎡ ⎤
⎣ ⎦a e e  over 

aleatory uncertainty less than D at time τ 
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⎣ ⎦∫ a e e e

E
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δ τ λ∫ ∫ ∫ p e p e e

E E
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where Dδ  is the indicator function defined in Eq. (7.3).  Given that the determination of EE{EA[DD(τ |a, eD)|eA]} 
and pE{EA[DD(τ |a, eD)|eA] < D} involves the evaluation of three iterated integrals of which two are over what are 
likely to be high dimensional spaces (i.e., the spaces E and P), the use of quadrature-based methods in this determi-
nation is unlikely to be practicable.  Thus, some other evaluation strategy must be sought. 

This section considers three possible computational strategies for the determination of EE{EA[DD(τ |a, 
eD)|eA]}:  (i) Strategy 1, sample from E and numerically evaluate EA[DD(τ |a, eD)|eA] (Sect. 8.1), (ii) Strategy 2, 
sample from E × P and numerically evaluate the integral over time (Sect. 8.2), and (ii) Strategy 3, sample from E × 
P × [a, b] with importance sampling on time (Sect. 8.3).  Of these strategies, only Strategy 1 has a structure that also 
allows the determination of pE{EA[DD(τ |a, eD)|eA] < D}. 

As for the nominal scenario class in Sect. 7, it is beneficial to introduce a simple function that can be used to il-
lustrate the computational procedures under consideration.  This hypothetical dose function is defined by 

( ), ,D DD tτ p e  = incremental dose (mrem/yr) to RMEI at time τ resulting from a disruptive event at time t 
with properties defined by the vector p and conditional on the vector eD of values for 
epistemically uncertain analysis inputs 
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Table 3. Distributions Characterizing Epistemic Uncertainty in the Variables eD6, eD7 and eD8 Used in 
the Definition of DN(τ |t, p, eD) in Eq. (8.3) (see Table 2 for distributions for eD1, eD2, …, eD5) 
and in the Variables eA1, eA2 and eA3 Used in the Characterization of Aleatory Uncertainty in 
a1, a2 and t 

Variable Distribution Density Function 

eD6 Uniform on [2, 25 mrem/yr] ( ) ( )6 6 1 25 2D Dd e = −  

eD7 Loguniform on [10−7, 10−5 yr−1] ( ) ( )5 7
7 7 71 ln 10 10D D Dd e e − −⎡ ⎤= ⎢ ⎥⎣ ⎦

 

eD8 Uniform on [15, 45 mrem/yr] ( ) ( )8 8 1 45 15D Dd e = −  

eD9 Loguniform on [10−4, 10−3 yr−1] ( ) ( )3 4
9 9 91 ln 10 10D D Dd e e − −⎡ ⎤= ⎢ ⎥⎣ ⎦

 

eA1 Uniform on [log(0.5), log(2.0)] ( ) ( )1 1 1 log 2.0 0.5A Ad e =  

eA2 Uniform on [0.3, 1] ( ) ( )2 2 1 1.0 0.3A Ad e = −  

eA3 = λD Loguniform on [10−6, 10−4 yr−1] ( ) ( )4 6
3 3 31 ln 10 10A A Ad e e − −⎡ ⎤= ⎢ ⎥⎣ ⎦
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 ( ){ }51 exp 1De tτ× − − + −⎡ ⎤⎣ ⎦  (8.3) 

for a ≤ τ , t ≤ b, with δ(τ − t) defined in conjunction with Eq. (7.9), [a, b] = [0, 20,000 yr], p = [a1, a2] and eD = [eD1, 
eD2, …, eD9].  The inclusion of the factor δ(τ − t) results in DD(τ |t, p, eD) = 0 for τ ≤ t.  Of the variables contained in 
eD, (i) eD1 only affects DN(τ |eD) defined in Eq. (5.10), (ii) eD2, eD3, eD4 and eD5 affect both DN(τ |eD) and DD(τ |t, p, 
eD), and (iii) eD6, eD7, eD8 and eD9 only affect DD(τ |t, p, eD).  This definition of eD is made to emphasize that, in a real 
analysis, some epistemically uncertain variables will relate only to nominal conditions, while others will relate to both 
nominal and disturbed conditions and yet others will relate to only disturbed conditions.  The distributions for eD1, eD2, 
…, eD5 are given in Table 2, and the distributions for eD6, eD7, eD8, eD9 are given in Table 3. 

In this simple example, the vector a of aleatory variables associated with DD(τ |t, p, eD) in Eq. (6.1) is  

[ ] [ ]1 2, , , .t t a a= =a p  (8.4) 

The variable a1 is assumed to have a logtriangular distribution on [0.5, 20] with an epistemically uncertain mode 
eA1; the variable a2 is assumed to have a triangular distribution on [0.3, 3] with an epistemically uncertain mode 
eA2; and the occurrence time t has a distribution that follows from the epistemically uncertain occurrence rate eA3 = 
λD for the particular type of distribution under consideration.  More specifically, a1 and a2 have distributions de-
fined by the density functions 
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for 20                   2 ln 20 ln 20 0.5 ln 20
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and 
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2 22 2 2 2 2

2 22 2
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for 3                     2 3 3 3 0.3

                     0 otherwise,
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e aa e
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=

 
(8.6)

 

respectively; the set P corresponds to the rectangle [0.5, 20] × [0.3, 3]; and the density function dP(p) is given by 

( ) ( ) ( )1 1 1 2 2 2P A A A A Ad d a e d a e=p e  (8.7) 

for p = [a1, a2] ∈ P.  Further, the distribution associated with t that results from eA3 = λD has been incorporated into 
the definition of EA[D(τ |a, eD)eA] through the derivation of the defining integral for EA[D(τ |a, eD)eA] in Eq. (6.6).  
The distributions characterizing the epistemic uncertainty in eA1, eA2 and eA3 are given in Table 3. 

8.1 Strategy 1:  Sample from E and Numerically Evaluate EA[D(τ |a, eD)|eA] 

This strategy involves generating a sample ei = [eAi, eDi], i = 1, 2, …, nS, from E and then numerically evalu-
ating EA[DD(τ |a, eDi)|eAi] for a ≤ τ ≤ b and i = 1, 2, …, nS.  With this strategy, the expected value EE{EA[DD(τ |a, 
eD)|eA]} over epistemic uncertainty for EA[DD(τ |a, eD)|eA] and the associated probability pE{EA[DD(τ |a, eD)|eA] 
≤ D} are approximated by  

( ){ } ( )
1

ˆ ˆ, ,
nS

E A D D A A D Di Ai
i

E E D E D nSτ τ
=

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∑a e e a e e  (8.8) 

and 

( ){ } ( ){ }
1

ˆˆ , , ,
nS

E A D D A D A D Di Ai
i

p E D D E D nSτ δ τ
=

⎡ ⎤ ⎡ ⎤≤ =⎣ ⎦ ⎣ ⎦∑a e e a e e  (8.9) 

where an approximation ÊA[DD(τ |a, eDi)|eAi] to EA[DD(τ |a, eDi)|eAi] is indicated because an exact evaluation of 
the integral in Eq. (6.6) that formally defines EA[DD(τ |a, eDi)|eAi] is unlikely to be possible in any real analysis. 

The implementation of Strategy 1 is now illustrated with the function DD(τ |t, p, eD) and associated definitions 
for p, eA and eD introduced in conjunction with Eq. (8.3).  This illustration initially uses a LHS 

[ ] [ ]1 2 3 1 2 9, , , , , , , 1, 2, , ,i Ai Di A i A i A i D i D i D ie e e e e e i nS= = =… …e e e  (8.10) 

of size nS = 100 from the set E of possible values for e generated in consistency with the distributions characteriz-
ing epistemic uncertainty specified in Tables 2 and 3.  In turn, eA1i and eA2i define distributions for a1 and a2 char-
acterized by the density functions dA1(a1|eA1i) and dA2(a2|eA2i) given in Eqs. (8.5) and (8.6), and eA3i = λDi defines 
the distribution for t that is incorporated into the defining integral for EA[DD(τ |a, eDi)|eAi]. 

In this example, EA[DD(τ |a, eDi)|eAi] is given by 
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where the final equality is introduced for notational convenience and results because DD(τ |t, a1, a2, eDi) = 0 for τ < 
t.  The preceding representation for EA[DD(τ |a, eDi)|eAi] must be determined for each element ei of the LHS in Eq. 
(8.10).  For this example, a closed form representation for EA[DD(τ |a, eDi)|eAi] could be determined with sufficient 
effort.  However, in a real analysis this is unlikely to be possible; rather, an approximation ÊA[DD(τ |a, eDi)|eAi] to 
EA[DD(τ |a, eDi)|eAi] would have to be determined and used in the relations in Eqs. (8.8) and (8.9) to estimate 
EE{EA[DD(τ |a, eD)|eA]} and pE{E[DD(τ |a, eD)|eA] ≤ D}. 

For this example, a quadrature-based approach is used to estimate EA[DD(τ |a, eDi)|eAi]; specifically, 

( )
1 2

2 1
1 1 1

,
nT nA nA

A Di Ai ijkl Di l k j
j k l

E D m a a tτ λ
= = =

⎡ ⎤ ≅ ∆ ∆ ∆⎣ ⎦ ∑ ∑ ∑a e e  (8.12) 

where 

∆tj = tj − tj−1 with ( )jt a j b a nT= + −  for j = 0, 1, …, nT, (8.13) 

∆a1k = a1k − a1,k−1 with ( ) 1
1 0.5 20 0.5 k nA
ka =  for k = 0, 1, …, nA1, (8.14) 

∆a2l = a2l − a2,l−1 with ( )2 0.3 3 0.3 2la l nA= + −  for l = 0, 1, …, nA2, (8.15) 

and 

( ) ( ) ( )1 2 1 1 1 2 2 2
1 1 1

, , , 8
j k l

ijkl D r s t Di A s A i A t A i
r j s k t l

m D t a a d a e d a eτ
= − = − = −

= ∑ ∑ ∑ e  (8.16) 

is the average of DD(τ |t, a1, a2, eDi) dA1(a1|eA1i) dA2(e2|eA2i) over the eight corners of the rectangular solid [tj−1, tj] 
× [a1,k−1, a1k] × [a2,l−1, a2l].  As an aside, the definition of a1k in Eq. (8.14) is equivalent to 

( ) ( ) ( ){ }1 exp ln 0.5 ln 20 ln 0.5 1ka k nA= + −⎡ ⎤⎣ ⎦  (8.17) 

and is used because of the logtriangular distributions associated with a1.  Values of nT = 100, nA1 = 10 and nA2 = 
10 are used for illustration. 

The approximation procedure indicated in Eq. (8.12) with nT = 100, nA1 = 10 and nA2 = 10 requires evaluation 
of the functions DD(τ |tj, a1k, a2l, eDi) for j = 0, 1, …, 100, k = 0, 1, …, 10, and l = 0, 1, …, 10 (i.e., the evaluation of 
(100)(11)(11) = 12,100 functions; a factor of 100 rather than 101 is used in the preceding since the curve DD(τ |b, 
a1k, a2l, eDi) = 0 for a ≤ τ ≤ b and thus requires no numerical evaluation) to estimate EA[DD(τ |a, eDi)|eAi].  For per-
spective, plots of DD(τ |tj, a15, a25, eDi) for j = 0, 1, …, 99 are shown in Fig. 4.  Thus, Fig. 4 displays 100 of the 
12,100 functions used in the estimation of EA[DD(τ |a, eDi)|eAi]. 

As an aside, it is important to recognize that formal quadrature-based procedures are only one of a variety of 
approaches that could be used to approximate the integrals that define EA[DD(τ |a, eDi)|eAi].  In general, the nature 
of DD(τ |a, eD) must be examined very carefully so that an appropriate and efficient numerical integration procedure 
can be identified.  Specifically, DD(τ |a, eD) may have special properties that can be utilized in developing an effi-
cient numerical integration procedure. 

Each element of the LHS indicated in Eq. (8.10) results in a different value for EA[DD(τ |a, eD)|eA].  Specifi-
cally, a sequence 
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Fig. 4. Hypothetical dose curves DD(τ |tj, a15, a25, eDi), j = 0, 2, 4,…, 98, used in estimation of EA[DD(τ |a, 

eD1)|eA1] as described in conjunction with Eq. (8.12). 

( ) ( )ˆ, ,A D Di Ai A D Di AiE D E Dτ τ⎡ ⎤ ⎡ ⎤≅⎣ ⎦ ⎣ ⎦a e e a e e  (8.18) 

of i = 1, 2, …, nS = 100 estimates for EA[DD(τ |a, eDi)|eAi] is obtained (Figs. 5a and 5c) with the individual estimates 
ÊA[D(τ |a, eDi)|eAi] determined as indicated in Eq. (8.12).  The spread of the expected dose curves in Figs. 5a and 5c is 
providing an indication of the epistemic uncertainty in the expected dose to the RMEI that arises from aleatory uncer-
tainty (i.e., from properties of the disruptive event that are assumed to be random).  To facilitate inspection of the indi-
vidual curves, expected dose is presented on both a linear scale (Fig. 5a) and a log scale (Fig. 5c). 

A more formal representation of the uncertainty in the expected dose curves displayed in Figs. 5a and 5c can be 
obtained by presenting the expected curve EE{EA[DD(τ |a, eD)|eA]} and associated probabilities pE{EA[DD(τ |a, 
eD)|eA] ≤ D} that derive from epistemic uncertainty.  Specifically, these quantities are formally defined in Eqs. (8.1) 
and (8.2), and approximation procedures that can be used in conjunction with the LHS indicated in Eq. (8.10) are 
presented in Eqs. (8.8) and (8.9).  The resultant approximations for EE{EA[DD(τ |a, eD)|eA]} and pE{EA[DD(τ |a, 
eD)|eA] ≤ D} are shown in Figs. 5b and 5d, with both linear (Fig. 5b) and log (Fig. 5d) plots given.  Because both 
EE{EA[DD(τ |a, eD)|eA]} and EA[DD(τ |a, eD)|eA] are expected value curves, the approximation to EE{EA[DD(τ |a, 
eD)|eA]} in Fig. 5 and in other similar figures is labeled “Expected (Combined Mean)” to indicate that an expected 
value over both epistemic uncertainty and aleatory uncertainty is being presented; when appropriate, a similar des-
ignation is used in the text.  The CDF for expected dose defined by pE{EA[DD(τ |a, eD)|eA] ≤ D} at each time τ is 
summarized by presenting the 0.05, 0.5 and 0.95 quantiles for EA[DD(τ |a, eD)|eA] as functions of time. 

The expected (combined mean) and quantile curves in Figs. 5b and 5d were estimated with a LHS of size nS = 
100.  Thus, there is uncertainty in their values that derives from the inherent variability in analysis outcomes that are 
obtained with a sampling-based procedure.  As discussed in conjunction with Eqs. (7.18) – (7.19), replicated sam-
pling in combination with the t-distribution can be used to assess the stability of results obtained with Latin hyper-
cube sampling.  In particular, the described approach is used with nR = 10 replicated LHSs of size nS = 100 to as-
sess the stability of the results presented in Fig. 5 (Fig. 6).  The resultant estimates for EE{EA[DD(τ |a, eD)|eA]} and 
the associated 0.05 and 0.5 quantiles appear to be quite stable, with the estimates for the 0.95 quantile showing more 
variability from sample to sample (Fig. 6). 

As described in Eq. (7.19), the t-distribution can be used to place a confidence interval around an estimate for 
EE{EA[DD(τ |a, eD)|eA]} that derives from the nR = 10 replicates (Fig. 7).  If desired, the same procedure can be 
used to define confidence intervals for quantiles.  Whether or not the observed level of sampling variability is ac-
ceptable is a judgment call that has to be made in the context of a specific analysis.  There is no universal standard 
for acceptable variability (i.e., error) in a sampling-based analysis. 
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Fig. 5. Representation of epistemic uncertainty associated with hypothetical expected dose EA[DD(τ |a, eD)|eA] 
estimated with Strategy 1 and LHS indicated in Eq. (8.10):  (a, b) Expected dose curves ÊA[DD(τ |a, 
eDi)|eAi] for i = 1, 2, …, nS = 100 with linear and log scales, and (c, d) Expected (combined mean) dose 
ÊE{EA[DD(τ |a, eD)|eA]} and associated quantiles (i.e., 0.05, 0.5, 0.95) for expected dose EA[DD(τ |a, 
eD)|eA] defined by p̂E{EA[DD(τ |a, eD)|eA] ≤ D} with linear and log scales. 

It is important to recognize that the quantiles in Fig. 6 and the confidence intervals in Fig. 7 are quantifying two 
very different types of uncertainty.  The quantiles in Fig. 6 derive from epistemic uncertainty with respect to the 
appropriate values to use for parameters within the analysis, where, in general, the concept of a parameter can be 
interpreted broadly enough to include alternative models or modeling assumptions.  The only way to reduce the 
epistemic uncertainty in expected dose EA[DD(τ |a, eD)|eA] quantified by the quantiles in Fig. 6 is to increase 
knowledge with respect to the system under study and thus reduce the epistemic uncertainty associated with the 
elements of e.  In contrast, the confidence intervals in Fig. 7 derive from sampling variability and, in concept, can 
be made arbitrarily small by suitably increasing the sample size in use.  Specifically, the confidence intervals in Fig. 
7 apply to errors in the numerical estimation of EE{EA[DD(τ |a, eD)|eA]}; however, once the entities in the integral 
in Eq. (8.1) that defines EE{EA[DD(τ |a, eD)|eA]} are specified, there is no uncertainty in either an epistemic or alea-
tory sense in EE{EA[DD(τ |a, eD)|eA]}. 
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Fig. 6. Representation of sampling variability in Strategy 1 that results from using nR = 10 replicated LHSs of size 
nS = 100  in the hypothetical estimation of expected (combined mean) dose EE{EA[DD(τ |a, eD)|eA]} and 
associated quantiles (i.e., 0.05, 0.5, 0.95) for expected dose EA[DD(τ |a, eD)|eA] that derive from estimates 
for pE{EA[DD(τ |a, eD)|eA] ≤ D}:  (a) Linear scale, and (b) Log scale. 
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Fig. 7. Hypothetical estimate obtained with Strategy 1 for expected (combined mean) dose EE{EA[DD(τ |a, 

eD)|eA]} that derives from nR = 10 replicated LHSs of size nS = 100 and associated 95% confidence inter-
vals (CIs) obtained with the t-distribution as indicated in conjunction with Eq. (7.19). 

As discussed at the end of Sect. 7, the NRC has specified the following acceptance criteria:  “A sufficient num-
ber of realizations has been obtained … to ensure that the results of the calculation are numerically stable” (see 
Quote (YMRP4)) and “the annual dose curve includes confidence intervals (e.g., 95th and 5th percentile) to repre-
sent the uncertainty in the dose calculations” (see Quote (YMRP5)).  The criterion in Quote (YMRP4) clearly ap-
plies to the numerical stability of a sampling-based calculation, which is what is being characterized by the confi-
dence intervals in Fig. 7.  Specifically, the confidence intervals in Fig. 7 provide a representation of the uncertainty 
in an estimate for EE{EA[DD(τ |a, eD)|eA]} obtained with a sampling-based procedure.  In contrast, the criterion in 
Quote (YMRP5) can be interpreted as applying to the epistemic uncertainty associated with estimates for the ex-
pected dose EA[DD(τ |a, eD)|eA].  With this interpretation, the percentile (i.e., quantile) curves relevant to the crite-
rion in Quote (YMRP5) are the curves in Figs. 5b, 5d, and 6.  Specifically, these quantile curves provide a represen-
tation of the uncertainty in EA[DD(τ |a, eD)|eA] that derives from epistemic uncertainty in e = [eA, eD].  If the 
criterion in Quote (YMRP5) is interpreted as applying to sampling-based error as quantified by results of the form 
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shown in Fig. 7, then, in effect, the implications of epistemic uncertainty in the calculation of expected dose are 
being averaged out of the analysis. 

8.2 Strategy 2:  Sample from E × P and Numerically Evaluate Integral over Time 

This strategy is based on rewriting the representation for EE{EA[DD(τ |a, eD)|eA]} in Eq. (8.1) by changing the 
order of integration involving e, t and p.  Specifically, EE{EA[DD(τ |a, eD)|eA]} can be rewritten as 
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(8.20)
 

is introduced for later notational convenience and is the expected dose at time τ conditional on p, eD and λD. 

Given the preceding representation, EE{EA[DD(τ |a, eD)|eA]} can be approximated by sampling from E × P and 
numerically integrating over time.  Specifically, 
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i

E E E D nSτ τ λ
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where 

[ ] [ ], , , ,i i Ai Di i=e p e e p  i = 1, 2, …, nS, (8.22) 

is a sample generated from E × P in consistency with the distributions assigned to the individual elements of eA, eD 
and p.  As a reminder, λD is assumed to be an element of eA.  If an element a of p has a distribution that depends on 
one or more elements of eA, then these elements must be sampled and used to define the distribution for a for sam-
ple element i before the corresponding value ai for a can be sampled.  In turn, Et[DD(τ |pi, eDi, λDi)] can be ap-
proximated by 
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where tj and ∆tj are defined as indicated in Eq. (8.13).  The approximation 
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to E{EA[D(τ |a, eD)|eA]} results by combining the approximations in Eqs. (8.21) and (8.23). 

The implementation of Strategy 2 is now illustrated with the function DD(τ |t, p, eD) and associated definitions 
for p, eA and eD introduced in conjunction with Eq. (8.3).  This illustration initially uses a LHS 
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Fig. 8. Hypothetical dose curves DD(τ |tj, a11, a21, eD1), j = 0, 2, 4, …, 98, for sample element e1 of sample in Eq. 

(8.26) used in estimation of conditional expected dose Et[DD(τ |p1, eD1, λD1)] with Strategy 2 as described 
in conjunction with Eq. (8.23). 
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of size nS = 100 from the set E × R , where E is the set of possible values for e = [eA, eD] and R = [0, 1] × [0, 1] is 
the set of possible values for r = [r1, r2].  The preceding LHS is generated in consistency with the distributions that 
characterize the epistemic uncertainty in the elements of e specified in Tables 2 and 3 and uniform distributions for 
the two elements of r on [0, 1].  In turn, once the sample in Eq. (8.25) is generated, r1i and r2i are used to select val-
ues a1i and a2i from the distributions for a1 and a2 defined by eA1i and eA2i.  The result is the sample 

[ ]
[ ]1 2 3 1 2 9 1 2

, ,

, , , , , , , ,
i Ai Di i

A i A i A i D i D i D i i ie e e e e e a a

=

= …

e e e p
 

(8.26)
 

of size nS = 100 from E × P. 

The outcome of evaluating DD(τ |tj, p1, eD1) for j = 0, 1, …, 99 is illustrated in Fig. 8.  In turn, the 100 ap-
proximations to DD(τ |tj, p1, eD1) in Fig. 8 are used to estimate Et[DD(τ |p1, eD1, λD1)] as indicated in Eq. (8.23).  
The 100 approximations to Et[DD(τ |p, eD, λD)] that result for the sample in Eq. (8.26) are shown in Fig. 9.  Specifi-
cally, the curves in Fig. 9 are plots of Êt[DD(τ |pi, eDi, λDi)] for i = 1, 2, …, 100.  Further, the 100 values for 
Êt[DD(τ |pi, eDi, λDi)] result in the approximation ÊE{EA[DD(τ |a, eD)|eA]} to EE{EA[DD(τ |a, eD)|eA]} that is also 
shown in Fig. 9, with this approximation obtained as indicated in Eq. (8.24). 

As presented in this example, Strategy 2 for the estimation of EE{EA[DD(τ |a, eD)|eA]} is less demanding com-
putationally than Strategy 1.  In particular, 100 evaluations of DD(τ |t, a1, a2, eD) of the form shown in Fig. 8 are 
used in the determination of each curve Êt[DD(τ |p, eD, λD)] in Fig. 9.  In contrast, 12,100 evaluations of DD(τ |t, a1, 
a2, eD) are used in the evaluation of each curve ÊA[DD(τ |a, eD)|eA] in Figs. 5a and 5c.  Thus, while Fig. 8 shows 
all evaluations of DD(τ |tj, a11, a21, eD1) that result for j = 0, 1, …, 99 and are used in the determination of 
Êt[DD(τ |p1, eD1, λD1)], Fig. 4 only shows 100 out of the 12,100 evaluations of DD(τ |tj, a1k, a2l, eD1) that result for 
j = 0, 1, …, 99, k = 0, 1, …, 10 and l = 0, 1, …, 10, and are used in the determination of ÊA[DD(τ |a, eD1)|eA1].  
However, it is important to recognize that no attempt has been made in this example to minimize the required num-
ber of evaluations of DD(τ |t, p, eD) in the numerical implementations of Strategies 1 and 2.  In a real analysis, the 
evaluation of DD(τ |t, p, eD) would be a major computational cost, and the properties of DD(τ |t, p, eD) would be 
very carefully studied to find ways to minimize this cost. 
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Fig. 9. Hypothetical estimates obtained with Strategy 2 for conditional expected dose Et[DD(τ |pi, eDi, λDi)], i = 1, 
2, …, nS = 100, and expected (combined mean) dose EE{EA[DD(τ |a, eD)|eA]} obtained as described in 
Eqs. (8.23) and (8.24) for the sample in Eq. (8.26): (a) Linear scale, and (b) Log scale. 

Although the distributions of the curves in Figs. 5a and 5c and in Figs. 9a and 9b appear similar on a superficial 
level, it is important to recognize that these distributions involve very different entities.  In particular, the ensemble 
of curves in Figs. 5a and 5c is displaying the uncertainty in the expected dose EA[DD(τ |a, eD)|eA] that derives from 
epistemic uncertainty with respect to the appropriate values to use for the elements of e.  Thus, the spread of the 
curves in Figs. 5a and 5c is providing information on the uncertainty in the expected dose that can be meaningfully 
summarized by CDFs as indicated in Eqs. (8.2) and (8.9) and displayed as quantile curves in Figs. 5b and 5d.  In 
contrast, the ensemble of curves in Figs. 9a and 9b is displaying intermediate results (i.e., Êt[DD(τ |pi, eDi, λDi)] as 
defined in Eq. (8.23)) used in the approximation to EE{EA[DD(τ |a, eD)|eA]} defined in Eq. (8.24).  Although the 
curves Êt[DD(τ |pi, eDi, λDi)] correspond to valid intermediate results used in the approximation of EE{EA[DD(τ |a, 
eD)|eA]}, it is difficult to give a useful epistemic uncertainty interpretation to the spread of the curves in Fig. 9 be-
cause the values for the aleatory variables a1 and a2 are fixed in the determination of each dose curve Êt[DD(τ |pi, 
eDi, λDi)] (e.g., this is like assuming all seismic events have the same peak ground velocity or that all igneous intru-
sions damage the same number of waste packages).  The similar appearance of the curves in Figs. 5a, 5c, 9a and 9b 
is a property of the particular example that was selected for use; different examples could result in the distributions 
of curves in these figures having very different appearances. 

As for Strategy 1, replicated sampling in combination with the t-distribution can be used to assess the stability 
of estimates for EE{EA[DD(τ |a, eD)|eA]} obtained with Strategy 2 (Fig. 10).  Thus, compliance with the acceptance 
criterion in Quote (YMRP4) can be determined.  However, estimates of the epistemic uncertainty associated with 
expected dose over aleatory uncertainty (i.e., EA[DD(τ |a, eD)|eA]) are not possible.  Thus, with Strategy 2, results 
associated with only one of the two possible interpretations of the acceptance criterion in Quote (YMRP5) discussed 
at the end of Sect. 8.1 are obtainable.  In particular, quantile curves of the form shown in Figs. 5b, 5d and 6 repre-
senting the epistemic uncertainty in EA[DD(τ |a, eD)|eA] are not obtainable with Strategy 2. 

8.3 Strategy 3:  Sample from E × P × [a, b] with Importance Sampling on Time 

This strategy is based on using a sampling-based approach to simultaneously evaluate the three iterated inte-
grals that define EE{EA[DD(τ |a, eD)|eA]} in Eq. (8.1).  To do this, the integral involving time must be rewritten 
with a density function defined for time.  This rewriting produces 
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Fig. 10. Representation of sampling variability that results from using nR = 10 replicated LHSs of size nS = 100 
and nS = 500 in the hypothetical estimation of expected (combined mean) dose EE{EA[DD(τ |a, eD)|eA]} 
with Strategy 2:  (a, b) Replicated estimates ÊEr{EA[DD(τ |a, eD)|eA]}, r = 1, 2, …, 10, and (c, d) Estimates 
for EE{EA[DD(τ |a, eD)|eA]} and associated 95% confidence intervals (CIs) that derive from the replicated 
estimates ÊEr{EA[DD(τ |a, eD)|eA]}. 
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a e e p e e
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 (8.27) 

where dt(t) is the introduced density function for time and the integral over time can be written from a to b rather 
than from a to τ because DD(τ |t, p, eD) = 0 for τ < t. 

The iterated integrals in Eq. (8.27) are defining the expected value of the function 

( ) ( ) ( ), , , ,D D D D tf t D t d tτ τ λ=p e p e  (8.28) 

with respect to the density functions dt(t), dP(p|eA) and dE(e) defined on [a, b], P and E, respectively.  The ex-
pected value for f(τ |t, p, eD), and hence the value for EE{EA[DD(τ |a, eD)|eA]}, can be obtained by sampling from 
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[a, b], P and E in consistency with the density functions dt(t), dP(p|eA) and dE(e).  Specifically, an estimate for 
EE{EA[DD(τ |a, eD)|eA]} is given by 

( ){ } ( )
( )1

, ,ˆ , ,
nS

D i i Di Di
E A D A

t ii

D t
E E D nS

d t
τ λ

τ
=

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑
p e

a e e  (8.29) 

where 

[ ] [ ], , , , , , 1, 2, , ,i i i i Ai Di i it t i nS= = = …s e p e e p  (8.30) 

is a random or LHS from E × P × [a, b] generated in consistency with the density functions dE(e), dP(p|eA) and dt(t). 
 

The density function dt(t) is determining the relative concentrations of time values over the interval [a, b].  The 
use of such a density function in the evaluation of an integral is often referred to as importance sampling173-179 be-
cause, in concept, the density function can be chosen to place heavy concentrations of sampled values in regions 
that are believed to be important to the value of the integral under consideration and fewer points in regions that are 
believed to be less important to the value of the integral.  Two possible definitions for dt(t) are 

( ) ( ), 1t ud t b a= −  (8.31) 

and 

( ) ( )1 ln ,t ,lnd t t b a= ⎡ ⎤⎣ ⎦  (8.32) 

with the first definition corresponding to a uniform distribution on [a, b] and the second definition corresponding to 
a loguniform distribution on [a, b].  Thus, the definition of dt,u(t) in Eq. (8.31) corresponding to a uniform distribu-
tion does not emphasize any particular subrange of [a, b]; in contrast, the definition of dt,ln(t) in Eq. (8.32) corre-
sponding to a loguniform distribution emphasizes values of t close to a.  Use of the loguniform distribution requires 
a > 0 (e.g., [10, 10,000 yr] rather than [0, 10,000 yr]).  In general, dt(t) could be any density function defined on [a, 
b] as long as dt(t) ≠ 0 for a ≤ t ≤ b. 

Use of different definitions for dt(t) results in different appearing approximations to EE{EA[DD(τ |a)|e]}.  For 
example, the approximation in Eq. (8.29) becomes 

( ){ } ( ) ( )
1

ˆ , , ,
nS

E A D D A D i i Di Di
i

E E D b a D t nSτ τ λ
=

⎡ ⎤ = −⎣ ⎦ ∑a e e p e  (8.33) 

for uniform sampling on [a, b] with the density function dt,u(t) in Eq. (8.31) and 

( ){ } ( ) ( )
1

ˆ , ln , ,
nS

E A D D A i D i i Di Di
i

E E D b a t D t nSτ τ λ
=

⎡ ⎤ =⎣ ⎦ ∑a e e p e  (8.34) 

for loguniform sampling on [a, b] with the density function dt,ln(t) in Eq. (8.32).  The choice of the density  
function dt(t) can significantly affect the sample size nS required for ÊE{EA[DD(τ |a, eD)|eA]} to be close to 
EE{EA[DD(τ |a, eD)|eA]}.  However, any choice for dt(t) will result in approximations that approach EE{EA[DD(τ |a, 
eD)|eA]} if sufficiently large samples are possible. 

The implementation of Strategy 3 is now illustrated with the function DD(τ |t, p, eD) and associated definitions 
for p, eA and eD introduced in conjunction with Eq. (8.3).  This illustration uses samples of several different sizes 
generated from E × P × [a, b], with the sampling of p = [a1, a2] from P performed in the same manner as described 
in conjunction with Eqs. (8.25) and (8.26).  Further, the time interval [a, b] = [10, 20,000 yr] is used and both uni-
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form and loguniform importance sampling on [10, 20,000 yr] are considered.  The outcomes of the sampling pro-
cess are samples of the form 

si = [ ], ,i i ite p  

 = [ ], , ,Ai Di i ite e p  

 = [ ]1 2 3 1 2 9 1 2, , , , , , , , ,A i A i A i D i D i D i i i ie e e e e e a a t…  (8.35) 

for i = 1, 2, …, nS, with the values for ti obtained with either uniform or loguniform sampling depending on the case 
under consideration. 

The function DD(τ |ti, pi, eDi) is evaluated for each element si of the sample indicated in Eq. (8.35).  For illus-
tration, the results of this evaluation are shown in Figs. 11a and 11c with a linear scale for uniform (Fig. 11a) and 
loguniform (Fig. 11c) sampling on time, respectively, and in Figs. 12a and 12c with a log scale for uniform (Fig. 
12a) and loguniform (Fig. 12c) sampling on time t, respectively.  Both linear and log scales are used because a lin-
ear scale provides a better visual impression of the presence of large values and a log scale permits small values to 
be accurately observed.  The effects of uniform and loguniform sampling on time are clearly visible when the 
curves in Figs. 11a and 12a, which are obtained with uniform sampling on time, are compared with the curves in 
Figs. 11c and 12c, which are obtained with loguniform sampling on time.  In particular, uniform sampling on time 
results in a fairly even distribution of start times for nonzero doses; in contrast, loguniform sampling on time results 
in an obvious skewing of start times for nonzero doses towards early times.  However, despite the very different 
appearances of the dose curves obtained with uniform and loguniform sampling on time, both sets of curves are 
valid intermediate results in a process leading to an approximation to EE{EA[DD(τ |a, eD)|eA]} with the relationship 
in Eq. (8.29). 

 
The approximation of EE{EA[DD(τ |a, eD)|eA]} in Eq. (8.29) can be viewed as an average of nS weighted 

doses.  In general, the weight wi is given by 

( )i Di t iw d tλ=  (8.36) 

for i = 1, 2, …, nS; more specifically, the weight is given by 

( )i Diw b aλ= −  (8.37) 

for uniform sampling on time and by 

( )lni Di iw t b aλ=  (8.38) 

for loguniform sampling on time.  In turn, the weighted doses wDi are given by 

wDi = ( ), ,i D i i Diw D tτ p e  

 = ( ) ( ), ,Di t i D i i Did t D tλ τ⎡ ⎤⎣ ⎦ p e  

 = 
( ) ( )

( ) ( )
, , for uniform sampling on time

ln , , for loguniform sampling on time
Di D i i Di

Di i D i i Di

b a D t

t b a D t

λ τ

λ τ

⎧ −⎪
⎨
⎪⎩

p e
p e

 
(8.39)

 

for i = 1, 2, …, nS. 

Weighted results for the example under consideration are shown in Figs. 11b and 11d with a linear scale and 
uniform (Fig. 11b) and loguniform (Fig. 11d) sampling on time and in Figs. 12b and 12d for the same results but 
with a log scale.  The inclusion of the weight wi distorts the actual dose.  In particular, the weight incorporates the 
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Fig. 11. Linear scale plots for unweighted and weighted hypothetical doses obtained with samples of size nS = 100 
of the form indicated in Eq. (8.35) and used in the approximation of expected (combined mean) dose 
EE{EA[DD(τ |a, eD)|eA]} defined in Eq. (8.29) with Strategy 3:  (a) DD(τ |ti, pi, eDi), i = 1, 2, …, 100, ob-
tained with uniform sampling on time, (b) [(10,000 − 10) λDi] DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained 
with uniform sampling on time, (c) DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained with loguniform sampling 
on time, and (d) [λDiti ln(10,000/10)] DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained with loguniform sampling 
on time. 

uncertain rate λD and also the effects of the particular importance sampling distribution selected for use.  For exam-
ple, loguniform sampling results in many small values for time and few large values for time (e.g., see Fig. 12c).  To 
correct for this, the factor ti ln(b/a) in the weight for loguniform sampling is small for small values of t and large for 
large values of t.  The effect of this can be seen in the upward scaling of doses in Figs. 11d and 12d for events that 
initiate late in time.  As a result, although weighted doses are valid intermediate results in the approximation of 
EE{EA[DD(τ |a, eD)|eA]} in Eq. (8.29), it is difficult to give a useful uncertainty interpretation to distributions of 
weighted doses of the form shown in Figs. 11b, 11d, 12b and 12d. 

As for Strategies 1 and 2, replicated sampling can be used to assess the stability of estimates for EE{EA[DD(τ |a, 
eD)|eA]} obtained with Strategy 3 (Fig. 13).  Considerable variability is present in the estimates of EE{EA[DD(τ |a, 
eD)|eA]} for nS = 100, with this variability steadily decreasing as the sample size increases.  The effects of uniform 
and loguniform importance sampling on time can be seen in the variability associated with the estimates for 
EE{EA[DD(τ |a, eD)|eA]}.  Specifically, estimates obtained with uniform sampling are more variable at early times 
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Fig. 12. Log scale plots for unweighted and weighted hypothetical doses obtained with same samples of size nS = 
100 of the form indicated in Eq. (8.35) and used in the approximation of expected (combined mean) dose 
EE{EA[DD(τ |a, eD)|eA]} defined in Eq. (8.29) with Strategy 3:  (a) DD(τ |ti, pi, eDi), i = 1, 2, …, 100, ob-
tained with uniform sampling on time, (b) [(10,000 − 10) λDi] DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained 
with uniform sampling on time, (c) DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained with loguniform sampling 
on time, and (d) [λDiti ln(10,000/10)] DD(τ |ti, pi, eDi), i = 1, 2, …, 100, obtained with loguniform sampling 
on time. 

than results obtained with loguniform sampling and less variable at later times than results obtained with loguniform 
sampling.  This pattern of relative variability results because loguniform sampling results in more small values for ti 
than uniform sampling and, in contrast, uniform sampling results in more large values for ti than loguniform sam-
pling.  For nS = 5000, the results with uniform and loguniform sampling on time are very similar.  Thus, even 
though the distributions of individual dose curves look very different for uniform and loguniform sampling on time, 
these two sampling procedures are leading to similar estimates for EE{EA[DD(τ |a, eD)|eA]}. 

The replicated results in Fig. 13 can also be used to determine confidence intervals associated with estimates for 
EE{EA[DD(τ |a, eD)|eA]} as indicated in conjunction with Eqs. (7.16) – (7.19) (Fig. 14).  These confidence intervals 
decrease in width as the sample size nS increases and are almost vanishingly small for nS = 5000.  The previously 
observed property of loguniform sampling to give more stable results at early times and uniform sampling to give 
more stable results at later times can be seen in the smaller confidence intervals at early times for loguniform 
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Fig. 13. Representation of sampling variability that results from using nR = 10 replicated LHSs of size nS = 100, 

500, 1000 and 5000 in the hypothetical estimation of expected (combined mean) dose EE{EA[DD(τ |a, 
eD)|eA]} with Strategy 3 and either uniform (a,c,e,g) or loguniform (b,d,f,h) sampling on time. 
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Fig. 14. Ninety-five percent (i.e., 95%) confidence intervals (CIs) for hypothetical estimates of expected (combined 

mean) dose EE{EA[DD(τ |a, eD)|eA]} with Strategy 3 that result from using nR = 10 replicated LHSs of 
sizes nS = 100, 500, 1000 and 5000 and either uniform (a,c,e,g) or loguniform (b,d,f,h) sampling on time. 
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(d) (c) 

(f) (e) 

(g) (h) 
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sampling.  However, this is a property of the example analysis under consideration; an analysis with different prop-
erties could show different patterns of behavior.  In general, the selection of an effective importance sampling pro-
cedure must be based on properties of the particular analysis under consideration. 

As for Strategies 1 and 2, the confidence intervals in Fig. 14 for estimates of EE{EA[DD(τ |a, eD)|eA]} obtained 
with Strategy 3 can be used to assess compliance with the acceptance criterion in Quote (YMRP4).  However, as is 
also the case for Strategy 2, estimates of the epistemic uncertainty associated with expected dose over aleatory un-
certainty (i.e., EA[DD(τ |a, eD)|eA]) are not possible.  Thus, with Strategy 3, results associated with only one of the 
two possible interpretations of the acceptance criterion in Quote (YMRP5) discussed at the end of Sect. 8.1 are ob-
tainable. 

Although the intermediate results can look very different, Strategies 1, 2 and 3 are all providing estimates for 
EE{EA[DD(τ |a, eD)|eA]}.  The similarity of these estimates can be seen by comparing the estimates for 
EE{EA[DD(τ |a, eD)|eA]} in Figs. 7, 10 and 14. 
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9.  Expected Dose Conditional on Single Disruption 

It is natural to ask what uncertainty interpretation, if any, can be given to the distributions of dose curves in 
Figs. 11a, 11c, 12a and 12c.  As it turns out, there is a natural interpretation of the dose curves in Figs. 11a and 12a, 
which are obtained with uniform sampling on time, that derives from the consideration of a Poisson process with a 
constant occurrence rate λD.  Such a process is equally likely to occur at any given time.  As a result, if the assump-
tion is made that the process has occurred exactly once in a time interval [a, b], then the possible times at which this 
process has occurred has a uniform distribution on [a, b] as indicated in conjunction with Eq. (4.12).  This is the 
distribution defined in Eq. (8.31) and used in the generation of the dose curves in Figs. 11a and 12a.  As a result, the 
distribution of dose curves in Figs. 11a and 12a is displaying the uncertainty in dose conditional on the assumption 
that exactly one disruption has occurred in the time interval [a, b] = [10, 20,000 yr], with the displayed uncertainty 
deriving from both epistemic uncertainty in e = [eA, eD] and aleatory uncertainty in t and p = [a1, a2]. 

Results conditional on the occurrence of exactly one disruption in the time interval [a, b] are now considered in 
more detail.  In particular, doses of the form DD(τ |a, eD) for a belonging to the set A1(a, b) defined in Eq. (5.6) are 
under consideration.  The expected value for DD(τ |a, eD) over aleatory uncertainty conditional on a fixed element e 
= [eA, eD] of E and a ∈ A1(a, b) is given by 

( ) ( ) ( ) ( ) ( )
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(9.1)
 

with the uniform density dt,u(t) used because the expectation is conditional on exactly one occurrence in the time 
interval [a, b] (i.e., on a ∈ A1(a, b)) and the integral over time rewritten from a to b rather than from a to τ because 
DD(τ |t, p, eD) = 0 for τ < t. 

In turn, the expectation for EA[DD(τ |a, eD)|eA, a ∈ A1(a, b)] over epistemic uncertainty is given by 
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A better notation for the preceding result is perhaps 

( ) ( ) ( ) ( ) ( ) ( )1 ,, , , d d d ,
b

E A D D D P A t u Ea
E D a b D t d d t d P t Eτ τ∪ ⎡ ⎤∈ =⎣ ⎦ ∫ ∫ ∫a p e p e e

E P
A  (9.3) 

which indicates that the expectation is over both epistemic and aleatory uncertainty and conditional on a ∈ A1(a, b).  
Similarly, 

( ) ( ) ( ) ( ) ( ) ( )1 ,, , , d d d
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E P
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is the probability deriving from both epistemic and aleatory uncertainty and conditional on a ∈ A1(a, b) that a dose 
less than D will occur. 

Because of the presence of the density functions dP(p|eA), dt,u(t) and dE(e), the integrals in Eqs. (9.3) and (9.4) 
are defining expected values for DD(τ |t, p, eD) and Dδ [DD(τ |t, p, eD)].  As a result, samples generated in consis-
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tency with these density functions can be used to produce approximations to EE∪A[DD(τ)|a ∈ A1(a, b)] and 
pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] of the form 

( ) ( ) ( )1
1

ˆ , , ,
nS

E A D D i i Di
i

E D a b D t nSτ τ∪
=

⎡ ⎤∈ =⎣ ⎦ ∑a p eA  (9.5) 

and 
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The samples indicated in Eq. (8.35) generated with uniform sampling on time (i.e., with the density function dt,u(t)) 
are of this form and thus can be used in the preceding approximations for EE∪A[DD(τ)|a ∈ A1(a, b)] and 
pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)].  Thus, results of the form shown in Figs. 11a and 12a obtained with uniform sam-
pling on time can be used to estimate EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)].  Such approxi-
mations for nS = 1000 and 5000 are shown in Figs. 15a and 15c. 

Results obtained when time is not sampled uniformly on [a, b] can also be used to estimate EE∪A[DD(τ)|a ∈ 
A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)].  However, a correction must be introduced to account for the nonuni-
form sampling on time.  For EE∪A[DD(τ)|a ∈ A1(a, b)], this correction is obtained from the reformulation of Eq. 
(9.3) as 
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where dt(t) is an arbitrary density function for t defined on [a, b] (e.g., dt,ln(t) defined in Eq. (8.32)).  Similarly, the 
definition for pE∪A[D(τ) ≤ D|a ∈ A1(a, b)] in Eq. (9.4) can be reformulated as 
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The preceding reformulations can now be used to estimate EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ 
A1(a, b)]. 

Specifically, generation of a sample of the form indicated in Eq. (8.35) in consistency with the density func-
tions dP(p|eA), dt(t) and dE(e) results in the approximations 
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and 
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 (c) (d) 

Fig. 15. Combined epistemic and aleatory uncertainty in hypothetical dose conditional on exactly one disruptive 
occurrence taking place in the time interval [a, b] = [10, 20,000 yr] summarized as expected (combined 
conditional mean) dose ÊE∪A[DD(τ)|a ∈ A1(a, b)] and associated quantiles (i.e., 0.05, 0.5, 0.95) for 
DD(τ |t, p, eD) conditional on a = [t, p] ∈ A1(a, b) defined by p̂E∪A[DD(τ) < D|a ∈ A1(a, b)] obtained 
with Strategy 3 for the evaluation of expected (combined mean) dose EE{EA[DD(τ |a, eD)|eA]} and LHSs 
of size nS = 1000 and 5000:  (a,c) Uniform sampling on time and use of approximations in Eqs. (9.5) and 
(9.6), and (b,d) Loguniform sampling on time and use of approximations in Eqs. (9.9) and (9.10). 
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to EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D| a ∈ A1(a, b)].  Thus, the necessary correction factor ci to permit 
estimates for EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] when time is not uniformly sampled is 

( ) ( )
1 ,i

t i
c

b a d t
=

−
 (9.11) 

where dt(t) is the density function used to sample time.  For example, 
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( )lni
i

t b a
c

b a
=

−
 (9.12) 

when time is sampled in consistency with a loguniform distribution on [a, b] (i.e., in consistency with the density 
function dt,ln(t) defined in Eq. (8.32)). 

Results of the form appearing in Figs. 11c and 12c obtained with nonuniform sampling on time can be used to 
approximate EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] by use of the correction factor ci defined 
in Eqs. (9.11) and (9.12) in conjunction with the calculated doses DD(τ |ti, pi, eDi) for the sample under considera-
tion.  This results in the approximations in Eqs. (9.9) and (9.10).  The outcome of this procedure for loguniform 
sampling on time and samples of sizes nS = 1000 and 5000 is illustrated in Figs. 15b and 15d.  As comparison of 
Figs. 15a and 15c with Figs. 15b and 15d shows, uniform sampling on time and loguniform sampling on time lead 
to similar estimates for the conditional results EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)].  How-
ever, as indicated by comparison of the dose curves in Figs. 11a and 12a with the dose curves in Figs. 11c and 12c, 
the distributions of the sampled dose curves are very different in appearance.  Thus, although the two approaches 
for sampling on time produce very different appearing intermediate results, the final results of interest are the same. 

 
As already indicated, the results in Fig. 15 are conditional on exactly one disruptive occurrence taking place in 

the time interval [a, b] = [10, 20,000 yr].  This conditionality assumption has an important but easily overlooked 
effect.  Specifically, the curves in Fig. 15 are functions of the length of the time interval on which the disruptive 
occurrence is assumed to take place.  Because of the uniform distribution of occurrence time, if a time interval [a, c] 
was under consideration with a < c < b, then the individual curves in Fig. 15 would shift by a factor related to the 
ratio (b − a)/(c − a) for a ≤ τ ≤ c.  Specifically, 
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and, similarly, 
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for a ≤ τ ≤ c ≤ b. 

The conditional results EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] can also be estimated 
with the evaluations of DD(τ |ti, pi, eDi) obtained in the implementation of Strategies 1 and 2 for the estimation of 
EE{EA[D(τ |a, eD)|eA]}.   

As an example for Strategy 1, the results associated with Eq. (8.12) can be used to obtain the approximations 
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where mijkl is defined in Eq. (8.16) and 
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In general, the form of the approximations to EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] ob-
tained in conjunction with Strategy 1 will depend on the properties of the procedure used to approximate the inte-
gral in Eq. (6.6) that defined EA[D(τ |a, eD)|eA]. 

As an example for Strategy 2, the results associated with Eq. (8.24) can be used to obtain the approximations 
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and 
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Similarly to Strategy 1, the form of the approximations to EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[D(τ) ≤ D|a ∈ A1(a, 
b)] obtained in conjunction with Strategy 2 will, in general, depend on the properties of the procedure used to ap-
proximate the integral in Eq. (8.20) that defines Et[DD(τ |p, eD, λD)]. 

The approximations to EE∪A[DD(τ)|a ∈ A1(a, b)] and pE∪A[DD(τ) ≤ D|a ∈ A1(a, b)] with results obtained as 
part of Strategies 1 and 2 for the evaluation of EE{EA[DD(τ |a, eD)|eA]} are illustrated in Fig. 16 for the function 
DD(τ |t, p, eD) and associated definitions for p, eA and eD introduced in conjunction with Eq. (8.3).  As should be 
the case, the results obtained with Strategy 1 and Strategy 2 are very similar and also very similar to the results ob-
tained with Strategy 3.  Any differences that exist between the results obtained with the different strategies are re-
sulting from approximation error rather than from inherent differences in the quantities being calculated. 

Although interesting, the quantile curves in Figs. 15 and 16 do not correspond to results associated with the ac-
ceptance criteria in Quotes (YMRP4) and (YMRP5) because they do not include the effects of λD and the uncer-
tainty in λD (e.g., see Quotes (NRC2), (YMRP3)).  Specifically, the absence of λD means that the likelihood of the 
disruptive event is not being included in the results summarized in Figs. 15 and 16. 
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Fig. 16. Combined epistemic and aleatory uncertainty in hypothetical dose conditional on exactly one disruptive 
occurrence taking place in the time interval [a, b] = [10, 20,000 yr] summarized as expected (combined 
conditional mean) dose ÊE∪A[DD(τ)|a ∈ A1(a, b)] and associated quantiles (i.e., 0.05, 0.5, 0.95) for 
DD(τ |t, p, eD) conditional on a = [t, p] ∈ A1(a, b)  defined by p̂E∪A[DD(τ) < D|a ∈ A1(a, b)] obtained 
with results from (i) Strategy 1 as indicated in Eqs. (9.15) and (9.16) with LHS of size 100, (ii) Strategy 2 
as indicated in Eqs. (9.18) and (9.19) with LHS of size 100, and (iii) Strategy 3 as indicated in Eqs. (9.9) 
and (9.10) with LHSs of size 5000 and outcomes shown for both uniform and loguniform sampling on time 
(i.e., there are two sets of curves for Strategy 3): (a) Linear scale, and (b) Log scale. 
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10.  Discussion 

As mandated in the Energy Policy Act of 1992,19 the EPA has promulgated public health and safety standards 
for radioactive material stored or disposed of in the YM repository20 and the NRC has developed licensing stan-
dards for the YM repository consistent with the EPA’s public health and safety standards.21  In turn, the DOE is 
required to show that the YM repository meets the NRC standards.  To facilitate the development and review of a 
licensing application for the YM repository, the NRC has also published a review plan.22 

At the core of the standards and review plan indicated in the preceding paragraph is the requirement to carry 
out a PA for the YM repository that ultimately predicts expected dose to the RMEI.  Further, there are many re-
quirements that relate in various ways to the treatment and representation of the effects of uncertainty.  Although the 
standards and review plan provide guidance with respect to the nature of the PA that DOE must carry out for the 
YM repository, this guidance is general and does not provide a complete technical (i.e., mathematical) description 
of what is desired.  Thus, a necessary initial step in a PA for the YM repository is to convert the primarily nonquan-
titative and nonstructured requirements specified by the EPA and the NRC into a mathematical structure that can 
guide the conceptual and computational organization of the PA.  Without the introduction of this structure, it is dif-
ficult to develop a PA for the YM repository that meets the EPA and NRC standards in a manner that is conceptu-
ally consistent, appropriately organized, and reasonably transparent.  The purpose of this presentation is to describe 
how to conceptually organize and implement a PA for the YM repository in a manner that is consistent with the 
NRC and EPA standards.  Fortunately, the general requirements on PA for the YM repository and the associated 
calculation of expected dose to the RMEI mandated by the EPA and NRC permit the design of a conceptually con-
sistent analysis, which in turn provides the basis for a well organized computational analysis. 

Near the beginning of this presentation, it is observed that, at an intuitive level, a PA can be viewed as an analy-
sis carried out to answer three questions about a system and one question about the analysis itself (see Questions 
(Q1) – (Q4)):  (i) “What can happen?”, (ii) “How likely is it to happen?”, (iii) “What are the consequences if it does 
happen?”, and (iv) “What is the uncertainty in the answers to the first three questions?”.  Characterizing a PA in this 
manner provides a good indication of what a PA is supposed to provide.  However, it does not provide the concep-
tual and mathematical structure that is needed to actually plan and implement a PA. 

Actually answering the four preceding questions leads to an analysis (i.e., a PA) that involves three basic con-
ceptual, and mathematically representable, entities:  (i) a probabilistic characterization of what could occur in the 
system under study, (ii) a numerical procedure (i.e., a model) for predicting system behavior given a particular oc-
currence, and (iii) a probabilistic representation of the uncertainty in analysis inputs that have fixed but poorly 
known values.  All three of the indicated entities are indicated, either specifically or by implication, at various 
places in the NRC and EPA standards for the YM repository.  Formally, the first entity is a probability space charac-
terizing aleatory uncertainty (i.e., uncertainty with respect to what might, or might not, occur in the future); the sec-
ond entity corresponds to the mathematical models used to predict system behavior (i.e., very complicated functions 
of what could happen based on mathematical structures such as ordinary differential equations, partial differential 
equations, algorithmic procedures, …); and the third entity is a probability space characterizing epistemic uncer-
tainty (i.e., uncertainty with respect to the appropriate values of quantities that are assumed to have fixed values in 
the context of the particular analysis under consideration).  Typically, the two indicated probability spaces are de-
fined by assigning distributions to individual variables. 

The preceding may sound intimidating but it corresponds to what must be defined to carry out a PA of the form 
indicated by the EPA and the NRC.  In particular, the expected dose to the RMEI specified by the EPA and the 
NRC is defined by a very complex integral that involves all three entities as extensively discussed and illustrated in 
this presentation.  Understanding the nature of these entities is essential to planning an evaluation of this integral 
(i.e., calculating expected dose to the RMEI) and presenting the uncertainty associated with this calculation.  With-
out a clear understanding, the calculation can be inappropriately implemented and the results of the calculation dif-
ficult, if not impossible, to interpret. 



 

 82

Given a single set of definitions for the three indicated entities, this presentation has described three different 
computational strategies that lead to the same expected dose to the RMEI, with this expectation calculated over both 
aleatory uncertainty (i.e., the first entity) and epistemic uncertainty (i.e., the third entity).  Although these strategies 
produce the same final result, they involve very different intermediate results and produce very different types of 
uncertainty information.  Of the three presented strategies for the calculation of expected dose to the RMEI, the au-
thors’ preference is for the first strategy because it maintains a separation between aleatory and epistemic uncer-
tainty.  In turn, this allows a display of the uncertainty in expected dose that derives from epistemic uncertainty and 
also provides the basis for sensitivity analyses to determine the variables that dominate the uncertainty in expected 
dose.  This separation of the effects of aleatory and epistemic uncertainty is consistent with the NRC’s emphasis on 
the importance of an adequate treatment and display of the effects of uncertainty. 

Probabilistic results involving both stationary and nonstationary Poisson processes are presented in Sect. 4.  
The results in Sects. 5 – 9 are presented for disruptive events whose potential occurrence is assumed to be character-
ized by a stationary Poisson process (i.e., for constant values for λD, λI and λS).  However, similar results hold for 
nonstationary Poisson processes and can be obtained with the corresponding results for Sect. 4 and appropriate 
modifications to the presented derivations. 

This presentation has not considered the possible implications of the remand of the EPA standard for not re-
quiring the consideration of dose to the RMEI to time of peak dose and the EPA’s reformulated standard requiring 
the consideration of a median, rather than a mean, dose from 10,000 to 1,000,000 yr.180-182  However, it is noted 
that the first computationally strategy provides a conceptually consistent approach to the calculation of both ex-
pected and median doses. 



 

 83

11.  References 

1. Rechard, R.P. 2000. "Historical Background on Performance Assessment for the Waste Isolation Pilot Plant," 
Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 5-46. 

2. Carter, L.J. and T.H. Pigford. 1999. "The World's Growing Inventory of Civil Spent Fuel," Arms Control 
Today. Vol. 29, no. 1, pp. 8-14. 

3. Ewing, R.C. 1999. "Less Geology in the Geological Disposal of Nuclear Waste," Science. Vol. 286, pp. 415-
416. 

4. Ewing, R.C., M.S. Tierney, L.K. Konikow, and R.P. Rechard. 1999. "Performance Assessments for Nuclear 
Waste Repositories:  A Dialogue on Their Values and Limitations," Risk Analysis. Vol. 19, no. 5, pp. 933-
958. 

5. North, D.W. 1999. "A Perspective on Nuclear Waste," Risk Analysis. Vol. 19, no. 4, pp. 751-758. 

6. Okrent, D. 1999. "On Intergenerational Equity and Its Clash with Intragenerational Equity and on the Need 
for Policies to Guide the Regulation of Disposal of Wastes and Other Activities Posing Very Long-Term 
Risks," Risk Analysis. Vol. 19, no. 5, pp. 877-901. 

7. Rechard, R.P. 1999. "Historical Relationship Between Performance Assessment for Radioactive Waste Dis-
posal and Other Types of Risk Assessment," Risk Analysis. Vol. 19, no. 5, pp. 763-807. 

8. Ahearne, J.F. 1997. "Radioactive Waste:  The Size of the Problem," Physics Today. Vol. 50, no. 6, pp. 24-29. 

9. Crowley, K.D. 1997. "Nuclear Waste Disposal:  The Technical Challenges," Physics Today. Vol. 50, no. 6, 
pp. 32-39. 

10. Flynn, J., R.E. Kasperson, H. Kunreuther, and P. Slovic. 1997. "Overcoming Tunnel Vision:  Redirecting the 
U.S. High-Level Nuclear Waste Program," Environment. Vol. 39, no. 3, pp. 6-11, 25-30. 

11. Kastenburg, W.E. and L.J. Gratton. 1997. "Hazards of Managing and Disposing of Nuclear Waste," Physics 
Today. Vol. 50, no. 6, pp. 41-46. 

12. McCombie, C. 1997. "Nuclear Waste Management Worldwide," Physics Today. Vol. 50, no. 6, pp. 56-62. 

13. North, D.W. 1997. "Unresolved Problems of Radioactive Waste:  Motivation for a New Paradigm," Physics 
Today. Vol. 50, no. 6, pp. 48-54. 

14. U.S. DOE (U.S. Department of Energy). 2002. Final Environmental Impact Statement for a Geologic Re-
pository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye 
County, Nevada, DOE/EIS-0250F. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radio-
active Waste Management.  

15. U.S. DOE (U.S. Department of Energy). 2002. Yucca Mountain Science and Engineering Report, Rev. 1, 
DOE/RW-05391. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Man-
agement.  

16. CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor). 
2000. Total System Performance Assessment for the Site Recommendation, TDR-WIS-PA-000001 REV 00. 
Las Vegas, NV: CRWMS M&O.  



 

 84

17. U.S. DOE (U.S. Department of Energy). 1998. Viability Assessment of a Repository at Yucca Mountain, 
DOE/RW-0508. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Man-
agement.  

18. USGS (U.S. Geological Survey). 1999. Yucca Mountain as a Radioactive Waste Repository, Circular 1184.  
Denver, CO: USGS Information Services.  

19. Public Law 102-486. 1992. Energy Policy Act of 1992.  

20. U.S. EPA (U.S. Environmental Protection Agency). 2001. "40 CFR 197:  Public Health and Environmental 
Protection Standards for Yucca Mountain, NV; Final Rule," Federal Register. Vol. 66, no. 114, pp. 32074-
32135. 

 
21. U.S. NRC (U.S. Nuclear Regulatory Commission). 2001. "10 CFR Parts 2, 19, 20, etc.:  Disposal of High-

Level Radioactive Wastes in a Proposed Geologic Repository at Yucca Mountain, Nevada; Final Rule," Fed-
eral Register. Vol. 66, no. 213, pp. 55732-55816. 

22. U.S. NRC (U.S. Nuclear Regulatory Commission). 2003. Yucca Mountain Review Plan, Final Report, 
NUREG-1804, Rev. 2. Washington, D.C.: U.S. Nuclear Regulatory Commission.  

23. Helton, J.C. 1997. "Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncer-
tainty," Journal of Statistical Computation and Simulation. Vol. 57, no. 1-4, pp. 3-76. 

24. Helton, J.C. and D.E. Burmaster. 1996. "Guest Editorial:  Treatment of Aleatory and Epistemic Uncertainty 
in Performance Assessments for Complex Systems," Reliability Engineering and System Safety. Vol. 54, no. 
2-3, pp. 91-94. 

25. Paté-Cornell, M.E. 1996. "Uncertainties in Risk Analysis:  Six Levels of Treatment," Reliability Engineering 
and System Safety. Vol. 54, no. 2-3, pp. 95-111. 

26. Winkler, R.L. 1996. "Uncertainty in Probabilistic Risk Assessment," Reliability Engineering and System 
Safety. Vol. 54, no. 2-3, pp. 127-132. 

27. Hoffman, F.O. and J.S. Hammonds. 1994. "Propagation of Uncertainty in Risk Assessments: The Need to 
Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability," Risk 
Analysis. Vol. 14, no. 5, pp. 707-712. 

28. Helton, J.C. 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk 
Analysis. Vol. 14, no. 4, pp. 483-511. 

29. Apostolakis, G. 1990. "The Concept of Probability in Safety Assessments of Technological Systems," Sci-
ence. Vol. 250, no. 4986, pp. 1359-1364. 

30. Haan, C.T. 1989. "Parametric Uncertainty in Hydrologic Modeling," Transactions of the ASAE. Vol. 32, no. 
1, pp. 137-146. 

31. Parry, G.W. and P.W. Winter. 1981. "Characterization and Evaluation of Uncertainty in Probabilistic Risk 
Analysis," Nuclear Safety. Vol. 22, no. 1, pp. 28-42. 

32. Kaplan, S. and B.J. Garrick. 1981. "On the Quantitative Definition of Risk," Risk Analysis. Vol. 1, no. 1, pp. 
11-27. 

33. Ghosh, S.T. and G.E. Apostolakis. 2006. "Extracting Risk Insights from Performance Assessments for High-
Level Radioactive Waste Repositories," Nuclear Technology. Vol. 153, no. 1, pp. 70-88. 



 

 85

34. Garrick, B.J. 2005. "Activities of the Advisory Committee on Nuclear Waste and Perspectives on Selected 
Technical Issues," Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. Vol. 9, no. 
1, pp. 33-44. 

35. Carter, L.J. and T.H. Pigford. 2005. "Proof of Safety at Yucca Mountain," Science. Vol. 310, pp. 447-448. 

36. Moeller, D.W. and M.T. Ryan. 2005. "Sensitivity Analyses of the Standards for the Proposed Yucca Moun-
tain Repository--A Review, Evaluation, and Commentary," Health Physics. Vol. 88, no. 5, pp. 459-468. 

37. Dyer, J.R. and M.T. Peters. 2004. "Progress in Permanent Geologic Disposal of Spent Nuclear Fuel and 
High-Level Radioactive Waste in the United States," Proceedings of the Institution of Mechanical Engineers 
-- Part A -- Power & Energy. Vol. 218, no. 5, pp. 319-334. 

38. Long, J.C.S. and R.C. Ewing. 2004. "Yucca Mountain:  Earth-Science Issues at a Geologic Repository for 
High-Level Nuclear Waste," Annual Review of Earth and Planetary Science. Vol. 32, pp. 363-401. 

39. Codell, R.B. 2004. "Alternative Igneous Source Term Model for Tephra Dispersal at the Yucca Mountain 
Repository," Nuclear Technology. Vol. 148, pp. 205-212. 

40. Moeller, D.W. and M.T. Ryan. 2004. "Limitations on Upper Bound Dose to Adults Due to Intake of 129I in 
Drinking Water and a Total Diet--Implications Relative to the Proposed Yucca Mountain High Level Radio-
active Waste Repository," Health Physics. Vol. 86, no. 6, pp. 586-589. 

41. Mohanty, S. and R.B. Codell. 2004. "Independent Postclosure Performance Estimates of the Proposed Re-
pository at Yucca Mountain," Nuclear Technology. Vol. 148, pp. 105-114. 

42. Macfarlane, A. 2003. "Underlying Yucca Mountain:  The Interplay of Geology and Policy in Nuclear Waste 
Disposal," Social Studies of Science. Vol. 33, no. 5, pp. 783-807. 

43. Garrick, B.J. and V. Gilinsky. 2002. "Yucca Mountain:  Pro & Con," IEEE Spectrum. Vol. 39, no. 10, pp. 
41-45. 

44. Mohanty, S. and B. Sagar. 2002. "Importance of Transparency and Traceability in Building a Safety Case for 
High-Level Nuclear Waste Repositories," Risk Analysis. Vol. 22, no. 1, pp. 7-15. 

45. Lu, Y. and S. Mohanty. 2001. "Sensitivity Analysis of a Complex, Proposed Geologic Waste Disposal Sys-
tem Using the Fourier Amplitude Sensitivity Test Method," Reliability Engineering and System Safety. Vol. 
72, pp. 275-291. 

46. Stepp, J.C., I. Wong, J. Whitney, R. Quittmeyer, N. Abrahamson, G. Toro, R. Youngs, K. Coppersmith, J. 
Savy, T. Sullivan, and Yucca Mountain PSHA Project Members. 2001. "Probabilistic Seismic Hazard Analy-
ses for Ground Motions and Fault Displacement at Yucca Mountain, Nevada," Earthquake Spectra. Vol. 17, 
no. 1, pp. 113-151. 

47. Mohanty, S. and Y-T. Wu. 2001. "CDF Sensitivity Analysis Techniques for Ranking Influential Parameters 
in the Performance Assessment of the Proposed High-Level Waste Repository at Yucca Mountain, Nevada, 
USA," Reliability Engineering and System Safety. Vol. 73, pp. 167-176. 

48. Cragnolino, G.A., S. Mohanty, D.S. Dunn, N. Sridhar, and T.M. Ahn. 2000. "An Approach to the Assess-
ment of High-Level Radioactive Waste Containment.  I:  Waste Package Degradation," Nuclear Engineering 
and Design. Vol. 201, pp. 289-306. 



 

 86

49. Mohanty, S., R.B. Codell, T.M. Ahn, and G.A. Cragnolino. 2000. "An Approach to the Assessment of High-
Level Radioactive Waste Containment.  II:  Radionuclide Releases From an Engineered Barrier System," Nu-
clear Engineering and Design. Vol. 201, pp. 307-325. 

50. Jarzemba, M.S. 1997. "Stochastic Radionuclide Distributions After a Basaltic Eruption for Performance As-
sessments of Yucca Mountain," Nuclear Technology. Vol. 118, pp. 132-141. 

51. Garrick, B.J. and S. Kaplan. 1994. Quantitative Performance Assessment of Nuclear Waste Repositories, 
Prepared for U.S. Nuclear Waste Technical Review Board. Irvine, CA: Pickard, Lowe and Garrick, Inc.  

52. Helton, J.C., D.R. Anderson, G. Basabilvazo, H.-N. Jow, and M.G. Marietta. 2000. "Conceptual Structure of 
the 1996 Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System 
Safety. Vol. 69, no. 1-3, pp. 151-165. 

53. Helton, J.C. 2003. "Mathematical and Numerical Approaches in Performance Assessment for Radioactive 
Waste Disposal:  Dealing with Uncertainty," Modelling Radioactivity in the Environment. Eds. E.M. Scott. 
New York, NY: Elsevier Science. 353-390. 

54. NRC (National Research Council). 1995. Technical Bases for Yucca Mountain Standards, Washington, DC: 
National Academy Press.  

55. U.S. NRC (U.S. Nuclear Regulatory Commission). 2002. "10 CFR Part 63:  Specification of a Probability for 
Unlikely Features, Events and Processes," Federal Register. Vol. 67, no. 195, pp. 62628-62634. 

56. U.S. NRC (U.S. Nuclear Regulatory Commission). 1975. Reactor Safety Study—An Assessment of Accident 
Risks in U.S. Commercial Nuclear Power Plants, WASH-1400 (NUREG-75/014). Washington, DC: U.S. 
Nuclear Regulatory Commission.  

57. PLG (Pickard Lowe and Garrick, I., Westinghouse Electric Corporation, and Fauske & Associates, Inc.). 
1983. Seabrook Station Probabilistic Safety Assessment. Newport Beach: Prepared for Public Service Com-
pany of New Hampshire and Yankee Atomic Electric Company.  Irvine:  Pickard, Lowe and Garrick, Inc.  
(Available from the NTIS as PB84-186949 and PB84-186931.). 

58. PLG (Pickard Lowe and Garrick, I., Westinghouse Electric Corporation, and Fauske & Associates, Inc.). 
1982. Indian Point Probabilistic Safety Study, Prepared for the Power Authority of the State of New York 
and Consolidated Edison Company of New York, Inc. Irvine, CA: Pickard, Lowe and Garrick, Inc.  

59. U.S. NRC (U.S. Nuclear Regulatory Commission). 1990-1991. Severe Accident Risks: An Assessment for 
Five U.S. Nuclear Power Plants, NUREG-1150, Vols. 1-3. Washington, DC: U.S. Nuclear Regulatory Com-
mission, Office of Nuclear Regulatory Research, Division of Systems Research.  

60. Breeding, R.J., J.C. Helton, E.D. Gorham, and F.T. Harper. 1992. "Summary Description of the Methods 
Used in the Probabilistic Risk Assessments for NUREG-1150," Nuclear Engineering and Design. Vol. 135, 
no. 1, pp. 1-27. 

61. U.S. DOE (U.S. Department of Energy). 1996. Title 40 CFR Part 191 Compliance Certification Application 
for the Waste Isolation Pilot Plant, DOE/CAO-1996-2184, Vols. I-XXI. Carlsbad, NM: U.S. Department of 
Energy, Carlsbad Area Office, Waste Isolation Pilot Plant.  

62. Helton, J.C. and M.G. Marietta. 2000. "Special Issue: The 1996 Performance Assessment for the Waste Iso-
lation Pilot Plant," Reliability Engineering and System Safety. Vol. 69, no. 1-3, pp. 1-451. 

63. Feller, W. 1971. An Introduction to Probability Theory and Its Applications. Vol. 2, 2nd ed. New York, NY: 
John Wiley & Sons. 



 

 87

64. Hsu, M., M. Bhatt, R. Adolphs, D. Tranel, and C.F. Camerer. 2005. "Neural Systems Responding to Degrees 
of Uncertainty in Human Decision-Making," Science. Vol. 310, no. 5754, pp. 1680-1683. 

65. Garthwaite, P.H., J.B. Kadane, and A. O'Hagan. 2005. "Statistical Methods for Eliciting Probability Distribu-
tions," Journal of the American Statistical Association. Vol. 100, no. 470, pp. 680-700. 

66. Cooke, R.M. and L.H.J. Goossens. 2004. "Expert Judgement Elicitation for Risk Assessment of Critical In-
frastructures," Journal of Risk Research. Vol. 7, no. 6, pp. 643-656. 

67. Ayyub, B.M. 2001. Elicitation of Expert Opinions for Uncertainty and Risks, Boca Raton, FL: CRC Press.  

68. McKay, M. and M. Meyer. 2000. "Critique of and Limitations on the use of Expert Judgements in Accident 
Consequence Uncertainty Analysis," Radiation Protection Dosimetry. Vol. 90, no. 3, pp. 325-330. 

69. Budnitz, R.J., G. Apostolakis, D.M. Boore, L.S. Cluff, K.J. Coppersmith, C.A. Cornell, and P.A. Morris. 
1998. "Use of Technical Expert Panels: Applications to Probabilistic Seismic Hazard Analysis," Risk Analy-
sis. Vol. 18, no. 4, pp. 463-469. 

70. Evans, J.S., G.M. Gray, R.L. Sielken Jr., A.E. Smith, C. Valdez-Flores, and J.D. Graham. 1994. "Use of 
Probabilistic Expert Judgement in Uncertainty Analysis of Carcinogenic Potency," Regulatory Toxicology 
and Pharmacology. Vol. 20, no. 1, pt. 1, pp. 15-36. 

71. Chhibber, S., G. Apostolakis, and D. Okrent. 1992. "A Taxonomy of Issues Related to the Use of Expert 
Judgments in Probabilistic Safety Studies," Reliability Engineering and System Safety. Vol. 38, no. 1-2, pp. 
27-45. 

72. Thorne, M.C. and M.M.R. Williams. 1992. "A Review of Expert Judgement Techniques with Reference to 
Nuclear Safety," Progress in Nuclear Safety. Vol. 27, no. 2-3, pp. 83-254. 

73. Cooke, R.M. 1991. Experts in Uncertainty:  Opinion and Subjective Probability in Science. Oxford; New 
York: Oxford University Press. 

74. Keeney, R.L. and D.V. Winterfeldt. 1991. "Eliciting Probabilities from Experts in Complex Technical Prob-
lems," IEEE Transactions on Engineering Management. Vol. 38, no. 3, pp. 191-201. 

75. Meyer, M.A. and J.M. Booker. 1991. Eliciting and Analyzing Expert Judgment:  A Practical Guide. New 
York, NY: Academic Press. 

76. Hora, S.C. and R.L. Iman. 1989. "Expert Opinion in Risk Analysis: The NUREG-1150 Methodology," Nu-
clear Science and Engineering. Vol. 102, no. 4, pp. 323-331. 

77. Ortiz, N.R., T.A. Wheeler, R.J. Breeding, S. Hora, M.A. Meyer, and R.L. Keeney. 1991. "Use of Expert 
Judgment in NUREG-1150," Nuclear Engineering and Design. Vol. 126, no. 3, pp. 313-331. 

78. Harper, F.T., R.J. Breeding, T.D. Brown, J.J. Gregory, A.C. Payne, E.D. Gorham, and C.N. Amos. 1990. 
Evaluation of Severe Accident Risks:  Quantification of Major Input Parameters, Expert Opinion Elicitation 
on In-Vessel Issues, NUREG/CR-4551, SAND86-1309, Vol. 2, Part 1, Rev. 1. Albuquerque, NM: Sandia 
National Laboratories.  

79. Harper, F.T., A.C. Payne, R.J. Breeding, E.D. Gorham, T.D. Brown, G.S. Rightley, J.J. Gregory, W. Murfin, 
and C.N. Amos. 1991. Evaluation of Severe Accident Risks:  Quantification of Major Input Parameters, Ex-
perts' Determination of Containment Loads and Molten Core-Concrete Issues, NUREG/CR-4551, SAND86-
1309, Vol. 2, Part 2, Rev. 1. Albuquerque, NM: Sandia National Laboratories.  



 

 88

80. Breeding, R.J., F.T. Harper, T.D. Brown, J.J. Gregory, A.C. Payne, E.D. Gorham, W. Murfin, and C.N. 
Amos. 1992. Evaluation of Severe Accident Risks:  Quantification of Major Input Parameters, Experts' De-
termination of Structural Response Issues, NUREG/CR-4551, SAND86-1309, Vol. 2, Part 3, Rev. 1. Albu-
querque, NM: Sandia National Laboratories.  

81. Harper, F.T., R.J. Breeding, T.D. Brown, J.J. Gregory, H.-N. Jow, A.C. Payne, E.D. Gorham, C.N. Amos, 
J.C. Helton, and G. Boyd. 1992. Evaluation of Severe Accident Risks:  Quantification of Major Input Pa-
rameters, Experts' Determination of Source Term Issues, NUREG/CR-4551, SAND86-1309, Vol. 2, Part 4, 
Rev. 1. Albuquerque, NM: Sandia National Laboratories.  

82. Wheeler, T.A., S.C. Hora, W.R. Cramond, and S.D. Unwin. 1989. Analysis of Core Damage Frequency:  
Expert Judgment Elicitation, NUREG/CR-4550, SAND86-2084, Vol. 2, Rev. 1. Albuquerque, NM: Sandia 
National Laboratories.  

83. Harper, F.T., L.H.J. Goossens, R.M. Cooke, S.C. Hora, M.L. Young, J. Päsler-Sauer, L.A. Miller, B. Kraan, 
C.H. Lui, M.D. McKay, J.C. Helton, and J.A. Jones. 1995. Probabilistic Accident Consequence Uncertainty 
Analysis:  Dispersion and Deposition Uncertainty Assessment, NUREG/CR-6244, EUR 15855EN, SAND94-
1453, Vols. 1-3. Washington, D.C.: U.S. Nuclear Regulatory Commission.  

84. Goossens, L.H.J., J. Boardman, B.C.P. Kraan, R.M. Cooke, J.A. Jones, F.T. Harper, M.L. Young, and S.C. 
Hora. 1997. Probabilistic Accident Consequence Uncertainty Analysis:  Uncertainty Assessment for Depos-
ited Material and External Doses, NUREG/CR-6526, EUR 16772, SAND97-2323, Vols. 1 & 2. Washington, 
D.C.: U.S. Nuclear Regulatory Commission.  

85. Haskin, F.E., F.T. Harper, L.H.J. Goossens, B.C.P. Kraan, and J.B. Grupa. 1997. Probabilistic Accident Con-
sequence Uncertainty Analysis:  Early Health Effects Uncertainty Assessment, NUREG/CR-6545, EUR 
16775, SAND97-2689, Vols. 1 & 2. Washington, D.C.: U.S. Nuclear Regulatory Commission.  

86. Little, M.P., C.R. Muirhead, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke, F.T. Harper, and S.C. Hora. 1997. 
Probabilistic Accident Consequence Uncertainty Analysis:  Late Health Effects Uncertainty Assessment, 
NUREG/CR-6555, EUR 16774, SAND97-2322, Vols. 1 & 2. Washington, D.C.: U.S. Nuclear Regulatory 
Commission.  

87. Goossens, L.H.J., J.D. Harrison, B.C.P. Kraan, R.M. Cooke, F.T. Harper, and S.C. Hora. 1998. Probabilistic 
Accident Consequence Uncertainty Analysis:  Uncertainty Assessment for Internal Dosimetry, NUREG/CR-
6571, EUR 16773, SAND98-0119, Vols. 1 & 2. Washington, D.C.: U.S. Nuclear Regulatory Commission.  

88. Klir, G.J. 2005. Uncertainty and Information:  Foundations of Generalized Information Theory. Hoboken, 
NJ: Wiley. 

89. Helton, J.C., J.D. Johnson, and W.L. Oberkampf. 2004. "An Exploration of Alternative Approaches to the 
Representation of Uncertainty in Model Predictions," Reliability Engineering and System Safety. Vol. 85, no. 
1-3, pp. 39-71. 

90. Klir, G.J. 2004. "Generalized Information Theory:  Aims, Results, and Open Problems," Reliability Engi-
neering and System Safety. Vol. 85, no. 1-3, pp. 21-38. 

91. Ross, T.J. 2004. Fuzzy Logic with Engineering Applications. 2nd ed. New York, NY: Wiley. 

92. Halpern, J.Y. 2003. Reasoning about Uncertainty. Cambridge, MA: MIT Press. 

93. Ross, T.J., J.M. Booker, and W.J. Parkinson (eds.). 2002. Fuzzy Logic and Probability Applications:  Bridg-
ing the Gap. Philadelphia, PA: Society for Industrial and Applied Mathematics. 



 

 89

94. Jaulin, L., M. Kieffer, O. Didrit, and E. Walter. 2001. Applied Interval Analysis. New York, NY: Springer-
Verlag. 

 
95. Wolkenhauer, O. 2001. Data Engineering:  Fuzzy Mathematics in Systems Theory and Data Analysis. New 

York, NY: Wiley. 

96. Klir, G.J. and M.J. Wierman. 1999. Uncertainty-Based Information, New York, NY: Physica-Verlag.  

97. Yager, R.R., J. Kacprzyk, and M. Fedrizzi (eds). 1994. Advances in the Dempster-Shafer Theory of Evidence. 
New York, NY: Wiley. 

98. Diaz, N.J. 2003. "Realism and Conservatism, Remarks by Chairman Diaz at the 2003 Nuclear Safety Re-
search Conference, October 20, 2003," NRC News. No. S-03-023.  Washington, D.C.: U.S. Nuclear Regula-
tory Commission.  

99. Paté-Cornell, E. 2002. "Risk and Uncertainty Analysis in Government Safety Decisions," Risk Analysis. Vol. 
22, no. 3, pp. 633-646. 

100. Caruso, M.A., M.C. Cheok, M.A. Cunningham, G.M. Holahan, T.L. King, G.W. Parry, A.M. Ramey-Smith, 
M.P. Rubin, and A.C. Thadani. 1999. "An Approach for Using Risk Assessment in Risk-Informed Decisions 
on Plant-Specific Changes to the Licensing Basis," Reliability Engineering and System Safety. Vol. 63, pp. 
231-242. 

101. Sielken, R.L., Jr., R.S. Bretzlaff, and D.E. Stevenson. 1995. "Challenges to Default Assumptions Stimulate 
Comprehensive Realism as a New Tier in Quantitative Cancer Risk Assessment," Regulatory Toxicology and 
Pharmacology. Vol. 21, pp. 270-280. 

102. Nichols, A.L. and R.J. Zeckhauser. 1988. "The Perils of Prudence: How Conservative Risk Assessments Dis-
tort Regulation," Regulatory Toxicology and Pharmacology. Vol. 8, pp. 61-75. 

103. MacKinnon, R.J., G. Freeze, and H.-N. Jow. 1997. Summary of EPA-Mandated Performance Assessment 
Verification Test (Replicate 1) and Comparison with the Compliance Certification Application Calculations, 
Technical Data Package (Sandia WIPP Central Files WPO #46674). Albuquerque, NM: Sandia National 
Laboratories.  

104. Mosleh, A., N. Siu, C. Smidts, and C. Liu. 1994. "Proceedings of Workshop I in Advanced Topics in Risk 
and Reliability Analysis, Model Uncertainty:  Its Characterization and Quantification," NUREG/CP-0138.  
Washington, D.C.: U.S. Nuclear Regulatory Commission.  

105. Hacking, I. 1975. The Emergence of Probability:  A Philosophical Study of Early Ideas About Probability, 
Induction and Statistical Inference. London; New York: Cambridge University Press. 

106. Shafer, G. 1978. "Non-Additive Probabilities in Work of Bernoulli and Lambert," Archive for History of Ex-
act Sciences. Vol. 19, no. 4, pp. 309-370. 

107. Bernstein, P.L. 1996. Against the Gods:  The Remarkable Story of Risk. New York: John Wiley & Sons. 

108. Paté-Cornell, M.E. 1986. "Probability and Uncertainty in Nuclear Safety Decisions," Nuclear Engineering 
and Design. Vol. 93, no. 2-3, pp. 319-327. 

109. Apostolakis, G.E. 1989. "Uncertainty in Probabilistic Risk Assessment," Nuclear Engineering and Design. 
Vol. 115, pp. 173-179. 



 

 90

110. Kaplan, S. 1993. "Formalisms for Handling Phenomenological Uncertainties: The Concepts of Probability, 
Frequency, Variability, and Probability of Frequency," Nuclear Technology. Vol. 102, no. 1, pp. 137-142. 

111. Connor, C.B. and B.E. Hill. 1995. "Three Nonhomogeneous Poisson Models for the Probability of Basaltic 
Volcanism:  Application to the Yucca Mountain Region, Nevada," Journal of Geophysical Research. Vol. 
100, no. B6, pp. 10, 107-110, 125. 

112. Ross, S.M. 1993. Introduction to Probability Models. 5th ed. New York, NY: Academic Press. 

113. Cramér, H. and H. Leadbetter. 1966. Stationary and Related Stochastic Processes. New York, NY: Wiley. 

114. Haight, F.A. 1967. Handbook of the Poisson Distribution. New York: John Wiley & Sons. 

115. Ross, S.M. 1983. Stochastic Processes. New York, NY: Wiley. 

116. Helton, J.C. 1993. "Drilling Intrusion Probabilities for Use in Performance Assessment for Radioactive 
Waste Disposal," Reliability Engineering and System Safety. Vol. 40, no. 3, pp. 259-275. 

117. Parzen, E. 1960. Modern Probability Theory and Its Applications. New York, NY: John Wiley & Sons. 

118. Evans, M. and T. Swartz. 2000. Approximating Integrals via Monte Carlo and Deterministic Methods. Ox-
ford, New York: Oxford University Press. 

119. McKay, M.D., R.J. Beckman, and W.J. Conover. 1979. "A Comparison of Three Methods for Selecting Val-
ues of Input Variables in the Analysis of Output from a Computer Code," Technometrics. Vol. 21, no. 2, pp. 
239-245. 

120. Helton, J.C. and F.J. Davis. 2003. "Latin Hypercube Sampling and the Propagation of Uncertainty in Analy-
ses of Complex Systems," Reliability Engineering and System Safety. Vol. 81, no. 1, pp. 23-69. 

121. Iman, R.L. and W.J. Conover. 1980. "Small Sample Sensitivity Analysis Techniques for Computer Models, 
with an Application to Risk Assessment," Communications in Statistics:  Theory and Methods. Vol. A9, no. 
17, pp. 1749-1842. 

122. Iman, R.L., J.C. Helton, and J.E. Campbell. 1981. "An Approach to Sensitivity Analysis of Computer Mod-
els, Part 1.  Introduction, Input Variable Selection and Preliminary Variable Assessment," Journal of Quality 
Technology. Vol. 13, no. 3, pp. 174-183. 

123. Iman, R.L., J.C. Helton, and J.E. Campbell. 1981. "An Approach to Sensitivity Analysis of Computer Mod-
els, Part 2.  Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique 
Synopsis," Journal of Quality Technology. Vol. 13, no. 4, pp. 232-240. 

124. Iman, R.L. 1992. "Uncertainty and Sensitivity Analysis for Computer Modeling Applications," Reliability 
Technology - 1992, The Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, 
California, November 8-13, 1992. Eds. T.A. Cruse. Vol. 28, pp. 153-168.  New York, NY: American Society 
of Mechanical Engineers, Aerospace Division.  

125. Helton, J.C. 1993. "Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for 
Radioactive Waste Disposal," Reliability Engineering and System Safety. Vol. 42, no. 2-3, pp. 327-367. 

126. Kleijnen, J.P.C. and J.C. Helton. 1999. "Statistical Analyses of Scatterplots to Identify Important Factors in 
Large-Scale Simulations, 1:  Review and Comparison of Techniques," Reliability Engineering and System 
Safety. Vol. 65, no. 2, pp. 147-185. 



 

 91

127. Helton, J.C. and F.J. Davis. 2000. "Sampling-Based Methods," Sensitivity Analysis. Ed. A. Saltelli, K. Chan, 
and E.M. Scott. New York, NY: Wiley.  pp. 101-153.  

128. Helton, J.C. and F.J. Davis. 2002. "Illustration of Sampling-Based Methods for Uncertainty and Sensitivity 
Analysis," Risk Analysis. Vol. 22, no. 3, pp. 591-622. 

129. Helton, J.C., J.D. Johnson, C.J. Sallaberry, and C.B. Storlie. 2006. "Survey of Sampling-Based Methods for 
Uncertainty and Sensitivity Analysis," Reliability Engineering and System Safety. Vol. 91, no. 10-11, pp. 
1175-1209. 

130. Campbell, J.E., R.T. Dillon, M.S. Tierney, H.T. Davis, P.E. McGrath, F.J. Pearson, H.R. Shaw, J.C. Helton, 
and F.A. Donath. 1978. Risk Methodology for Geologic Disposal of Radioactive Waste: Interim Report, 
SAND78-0029, NUREG/CR-0458. Albuquerque, NM: Sandia National Laboratories.  

131. Iman, R.L., J.C. Helton, and J.E. Campbell. 1978. Risk Methodology for Geologic Disposal of Radioactive 
Waste: Sensitivity Analysis Techniques, SAND78-0912, NUREG/CR-0390. Albuquerque, NM: Sandia Na-
tional Laboratories.  

132. Iman, R.L., J.M. Davenport, and D.K. Ziegler. 1980. Latin Hypercube Sampling (Program User's Guide), 
SAND79-1473. Albuquerque, NM: Sandia National Laboratories.  

133. Iman, R.L. and W.J. Conover. 1980. Risk Methodology for Geologic Disposal of Radioactive Waste - A Dis-
tribution-Free Approach to Inducing Rank Correlation Among Input Variables for Simulation Studies, 
SAND80-0157, NUREG-CR-1262. Albuquerque, NM: Sandia National Laboratories.  

134. Iman, R.L., W.J. Conover, and J.E. Campbell. 1980. Risk Methodology for Geologic Disposal of Radioactive 
Waste:  Small Sample Sensitivity Analysis Techniques for Computer Models, with an Application to Risk As-
sessment, SAND80-0020, NUREG-CR-1397. Albuquerque, NM: Sandia National Laboratories.  

135. Iman, R.L. and J.M. Davenport. 1980. Rank Correlation Plots for Use with Correlated Input Variables in 
Simulation Studies, SAND80-1903. Albuquerque, NM: Sandia National Laboratories.  

136. Helton, J.C. and R.L. Iman. 1980. Risk Methodology for Geologic Disposal of Radioactive Waste:  Sensitivity 
Analysis of the Environmental Transport Model, NUREG/CR-1636, SAND79-1393. Albuquerque, NM: San-
dia National Laboratories.  

137. Campbell, J.E., R.L. Iman, and M. Reeves. 1980. Risk Methodology for Geologic Disposal of Radioactive 
Waste:  Transport Model Sensitivity Analysis, NUREG/CR-1377, SAND80-0644. Albuquerque, NM: Sandia 
National Laboratories.  

138. Iman, R.L., J.M. Davenport, E.L. Frost, and M.J. Shortencarier. 1980. Stepwise Regression with PRESS and 
Rank Regression (Program User’s Guide), SAND79-1472. Albuquerque, NM: Sandia National Laboratories.  

139. Iman, R.L. and W.J. Conover. 1982. Sensitivity Analysis Techniques, Self-Teaching Curriculum, 
NUREG/CR-2350, SAND81-1978. Albuquerque, NM: Sandia National Laboratories.  

140. Cranwell, R.M., J.E. Campbell, J.C. Helton, R.L. Iman, D.E. Longsine, N.R. Ortiz, G.E. Runkle, and M.J. 
Shortencarier. 1987. Risk Methodology for Geologic Disposal of Radioactive Waste:  Final Report, 
SAND81-2573, NUREG/CR-2452. Albuquerque, NM: Sandia National Laboratories.  

141. Lewis, H.W., R.J. Budnitz, H.J.C. Kouts, W.B. Loewenstein, W.D. Rowe, F. von Hippel, and F. Zachariasen. 
1978. Risk Assessment Review Group Report to the U.S. Nuclear Regulatory Commission, NUREG/CR-
0400. Washington, D.C.: U.S. Nuclear Regulatory Commission.  



 

 92

142. Sprung, J.L., D.C. Aldrich, D.J. Alpert, M.A. Cunningham, and G.G. Weigand. 1983. "Overview of the 
MELCOR Risk Code Development Program," Proceedings of the International Meeting on Light Water Re-
actor Severe Accident Evaluation. Cambridge, MA, August 28-September 1, 1983.  Boston, MA:  Stone and 
Webster Engineering Corporation: TS-10.1-1 to TS-10.1-8. 

143. Iman, R.L. and M.J. Shortencarier. 1984. A FORTRAN 77 Program and User's Guide for the Generation of 
Latin Hypercube and Random Samples for Use with Computer Models, NUREG/CR-3624, SAND83-2365. 
Albuquerque, NM: Sandia National Laboratories.  

144. Alpert, D.J., R.L. Iman, J.C. Helton, and J.D. Johnson. 1985. A Demonstration Uncertainty/Sensitivity Analy-
sis Using the Health and Economic Consequence Model CRAC2, NUREG/CR-4199, SAND84-1824. Albu-
querque: Sandia National Laboratories.  

145. Iman, R.L. and J.C. Helton. 1985. A Comparison of Uncertainty and Sensitivity Analysis Techniques for 
Computer Models, NUREG/CR-3904, SAND84-1461. Albuquerque, NM: Sandia National Laboratories.  

146. Iman, R.L., M.J. Shortencarier, and J.D. Johnson. 1985. A FORTRAN 77 Program and User’s Guide for the 
Calculation of Partial Correlation and Standardized Regression Coefficients, NUREG/CR-4122, SAND85-
0044. Albuquerque, NM: Sandia National Laboratories.  

147. Helton, J.C., R.L. Iman, J.D. Johnson, and C.D. Leigh. 1985. Uncertainty and Sensitivity Analysis of a Model 
for Multicomponent Aerosol Dynamics, NUREG/CR-4342, SAND84-1307. Albuquerque, New Mexico: San-
dia National Laboratories.  

148. Helton, J.C., R.L. Iman, J.D. Johnson, and C.D. Leigh. 1986. Uncertainty and Sensitivity Analysis of a Dry 
Containment Test Problem for the MAEROS Aerosol Model, NUREG/CR-4487, SAND85-2795. Albuquer-
que, New Mexico: Sandia National Laboratories.  

149. Helton, J.C., R.L. Iman, J.D. Johnson, and C.D. Leigh. 1986. Uncertainty and Sensitivity Analysis of an Up-
per Plenum Test Problem for the MAEROS Aerosol Model, NUREG/CR-4460, SAND85-2196. Albuquerque, 
New Mexico: Sandia National Laboratories.  

150. Breeding, R.J., J.C. Helton, W.B. Murfin, L.N. Smith, J.D. Johnson, H.-N. Jow, and A.W. Shiver. 1992. 
"The NUREG-1150 Probabilistic Risk Assessment for the Surry Nuclear Power Station," Nuclear Engineer-
ing and Design. Vol. 135, no. 1, pp. 29-59. 

151. Payne, A.C., Jr., R.J. Breeding, J.C. Helton, L.N. Smith, J.D. Johnson, H.-N. Jow, and A.W. Shiver. 1992. 
"The NUREG-1150 Probabilistic Risk Assessment for the Peach Bottom Atomic Power Station," Nuclear 
Engineering and Design. Vol. 135, no. 1, pp. 61-94. 

152. Gregory, J.J., R.J. Breeding, J.C. Helton, W.B. Murfin, S.J. Higgins, and A.W. Shiver. 1992. "The NUREG-
1150 Probabilistic Risk Assessment for the Sequoyah Nuclear Plant," Nuclear Engineering and Design. Vol. 
135, no. 1, pp. 92-115. 

153. Brown, T.D., R.J. Breeding, J.C. Helton, H.-N. Jow, S.J. Higgins, and A.W. Shiver. 1992. "The NUREG-
1150 Probabilistic Risk Assessment for the Grand Gulf Nuclear Station," Nuclear Engineering and Design. 
Vol. 135, no. 1, pp. 117-137. 

154. Helton, J.C. and R.J. Breeding. 1993. "Calculation of Reactor Accident Safety Goals," Reliability Engineer-
ing and System Safety. Vol. 39, no. 2, pp. 129-158. 

155. Payne, A.C., Jr. 1992. Analysis of the LaSalle Unit 2 Nuclear Power Plant: Risk Methods Integration and 
Evaluation Program (RMIEP).  Summary, NUREG/CR-4832; SAND92-0537, Vol. 1. Albuquerque, NM: 
Sandia National Laboratories.  



 

 93

156. Helton, J.C., J.A. Rollstin, J.L. Sprung, and J.D. Johnson. 1990. An Exploratory Sensitivity Study with the 
MACCS Reactor Accident Consequence Model, SAND88-1465. Albuquerque, NM: Sandia National Labora-
tories.  

157. Helton, J.C., J.D. Johnson, M.D. McKay, A.W. Shiver, and J.L. Sprung. 1995. Uncertainty and Sensitivity 
Analysis of Early Exposure Results with the MACCS Reactor Accident Consequence Model, NUREG/CR-
6135, SAND93-2371. Albuquerque, NM: Sandia National Laboratories.  

158. Helton, J.C., J.D. Johnson, J.A. Rollstin, A.W. Shiver, and J.L. Sprung. 1995. Uncertainty and Sensitivity 
Analysis of Food Pathway Results with the MACCS Reactor Accident Consequence Model, NUREG/CR-
6136, SAND93-2372. Albuquerque, NM: Sandia National Laboratories.  

159. Helton, J.C., J.D. Johnson, J.A. Rollstin, A.W. Shiver, and J.L. Sprung. 1995. Uncertainty and Sensitivity 
Analysis of Chronic Exposure Results with the MACCS Reactor Accident Consequence Model, NUREG/CR-
6134, SAND93-2370. Albuquerque, NM: Sandia National Laboratories.  

160. Roache, P.J. 1998. Verification and Validation in Computational Science and Engineering. Albuquerque, 
NM: Hermosa Publishers. 

161. Oberkampf, W.L., S.M. DeLand, B.M. Rutherford, K.V. Diegert, and K.F. Alvin. 2002. "Error and Uncer-
tainty in Modeling and Simulation," Reliability Engineering and System Safety. Vol. 75, no. 3, pp. 333-357. 

162. Babuska, I. and J.T. Oden. 2004. "Verification and Validation in Computational Engineering and Science:  
Basic Concepts," Computer Methods in Applied Mechanics and Engineering. Vol. 193, no. 36-38, pp. 4057-
4066. 

 
163. Walpole, R.E. and R.H. Myers. 1985. Probability and Statistics for Engineers and Scientists. 3rd ed. New 

York, NY: Macmillan. 

164. Iman, R.L. 1981. "Statistical Methods for Including Uncertainties Associated With the Geologic Isolation of 
Radioactive Waste Which Allow for a Comparison With Licensing Criteria," Proceedings of the Symposium 
on Uncertainties Associated with the Regulation of the Geologic Disposal of High-Level Radioactive Waste. 
NUREG/CP-0022; CONF-810372. Eds. D.C. Kocher. Gatlinburg, TN: Washington, DC:  US Nuclear Regu-
latory Commission, Directorate of Technical Information and Document Control. 145-157. 

165. Helton, J.C., M.-A. Martell, and M.S. Tierney. 2000. "Characterization of Subjective Uncertainty in the 1996 
Performance Assessment for the Waste Isolation Pilot Plant," Reliability Engineering and System Safety. Vol. 
69, no. 1-3, pp. 191-204. 

166. Trucano, T.G., L.P. Swiler, T. Igusa, W.L. Oberkampf, and M. Pilch. 2006. "Calibration, Validation, and 
Sensitivity Analysis:  What's What," Reliability Engineering and System Safety. Vol. 91, no. 10-11, pp. 1331-
1357. 

167. Oberkampf, W.L., T.G. Trucano, and C. Hirsch. 2004. "Verification, Validation, and Predictive Capability in 
Computational Engineering and Physics," Applied Mechanics Review. Vol. 57, no. 5, pp. 345-384. 

168. Roache, P.J. 2004. "Building PDE Codes to be Verifiable and Validatable," Computing in Science & Engi-
neering. Vol. 6, no. 5, pp. 30-38. 

169. Knupp, P. and K. Salari. 2002. Verification of Computer Codes in Computational Science and Engineering. 
Boca Raton, FL: Chapman and Hall/CRC. 

170. Oberkampf, W.L. and T.G. Trucano. 2002. "Verification and Validation in Computational Fluid Dynamics," 
Progress in Aerospace Sciences. Vol. 38, no. 3, pp. 209-272. 



 

 94

171. American Institute of Aeronautics and Astronautics. 1998. AIAA Guide for the Verification and Validation of 
Computational Fluid Dynamics Simulations, AIAA G-077-1998. Reston, VA: American Institute of Aero-
nautics and Astronautics.  

172. Roache, P.J. 1997. "Quantification of Uncertainty in Computational Fluid Dynamics," Annual Review of 
Fluid Mechanics. Vol. 29, pp. 123-160. 

173. Nicola, V.F., P. Shahabuddin, and M.K. Nakayama. 2001. "Techniques for Fast Simulation of Models of 
Highly Dependable Systems," IEEE Transactions on Reliability. Vol. 50, no. 3, pp. 246-264. 

174. Owen, A. and Y. Zhou. 2000. "Safe and Effective Importance Sampling," Journal of American Statistical 
Association. Vol. 95, no. 449, pp. 135-143. 

175. Heidelberger, P. 1995. "Fast Simulation of Rare Events in Queueing and Reliability Models," ACM Transac-
tions on Modeling and Computer Simulation. Vol. 5, no. 1, pp. 43-85. 

176. Shahabuddin, P. 1994. "Importance Sampling for the Simulation of Highly Reliable Markovian Systems," 
Management Science. Vol. 40, no. 3, pp. 333-352. 

177. Goyal, A., P. Shahabuddin, P. Heidelberger, V.F. Nicola, and P.W. Glynn. 1992. "A Unified Framework for 
Simulating Markovian Models of Highly Dependable Systems," IEEE Transactions on Computers. Vol. 41, 
no. 1, pp. 36-51. 

178. Melchers, R.E. 1990. "Search-Based Importance Sampling," Structural Safety. Vol. 9, no. 2, pp. 117-128. 

179. Glynn, P.W. and D.L. Iglehart. 1989. "Importance Sampling for Stochastic Simulations," Management Sci-
ence. Vol. 35, no. 11, pp. 1367-1392. 

180. Nuclear Energy Institute v. Environmental Protection Agency. 373 F.3d 1 (D.C. Cir. 2004) (NEI) (Docket 
no. OAR-2005-0083-0080). 

181. U.S. EPA (U.S. Environmental Protection Agency). 2005. "40 CFR Part 197:  Public Health and Environ-
mental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule," Federal Register. Vol. 
10, no. 161, pp. 49014-49065. 

182. U.S. NRC (U.S. Nuclear Regualtory Commission). 2005. "10 CFR Part 63:  Implementation of a Dose Stan-
dard after 10,000 Years," Federal Register. Vol. 70, no. 173, pp. 53313-53320. 

 



 

 95

DISTRIBUTION 

External Distribution 
 
Prof. Mark D. Abkowitz 
Dept. of Civil and Environmental Engineering 
Vanderbilt University 
Nashville, TN  37235 

Prof. Joonhong Ahn 
Department of Nucear Engineering 
University of California, Berkeley 
Berkeley, CA  94720 

Prof. G. E. Apostolakis 
Department of Nuclear Engineering 
Massachusetts Institute of Technology 
Cambridge, MA 02139-4307 

Prof. Bilal Ayyub 
University of Maryland 
Center for Technology & Systems Management 
Civil & Environmental Engineering 
Rm. 0305 Martin Hall 
College Park, MD 20742-3021 

Prof. Ivo Babuska 
TICAM 
Mail Code C0200  
University of Texas at Austin 
Austin, TX  78712-1085 

Timothy M. Barry 
National Center for Environmental Economics 
U.S. Environmental Protection Agency 
1200 Pennsylvania Ave., NW 
MC 1809 
Washington, DC  20460 

Steven M. Bartell 
The Cadmus Group, Inc. 
339 Whitecrest Dr. 
Maryville, TN  37801 

Bechtel SAIC Company, LLC (2) 
Attn: Bob Andrews 
  Rob Howard 
1180 Town Center Drive 
Las Vegas, NV  89134 

Prof. Bruce Beck 
University of Georgia 
D.W. Brooks Drive 
Athens, GA  30602-2152 

Prof. James Berger 
Inst. of Statistics and Decision Science 
Duke University 
Box 90251 
Durham, NC 27708-0251 

Prof. Daniel Berleant 
Iowa State University 
Department of EE & CE 
2215 Coover Hall 
Ames, IA 50014 

Prof. V. M. Bier 
Department of Industrial Engineering 
University of Wisconsin 
Madison, WI 53706 

Prof. S.M. Blower 
Department of Biomathematics 
UCLA School of Medicine 
10833 Le Conte Avenue 
Los Angeles, CA  90095-1766 

Prof. W. J. Conover 
College of Business Administration 
Texas Tech. University 
Lubbock, TX 79409 

Prof. Allin Cornel1 
Department of Civil and Environmental 
Engineering 
Terman Engineering Center 
Stanford University 
Stanford, CA 94305-4020 

Prof. Alison Cullen 
University of Washington 
Box 353055 
208 Parrington Hall 
Seattle, WA 98195-3055 

Prof. U. M. Diwekar 
Center for Uncertain Systems, Tools for Optimization,  
      and Management 
Vishwamitra Research Institute 
Westmont, IL  60559 



 

 96

Prof. David Draper 
Applied Math & Statistics 
147 J. Baskin Engineering Bldg. 
University of California 
1156 High St. 
Santa Cruz, CA 95064 

Prof. Isaac Elishakoff 
Dept. of Mechanical Engineering 
Florida Atlantic University 
777 Glades Road 
Boca Raton, FL 33431-0991 

Prof. Donald Estep 
Departmentof Mathematics 
Colorado State University 
Fort Collins, CO  80523 

Prof. John Evans 
Harvard Center for Risk Analysis 
718 Huntington Avenue 
Boston, MA  02115 

Prof. Rodney C. Ewing 
Nuclear Engineering and Radiological Science 
University of Michigan 
Ann Arbor, MI  48109-2104 

Prof. Charles Fairhurst 
417 5th Avenue N 
South Saint Paul, MN  55075 

Scott Ferson 
Applied Biomathematics 
100 North Country Road 
Setauket, New York 11733-1345 

James J. Filliben 
Statistical Engineering Division 
ITL, M.C. 8980 
100 Bureau Drive, N.I.S.T. 
Gaithersburg, MD  20899-8980 

Jeffrey T. Fong 
Mathematical & Computational Sciences Division 
M.C. 8910 
100 Bureau Drive, N.I.S.T. 
Gaithersburg, MD  20899-8910 

Michael V. Frank 
Safety Factor Associates, Inc. 
1410 Vanessa Circle, Suite 16 
Encinitas, CA  92024 

Prof. C. Frey 
Department of Civil Engineering 
Box 7908, NCSU 
Raleigh, NC 27659-7908 

B. John Garrick 
221 Crescent Bay Dr. 
Laguna Beach, CA  92651 

Prof. Roger Ghanem 
254C Kaprielian Hall 
Dept. of Civil Engineering 
3620 S. Vermont Ave. 
University of Southern California 
Los Angles, CA 90089-2531 

Prof. James Glimm 
Dept. of Applied Math & Statistics 
P138A 
State University of New York 
Stony Brook, NY  11794-3600 

Prof. Ramana Grandhi 
Dept. of Mechanical and Materials  
  Engineering 
3640 Colonel Glenn Hwy. 
Dayton, OH 45435-0001 

Michael B. Gross 
415 Riviera Dr. 
San Rafael, CA  94901 

Prof. Raphael Haftka 
Dept. of Aerospace and Mechanical 
Engineering and Engineering Science 
P.O. Box 116250 
University of Florida 
Gainsville, F L 3261 1-6250 

Prof. Yacov Y. Haimes 
Center for Risk Management of Engineering Systems 
D111 Thornton Hall 
University of Virginia 
Charlottesville, VA  22901 

Prof. David M. Hamby 
Department of Nuclear Engineering and Radiation  
    Health Physics 
Oregon State University 
Corvallis, OR  97331 



 

 97

Prof. Richard Hills 
New Mexico State University 
College of Engineering, MSC 3449 
P.O. Box 30001 
Las Cruces, NM 88003 

F. Owen Hoffman 
SENES 
102 Donner Drive 
Oak Ridge, TN  37830 

Prof. Steve Hora 
Institute of Business and Economic Studies 
University of Hawaii, Hilo 
523 W. Lanikaula 
Hilo, HI 96720-409 1 

Prof. G. M. Hornberger 
Dept. of Environmental Science 
University of Virginia 
Charlottesville, VA  22903 

R.L. Iman 
Southwest Design Consultants 
12005 St. Mary’s Drive, NE 
Albuquerque, NM 87111 

Intera, Inc. (2) 
Attn: Neal Deeds 
  Srikanta Mishra 
9111A Research Blvd. 
Austin, TX  78758 

Prof. Andrew Kadak 
Department of Nuclear Engineering 
Massachusetts Institute of Technology 
Cambridge, MA 02139-4307 

Prof. W. E. Kastenberg 
Department of Nuclear Engineering 
University of California, Berkeley 
Berkeley, CA 94720 

John Kessler 
HLW and Spent Fuel Management Program 
Electric Power Research Institute 
1300 West W.T. Harris Blvd. 
Charlotte, NC  28262 

Prof. Peter Kitanidis 
Department of Civil and Environmental Engineering 
Stanford University 
Stanford, CA  94305-4020 

Prof. George Klir 
Binghamton University 
Thomas J. Watson School of Engineering & 
Applied Sciences 
Engineering Building, T-8 
Binghamton NY 13902-6000 

Averill M. Law 
6601 E. Grant Rd. 
Suite 110 
Tucson, AZ  85715 

Prof. Sankaran Mahadevan 
Vanderbilt University 
Dept. of Civil and Environmental Engineering 
Box 6077, Station B 
Nashville, TN 37235 

Don Marshall 
84250 Indio Springs Drive, #291 
Indio, CA  92203 

Jean Marshall 
84250 Indio Springs Drive, #291 
Indio, CA  92203 

Prof. Thomas E. McKone 
School of Public Health 
University of California 
Berkeley, CA  94270-7360 

Prof. Gregory McRae 
Dept. of Chemical Engineering 
Massachusetts Institute of Technology 
Cambridge, MA  02139 

Ian Miller 
Goldsim Technology Group 
22516 SE 64th Place, Suite 110 
Issaquah, WA  98027-5379 

Prof. Max Morris 
Department of Statistics 
Iowa State University 
304A Snedecor-Hall 
Ames, IW  50011-1210 

Prof. Ali Mosleh 
Center for Reliability Engineering 
University of Maryland 
College Park, MD 207 14-21 15 



 

 98

Naval Research Laboratory (4) 
Attn:  Jay Borris 
  Allen J. Goldberg 
  Robert Gover 
  John G. Michopoulos 
4555 Overlook Avenue 
S.W. Washington D.C. 20375 

Prof. Shlomo Neuman 
Department of Hydrology and Water Resources 
University of Arizona 
Tucson, AZ  85721 

Thomas J. Nicholson 
Office of Nuclear Regulatory Research 
Mail Stop T-9C34 
U.S. Nuclear Regulatory Commission 
Washington, DC  20555 

Prof. Efstratios Nikolaidis 
MIME Dept. 
4035 Nitschke Hall 
University of Toledo 
Toledo, OH 43606-3390 

D. Warner North 
North Works, Inc. 
1002 Misty Lane 
Belmont, C.A. 94002 

Nuclear Waste Technical Review Board (2) 
Attn: Chairman 
2300 Clarendon Blvd. Ste 1300 
Arlington, VA  22201-3367 

Prof. David Okrent 
Mechanical and Aerospace Engineering 
  Department 
University of California 
48-121 Engineering IV Building 
Los Angeles, CA 90095-1587 

Gareth Parry 
19805 Bodmer Ave 
Poolesville, MD 200837 

Prof. M. Elisabeth Paté-Cornel1 
Department of Industrial Engineering and 
  Management 
Stanford University 
Stanford, CA 94305 

Prof. Per Peterson 
Department of Nuclear Engineering 
University of California, Berkeley 
Berkeley, CA  94720 

Prof. Thomas H. Pigford 
Department of Nuclear Engineering 
University of California 
Berkeley, CA  94720 

Prof. Herschel Rabitz 
Princeton University 
Department of Chemistry 
Princeton, NJ 08544 

Prof. Adrian E. Raftery 
Department of Statistics 
University of Washington 
Seattle, WA  98195 

Kadambi Rajagopal 
The Boeing Company 
6633 Canoga Avenue 
Canoga Park, CA 91309-7922 

Prof. John Renaud 
Dept. of Aerospace & Mechanical Engr. 
University of Notre Dame 
Notre Dame, IN 46556 

Prof. James A. Reneke 
Department of Mathematical Sciences 
Clemson University 
Clemson, SC  29634-0975 

Patrick J. Roache  
1215 Apache Drive 
Socorro, NM 87801 

Prof. Tim Ross 
Dept. of Civil Engineering 
University of New Mexico 
Albuquerque, NM 87131 

Prof. J. Sacks 
Inst. of Statistics and Decision Science 
Duke University 
Box 90251 
Durham, NC 27708-0251 

Nell Sedransk 
Statistical Engineering Division ITL, M.C. 8980 
100 Bureau Drive, N.I.S.T. 
Gaithersburg, MD  20899-8980 



 

 99

Prof. Nozer D. Singpurwalla 
The George Washington University 
Department of Statistics 
2140 Pennsylvania Ave. NW 
Washington, DC 20052 

Nathan Siu 
Probabilistic Risk Analysis Branch 
MS 10E50 
U.S. Nuclear Regulatory Commission 
Washington, DC  20555-0001 

Southwest Research Institute (8) 
Attn: C.E. Anderson 
  C.J. Freitas 
  L. Huyse 
  S. Mohanty 
  O. Osidele 
  O. Pensado 
  B. Sagar 
  B. Thacker 
P.O. Drawer 285 10 
622 Culebra Road 
San Antonio, TX 78284 

Prof. C.B. Storlie 
Department of Mathematics and Statistics 
University of New Mexico 
Albuquerque, NM  87131-0001 

Prof. T. G. Theofanous 
Department of Chemical and Nuclear 
  Engineering 
University of California 
Santa Barbara, CA 93106 

Prof. K.M. Thompson 
Harvard School of Public Health 
677 Huntington Avenue 
Boston, MA  02115 

Martin Tierney 
Plantae Research Associates 
415 Camino Manzano 
Santa Fe, NM 87505 

Prof. Fulvio Tonon 
Department of Civil Engineering 
University of Texas at Austin 
1 University Station C1792 
Austin, TX  78712-0280 

Stephen D. Unwin 
Pacific Northwest National Laboratory 
P.O. Box 999 
Mail Stop K6-52 
Richland, WA  99354 

U.S. Nuclear Regulatory Commission (6) 
Office of Nuclear Material Safety and Safeguards 
Attn: A.C. Campbell (MS TWFN-7F27) 
  R.B. Codell (MS TWFN-7F27) 
  K.W. Compton (MS TWFN-7F27) 
  S.T. Ghosh (MS TWFN-7F27) 
  B.W. Leslie (MS TWFN-7F27) 
  T.J. McCartin (MS TWFN-7F3) 
Washington, DC  20555-0001 

Christopher G. Whipple 
Environ 
Marketplace Tower 
6001 Shellmound St. Suite 700 
Emeryville, C.A. 94608 

Prof. Dongxiao Zhang 
Mewbourne School of Petroleum and  
     Geological Engineering 
The University of Oklahoma 
Norman, OK  73019 

Foreign Distribution 

Jesus Alonso 
ENRESA 
Calle Emillo Vargas 7 
28 043 MADRID 
SPAIN 

Prof. Tim Bedford 
Department of Management Sciences 
Strathclyde University 
40 George Street 
Glasgow G630NF 
UNITED KINGDOM 

Prof. Yakov Ben-Haim 
Department of Mechanical Engineering 
Technion-Israel Institute of Technology 
Haifa 32000 
ISRAEL 

Prof. Ricardo Bolado 
Polytechnical University of Madrid 
Jose Gutierrez, Abascal, 2 
28006 Madrid 
SPAIN 



 

 100

Prof. A.P. Bourgeat 
UMR 5208 – UCB Lyon1, MCS, Bât. ISTIL 
Domaine de la Doua; 15 Bd. Latarjet 
69622 Villeurbanne Cedex 
FRANCE 

Prof. D.G. Cacuci 
Institute for Nuclear Technology and Reactor Safety 
University of Karlsruhe 
76131 Karlsruhe 
GERMANY 

Prof. Enrique Castillo 
Department of Applied Mathematics and  
  Computational Science 
University of Cantabria 
Santandar 
SPAIN 

CEA Cadarache (2) 
Attn: Nicolas Devictor 
  Bertrand Iooss 
DEN/CAD/DER/SESI/CFR 
Bat 212 
13108 Saint Paul lez Durance cedex 
FRANCE 

Prof. Russell Cheng 
School of Mathematics 
Southampton University 
Southampton, SO17 1BJ 
UNITED KINGDOM 

Prof. Roger Cooke 
Department of Mathematics 
Delft University of Technology 
P.O. Box 503 1 2800 GA Delft 
THE NETHERLANDS 

Etienne de Rocquigny 
EDF R&D MRI/T56 
6 quai Watier 
78401 Chatou Cedex 
FRANCE 

Prof. Christian Ekberg 
Chalmers University of Technology 
Department of Nuclear Chemistry 
41296 Goteborg 
SWEDEN 

European Commission (5) 
Attn: Francesca Campolongo 
  Mauro Ciechetti 
  Marco Ratto 
  Andrea Saltelli 
  Stefano Tarantola 
JRC Ispra, ISIS 
2 1020 Ispra 
ITALY 

Régis Farret 
Direction des Risques Accidentels 
INERIS 
BP2 – 60550 Verneuil en Halatte 
FRANCE 

Forshunginstitute GRS (2) 
Attn: Eduard Hofer 
  B. Kryzkacz-Hausmann 
Forschungsgelande Nebau 2 
85748 Garching 
GERMANY 

Forschungszentrum Karlsruhe (2) 
Attn: F. Fischer 
  J. Ehrhardt 
Inst. Kern & Energietechn 
Postfach 3640, D-76021 
Karlsruhe 
GERMANY 

Prof. Simon French 
School of Informatics 
University of Manchester 
Coupland 1 
Manchester M13 9pl 
UNITED KINGDOM 

Daniel A. Galson (2) 
Galson Science Ltd. 
5 Grosvenor House 
Melton Rd. 
Rutland LE15 6AX 
ENGLAND 

Prof. Louis Goossens 
Safety Science Group 
Delft University of Technology 
P.O. Box 5031  2800 GA Delft 
THE NETHERLANDS 



 

 101

Prof. Jim Hall 
University of Bristol 
Department of Civil Engineering 
Queens Building, University Walk 
Bristol UK 8581TR 

Mikhail Iosjpe 
Protection Authority 
Norwegian Radiation 
Grini Naringspark 13 
P.O. Box 55 
1332 Oesteraas 
NORWAY 

J. Jaffré 
INRIA – Roquencourt 
B.P. 105 
78153 Le Chesnay Cedex 
FRANCE 

Arthur Jones 
Nat. Radio. Prot. Board 
Chilton, Didcot 
Oxon OX110RQ 
UNITED KINGDOM 

Prof. J.P.C. Kleijnen 
Department of Information Systems 
Tilburg University 
5000 LE Tilburg 
THE NETHERLANDS 

Prof. S.E. Magnusson 
Lund University 
P.O. Box 118 
22100 Lund 
SWEDEN 

Prof. Alex Thierry Mara 
Université de la Réunion 
Lab. De Génie Industriel 
15, Avenue René Cassin 
BP 7151 
97715 St. Denis 
La Réunion 
FRANCE 

Jan Marivoet 
Centre d’Etudes de L’Energie 
Nucleaire 
Boeretang 200 
2400 MOL 
BELGIUM 

Prof. Ghislain de Marsily 
University Pierre et Marie Curie 
Laboratorie de Geologie Applique 
4, Place Jussieu 
T.26 – 5e etage 
75252 Paris Cedex 05 
FRANCE 

Prof. A. O’Hagan 
Department of Probability and Statistics 
University of Sheffield 
Hicks Building 
Sheffield S3 7RH 
UNITED KINGDOM 

Prof. Roberto Pastres 
University of Venice  
Dorsuduro 2137 
30123 Venice 
Dorsuduro 2137 
ITALY 

Prof. Leslie R. Pendrill 
SP Swedish National Testing & Research Institute 
Measurement Technology, Head of Research 
Box 857, S-501 15 BORÅS 
SWEDEN 

Guillaume Pepin 
ANDRA – Service DS/CS 
Parc de la Croix Blanche 
1/7 rue Jean Monnet 
92298 Chatenay-Malabry Cedex 
FRANCE 

Prof. G.I. Schuëller 
Institute of Engineering Mechanics 
Leopold-Franzens University 
Technikerstrasse 13 
6020 Innsbruck 
AUSTRIA 

Prof. Marian Scott 
Department of Statistics 
University of Glasgow 
Glasgow G12 BQW 
UNITED KINGDOM 

Prof. Ilya Sobol’ 
Russian Academy of Sciences 
Miusskaya Square 
125047 Moscow 
RUSSIA 



 

 102

Prof. Wolfgang Stummer 
Dept. of Mathematics 
Friedrich-Alexander University 
Bismarkstr. 1 1/2 
91054 Erlangen 
GERMANY 

Prof. Tamas Turanyi 
Eotvos University (ELTE) 
P.O. Box 32 
15 18 Budapest 
HUNGARY 

Prof. Willem Van Groenendaal 
Tilburg University 
P.O. Box 90153 
5000 LE Tilburg 
THE NETHERLANDS 

Prof. H.P. Wynn 
Department of Statistics 
London School of Economics 
Houghton Street 
London WC2A 2AE 
UNITED KINGDOM 

Prof. Enrico Zio 
Politecnico di Milano 
Via Ponzia 3413 
20133 Milan 
ITALY 

Department of Energy Laboratories 
 
Battelle Memorial Institute, Pacific Northwest Labs (1) 
P.O. Box 999 
Richland, WA 99352 
Attn: Pamela Doctor 

Lawrence Livermore National Laboratory (2) 
Earth Sciences Division, MS 90-1116 
1 Cyclotron Rd. 
Berkeley,CA  94720 
Attn: Y. Tsang 

Lawrence Livermore National Laboratory (5) 
7000 East Ave. 
P.O. Box 808 
Livermore, CA 94550 
Attn: Jim Blink, MS LL-423 
  Kenneth T. Bogen, MS L-396 
  Robert J. Budnitz, MS L-632 
 Frank Graziani, MS L-095 
 Charles Tong, MS L-560 

Los Alamos National Laboratory (12) 
Mail Station 5000 
P.O. Box 1663 
Los Alamos, NM 87545 
Attn: Mark C. Anderson, MS T080 
 Scott Doebling, MS T080 
 Francois Hemez, MS T006 
 David Higdon, MS F600 
 James Hyman, MS B284 
 Cliff Joslyn, MS B265 
 Jonathan Lucero, MS C926 
  Bruce Robinson, MS T003 
 Mandy Rutherford, MS T080 
 David Sigeti, MS F645 
 Kari Sentz, MS F600 
 Alyson G. Wilson, MS F600 

Pacific Northwest National Laboratory (3) 
Risk and Decision Science Group 
Richland, WA  99352-2458 
Attn: David W. Engel 
  Paul W. Eslinger 
  Brady Hanson 

U.S. Department of Energy (1) 
Attn: Jamileh Soudah, NA-114 
Forrestal Building 
1000 Independence Ave., SW 
Washington, DC  20585 

U.S. Department of Energy (6) 
Yucca Mountain Site Characterization Office 
Attn: William Boyle 
   Russ Dyer  
  Claudia Newbury 
  Mark Tynan 
  Abraham VanLuik 
  Michael Voegele 
1551 Hillshire Drive 
Las Vegas, NV  89134 

Sandia Internal Distribution 
 
1 MS 1231 0310 A. L. Camp 
1 MS 1056 1112 S. M. Meyers 
1 MS 1415 1120 C. J. Barbour 
1 MS 1146 1384 P. J. Griffin 
1 MS 0310 1400 G. S. Davidson 
1 MS 0370 1411 S. A. Mitchell 
1 MS 0370 1411 M. S. Eldred 
1 MS 1111 1411 P. Knupp 
1 MS 0370 1411 L. P. Swiler 
1  MS 0370 1411 T. G. Trucano 
1 MS 0824 1500 T.Y. Chu 
1 MS 0828 1544 M. Pilch 



 

 103

1 MS 0828 1544 K. J. Dowding 
1 MS 0828 1544 A. A. Giunta 
50 MS 0779 1544 J. C. Helton 
1 MS 0828 1544 W. L. Oberkampf 
1 MS 0828 1544 J. R. Red-Horse 
1 MS 0828 1544 V. J. Romero 
1 MS 1153 5441 L. C. Sanchez 
1 MS 0724 6000 L. E. Shephard 
1 MS 1138 6222 P. G. Kaplan 
1 MS 0615 6252 J. A. Cooper 
1 MS 0706 6311 M. G. Wallace 
1 MS 0757 6442 J. L. Darby 
1 MS 0757 6442 G. D. Wyss 
1 MS 1011 6642 D. J. Anderson 
1 MS 1011 6642 M. S. Shortencarrier 
1 MS 1011 6643 R. M. Cranwell 
1 MS 0701 6700 P. B. Davies 
1 MS 1395 6710 D. Kessel 
1 MS 1395 6711 J. W. Garner 
1 MS 0776 6711 A. Gilkey 
1 MS 1395 6711 J. Kanney 
1 MS 1395 6711 T. Kirchner 
1 MS 1395 6711 C. Leigh 
1 MS 1395 6711 M. Nemer 
1 MS 0776 6711 D. Rudeen 
1 MS 1395 6711 E. Vugrin 
1 MS 1395 6711 K. Vugrin 
1 MS 1395 6712 M. Rigali 
1 MS 1395 6712 R. Beauheim 
1 MS 1395 6712 L. Brush 
1 MS 0778 6712 P. Domski 
1 MS 0779 6725 H.-N. Jow 
1 MS 0776 6728 A. Reed 
1 MS 0748 6761 D. G. Robinson 
1 MS 0748 6761 S. P. Burns 
1 MS 0748 6762 N. Bixler 
1 MS 0748 6762 R. Gauntt 
1 MS 0771 6770 J. E. Kelly 
1 MS 0736 6770 D. A. Powers 
1 MS 0779 6772 C. Axness 
1 MS 0779 6772 J. Johnson 
1 MS 0779 6772 J. Jones 
1 MS 1399 6780 A. Orrell 
1 MS 0778 6781 B. W. Arnold 
1 MS 0778 6781 C. Jove-Colon 
1 MS 1399 6781 C. W. Hansen 
1 MS 0776 6781 M. K. Knowles 

1 MS 0778 6781 S. Miller 
1 MS 0776 6782 K. Economy 
1 MS 0776 6782 G. Freeze 
1 MS 0776 6782 T. Hadgu 
1 MS 0776 6782 H. Iuzzolino 
1 MS 0748 6782 E. A. Kalinina 
1 MS 0776 6782 S. Kuzio 
1 MS 1399 6782 M. G. Marietta 
1 MS 0776 6782 R. McCurley 
1 MS 0776 6782 J. Schreiber 
1 MS 0776 6782 J. S. Stein 
1 MS 0776 6782 B. Walsh 
1 MS 0776 6782 Y. Wang 
1 MS 0776 6783 E. J. Bonano 
1 MS 0779 6783 L. Dotson 
1 MS 0776 6783 R. J. MacKinnon 
1 MS 1399 6783 M. A. Martell 
1 MS 1399 6783 S. Mehta 
1 MS 0776 6783 R. P. Rechard 
1 MS 1399 6783 D. Sevougian 
1 MS 0778 6783 P. N. Swift 
1 MS 0776 6783 M. Tierney 
1 MS 1399 6783 P. Vaughn 
1 MS 1399 6783 J. Younkers 
1 MS 1399 6784 B. Bullard 
1 MS L423 6784 J. McNeish 
1 MS 0776 6784 P. Mattie 
1 MS 1399 6784 C. B. Thom 
1 MS 0776 6784 C. Sallaberry 
1 MS 1399 6784 E. Zawahler 
1 MS 0771 6785 F. Hansen 
1 MS 1399 6785 E. Hardin 
1 MS 1399 6785 C. Howard 
1 MS 0778 6785 C. Bryan 
1 MS 0778 6785 R. L. Jarek 
1 MS 0778 6785 P. Mariner 
1 MS 1399 6785 K. Mon 
1 MS 0830 12335 K. V. Diegert 
1 MS 0829 12337 B. M. Rutherford 
1 MS 0829 12337 F. W. Spencer 
1 MS 0405 12346 S. E. Camp 
1 MS 0405 12347 L-J Shyr 
1 MS 0405 12347 T. D. Brown 
1 MS 0405 12347 R. D. Waters 
2 MS 9018 8944 Central Technical 
    Files 
2 MS 0899 4536 Technical Library 

 


	Illustration of Sampling-Based Approaches to the Calculation of Expected Dose in Performance Assessments for the Proposed High Level Radioactive Waste Repository at Yucca Mountain, Nevada

	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	Acronyms
	1. Introduction
	2. Regulatory Requirements Underlying Conceptual Structure of PAs for YM Repository

	2.1 EPA Requirements: 40 CFR Part 197
	2.2 NRC Requirements: 10 CFR Parts 2, 19, 20, etc.
	2.3 NRC Review Criteria: Yucca Mountain Review Plan (YMRP)


	3. Tutorial on Probability, Uncertainty and Variability
	4. Properties of Poisson Processes
	5. Expected Dose Without Epistemic Uncertainty
	6. Expected Dose with Epistemic Uncertainty
	7. Calculation of Expected Dose and Display of Epistemic Uncertainty for DN(τ |eD)

	8. Calculation of Expected Value and Display of Epistemic Uncertainty for EA[DD(τ |a, eD)|eA]

	8.1 Strategy 1: Sample from E and Numerically Evaluate EA[D(τ |a, eD)|eA]
	8.2 Strategy 2: Sample from E × P and Numerically Evaluate Integral over Time
	8.3 Strategy 3: Sample from E × P × [a, b] with Importance Sampling on Time


	9. Expected Dose Conditional on Single Disruption
	10. Discussion
	11. References
	DISTRIBUTION



