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ABSTRACT 

This report summarizes the results of an effort to establish a framework for assigning and 

communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) 

capabilities at Sandia National Laboratories.  This effort was undertaken as a special assignment 

for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted 

from January to September 2006.  This report summarizes the results, conclusions, and 

recommendations, and is intended to help guide the program office in their decisions about the 

future direction of this work. 

The work was broken out into several distinct phases, starting with establishing the scope and 

definition of assignment.  These are characterized in a set of key assertions provided in the body 

of this report.  Fundamentally, the assignment involved establishing an intellectual framework for 

TRL assignments to Sandia’s modeling and simulation capabilities, including the development 

and testing of a process to conduct the assignments.  To that end, we proposed a methodology for 

both assigning and understanding the TRLs, and outlined some of the restrictions that need to be 

placed on this process and the expected use of the result.  One of the first assumptions we 

overturned was the notion of a ‘static’ TRL – rather we concluded that problem context was 

essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool’s 

readiness level depends on how it is used, and by whom).  While we leveraged the classic TRL 

results from NASA, DoD, and Sandia’s NW program, we came up with a substantially revised 

version of the TRL definitions, maintaining consistency with the classic level definitions and the 
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Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the 

foundation the PCMM team provided, and augmented that as needed. 

Given the modeling and simulation TRL definitions and our proposed assignment methodology, 

we conducted four ‘field trials’ to examine how this would work in practice.  The results varied 

substantially, but did indicate that establishing the capability dependencies and making the TRL 

assignments was manageable and not particularly time consuming.  The key differences arose in 

perceptions of how this information might be used, and what value it would have (opinions 

ranged from negative to positive value).  The use cases and field trial results are included in this 

report.  Taken together, the results suggest that we can make reasonably reliable TRL 

assignments, but that using those without the context of the information that led to those results 

(i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL 

purposes) produces an oversimplified result – that is, you cannot really boil things down to just a 

scalar value without losing critical information. 
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Executive Summary 

This report summarizes the results of an effort to establish a framework for assigning and 

communicating technology readiness levels (TRLs) to the computational science and engineering 

(CSE) modeling and simulation (ModSim) capabilities at Sandia National Laboratories. (We 

always intend ‘ModSim’ in this report to mean ‘CSE ModSim.’) This effort was undertaken as a 

special assignment for the weapon simulation and computing (WSC) program office led by Art 

Hale, and lasted from January to September 2006.  This report summarizes the results, 

conclusions, and recommendations, and is intended to help guide the program office in their 

decisions about the future direction of this work. 

The work was broken out into several distinct phases, starting with establishing the scope and 

definition of assignment.  These are characterized in a set of key assertions provided in the body 

of this report.  Fundamentally, the assignment involved establishing an intellectual framework for 

TRL assignments to Sandia’s Advanced Simulation and Computing (ASC) program ModSim 

capabilities, including the development and testing of a process to conduct the assignments.  To 

that end, we have proposed a methodology for both assigning and understanding the TRLs, and 

outlined some of the restrictions that need to be placed on this process and the expected use of the 

result.  One of the first assumptions we overturned was the notion of a ‘static’ TRL – rather we 

concluded that problem context was essential in any TRL assignment, and that leads to dynamic 

results (i.e., a ModSim tool’s readiness level depends on how it is used, and by whom).  While we 

leveraged the classic TRL definitions from NASA, DoD, and Sandia’s NW program, we came up 

with a substantially revised version of the TRL definitions, maintaining consistency with the 

classic level definitions and the Predictive Capability Maturity Model (PCMM) approach being 

developed by the SNL ASC Verification and Validation (V&V) program. In fact, we substantially 

leveraged the foundation the PCMM team provided, and augmented that as needed. 

Given the modeling and simulation TRL definitions and our proposed assignment methodology 

we conducted four ‘field trials’ to examine how this would work in practice.  The results varied 

substantially, but did indicate that establishing the capability dependencies and making the TRL 

assignments was manageable and not particularly time consuming.  The key debate arose in 

perceptions of how this information might be used, and what value it would have (opinions 

ranged from negative to positive value).  The use cases and field trial results are included in this 

report.  Taken together, the results suggest that we can make reasonably reliable TRL 

assignments.  However, using those assignments without the context of the information that led to 

them (i.e., examining the measures suggested by the PCMM table, as extended for ModSim TRL 
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purposes) produces an oversimplified result – that is, you cannot really boil things down to just a 

scalar value without losing critical information. 

There are four main conclusions and associated recommendations from this report, discussed in 

detail in the final section of the main body of this report.  They are: 

• Conclusion 1: We can assign TRLs to ASC ModSim capabilities. 

• Recommendation 1: Use the framework and process proposed in this report as a 

baseline for refinement. 

• Conclusion 2: ModSim TRLs and the PCMM specification are connected. 

• Recommendation 2: Conduct TRL assessments as an adjunct to the PCMM 

process, not as a stand-alone exercise. 

• Conclusion 3: The ModSim TRL framework and process described in this report 

are not complete – there is still work to be done. 

• Recommendation 3: If the sponsors decide to proceed with this line of 

development, continue to resolve the framework and process using the baseline 

approach described in this report. 

• Conclusion 4: There remain questions about the utility of ModSim TRLs. 

• Recommendation 4: Address key issues before proceeding to the next phase of 

developing the TRL framework and process. 
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Introduction 

This report summarizes the results of an effort to establish a framework for assigning and 

communicating the technology readiness levels of the modeling and simulation capabilities at 

Sandia National Laboratories.  This effort was undertaken as a special assignment for the SNL 

Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from 

January to September 2006.  This report summarizes the results, conclusions, and 

recommendations, and is intended to help guide the program office in their decisions about the 

future direction of this work. 

The Scope of the ModSim TRL Effort 

Our charter was to develop a framework for the assignment and communication of TRLs for 

Advanced Simulation and Computing (ASC) program computational science and engineering 

(CSE) modeling and simulation (ModSim) capabilities at Sandia National Laboratories. (In what 

follows, the acronym ‘ModSim’ will always means ‘CSE modeling and simulation’ unless 

specifically noted.) Since this had not been done before at Sandia and little implementation 

information about applicability of TRLs to CSE modeling and simulation exists at other DOE 

institutions, there was an exploratory aspect to this work.  At the outset, we established some 

guiding principles that were cast as assertions and vetted by a steering committee (which was, in 

fact, more of a working group).  This steering committee included the following people: Robert 

Clay (chair, ModSim TRL team), Paul Yarrington (WSC program office manager), Timothy 

Trucano (QMU/V&V staff), Mike Hardwick (ASC CSSE manager), Pete Wilson (engineering 

analyst manager), Mike Chiesa (engineering analyst manager), Fran Current (WSC program 

office manager), Scott Klenke (DSW staff), Scot Marburger (ModSim TRL team), and Max 

Shneider (ModSim TRL team).  This group was intended to represent a reasonable cross section 

of the WSC stakeholders for the current effort. 

Key Assertions Used to Guide this Effort 

During the scope-definition phase of this effort we developed a set of assertions that established 

some baseline principles for the work to follow.  These were reviewed by the steering committee 

(described above), and captured as follows in a set of eleven core assertions that define the scope 

and purpose of this work. 
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Assertion 1: ModSim capability is the ability to simulate weapons systems physical and 

engineering performance in a specific context using CSE modeling and simulation tools, 

expertise, and computing hardware. 

This assertion is a straightforward definition of what we mean by ‘modeling and simulation 

capability’ in the context of NWSMU ModSim.  It was drawn from various sources, including 

numerous interviews with a cross-section of individuals representing the capability providers 

(tool developers), users (analysts), and consumers (SNL nuclear weapons engineers).   

The notable extensions to this definition are the notion that a ModSim capability is not just the 

tool (software/code), but also requires consideration of user qualification1 (expertise) and 

infrastructure (computing hardware) to be complete.   

Assertion 2:  We are determining ModSim capability readiness because it is the right thing to 

do. 

This statement goes directly toward answering the question of “Why are we doing TRLs?”  There 

are potentially numerous uses and purposes for establishing a ModSim TRL framework, but the 

ones called out by the steering committee include the following: 

• communicate ASC preparedness to respond to customer needs 

• communicate the maturity level of ASC ModSim products and the confidence that can be 

placed in the technology 

• help guide ASC programmatic investments in analytical capabilities. 

 

This is further extended in Appendix 7, the WSC Program Office Use Case, provided by Paul 

Yarrington and refined by the authors. 

Assertion 3: Our sponsor is the WSC management team, and our stakeholders include: 

• PCMM team (also partners) 

• NWSMU TRL team 

• Weapons Engineers 

• Analysts 

                                                 
1 The point of user qualification was initially questioned, but think of handing a hammer and chisel to 
Michelangelo and a chimpanzee, each with a slab of marble and instructions to sculpt ‘David’, and you 
clearly get the sense that who is using the tool matters in terms of the expected outcome. Implicitly 
assuming that experts are always using ModSim tools, so as to factor the expertise issue out of the TRL 
specification, is not a valid approach because the impact of expertise on ModSim predictions is profound. 
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• ModSim developers 

• ASC program office. 

This is simply a statement of who our sponsor and stakeholders are.  As part of this discussion, 

we established a basic requirement that the ModSim TRL framework needed to be consistent and 

compatible with the ASC V&V/PCMM program effort and the NWSMU TRL approach for 

hardware products and capabilities. This is also explicitly stated in Assertion 7. 

Assertion 4: “Static” TRLs do not work for ModSim capabilities, since the readiness level 

depends on the question and context.  Therefore, we need a flexible approach to assessing 

ModSim TRLs that is responsive to problem context. 

We were initially hoping to establish the TRLs in core capability areas for ModSim.  However, it 

quickly became apparent (see discussion in Assertion 1 above) that it is essential to establish the 

problem/usage context prior to assigning a TRL.  The reason for this is readily apparent upon 

consideration – how well a tool will perform depends on what you intend to do with it.  When 

you couple this basic notion to the dependency on who is using the tool and where they are using 

it, the notion of a static (i.e., non-time-dependent) TRL assignment becomes illogical.  The 

steering committee did acknowledge that high-level TRL assignments could be made for 

generalized capabilities so long as the set of assumptions for those assignments were clearly 

documented (e.g., what is the set of problems of interest, what split (weighting) between the 

various problem types is necessary to form an aggregate TRL, etc.). 

Assertion 5: Independent assessments improve credibility. 

A requirement placed on the team from the WSC program office was to define a robust, relatively 

objective approach to TRLs – that is, for a given set of conditions (problem, persons, tools), the 

answers should be consistent and stable (meaning that the same problem, persons, tools should 

yield the same TRL evaluation).  This assertion simply emphasizes the need for independence in 

the TRL assignment process, and the methodology we propose in this report calls for 

independence in the assignment teams. ‘Independence’ specifically means ‘independent of the 

tool/capability developers.’ 

Assertion 6: The ModSim community includes: 

• producers (tool/capability developers) 

• users (analysts) 

• consumers (product engineers) 
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• sponsors (WSC/ASC). 

This assertion simply states explicitly who we view as the modeling and simulation community 

associated with this ModSim TRL framework. 

Assertion 7: Our TRL solution needs to be compatible with the ASC/PCMM and NWSMU 

TRLs. 

By ‘compatible,’ we mean that the TRLs for ModSim must be able to be unambiguously 

communicated within a framework involving these stakeholders. 

Assertion 8: There will be nine TRLs to conform to existing NWSMU convention.  We will 

define the levels for ModSim, and then map that back to NWSMU TRLs. 

This requirement simply states that there will be nine levels for ModSim TRLs, as is common 

practice for hardware TRL assignments at NASA, DoD, and Sandia’s NWSMU.  We note that the 

quantization of the TRL process directly mirrors the fidelity of the process for performing the 

assessment. Nine evaluation levels requires a process that can unambiguously resolve nine 

different levels of information required in TRL evaluation.   

Assertion 9: We want to assign readiness levels to ASC and commercial tools, hardware, and 

expertise. 

This statement acknowledges the fact that we are interested in ModSim capabilities, whether the 

source is ASC or commercial suppliers.  From the customer’s perspective, the issue is how well 

the tool performs the job, not who provides the tool. (Obviously, evaluating commercial ModSim 

tools external to the SNL ASC program poses some different problems than for ASC tools, such 

as availability of needed V&V information.) 

Assertion 10: A rigorous, reproducible process is required. 

This is related to Assertion 5 above.  Two key points were brought out during this discussion of 

this assertion: 

• Consistency in the assessment process is required to enable TRL comparisons across 

time.  

• Consistency in the assessment process also ensures that comparisons between similar 

capabilities are meaningful. 
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Assertion 11: We are working under the assumption that some of the information involved in 

the TRL assessment process will be classified, and therefore we may need a classified version 

of the process. 

This simply acknowledges that our framework and process need to be able to address classified 

information and capabilities. 

ModSim TRL Definitions and Their Mappings 

In order to make TRL assignments, we first need to define how many levels there are and what 

we mean by any given level.  Standard examples of TRL definitions exist from NASA, DoD, and 

Sandia’s NWSMU, all of which are primarily oriented at defining TRLs for hardware.  Sandia’s 

ModSim capability set is an entirely different category of technology from hardware.  First, a 

ModSim capability is generally not a physical device, but a synthesis of software, hardware, and 

expertise (see Assertion 1 above).  Second, there is no fixed specification, operating environment 

or ‘finished product’, per se.  Most of the software tools are evolving on an ongoing basis and 

their application (specification and operating environment) can change often.  Basically, they are 

moving targets in general, and in many cases the core components (features in the codes and pre 

and post processing tools) involve an R&D component whereby new features show up in an 

ongoing manner.  Fundamentally, the concept of ‘readiness’ for ModSim is uncertain. This is 

entirely different from the standard TRL model, and presents a host of issues for the application 

to modeling and simulation. 

Our initial attempt to create ModSim TRL definitions was based on a modest transformation of 

the language in the NASA, DoD, and Sandia NWSMU ‘hardware-based’ TRL definitions.  In 

four field trials with this set of definitions the participant teams found the language vague and, in 

general, not an adequate representation of the key attributes associated with ModSim capability 

readiness.  Further, there was no clear mapping between that language/scheme and the PCMM 

maturity table2.  As a result, we revised the definitions by leveraging the PCMM attributes and 

language, and recast the definitions as a table where the rows are TRL levels and the columns are 

augmented PCMM key attributes (see Tables 1 and 2).  This change of the definitions had the 

advantage of being relatively consistent with the PCMM approach (since we directly used much 

of their language and measures) and completely consistent with the NWSMU TRL levels (i.e., 

                                                 
2 M. Pilch, T. Trucano, and J. Helton, SAND2006-5001; more extensive documentation of the PCMM (by 
Pilch, Oberkampf, and Trucano) is in progress at the time of writing. Some additional comments on 
measuring ModSim capability dimensions are found in Trucano, SAND2006-7725P 
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both approaches used nine levels, and the 1-to-1 mapping is consistent based on our test 

assessments).  Another round of field tests indicated that this new configuration was much better 

suited to the task and preferred by the assignment teams.  These tests also provided a number of 

refinements to the definition table, most of which have been incorporated into Tables 1 and 2. 

 

Table 1 – Modeling and Simulation TRL Definition Table (Part 1) 

                                                 
3 Description for verification and validation are taken from the PCMM table by Pilch, Trucano, and Helton, 
SAND2006-5001. 

TRL Capability 
Maturity 

Verification3 Validation User Qualification 

1 Concept Phase: basic 
principles identified. 

2 Concept Phase: 
technology concept 
and/or app 
formulated. 

3 Concept Phase: 
proof of concept 
initiated. 

Judgment only, 
or numerical 
errors 
unacceptably 
pollute 
validation or 
application 
decisions. 

Judgment only.  Insignificant 
coverage of the dominant 
physics.  Dominant physics 
assessed to be inadequate. 

None required. 

4 Prototype Phase: 
concept 
demonstrated on 
‘toy’/lab problem. 

5 Prototype Phase: key 
elements 
demonstrated on 
realistic problem. 

Explore 
sensitivity to 
discretization 
and algorithm 
parameters. 

Qualitative comparisons of 
measurement to predicted. 
Substantially incomplete 
coverage of dominant physics. 

Familiar with similar tools on 
similar problem type. 

6 Prototype Phase: 
system model 
demonstrated on 
realistic problem. 

Familiar using this tool on 
similar problems and computer 
systems. 

7 Production Phase: 
system demonstrated 
on realistic problem 
in production. 

Estimate 
numerical 
errors. 
 

Quantitative validation w/o 
assessment of variability and 
uncertainties in diagnostics 
and model. Or, w/ significant 
extrapolation to application 
parameter space.  With 
significant coverage of 
dominant physics. 

Familiar using this tool on 
similar problems and 
production computer systems. 

8 Production Phase: 
system completed 
and qualified on 
production through 
test and 
demonstration. 

9 Production Phase: 
system completed 
and in ongoing 
production use. 

Quantify 
rigorous 
numerical error 
bounds. 

Quantitative validation w/ 
assessment of variability and 
uncertainties in diagnostics 
and model. Without significant 
extrapolation to application 
parameter space.  With 
significant coverage of 
dominant physics and their 
interactions. 

Routine production use of tool 
on similar problems on the 
target production computer 
system. 
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Table 2 – Modeling and Simulation TRL Definition Table (Part 2) 

                                                 
4 Description for software attributes (columns) are taken from the PCMM table by Pilch, Trucano, and 
Helton, SAND2006-5001.  Geometry attribute description altered to focus more on fidelity instead of 
dimensionality. 
5 Physics and material models – applies to simulations. 
6 Physical geometry – applies to simulations. 
7 QMU and sensitivities. 
8 Computer system TRL. 

TRL Code Readiness4 Models5 Geometry6 QMU7 System8 
1 1 
2 2 
3 

Judgment only. Critical 
features and capabilities 
are missing or lack 
robustness. Sustained 
unit/regression testing w/o 
significant coverage.  
Unsustained 
unit/regression testing w/ 
or w/o significant 
coverage. 

Model form 
unknown. 

Low fidelity: 
Significant defeaturing 
and/or simplification 
of geometry.  Low 
level of detail 
represented (e.g., block 
representations of 
assemblies and parts). 

Deterministic Best 
Estimate or nominal 
margins.  Judgment-
only assessment of 
uncertainty and 
sensitivity. 

3 

4 4 
5 

Code managed and 
assessed against SQE 
requirements. Sustained 
unit/regression testing w/ 
significant coverage.  
Unsustained verification 
testing w/ or w/o 
significant coverage. 

Empirical 
model forms 
speculated or 
calibrated to 
represent 
trends.  
Calibration of 
physics-
informed 
models. 

Deterministic margins. 
Or, informal “what if” 
assessment of 
uncertainty and 
sensitivity. 

5 

6 

Medium fidelity: 
Without significant 
defeaturing and/or 
simplification of 
geometry – still 
captures key aspects of 
the geometry.  Very 
little block 
representation, but 
with some 
simplifications of 
small features/parts. 

6 

7 

Code managed and 
assessed against SQE 
requirements. Sustained 
unit/regression testing w/ 
significant coverage.  
Sustained verification 
testing w/ significant 
coverage of separate 
physics. 

Alternate 
plausible 
physics-
informed 
models.  
Potentially w/ 
model form 
calibration. 

Initial attempts to 
formally quantify 
margins, uncertainty, 
and sensitivity.  With 
significant judgment, 
or significant 
judgment as to what to 
include. 

7 

8 8 
9 

Code managed and 
assessed against SQE 
requirements. Sustained 
unit/regression testing w/ 
significant coverage.  
Sustained verification 
testing w/ significant 
coverage of high-order 
interactions. 

Established 
physics-based 
model. 

High fidelity: 
Geometric 
representation 
consistent with “as 
built”, with little to no 
defeaturing and/or 
simplification.  
Appropriate level of 
detail for qualification.  
Small features and 
parts captured. 

Formal quantification 
of margins, 
uncertainty, and 
sensitivity.  Without 
significant judgment 
as to what to include. 

9 
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Further explanation of the entries and usage model for this combined table is in order.  We will 

start with explaining the entries in more detail than the table itself provides.  The first column in 

both tables is the numerical value of the TRL (i.e., the row labels).   

Capability Maturity:  This attribute is a condensation of the traditional TRL definition, and is 

meant to give a gross numerical indicator of the general state of the capability in question.  Users 

decide whether it is in the concept, prototype, or production phase, and then expand that into 

further resolution.  Some of the testers found this confusing when compared to the “Code 

Readiness” attribute.  Maturity is effectively a high-level definition and qualifier to match the 

numbers – its resolving characteristics versus some of the other attributes is limited. 

Verification:  This attribute was taken directly from the PCMM table with a mapping into the 

TRL levels as shown above. There is extensive documentation in the SNL ASC V&V program 

that explains this attribute. This attribute answers two questions: (1) ‘Are mathematical, 

algorithmic, and/or software errors degrading the readiness for application of the ModSim 

capability?’ (2) ‘Are numerical errors degrading the readiness for application of the ModSim 

capability?’  

Validation: This attribute was taken directly from the PCMM table with a mapping into the TRL 

levels as shown above. There is extensive documentation in the SNL ASC V&V program that 

explains this attribute. This attribute answers the question: (1) ‘Is the physical fidelity of the 

ModSim capability degrading its readiness for application?’ 

User Qualification: This attribute accounts for the level of expertise of the person using the tool 

for the problem that defines the TRL assignment context (see the “TRL Assignment Process” 

discussion below).  It is intended to be applied taking into consideration the person doing the 

work, or the expertise of the person expected to do the work.  If the analysis team was not already 

established at the time of the TRL assignment, it is expected that the manager of the capability 

area (e.g., thermal analysis) would make this TRL assignment. 

Code Readiness:  Also taken from the PCMM table, this attribute indicates the state in terms of 

code management and testing practices. The concept points more at the readiness for use by a 

user community (for example, can a user simply pick up the code and run it, or is there some 

probability that the code will not function properly) than a general statement of appropriateness 

for a given application, the latter being the entire point of a TRL. Readiness has to do with 

configuration management, stability of available software versions, availability of documentation, 
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support by code developers, and availability of appropriate computing hardware to at least 

execute calculations of interest, and so on. None of this implies that the code is “ready” for some 

particular application. Therefore, as used here, code readiness is just one part of a ModSim TRL 

assessment. 

Models: This attribute was taken directly from the PCMM table with a mapping into the TRL 

levels as shown above. This attribute basically addresses the question ‘What physics are 

important to the application and how physics-based are the models?’ 

Geometry: This attribute was adapted from the PCMM table with a mapping into the TRL levels 

as shown above.  An important question that this attribute addresses is ‘Are you overlooking 

important feature details that could significantly impact the results?’ Our field tests indicated that 

the dimensionality of the problem was of less concern than the geometric fidelity – i.e., in some 

cases a high-fidelity, low-dimensional geometric representation was completely sufficient for 

obtaining the required analysis result.  The most recent field tests provided further feedback 

indicating that in some cases the required analysis results can be obtained using medium 

geometric fidelity models, but this should not result in an overall lower TRL.  We have yet to 

resolve this issue in the table, nor do TRLs in and of themselves bring clarity to this issue. 

QMU: This attribute was taken directly from the PCMM table with a mapping into the TRL 

levels as shown above. It refers to elements of ModSim readiness that are pertinent to QMU, and 

is discussed in the Pilch, Trucano, and Helton report referenced above. 

System: This is an indicator of the TRL for the computer hardware system used to do the 

computations.  It is expected that the TRL assignment on that system is done ‘externally’ – i.e., 

done separately from an analysis-based capability TRL assignment. ‘System’ includes what may 

also more generally be called ‘infrastructure’ enabling ModSim, including storage and 

communication systems. Evaluation of the ‘readiness’ of complex hardware architectures for 

ASC-scale ModSim is obviously nontrivial and well beyond the scope of our initial TRL 

assessment effort. 

Unfortunately, the columns that were taken directly from the PCMM table were not used 

extensively in the field tests.  Some of the example problems did not use V&V or QMU at all, 

and in other cases the users were confused by the definitions.  To resolve this issue, we either 

need to adapt the PCMM to clarify the wording in the columns, or list a point of contact that can 

answer such questions.  As noted in the executive summary above and recommendations below, 
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we recommend performing the TRL assignments as an adjunct to the PCMM process, and that 

should directly address the clarity issue. 

Tables 1 and 2 are intended to be used in the TRL assignment process as follows: 

1. For each applicable column in the table, choose the definition that most accurately 

describes the node in question.  For example, if you are using a relatively new physics-

based model, you would probably choose the box that spans levels 6 and 7 in the Model 

column. 

2. If the result of step 1 spans multiple rows, use your discretion as to which row it should 

be assigned.  For instance, if the example in step 1 was very reliable and had a number of 

users, you would probably choose level 7 over level 6. 

3. After you have done steps 1 and 2 for each column, the TRL is then selected as the 

minimum of those levels.  For example, if Model was a 3, Geometry was a 9, and the rest 

of the levels were 6, the TRL would be a 3. 

TRL Assignment Process – Proposed Methodology 

The next step is to describe how to use the TRL definitions to produce a readiness level for the 

required capability.  We have constructed a process methodology for this purpose, which is 

depicted in Figure 1 below. 

On the left side of the figure are the ModSim TRL definitions and their direct mappings to 

NASA, DoD, and NWSMU TRLs, as described in the previous section.  These mappings are 

important because they show that ModSim capability readiness levels can be compared to those 

of weapon hardware, etc., if need be. 

At the top of the diagram is the capability being evaluated and its problem context.  The 

capability can be something that was worked on in the past or something new that is planned for 

the future.  It is usually given as the starting point of the analysis, although it might be necessary 

to clarify the details related to context.  This problem context is important because it forms the 

basis for the remaining steps in the process.  For example, the same feature in a software code 

could have a very different TRL depending on what is being done with it. 

After defining the capability and problem context, the next step is to create a dependency tree that 

identifies the components needed to perform the capability.  The dependency tree is exactly what 

its name implies, a way to represent dependencies between high and low-level capabilities (it is 
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not, however, meant to represent priority or parent-child relationships, a question that was 

frequently asked in the field trials).  The capability and problem context form the top node in the 

tree, and the rest of the nodes are filled in beneath it.  Each of these nodes is a capability in itself 

(or a sub-capability of the node above it, depending on how one looks at it).  Sub-capabilities can 

take on any shape or form, provided that they sufficiently describe the software, hardware, and 

expertise required by their parent capability. 
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2. The ModSim capability and 
the problem context become the 
top node in the dependency tree

ModSim Capability
and Problem Context

1. ModSim TRLs are 
created that map to NASA, 
DOD, and NWSMU TRLs

4. A ModSim TRL is assigned to 
each leaf-level node in the 

dependency tree

3. The dependency tree is expanded so that 
sub-capabilities sufficiently represent the 

hardware, software, and experience required 
to fulfill the capability above them.

 
Figure 1 – ModSim TRL Assignment Process 

Since there are multiple ways to view the same problem, the tree can take on a number of shapes 

and forms.  However, all of the trees in our analyst examples (explained in the next section) 

looked remarkably similar, suggesting that a generic dependency tree template could be used as a 

starting point to save time in future evaluations.  On the other hand, a DART example developed 

by Sean Brooks (Appendix 6) produced a unique tree compared to the others, which suggests that 

we might have different templates for different classes of problems.  Both of the dependency tree 

templates that were created and approved by the analysts are included in Appendix 6.  The notion 

of termination criteria, or at what point the tree expansion stops, will be addressed in the next 

section. 
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Once the dependency tree is created, the last step is to assign readiness levels to the leaf-level 

(i.e., bottom) nodes using the TRL definitions.  It is first necessary to decide which columns in 

the table apply to each node, since some are only targeted towards software, hardware, etc.  Next, 

a TRL is assigned to each of those columns, recording notes for each.  These notes put 

justifications behind the numbers, and could eventually get captured in a final report.   We found 

that a matrix was an easy way to record this information, where the rows are the names of the 

leaf-level nodes and the columns are the same as the definitions table.  Then a number is marked 

in each box that applies, recording notes for the rows as the matrix is completed.  Example 

matrices can be found in Appendix 5.  

We initially envisioned an aggregation process, where leaf-level TRLs would percolate up the 

tree according to some aggregation calculus, and eventually yield a TRL for the entire capability.  

However, aggregation was a hotly debated topic with the steering committee, so we decided to 

focus our efforts on the TRLs of leaf-level nodes, since they would be necessary whether we 

ended up aggregating or not.  One of the analysts suggested that we assign rankings to leaf-level 

nodes while computing their TRLs, and to use those as weights during the aggregation process.  

His reasoning was that certain nodes are more important than others, and it is hard to describe 

those relationships ahead of time without first constructing the tree.  Of course, this mainly shifts 

conceptual difficulties to the challenge of quantifying ‘weights’ rather than eliminates them. 

Whether we end up aggregating TRL information, or simply looking at the leaf-level TRLs, is a 

decision that is still being debated within the WSC program at the time of writing. 

Analysts Examples and Use Case 

In this section we will describe the analyst use case, the full specification of which can be found 

in Appendix 1.  We initially created this use case to get an idea of how ModSim TRLs would 

actually be used in practice within the Sandia ModSim community.  However, it also gave us an 

opportunity to test the key assertions, TRL definitions, and TRL assignment process described in 

previous sections.  We targeted analysts as opposed to developers and engineers because of their 

personal familiarity with the wide range of capabilities that are necessary to solve ModSim-

related problems.  The analysts that helped co-author the use case are Jay Dike (SNL/CA, 

multiphysics/mechanical analysis), Jeff Gruda (SNL/NM, mechanical analysis), and Roy Hogan, 

Jr. (SNL/NM, thermal analysis).  We also met with Sean Brooks (an expert geometry and 

meshing model builder) at a later point, who gave us feedback from the Design Through Analysis 

Realization Team (DART) perspective.  As can be seen, the analysts work in different locations 
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on different classes of problems, which helps to make the use case more representative of 

Sandia’s work as a whole. However, it is also clear that yet more work could be (should be) 

performed to develop a more systematic experience base. 

We went through the same set of steps with each of the analysts.  First we discussed the overall 

process so that they understood what we were doing and why we were doing it.  Then we helped 

come up with a specific problem and problem context.  We had them pick something they had 

worked on in the past, so that they were familiar with the software tools, hardware, and expertise 

required to solve the problem.  We also wanted the problem to cover as much of the analysis 

process as possible, from geometry and mesh creation to post-processing and visualization of 

ModSim information.  Once that was complete, the analysts created a corresponding dependency 

tree, and then used the TRL definitions to assign readiness levels to the leaf-level nodes in the 

tree.  For this step, we created a matrix where the columns were borrowed from the TRL 

definition table, and the rows were the leaf-level nodes (example matrices can be found in 

Appendix 5).  For each row, we ran through the columns, and assigned TRL numbers to each that 

applied.  We also captured notes for each node, which would document the justification if this 

were to be packaged into a final report.  Finally, we captured analyst’s thoughts on the complete 

process and its utility to them. 

A question that came up in all of the examples was that of termination criteria, or the point at 

which tree expansion stops.  The analysts showed that tree expansion could go on forever, unless 

one made a conscious decision to halt at some point.  Our advice as facilitators was to do this at 

whatever place made the most sense to them.  Initially we thought this might depend on things 

like accuracy and maturity or alternative capabilities.  However, we soon realized that it was a 

function of TRLs.  New nodes should be created only when something requires further 

explanation and a TRL cannot be accurately assigned to the current node. 

While we did not ask the analysts to try to assign aggregate TRLs, the topic came up often during 

the exercise.  Roy noted that all of the leaf capabilities can be in good shape, but integration is 

where the most problems surface.  Because of this, he viewed aggregation as an important part of 

the process, as do we.  Jay took this a step further and suggested that we assign rankings to the 

leaf-level nodes along with the TRLs that would essentially turn into weights during the 

aggregation process. 

The analysts liked the column format of the TRL definitions because it let them apply filters to 

different types of nodes.  For instance, it is possible to have one node for a software code and 
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another for a piece of hardware, have different columns apply to each, and yet still arrive at an 

equivalent TRL definition.  They were also concerned about the effect of certain columns such as 

“Geometry” because in some cases they only needed “medium fidelity” models (which are a TRL 

of 5 or 6) to match the test data.  However, in our current model, those would percolate through 

and lower the overall TRL, so we need to rework the wording in the definitions to prevent this 

from happening.  The analysts were also confused on the “User Qualification” column because 

they were not sure if it depended on who was doing the analysis or who could be doing the 

analysis.  In the latter case, their argument was that there will almost always be someone at 

Sandia that is an expert with a given tool, so if we are evaluating how capable Sandia is to 

perform a capability, the "User Qualification" should always be a 9.  However, the expert user 

will not always be available due to time constraints, so we must take into consideration who will 

actually be performing the analysis with the ModSim capabilities when assigning TRLs. 

The analysts did not find much personal utility in the process (in other words, they were not 

particularly interested in assigning TRLs to ModSim capabilities).   However, they did recognize 

their role in assigning TRLs, since they are familiar with the tools and are able to provide 

unbiased opinions (as compared to developers, who could be biased in regard to their particular 

tools).  They were also able to provide answers in almost every step in the process, which would 

not be true for most of the other stakeholders.  In all three cases, the dependency trees were 

created in under an hour, and TRLs were assigned to the leaf-level nodes in less than three hours 

of additional time, which includes writing notes to correspond with the numbers.  Taken together, 

this means that the entire process could be completed in less than a day, which would probably 

decrease as the number of evaluated capabilities went up (the analysts mentioned that they tend to 

use the same methods over and over). Thus, the burden on analysts in this specification of the 

process seems to be relatively small. 

Two of the analysts expressed serious concerns about how TRL assessment was going to be used 

by the WSC Program Office.  They were worried that a low TRL would be interpreted as doing a 

bad job, and would result in lower funding.  Or conversely, that a high TRL would be interpreted 

as having a mature code that did not need further substantial funding support.  This is part of the 

reason why we created a separate use case specifically targeted at Program Office application of 

ModSim TRLs, as described in Appendix 7.   
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Program Office Use Case 

In addition to the field trials and use case developed with the analysts, Paul Yarrington provided 

information for a program office use case.  We refined this information into a more detailed 

specification. We have included this use case as Appendix 7 in this report. The use case addresses 

the areas of investment, communication, application, response, and planning. The reader is 

referred to the appendix for full details. 

Conclusions and Recommendations 

When we started this project, we knew that we were working on an interesting problem for a 

number of reasons.  Our initial thinking indicated that while people had evaluated the readiness of 

software systems in general, they had not applied TRLs to CSE modeling and simulation 

specifically. The predominant use of TRLs has been in system hardware applications (and for 

certain kinds of software systems like avionics software), but in fact very little information is 

available about the application of TRLs to CSE software in general.  A lot was learned from this 

exercise, and we have reached four important conclusions that are associated with our primary 

recommendations. 

Conclusion 1: We can assign TRLs to ASC ModSim capabilities. 

While we recognize that there is work remaining to refine the modeling and simulation 

framework and process, we have developed a baseline ModSim TRL framework and solution to 

the assignment process, as documented in this report. 

Recommendation 1: Use the framework and process proposed in this report as a baseline 

for refinement. 

Conclusion 2: Modeling and simulation TRLs and the PCMM process are connected. 

As shown in Tables 1 and 2 above, we have defined the evaluation criteria for modeling and 

simulation TRLs to substantially overlap with those of the PCMM table.  This is a result of a 

combination of factors, including: a) the inherent nature of understanding the usability state of a 

ModSim capability, and b) our aim to keep the two representations synchronized.  It is important 

to acknowledge that while the TRL and PCMM tables share some criteria, they are not attempting 

to solve the same problem.  The PCMM approach is primarily concerned with risk identification 
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and mitigation, while the TRL table is primarily concerned with estimation of readiness levels – 

those are not the same thing, although they share much in common. 

Recommendation 2: Conduct TRL assessments as an adjunct to the PCMM process, not as 

a stand-alone exercise. 

Considering the degree of overlap in the core criteria being measured, and the fact that those 

overlapping criteria are by definition components of a PCMM evaluation, we recommend that 

TRL assessments be included as needed as an augmentation to PCMM evaluations.  Conducting a 

‘stand-alone’ TRL evaluation would require one to assess many of the PCMM criteria in the 

process, and that should be done according to the formal procedures and guidelines specified by 

the PCMM team, not in a reduced or simplified form just to complete a TRL evaluation. 

Conclusion 3: The modeling and simulation TRL framework and process are not complete 

– there is still work to be done. 

This report documents the baseline framework and process for assigning TRLs to modeling and 

simulation capabilities.  Four field trials confirm that the basic approach described is sound, 

although incomplete and unrefined. 

While we have made progress, there are still things that need to be finished.  Perhaps most 

important are the descriptions in the ModSim TRL definitions table.  Many of the field test users 

were either confused by the original wording in the columns, or had suggestions for 

improvement.  We have recorded their feedback in Appendix 1 and updated the tables, but further 

refinements are still needed. 

As mentioned above, we ultimately need to resolve the aggregation issue.  Modeling and 

simulation capabilities are naturally aggregated to solve classes of problems – i.e., tools are 

assembled into higher-level problem solving capabilities. 

As for the bigger picture, one might conceive of evolving this framework into a corporate 

business practice, which would standardize ModSim assessment throughout SNL.   More 

tactically, it would be useful to have some sort of web application that would make it easy (or at 

least easier) to create and modify dependency trees, assign TRLs to nodes in those trees, and track 

and search through capabilities that were evaluated in the past.   
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Recommendation 3: If the sponsors decide to proceed with this line of development, 

continue to refine the framework and process using the baseline approach described in this 

report. 

Conclusion 4: There remain questions about the utility of ModSim TRLs. 

One of our early discoveries was that even within our own small team there were substantially 

differing views of the utility of using TRLs for modeling and simulation capabilities.  While some 

team members viewed TRLs as a helpful aide in representing and communicating our ModSim 

capability readiness levels, others were more skeptical about their application.  This latter view 

was due in large part to the implications of oversimplifying the assessment of the maturity and 

readiness of these capabilities and the potential misuse of the information.  Further, we noted a 

range of opinions in our initial field tests with the analysts, from those that considered it useful to 

those that were wary of the misapplication of results (specifically, some analysts were concerned 

that a well-rated TRL might cause a code group to lose funding due to the implication that the 

code was sufficiently mature already). 

In addition to the ‘cultural’ concerns above, there were fundamental concerns about the 

applicability of TRLs to advanced ModSim capabilities in general, since these capabilities are so 

substantially different in nature from the hardware that are usually associated with TRLs.  

Application of TRLs to ASC ModSim is not an obvious extension of the standard TRL usage 

paradigm.  Substantial differences exist, including the following: 

• There is no physical specification.  The context for judging the readiness of a physical 

product (hardware) can be expressed as a physical specification (size, weight, 

performance measures) applied in a context (e.g., F-15 instrument panel, specified G-

force range, specified temperature range, etc).  Most of the software components for 

modeling and simulation do not have such a well-defined specification and context – 

indeed, the problems being addressed at Sandia National Labs are often ‘one off’. 

• Application of modeling and simulation capabilities is unique.  Whereas the hardware 

being produced is typically being made in some quantity greater than one, modeling and 

simulation results are virtually always unique to the problem context.   

• Application of modeling and simulation capabilities is not static.  Whereas the hardware 

being produced is made according to an essentially static specification and application 

context, the exact opposite is true for modeling and simulation capabilities.  The problem 
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context is entirely dependent on the analysis objectives, and the underlying tools (e.g., 

simulation codes) are continuously changing.  In some cases, the problem solution 

requires problem-specific extensions to the codes.  Hence, the readiness level of a 

modeling and simulation capability is in general time and problem context dependent. 

So, in addition to the utility concerns above, there remain differences of opinion about the 

appropriateness of applying TRLs to advanced modeling and simulation capabilities. 

Another debate about TRLs for ModSim focused on aggregation.  We all agreed that we needed 

to break ModSim capabilities into pieces (which are represented as leaf-level nodes in the 

capability-dependency tree), but we could not reach a consensus on how to aggregate the 

information to arrive at a final TRL for a high-level capability.  We originally proposed 

aggregating via some predefined calculus, such as an averaging method or the weakest-link-in-

the-chain (minimum of all relevant TRLs contributing to a given capability assessment).  

However, not everyone agreed that it was possible to define an aggregation scheme ahead of 

time, and they were also worried about the same loss of information issue discussed above.  

Because of this, we decided to put aggregation on hold, but at some point we will need to revisit 

the issue. As currently defined, WSC use of TRLs requires an aggregation procedure. 

Recommendation 4: Address key issues before proceeding to the next phase of developing 

the TRL framework and process. 

Acknowledgements 

The authors are grateful to the steering committee members, who worked through the problem 

with us to provide both guidance and direct help with the issues and problems.  Specifically, we 

wish to thank Paul Yarrington as our primary sponsor within the steering committee, as well as 

Fran Current, Pete Wilson, Mike Hardwick, Scott Klenke, and Mike Chiesa.  Also, we appreciate 

the guidance provided by our executive sponsor Art Hale. 

We are also grateful to Jay Dike, Jeff Gruda, Roy Hogan, Jr. and Sean Brooks for their time and 

valuable help provided during the field trials.  Their patience and insight was greatly appreciated. 

Finally, we need to acknowledge Paul Yarrington for providing raw information from which we 

constructed the Program Office Use Case in Appendix 7 in this report. 

 



  

 27 

  

Glossary and Acronyms 
 
 

ASC – Advanced Simulation and Computing. 

CSE – Computational Science and Engineering. 

DOE – Department of Energy. 

DP – Defense Programs. 

ModSim – Modeling and Simulation. 

NNSA – National Nuclear Security Administration. 

QMU – Quantification of Margins and Uncertainties. 

PCMM – Predictive Capability Maturity Model. 

NWSMU – Nuclear Weapons Strategic Management Unit. 

DSW – Directed Stockpile Work. 

NW – Nuclear Weapons. 

TRL – Technology Readiness Level. 

V&V – Verification and Validation. 

WSC – Weapon Simulation and Computing. 
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Appendix 1: Analyst Use Case 
 
 
 

Modeling and Simulation Technology Readiness Level 
Analyst Use Case 

 
Analysts 

Jay Dike, Jeff Gruda and Roy Hogan, Jr. 
 

ModSim TRL Team 
Robert Clay, Scot Marburger and Max Shneider 

Sandia National Laboratories 
 

3/26/2008 

Background 
 
This document describes a generalized analyst use case for modeling and simulation 
(ModSim) technology readiness levels (TRL).  It was written as part of a study 
examining the use and utility of ModSim TRLs for Sandia National Laboratories, from 
the analysts’ point of view.  This use case is one deliverable of a WSC program office 
effort to establish a framework to use TRLs as a means (in addition to other ongoing 
efforts such as V&V and PCMM) of describing and communicating readiness level of the 
ModSim capabilities the program provides in support of the NWSMU efforts.   
 
The analysts and co-authors of this use case were: 
 

• Jay Dike – SNL/CA multiphysics/mechanical analyst (8774) 
• Jeff Gruda – SNL/NM mechanical analyst (1524) 
• Roy Hogan, Jr. – SNL/NM thermal analyst (1516). 

TRL Assignment Process  
 
The discussion and results of the TRL assignment process as applied to the three analyst 
examples are presented in Appendix 2.  In this section we will review the high-level 
process and comment on the roll the analysts played in generating the dependency trees 
presented in Appendix 4 and the TRL assignment matrices presented in Appendix 5. 
 
Figure 1 (within the SAND report) describes the high-level process flow for TRL 
assignments.  This basic process was followed by the analysts developing the examples 
for this use case.  A summary of the key steps follows: 
 



  

 29 

  

1. Define the problem context for the capability TRL assignment. 
2. Generate the capability dependency tree. 
3. For each “leaf” in the tree, assign a TRL and document reasoning. 
4. Validate the TRL assignments. 

 
Step 1 was a simple matter – each analyst selected an analysis problem they were either 
currently.  Their selections were as follows: 
 

• Jay Dike – Abnormal/mechanical tension test of 304L using EMMI model, LS-
Dyna3D, to failure. 

• Jeff Gruda – Abnormal/mechanical penetrator, new fuse, new design LDRD. 
• Roy Hogan, Jr. – Abnormal/thermal W80 V&V ModSim Milestone for WES 

Mock-2 with experimental data. 
 
Step 2 proved easier than anticipated, since each tree was generated in an hour or less.  
Despite the fact that the tree depths were relatively consistent, some unexpected 
complexities arose.  All three analysts asked questions about termination criteria, or the 
point at which you stop expanding the tree.  Initially, there were many different theories 
as to when you should stop creating sub-nodes (discussed in Appendix 2), but we 
ultimately found that you should halt at places where you can naturally assign TRLs.  
Creating sub-nodes beneath those spots would only result in extra work, since it would be 
hard to assign TRLs to them. 
 
The analysts weren’t sure which way the arrows pointed between nodes (they thought 
that in some cases there should be directed edges from parent nodes to children, and in 
other cases the edges should be bi-directional).  The main reason this came into question 
was because they wanted certain parts of their trees to be iterative (to represent, for 
instance, optimization loops).  However, the analysts were trying to use the trees for more 
than their intended purpose, to show dependencies.  It is up to the analysts to define the 
process flow that uses those dependencies.  The three analyst dependency trees can be 
found in Appendix 4.  As you can see, the trees all have similar structures, which seemed 
to suggest that a template tree could be used as a starting point to save time in future 
evaluations.  This dependency tree template has been created and approved by the 
analysts, and is included in Appendix 6. 
 
For step 3, we initially attempted to use a set of ModSim TRL definitions that were 
essentially a modest transformation of the NASA, DoD, and Sandia NWSMU ‘hardware-
based’ TRL definitions.  However, the analysts found the language vague and in general 
not an adequate representation of the key attributes associated with modeling and 
simulation capability readiness.  Because of this, we constructed a new set of definitions 
(which can be found in Tables 1 and 2) that were better suited to the task and preferred by 
the analysts.  They especially liked the new column format because it let them apply filters 
to different types of nodes, and yet still arrive at an equivalent TRL definition.  The 
actual TRL assignments and corresponding notes for each example problem can be found 
in Appendix 5.  While we did not ask them to assign aggregate TRLs, the topic came up 
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naturally during the exercise.  All of the analysts thought that aggregation was important, 
but they agreed that coming up with a solution was non-trivial. 

Discussion of Utility  
 
The analysts did not find much personal utility in the process (in other words, they 
weren’t particularly interested in what TRLs were assigned to ModSim capabilities).   
However, they did recognize their importance in the TRL assignment process, since 
they’re familiar with the tools and are able to provide unbiased opinions (as compared to 
developers, who are most likely tied to their particular tools).  They were also able to 
provide answers in almost every step in the process, which would not be true for most of 
the other stakeholders.  And perhaps most importantly, they agreed that it wouldn’t be too 
much of a burden to evaluate the readiness of ModSim capabilities from time to time, if 
asked to do so.   
 
Two of the analysts expressed serious concerns on how this was going to be used by the 
Program Office.  They were worried that a low TRL would be interpreted as doing a bad 
job, and would result in lower funding.  This is the part of the reason why we created a 
separate use case specifically targeted at the program office. 
 
A more detailed discussion of utility can be found Appendix 3. 
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Appendix 2: TRL Assignment Process Details 
 
 
 
A high-level process flow has been defined that describes the necessary steps for the 
evaluation of a particular capability, which can be summarized as follows: 
 

A team consisting of at least analysts and possibly engineers, developers, and other 
constituents: 
1. Creates a capability-dependency tree of supporting technologies beneath the 

requested capability, as defined by the problem context, 
2. Assigns and documents ModSim TRLs to each leaf node in the tree, 
3. Optionally, aggregates the leaf-level TRLs up the tree to get an overall TRL. 

 
In step 1, the capability request essentially becomes the top-level node, and a dependency 
tree is expanded beneath it.  The leaf-level nodes in this tree represent the software codes, 
hardware, and expertise needed to solve the problem, in context, from beginning to end, 
while the edges represent dependencies between nodes.  In step 2, each leaf-level node is 
assigned a ModSim TRL based on the level definitions.  As described in step 3, these 
leaf-level TRLs might also be aggregated up the tree to produce an overall TRL for the 
requested capability in the specified problem context (i.e., as defined in the top node of 
the tree).  There are various aggregation schemes that we could apply, such as taking the 
lowest TRL of the leaves, or simply averaging the leaf TRLs.  However, aggregation has 
been a source of contention among the steering committee, so for the time being the focus 
will be on developing the level definitions and methodology for assigning TRLs to the 
leaf nodes, tackling the aggregation problem after new knowledge has been gained in the 
process. 
 
It’s worth noting that this is a dynamic process, and a new tree must be created and 
expanded with each problem invocation.  This is because a TRL doesn’t make sense 
without a specific problem context.  PRESTO, for instance, might have entirely different 
readiness levels from one context to the next.  Furthermore, a readiness evaluation is also 
a snapshot in time since the requirements and capability components (such as software 
codes and hardware) are constantly changing. 
 
Several experienced analysts, representing an initial sample of the analyst community, 
were chosen to test the TRL assignment process and co-author this analyst use case: 
 

• Jay Dike – SNL/CA multiphysics/mechanical analyst (8774) 
• Jeff Gruda – SNL/NM mechanical analyst (1524) 
• Roy Hogan, Jr. – SNL/NM thermal analyst (1516) 
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The analysts represent two different locations (New Mexico and California), and two 
different classes of problems (mechanical and thermal).  Each of the analysts performed 
the following tasks as part of the exercise: 
 

o Selection of a specific analysis problem (defining the top-level ModSim 
capability and TRL assignment context) 

o Expansion of a dependency tree beneath that capability/context 
o Assignment of TRLs to the leaf nodes in the capability dependency tree 
o Documentation of those assignments 
o Discussion of the process and its utility. 

 
For step 1, we asked each analyst to select a specific modeling and simulation problem to 
use as the basis for their example.  These examples had to be complex enough to produce 
a nontrivial dependency tree.  They were based on the analysts’ previous work, so that 
they’d be familiar with the individual components required to complete the problems.  
Their selections were as follows: 
 

• Jay Dike – Abnormal/mechanical tension test of 304L using EMMI model, LS-
Dyna3D, to failure. 

• Jeff Gruda – Abnormal/mechanical penetrator, new fuse, new design LDRD. 
• Roy Hogan, Jr. – Abnormal/thermal W80 V&V ModSim Milestone for WES 

Mock-2 with experimental data. 
 
Each analyst created a dependency tree for step 2.  Jay actually started off by creating a 
list of components, and then grouping the terms before creating the diagram.  Jeff and 
Roy, on the other hand, simply went straight to the diagram, brainstorming as they went.  
In all three cases, the tree was created in under an hour, which was less time than 
anticipated. 
 
One question that came up in all three meetings was that of termination criteria, or the 
point at which you stop expanding the tree.  The analysts realized that you could basically 
expand the tree forever, unless you made a conscious decision to halt at some point.  Jay 
viewed the termination criteria as a function of accuracy and maturity.  If the tool or 
feature had risk and wasn’t guaranteed to give perfect results, he made it into a new node.  
If, on the other hand, it always gave the correct answer, it simply factored into the TRL of 
its parent node.  Jeff had an entirely different termination perspective based on choices.  
When he expanded the tree, he’d usually get down to a level with a list of options that 
could all be used to solve the same task.  His termination condition was then picking an 
option from the list, which could depend on many factors.  For instance, one material 
model might require fewer tests than another, or one might select a tool because there’s 
an expert down the hall that can answer questions about it.  As it turned out, TRLs were 
the deciding factor, and we recommended that they stop at places where you can 
naturally assign TRLs to nodes.  Creating sub-nodes beneath those spots would only 
result in extra work, since it would be hard to assign TRLs to them. 
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When Jeff and Roy constructed their capability dependency trees they both questioned 
the directions of the arrows between nodes.  We had simply assumed that the arrows were 
directed edges connecting parent nodes to their children, providing an overall downward 
flow from the requested capability to the leaf-level nodes.  However, both Jeff and Roy 
agreed that in some cases the edge arrows were actually bi-directional.  They explained 
that the node might give results, and depending on what they are you could either accept 
them and move on or tweak some parameters and try again.  In effect, the tree would 
change as the analyst work the problem and adjust their decisions based on what they 
learned. 
 
One of the reasons that directions of arrows came into question was because the analysts 
thought that the tree should be iterative.  We imagined that you’d start at the top of the 
tree and incrementally work your way down, but it turns out that in some cases the tree 
might contain loops.  For instance, Jeff’s example contained an optimization branch, 
which meant that you’d do everything else in the tree a certain number of times, either by 
hand or using a tool like DAKOTA.  Roy actually took this a step further and drew a loop 
at the top of his tree, which meant that you’d do everything in the example one or more 
times.  However, the analysts were trying to use the trees for more than their intended 
purpose, to show dependencies.  It is up to the analysts to define the process flow that 
uses those dependencies. 
 
We initially attempted to use a set of ModSim TRL definitions that were essentially a 
modest transformation of the NASA, DoD, and Sandia NWSMU ‘hardware-based’ TRL 
definitions.  However, the analysts found the language vague and in general not an 
adequate representation of the key attributes associated with modeling and simulation 
capability readiness.  Because of this, we constructed a new set of definitions that were 
better suited to the task and preferred by the analysts.  They liked the column format of the 
TRL definitions because it let them apply filters to different types of nodes.  For instance, 
you could have one node for a software code and another for a piece of hardware, have 
different columns apply to each, yet still arrive at an equivalent TRL definition. 
 
They were also concerned about the effect of certain columns such as “Geometry” 
because in some cases they only needed “medium fidelity” models (which are a TRL of 5 
or 6) to match the test data.  However, in our current model, those would percolate 
through and lower the overall TRL, so we need to rework the wording in the definitions 
to prevent this from happening.  The analysts were also confused on the “User 
Qualification” column because they weren’t sure if it depended on who was doing the 
analysis or who could be doing the analysis.  In the latter case, their argument was that 
there will almost always be someone at Sandia that's an expert with a given tool, so if 
we’re evaluating how capable Sandia is to perform a capability, the "User Qualification" 
should always be a 9.  However, the expert user will not always be available due to time 
constraints, so we must take into consideration who will actually be performing the 
evaluation when assigning TRLs. 
 
While we did not ask the analysts to try to assign aggregate TRLs, the topic came up 
naturally during the exercise.  Roy noted that all of the leaf capabilities can be in good 
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shape, but integration is where you run into problems.  To paraphrase Roy, you can have 
a box full of perfect hammers, but it doesn’t make you a sculptor.  For instance, you can 
assign a mesh, but there’s no place in the current model that describes how it works with 
the other pieces.  For this reason, he thought that aggregation was an important part of the 
process.  Jay didn’t address this issue directly, but he did think that aggregation was 
possible, although he wasn’t sure which aggregation scheme to use. 
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Appendix 3: Detailed Discussion of Utility 
 
 
 
Jeff and Roy were first asked about the value they found in the process, and both gave 
similar answers.  Neither thought that it helped them much directly, and they couldn’t see 
themselves doing this on their own unless their managers requested it.  Roy explained 
that when analysts get a problem, they can either do it with the tools they have at hand or 
they can’t.  Ratings don’t really help them solve their problem.  As project leads, they 
typically want an effect, not an approach.  They ask their team members for the answers, 
and usually don’t care what tools they use to get it.  They did agree that this could be a 
means for analysts to shop around and find other tools to use, but unfortunately they 
thought analysts might only look for tools once a year, or a few times in their career. 
 
However, both recognized the importance of analysts in the TRL process, since they 
know and work with the tools in question, and are able to provide unbiased opinions (in 
the sense that they aren’t tied to one tool over another).  They were also able to provide 
answers to almost every step in the TRL process, which would not be the case with most 
of the other stakeholders.  And they all agreed that if they had to evaluate the readiness of 
a ModSim capability from time to time, it wasn’t too much of a burden. In each example, 
the dependency trees were created in under an hour, and TRLs were assigned to the leaf-
level nodes in under three hours (of additional time).  This includes writing notes that 
correspond with the numbers, but it does not include the time that’s necessary to wrap the 
notes in an overall report, if required.  Taken together, this means that the entire process 
could be completed in a day, which would probably decrease as the number of evaluated 
capabilities went up (the analysts mentioned that they tend to use the same methods over 
and over). 
 
All of the analysts agreed that the TRL assignment process was probably of more use to 
the WSC program office.  They understood that it could be a communication mechanism, 
since TRLs are already used in other parts of Sandia as well as various government 
agencies.  They also noted that TRLs could help guide investment decisions by and 
identifying capability weaknesses.  However, Roy’s main concern was that if a tool was 
assigned a 7 or an 8, it would cause the WSC office to declare victory.  He wouldn’t want 
to see a decrease in investment just because a project is doing well, since tools are always 
improving.   Roy observed that the class of problems that they are solving is a moving 
target, and today’s TRL 8 could be tomorrow’s TRL 3 based on the changed problem 
context.  These suggestions explain why we’re also creating a separate WSC Program 
Office use case. 
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Appendix 4: Analyst Example Dependency Trees 
  
 
 

Simulation of high 
rate tension test of 
304L using EMMI 

model, LS-Dyna3d, 
to failure

Model creation –
drawing -> cubit -> 

simba…
Analysis code

LS-Dyna
Vis/post-processing

LS-Prepost

Elem types Material models Boundary conditions Initial conditions
Other code

features

Storage, 
documentation, etc

Mass storage (smss2), 
powerpoint or word for 

document, WFS for 
archiving doc..

1 pt. hex

Full int. hex
Shell type 1

Shell type 2

elastic

Bi-linear plastic
Johnson-cook plastic

EMMI

foam

fixed

pressure
velocity

acceleration

…

Initial velocity

….
…

….

…

Run controls

output
Mass scaling

contact

…parameters

damage shear plasticity
experiments

Example – Jay Dike
W80 Abnormal/Mechanical

Tension Test

 
Figure 2 – Jay Dike’s dependency tree 
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Example – Jeff Gruda
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Figure 3 – Jeff Gruda’s dependency tree 
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Figure 4 – Roy Hogan, Jr.’s dependency tree 
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Appendix 5: Analyst Example TRL Assignment Matrices 
 
 
 
Jay Dike’s TRL Assignments 
  

1. This particular simulation was able to run on a desktop, so no cluster/parallel 
issues 

2. Would use LS-Prepost here.  Not a 9 on maturity because it would be nice if it 
was faster, and because of that, they don’t do it as much as they’d like to.  Also, in 
general, some of the features aren’t there (doesn’t have transparencies, can’t 
represent all of the variables you want to in the output, can’t get 
orientation/tracking easily).  Also, can’t do certain things in batch mode.  7 for 
code readiness because there are times where you get weird answers because 
sometimes versions between analysis code and post-processor don’t match up.  
Sometimes they also have something implemented that’s not quite right.  Room 
for improvement with performance between remote and desktop.   

3. Using LS-Prepost here as well, so similar to (2).  LS-Prepost is not very good on 
remote platforms.  No mining in this particular example. 

4. A lot of times it doesn’t work very well (talking about HPSS).  It is production, 
which is why it’s a 7 and not a 6.  Some of the connections between platforms 
aren’t reliable (for instance SMSS). 

5. Includes WebFileshare and Sharepoint 
6. They did do uncertainty, even though it wasn’t on original diagram.  There are 

codes and tools associated with this (Dakota, etc.) that would be easier to assign 
TRLs to.  If we were doing more of a parameter study, this would be applicable 
and there would be more bubbles under this one that we’d assign more levels to. 

7. 9 for this problem – they can do it, and they think it’s done correctly.  Other cases, 
they might go in and check.  Fixed is special case of velocity. 

8. EMMI as been applied to a number of realistic problems, but we know that there 
are a number of things it should doesn’t do or should do differently.  For 
verification, knows that he can quantify the errors, but the errors are still going to 
be larger than he likes.  Many times can get “is it going to break, or not”, but 
would like more information than that.  There has been quantitative validation 
against test, but there’s still a lot to sort out.  For user qualification, a lot of people 
don’t use it because they’re not familiar with it.  Jay’s familiar, but not as much as 
the model guys, but in this case he has all of the expertise to solve this problem.  
Usability could be improved for selecting parameters for specific materials.  Has 
some regression testing, but there’s probably a lot more coverage that they could 
have.  7 for models because some forms of damage models that are still being 
sorted out (like shear).  Experiments have a good readiness level (8, not a 9 
because there are improvements we could make) – we know which ones we like 
to use.  Getting the parameters for the EMMI model to match all 3 test results at 
once are more of a problem.   
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9. Each element type has inherit limitations, but that probably doesn’t play into that 
10. SIMBA doesn’t know all of the features for any particular code.  You just dump 

in the stuff that it knows about.  Doesn’t know all the run controls, so you just 
dump those into a text file that gets spit back out.  So all in all, it does the most 
important things, but things that are easier for you to do manually, it leaves for 
you to do.  Knows they do a lot of regression testing.  Knows that it seems to 
work equally well on Linux and Windows machines. 

11. Knows that they do a lot of regression testing and software quality. 
12. Geometry info for this case is experimentalist just giving them a drawing, or at 

least dimension information 
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Computing Hardware 1 9   9     9 
Visualizations 2 8   9 7    7 
Post-Processing Tools 3 8   9 8    7 
Mass Storage 4 7        7 
Documentation 5 9   9     9 
Uncertainty Parameters 6          
Velocity BCs and ICs 7 9         
Fixed BCs and ICs 7 9         
EMMI Material Model 8 7 6 6 7 3 7    
Damage, Shear, and Plasticity 
Experiments 

8 8         

Run Controls  9   9 9     
Mass Scaling  9   9 9     
1 pt. Hex 9 9   9 9     
Mesh Modification (SIMBA) 10 7   9 9    9 
Meshing (CUBIT) 11 9   9 9    9 
Geometry Information 12          

 Table 3 – Jay Dike’s TRL Assignment Matrix 
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Jeff Gruda’s TRL Assignments  

1. Doesn’t really fit into any of the columns.  Maybe user support should be its own 
column as well (manuals, FAQs, verification tests, ISO9000, phone support) 

2. Never got to the point of optimization – he intended to use DAKOTA, but never 
got there.  His user qualification was low, but that shouldn’t drop down the TRL 
level.  If he would have used DAKOTA, he would have called in a person to help. 

3. Very vague because it was a design and the requirements moved a lot, which is 
the whole purpose of an LDRD.  Used low geometry to find an optimum point 
and move on from there, but that shouldn’t lower the TRL level.  Pro-E and 
Solidworks do simple tasks well. 

4. Meshing.  9 because CUBIT, SEACAS tools have been around and used.  3 
because of geometry. 

5. Code capabilities – code readiness probably a 7.  5 for verification – doesn’t know 
how well contact models have been tested out – same for validation.  Most of 
these are a matter of guessing, not of truth, since he’s not necessarily the one who 
would be answering those questions. 

6. Soil, layered geometry, and limestone should be under target instead of where 
they are now. 

7. Cavity expansion – temper. 
8. Only a couple of them, elastic, plastic.  
9. Readiness and models: 7 – been around awhile, standard stuff. Not empirical. 
10. PRESTO – 8 because it’s been compared to other codes 
11. Archiving – PowerPoint presentations.  Wasn’t a big thing that took 10 days that 

he had to run 5 times.  Word and PowerPoint work pretty good. 
12. Considers them at similar level as pre-processing tools – same types of tools, 

same usage. 
13. Pretty rock-solid.  Desktop and rogue both work pretty well. 
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User Support 1          
Optimization 2          
Geometry 3 9         
Requirements and Envelopes 3       3   
Pre-Processing/Meshing/Element 
Types/Mesh Modification 

4 9      3   

Code capabilities/contact 5 6 5 5  ? ? N/A ?  
Failure 6 5 5 3   5    
Loading 7 7 6 5   5    
Material Models 8 8     8    
Material Properties 8   4       
BCs and ICs 9 8    7 7    
Efficiency 10     8     
Archiving 11 7         
Post-Processing 12 9         
Computing Hardware 13 9        9 

Table 4 – Jeff Gruda’s TRL Assignment Matrix 
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Roy Hogan, Jr.’s TRL Assignments  
 

1. Clusters for this problem – 8 because it’s production, and compared to other 
cluster systems, it’s probably in the middle.  8 in user qualification, because uses 
them a lot, but wouldn’t say he’s the number one expert at Sandia. 

2. Using all 3, Paraview, Blot and Ensight.  Focus on Ensight.  Capability maturity – 
runs on most platforms that he’s aware of, .  Gives himself a 6 because he can do 
7 or 8 because he can do most of what he needs to do, but does he know 
everything about Ensight?  Definitely not.  Explained to him that the latter was 
the way to go.   

3. Matlab is what they mostly use on that.  Basically has results for all post-
processing tools, using Matlab to match them up because Matlab is very useful in 
doing that sort of thing.  With some help (other team members), was able to get 
the job done.  During this project, he learned how to use Matlab better, were other 
guys that were probably already an 8 or a 9.  Code readiness, would guess that it 
would be pretty high.  Also comparing with test data. 

4. Post-processing tools really embodied by the Vis and Conduct Comparisons. 
5. Dependency in the sense that you need the test data.  For this project, maybe a 7 

for validation because uncertainties in diagnostics, etc.  Not a geometry of a 
numerical model, but geometry of a test.  Some simplification of parts, but 
intended to have some representation of geometry.  Test geometry almost always 
3D.   

6. Believed that some of this went into one of Marty’s V&V databases.  Marty 
would like it to be a standard, but it probably depends on your perspective.  
SAND report, corporate archiving.  Particular runs – probably not.  If you just 
store information to regenerate results, might not be able to in the future, since 
codes, operating systems, etc. change.  Can’t recover a previous generation of a 
code. 

7. How well do you know the parameters that are associated with your problem.  
Based on what he calls validation – we believe that those tests covered the 
dominant physics.  Geometry – basic geometry but test did have some block 
representation.  7 on approximations, requirements and tests based on QMU 
because we did sensitivity/uncertainty quantifications based on BCs.  Specifically 
applied to what are the affects of the BCs. 

8. 8 because they quantified the uncertainty using formal methods.   
9. Material  models – more mechanical – doesn’t really apply to thermal 
10. Some you know well, some you don’t know as well.  5 or 6 under models because 

in some cases models were calibrated, and in some cases it was a 9.  Radiation 
properties, might not know emittance as well.  4 under validation because 
uncertainty under properties is large unknown. 

11. Could run this one up to talk about analysis code itself.  Could split them out, but 
doesn’t think we want to go to that level of detail.  Figured out mathematical 
model – binary, even you put them in or you didn’t.  8 under models, maybe a 7.  
Would not be an 8 or a 9 because some of the foam decomposition models are not 
first principle – require some parameters.  About a 7 on code readiness because he 
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doesn’t know the coverage or the high order interactions (coverage when 
exercised with multiple features).  User qualification probably an 8. 

12. On this project, they didn’t use SIMBA or the SEACAS/legacy tools.  So 
meshing/mesh modification could almost be put into 1.  On this project, they used 
mostly Patran and Therme.  On user qualification, if it’s the guys in 2900, 
probably give them an 8 (they made the mesh as he recalls).  If it’s him, probably 
a 6 – maybe less on SIMBA when they use that (not on this project).  Big 
distinction in user qualification between can you operate the tool well enough to 
get your job done, or are you an expert in it.  Probably about a 6 on geometry – 
had to capture key aspects, but had some simplification (cheaper to build 
simplified version than version they gave us.  Put in surrogate strong link that had 
same features, but not as much detail – to cast one of these bases, costs a lot 
more).  Code readiness – pretty good because they’re either commercial, or tools 
they’ve used for quite awhile.   

13. Probably combination of Pro-E and Solidworks.  In terms of code readiness, both 
of those are about an 8.  Geometry – 5/6, getting repetitive because there are 
simplifications, since that’s the level of detail they needed in the model.  So 
geometry is always low because it reflects the test – didn’t need a more detailed 
model.  7/8 on code readiness because Pro-E and SolidWorks are pretty solid.  
Probably a 2 for Roy in Pro-E, but for guys who built it, they were 8s because it 
was a very good model.  So long ago, hard for him to remember these types of 
details. 

14. Optimization is iteration in Roy’s case.  You’re doing the entire problem multiple 
times – implied.  Probably lots of parts of tree you’re doing multiple times.  Hard 
to assign a TRL to this node individually. 

15. Lot of information there for Calore, but could be improved in terms of providing 
guidance and instruction.   
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Computing Hardware 1 8   8     8 
Visualization Tools 2 8   8      
Conduct Comparisons 3 8   7 8     
Post-Processing Tools 4          
Experimental Data Design 
Requirements 

5   7    6   

Documentation, archiving 6 7/8        7/8
BCs and ICs 7 7      6 7  
Uncertainty Parameters 8  8      7  
Material Models  9          
Material properties 10   4   5/6    
Code capabilities 11    8  8    
Meshing/Mesh Modification 12          
Patran 12    8/6 7/8  6   
Therme 12    8/6 7/8  6   
Geometry 13 7/8   2 7/8  5/6   
Optimization/Iteration   14          
Doc and user support 15 7         

Table 5 – Roy Hogan, Jr.’s TRL Assignment Matrix 
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Appendix 6: Dependency Tree Templates 
 

 

 
Figure 5 – Analyst Dependency Tree Template (Jay Dike, Roy Hogan Jr., and Jeff Gruda) 
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Figure 6 – DART Dependency Tree Template (Sean Brooks) 
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Appendix 7: Program Office Use Case 
 

 
Paul Yarrington briefly summarized potential applications of TRL’s for the WSC 
program office as follows in an email to our team. This information is summarized as 
follows: 
 

- Investment: Look at representative applications in the various Focus Areas. Assess 
TRLs for corresponding compute capability required to support the representative 
apps. Decide if overall/aggregate TRLs are OK. If not, target investments to raise 
TRL of weakest underlying sub-capability to get TRL to desired threshold for 
representative apps. 

- Investment: Provides a basis for decisions on buy versus build. Assume that can 
assess (roughly, at least) the TRL of some key commercial products. If in-house 
efforts will take “too long” to get to comparable TRL, then buy the capability and 
invest where SNL products are more competitive. 

- Communication: Framework for common language to use in interactions and 
collaborations with external organizations. Facilitate decision on how to carve up 
responsibilities for advancing state of the art based in TRL of sub-capabilities from 
the various parties. 

- Application: Provides a basis for assessing the uniformity of TRLs across a collection 
of sub-capabilities assembled to address some engng issues. Helps avoid 
overlooking a “weak link” in the sub-capability collection that produces an overall low 
TRL “product/tool/capability” with an otherwise apparently high TRL approach. 
(Clearly similar to the "response" use case above.) 

- Response: Urgent request is received, say due to National emergency. Assemble 
M&S capability such that overall TRL is adequate. Identify any specific sub-
capabilities that might be limiting overall TRL and replace with more mature 
alternative to get adequate confidence (TRL) in overall capability. Alternatively, could 
be viewed as providing rationale for resisting programmatic zeal to always use 
“latest/greatest” sub-capabilities that might (in principle and in the future) have more 
physics fidelity (and potential programmatic appeal) but are in fact lower in TRL due 
to immaturity of say the V&V. 

- Roadmap: Identify the criteria and chart the expected timeframes for advancing 
through TRLs for given sub-capability/application. Gives metric for assessing 
progress... i.e. how much is enough and are we getting there fast enough? 

 
We expanded upon Paul’s initial description to create a ‘use case’ for the Program Office. 
This ‘Use Case’ targets ‘Investment’ but ends up encompassing ‘Communication,’ 
‘Response,’ and ‘Application.’  ‘Roadmap’ remains slightly different. The presentation 
below is basically unmodified for purposes of this report, which preserves the ‘look and 
feel’ 
 
 
Use Case Investment: 
 
Inputs: (per Paul’s general description) 
1. Defined applications, A1 through AN. These are drawn from WSC Program Focus 

Areas. 
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a. [Comment: Some focus areas have many applications associated with them. It 
is unlikely that N can be very large.] 

2. Defined TRLs. 
a. [Comment: This is in progress.] 

3. Defined M&S components for A1 through AN, say C1A1, … , CM1A1; C1A2, …, 
CM2A2; etc. 

4. Assigned TRLs for corresponding component M&S capability needs for A1 through 
AN, call these TRL(C1A1), … , TRL(CM1A1); TRL(C1A2), …, TRL(CM2A2); etc. 

5. Aggregated TRL for M&S capability for the application, written as TRL(C1A1, … , 
CM1A1); TRL(C2A2, … , CM2A2); etc 

6. Specification of required/needed/desired TRL levels for application A1 through AN, 
call it LA1 through LAN. 

 
Outputs: (per Paul’s general description) 
1. Decision: (a) If aggregate TRL is adequate (e.g. TRL(C1A1, … , CM1A1) ≥ LA1, etc) , 

no supplemental funding needed [possible disinvestment? Funding required to 
maintain TRL? (b) If aggregate TRL is inadequate, identify components that weaken 
the aggregate and invest to improve their TRLs. 

 
TRL needs implied by this usage: 
1. A concrete definition of TRLs. 

a. [Comment: In progress, with some emphasis on CS&E software components.] 
2. Systematic procedure for identifying M&S components required for specified 

applications for which TRLs must be evaluated.  
a. [Comment: Such a procedure has not been implemented currently, but note 

that this strongly correlates with the development of a PIRT [an ASC V&V 
program construct] for the intended application. The procedure can probably 
be characterized as a PIRT development task.] 

b. [Comment: There is an ongoing effort to define Dependency Trees that are 
useful for identifying separate M&S components for TRL evaluation. This is 
also linked to the Analyst Use Case development activity. We expect that this 
effort will be successful at application decomposition, but it does not directly 
address the problem below, that is, of specific TRL assignment. The current 
effort, however, suggests that an aggregation approach rooted in dependency 
trees may reduce to "lowest TRL in the dependency tree wins", at least for the 
investment use case. See below for more comments on aggregation.] 

3. Systematic procedure for assigning TRLs to identified M&S components. 
a. [Comment: One analysis of this task is being developed in the current TRL 

investigation with the “Analyst Use Case” – that is, how analysts would 
evaluate M&S components from a given specification of TRLs. There is some 
expectation that this may be easier to accomplish at lower component levels, 
as well as some demand to do this (from Pete Wilson). But note that the lower 
the component level, the larger the actual number of component evaluations 
that have to be performed for each application.] 
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b. [Comment: (Marburger) – “We have started to standardize on terminology 
with respect to the various parts and elements of the TRL process. Some 
helpful definitions that are starting to emerge are: 

i. Capability - The collection of software, hardware, and expertise 
needed to deliver an analytical result in response to a customer request. 

ii. Component - one of the elements of software, hardware, or expertise 
needed to produce an analytical result in response to a customer 
request. 

iii. Context - the set of boundary conditions, expected results, funding, 
and schedule requirements negotiated by a customer and analyst that 
help to define a capability. 

iv. Dependency Tree - the list of components and their relationships to 
each other that comprise a capability, usually expressed graphically.] 

c. [Comment: Note that multidimensionality is automatically appearing in the 
context of even terminology standardization. Multidimensionality requires 
collapse in the aggregation process. Thus, aggregation is not only combining 
separate TRL evaluations, but collapsing the inevitable multidimensionality.] 

4. A TRL aggregation procedure. 
a. [Comment: This has not been defined at this point. The implication of the 

description provided by Paul is that the aggregate TRL is the minimum of the 
component TRLs. This idea has been discussed but not really analyzed.] 

5. A means of specifying a required/needed/desired TRL level for the given application.  
a. [Comment: Specifying a required/needed/desired TRL requires involvement 

from the application side, if not outright ownership by the application side of 
this specification. Note that this level may naturally originate from the same 
analysis that provides a PIRT for decomposing the application, another 
advantage of thinking PIRTs.] 

b. [Comment: However the level is specified, involvement on the application 
side requires communication, thus Paul’s “communication” use case is 
subsumed under this use case.] 

c. [Comment: Communicating requires communicating the specified WSC TRLs 
to the application side, which may have other ideas about what TRLs mean. 
Thus, this communication probably puts constraints on how far the WSC 
language defining TRLs can deviate from the language of the application area. 
Remember the arguments that TRLs appropriate for advanced development 
M&S products are likely to be highly divergent from those appropriate to 
hardware products. Nonetheless, realistically some significant compatibility is 
likely a requirement. This is an essential tension that must be resolved.] 

d. [Comment: One approach is that WSC specifies required/needed/desired TRL 
level for given applications. This helps us move forward without having to 
solve the communication problem, but carries the same danger as inviting 
code developers to specify TRLs for their own software. We suggest that we 
need to deal with the communication use case as part of this use case.] 
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We believe that both the “response” and the “application” use cases mentioned by Paul 
are subsumed by the tasks that must be performed to achieve the “investment” use case. 
Thus, four of the five general use cases Paul proposes are subsumed by the “investment” 
use case. Emphasizing the “investment” use case provides broad value. 
 
The “Roadmap” use case is a bit different. 
1. Evaluating TRLs theoretically (but only theoretically) implies knowledge about how 

to elevate the TRL. This is harder the more the TRL is aggregate. 
2. Achieving a higher TRL is a project planning exercise as well as an advanced 

development issue. Thus, built into the roadmap use case are factors like cost 
estimation, which has been a nontrivial problem for the ASC program in the past. 

3. “How much is enough” is defined by a TRL that doesn’t need to be exceeded. But 
remember that this is across a lot of components and involves an aggregation 
procedure. 

4. Roadmap also implies dealing with uncertainty in TRL specifications. [Or do we 
really believe that these evaluations won’t have uncertainty associated with them.] 

 
Final questions based on the “investment” use case: 
1. Will WSC identify A1 through AN? 

a. [Answer: (Yarrington) – SNL WSC and DSW should define these. ASC 
Focus Areas provide a reasonable structure for doing so. The NNSA HQ ASC 
“predictivity” performance indicator provides additional impetus for this. The 
current plan rests on selecting canonical applications for each Focus Area 
(then quantifying the performance level through some algebra applied to 
assessment based on PCMM taxonomy).] 

2. How do we move forward on the aggregation procedure? 
a. [Comment: (Yarrington) – It is agreed that this is a difficult issue and the TRL 

team will have to provide progress on this.] 
3. Confirm that the “Investment” use case M&S components include hardware 

(computers, systems, etc), software (Apps codes, system software, infrastructure, etc), 
and people (skill levels). Or define the restriction. 

4. How will time dependence be handled? This has strong implications for the agility, 
expense and response time required/needed/desired of TRL evaluation procedures. 

a. [Answer: (Yarrington) – We are expecting the Focus Area structure to provide 
clarity around investment needs from one FY to the next, hence this becomes 
one way of at least enveloping time dependence. Accordingly, re-evaluation 
on an annual basis of TRL status for the Defined Applications for the various 
Focus Areas in preparation for budget and program plan decisions should 
provide a structure for the re-evaluation.] 
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