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Abstract

Effective elastic properties for carbon nanotube reinforced composites are obtained through
a variety of micromechanics techniques. Using the in-plane elastic properties of graphene,
the effective properties of carbon nanotubes are calculated utilizing a composite cylinders
micromechanics technique as a first step in a two-step process. These effective proper-
ties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic
properties of composites consisting of aligned single or multi-walled carbon nanotubes em-
bedded in a polymer matrix. Effective composite properties from these averaging methods
are compared to a direct composite cylinders approach extended from the work of Hashin
and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simula-
tions are also performed. The effects of an interphase layer between the nanotubes and the
polymer matrix as result of functionalization is also investigated using a multi-layer com-
posite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles
due to interatomic forces is accomplished herein using a tessellation method in conjunction
with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites,
modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix
is performed using the Mori-Tanaka method, and comparisons with experimental data are
made.

Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is
performed using the finite element method. The high-stiffness hollow fibers are modeled
either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid
cylinders with properties computed using a micromechanics based composite cylinders
method. Using a representative volume element for clustered high-stiffness hollow fibers
embedded in a compliant matrix with the appropriate periodic boundary conditions, the ef-
fective elastic properties are obtained from the finite element results. These effective elas-
tic properties are compared to approximate analytical results found using micromechanics
methods. The effects of an interphase layer between the high-stiffness hollow fibers and
matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is
also investigated and compared to a multi-layer composite cylinders approach. Finally the
combined effects of clustering with fiber-matrix interphase regions are studied. The para-
metric studies performed herein were motivated by and used properties for single-walled
carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a
guide for continuum level representations of such nanocomposites in a multi-scale model-
ing approach.
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Chapter 1

Introduction

Since the discovery of carbon nanotubes (CNTSs) by lijima (1991), CNTs have become a
subject of much research across a multitude of disciplines. A single-walled carbon nan-
otube (SWCNT) can be viewed as a single sheet of graphite (i.e. graphene), which has
been rolled into the shape of a tube (Saito et al., 1998). SWCNTs have radii on the order of
nanometers and lengths on the order of micrometers resulting in large aspect ratios benefi-
cial to their use in composites. (Saito et al., 1998; Roche, 2000). Carbon nanotubes can be
either metallic or semi-conducting depending on the tubes chiral, or roll-up angle, which
indicates the orientation of the hexagonal carbon rings relative to the tube axis (Roche,
2000; Saito et al., 1998). However, it is the mechanical properties of carbon nanotubes as
they pertain to their use in composites that are of interest herein. Carbon nanotubes are
reported to have an axial Young’s modulus in the range of 300-1000 GPa, up to five times
the stiffness and with half the density of SiC fibers, in addition to having a theoretically
predicted elongation to break of 30-40% (Yakobson and Smalley, 1997; Salvetat-Delmotte
and Rubio, 2002; Yu et al., 2000a; Yakobson et al., 1997; Wang et al., 2001; Fisher, 2002;
Popov, 2004).

A wide variety of composites containing CNTs have been manufactured. Peigney et al.
(2000) have fabricated composites specimens of CNTs embedded in ceramic powders while
Milo et al. (1999) have embedded CNTs in poly(vinyl alcohol). Meltmixing has been
used by Potschke et al. (2004) to introduce CNTSs into a polyethylene matrix. Such efforts
have identified several key challenges in the fabrication of CNT composites. Adequate
dispersion of CNTs within the matrix has been a key issue given the tendency of CNTs to
form bundles due to interatomic forces (Gong et al., 2000; Zhu et al., 2003). Adhesion of
the CNTs to the surrounding matrix has been another key issue (Star et al., 2001) as has
orientation of CNTs and bundles of CNTs within the matrix (Jin et al., 1998). Efforts to
address the adhesion and dispersion issues in particular have lead to the use of polymer-
wrapped CNTs and functionalized CNTs producing distinct interphase regions between
matrix and CNTs (Star et al., 2001; Zhu et al., 2003; McCarthy et al., 2002; in het Panhuis
et al., 2003; Wagner et al., 1998; Lourie and Wagner, 1998).

Experimental measurement of the effective properties of CNT reinforced polymer matrix
composites have indicated substantial increases in the composite modulus over the matrix
modulus. Schadler et al. (1998) found a 40% increase in the effective stiffness of CNT
reinforced epoxy as compared to the matrix value with 5% weight CNTs. Qian et al.
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(2000) also found an increase in the effective modulus of CNT reinforced polystyrene to be
on the order of 40% for just 1% weight CNTs. The stress-strain response of functionalized
CNTs in epoxy has been observed by Zhu et al. (2004) and found to yield an increase in the
effective properties on the order of 30% to 70% at weight percents of 1% and 4% CNTSs.

Modeling of composites containing CNTs has also received attention in recent years. Fran-
kland et al. (2002) have used molecular dynamics (MD) to obtain the stress-strain behavior
of CNTs embedded in a polymer matrix. Liu and Chen (2003) studied the mechanical re-
sponse in tension of a single CNT embedded in polymer via finite element analysis. In a
series of papers, Odegard et al. (2003), Odegard and Gates (2002), Odegard et al. (2002a),
Odegard et al. (2002b), and Odegard et al. (2001) have modeled CNT composites using
the equivalent continuum method in conjunction with the Mori-Tanaka micromechanics
method to obtain the effective elastic constants for both aligned and misaligned CNTs and
found effective elastic moduli to be several times that of the matrix for aligned CNTs and
almost one and half time the matrix value for misaligned CNTs at a volume fraction of 1%
CNTs. Experimentally obtained values for effective Young’s modulus being substantially
lower, other research efforts have sought to include additional aspects of CNT composites
in the calculation of effective properties. For example, the effects of nanotube waviness on
the effective composite properties have been studied by Fisher (2002), Fisher et al. (2002),
and Fisher et al. (2003) using finite element analysis in conjunction with the Mori-Tanaka
method and found to lower the effective modulus. Buckling of CNTs within an epoxy
matrix has been considered by Hadjiev et al. (2006). Other efforts have focused on the in-
clusion of less than ideal CNT adhesion to the matrix in CNT composite modeling (Wagner,
2002; Frankland et al., 2000, 2003; Griebel and Hamaekers, 2004). Herein an additional
effect, the clustering of CNTs in the polymer matrix, will be considered.

In the present work, Mori-Tanaka, self-consistent, and composite cylinders analytic mi-
cromechanics approaches and finite element based computation micromechanics approaches
are employed in modeling the effective elastic properties of CNT reinforced composites
such as the one seen in Figure 1.1. In the largest scale image in Figure 1.1 clusters of
CNTs can be seen dispersed throughout a polymer matrix. Subsequent images at smaller
scales show that within each cluster, bundles of CNTs are observed to have a high degree
of alignment. As such, clustering of CNTs in a polymer matrix is modeled herein in the
context of aligned CNT bundles using a tessellation procedure to quantify clustering and
a multi-phase Mori-Tanaka method. In addition to clustering, the effects of interphase re-
gions due to functionalization and polymer wrapping on the effective elastic properties are
also investigated using a multi-layer composite cylinders approach.

These two distinct characteristics of CNT composites, i.e., clustering of CNTs and the pres-
ence of interphase regions have recently been modeled using micromechanics methods in
Seidel and Lagoudas (2006a). In the present work, the independent and combined effects
of interphase regions and clustering of high-stiffness hollow fiber composites are studied
usingcomputationaimicromechanics techniques in the form of continuum finite element
analysis (FEA). Finite element results are then compared to the corresponding results ob-
tained by analytic micromechanics methods in Seidel and Lagoudas (2006a). Material
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Figure 1.1. TEM images depicting clustering and alignment of
CNT bundles in a polymer matrix taken using a JEOL 1200 EX
TEM operating at an accelerating voltage of 100kV at Texas A&M

University.

properties and geometry are taken to be reflective of continuum representations of CNT
reinforced polymer-matrix (PMC) composites.
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Chapter 2

Analytic Approaches to Modeling the
Effective Elastic Properties of CNT
Composites

For modeling purposes, the composite in Figure 1.1 has been idealized as shown in Fig-
ure 2.1(a) to a composite containing randomly oriented aligned clustered bundles of straight
high aspect ratio CNTs. Effective elastic properties can be derived by first determining the
effective properties of the clustered bundles as represented by the representative volume el-
ement (RVE) shown in Figure 2.1(b). In Figure 2.1(b), individual CNTs within the bundle
can be seen with varying types and number of interphase regions. The effective proper-
ties of each individual CNT surrounded by its interphase regions will be determined using
a multi-layer composite cylinders approach for arrangements like the one shown in Fig-
ure 2.1(c). Each unique effective CNT having differing effective properties constitutes a
separate phase to be used in a multi-phase Mori-Tanaka or self-consistent approach applied
to the clustered bundle of Figure 2.1(b). Finally, effective elastic properties for the com-
posite as whole can be obtained again from a multi-phase micromechanics approach where
each orientation of every distinct effective bundle constitutes a separate phase. As a first
approach to modeling the effective elastic properties of the RVE shown in Figure 2.1(b),
CNTs not including interphase effects will be modeled using the classical Mori-Tanaka
and self-consistent techniques. A second approach using a composite cylinders model will
capture the influence of interphase regions surrounding the CNTs. Efforts to include the
effects of clustering within the bundles of Figure 2.1(b) will make use of both the multi-
phase Mori-Tanaka and multi-layer composite cylinders techniques. The effects of random
orientation will also be addressed using the Mori-Tanaka approach for a simplified version
of the RVE in Figure 2.1(a) where CNTs are not clustered into bundles.

Modeling of CNT reinforced composites will proceed herein under the assumptions that
the CNTs contain no defects or residual catalyst and that CNTs are straight. It has also
been assumed that the CNTs are sufficiently long (having aspect ratios on the order of
1000) so as to ignore end effects. All materials, matrix, CNTs, and any interphase region,
are assumed to be isotropic linear elastic, subject to small deformations. All boundaries
between materials are assumed to have continuous displacements and tractions.
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Interphase
CNT

@) (b) (©)

Figure 2.1. Schematic representation of clustered aligned nan-
otubes with interphase regions in bundles within a composite. (a)
Composite level depecting aligned bundles. (b) RVE of an aligned
bundle with M distinct CNT-interphase arrangements (here M=4
as two CNTs are identical). (c) Composite Cylinder assemblage
for CNT with an interphase region (i.e. N=3 for the CC method

and N=2 for the CC/MT or CC/SC methods)

Mori-Tanaka and Self-Consistent Averaging Methods for
CNT Composites

Description of Self-Consistent and Mori-Tanaka Methods

The second step of the two step process used to obtain the effective properties of CNT
reinforced composites as employed herein to model clustered bundles makes use of either
the Mori-Tanaka (Mori and Tanaka, 1973; Mori et al., 1973; Weng, 1984; Benveniste, 1987)
or the self-consistent methods (Hill, 1965; Budiansky, 1965). Effective CNTs obtained
from a mulit-layer composite cylinders approach (referred to hereafter as CC) as discussed
in Section 2 replace the CNTs and any surrounding interphases shown in Figure 2.1(b).
This is done so as to be able to take advantage of the Eshelby solution (Eshelby, 1957,
1959) in the application of the Mori-Tanaka or generalized self-consistent techniques. As
such, the two-step process is thus termed the CC/MT or CC/SC method, respectively. Each
difference in interphase thickness or stiffness constitutes a separate phase up to P phases in
the multi-phase Mori-Tanaka or self-consistent approaches.
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For the CC/SC method, the effective stiffness tensor is obtained by embedding a solid
cylinder having the effective CNT properties in the unknown effective composite and:

P
L=Lpn Li—Lm)A 2.1
+|;C|( | A (2.1)
where
A=[+SLL -] 2.2)

and where the bold face indicates tensor valued quantities (Lagoudas et al., 1991). In
Egns. 2.1 and 2.2, is the unknown desired effective stiffnessy is the stiffness tensor

of the polymer matrix, andl is the fourth order identity tensor. The sum ovVendicates

the inclusion ofP separate phases the effective properties of whighare obtained from

the multi-layer composite cylinder results. The volume fraction of each separate phase is
given byc;, andA, is the strain concentration factor relating the average strain in each ef-
fective cylinder to that of the unknown effective material in which it is embedded.SThe

in Egn. 2.2 is the Eshelby tensor for cylindrical inclusions embedded in the unknown effec-
tive composite (i.e. for an inclusion whose shape is a cylinder and which is surrounded by
a transversely isotropic material). For cases with identical CNTs with identical interphase
regions or the lack thereof, P is equal to one so thas the volume fraction of effective
CNTs in the polymer matrix ant is the stiffness tensor of the effective CNT as deter-
mined by relating the engineering moduli obtained from the CC method to the stiffness
components. The effective stiffness tensor is thus obtained by iteratively solving Eqn. 2.1
and can then be inverted to obtain the compliance temdoifrom which the individual
effective engineering moduli can be identified.

The same approach of using the effective CNTs as input, can be applied in using the
Mori-Tanaka method resulting in the CC/MT method. The effective stiffness tensor in
the CC/MT is thus obtained as:

-1
|_ - (CmLmAm+ z C|L|A|> (le + z CpAp) (23)
=1 p=1

whereA, is given by:

A= +SLgt L —Lm)] (2.4)

whereA, is the concentration factor relating the average strain in the effective cylinder
to the average strain of the matrix perturbed by some amount to account for interactions
between inclusions. As such, the Eshelby tenSgris obtained for cylindrical inclusions
embedded in the matrix (i.e. for an inclusion whose shape is a cylinder and which is
surrounded by an isotropic material), and the matrix concentration f&gtps given by

Egn. 2.4 which evaluates to be the identity tensor. Further details discussing the Mori-
Tanaka and self-consistent methods can be found in Lagoudas et al. (1991).
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Effective Elastic Properties of Carbon Nanotubes

The first step of the CC/MT or CC/SC methods is to obtain the effective elastic constants
of effective CNTs which are presumed to be transversely isotropic, i.ejtireEgns. 2.1
through 2.4. The composite cylinders assemblage as developed by Hashin and Rosen
(1964) and extended to include multiple interphase layers herein is used to obtain four
out of the five independent material constafis, V12, K23, andu, where the subscripts

are consistent with axes in Figures 2.1(c) &)d, k, andu correspond to Young’s modu-

lus, Poisson’s ration, bulk modulus and shear modulus, respectively. For the fifth property,
U23, the generalized self-consistent method developed by Christensen and Lo (1979) and
also extended to include multiple layers is used. This combined technique as outlined in
Appendix A for a general multi-layered hollow composite cylinder and is referred to herein
as the CC method. Note that a sixth property, the transverse stiflegsss determined

from the five independent effective properties from:

4
Epp — H23K23 (2.5)

 Koz+ Moz + 4V Laskos/Ean

In obtaining the effective properties of CNTs the CC method, as described in Appendix A,
is applied with the number of layers, N, set equal to one so that the effective properties
obtained correspond to the hollow CNT with no surrounding interphases or matrix. The
CNT is presumed to have isotropic properties corresponding to those of graphite in the
plane of a graphene sheet, i.e. a Young’s of 1100 GPa and Poisson’s ratio of 0.14 (Saito
et al., 1998). This assumption is reasonable given the relative similarity between graphene
sheets and nanotubes. However, material properties for nanotubes obtained from a wide
variety of lower length scale calculations ranging from quantum mechanics to molecular
dynamics could readily be substituted in place of graphene (Saito et al., 1998).

It should be noted that in order to apply the CC method, the inner and outer radii of the
CNT must be defined, thereby introducing the thickness of the CNT as a length scale in
the formulation. In single-walled CNTs, the outer radius is discernible using electron mi-
croscopy, however, estimates of the thickness of a single-walled CNT are a subject of much
debate. In order to proceed with calculation of the effective properties of a single-wall car-
bon nanotube, geometric data indicated by Yu et al. (2000a), Ruoff and Lorents (1995),
Qian et al. (2003), and Yu et al. (2000b) was employed; namely, an outer radius of 0.85nm
and a thickness of 0.34nm (the interlayer spacing of graphite). Thus the volume fraction of
the hollow region of the nanotube is given @y= rg/r%, whererg is the inner radius of the

CNT andr4 the outer, and is determined to have a value,ef 0.36.

CC method results for axial and transverse elastic moduli of the effective single-wall CNT
are provided in Figure 2.2. In addition, results for multi-walled CNTs up to ten walls are
included where, as a first approximation, it has been assumed that each additional CNT
ring is perfectly bonded to neighboring CNT rings. The results in Figure 2.2 indicate that
for a single-wall carbon nanotube, the difference between axial and transverse stiffness
is significant, but that as one approaches a value on the order of ten rings, i.e. as the
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Figure 2.2. Effective CNT axial and transverse moduli obtained
via the CC method with N=1 (i.e. just the CNT with no interphase)
for use in the CC/MT or CC/SC methods.

volume fraction of the zero-stiffness region decreases rapidly, one approaches a nearly
isotropic effective multi-walled nanotube. Also provided in Figure 2.2 are experimental
results from Yu et al. (2000a) and theoretical predictions obtained by Lu (1997) for the
axial stiffness of the carbon nanotube ring which demonstrate the wide range of available
input data for the CC model. The hollow circles and solid circle are to remind the reader
that the hollow circles correspond to actual nanotube axial moduli obtained by Lu (1997)
and Yu et al. (2000a) whereas the solid circle corresponds to effective properties for the
effective nanotube as calculated via the CC method. The value reported by Lu (1997) is
close to the graphene modulus used to obtain the CC result. As such, using that value for the
nanotube elastic modulus would produce quite similar CC results as were obtained using
graphene. However, the effective nanotube stiffness obtained using the Yu et al. (2000a)
data would be drastically different from those presently obtained.

It should be noted that the CC method described in Appendix A was developed for fibers
embedded in a matrix, i.e. for two layers, (N=2), where the first layer is the CNT and
the second is the surrounding matrix. Results for (N=1), are analogous to the results that
would be obtained for a graphene sheet with cylindrical voids. Additional micromechanics
techniques and finite element simulations discussed below will indicate that the effective
properties obtained for CNTs via the CC method can be used to obtain reasonable results.
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Composite Cylinders Model for Effective Elastic Properties
of CNT Composites

Composite Cylinders Model for CNTs in the Absence of an Interphase
Region

A second approach which does not treat the CNTs as effective solid cylinders, can be used
to directly obtain effective composite properties for aligned carbon nanotube reinforced
composites is the multi-layer composites cylinders approach. In the absence of interphase
regions, the effective properties are obtained as discussed in Appendix A with the number
layers equal to two as indicated in the schematic of Figure A.1 with the first layer corre-
sponding to the CNT and the second to the matrix. In the absence of an interphase region,
one can identify two characteristic volume fractions; the CNT volume fraction within the
matrix, ¢; = r#/r3, and the volume fraction of the hollow space within in the Ch{,as

given bycy =r3/r?

It should also be noted that while the CC method has been used to predict effective com-
posite properties out to very large volume fractions, again there is a limit on the highest
attainable volume fraction as all of the nanotubes in the composite are assumed to be of
the same size (the maximum packing volume fraction for identically sized aligned fibers is
90%). Results for volume fractions greater than 90% are shown to demonstrate that as the
volume fraction approaches unity, i.e. the composite consists of carbon nanotubes only, that
the properties returned are indeed those input for the effective CNT. Also of note, one could
directly calculate concentration factors from the CC elasticity solutions and use either the
Mori-Tanaka or self-consistent techniques with the advantage of more accurately account-
ing for the influence of multiple layers as opposed to using the effective CNT properties
as is done herein for the CC/MT and CC/SC approaches. However, subsequent results will
indicate that the CC/MT and CC/SC methods as applied herein are sufficiently accurate for
the CNT reinforced composites studied.

Composite Cylinders Model for CNTs in the Presence of Interphase
Regions

The effects of interphase regions on the effective properties of composites have been ap-
proached using a variety of techniques, mostly in the context of coated fiber inclusions(Benveniste
et al., 1989, 1991, Dasgupta and Bhandarkar, 1992; Wagner, 1996; Anifantis et al., 1997;
Wagner and Nairn, 1997; Benveniste and Miloh, 2001; Fisher and Brinson, 2001; Hashin,
2002). Herein the effects of interphase regions are modeled by taking advantage of the CC
method. For cases with multiple types, sizes, and number of interphases as shown in Fig-

ure A.1 the CC/MT or CC/SC method can be used with P in Egns. 2.1 and 2.3 equal to the
number of different types of interphase arrangements Mgtindicating the last interphase
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prior to the matrix and replacing N in the equations in Appendix A. For cases where all
nanotubes are assumed to have the same interphase, the CC method can be used directly
with N indicating the matrix so that N is equal to three or more in the equations in Ap-
pendix A. Though the size and material properties of interphase layers in CNT composites
remain unknown, an effort to explore the effects of such an interphase layer using the CC
method is accomplished herein.

Results of Modeling the Effective Elastic Properties of CNT
Composites

The matrix material considered was EPON 862 and as previously stated, the CNTs were
considered to be isotropic having the in-plane properties of graphene. The effective CNT
properties as determined by the CC method for use in the CC/SC and CC/MT methods are
given in Table 2.1 along the with isotropic properties of EPON 862. MWCNT values are
also provided up to 10-wall CNTs demonstrating the more than two orders of magnitude
difference between reinforcement and matrix properties.

Table 2.1. Elastic properties of EPON 862 and comparison of
effective CNT axial and transverse Young’s moduli for increasing
number of perfectly bonded graphite layers. (Other effective CNT
properties not shown)

Matrix: EPON 862

E =3.07GPa v=0.3

No. of Layers in Effective CNT | E1; (GPa) | Ex» (GPa)
1 704 346

2 898 644

4 1018 887

6 1056 979

8 1073 1023
10 1081 1046

CC/SC results for bundles containing identical CNTs in the absence of any interphase re-
gion, i.e. P and N equal to one, are provided in Figure 2.3. The results shown are for the
effective axial modulusk;1, and the transverse modulus;,, for the complete range of
volume fractionsg,, of effective CNTs. One should note that for identical CNTs there are
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geometric constraints restricting the maximum volume fraction to a value less than one,
specifically, to a maximum value of approximately 90%. However, a range of CNT volume
fractions up to one is used in the calculation for numerical completeness. It is worth men-
tioning that, even thoughks is greatly influenced by the presence of CNTs, the presence
of the aligned CNTSs is not evident Ep» until a very high volume fraction of about 60%.
This is due to the nearliwo ordersof magnitude difference between the matrix Young’s
modulus and the effective nanotubes transverse modulus. The effggtivaers, andkos
elastic moduli display similar matrix dominated behavior as observelfor

Figure 2.4 provides a comparison of the results obtained using the CC approach with both
the CC/SC and CC/MT results also for bundles with identical CNTs and no interphase
regions. Figure 2.4(a) demonstrates, as expected, that all three methods return the rule
of mixtures for the effective axial modulug;;. However, for the remaining effective
composite properties, the CC and CC/MT provide similar results whereas the CC/SC shows
large differences at volume fractions greater then 60% relative to the other two methods as
shown in Figure 2.4(b) foE2,. Moreover, this difference becomes more pronounced with
increasing CNT volume fraction as the CC and CC/MT approaches demonstrates a higher
degree of matrix dominance than does the CC/SC.

Figure 2.5 demonstrates the effects of changing the CNT to matrix stiffness ratio on the
composite’s effectivé,, when normalized by the CNTE,. The original ratio, 1100:3,

plus two other ratios obtained by holding the matrix value constant and spanning the range
of published CNTs stiffness values are provided. As pointed out in Figure 2.5(b), the
difference in the dominance of the matrix properties on the effective composite properties
between the CC/SC and CC results shifts noticeably for the lower stiffness ratio cases.
Specifically, the influence of CNTs at low volume fractions is more apparent as indicated
by the increase in slope for the lower stiffness ratio results. In addition, the point at which
a strong influence of CNTs is observed, i.e. where there is a large change in the slope of
the curves shown in Figure 2.5, shifts to lower volume fractions for the lower stiffness ratio
cases.

Comparison of finite element analysis (FEA) results with CC/SC, CC/MT, and CC results
foridentical CNTs in the absence of interphase regions are provided in Figure 2.6. The axial
modulus,E;1, is not shown in Figure 2.6 as all methods (FEA, CC/SC, CC/MT, and CC)
demonstrate the same linear response observed in Figure 2.4(a). Also not shown are the in-
plane bulk modulusg»s, results as for the FEA results it is not an independent property (i.e.
FEA obtainsE;1, E2o, V12, H12, andz3 independently and uses those to calculatg). It

should also be noted that FEA results were obtained using the actual hollow CNT geometry
with the isotropic properties of graphene, as previously discussed, and arranged in a regular
hexagonal array, shown in Figure 2.7, and subject to periodic boundary conditions on all
six sides. The regular hexagonal array is known to produce effective properties which are
transversely isotropic, as expected to be the case for random distributions of fibers in the
transverse plane (Dvorak and Teply, 1985; Achenbach and Zhu, 1990). The large RVE
chosen for the numerical examples is not the smallest for a perfect hexagonal array, but
was chosen so as to be consistent with the clustering studies presented herein. In addition,
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the same arrangement but with using solid transversely isotropic cylinders with effective
CNT properties as obtained by the CC method in what could be termed a CC/FEA method
was studied. FEA results for both cases were found to be in good agreement and as such,
only the former are provided in Figure 2.6.

It is observed in Figure 2.6 that all methods compare favorably at low volume fractions.
However, at volume fractions higher than 40%, where the CC/SC diverges from the other
two analytic solutions, it is observed that the FEA results continue to compare well with the
CC/MT and CC approaches. The CC/MT result is consistent with the general observation
that the Mori-Tanaka method is more accurate for stiff fibers, and lends credence to the use
of effective CNT properties in Mori-Tanaka methods for CNT composites and to the CC
approach for aligned CNT composites.

The effects of interphase regions on the effective properties were studied using the CC ap-
proach. In each case, identical CNTs surrounded by a single interphase of a given thickness
were considered so that N was equal to three with the first phase being the CNT and the
Nt" being the matrix. Parametric studies on the effects of having interphases with elastic
modulus ranging from one tenth that of the matrix to ten times the matrix modulus and with
thicknesses from half of a CNT radius to four times a CNT radius were studied and found
to be negligible orEy1 andviy. ForExo, 12, 23, andkos identical trends as shown for

E»2 in Figure 2.8 were observed. Figure 2.8 indicates that interphases with moduli less than
that of the matrix are interphase dominated in the transverse direction so that there is vir-
tually no noticeable presence of the CNTs in the effective properties until volume fractions
very near unity. In contrast, interphases with moduli greater than that of the matrix greatly
increase the effects of the presence of CNTs on the transverse properties even at very low
volume fractions. Noticeable in Figures 2.8(a), 2.8(b), and 2.8(c) is a sharp change in the
effective properties at specific volume fractions. The sharp transition in effective properties
is directly attributed to the transition between having each CNT in the matrix surrounded
by a distinct interphase to the volume fraction being sufficiently high such that the matrix
volume fraction is zero, i.e. there is only CNT and interphase. Also observed, while a
nearly three orders of magnitude difference between the matrix and CNTs exists, an inter-
phase stiffness of only five times that of the matrix is enough to significantly improve the
composite’s effective properties. Similarly, an interphase whose stiffness is only half that
of the matrix can significantly degrade the composite’s effective properties.
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Axial Modulus vs. Velume Fraction Using the

CCISC Technique
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(a) Composite effective axial modulug;, using CC/SC in the absence
of interphase regions demonstrating CNT dominated behavior in the axial

direction. Approach.

Transverse Medulus vs. Volume Fraction Using the
CCISC Technique
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(b) Composite effective transverse modul&sp, using CC/SC in the ab-
sence of interphase regions demonstrating matrix dominated behavior in the

transverse direction.

Figure 2.3. Effective axial and transverse moduli obtained via
the CC/SC method.
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Figure 2.4. Comparison of the CC/SC, CC/MT, and CC tech-
niques for aligned CNT composites.
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Normalized Transverse Modulus Comparison of CC and CC/SC Trends For Various
CHTMatrix Stiffness Ratios
1
pa ! .-"/{
0 | 7
| s
o1 : A
i ] ——CC - Ratio: 11003 e I
M 95—t LT atnx Dominance
E a3 | G0 Rl "3_'9?'3 Up te Vary Large ,,""
- ||| CCISC - Ratio: 6973 Wolume Fractions for i
= | ——. CCISC - Ratio: 1100:3 High Stiffness Ratios // F
il - — 2
0
a4 === ; ; . - n . ,
0 o 02 0.3 a4 05 0s s oa 1] |
Welume Fraction of CHTs

(a) Normalized Effectivee;, Comparison for midrange CNT stiffness ratio normalized relative to
the CNT effective transverse modulus.
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(b) Normalized EffectiveE;, Comparison for low end CNT stiffness ratio normalized relative to
the CNT effective transverse modulus

Figure 2.5. Parametric study on CNT to Matrix Stiffness Ratio:
Comparison of the CC/SC and CC Techniques for Aligned Com-
posites.
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Compaosite Effective Axial Polsson’s Ratio vs.
Composite Effective Transverse Modulus vs, Velume Fraction of CNTs
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Figure 2.6. Comparison of the CC/SC, CC/MT, and CC tech-
niques to FEA Solutions. CC/MT and CC show excellent agree-
ment with FEA solutions. FEA solutions were obtained using
CNTs and effective CNTs arranged in a regular hexagonal array
and subject to periodic boundary conditions.
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Figure 2.7. FEA RVE's used to generate effective composite
properties.
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Effects of Interphase Stiffness
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(a) Parametric study of the effect of interphase stiffness on the effective
transverse modulus for an interphase thickness of 4 CNT radii
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(b) Parametric study of the effect of interphase stiffness on the effective
transverse modulus for an interphase thickness of 2 CNT radii
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(c) Parametric study of the effect of interphase stiffness on the effective
transverse modulus for an interphase thickness of half a CNT radius

Figure 2.8. Parametric Study on the effects of interphase thick-
ness and stiffness on the effective properties of CNT reinforced
composites using the CC technique with N=3 (i.e. CNT, inter-
phase, and matrix).
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Chapter 3

Computational Micromechanics
Approach

Problem Statement and Computational Approach

In the present work, the finite element method will be used to determine effective elastic
properties corresponding to aligned high-stiffness hollow fibers embedded in a compliant
matrix in both well-dispersed and clustered arrangements. The configuration considered
for the well-dispersed case is assumed to consist of a periodic hexagonal array of hollow
fibers (Figure 3.1(a)), resulting in effective material behavior which is transversely isotropic
(Dvorak and Teply, 1985; Achenbach and Zhu, 1990). Clustering is considered by allowing
different degrees of deviation from the periodic hexagonal array, as shown in Figure 3.1(b).
Also shown in Figure 3.1 are the interphase regions surrounding the fibers which are as-
sumed to be of uniform size and stiffness. The interphase regions are also assumed to be
perfectly bonded to both the fibers and the matrix. The material properties for both the
hollow fibers and the matrix are taken to be linear elastic. In both the well-dispersed and
clustered cases, the equilibrium equations are numerically solved using FEA, subject to
periodic boundary conditions.

In order to capture both the well-dispersed and clustered cases, the elastic properties of the
effective homogeneous material are assumed to be orthotropic linear elastic, which can be
expressed in terms of the components of the stiffness tensor as

(011 ) [(C11 Ci2 Ci3 0 0 O ] ( &1 )
022 Cia2 G2 C3 0 0 O €22
O3 | _ | Ci3 C3 Czz 0O 0 O €33 (3.1)
012 0 0 0 Cu O 0 2€12 '
023 0 0 0 0 G O 283

( 031 | 0 0 0 0 0 GCgg 1\ 2€31 )
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Figure 3.1. Schematic of effective fiber FEA representations of
aligned high-stiffness hollow fibers embedded in a matrix with
fiber-matrix interphase regions: (a) well-dispersed case (perfect
hexagonal array); (b) a clustered case. Both schematics are plot-
ted using the same geometrical scale and both correspond to 10%
volume fraction of fibers and 10% volume fraction of interphase
regions. Dashed lines denote the computational representative vol-
ume elements for each case.
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or inverted and expressed in terms of the components of the compliance tensor as

1 Vo1 V31 i
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whereg;; are the components of the volume averaged stegssye the average compo-
nents of strain applied to the RVE, and wherel® v’s, andG’s denote effective Young's
moduli, Poisson’s ratios, and shear moduli, respectively. Of course, the usual material pa-
rameter symmetries hold (i._%% = ,‘g—ﬁ l‘% = ,‘%i and,‘%’;‘ = ‘%2). For the well-dispersed
case only five of the effective elastic constants are independent as the effective material
response is transversely isotropic. The effective elastic properties are obtained through the
application of a series of average strain states, each having a single non-zero component.
The resulting sets of volume averaged stress components for a an applied average strain
are then determined from the FEA solution, allowing the components of the corresponding
column of the effective stiffness matrix in Eqn. 3.1 to be obtained by dividing the average
stress components by the applied average strain. Once the effective stiffness is computed,
it is inverted to obtain the effective compliance from which the corresponding engineering
effective elastic constants are determined according to Eqn. 3.2.

In the finite element simulations which follow, it is assumed that the fibers are infinitely
long circular cylinders, consistent with the large aspect ratio of CNTs (Saito et al., 1998).
Earlier work of Fisher et al. (2002) has accounted for the effect of curvature of CNTs on
the effective elastic properties, where it was shown to cause a reduction in modulus on the
order 5% relative to straight fibers. In the present work, emphasis is placed on the effects
of clustering and interphase regions and, for the simplicity of computations, straight fibers
will be considered. Two continuum representations of CNTs are employed in the present
work. In the first representation, CNTs are treated as isotropic linear elastic hollow fibers,
consistent with the identification of CNTs as rolled sheets of graphite (Saito et al., 1998). In
the second, CNTs are represented as transeversely isotropic linear elastic solid fibers with
the effective elastic constants for the fibers determined using a composites cylinders method
(Seidel and Lagoudas, 2006a). In all cases, the matrix and interphase regions are taken to
be linear elastic isotropic. Relevant geometric data and material properties for the CNT
representations and for the epoxy matrix are provided in Table 3.1. Interphase properties are
taken as a variable in the present work and are provided on a case-by-case basis. Also note
that in both hollow and effective fiber FEA representations, volume fraction is measured
using a fiber radius equal to the outer radius identified in Table 3.1 (i.e., the hollow portion

is considered part of the fiber volume in the hollow fiber FEA representation).
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Table 3.1. Linear elastic material parameters for continuum rep-
resentations of CNTs using isotropic hollow fibers or transversely
isotropic effective fibers. Elastic properties for the epoxy matrix
along with geometrical dimensions of the CNT representations are
also provided.

Matrix: EPON 828 (Schadler et al., 1998)

E =3.07GPa v=0.3

Isotropic Hollow Fiber FEA Representation of CNT (Saito et al., 1998)

E = 1100GPa v=014

Inner Radius= 0.51nm Outer Radius= 0.85nm

Transversely Isotropic Effective Fiber FEA Representation of CNT (Seidel and Lagoudas, 2006a)

E11 =704GPa Exo = 34554 GPa

G12=227.04GPa Go3=12552GPa

vi2 = 0.14 GPa Outer Radius- 0.85nm
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Examples of the RVEs used for the well-dispersed and clustered fiber arrangements in the
finite element computations which follow are denoted by the dashed lines in Figure 3.1. Al-
though it is possible to use a much smaller RVE for the well-dispersed case (e.g., one-sixth
of a hexagonal prism centered about a fiber), the chosen RVE results in straightforward
specification of the necessary periodic boundary conditions. The computational cost asso-
ciated with using these rectangular RVEs is not burdensome and allows similar boundary
conditions to be used for both the well-dispersed and clustered fiber arrangements. Both
the well-dispersed and clustered computational RVEs are assumed to possess a translational
periodicity in the X- and Y-directions, with vectors of periodicity being defined by the size

of the RVE.

Sample meshes of the well-dispersed RVE for both the hollow and effective fiber CNT
representations are shown in Figure 3.2. These meshes are three-dimensional with a single
element used in th&-direction, which is sufficient as no gradients in thelirection result

when the periodic boundary conditions are applied. New meshes are generated for each
fiber volume fraction for which the effective elastic properties are determined. As the fiber
dimensions are considered to be fixed, changes in fiber volume fraction result in changes
in the size of the RVE.

In order to facilitate the discussion of the applied periodic boundary conditions, the six
faces will be referred to as X/—X, +Y/-Y, and+Z/—Z which are perpendicular to the

X-, Y-, andZ-axes, respectively. Also, a numbering scheme will be used for the principal
material directions such that 1 refers to the fiber axis directtbaxis) and 2 and 3 corre-
spond to theX- andY-axes, respectively, or the transverse axes. A total of six numerical
simulations are used to determine the effective composite properties at a given fiber vol-
ume fraction for both the well-dispersed and clustered fiber arrangements. Each simulation
corresponds to the application of an average strain state with a single non-zero component.
These six simulations are necessary to determine the complete set of engineering elastic
constants of an orthotropic material, i.e., the three Young’s moBui E22, andEs3), the

three Poisson’s ratios/{, V23, andvs1) and the three shear modult{,, Go3, andGsy),

from which all other effective moduli can be calculated. It should be noted that in the
well-dispersed case, where the effective elastic properties are transversely isotropic, only
three simulations are needed to obtain the five independent engineering properties. The
additional three tests become consistency checks for the well-dispersed cases.

The periodic boundary conditions can be expressed in terms of the displacement compo-
nents on face pairs. For example, taking the origin of the mesh coordinate system to be at
the RVE centroid, the periodic conditions for theX/—X face pair can be expressed as:

U(L?(/Z,Y, Z) = u(_Lg)(/27Y7 Z)
V(LS/2,Y,Z) = v(~L§/2.Y,2) (3.3)
w(LS/2,Y,Z) =w(—L%/2,Y,Z)

whereu, v, andw are the components of the displacement inXhey, andZ directions,
respectively, and where the undeformed mesh has an original length aloXgatkis of
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Figure 3.2. Original and deformed finite element meshes for
aligned, well-dispersed hollow fiber (3554 nodes/1648 elements)
and effective fiber (4496 nodes/2154 elements) representations at
50% volume fraction. Here the interphase region has been as-
signed the same properties as the matrix indicative of direct fiber-
matrix bonding; (a) isotropic hollow fiber FEA representation; (b)
transversely isotropic effective fiber FEA representation. The de-
formed meshes are for the case of applied shgarof 1%, with

20X displacement magnification demonstrating that straight edges
are not required to remain straight for the applied periodic bound-
ary conditions.
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L§. Similarly, on the+Y/—Y and+Z/—Z face pairs, the periodic conditions are expressed
as:

u(xX,L9/2,2) = u(X,—L9/2,2)
V(X,L9/2,2) = v(X,-L$/2,2) (3.4)
w(X,Ly/2,Z) =w(X,—LY/2,Z)

and
u(X,Y,L3/2) = u(X,Y,-L39/2)
V(X,Y,LS/2) = v(X,Y,—L2/2) (3.5)
wW(X,Y,LS/2) = w(X,Y,—LS/2)

respectively, and where the undeformed mesh has original lengtlys ahdL$ along the
Y andZ coordinate axes. In order to perform one of the required six numerical simulations,
the desired non-zero average strain component is introduced into the periodic conditions
in the form of a relative displacement. For example, in order to determine the first column
of the stiffness tensor in Egn. 3.1, the only non-zero average stins applied by the
addition of a relative displacement betwee# and—Z in thew component of Eqn. 3.5,
ie.,

W(X,Y,LS/2) =w(X,Y,—L3/2) + €°LY (3.6)

where the relative displacement is givenvay = £°L9, wheree® is the applied strain. For

this case, the remaining displacement components in Eqn. 3.5 are unaltered, and the same
is true of all of the displacement components in Egns. 3.3 and 3.4. The other columns of
the stiffness tensor are determined in much the same way, with the only difference being to
which face and to which displacement component a relative displacement is applied. The
specifics of the periodic boundary conditions (PBCs) used in each simulation to apply the
desired component of average stradj)(are listed in Table 3.2, where the corresponding
relative displacements are denoted ipy, Viel, andw,e. Note that most nodes belong

to a single PBC pair{Z/—Z), while some belong to two PBC pairg-Z/—Z with either
+X/—X or +Y/-Y) and the eight corner nodes belong to all three PBC pairs. Also note
that the inner surface of the fiber in the hollow fiber FEA representation of the CNTs is
taken to be stress free. Finally, note that initially straight edges need not remain straight
under the applied periodic boundary conditions as is also shown in Figure 3.2.

The finite element cases are run with ADAGIO (Pierson et al., 2005), Sandia National Lab-
oratories’ finite element software for linear and nonlinear quasi-static analysis of structures.
ADAGIO solves the following weak form in the current configuration

/a:éDdV:/pb-évdVJr/t-cSvdS (3.7)
\Y \Y S

whereo is the Cauchy stress tensor in the current configurabaa the rate-of-deformation
tensorb is the body force vectoy; is the velocity vector, antlis the traction vector. Many
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Table 3.2. Details of applied periodic boundary conditions. The
non-zero relative displacements necessary to achieve the desired
average strain over the RVE are given. All unlisted relative dis-
placements are specified to be zero. In all numerical simulations
for a given RVE, a single applied strain level &f is used and

LS, LY, andLS refer to undeformed RVE lengths in thé, Y-,
andZ-directions, respectively, angy, Vie;, andw;e are the corre-
sponding relative displacements.

Simulation Average Applied Strain  +X/—X +Y/I=Y +Z/1-Z
PBC PBC PBC

1. Z-Direction Extension £11 = &= €° — — Wrel = €°L9

2. X-Direction Extension £90 = Exx = &9 Urel = €°LS — —

3. Y-Direction Extension €33 = &yy = €° - Viel = €°LY -

4. ZX Shear 2810 = 25 = £° Wrel = 9L — —

5. XY Shear 2€p3 = 26y = €° — Urel = €°LY —

6.Y ZShear 2e31 = 26y, = €° - Wrel = €°LY -

different types of constitutive equations are available in ADAGIO. For the present applica-
tion, the Green-Naghdi objective stress rate is used and is given by

0=0-Q0+0Q (3.8a)

or .
o =Ro'R" (3.8b)

whereR is the rotation matrix from the polar decomposition of the total deformation gra-
dientF, i.e.,F = RU = VR with U andV denoting the total right and left stretch tensors,
respectivelyQ is determined from the time rate of changeRoés

Q=RRT (3.9)
andagV is the unrotated Cauchy stress given by
o'=R"ToR (3.10)

Using Eqn. 3.8b, the constitutive equation is more easily applied directly in the unrotated
configuration as follows:
o'=Cc!D" (3.12)

whereD" is the unrotated rate-of-deformation tensor given by
DY=R"DR (3.12)

andC! is the corresponding stiffness tensor.
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ADAGIO solves for the nodal velocities satisfying the weak form given in Eqn. 3.7 using a
nonlinear preconditioned conjugate gradient technique. That is, for each time step, ADA-
GIO begins with an initial guess for the nodal velocities and then iteratively finds the set
of nodal velocities that satisfy the quasi-static equilibrium equations. The nodal velocities
themselves are used to update the nodal displacements such that all quantities of interest
can be computed in the displacement based finite element approach that is applied. The
rate-of-deformation tensor is determined as follows:

|

D__A_tlnv (3.13)
whereV is the incremental left stretch tensor computed from the polar decomposition of
the incremental deformation gradient tensor over the current time stef-@eV, R). The
unrotated rate-of-deformation tensor is then determined from Eqn. 3.12, where it should
be noted thaR is the total rotation from the initial undeformed configuration to the cur-
rent configuration, and not the rotation from the previous configuration to the current one,
i.e., notR. Once Eqgn. 3.11 is used to update the unrotated Cauchy stress, the inverse of
Eqgn. 3.10 is used to obtain the Cauchy stress in the current configuration. The resulting
internal force is compared to the external force to calculate a residual which is driven to
zero. That is, if the residual is too large, a new nodal velocity vector is determined using
a nonlinear preconditioned conjugate gradient method and the process is repeated until the
residual is less than a user specified tolerance.

It should be noted that ADAGIO offers a range of elements, but here the computations are
performed using the under-integrated, mean quadrature 8-node brick element. The hour-
glass modes are controlled via a fictitious hourglass force scheme similar to that described
in Flanagan and Belytschko (1981) and Flanagan (1983).

It should also be noted that for the three extension tests listed in Table 3.2, the rotation
tensor is equal to the identity tensor, i.B.=1. For the three shear tests, the rotation is
approximately equal to the identity tensor for the small strains applied in the PBCs. Hence,
with the various rotated and unrotated tensors being nearly equal, it can be shown that the
equations solved by ADAGIO reduce to the usual linearized elasticity equations. That is,
for the small strain cases applied, the equations solved by ADAGIO are consistent with
solving the quasi-static equilibrium equations given by

0.-0+pb=0 (3.14)
subject to the following linear elastic constitutive relationship:
o=Ce¢ (3.15)

whereC is the usual engineering stiffness tensor (which is isotropic for the matrix and for
the hollow fiber FEA representation and is transversely isotropic for the effective fiber FEA
representation) anglis the small strain tensor given by
1
g=2(0Ou+(OuW)T 3.16
5 (Ou+(0u)’) (3.16)
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which is indicative of kinematic linearization.

The finite element results will be compared to solutions determined using analytic mi-
cromechanics techniques in the form of the multi-layered composite cylinders approach
(Seidel and Lagoudas, 2006a) which is briefly summarized in Appendix A. In this ap-
proach, a single hollow fiber representation of the CNT, surrounded by concentric cylinders
of interphase, matrix, and as yet to be determined effective material, constitutes the com-
posite cylinder assemblage which is used to determine the effective composite properties.
Different sets of boundary conditions are applied to the composite cylinder assemblage, and
the five independent effective elastic constants are obtained by equating the strain energy of
the composite cylinder assemblage with the strain energy of an equivalent effective solid.
Details of the approach as applied to the composite system studied herein to investigate
clustering and interphase effects can be found in previous work by Seidel and Lagoudas
(2006a).

Effective Elastic Properties of Well-Dispersed Hollow Fiber
Composites with Interphase Regions

Effective elastic properties for aligned, well-dispersed hollow fibers with interphase regions
are obtained using both analytic and computational micromechanics approaches. In order
to provide a reference for observing the effects of interphase regions, no-interphase cases
are also performed. Finite element results for the effective elastic properties of hollow and
effective fiber FEA representations for the well-dispersed case are provided in Figure 3.3.
Also included in the plots are the effective properties obtained using the composite cylin-
ders technique (Seidel and Lagoudas, 2006a). Even though, for completeness, results for
fiber volume fractions up to 90% (the maximum packing fraction) are shown in Figure 3.3,

it should be noted that current fabrication methods for CNT-epoxy composites typically
have CNT volume fractions which are less than 10% Zhu et al. (2004).

As shown in Figure 3.3(a), the effective axial modullsg;, for both finite element repre-
sentations and for the composite cylinders solution compare very favorably throughout the
complete range of volume fractions. As is expected to be the case for fibrous composites,
the effective elastic axial modulus is well approximated by a linear function of volume
fraction between the fiber and matrix stiffnesses (i.e., rule of mixtures). Figure 3.3(b) pro-
vides the effective transverse modulisy, where again good agreement between both of
the finite element representations and the composite cylinders solution is observed for fiber
volume fractions less than 60%. At fiber volume fractions greater than 60%, increasing
differences in effectivdey, are seen, with the effective fiber FEA representation demon-
strating the largest effective stiffness followed by the hollow fiber FEA representation and
then the composite cylinder solution. The difference in effective transverse modulus be-
tween the effective fiber FEA representation and the composite cylinder solution is noted
to be of the order of 15% at a fiber volume fraction of 80%.
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Figure 3.3. Comparison of finite element results with those ob-
tained by the composite cylinders solutions for the well-dispersed
case with the interphase having been replaced with matrix indica-
tive of direct fiber-matrix bonding: (a) Axial Modulug;1; (b)
Transverse Modulusgy; (c) vi2 Poisson’s Ratio; (dyz3 Pois-
son’s Ratio; (e)512 Shear Modulus; (ff523 Shear Modulus.



Similar trends are observed in the Poisson’s ratios. That is, for the effagtivBois-

son’s ratio, shown in Figure 3.3(c), all solutions compare favorably throughout the com-
plete range of volume fractions. However, for thg Poisson’s ratio, large differences
between the results from the two computational and the analytic solution methods again
begin around 60% fiber volume fraction as shown Figure 3.3(d). Of particular note in Fig-
ure 3.3(d) is the more pronounced difference between the hollow and effective fiber FEA
representations at high volume fractions. Here the effective fiber FEA representation does
not adequately account for the zero-stiffness hollow region of the fiber which has increasing
influence in the transverse properties at high fiber volume fractions.

Whereas the effective moduli and Poisson’s ratios displayed dissimilar trends compared to
one another (i.ef11 vs. Exp and vz vs. Vp3), the effective shear modulG2 and Gas,

results shown in Figures 3.3(e) and 3.3(f), respectively, are quite similar. Both shear mod-
uli show initially good agreement between all three solution approaches up to 60% fiber
volume fraction, and both show differences in effective shear moduli at larger fiber vol-
ume fractions. In fact, both effective shear moduli plots demonstrate a similar increase in
effective property with increasing fiber volume fraction as that observed for the effective
transverse modulus in Figure 3.3(b), where the increase in effective property is relatively
small initially before increasing rapidly after 60% fiber volume fraction. As such, com-
pared to the effective axial modulus and the Poisson’s ratio, which show an almost
rule of mixtures change in effective property with increasing fiber volume fractiorzthe
shear modulus is observed to be much more sensitive to the compliant nature of the matrix
material. Though the shear moduli show similar trends, the effeGigeare results are
larger in value and show less difference between solution methods at high fiber volume
fractions than do the effectiv@,3 results due to the reinforcing effect of the fibers being
aligned in the 1-direction.

Reasons for the differences in the effective elastic properties observed in Figure 3.3 can
best be understood by examining the associated stress distributions. Stress distribution
contour plots for the well-dispersed, no interphase effective fiber finite element representa-
tion results are provided in Figure 3.4 for fiber volume fractions of 20% and Y% 0.2
and0.7). In both cases, the applied average straip,is 1%, and the stress distributions
have been plotted with a single contrast value used for each element, consistent with the
under-integrated, mean quadrature 8-node brick element employed.

In Figure 3.4(a), stress contours of axial stresg, as a result of applied average axial
strain, €11, indicate that the effective fibers carry the majority of the load at all volume
fractions. In fact, the stress level in the effective fibers and in the matrix remain constant at
all volume fractions so that as the fiber volume fraction is increased, the average stress in
the composite is proportionally increased resulting in the good agreement with the rule of
mixtures response previously noted for the axial modulg, In contrast, Figures 3.4(b)

and 3.4(c), which provide the stress contours associated with the determination of the trans-
verse modulugs,,, and theGos shear, respectively, show an increasing amount of effective
fiber interaction with increasing fiber volume fraction, as indicated by the increased stress
state in both the fibers and the matrix at 70% volume fraction. It is this increase in the
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Figure 3.4. Stress distribution contour plots at applied average
strains of 1% for fiber volume fractions of 20 and 70% effective
fibers, and with the interphase replaced by the matrix: (a) Normal
stressoy; due to applied normal strai 1 using a 0-7.5 GPa scale
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tively; (c) Shear strese3 due to applied shear straij,; using
scales of 0-30 and 0-100 MPa fér = 0.2 and 0.7, respectively.
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local stress state in and around the effective fiber which results in an increase in the average
stress state, and which is also believed to explain the difference between the finite element
and composite cylinders solutions for effective elastic properties at high volume fractions.

It can also be noted in Figures 3.4(b) and 3.4(c) that, at high volume fractions, the stress in
the fiber is not only augmented, but becomes increasingly non-uniform. This has important
consequences for previous modeling efforts like Seidel and Lagoudas (2006a) wherein ef-
fective fiber representations of CNTs have been used in conjunction with traditional Mori-
Tanaka (Qiu and Weng, 1990) and self-consistent (Hill, 1965) averaging techniques. Unlike
the composite cylinders approach, the Mori-Tanaka and self-consistent micromechanics
methods make use of the Eshelby tensor (Eshelby, 1957), therefore assuming a uniform
stress state in the fibers. Thus, at high fiber volume fractions, use of the Mori-Tanaka or
self-consistent techniques for CNT reinforced composites may be increasingly less accu-
rate approaches.

The stresses induced in the hollow fiber FEA representation, although not shown, are much
higher than those for the effective fiber FEA representation. This is to be expected due to
the higher stiffness of the hollow fiber and the its corresponding smaller volume of load-
carrying material. This increased stress in the hollow fiber also results in an increase in
the stress state in the surrounding matrix material. However these increases in the stress
state are not sufficiently high so as to counteract the contribution of the zero-stress regions
of the hollow fibers such that the average stress in the hollow fiber FEA representation
is in fact lower than the average stress in the effective fiber FEA representation. Thus,
the difference in effective properties observed between the hollow and effective fiber FEA
representations at high fiber volume fractions is confirmed to be a result of the effective
fiber FEA representation’s inability to accurately account for the hollow region. However,
for physically obtainable CNT-epoxy composite volume fractions which are less than 10%
and certainly much less than 60%, either hollow or effective fiber FEA representations can
be used.

While experimental and computational evidence has been obtained for the existence of an
interphase region between CNTs and polymer matrices (McCarthy et al., 2002; Odegard
et al., 2005), the exact size and material properties of such interphase regions are still an
active area of discussion in the research community (Odegard et al., 2005; Wagner, 2002).
As such, interphase regions of various sizes and stiffnesses are used in a parametric study in
the present work. However, in each case, the interphase regions around the individual fibers
of the respective RVEs are taken to be of the same size and stiffness so that the composite
consists of identical high-stiffness hollow fibers with identical interphase regions embedded
in the matrix.

The inclusion of an interphase region constitutes the introduction of a length parameter, in
addition to those length parameters introduced by having hollow fibers and/or clustered ar-
rangements, which for nanocomposites is quite significant as the fiber radius and interphase
thickness are of the same order of magnitude. Motivated by the chemistry of the function-
alization process (Zhu et al., 2003, 2004), the interphase thickness, once identified, is taken
as not varying with changes in fiber size or in hollow fiber thickness. Thus, as fiber volume
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fraction is increased for a given RVE, so too is the interphase volume fraction. In addition,
the constant thickness of the interphase region produces effective elastic properties which
do not necessarily scale with fiber geometry. In contrast, the length parameters introduced
as a result of having hollow fibers or due to clustering of fibers could scale with fiber size.

The constant thickness of the interphase with increasing volume fraction also has con-
sequences for the composites cylinders solution in the form of a maximum fiber volume
fraction for which the composites cylinders solution can be applied. This maximum fiber
volume fraction is determined as a result of the maximum packing fraction based on the
interphase outer radius (i.e., where the interphase regions of adjacent fibers come into con-
tact), and can be substantially lower than the maximum fiber packing fraction of 90%.
Above the maximum fiber volume fraction for composite cylinders, finite element simu-
lations which can accurately account for the non-cylindrical shapes of the residual matrix
and interphase regions can be used.

The results of a parametric study of the effects of interphase regions of various stiffnesses
on the effective transverse modul&sy, for the case of well-dispersed fibers are shown in
Figure 3.5 for an interphase thickness of 1.7 nm (i.e., equal to twice the fiber outer radius
selected based on Figure 1.1). Interphase stiffnesses of 1/2, 1, 5, and 10 times the stiffness
of the matrix (i.e.,.E = 1.5, 3, 15, and 30 GPa witlh = 0.3) are used and the effective
transverse modulus is obtained for volume fractions up to the limit volume fraction for the
composite cylinders solution (i.e., a volume fraction of 11%). As presented in Figure 3.5,
both the finite element simulations and the composite cylinders solution are in excellent
agreement and indicate large differences in effective modulus relative to the no-interphase
case. In fact, to obtain an equivalent value for the effective transverse modulus as calculated
for the 30 GPa interphase at 9% fiber volume fraction, a fiber volume fraction of 60% in the
no-interphase case would be required. At that same volume fraction, the 1.5 GPa interphase
results in a 44% decrease in the effective transverse modulus. Thus, it is observed that the
effective properties associated with the transverse directions can be greatly impacted by
the presence of an interphase region, particularly if that interphase region is a compliant
interphase and therefore representative of poor load transfer from the matrix to the fiber.

The column identified as PH (i.e., for the perfect hexagonal arrangement) in Figure 3.6
summarizes the results of an additional comparison of the effects of interphase regions
on the effective transverse modulus for the well-dispersed case at a specific fiber volume
fraction of 10%. For these cases, the interphase thickness is taken to be 0.35 nm (reflective
of observations made in Seidel et al. (2005)), resulting in an interphase volume fraction also
of 10%. Results for two interphase stiffnesses are provided, a stiff and compliant interphase
with stiffnesses of 10 times arig 10the matrix stiffness, respectively, denoted as 10X and
0.1Xinthe figure. From Figure 3.6, good agreement between finite element representations
and the composite cylinders solution is again observed, and direct comparison of the stiff
and compliant interphases relative to the no-interphase case can be readily discerned. In
this case, the effect of the 0.1X interphase is to lower the effective transverse modulus
by 34% relative to the well-dispersed, no-interphase case, whereas the effect of the 10X
interphase increases the effective transverse modulus by 15%. Additional results provided
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in the figure for columns A through E will be discussed in the computational portion of the
subsequent chapter on clustered arrangements.

49



E22 (GPa)

6.0

50

4.0

aoo O (I (I

L
H / I ] aa 8 L -". -". .
OO000 OOO00 0 . A -"
;_1 OO *:' C - s - .
O . L) e

]

i ==//
NE N .
& : i :
i i 4 i
PH A B Cc D E
0.1X Composite Cylinders B 0.1X Effective Fiber FEA
O 1X Effective Fiber FEA B 10X Effective Fiber FEA

10X Composite Cylinders

Figure 3.6. Summary of the independent and combined effects of
clustering and interphase regions on the effective transverse mod-
ulus,Ep,. Both FEA and composite cylinders results are provided
for each case, where for the clustered cases, the composite cylin-
ders method is coupled to the Mori-Tanaka averaging technique.
Both the fiber and interphase volume fractions are set at 10% for all
cases with interphase stiffnesses 0.1, 1.0 (i.e., no interphase), and
10.0 times that of the matrix. The results in the column denoted
PH correspond to well-dispersed fibers, and those in the columns
A-E to clustered fiber arrangements, as pictured by the schematics
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Chapter 4

Effective Properties of Clustered Carbon
Nanotube Reinforced Composites

Analytic Approach for Clustered Carbon Nanotube Rein-
forced Composites

It has been observed that, due to van der Waals forces, CNTs have a tendency to bundle or
cluster together making it quite difficult to produce well dispersed CNT reinforced com-
posites (Cooper et al., 2002; Fisher, 2002). As such, it may be necessary to incorporate
the effects of clustering in the prediction of effective elastic properties for the RVE in Fig-
ure 2.1(b). A number of research efforts have sought to ascertain the effects of clustering on
the effective elastic properties of composites. Ghosh and Moorthy (1995) and Ghosh et al.
(1997) used the Voronoi cell finite element method to obtain the stress-strain response for
clustered fiber reinforced composites and observed increases in the transverse stress as are-
sult of clustering. Tszeng (1998) studied the elastoplastic response of clusters of spherical
particles in metal matrix composites using and equivalent inclusion approach and found no
significant effect of clustering on the effective modulus. Boyd and Lloyd (2000) used FEA
analysis to study the effects of particle clustering on the fracture toughness in metal ma-
trix composites. Bhattacharryya and Lagoudas (2000) derived a form of the self-consistent
model for the effective properties of clustered fiber reinforced composites based on lo-
cal volume fraction distributions and applied it to bimodal distributions where increases
in transverse elastic properties for clustered distributions were found. For aligned short
fiber composites, Kataoko and Taya (2000) obtained the effect of clustering on the local
stress-strain response, but surprisingly found a decrease in the effective axial stiffness. It
should be noted that these previous efforts were more focused on the stress-strain response
as opposed to the effective properties, and generally observed the effects of clustering at a
single global volume fraction for more traditional composite systems such as carbon fiber
reinforced and metal matrix composites. In the present work, the focus is on the effects of
clustering on the effective properties of CNT composites using a multi-layered composite
cylinder method which is coupled to a multi-phase Mori-Tanaka approach to obtain the
effective properties of aligned clustered fiber reinforced composites for a wide range of
global volume fractions.
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Many research efforts have used tessellation techniques to identify what constitutes a clus-
tered arrangement as well as to delineate different amounts of clustering (Wray et al., 1983;
Spitzag et al., 1985; Ghosh et al., 1997; Boselli et al., 1998, 1999; Bhattacharryya and
Lagoudas, 2000). Herein, a Dirichlet tessellation is used to account for the degree of
clustering by associating with each CNT an amount of surrounding matrix as shown in
Figure 4.1. The associated matrix and the CNT are used to obtain an effective CNT-matrix
composite via the CC method. These effective CNT-matrix composites are then used to ob-
tain the effective properties of the composite as a whole using the multi-phase Mori-Tanaka
method as described by Eqn. 2.3 with P equal to the total number of distinct polygon areas
(provided all CNTs are identical and have identical interphase regions) so that the clustered
arrangements are treated using the CC/MT method.

For clustered arrangements of aligned CNTs one can readily identify three distinct volume
fractions. The firstis the global volume fractiar, as expressed in Eqn. (4.1) whéieis

the number of CNTSA; is the area of a CNT based solely on its outer radius (all having the
same outer radius), ag is the total area of composite. This is the volume fraction of the
total CNT volume (including the hollow regions) in the matrix relative to the total volume
of the composite. Second is the volume fraction of each CNT within its associated matrix
expressed in Eqn. (4.2) and referred to as the local volume fraajiort is the volume
fraction directly obtained from the tessellation results withreferring to the area of the
polygon used to define the amount of associated matrix. The local volume fraction is the
volume fraction used in the CC portion of the CC/MT. The third volume fraction is used
to denote the overall volume fraction of the effective CNT-matrix composites as obtained
from a given local volume fraction, and as such, is referred to as the global-local volume
fraction,cg as given by Eqn. (4.3), wherg is the number of times a given local volume
fraction occurs as a result of the tessellation. The global-local volume fractions are the
volume fractions used in the multi-phase Mori-Tanaka portion of the CC/MT method with
thecg values equal to the values in Eqn. 2.3 for each distinct local volume fraction up

to P distinct local volume fractions.

NE At
Cg = ( A7 ) (4.1)
CL= (%) (4.2)
AN 2
Cg = (%) (4.3)

The Dirichlet tessellation procedure used to obtain the local volume fractions is a well

established geometric technique for obtaining the minimum area polygons encompassing
a given set of seed points, which for the present work denotes the set of CNT centers
(Wray et al., 1983). The procedure involves the connecting of seed points to all other seed
points by a straight line, the perpendicular bisectors of which are constructed and used
to identify the polygonal boundaries. Thus, regions in the composite where CNT center
density is quite high (clustered regions) will produce small polygons and regions where the
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CNT center density is low will produce larger polygons as shown in Figure 4.1. Note that
applying the tessellation routine for the hexagonal arrangement of CNTs which represents
well dispersed CNT composites would produce identically sized polygons whose local
volume fraction would be identically equal to the global volume fraction. This corresponds
to having a distribution of local volume fractions represented by the Dirac function and
is indicative of the arrangement not being clustered. In contrast, if there are significant
numbers of both small and large polygons, then a bimodal distribution in polygon size will
occur indicating the existence of bimodal clustering in the composite.

Having completed the tessellation procedure, the local volume fractions are obtained. In
order to take advantage of the CC method in finding effective CNT-matrix composite prop-
erties, the polygons encompassing the CNTs are converted into concentric rings of associ-
ated matrix. To do this, each polygonal area is calculated and set equal to the area of a circle
of unknown radius. The area equivalence is used to determine the radius of the circle, and
the circle is set to be concentric with the CNT which it encompasses, thus maintaining the
local volume fraction distribution. This process is depicted graphically in Figure 4.1. The
assumption that the polygons obtained from the Voronoi tessellation can be replaced by
equivalent circles has been studied using FEA. Indications were that the average concen-
tration factors are not much affected, however for fibers in very close proximity, elevated
stress states do cause FEA predictions of effective properties to be above those obtained
by the approach applied herein. It should be noted that in the present work, all the CNTs
are the same size and as such, polygons of the same area (but perhaps different shape) will
produce identical local volume fractions. It should also be noted that for the subsequent
Mori-Tanaka method, some small volume fraction of associated matrix from each polygon
is set aside as the matrix in which the effective CNT-matrix composites are embedded, i.e.
such thaty, in Eqn. 2.3 is nonzero.

[ | o Loseal Vol e
i ooo o 4+———— Fraction of 34% — O |
] g v CHNIT
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Figure 4.1. Conversion of tessellated polygon to concentric circle
of associated matrix for use in the CC/MT method to account for
clustering.
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The CC method is applied P times to obtain effective CNT-matrix composite properties

where P denotes the number of distinct local volume fractions. In each application of the
CC method, N is greater than or equal to two, with the first layer corresponding to the

CNT and theN'™" to the associated matrix, thus allowing for the presence of interphase

regions. The P CNT-matrix composites are then embedded in the remaining matrix at the
appropriate global-local volume fractions corresponding to the number of polygons of a

given identical size, and the multi-phase Mori-Tanaka method is applied.
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Figure 4.2. Polygonal area distributions for four clustered cases
at 10% global volume fraction using 25 CNTs. Insets denote the
CNT arrangements studied. Percent differences relative to the well
dispersed CNT distribution value &b, are also provided.

This technique has been applied to several test cases involving a range from thirteen to
twenty-five identical CNTs in the absence of interphase effects embedded in the polymer
matrix, i.e. for maximum values of P ranging from thirteen to twenty-five and in all P

cases, N equal to two. Here the CNTs were arranged within the matrix in such manner
so as to introduce clustering. As would be expected, it was observed that the clustered
composite’s axial Young’s modulus was unaffected by clustering, and as such, only the
transverse Young's modulus results are provided (recall that the other effective properties
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follow the same trend &s,, and thus are not reported). Figure 4.2 provides the tessellation
results of four test cases at 10% global volume fraction of effective CNTs for four fiber
arrangements shown as insets in Figure 4.2 where the distributions in polygonal areas are
provided to give some insight as to the degree of clustering obtained in each case. Clearly
the distributions indicate that Case A constitutes the most clustered case represented as the
distribution is spread over the largest range, i.e. deviates the most from the well dispersed
distribution. From Case B to C the degree of clustering steadily decreases as indicated
by the decreasing range of polygonal areas. Thus, indeed the most clustered case, Case
A, deviated the most from the well dispersed CNT value for effective transverse modulus
by a percent difference of 23%, with Cases B and C exhibiting sequentially less deviation
from the well dispersed CNT solution, 1.6% and 0.5%, respectively. Note that the increase
in transverse stiffness is consistent with the observations of Ghosh and Moorthy (1995)
and Ghosh et al. (1997) which indicated an increased stress state as a result of clustering,
thereby increasing the average stress which is used in obtaining effective properties.

Figure 4.3 provides the effects of clustering on the effective transverse Young’'s modulus
for a range of global volume fractions for a single cluster arrangement in terms of percent
difference relative to the well dispersed CNT effective transverse modulus at each vol-
ume fraction. In Figure 4.3 it is observed that, in general, there is an increasing effect of
clustering on the deviation from the well dispersed CNT effective transverse modulus with
increasing global volume fraction from 0-40% (0% corresponding to pure matrix and there-
fore clearly no effect of clustering). However, the effect of clustering reaches a maximum
and then begins to drop sharply as a global volume fraction of 90% is approached (recall
that 90% is the maximum packing fraction for aligned fibers and therefore can not be clus-
tered). Thus, it is observed that the effect of clustering is to increase in magnitude only the
transverse to CNT alignment properties of the transversely isotropic effective composite as
compared to the well dispersed CNT composite’s effective elastic properties, and that this
augmentation in transverse elastic properties is initially increasing with increasing global
volume fraction of CNTs before returning to having no effect at the maximum packing
fraction.

As previously stated, the effective CNT-matrix composites were re-embedded in the small
amount of matrix which was set aside from each polygon. Figure 4.4 provides the results
of a parametric study on the effects of increasing the amount of matrix set aside from each
polygon on the effective transverse modulus of clustered composites. For the cases con-
sidered, it is observed that the effect of setting aside increasing amounts of matrix is to
increase the deviation of the clustered solution from the random distribution results only
slightly. It should be noted that the self-consistent method could readily be used in place
of the Mori-Tanaka method in determining the effective properties of clustered CNT ar-
rangements. As can be seen in Egn. 2.1, the self-consistent method does not require any
amount of matrix to be set aside for the effective CNT-matrix composites to be embedded
in as the fibers are instead embedded in the effective medium. However, the Mori-Tanaka
method was utilized here as a result of the good agreement with the FEA results previously
observed. The CC method is also in good agreement with FEA results, but is only capa-
ble of considering one composite cylinder assemblage at a time, i.e. a single CNT and its
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Figure 4.3. Effects of clustering on the transverse mod#lip,
at various global volume fractions in terms of percent difference
relative to well dispersed CNT results.

(N-1) surrounding layers, and would not be able to address the differences in local volume
fraction associated with each CNT in clustered arrangements.

Computational Approach for Clustered Carbon Nanotube
Reinforced Composites

The resulting effects of clustering of high-stiffness hollow fibers with and without inter-
phase regions on the effective elastic properties of aligned, hollow fiber composites are
studied in this section using both analytic and computational micromechanics approaches.
For the clustered arrangements of fibers, the computational representative volume elements,
like the one denoted by the dashed lines in Figure 3.1(b), contain several dispersed fibers,
some of which are in closer proximity than others. Additional clustered arrangements stud-
ied are identified at the tops of columns A through E in Figure 3.6, all consisting of devia-
tions from the perfect hexagonal array. As was previously noted for the well-dispersed case
atop the column identified as PH, the results reported in the present work are for clustered
arrangements having fiber and interphase volume fractions of 10%, with the interphase re-
gions having stiffnesses of either 0.1, 1, or 10 times that of the matrix, with the 1X cases
being indicative of clustered arrangements with no interphase regions.

There are many different possible arrangements of fibers in an RVE that can be used to
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Figure 4.4. Parametric study on how the amount of matrix set
aside from each polygon effects the clustered solutions for effec-
tive transverse modulus using the CC/MT method.

represent clustering, of which those chosen for the present work are only a small subset.
Nevertheless, it is felt that the present results will be representative of the general effects
that arise from high-stiffness hollow fiber clustering and therefore relevant to CNT rein-
forced composites. It should also be noted that any deviation from the perfect hexagonal
arrangement could result in effective properties which are not transversely isotropic. As
such, it is necessary to perform all six numerical simulations previously discussed to deter-
mine the complete set of effective orthotropic engineering elastic constants. Due in large
part to the periodic boundary conditions applied, the effective properties of the clustered
arrangements studied herein remain very nearly transversely isotropic.

In obtaining the effective elastic properties for the clustered arrangements via FEA, the
same periodic boundary condition sets are used on the clustered RVEs to obtain volume
averaged stress for a given applied strain. The finite element results are compared to an-
alytic micromechanics results obtained using a combination of the composite cylinders
approach with the Mori-Tanaka method as discussed in detail in previous work by Seidel
and Lagoudas (2006a). In this approach, a Dirichlet tessellation procedure is used to iden-
tify local volume fractions for each fiber. The local volume fractions are used to associate
with each fiber a corresponding portion of the matrix. The effective properties of these
local fiber-matrix assemblages are then determined using a composite cylinders solution.
The number of fibers each having a given local volume fraction constitutes a separate ef-
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fective phase, and the overall effective properties of the clustered composite as a whole are
determined by using these effective phases in conjunction with the Mori-Tanaka approach.
Recall that the length parameters introduced as a result of clustering or of hollow fiber
thickness scale with fiber size. However, the inclusion of an interphase region of constant
thickness introduces a length parameter which does not scale with fiber size into both well-
dispersed and clustered arrangements, so that the differences between the 10X and 0.1X
cases and the 1X cases in Figure 3.6 can be attributed to the length parameter associated
with the interphase thickness. A summary of the effects of clustering and interphase regions
on the other effective engineering moduli is provided in Table 4.1, where it is observed that
the effective axial modulus is not affected by the clustering in the transverse plane.

Table 4.1. Summary of the combined and independent effects

of clustering and interphase regions on the effective engineering
properties for composites with 10% fiber and 10% interphase re-
gion volume fractions. The average effect is the is the average per-
cent difference of the studied cases PH, A, B, C, D, and E relative
to the 1X PH case (i.e., the well-dispersed, no-interphase case).
The effect variation with clustering is the difference between the

highest and lowest percentage changes also relative to the 1X PH

case.
Property 0.1X interphase 1X (no interphase) 10X interphase
Average Variation with Variation with Average Variation with
Effect Clustering Clustering Effect Clustering
(%) (%) (%) (%) (%)

E11 -0.48 0.10 0.10 3.75 0.10
E2o -34.36 2.24 2.33 19.49 10.35
V12 3.74 0.79 0.96 -0.53 1.87
Vo3 -6.42 5.06 3.17 -7.01 11.63
G12 -34.35 1.97 1.96 19.95 7.78
Gos -36.20 2.95 2.24 14.20 8.38

The effects of clustering without the effects of an interphase region on the effective trans-
verse modulus can be assessed by comparing the 1X well-dispersed result in the PH column
with the 1X results in columns A through E in Figure 3.6. Such a comparison demonstrates
that there is hardly any difference in the effective transverse modulus relative to the well-
dispersed solution for the clustered arrangements considered. Case B, which is identified
as the most clustered arrangement as measured by the distribution of local volume fractions
obtained via Dirichlet tessellation, shows a slightly larger increase in effective transverse
modulus relative to the well-dispersed case than do the other clustering cases. However, all
demonstrate small increases in effective transverse modulus on the order of 3% or less.
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Figure 4.5. Stress distribution contour plots of the resulting nor-
mal stresso,, from an applied average straim, of 1% for 10%
fiber and interphase volume fractions and for various interphase
stiffnesses: (a) 1X PH well-dispersed arrangement (0-80 MPa
scale); (b) 1X Case C clustered arrangement (0-80 MPa scale);
(c) 0.1X Case C clustered arrangement (0-80 MPa scale); (d) 10X
Case C clustered arrangment (0-130 MPa scale).

The increase in effective transverse modulus as a result of the clustering effect observed
in the 1X cases of Figure 3.6 can be explained by examining Figures 4.5(a) and 4.5(b),
which provide theg,, stress distribution contour plots for the well-dispersed and clustered
Case C 1X interphase cases at 10% fiber volume fraction for an applied average transverse
strain, €59, of 1%. The fibers in the cluster of fibers in the upper left corner of Figure 4.5(b)
demonstrate an increased stress state in the fibers and surrounding matrix relative to the
fibers in the well-dispersed case as a result of the interactions between effective fibers in
close proximity. However, this localized increase in the stress state results in a peak stress
value of 78 MPa, only 10 MPa larger than the peak stress in the well-dispersed 1X case,
and hence, only a marginal increase in the effective transverse modulus.

The combined effects of including clustering and interphase regions on the effective trans-
verse moduluskyy, are also presented in Figure 3.6, denoted by the 10X and 0.1X la-
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bels in columns A through E. For comparison purposes both the finite element and the
coupled composite cylinders/Mori Tanaka method previously discussed are shown. From
Figure 3.6, it is observed that the combined effects of clustering and interphase regions
differ overall depending on the interphase stiffness. For the 0.1X well-dispersed (PH) and
clustered cases (A-E), a uniform decrease in the effective transverse modulus of approxi-
mately 33-36% relative to the 1X well-dispersed case is observed. This indicates that the
composite is interphase dominated in that, regardless of the degree of clustering, it is the
interphase regions which are the main contributor to the reduction in effective transverse
modulus. For the 10X well-dispersed and clustered cases, the increase in transverse mod-
ulus ranges from 15% for the well-dispersed case up to 25% for the most clustered case,
Case B. Thus, for the 10X cases, there is a measurable interaction between clustering and
interphase effects which causes larger increases in the effective transverse modulus than
either effect independently.

Reasons for the different trends in the effective transverse modulus results observed be-
tween the 0.1X and 10X clustered arrangements can again be better understood by examin-
ing the g»7 stress contour plots provided in Figures4.5(c) and 4.5(d) for the 0.1X and 10X
cases, respectively. In Figure 4.5(c), the compliant nature of the interphase results in almost
no stress being transferred to the fiber, which explains why clustering has relatively little
effect on the effective transverse modulus for the compliant interphase cases. Figure 4.5(d),
however, shows that the stiff interphase leads to large increases in stress in the fibers and
in the matrix as compared to both the well-dispersed and clustered, no-interphase cases.
These elevated stresses, which are especially large for fibers in close proximity, in turn
lead to significant increases in the effective transverse modulus. These strong interactions
among clustered fibers produce a peak stress in the 10X clustered case shown which is 60%
larger than the peak stress in the 1X clustered case, resulting in the noted coupling between
interphase and clustering effects (note the different scale bar for Figure 4.5(d)). This again
points to the large impact that the interphase regions can have on the effective properties
associated with the transverse direction in representing various degrees of load transfer.

Additional detailed explicit results for the effective engineering elastic constants other than
the effective transverse stiffness are not given here. Rather, Table 4.1 provides an overview
of the results with the “Average Effect” column giving the nominal magnitude of the inter-
phase effect for the studied well-dispersed and clustered arrangements and with the “Varia-
tion with Clustering” column stating how much variation with clustering arrangement there

is for each propertyHi1, Ezo, V12, Vo3, G12, andGo3). For example, for the 0.1X inter-
phase stiffness, the effect of including the interphase regida;efs large (approximately

a 34% decrease), but nearly the same magnitude for all CNT arrangements (less than 2%
variation). Consistent with the observations made for the effective transverse modulus, itis
observed in general that for the compliant interphase regions, there is less variation in the
effective engineering properties with clustering than for the stiff interphase regions with
clustering.

60



Chapter 5

Effective Properties for Carbon
Nanotube Reinforced Composites with
Randomly Oriented Nanotubes

The effective properties of composites with randomly oriented non-clustered CNTSs, such
as in Figure 2.1(a) but where CNTSs are not clustered into bundles, were studied and com-
pared to aligned non-clustered results. For both randomly oriented and aligned results, the
CC/MT method is applied, with random orientation being accounted for by considering
each separate orientation of a given CNT as an additional phase in the multi-phase Mori-
Tanaka portion of the CC/MT and integrating over all possible orientations as discussed
by Entchev and Lagoudas (2002). The resulting effective properties for the randomly ori-
ented CNT composite are isotropic, despite the CNTs having transversely isotropic effec-
tive properties. To isolate the effects of random orientation, identical CNTs with no inter-
phase regions were considered. Table 5.1 summarizes the input parameters and Table 5.2
the effective properties obtained from the randomly oriented CNT composites using the
CC/MT method.

Table 5.1.Randomly Oriented Mori-Tanaka Input Data.

Matrix: EPON 862
E =2.026GPa (Zhu et al., 2004; Yang et al., 2004y = 0.3

Effective Carbon Nanotubes

E11 = 704GPa vi2=0.14
Eo>o = 345GPa Vo3 =0.3764
U2 = 227GPa

Also in Table 5.2 are provided experimentally obtained data by Schadler et al. (1998), who
tested composites of this type with 5% wt CNTs, and by Zhu et al. (2004) and Yang et al.
(2004) who have manufactured and tested a wide range of functionalized and unfunction-
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alized CNT reinforced composites. As seen in Table 5.2 and graphically demonstrated in
Figure 5.1, the Mori-Tanaka method results at low volume fractions compare well with the
effective properties of the experimentally tested epoxy composites. Higher volume fraction
comparisons are not presently possible as currently it is difficult to make epoxy composites
with volume fractions of CNTs much higher than 10% due to the large increase in vis-
cosity of the liquid polymer with the introduction of CNTs. This point is emphasized if
one considers the ideal case of having well-dispersed and well-aligned CNTs in a matrix
material. At 1% volume fraction, CNTs would have an average center-to-center separation
of 17nm while at 10% volume fraction, the center-to-center separation would be 5.4nm
(based on tessellation and polygon to sphere conversion of the regular hexagonal array of
CNTSs). For the cross-linked thermoset epoxy matrix used in the present study, such a small
spacing may be the source of the large viscosity increases, as for noncross-linked systems,
such as polystyrene, CNT volume fractions of up to 50% have been obtained (Watts et al.,
2003), though mechanical properties were not the focus. It should be noted that in general
the Mori-Tanaka method will not produce different results for tension and compression
moduli; that the Mori-Tanaka results compare more favorably with Schadler's compression
results is more likely attributed to better load transfer to the CNTs in compression versus
tension. Recall that the micromechanics techniques discussed herein all presume perfect
adhesion between the CNTs and the matrix. However, experimental evidence indicates that
this is too strong of an assumption (Schadler et al., 1998), and indeed, there is currently
much research devoted specifically to improving the adhesion between the two through
functionalization(Namilae et al., 2004).

Table 5.2. Randomly Oriented Mori-Tanaka Results and Com-
parison to Experimental Data.

Experimental | Mori-Tanaka
Modulus Modulus

Barrera Functionalized 1 at 0.5% Volume Fraction2.632 GPa 2.6293 GPa
Barrera Functionalized 2 at 0.5% Volume Fraction2.650 GPa 2.6293 GPa
Barrera Functionalized 2 at 2.0% Volume Fraction3.400 GPa 4.4340 GPa
Schadler in Tension at 2.5% Volume Fraction 3.710 GPa 5.0350 GPa
Schadler in Compression at 2.5% Volume Fractiorb.400 GPa 5.0350 GPa

Experimental Case

The axial and transverse effective moduli for composites with randomly oriented CNTs are
provided in Figure 5.2 (plotted simultaneously with the aligned CNT results) for the com-

plete range of volume fractions. As can be seen in Figure 5.2(a), without fiber alignment,
one can not as readily take advantage of the high modulus of the CNTs. With random ori-
entation, the effective properties become isotropic, and no longer display CNT dominated
behavior in any one direction as was the case for the axial direction in aligned composites.
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Composite Effective Axial Modulus vs.
Veolume Fraction of CNTs:
Comparison to Experimental Data
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Figure 5.1. Comparison of the axial modulus values obtained
using the CC/MT for both aligned and randomly oriented CNT
composites to experimentally obtained composite values.

Figure 5.2(b) indicates that, especially at low volume fractions, the isotropic properties ob-
tained are far superior to those obtained in the aligned CNT composites in the direction
transverse to the CNTs, and are thus less matrix dominated. As in general it is often de-
sired to increase the stiffness only in the load-bearing directions of a composite, certainly
aligned CNT reinforcement would be preferred.
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Figure 5.2. Comparison of randomly oriented CC/MT results to
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sults indicate isotropic behavior as both axial and transverse mod-
ulus results are identical
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Chapter 6

Conclusions

The interest in developing and modeling macroscale composites reinforced with CNTs has
lead to the use of micromechanics techniques to model the microstructure of composites in
which they are employed. Herein a composite cylinders method has been used to convert
hollow CNTs into solid effective CNTs using the elastic properties of graphene sheets. Ef-
fective CNTs have then been used in the self-consistent and Mori-Tanaka micromechanics
techniques, and indicate that, for aligned CNTs composites, the axial Young’s modulus is
CNT dominated, while all properties associated with the transverse to CNT directions are
matrix dominated. FEA results were found to be in good agreement with two of the three
analytic solutions obtained. The effects of an interphase on the effective properties of CNT
reinforced composites were studied and observed to greatly impact the transverse proper-
ties at low volume fractions. An effort was made to incorporate the effects of clustering
into the micromechanics modeling from which it was observed the effect of clustering was
to augment the effective properties associated with the transverse to CNT alignment direc-
tions. Randomly oriented CNT results obtained using the Mori-Tanaka method were found
to compare well with results experimentally obtained by Schadler et al. (1998) and Zhu
et al. (2004) and Yang et al. (2004). The isotropic properties of composites with randomly
oriented CNTs are influenced by CNTs at all volume fractions, but are not CNT dominated
in any direction. In light of recently available data using Raman spectroscopy (Hadjiev
et al., 2006), future work will include the influence of partial debonding between phases in
tension versus compression comparisons.

In order to gain a practical understanding of continuum level mechanical behavior of car-
bon nanotube composites, computational micromechanics modeling has been used to de-
termine the effective properties of such material systems. Finite element simulations of
well-dispersed and clustered arrangements of aligned high-stiffness hollow fibers reflective
of continuum representations of carbon nanotube reinforced composites, with and without
interphase regions, have been studied and compared to some available analytic microme-
chanics solutions. The finite element and analytic micromechanics results have been found
to be in good agreement for well-dispersed fibers with and without interphase regions for a
large range of volume fractions.

The effects of clustering alone on the effective elastic constants were found to be relatively
small; an increase in most properties of approximately 2-3% at a fiber volume fraction
of 10%, increase in thei2 Poisson’s ratio of 1%, and essentially no effect on the axial
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modulus,E;;. On the other hand, the effects of adding interphase regions alone on the
well-dispersed fiber arrangement were typically much more significant: as much as a 15%
increase for stiff interphase cases and a 30% decrease for compliant interphase cases. In
summarizing these results, it is important to note that the inclusion of an interphase region
which has dimensions of nanometers introduces a length parameter unique to nanocompos-
ites in both well-dispersed and clustered arrangements.

The combined effects of clustering and interphase regions were also studied. For the case of
compliant interphase regions, all of the effective elastic constants except the axial modulus
were found to have changes dominated by the inclusion of the interphase region as the
variation with clustering was approximately 5% or less. For interphase regions stiffer than
the polymer matrix, the interphase and clustering effects coupled to increase the effective
moduli by more than either effect independently. That is, without an interphase region,
most effective moduli changed by approximately 3% or less as the clustering arrangement
was varied for a fiber volume fraction of 10%, but including the stiff interphase region led

to some of the engineering constants differing by 10% or more depending on the clustering
arrangement.

Finally, comparisons were made between computational and analytic micromechanics meth-
ods, with the key observation being that below 60% fiber volume fraction, excellent agree-
ment between the two methods for all effective elastic constants is obtained. It should
be noted that both methods make different assumptions regarding the fiber/matrix and
fiber/fiber interactions as exemplified by each method’s corresponding RVE, e.g., a per-
fect hexagonal array for the well dispersed case in the computational micromechanics ap-
proach versus a single concentric cylinder RVE in the analytic micromechanics approach.
It is also worth noting that there are distinct advantages to both the computational and
analytic micromechanics approaches employed herein. The multi-layered composite cylin-
ders analytic micromechanics method is advantageous for well-dispersed arrangements of
aligned fiber composites. Provided that each fiber has the same interphase or sequence of
multiple interphases, the multi-layered composite cylinders method provides accurate rep-
resentations for obtaining the effective elastic constants for a continuous range of volume
fractions below the critical volume fraction.

Near and above the critical volume fraction, the fiber/matrix interactions become suffi-
ciently complicated that finite element solutions are more advantageous. For example,
above the critical volume fraction, there is residual matrix remaining in the composite, but

it is no longer concentric to the fiber thereby making its inclusion in a composite cylinders
method untenable. Provided the meshing difficulties as phase boundaries become small
and complex can be adequately addressed, the computational micromechanics solutions
obtained from finite element simulations are best suited near or above the critical volume
fraction.

The computational micromechanics approaches have an additional advantage in determin-
ing the effective properties for clustered arrangements with little added complexity as com-

pared to the well-dispersed case. For clustered arrangements, the finite element method
can better represent the full geometry of the clustered arrangement and directly determine
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the effective properties. In contrast, the present analytic approaches can only represent the
clustered geometry in terms of local volume fraction in a two stage approach, and subse-
guently have difficulty retaining important fiber/fiber directional and proximity information
which affect the local stress state.

Lastly, certain effective properties are more conveniently obtained using either the analytic
or computational micromechanics approach may be more direct. For example, the trans-
verse moduluskyo, is a property which is directly obtained from the six tests in the finite
element approach, but is calculated from the other five properties in a composite cylinders
approach. Conversely, the in-plane bulk modukss, can be directly obtained in the com-
posite cylinders approach, but is calculated from the other five engineering properties in
the finite element approach.

Overall, both analytic and computational micromechanics methods have their advantages
and should be considered for use as needed, using the above guidelines, for high-stiffness
hollow fiber composites such as CNT reinforced polymers.
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Appendix A

Summary of Composite Cylinders
Micromechanics Solutions

A brief summary of the composite cylinders assemblage used for obtaining the effective
properties of well-dispersed CNTs with no interphase region (Figure A.1) is discussed
herein. The methodology is taken from Hashin and Rosen (1964) wherein the effective
transversely isotropic properties of hollow isotropic fibers embedded in an isotropic ma-
trix, i.e. without interphase regions, were derived for aligned fiber composites. Details
of the approach as applied to the composite system studied herein to investigate cluster-
ing and interphase effects can be found in previous work by Seidel and Lagoudas Seidel
and Lagoudas (2006a). It should be noted that displacement fields provided in the subsec-
tions which follow are solutions to Eqns. 3.14 through 3.16 in cylindrical coordinates. It
should also be noted that in the schematic of the composite cylinder method provided in
Figure A.1, the tube axis is along the one-, or z-direction. The inner radius of the fiber is
denoted asp, and the outer radius of the matrix is denoted-gsvith r; denoting the fiber

outer radius. Displacements and tractions across each phase boundary are assumed to be
continuous.

A.1 In-Plane Bulk Modulus

The effective in-plane bulk modulugys, for the composite cylinder assemblage of Fig-
ure A.1l is determined through the application of the following displacement field expressed
in cylindrical coordinates:

o) =B +8))

ug) =0 forri_g <r <r; (A-1)

where B(li) and Bg) are constants an@) ranges from one to two. These displacements
are used to calculate first the strains and then the stresses within the composite cylinder in
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Figure A.1. Composite cylinder assemblage used in initial mi-
cromechanics evaluation of the effective properties of CNT-epoxy
composites Seidel and Lagoudas (2006a).

terms of the unknown constants. The constants are determined through the application of
the boundary conditions:

O'r(rl) |r:r0 =0 (A.2)

U, = &f2 (A.3)

whereg is the radial strain applied at the boundary. The two additional equations needed to
determine the unknown constants are found in the continuity of displacement and traction
conditions given by:

Usl) |r:r1 = UEZ) |r:r1 (A.4)

Ur(rl) |r:r1 = O'r(rz) |r:r1 (A.5)
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The constants in the displacement field are then determined to be:

3__( ala2+GZ )}
r2  r2\a102—(G2+A2)

]
( —(a102+ Gy) ) 82

2lq100 — (Ga+A2)] ) 2

1) 01 2 1 _p
Bé):—(Bg)Jr%B(Z))

(1 _ Gy ) (1)
BV (1 \p
! (r5(61+A1> 2

(A.6)

whereG; andA; are the Lard constants of the graphite lay@; and A, are the Larg

constants of the epoxy, ard anda; are given by:
Gy

G 1+1
Gi+A1)rg r?
OI—<1 l)
=\ 7

The effective in-plane bulk modulugzs is then obtained by:

a, =

(Orr )
K23 = 2(en)

where(e) denotes a volume average as defined by:

:\l//odv
Vv

(A7)

(A.8)

(A.9)

It can be shown that Eqn. A.8 can be expressed in terms of the stress and displacement at

the boundary of the composite cylinder assemblage as:

Orr ’r:rz

2 (Usz) |r:r2/r2>

K23 =

A.2 Axial Modulus E;; and v1» Poisson’s Ratio

(A.10)

The effective axial modulug; 1, andvy, Poisson’s ratio for the composite cylinder assem-
blage of Figure A.1 is determined through the application of the following displacement
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field expressed in cylindrical coordinates:

)~ el g2
u(ei) =0 forri_g <r <r; (A.11)

Ug) = &z

whereB(l') andB(z') are again constantsg is the applied uniaxial strain, arjd ranges from

one to two. These displacements are used to calculate first the strains and then the stresses
within the composite cylinder. The constants are determined through the application of the
following boundary conditions:

e (A.12)

Ur(rz) lr=r,=0 (A.13)

and continuity of displacement and traction conditions given by:

Ut oy = U |y (A.14)

o lr—ry = O |r—r, (A.15)

The constants in the displacement field are determined to be:

B2 — P,
2 a6 0
os 1
B2 - Pz, + 2B
as ay r

(A.16)

1
B(Zl) =az ([3180 + B(lz) + r_ZBg))
1

1
Bg_l) = alr—z B(zl) — B1&o
0
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where theqa; are given by:

o, = Gt
YT Gt A
0 — 1
BT
15+ =
ra r2
1 1
=2(G1+ A1) 01—2—261—2 (A.17)
o r
a4 = 0203 —2(Go+A2)
as = — o203 — 2Go
a l 1
=2Gpth2) > 2G5
as r1 rs
and where th¢s; are given by:
A1
Bl - Z(Gl + Al)
B2 = A2 — A1+ [u[2(C2+ A2) — a2 (A.18)
B

Bz=—A2— (Gz+)\2) da

The effective axial modulugks1, is then obtained by:

~ (0z)
Ei1= &)

where the volume averaged streSs;,), is given by:

(Oz7) = nLr2 [Zl/r 1azzrdr] (A.20)

whereL is the arbitrary length of the composite cylinder assemblage and where it is noted
that there is zero stress in the hollow region of the fiber. The volume averaged strain is
similarly calculated as:

(A.19)

(&7 =

soro+ Z/r sz'zrdr] (A.21)
i—1

where the additional term before the sum acknowledges the non-zero strains in the hollow
of the fiber so thate;,) = & is maintained.
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From the same applied strain, the effectie Poisson’s ratio of the composite cylinder
assemblage is obtained as indicated by Christensen (1979) from:

(A.22)

so that

- <U£2)‘r=r2/r2)
Vio = & (A.23)

A.3 Gj1o Shear Modulus

For determining the effectiv®1, shear modulus of the composite cylinder assemblage use

of the energy equivalence between the composite cylinder assemblage and a homogeneous
solid effective cylinder will be used. The following displacement field, expressed in cylin-
drical coordinates, is applied to the composite cylinder arrangement:

uﬁi) =0

u(ei) -0 forri_g <r <r; (A.24)

uy) = (B(li)r + Bg)%) cos(0)

whereB(li) andB(zi) are again constants afid ranges from one to two. These displacements
are used to calculate first the strains and then the stresses within the composite cylinder. The
constants are determined through the application of the following boundary conditions:

Uy
Gy —lr=ry =0 (A.25)
uEZ) |r=r, = 2&or2 COS(0) (A.26)

where G is the shear modulus of the graphite andis the shear strain applied at the
boundary. The continuity of displacement and traction conditions are given by:

Ugl) |r:r1 = ng) |r:r1 (A.27)
Jutd utd
G1 07‘ |r_r1 GZ (; |r_r1 (A-28)



The constants in the displacement field are then determined to be:

2 2&

B2’ = a; 1l 1
22
agrl r2

1o
BY ==4-B
1 a3|’2 2

! (A.29)
w_1/2, 150
B> _a_l<Bl +%Bz)
1 1 _
B — Lo

where thea; are given by:

(A.30)

Solving the same boundary value problem, but for the effective solid homogeneous mate-
rial, the displacement field in the effective solid is then given by:

u =0
ug“) =0 foro<r<r, (A.31)

W = 2eor cos(6)

where the superscripk) denotes the effective homogeneous solid. The effe@iyeshear
modulus of the composite cylinder assemblage is then obtained by equating the strain ener-
gies of the composite cylinder to the effective homogeneous solid which, noting that both
representations are subject to the same strain, can be expressed as:

ou? ouy”
Gzﬁ—i lr=r, = Glzd—f_ lr=r, (A.32)

and solving forGy».
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Figure A.2. Generalized self-consistent composite cylinder as-
semblage used in initial micromechanics evaluation of the effec-
tive properties of CNT-epoxy composites Seidel and Lagoudas

A.4 G,3 Shear Modulus

In determining the effectiv&,3 shear modulus of the composite cylinder assemblage, the
entire assemblage is embedded in a layer whose material properties are the same as the
material properties of the effective solid homogeneous material as shown in Figure A.2.
This modified composite cylinders assemblage was first proposed by Christensen and Lo
(1979) and is referred to as the generalized self-consistent technique. The efi&gtive
shear modulus of the composite cylinder assemblage is determined through the use of the
energy equivalence between the generalized self-consistent composite cylinder assemblage
and a homogeneous solid effective cylinder. The following displacement field, expressed

in cylindrical coordinates, is applied to the composite cylinder arrangement:

Ur

i) —

(i)

) — 0

- (B(li)r+(

(Br+8

A g3 g3, (2Gi+AN L), 1)
2)“) By 1" —Byr 7+ (—Gi B,’r ) sin(20)

3+ Bg)r*3+ Bg)rfl) cos(20) forri_y <r <r;
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wherei ranges from one to two and where tlag> (k=1,..,4 and i=1,..,2) are constants to

be determined an@; and; are the Lard constants for thig" phase. For the displacement
field in the surrounding effective material, i.e. t8@ phase, Christensen (1979) has pro-
vided a convenient expression of the displacement field where the boundary conditions on
the external surface have been applied as:

2 .
u® = (B (5 (4—4va3)raDsr L+ r3Der 3 ) sin(20)
4Go3 ra

— 2
U(QS) — < r's > <_r_r + (_2—{—4V23>r3D5r71—|— r§D6r3) COS(ZG) for rh<r<rs
3

(A.34)

whereDs andDg are constants3,3 and v,z are the effective in-plane shear modulus and
Poisson’s ratio, respectively, of the composite cylinder assemblager,zasdhe outer

radius of the3'd phase which is arbitrary and can be taken to infinity. These displacements
are used to calculate first the strains and then the stresses within the composite cylinder
subject to the boundary conditions on the inner surface of:

Ur(rl) r=ro =0 (A.35)
03 |r=ry =0 (A.36)
and continuity of displacement and traction conditions given by:
Ungj)’r:rj = U$j+l)‘r=rj (A.37)
u e, = ud )y (A.38)
O'r(rj)’r:rj = O'r(rHl)’r:rj (A.39)

(j+1

Ur(é)|r:rj = GrQ )|I‘:I’j (A4O)

where | ranges from one to two. One can then obtain the six unknown cons%(nﬁ5,
andDg, by solving the system of algebraic equations in Egns. A.35 through A.40.

The displacement field for the effective homogeneous solid material, is given by:

% r 2 :
u) = (Ee;e,) (Er) sin(20)

ug) = <—_r3> <—Er> cos(26) for0<r<rs (A41)
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where there are no constant terms like those in Eqn. A.34 as a result of the requirement
that the displacement field be bounded at the origin. It is then observed that equivalence of
strain energies of the effective homogeneous solid with the composite cylinder assemblage
using the Eshelby formula can be expressed as:

2
/0 [O'r(rg) ug*) + O-r(g)u(;) . <O.r(r*)u§3) + Gr(g)u(;»))] r:rzde -0 (A.42)
which to be satisfied, indicates tHag in Eqn. A.34, which, as a result of solving the system
of Egns. A.35 through A.40, is in terms @, A1, Go, Ag, g, I'1, I'2, andGy3, should be
identically zero. Thus(3,3 is then obtained by setting:

Ds=0 (A.43)

and solving forGos. It should be noted that the algebra involved in obtainihg and

indeed the other constants in the composite cylinders assemblage, in terms of the unknown
effective properties is quite intensive and as such, Cramer’s rule has been used to solve only
for the needed expression D§.

A.5 Transverse ModulusE,, and v,3 Poisson’s Ratio

Finally, the transverse modulus for the composite cylinders assemblage is calculated in
terms of the in-plane bulk modulus, axial modulwgy Poisson’s ratio, ands,3 shear

modulus as:
4Gy3K23

Exo = (A.44)
K23+ G+ 4vZ,Go3K23/E11
and thevoz Poisson’s ratio is obtained as:
K23 — Go3 — 4V2, GozKa3/E
hpg = K23 G2 75 G23Ko3/E11 (A.45)

K23+ G2z +4VZ,Go3K23/E11
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