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Abstract 

In this report we present a model to explain the size-uqendent sllapes of ,Lad nano- 

precipitates in aluminum. Size-dependent shape transitions, frequently observed at 

nanolength scales, are commonly attributed to edge energy effects. This report resolves an 

ambiguity in the definition and calculation of edge energies and presents an atomistic 

calculation of edge energies for free clusters. We also present a theory for size-dependent 

shapes of Pb nanoprecipitates in Al, introducing the concept of "magic-shapes" defined as 

precipitate shapes having near zero elastic strains when inserted into similarly shaped voids 

in the A1 matrix. An algorithm for constructing a complete set of magic-shapes is presented. 

The experimentally observations are explained by elastic strain energies and interfacial 

energies; edge energies play a negligible role. We replicate the experimental observations by 

selecting precipitates having magic-shapes and interfacial energies less than a cutoff value. 

3 



This Page Intentionally Left Blank. 

4 



CONTENTS 

1. Introduction. .. . .. . . ........... . ..... .... . ............... .. ........ . . . .. ...... . . . . ... .. ......... .. .. . . . ......... . .... . ....... . . . ..... 7 

2a. Edge Energies ...................................................................................................................... 8 

2b. Bond Breaking Model of Edge Ener ............................................................................... 25 

3. Pb Nanoprecipitates in Al: Magic-Shape Effects Due to Elastic Strain ............................. 29 

References ............... . . . . .... .. . . . . . . . . .... ......................... . . . . .. . . . . . . . . . . ...... ... . . . . . . . . . . .................. . . . . . . . . .... 39 

FIGURES 
Figure 1. A cuboctahedral cluster of Pd atoms having n=7 atoms along each edge is 

shown on the left. ............................................................................................... 10 

Figure 2a. This figure shows the importance of a precise definition of the edge length, 
s=f(n), as a function of the number of atoms, n, along an edge. ........................ 12 

Figure 2b. The second graph (2b) plots the interface energy, defined as Etotal-As3, for the 
three definitions of s ...... .......... .. . ...... .. . . . .... . . .. . . . . .. ..... ... . . . . . . . . . . . ..... ............. . . . . . . .... 13 

Figure 3a. Figure 3a plots the quantity, Etotal-NEcoh, for three plausible definitions of the 
edge length, s, defined in the text and in the caption for figure 2 ...................... 15 

Figure 3b. The second graph (3b) plots the sum of the edge and vertex energy, defined as 
Etotal-NEcoh-Bs2, for the three definitions of s. .............................................. 16 

Figure 4. This figure shows the values of the bulk, surface, edge, and vertex energies 
from EAM calculations for Pd cuboctahedral clusters having 5 5 n 5 9 atoms 
on an edge. ......................................................................................................... 19 

This plot shows the results of a Wulff construction (minimizing the surface 
energy of an atomic cluster, subject to the constraint of constant volume). ...... 21 

This figure shows aspect ratios as a function of the precipitate size. ................. 30 

Precipitate energies for small Pb inclusions in an A1 matrix. ............... 33 

. .  

Figure 5. 

Figure 6. 

Figure 7a and 7b. 

TABLES 

Table 1. 

Table 2. 

Table 3. 

Results of embedded atom method calculation of energies of Pd cuboctahedral 
clusters. .............................................................................................................. 11 
This table gives the edge energies calculated from EAM calculations and from 
a bond-breaking model described in the appendix. ........................................... 20 
This table gives values for n and m that correspond to the low strain 
precipitates. ........................................................................................................ 32 . .  

5 



This Page Intentionally left Blank. 

6 



Introduction 

This report describes Sandia work aimed at the understanding of nano-precipitate shapes in 

aluminum. In particular we were motivated by the need to explain size dependent changes in 

the shape of nano-precipitates observed at sizes less than about 20 nm. Till this work, the 

proposed explanation for size dependent shape changes was the presumed increased role of 

edge energies at nano-sizes. In the absence of quantitative calculations of edge energies, it 

was impossible to verify this theory. 

Chapter 1 of this report describes our world first atomistic calculation of edge energies for 

free clusters, in this case Pd. It presents the new result that edge energies cannot be defined 

or calculated without a precise definition of edge lengths (and surface areas). In order to 

define edge lengths and surfaces, we found the concept of the Gibbs dividing surface helpful. 

In particular we found that using Gibbs equimolar dividing surfaces allowed a precise 

definition of edge lengths and surface areas, thereby enabling atomistic calculations of edge 

energies. For the case of free Pd clusters we showed that the edge energy has NO effect on 

the equilibrium shape of the cluster. 

In Chapter 2 we determine the origin of size dependent shape changes for Pb in Al. We first 

show that atomistic calculations of the total energy are well described by an analytical model 

which does not include edge energies. We conclude that the precipitate shapes must be 

determined only by the remaining terms in the analytical model, elastic strain energy and 

interface energy. Since interface energy alone leads to the Wulff construction and to a size 

interdependent precipitate shape, the explanation must be dominated by the elastic strain 

energy. This leads to the concept of "magic-shapes" having nearly zero strain and build from 

a single sized units of square pyramids and tetrahedra. By selecting magic shapes with 

relatively low interface energies, the size dependent shape changes and all other experimental 

observations are well explained. 
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2a. Edge Energies 

A major goal of nano-science is to control the properties of functional nano-structures, 

including, for example, catalyst particles, quantum dots on surfaces, and inclusions in alloys. 

Synthesis at the nano-scale is most commonly achieved by controlled self-assembly: 

understanding the energetic factors governing self-assembly is a critical goal. At the nano- 

scale, edge energy is commonly invoked as an important driver for self-assembly. For 

example, edge energies are included in theories for the shapes of snow crystals', discussions 

of surface faceting2, theories for the shapes of strained Ge pyramids grown on a surface3, and 

discussions of Pb inclusions in bulk 

Generally edge energies are discussed as an important contributor to the total energy at the 

nano-scale, yet there appear to be no first-principles or semi-empirical calculations of edge 

energies.2 There are two papers which discuss edge energies in terms of broken bond 

 model^.^'^ Other papers treat edge energies as an independent variable, and discuss nano- 

shapes as a function of the edge en erg^.^'^ 

Experiments often show changes in the shape of nano-objects as a function of their size. 

This has been an area of considerable recent interest resulting in a number of e~perimental"~ 

and theoretical investigations. 

energy effects. Testing these theories requires calculation of quantitative edge energies from 

an atomistic model to serve as input for continuum calculations of shape transitions. While 

one might suppose that atomistic calculation of edge energies would be routine, I show that 

there is an ambiguity in the atomistic definition of edge energies, and discuss a resolution of 

this ambiguity. 

Shape transitions are commonly attributed to edge 10,ll , I  2 

The problem in defining edge energies is related to the problem of defining the exact position 

of an atomic surface in the direction normal to the surface. This problem is addressed by the 

well-known concept of the Gibbs dividing surface. As Gibbs points out, "It will be observed 

that the position of this surface is as yet to a certain extent arbitrary"13. Depending on the 

exact position chosen for the Gibbs dividing surface, the surface contribution to extensive 
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properties of the solid will vary. For a single component system, a common choice of 

dividing surface is the equimolar surface.14 The equimolar surface is defined so that the 

surface contribution to the molar amount of the solid is zero. Finally, we note that Gibbs has 

mentioned the possibility of calculating line properties such as tension at the linear 

intersection between two or more dividing surfaces. To quote Gibbs, “We may here remark 

that a nearer approximation in the theory of equilibrium and stability might be attained by 

taking special account, . . .. . , of the lines in which surfaces of discontinuity meet. ..... We 

might recognize linear densities of energy, of entropy, and of the several substances which 

occur about the line.rr15 In this paper I describe the application of such an approach to 

determine the linear density of energy at an edge formed by the intersection of two dividing 

surfaces. 

In this paper we will assume that the clusters we are dealing with can be represented by flat 

surfaces (facets) that intersect forming straight edges. Given this assumption, the total energy 

of a polyhedral cluster, with shape independent of edge length, can be written in the form: 

Etob, = As3 + Bs2 + CS + D (1). 

where s is the edge length and A, B, C, and D are coefficients related to the bulk, surface, 

edge and vertex energy respectively. Theories for equilibrium shape, including the Wulff 

construction, are based on this assumption of flat facets with an orientation dependent surface 

energy. 

The purpose of this section is to demonstrate the extremely large uncertainties that can result 

from the failure to rigorously define edge length. We include this section, because implicit 

assumptions are often made in the definition of edge energies. Hopefully the reader will be 

convinced that this is more than a minor semantic problem, and will be inoculated against 

erroneous assumptions which may occur in more abstract discussions of the subject. The 

reader may chose to read this section quickly, continue to section I11 which proposes a 

precise definition of edge length based on equimolar dividing surfaces, and return to this 

section as desired. 
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We illustrate the problem by considering quantitative calculations for a cuboctahedral cluster. 

Consider such a cluster having n atoms along each edge as shown in Figure 1.  

First we calculate the total energy, E&&), of the cluster using an embedded atom method 

(EM) calculation. Table 1 gives &,,M(n) and the total number of atoms, N, for Pd clusters 

with 5 < n <  9. 

n S 

Figure 1. A cuoctahedral cluster of Pd atoms having n=7 atoms along each edge is 
shown on the IefI. A geometrical cuboctahedron having edge lengths, s, is 
shown on the right. Theories such as the Wulff construction, which predict 
shapes as a function of surface and edge energies, implicitly assume that the 
surfaces are flat, and that the edges are straight intersections of these 
surfaces. The major point of this paper is that defining and calculating edge 
energies requires a precise definition of s as a function of n. In section 111 this 
function is derived based on the choice of the geometrical surfaces as 
equimolar Gibbs dividing surfaces. 

The next step is to expand the total energy in powers of the edge length, s, as in equation (1) 

above. From the coefficients A, B, C, and D, the bulk, surface, edge and vertex energies 

respectively can be calculated. The problem is that to determine these coefficients, a precise 

definition for the edge length, s, measured in A, as a function of n is essential. The correct 

10 



way to do this is not obvious, although it seems reasonable that the correct value would lie 

somewhere in the range 

n 

number of 

atoms 

on edge 

5 

(n- l)d 5 s 5 nd (2) 

N Etotal (eV) Etotal-NEcoh 

total number (eV> 

of atoms 

309 -1086.234 121.956 

where a is the fcc lattice constant and d= a/& is the nearest neighbor distance. In order to 

see how critically important this is, we will consider three possible choices for s, namely 

s=(n- l)d, s = (n - %)d, and s=nd. (The exact definition of the intermediate choice will be 

given by equation 5 appearing later in this paper). Figure 2a shows a plot of EtOtal(s) for these 

three definitions of s. 

6 

7 

8 

Table 1. Results of embedded atom method calculation of energies of Pd 
cuboctahedral clusters. The number n is the number of atoms on the edge 
of the cuboctahedral cluster (see figure 1). The number N is the total number 
of atoms in the cluster. Etotal is the total energy of the Pd cluster from an EAM 
calculation. Since the atomic positions were relaxed in the total energy 
calculation, changes of the total energy due to relaxation of surface and edge 
atom positions are included in the total energy. The last column shows the 
total energy after subtracting the bulk energy, NE,h. 

561 -20 12.793 180.717 

923 -3357.798 251.132 

1415 -5 199.442 333.208 

9 2057 -761 5.91 9 426.95 1 
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Figure 2a. This figure shows the importance of a precise definition of the edge length, 
s=f(n), as a function of the number of atoms, n, along an edge. The first 
graph (2a) plots the calculated total energy as a function of the edge length 
for three different definitions of s. The curves labeled "s=(n-1)d" and "s=nd" 
represent the limiting definitions (d is the nearest neighbor distance, see 
equation 2 of the text). The curve labeled "s s(n-0.5)d" is actually plotted 
using equation 5 of the text to define edge len th 
cubic polynomial (equation 1) gives a term As , the bulk contribution to the 
total energy. 

Least squares fitting to a ! '  
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Figure 2b. The second graph (2b) plots the interface energy, define- 3s Etotal-As3, for 
the three definitions of s. We will show in section IV that the value of the 
interface energy is reasonable for " s =(n-0.5)d". The other definitions give 
interface energies which are much too large and/or incorrect in sign. 

For all three definitions least square fitting gives the same bulk energy coefficient, A=- 

0.62621eVIA'. The total interface energy is calculated as: 

E h , , * e = B ~ 2 + C ~ + D = E l o l a l - A ~ 3  (3) 

Figure 2b shows a plot of Ei.terfaec(s) for the three different definitions of s. Only one of these 

curves gives a surface energy anywhere near the correct value. As we shall latter verify, the 

correct value is given by the curve labeled s = (n - %)d. The curve for s=nd gives surface 

energies that are approximately four times the correct value! The curve for s=(n-l)d gives 

surface energies that are approximately two times the correct value and have the wrong sign! 



This shows that the problem of defining the edge length will be crucial to the definition and 

calculation of edge energies. 

An alternate approach is to begin by subtracting the total bulk cohesive energy, NEcoh, from 

Etotal to isolate the interface terms. Here N is the total number of atoms in the cluster and Ecoh 

is the bulk cohesive energy per atom. This approach is standard in slab calculations for 

surface energies. We show here that it doesn’t solve the problem of defining the edge length 

or allowing calculation of edge energies. 

We start with the calculation of Etotal using the embedded atom method and subtract the bulk 

energy, NEcoh, from the total energy. Table 1 of the text gives numerical values for Etotal- 

NEcoh for cuboctahedral clusters having 5 to 9 atoms on an edge. Since Etotal-NEcoh is the 

sum of the surface, edge and vertex energies, it can be written as a quadratic polynomial of 

the edge length, s. 

Etotal-NEcoh = Bs*+CS+D (4) 
As before, we must define s before we can fit a polynomial. We consider the same 

definitions of s used previously, s=(n-l)d, s =: (n - %)d, and s=nd. Figure 3a shows a plot of 

Etotal-NEcoh plotted using these three definitions for s. These functions are fit by a quadratic 

polynomial as in equation (4). For these three definitions of s, the fitting coefficient B is 

equal to 0.77061. From the cubic fit we can also plot the sum of the edge and vertex, 

Eedge+Evertex=Cs+D, as shown in figure 3b. The edge energy would be ~=C/24 and would be 

proportional to the slope seen in the plot. Since the slope of the three lines is very different 

depending on the definition of s, the edge energy cannot be calculated without a precise 

definition for the edge length. 

The problem of defining edge lengths is related to the problem of defining the exact position 

of the surface of a solid. The well-known concept of the Gibbs dividing surface is a rigorous 

solution to the problem. We can place the Gibbs dividing surface where we like (within 

reason), but the value of surface excess quantities will depend on the position of the dividing 

surface. In order to define edge lengths, we consider a faceted cluster as being built from 

intersecting dividing surfaces, one surface for each facet. The edges are formed by the 

14 



intersection of two dividing surfaces and the vertices are formed by the intersection of three 

dividing surfaces. For the case of a cuboctahedron, figure 1 shows the atomic cluster on the 

left and the geometrical shape formed from the assemblage of dividing surfaces on the right. 

Defining the edge length, s, is thus seen to be a problem in choosing the position of the 

dividing surfaces. 

5 
3 

-f 

5 

S 

m s 
W 

W 

300 

200 

i 
0 5 10 15 20 25 

Edge Length (A) 

Figure 3a. Figure 3a plots the quantity, Etotal-NEcoh, for three plausible definitions of 
the edge length, s, defined in the text and in the caption for figure 2. Least 
squares fitting to a quadratic polynomial (equation 4) gives a term Bs’, the 
surface contribution to the total energy. 
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Figure 3b. The second graph (3b) plots the sum of the edge and vertex energy, defined 
as Etotal-NEcoh-Bs2, for the three definitions of s. The calculated edge 
energy would be proportional to the slope of the lines. The three different 
definitions of s give vastly different results for the edge energy. This 
demonstrates again that a rigorous and precise definition of the edge length, 
s, is essential in order to define and/or calculate the edge energy. 

While the position of a dividing surface is generally arbitrary, we will find that the problems 

described in the previous section are resolved in a consistent manner by defming the edge 

length using equimolar dividing surfaces. To see this, we refer to equation 1. We know that 

the total bulk energy, As', should equal NE,h, where Ecoh is the bulk cohesive energy per 

atom and N is the total number of atoms. For a cuboctahedron formed by dividing surfaces, 

the definition of a dividing surface implies that the total bulk energy is equal to the constant 

energy density of bulk palladium, p = - 4E~oh  , integrated over the volume ofthe 

cuboctahedron formed by the dividing surfaces, V = *s3. The bulk energy of the 

a3 

3 
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cuboctahedron formed by the dividing surfaces is Vp. The total number of atoms in a 

5n2 + - - 1. Substituting these equations for N,V, and cuboctahedral cluster is N = - - 

p in the equation NE,,h=Vp and solving for s we find: 

1 In 1 on3 
3 3 

r 

s =  L\i 3 n 3 3n2 l l n  3 Jc a )  (5) 
2 10 10 Jz 

This gives us a precise definition of s, as needed to separate bulk, surface, edge and vertex 

energies. It is will also be convenient to have a series expansion for s. Expanding equation 5 

in a Taylor series gives: 

s =  [ n--+-+O A 607, [n’ ]I($) (6) 

Since we are ultimately interested in calculating energies, this derivation was based on 

energy density. A derivation using number density would be nearly identical, and the final 

definition of s would be the same. This means that the dividing surfaces we will use to 

define s are equimolar surfaces. 

With this definition for s, we can return to the problem of calculating surface, edge, and 

vertex energies for the cuboctahedron. We plot Etotal(s) with s defined by equation (5). This 

is the curve labeled “s = (n - %)d” in figure 2. 

From a cubic fit (equation 1) we get the coefficients A, B, C, and D which relate directly to 

the bulk (cohesive) energy, the surface energy, the edge energy and the vertex energy. 

The log-log plot shown in figure 4, plots -As3, Bs2, Cs, and D. We will now consider each 

term in order to verify that the bulk and surface energies agree with standard EAM 

calculations, and to obtain numerical values for the edge and vertex energies. 

We consider first the bulk energy term. The cluster least square fit gives 

A=-0.62621 eVfA3. The 

ofbulkPdis p=-. 4ECOh 
a3 

5 J z  volume of the cuboctahedron is V = -s3 and the energy density 
3 

The EAM functions used were fitted to give EC,h=3.91eV and 
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a=3.89A. Thus the predicted value of A is - VP = - 0.62626 eV/A3 in good agreement 
S 

with the EAM cluster least square fit. 

Next we consider the surface energy term. The least square fit gives 

B=0.768 18 eV/A2. The (1 1 1) surface area of the cuboctahedron is A, = (2&) s andthe 

(100) surface area of the cuboctahedron is A,,, = 6s2 . The EAM functions used here give 

surface energies of yll l  = 75.82meV/A2and yloo = 85.15meV/A2 from bulk slab 

calculations. Thus the predicted value of B is A I O O y l O O  + A l l l y l l l  = 0.7735 eV/A2 in good 
S2 

agreement with the EAM cluster least square fit. 

Finally we are ready to calculate the edge energy of a cuboctahedron. Because all of the 

edges are formed by the intersection of a (1 1 1) surface and a (1 00) surface, we will use the 

notation, ~111-100 to denote the edge energy. The cluster least square fit gives 

C=0.20706 eV/A. 



Figure 4. This figure shows the values of the bulk, surface, edge, and vertex energies 
from EAM calculations for Pd cuboctahedral clusters having 5 5 n S 9 atoms 
on an edge. The edge length, s, was defined by the equimolar surfaces (see 
equation 5 of the text). The total energy was fit by a cubic polynomial (see 
equation 1 of the text). The bulk, surface, edge and vertex contributions are 
plotted here as -As3, Bs2, Cs, and D respectively. The negative of the bulk 
energy is plotted so that all four energies can be compared on a single log- 
log plot. 

The total edge length of the cuboctahedron is 24s. Consequently we calculate 8111. 

l00=C/24=8.63meV/,k. This calculated value for the edge energy is included in Table 2. 

The last step is to calculate the vertex energy of the cuboctahedron. The cuboctahedron has 

12 vertices at which two (1 11) facets meet two (100) facets. 

The cluster least square fit gives B0.24441eV. Dividing by 12 we get the vertex energy, 

~ 2 0 . 3 m e V .  
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The definition of edge length, s, for an octahedron follows the procedure described for a 

cuboctahedron in section 111. Here it will suffice to give the equations which define the edge 

length based on equimolar dividing surfaces. We find: 

Table 2. This table gives the edge energies calculated from EAM calculations and 
from a bond-breaking model described in the appendix. 

E1 11-111 E1 11 -100 

20 



Figure 5. This plot shows the results of a Wulff construction (minimizing the surface 
energy of an atomic cluster, subject to the constraint of constant volume). 
The values for surface energy are taken from the calculations in the text. The 
left vertical axis shows the edge lengths predicted by the Wulff construction 
as a function of the cube root of the cluster volume. The plot also shows the 
changes in the edge lengths predicted by including the edge energies given 
in table 2 to the total energy (see equation 9 of the text) Since the changes in 
edge length are ~ 0 . 6 A  for all cluster sizes, and edge lengths are constrained 
by discrete atomic distances, the edge energies will have essentially no effect 
on the shape of Pd clusters at any length scale. 

For an octahedron the edge length defined by equation 7 is approximately nd, whereas for a 

cuboctahedron the edge length defined by equation 5 is approximately (n - %)d. The fact that 

the definition of s is so different for these two cases emphasizes the importance of a rigorous 

and precise definition. The process for fitting the total energy of the octahedron with a bulk, 

surface, edge and vertex term is done much as for the cuhoctahedron. The bulk and surface 
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energies from the series expansion for the total energy of the octahedron are in good 

agreement with values fi-om conventional EAM calculations. The edges of the octahedron 

are formed at the intersection of two (1 11) facets. Thus we will use the notation ~ l l l - l l l  for 

the edge energy. We calculate E ~ ~ ~ - ~ ~ ~  = 4.60meV/A and aOct=l27meV. Table 2 of this 

paper summarizes the values of the edge energies found from these EAM calculations and 

gives the values of the edge energies from a bond-breaking model described in the appendix. 

One of the major motivations for calculating edge energies (see section I) was to examine the 

possible role of edge energies in causing shape transitions for nanoparticles. For larger 

clusters the equilibrium shape of a particle is governed primarily by the surface energies and 

the lowest energy shape is determined by the Wulff construction. As an example, consider a 

truncated octahedral particle. We will assume here that the surface energy of surfaces other 

than (1 00) and (1 1 1) are sufficiently large, and thus that they are not part of the equilibrium 

shape. The Wulff shape is determined by minimizing the interface energy, 

Einterface = 6Al11yl11 + 8A1,yloo, subject to the constraint of constant volume. Here All1 is the 

area of a (1 1 1) facet and A100 of is the area of a (100) facet. We will use the notation L111-111 

for the edge length at the intersection of two (1 11) facets and Llll.100 for the edge length at 

the intersection of a (1 00) and a (1 1 1) facet. Figure 4 shows these two edge lengths as a 

function of the cube root of the particle volume, a convenient measure of particle size. 

By adding edge energies to the interface energy we can determine their effect on cluster 

shape. The interface energy becomes 

'interface = 'A111~111+ ~A~OOY~OO + "L1,1-111~111-111+ 24L111-iooq11-100- (9) 

By minimizing the interface energy subject to the constraint of constant volume the edge 

lengths can be determined. Since ~111-111 is smaller than ~111-100 the effect of the edge 

energies will be to lengthen L111-111 and shorten L111-100, while keeping the total volume 

constant. Figure 4 shows the changes in the edge lengths which result from including edge 

energies. L111-111 is increased by about 0.5A and L111-100 is decreased by about 0.25A over 

the whole range of cluster size. Since these changes are much less than the nearest neighbor 

distance, the actual cluster shape will rarely be changed by the edge energies for any cluster 

size. 
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The basic result of this paper is that edge energies cannot be defined or calculated without 

careful and precise definitions for edge lengths and facet areas. A precise definition is 

suggested based on the concept of intersecting equimolar surfaces. Using this definition, the 

edge and vertex energies have been calculated for Pd clusters. Finally, I show that the 

calculated edge energies will have essentially no effect on the equilibrium crystal shape for 

Pd nano-clusters. The issues raised here will be crucial for future work on the role of edge 

energy in self-assembly of nanostructures. They also demonstrate the challenges to be 

encountered in applying continuum concepts at the nano-scale. 

23 



This Page Intentionally Left Blank. 

24 



2b. Bond Breaking Model of Edge Energy 

Previous discussions of edge-energies have commonly used bond-breaking  model^.^,^ At the 

atomic level, every atom can easily be classified as a bulk, surface, edge, or vertex atom. 

Even though every atom can be classified, the correct definition of edge length and surface 

area remains ambiguous. From the atomic point of view, the ambiguity is that "edge atoms" 

could equally well be considered as being part of the areas of the two surfaces meeting to 

form the edge. 

In order to make contact with the previous work, it is appropriate to revisit the bond-breaking 

model and to calculate the edge and vertex energies for fcc clusters using the definition of 

surface area and edge length based on intersecting equimolar dividing surfaces. In this 

appendix only, the length unit used is the nearest neighbor distance and the energy unit used 

is one-half of the energy required to break a nearest neighbor bond. In these energy units, the 

bulk cohesive energy is 12, and the surface energies (for an infinite planar surface) are 

yll, = 21h and yloo = 4. In order to distinguish between the octahedron and the 

cuboctahedron, we will use subscripts. For example, the number of atoms on an edge will 

be written noct for the octahedron and ncuboct for the cuboctahedron. 

The calculation parallels the EAM calculations described in the body of this paper. 

However, because we can readily calculate the total interface energy by counting broken 

bonds, there is no need to include bulk terms in the derivation. Thus the total interface 

energy is written in powers of the edge length, as Eint erface = Bs2 + Cs + D . 

In order to calculate the interface energy for an octahedron, with noct atoms on an edge, it is 

necessary to count the total number of broken bonds. For an octahedral cluster there are 

4(nOct - 3)(n,,, - 2)surface atoms each having 3 broken bonds, 12(nOct - 2) edge atoms each 

having 5 broken bonds, and 6 vertex atoms each having 8 broken bonds. Summing all these 

contributions, the total number of broken bonds at the surface, edge and vertex atoms is 
2 

E interface = 12noct * 
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At this point we equate the two expressions for the interface energy and write: 

Bstct + Csoct + D = 12ntc, (9) 

Next we use the definition for the edge length, sect, given by equation (8). We substitute 

soct=n,ct+l/noct in equation (9), collect equal powers in Get, and discard all terms with 

negative powers of noct. By equating coefficients of terms having the same power in noct, we 

find B=12, C=O, and D=-4. Since Bstct = Areaoctyllland Areaoct = 2J?;sict we find ylll  = 216 

from our cluster calculation in perfect agreement with the infinite plane value. 

Since C = 12~111-111 we find that the edge energy, ~111-111,  for the octahedron is identically 

zero in a broken bond model. Since D = 6avertex, we find the vertex energy for the 

octahedron to be avertex = -2/3 for the octahedral cluster. 

The calculation for a cuboctahedron is similar. For a cuboctahedron there are 

4(ncuboct - 3)(ncuboct - 2) (1 1 1) surface atoms each having 3 broken bonds, there are 

6(ncuboct - 2)2 (1 00) surface atoms each having 4 broken bonds, there are 24(ncubOct - 2) edge 

atoms each having 5 broken bonds, and there are 12 vertex atoms each having 8 broken 

bonds. Summing all these contributions, the total number of broken bonds for the cluster is 

E interface = 6nfuboct - 36ncuboct + . 

As before, we equate the two expressions for the interface energy and write: 
2 

BScuboct + CScuboct + D  = 36n2uboct - 36ncuboct + l 2  (lo) 

We substitute the definition for Scuboct given by equation (6) into equation (lo), collect equal 

powers of ncuboct, and discard all terms with negative powers of ncuboct. 

By equating coefficients to the same order in Gubct, we find B=36, C=O, and D=-5.4. The 

value for B corresponds to exactly to the value expected based on the areas and surface 

energies of the two types of facets. We also find ~111-100=0 and avertex=-0.45. 
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The important conclusion from the bond-breaking model is that if edge length and surface 

area of clusters are defined using equimolar dividing surfaces, the calculated surface energies 

are equal to their value from infinite slab calculations and the edge energies of the two types 

of edges are precisely zero. In reference 6 ,  using bond-counting methods, the authors 

comment: "The main result of our calculations is the surprising agreement of the microscopic 

results ... with the predictions of the macroscopic Wulff s rule, even for particles as small as 

those with 2000 or 3000 atoms" (in spite of the fact that -7% of atoms are edge or vertex 

atoms). The calculations presented in this appendix show that edge energies are zero for a 

simple bond-breaking model, thus explaining the previous "surprising" results. 
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3. Pb Nanoprecipitates in AI: Magic-Shape Effects Due to 
Elastic Strain 

A major goal of nanoscience is to understand and control the properties of functional 

nanostructures, including, for example, catalyst particles, quantum dots on surfaces, and 

inclusions in alloys. These properties are often determined by the nanostructure shape, and 

edge energy is commonly invoked as an important factor in determining shape. For example, 

edge energies are included in theories for the shapes of snow crystals,16 discussions of 

surface fa~et ing, '~  theories for the shapes of strained Ge pyramids grown on a surface,18 and 

discussions of Pb inclusions in bulk Al.19 For larger objects, the Wulff construction, based on 

minimization of interfacial energy subject to a constraint of constant volume, is well known 

and well tested. The Wulff construction predicts that the cluster shape will be independent 

of cluster size. Experimentally, however, changes in cluster shapes are often observed as 

cluster sizes approach the nanoscale i.e. less than about 20nm across. Generally such size- 

dependent shape effects are attributed to the increasing contribution of edge energies relative 

to the interfacial energies at the nanoscale. Until very recentlgo'21, no atomistic calculations 

of edge energies had been published, making it essentially impossible to compare 

experimental and theoretical work on cluster shapes at the nanoscale. 

In the present letter we present a theoretical examination of extensive experimental data on 

size-dependent shapes of Pb nanoprecipitates in Al.'9*22 First, we present embedded atom 

method (EAM) calculations of the total precipitate energies for a range of sizes and for three 

different shapes (octahedral, tetrakaidecahedral, and cuboctahedral, see insert in figure 2). 

Next, we present an analytical model for the energies of these precipitates. By comparing the 

EAM calculations with the analytical model, we show that edge energies play little or no role 

in determining the shapes of these nanoprecipitates and that the experimental results must be 

explained solely by the minimization of the sum of the interfacial energy and the strain 

energy. Finally we present an algorithm for generating precipitate shapes with very small 

strain energies. We use the term, "magic shapes", to describe these special precipitate 

shapes. The minimization of precipitate interfacial energies subject to the "magic shape" 

constraint, explains the experimental size-dependent shape effects. 
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Figure 6. This figure shows aspect ratios as a function of the precipitate size. The red 
points are experimental data, the black symbols are the prediction of our 
"magic-shape" theory. Some of the experimentally observed precipitates 
(examples shown as micrograph inserts) do not exhibit the Oh symmetry 
predicted by the Wulff construction. Large clusters have aspect ratios, 
C / K  = 2C/(A, +A2),  very close to the Wulff construction prediction. As the 
cluster size decreases, the mean aspect ratio increases and the scatter in th 
aspect ratios increases dramatically. The magic shape theory (black points) 
represents a complete set of precipitates with 01, symmetry having near-zero 
elastic strain and energies AE=Epreapltate-Ewum<60eV. The agreement 
between the "magic shape" theory and experiment is very good. 
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Figure 6 presents a brief summary of the experimental observations (red points on the plot). 

These precipitates were formed by Pb ion-implantation followed by annealing.22 A few of the 

smaller precipitates are octahedral, bounded by { 1 1 1 } type Pb/Al interfaces. The largest 

precipitates are approximately tetrakaidecahedral, bounded by { 1 1 1 } and { 100) type PWA1 

interfaces, as shown in the insert in figure 6. We denote the spacing between a pair of {loo} 

type facets as C, and the spacing between the pairs of { 11 1 } type facets as A1 and A2. The 

mean spacing between the pairs of { 11 l }  facets is = (A, + A,)/2. The Pb/Al interfacial 

free energies, y100 and ~ 1 1 1 ,  have previously been calculated as a function of temperature with 

the embedded atom method 

T=400K (in the vicinity of the annealing temperature). The predicted aspect ratio from the 

Wulff construction at this temperature is thus C/A = yloo/y111= 1.165. For larger precipitates, 

the measured aspect ratio is close to this value; however, as seen in figure 6 ,  smaller 

precipitates behave quite differently, and exhibit a wide range of aspect ratios. The major 

goal of this paper is to understand this size-dependent shape effect. 

y100 = 48.44 meV/A2 and y111= 41.44 meV/A2 at 

We began with EAM calculations of precipitate energies as a function of size and shape. 

While a large variety of EAM calculations were performed, here we will discuss only a small 

subset of the calculations involving homogeneously strained regular polyhedra (octahedra, 

tetrakaidecahedra, and cuboctahedra). The EAM potentials used were developed by Adams 

and coworkers.24 We started the calculation by constructing a rectangular solid of fcc A1 

with periodic boundary conditions. In the [OOl] direction the period was -14081, in the [ 1101 

and [ 1 TO] directions the period was -1OOA. Next we removed a regular polyhedron of A1 

atoms with n atoms on an edge. We will use the notation Get, ntetra, and ncub for the number 

of edge atoms on the removed polyhedron for the octahedron, tetrakaidecahedron, and 

cuboctahedron respectively. Finally we inserted an identically shaped polyhedron of Pb 

atoms with flloct, mtetra, or m u b  atoms on an edge. By removing an A1 polydedron and 

inserting a Pb polyhedron having the same shape, we ensured that the strain would be 

homogeneous. 

Since the lattice constants of Pb and A1 are apb=4.9581 and a~1=4.0581 respectively, a strain- 

free octahedral precipitate would have noct/mct = aPb /a** = 1 1/9 = 1.22. Table 3 lists the 
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values of n and m which will result in relatively small strains; additional cases were also 

studied in the range 1.15 5 n/m 5 1.33, thereby placing an upper limit on the strain. 

n-m 

1 

2 

Table 3. This table gives values for n and m that correspond to the low strain 
precipitates. Octahedra, tetrakaidecahedra, cuboctahedra with rn Pb atoms 
on an edge can be inserted in AI voids made by removing the same shape 
polyhedra with n AI atoms on an edge. For the cases with tensile and 
compressive strain, the strain (in percent) is also given. 

( m d  17 (m,n> (m,n>, 17 
Tensile Strain Zero Strain Compressive 

Strain 

(4,5) 2.25% (5,6) 1.8% 

(8,lO) 2.25% (9,ll) (10,12) 1.8% 

3 

4 

(13,16) 0.70% (14,17) 0.65% 

(17,21) 1.06% (18,22) (19,23) 0.96% 

5 

6 

Having created a starting configuration with a Pb polyhedron inserted in similarly shaped A1 

void, the atomic positions were relaxed using conjugate-gradient minimization of the total 

energy, Etotal. Next we subtracted the total cohesive energy of the Pb and A1 atoms to 

calculate the total energy of the precipitate, 

~recipitate=Etotal-NAlEcohAl-NPbEcohPb. 

Here NA~ and N p b  are the total number of A1 and Pb atoms in the periodic cell, and EcohAl and 

EcohPb are the bulk cohesive energies per atom calculated using the EAM potentials. 

This energy is plotted as a function of NiF in figure 7a (the interface area for a given shape 

is proportional toNiF). We will find that the roughly linear dependence of Eprecipitate on N;F 

represents the contribution of the interfacial energy, Eintedace, and that the curvature of the 

individual lines represents the contribution of the strain energy, Eskain. We will also show 

that the contribution of the edge energy, Eedge, is negligible. 

To prove these points, we neglect edge energy for the moment and write: 

(22,27) 0.41% (23,28) 0.40% 

(26,32) 0.70% (27,33) (28,34) 0.65% 
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Figure 7a and 7b. Precipitate energies for small Pb inclusions in an AI matrix. Three 
different shapes are considered, octahedra, tetrakaidecahedra, and 
cuboctahedra, as seen in the inserts in 7a. The left hand plot shows 
the precipitate energy at T=OK calculated using EAM. The right hand 
plot shows the sum of the interface energy and the strain energy 
calculated using the analytical model discussed in the text. The lines 
are cubic polynomial fits to the calculated values. The illustrated 
clusters correspond to (mm,n,)=(9,1 I), (mm,.,,nmw)=(4,5), and 
(m,b,n,,b)=(5,6) for the octahedron, truncated octahedron and 
cuboctahedron respectively. 

Next we present an analytic model for Epraipitate assuming homogeneous strain of the 

precipitate. The interface energy is Einthe= A I I I ~ I I I  + Alooylo0,where AIOO andAl11 are the 

total areas of the { 100) and { 1 1 1) facets. The energies per unit area of the Pb/Al interface 

calculated in reference 23 using identical EAM potentials are yll l= 28.33meV/Az and ylm = 
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37.13meV/A2. We use T=OK energies here, because the EAM calculation shown in figure 7a 

is a OK calculation. 

It would appear straightforward to calculate A1 11 or A100 for a polyhedron with m atoms on 

an edge, but it is not. This is due to a fundamental ambiguity in the definition of edge 

lengths and interface areas for atomic systems. The problem is directly related to the 

ambiguity inherent in the position of an atomic surface which gives rise to the concept of a 

Gibbs dividing surface. This ambiguity is discussed in detail in reference 20 and can be 

resolved by replacing the atomic interfaces by flat Gibbs equimolar interfaces. Employing 

those methods2' the following relationships between, s, the length of an edge and, m, the 

number of Pb atoms on an edge, can be derived for the octahedron, tetrakaidecahedron, and 

the cuboctahedron. 

I ,  I 

stem =[dm:em 3mtetra tetrakaidecaheron 

I I 

cuboctahedron 

Using these relationships, the areas Aloe and A1 11 for these three shapes are calculated as a 

function of m, and the interfacial energies are determined. 

The other energy in our analytical model is the strain energy. In order to calculate this 

energy, we limit ourselves to the case of homogeneous strain. This means that the shape of 

the Pb inclusion is identical to the shape of the A1 void into which it is inserted. Using 

isotropic elasticity theory and making the approximation that the elastic constants of the two 

materials are identical, the calculation of the strain energy is ~traightforward~~: The strain 

Ya3 
energy can be written as Estmin = Pbrl NPb where Y is Young's modulus, v is Poisson's 

4(1- V) 
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ratio, and q is the strain for the inclusion. The strain is calculated as q = 1 - 
N A l )  aAl  

For the quantitative calculations, we used the elastic constants for aluminum, Y= 0.39eV/A2 

and v=0.35. 

In figure 7b, the result of this analytical model is plotted for a number of the smallest 

polyhedra, allowing direct comparison with the EAM calculations. We deliberately chose 

shapes with very different aspect ratios and thus very different lengths of the two types of 

edges. For an octahedron C/A=1.73, for a regular truncated octahedron C/A=1.16, and for a 

cuboctahedron C/A=0.86. Figure 7a and 7b, are in excellent agreement, especially as regards 

the relative energies of the three different shapes. Given that the analytical model and the 

EAM calculations agree at the smallest sizes where edge energies would be most important, 

it appears that edge energy effects are not responsible for the size-dependent behavior of 

experimentally measured shapes in Figure 6, in particular the slight increase of the mean and 

the significant increase in the scatter of the aspect ratio at the smaller sizes. Since edge 

energy is not responsible for these effects, and they cannot be explained solely by interface 

energies (as in the Wulff construction), we turn our attention to strain energy, the only 

remaining possibility. Here we consider how to construct a set of possible precipitate shapes 

having zero (or very small homogeneous) strain. 

We start by observing that an fcc lattice can be built using two fundamental building blocks, 

a square pyramid (with one atom at each vertex) and a tetrahedron (also with one atom at 

each vertex). The rhombohedral primitive unit cell of the fcc lattice has one octahedral 

interstitial site and two tetrahedral interstitial sites. This primitive unit cell is constructed by 

placing two square pyramids base to base, forming an octahedron, and adding two tetrahedra 

placed on opposing triangular faces of this octahedron. If one wants to build strain-free fcc 

Pb precipitate nanoclusters, it can only be done by assembling tetrahedral and square 

pyramid building blocks having 9 atoms on an edge. Such nanoclusters can be placed in a 

void created by removing the same A1 shape having 11 atoms on an edge. In order to build 

these shapes with zero strain, the edge length of the tetrahedra and the square pyramids must 

be 9 times the Pb nearest neighbor distance or 3 1.5A. The concept of magic-sizes, discussed 
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in the literature22, can be replaced by the criteria of magic-shapes built from tetrahedra and 

square pyramids with edge length, sbb=3 1 SA. For any shape constructed of these building 

blocks, the strain energy is zero, and the interfacial energy can be calculated based on the 

interfacial areas, All1 and A1oO, of the shape assembled from these building blocks. 

In reality, we are interested not only in completely strain-free precipitates, but also in 

precipitates having very small homogeneous strains. Examples of such precipitates are listed 

in table 1 in the columns labeled "tensile strain" and "compressive strain". In order to 

generate cases such as (m,n) = ( 4 3 ,  (5,6), (13,16), or (14,17) we approximate them by 

working with smaller structural building blocks having sbb=15.75ii. (The shapes with zero 

strain discussed in the previous paragraph can also be assembled from these smaller building 

blocks). The "magic-shapes" are the set of possible precipitate shapes (and sizes) with zero 

or small strain built with these building blocks with edge length Sbb=l5.75A. 

We now have in hand the tools we need in order to explain the experimental data. In 

particular we have an algorithm to generate a set of precipitates with zero or small 

homogeneous strain. To illustrate, we will consider precipitates with Oh symmetry, with 

shapes including the octahedron, and a range of symmetrically truncated octahedra, including 

the tetrakaidecahedron, the cuboctahedron, and intermediate cases. These precipitates can 

be formed by starting with an octahedron with edge length s, and removing 6 square 

pyramids with edge length t. In order that the precipitates be nearly strain-free, the concept 

of magic-shapes requires that s must be quantized in units of Sbb=15.75A, i.e. s=p sbb where p 

is a positive integer. Similarly, t must be quantized as t=q Sbb, where q is an integer 

0 I q < p/2. 
- I  

Since these precipitates are nearly strain-free, and since we have shown that edge energies 

make only a negligible contribution, the precipitate energies are approximately equal to the 

interface energies, Eprecipitate~Einterface= AI lyll l  + Alooyloo. The aspect ratio is 

C/A = (1 - t/s) G, the total (100) area is A100=6t2, and the total (1 11) area is A111=8s2-24t2. 

Here we use the T=400K interfacial free energies in order to predict the C/A ratio in 

agreement with experiment. 
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At this point, we know the aspect ratio and the approximate energy of all the (nearly) stain- 

free precipitates with o h  symmetry. In order to predict the observed aspect ratios as a 

function of precipitate size, we need a criterion for deciding which precipitate energies might 

actually occur in a quasi-equilibrium distribution of precipitates. For a given precipitate 

volume, it is easy to calculate the interfacial energy, Ewulff, of a precipitate with the Wulff 

shape. Since this is the lowest possible energy for a given volume, we find it convenient to 

work with the energy, AE=Eprecipitate - Ewulff. For precipitates near equilibrium, one would 

expect a Boltzmann distribution of precipitate shapes with a characteristic e-AEkT probability. 

In this experiment, the precipitates are not at equilibrium and one would expect Oswald 

ripening to continue slowly during further annealing. In order to reproduce the experimental 

shape distribution (shown as red points in fig. 6), we rejected all precipitate sizes and shapes 

having AE > 60eV. While not rigorous, it appears that this energy criterion allows a shape 

distribution which, while far from equilibrium, is slowly ripening at the annealing 

temperature thereby avoiding shapes with very large AE. In figure 6 the black symbols 

represent the complete set of precipitate particles meeting four conditions: o h  symmetry, 

magic-shape (i.e. near zero strain), AE I 60eV, and 

“magic-shape” theory and the experimental data is very good. 

155A . The agreement between this 

Finally we note that in addition to the precipitates with o h  symmetry, there are many 

precipitates which break this symmetry. In all cases, the experimentally observed shapes are 

consistent with the concept of “magic-shapes” and nearly zero-strain. The inserts in figure 1 

shows two such cases. In one insert the symmetry is broken because AlfA2, while in the 

other insert, the symmetry is broken by removing a row of tetrahedra and square pyramids to 

form a notch at an edge along the viewing direction. 

To summarize, we have used the embedded atom method in comparison with an analytical 

calculation of interface and strain energy to conclude that edge energies play a negligible role 

in determining the shapes of Pb precipitates in Al. Instead we explain the experimental data 

by assembling “magic-shapes” from building blocks which are tetrahedra and square 

pyramids with edge lengths, Sbb=15.75.  Given a set of “magic shapes”, we find that the 
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members of this set with relatively small interface energies are the shapes that are observed. 

This theory provides agreement with many aspects of the experimental data that are 

otherwise difficult to explain. 
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