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Abstract

This project focused on research and algorithmic development in optimization under
uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into
account uncertainty, we addressed three challenges in current simulation-based engineering
design and analysis processes. The first challenge required leveraging small local samples,
already constructed by optimization algorithms, to build effective surrogate models. We
used Gaussian Process (GP) models to construct these surrogates. We developed two OUU
algorithms using “local” GPs (OUU-LGP) and one OUU algorithm using “global” GPs
(OUU-GGP) that appear competitive or better than current methods. The second challenge
was to develop a methodical design process based on multi-resolution, multi-fidelity models.
We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). Thethird
challenge involved the development of tools that are computational feasible and accessible.
We created MATLAB® and initial DAKOTA implementations of our algorithms.
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Preface

At the onset of the Sandia LDRD process in June 2003, in which ideas for this project were
first proposed, there were major military operations occurring in Afghanistan (launched in
2001) and in Irag (launched in 2003) that dominated the mainstream news outlets. Some of
the news focused on the success and failures of U.S. military armaments in these operations.
During this time, the U.S. Congress allowed the Department of Energy (DOE) and the Air
Force Research Laboratory (AFRL) to design and test a Robust Nuclear Earth Penetrator
(RNEP) to address observed shortcomings and failures during these operations.

The Afghanistan and Iraq military operations illuminated the shortcomings in our weapons
design process aswell. To combat rapidly-evolving conditions, we would need to do better
than to refurbish older weapons for new missions. Simultaneously, Sandia started looking at
ways to shorten its weapons design process from 2 years to 6 months under a program
concept called Rapid Small Build.

The initial direction of thisLDRD project was heavily influenced by the events of our times
(circa2001-2003) with a view towards rapid design using modeling and simulation. At the
onset of this project, in October 2003, Sandia was also beginning to negotiate the V&V
milestones associated with ASC-funded physics-based modeling and simulation efforts. By
2004, the pragmatic vision of the SandiaV &V program was influencing ASC code
development as well as the algorithmic development within this LDRD project. That vision
required computationally efficiency in uncertainty-accountable algorithmic development. At
the end of FY 2006, this project completed proofs-of-concepts of novel optimization under
uncertainty algorithms.

Note: The RNEP program was essentially cancelled in 2005 [aip-152-2005].

Note: The Rapid Small Build concept also underlies current Sandia concepts Rapid
Prototyping and SBET.
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1.Introduction

With decreasing resources and areal inability to physically test parts of the design space,
engineering applications have been turning to modeling and simulation (M& S) as tractable
alternatives to hand-design and field/laboratory testing. However, the computational
overhead associated with conventional M & S approaches has limited their adoption.

This project focused on research and algorithmic development in optimization under
uncertainty (OUU) problems based on earth penetrator (EP) designs. In scoping our efforts,
we concentrated on addressing three main challenges in engineering design and analysis
process while also taking into account the presence of uncertainty. The first challenge
required leveraging small local samples, already constructed by optimization algorithms, to
build effective surrogate models. The second challenge was to develop a methodical design
process based on multi-resolution, multi-fidelity models. The third challenge involved the
development of tools that are computational feasible and the implementation of design

processes that are useful to the EP weapons community and beyond.

The grategy for the first year wasto balance research in OUU and Bayesian formalism with
practical design exploration. To that end, we successfully canvassed current penetrator
design, explored Bayesian formalisms and other innovative optimization approaches,
conceptualized a multi-fidelity penetrator design and developed a low-fidelity penetrator
simulation, formalized design optimization formulations, engaged in a small design
exploration study in which general linear model analysis techniques were used and
understood performance measure choices on penetrator design.

Our second-year efforts were spent analyzing statistically-based parametric studies and
developing reduced-order models based on Bayesian approaches for EP design. Regression
models based on the most important variables were built for the ground displacement
response and used in our Multi-Fidelity Bayesian Autoregressive Process (MF-BAP)
implementation. Results from MF-BAP studies show that we can use cheaper lower-fidelity

responses, together with a systematic model bias correction based on a Gaussian Process
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(GP) emulator, to estimate mid-fidelity earth displacement responses (with a maximum 5%
relative error). Using just the lower-fidelity model alone to predict mid-fidelity
displacement, we obtain a maximum of 24% relative error on the parameter space tested.
The lower-fidelity model plus the systematic model bias correction constitutes the reduced-
order model of the higher-order models.

Thethird year efforts were influenced more heavily by the callsto the scientific computing
community to aid efforts to make Sandia simulation-based design processes tractable.
Therefore, to reduce the overall computing expenses associated with design optimization, we
leveraged our experience with GPs by integrating them at both local and global levels of
optimization algorithms to construct new OUU algorithms. To that end, we constructed two
OUU algorithmsusing “local” GPs (OUU-LGP) and one OUU algorithm using “global” GPs
(OUU-GGP). The development of an optimization algorithm that combines both global and
local information isan area of future research.

We discuss our approach and garnered experiences in the remainder of this report.

12



2.Conventional Weapon Design Processes

2.1 Earth Penetrator Weapons in Practice
Earth penetrators, also known as “bunker-busters,” are an important tool in our Defense

Figure 1: HDBT EP Application

their target. For example, at one
of Sandia’ stest site, tail end of a
penetrator snapped off after
impart, see Figure 2. This post-
delivery damage represents a
common mission failure. Part of
the problem was that the geology
and target descriptionsin the
battle field corresponded to
unexpected conditions in the
operating range of the penetrator
design.

arsenal [jig-alw, jig-pb] applicable to the defeat of
hard and deeply-buried targets (HDBT); see Figure 1.

A number of penetrators were used in the Operation
Anaconda (March 2002) and Operation Iragi Freedom
(March 2003) offensives with mixed effects. Inthe
Anaconda offensive, in particular, surface boulders
and underground tunnels proved challenging targets
for the EPs. In some cases, ensuring sufficient target
penetration required sequentially staged EPs.

Occasionally, the EPs were damaged upon reaching

g

Figure 2: Penetrator sticking, but not
surviving.
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2.2 Current Modeling Practices

Designing penetrators to survive the extremely high loads resulting from penetration of hard
geologies at high impact velocities istypically a difficult and sometimes impossible task. In
addition to the penetrator case surviving the impact, the electronics and nuclear package must
also survive and the penetrator must achieve a depth great enough to preclude rebounding out
of the target. While most of the aspects of the penetrator design goal are beyond our scope,
our intent isto explore penetrator design processes involved with “stick and survive’.

Historically, penetrators are designed using an ogival (or conical) nose with a cylindrical
afterbody; [Gold-1999; Davi-1979]. Because penetrator design has previously been a long,
arduous process using hand-tuning, the resulting designs (the B61-11, HP, and the Pen-X)
have been sub-optimal and have been prone to failure due to conditions unanticipated during
the actual design process. Therefore, there have been very few attempts to optimize the
penetrator shape to reduce lateral loads (on the tail to prevent tail snap-off) and increase the
probability of penetrator survival beyond worst-case scenarios.

2.3 Earth Penetrator Design Requirements

Earth penetrators must “stick and survive’ in targets with
uncertain geology. Both “sticking” and “surviving” can
be affected by delivery, geology, target descriptions, and
other mission conditions. EPs must reliably function
under variable delivery conditions such as velocity, angle

of attack, or angle of impact. EPs must also reliably
survive against geology uncertainties like boulders,

ey varying rock strengths, and layered geologies and fissures
corresponding to possibly severe medium discontinuities.
Finally, the EPs must be able to penetrate targets of

Figure 3: EP through delivery

widely varying geometries, location, and construction. Failure to satisfy such design

objectives will ultimately lead to failure to stick, survive, or both.
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2.4 Earth Penetrator Design Optimization

Several factors, such as structural design, systems design, and intended penetrator target
performance, must all be taken into account in the design process. Consider simple structural
design problems. One optimization problem is to determine, for a given case weight, a case
material distribution (or thickness profile) that maximizes depth of penetration, minimizes
axia and lateral accelerations, ensures a stable trgjectory, and ensures that the penetrator case
and its contents survive impact. |f nose shape isadriving design objective, the resulting
additional optimization problem can be viewed as a shape optimization problem. If nose
shape models strongly influence case material distribution, the resulting coupled optimization
problem might be nonlinear or nonlinearly constrained. When a certain probability of
penetrator survival is desired againgt uncertain target geologies, the resulting problem can be
viewed as a chance-constrained optimization problem. Accepting that some target geologies
will neutralize a certain number of EPs and a design objective is to minimize the probability
of EP “death-by-boulder”, the resulting optimization problem could be viewed as a stochastic
programming problem. Few tools, if any, exist that can adequately handle these complex
penetrator design problems, given the complexity of the problem and the modeling tools that
must be used to explore it.

To model the dynamics associated with the penetration of the weapon into various geologies,

we must use simulation models. An example of the simulation-based optimization process is
shown in Figure 4.
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Figure 4: Simulation-Based Optimization Model. The optimization algorithms evaluate
simulated designs based on some Expected Improvement (EI) or Return on Investment
(ROI) metric. Based on the metric evaluation, the optimization algorithms generate
simulation inputs that will lead to improved designs within a design search space. Proper
usage of fidelity and related cost of the simulations must also be considered.

2.5 Earth Penetrator Design via PRIDE

We believe that the fundamental tool needed to support EP design is optimization under
uncertainty (OUU). OUU refers to optimizing an uncertain quantity, such as maximizing the
expected (mean) penetration depth or minimizing the 95™ percentile of axial acceleration on
thetip. Inthe simplest formulation, one can use a standard optimization algorithm, but at
each design point evaluated by the optimization routine, use a sampling method to sample
over the uncertain variables and run the simulation many time at the samples value settings to
calculate the uncertainty metric of interest. This approach is computationally expensive.

That is one reason that surrogates (computationally cheaper models) are used. An example
of the design optimization process incorporating the use of uncertainty and surrogatesis
shown in Figure 5.
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OUU encompasses chance-constrained optimization, stacked multi-realization optimization
to handle aleatory uncertainty, and incorporates design space exploration and uncertainty
guantification to handle epistemic uncertainty. Aleatory uncertainty corresponds to
irreducible (probabilistic) uncertainty and accounts for inherent variability such asin
subsurface geologies. Epistemic uncertainty corresponds to reducible uncertainty (lack of
knowledge) and accounts for model imprecision due to incomplete information such asin
target descriptions or in the physics model themselves associated with differing
representations (fidelity) of the model problem. We will only briefly touch upon epistemic
uncertainty through abstractions of the response surface construction using Gaussian Process
models.

While many approaches to OUU exist, none systematically and simultaneously uses
uncertainty and sensitivity estimates, response-surface approximations (surrogates),
statistical models, and multi-fidelity hierarchies in a way that allows the overall design
processto be computationally credible (and under what metric) and does not require an

excessive amount of full-fidelity simulations.
Our intent is to integrate optimization methods and metrics with uncertainty quantification

techniques in a novel way that reduces the computational expense of the overall design

process while increasing the amount of information propageation.
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Figure 5: Our approach: Multi-Fidelity Optimization under Uncertainty
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3. Test Problems

3.1 A Pen-X Model

This project initially focused on an enhanced penetration-type weapon, Pen-X, inwhich a
large cavity is created ahead of the penetrator by a specifically designed shaped charge.
Experimental and numerical studies have shown that a pre-formed cavity significantly
reduces axial accelerations and allows penetration of much harder targets. This weapon type
was chosen over other penetrator programs for its flexible design schedule and greater
opportunities to directly affect the design processes. Another weapon option, the RNEP
penetrator, has arelatively fixed design and offered little opportunity for shape optimization.

The overwhelming majority of penetration tests have been into undisturbed targets (i.e. no
pre-formed hole); see, for example, Bateman et a. [Bate-1993]. Experience and modeling
have shown that sharp pointed noses typically work best for this type of penetration problem.
However, very little was known about what shape is optimal for penetration into pre-formed
cavities. It isnot intuitive that a sharp nose is best (although one could guess that a more
rounded nose would be preferable). 1n addition, suggestions have been made that an egg-
shaped body would reduce lateral loads while providing increased depth of penetration. The
sensitivity studies we performed address these issues.

Multiple fidelity models of the earth penetrator were defined in terms of both mesh resolution
and structural complexity. The low structural fidelity model (corresponding to30K Finite
Element (FEM)) is based on a solid homogeneous body. The medium structural fidelity
model includes internal blivets. The high-structurd fidelity model includes an accurate
model of the penetrator case and internals.

We described the penetrator structure as a cylindrical body, of length L2, capped by two

ellipsoids of mgjor radius L1 and L3, corresponding to the radii of the nose and tail,
respectively, see Figure 6. The cylinder body radius R1 has an upper bound dictated by the
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allowed weight and space in the delivery missile compartment. The major radii range in
values that produce nose and tail shapes ranging from very blunt to very sharp. For low
values of L2, the shape may even resemble an egg. The medium-fidelity model includes the
low-fidelity penetrator case model description plus internal blivets. The high-fidelity model
includes an accurate model of the penetrator case and internals. The penetrator was modeled
as an elastic material and the target is modeled with a Mohr-Coulomb soil constitutive
model. Target properties were chosen to represent material strengths ranging from low
strength to high strength concrete. The penetrator and target models were based on axi-
symmetric descriptions.

As an added measure of complexity, uncertain delivery and target conditions are also taken
into account. Figure 6 shows the five uncertain variables that were included in the low-
fidelity penetrator problem description. The angle of attack (A0A) is the deviation from the
penetrator velocity and the penetrator central axis. The impact velocity (1V) isthe velocity at
which the penetrator impacts the ground. Offset (OS) is the horizontal deviation between the
central axis of the penetrator and the central axis of the cavity. The offset occursfrom a
combination of an AoA and the separation of distance between the shaped charge and the
penetrator. The cavity radius (CR) isthe radius of the vertical shaft created by the shaped
charge. Target strength (TS) isrelated to the strength of the target material. The smaller the
target strength number, the harder the material. For later purposes, we will need the
following assignments:

X1=L1, X2=L2, X3=L3, X4=0S, X5=A0A, X6=TS, X7=IV; X8=CR. @

We developed robust parametric mesh model in CUBIT, a 2D and 3D finite element mesh
and geometry generation toolkit developed at Sandia National Laboratories, to mesh the
penetrator and target geometry over the range of shape parameters. CUBIT version 9.1 was
used in our studies.

We used Sandia's three-dimensional explicit transient dynamics (Lagrangian) finite element

code Presto to model mechanical deformation at impact. We used eight-node hexahedral
elements in these studies. While Presto has been ported to numerous high performance
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parallel platforms at Sandia National Laboratories, the studies presented here were completed
on the ICC Shasta, using SIERRA version 4.2.54 Betaand ACME version 2.2d libraries.
However, because Presto is an explicit code, the time-step is based on the size of the smallest
element in the mesh to satisfy the Courant stability condition, viz, the smaller the time-step,
the longer thetotal run time. Therefore, for a model with a fine-enough mesh, the stability
congtraints on the time-step force the run time to be sufficiently long that not only do
optimization studies become time-prohibitive, but even parameter studies at fine resolutions
become intractable. Table 1 shows how the run time can increase as the mesh isrefined. To
that end, one of the goals of our penetrator parameter studies was to understand the extent to
which cheaper lower fidelity models can be useful as surrogates of the expensive high
fidelity models to reduce the overall cost of runs.

Table 1: Presto Run-time estimates

Fidelity | Mesh | No. of Time Run time
size | Elements step
Low Dx 1Y | Dt T

Medium | Dx/2 23Y=8Y | Dt/2 T(per 1Y per Di)*(8Y per Dt/2) = 16T
High Dx/22 | (22)3Y=64Y | Dt/22 T(per 1Y per Dt)*(64Y per Dt/4)=256T

The responses of interest are the accelerations at the aft end and nose tip of the penetrator as
well as maximum displacement of the ground due to penetrator impact. Accelerations are of
interest because other penetrator studies have noted that high lateral accelerations result in
tail slap which may result in the penetrator breaking, see Marin et al. [MCB-2005]. Also,
electronic components, critical to the functional operation of the penetrator, may be mounted
inthe aft end where the lateral accelerations are typically highest. The simulated
accelerations were filtered at 800 Hz using a four-pole Butterworth filter. This frequency
was chosen to remove most of the high frequency response and allow a more accurate

calculation of maximum values.
The depth of penetration is important for two reasons. First, a minimum penetration depth is

required to prevent the penetrator from bouncing out of the target. Second, as the depth of
penetration increases, the greater the energy is imparted to underground targets.
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Figure 6: On the left, design variables L1, L2, L3, and radius constraint R1.
On the right, a parameterized Finite Element Model of the penetrator (in
pink) and the target showing the penetration shaft opening created by the
Pen-X shaped charge. Also depicted on the right figure are the uncertain
variables.

We fixed the penetrator body length and weight, and allowed the radii of the nose (L1) and
tail (L3) to vary. We completed a small design exploration and pseudo-optimization study of
the low-fidelity model acceleration response. We were interested in understanding the effect
of the two variable parameters, L1 and L3, on the acceleration responses at the nose tip and
aft end. We were dso interested in finding the design that produces the minimum total

acceleration.
A general linear model for an analysis of variance of the maximum total, vertical, and

horizontal acceleration (at an aft node) versus both the nose and tail radii showed that the

nose radius significantly influenced these responses more than the tail radius. The
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generalized linear model was also able
to detect that two designs in particular
influenced the variance analysis. One
of these designs correspondsto the
case where the noseradius is
maximally small and the tall radiusis
maximally large so that the penetrator
nose is very blunt. Thisdesign has a
minimal total acceleration at the aft

node. Unfortunately, this particular Figure 7: Small L1, large L3 design showing poor
penetrator design achieved poor penetration.

penetration depth.

The other design flagged by the generalized linear model analysis corresponded to the case
where the nose radius is maximally
large and thetail radiusis
maximally small so that the
penetrator nose is very pointy.
This penetrator design had good
penetration (even though it
bounced off the shaft walls) but
had high lateral accelerations at the
aft node. These lateral

accelerations might lead to the

Figure 8: Large L1, small L3 design showing large
penetrator breaking due to bending. lateral accelerations.

Additional details on parametric studies involving the Pen-X model can be found in
Martinez-Canales et al [M SH-2007].

3.2 The Analytical Molar Test Function
To obtain rapid proof of concept in some of our later research efforts, we decided to also use

an analytical function with properties similar to our penetrator application. That is, the
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analytical function had to be multivariate and it had to also be characterized by multiple
fidelities (low, high). It also had to have multiple minima/maxima, changing location and

structure across dimensionality and fidelity.

One of the analytical functions that we chose for testing was created by H. K. H. Lee and M.
Taddy (LT-2006)). The name of the function, molar test function, is derived from its
resemblance to a dental molar in two dimensions. For the purposes of this study, we
constrained both inputs to be bounded between -2 and 2.

The low-fidelity function is given by:

~

z 2 2~ z 2 2
£ (%, %) = g_ o (e | 0804+ H* ge-(xz-l) + 0806+ H 2

The equation for the high-fidelity function is:
f (X,%,) = g_ o 0D | 08040 +0_()53in(8(x1 +0_1))8* ge (o1 4 o 080g+D)? _ O.OSsin(8(x2 +0-1))8-

©)
The high fidelity function is the low fidelity function with an added noise term (the sine
term). Both hi and low fidelity expressions possess multiple critical points.
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In one dimension, the molar functions look like the following:

Figure 9: 1d Molar Function. Shown are the low (blue line) and high (green dashed
line) fidelities.
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Intwo dimensions, it is easier to look at the negative of the functions. Note that there are
four local minima, one in each quadrant. These functions would be challenging to optimize
using locally-convergent optimization methods. Without smart strategies, most locally-
convergent optimization algorithms would “stick” to one of the local minima. The global
minimum of f,; is-1.124 at x; = -1.064 and x, = -1.064.

Coarse (min is marked) Fine {(min is marked)

\
ORI
R XN
A
W ZI//,‘O‘O‘“\ \(“\‘\\‘ “\“1‘ f
s AR s

Figure 10: Plot of the 2D analytical molar function. The bottom row shows the negative
image of function f(x;,Xx2). The top row shows the contour lines of the functions beneath
them. The true maximum is marked on the contour plots
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4.Gaussian Processes is OUU

4.1 Gaussian Process Models

Our approach was to model deterministic computer output as realizations of a Gaussian
Process (GP). Then, the set of GPs indexed by the simulation process parameters and their
prior distributions represent our prior uncertainty regarding possible output surfaces. Newly
observed or additionally generated data transforms the prior into a posterior under the

Bayesian paradigm.

Following the standard practice in the [SWMW-1989; SWN-2003; FL S-2006], we start by
modeling the output of the simulations as arealization of a Gaussian Process (GP). A GPis
a stochastic process for which any finite collection of observations has a multivariate
Gaussian (or Normal) distribution [Cres-1993]. The process is described by its mean
function u(-) and its covariance function C(-,-). For aset of locations s,...,$, inS, we can
write the distribution for the observations x as

X ~ MVN (i, S), )
where x = (x(s), ..., X (S1), m=(nsy), ..., NMsp)), and S isthe variance-covariance matrix
with elements C(si,s;). We typically take the mean function to be linear in location, although
lower-order polynomials can be used, as can the assumption of a constant mean. If we make
the typical assumptions of stationarity (C does not depend on location, but only on the
distance between locations) and isotropy (the distance metric is spherically symmetric), we
can simplify the expression for the covariance matrix to C(si,s;) = | r (d), wherer () isthe
correlation function and d is the Euclidean distance between s; and s; . Then, r istaken to be

a parametric family such asthe Matérn class [Mate-1986], or the power family, which is

what we use here:
r(d) =exp[-(d / g)°], (6).
The choice of g=1 gives the exponential correlation function, while g=2 give the Gaussian

correlation function which isthe one we use hereafter. This correlation function iseasily
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expanded to account for anisotropy by allowing different range parameters ¢ for each

dimension.

The model can be fit either by optimization in a maximum likelihood framework, or using
Markov chain Monte Carlo in a Bayesian framework. Here we take the Bayesian approach,
which allows incorporation of prior information about location or uncertainty in the
parameter distributions. Thisallows full propagation of uncertainty, so that predictive
uncertainty can be incorporated into the selection of new potential optimization points as
described in Section 6.3.2. We use standard priors for the parameters, after standardizing the
data[GL-2006]. More information on choices of priors and fitting of the model can be found
in [HO-1994; BCG-2003; GL-2006].

41.1 Treed GP
In practice, many situations, including computer simulations, call for more flexibility than is

reasonable under the assumption of stationarity. Here we use treed Gaussian process (TGP)
models [GL-2006] to achieve non-stationarity. This approach partitions the input space and
fits separate GPs within each partition. The partitions are fit simultaneously with the
individual GP parameters using reversible jump Markov chain Monte Carlo, so that al parts
of the model can be learned automatically from the data. The posterior predictive
distribution thus takes into account uncertainty from the data, from the fitted parameters, as
well asthe fitted partitions, and is ideal for use within the oracle process in Section 6.3.2.

I mplementation is viathe library TGP for the open source statistical package R. See,

http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html.

Because simulations often require significant computational time and resources, we are
striving to reduce the number of runs needed by the optimization methods like APPSPACK.
Moreover, since APPSPACK isalocal optimization method, we are investigating ways to
add robustness and introduce global properties. To accomplish these goals, we are using
ideas from the design and analysis of computer experiments literature and using random
functions to model the deterministic computer output function.
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4.1.2 Two New Gaussian Process Implementations
By using the cheaper GP emulator as a surrogate of the complex model, we achieved

reasonable computationally savings in parameter space exploration. By using the GP asa
corrector between multiple model fidelities, not only did we observe a reduction in
computation costs, but we also more closely emulated the engineering process. We
implemented two versions of our Gaussian process, one in MATLAB, and one in DAKOTA.
The MATLAB implementation allowed rapid proof-of-concept prototyping, development,
and paved the way for an initial Dakota implementation. Both use essentially the same
formulation; the only differences are the software implementation details. The MATLAB
implementation is shown in Appendix A. In MATLAB, one can create a Gaussian process
by calling the function libgpfull. Note that the function can be renamed if desired. The
function libgpfull takes asinput a set of observed data, Y obs, corresponding to a set of input
points X. Note that Y obs should be an (n x 1) vector, and X should be an (n x p) vector,
where n is the number of data points and p isthe dimension of X. The call also requires
defining a set of new values of X for which one wants predicted values. Xnew must be (m x
p), where there are m new values of X. The call isthen [Yest] = libgpfull(Y obs, X, Xnew),
where Yest isan (m x 1) vector returning the Gaussian process predictions at the m new
points. If desired, one can augment the output to be [Y est, Sigest], where sigest is the
standard deviation of the estimated values. Note that in our approach, we normalize the
inputs and the output. We use the constrained minimization routinein MATLAB called
fmincon to obtain the covariance parameters which maximize the likelihood function, giving

us MLE estimators. The GP isa zero mean process with the following covariance:

cov(x,x') =s?2 expg— %é - Gy (X - X9)25+d5j2 (7)
e d=1 u

Where s Zisthe process variance, s ? isayjitter term added to the covariance matrix to make

it better conditioned, and d is an indicator variable which equals zero if x and x* are different

points and equals 1 if they are the same. Inthe MATLAB code, s f is denoted by gpVar, and
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s Zisone of the parameters determined in the maximum likelihood estimation, along with the

lengthscal e parameters qg.

In DAKOTA, there is a family of approximation types, such as neural networks, regression
models, etc. GaussProcApproximation is a class that has been added to create GP
approximations. GaussProcApproximation is a class derived from the DAKOTA
Approximation class. There are three main protected member functionsinthisclass:
find_coefficients builds the GP and finds the covariance parameters; get_value(x) returnsthe
predicted value of the response for the input x; and get_variance(x) returns the variance of
the predicted response at x. Inthe DAKOTA implementation, only the predicted value at
one point can be returned at atime. Opt++ is the optimization software used to determine the
optimal hyper-parameters governing the GP via maximum likelihood estimation. The GP
may be used in surrogate construction by specifying the keyword gaussian_process under the
surrogate type in the DAKOTA input specification file. For more details, see:
http://endo.sandia.gov/DAK OTA/licensing/votd/htmldev/classDakota 1 1GaussProcApprox

imation.html .

Within DAKOTA, we used OPT++ to optimize the maximum likelihood function. We
enabled this capability by taking advantage of an alternate constructor used in the RBDO
methods. One addition to that constructor was adding the ability to request the use of finite-
difference gradients in OPT++. An outstanding issue is the inability of the optimizer to
optimize the first parameter defining the maximum likelihood function.

4.2 MF-BAP: Multi-fidelity Modeling with Gaussian Processes

Many computational models of high physical fidelity are very expensive in terms of run time.
In these cases, we would like to develop an approach to response surface modeling which
allows usto construct aresponse surface based on some low fidelity function evaluations and
update the coefficients governing that response surface with a few high fidelity function
evaluations. This approach of correcting a low-fidelity response surface and updating it is
used in some trust region approaches [EGC-2004]. A variation on this approach has been
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developed by Kennedy and O’ Hagan [ KOH-2000], who propose constructing an
autoregressive model where a higher-fidelity code output is assumed to be an autoregressive
function of the lower fidelity code output. We refer to [KOH-2000]. Huang et al. [HANM-
2006; HANZ-2006] have expanded on Kennedy and O’ Hagan’ s approach and we have
looked at their implementation in detail. The overall idea for multi-fidelity models using an
autoregressive approach makes the following assumptions:

Different levels of the same code are correlated in some way.

The codes have a degree of smoothness in the sense that output values for similar

inputs are reasonably close.

Prior beliefs for each level of code can be modeled using a Gaussian process.
We choose a notation similar to Huang's. If there are| levelsof code, | = 1, m, the
assumption isthat:

fi (%) = f,4(x) + 8 (x) 8)

where § (x) isindependent of f,(x), f)(x), ..., fi ;(x). This meansthat every level of code

differs by the previous level by some delta function. KOH assume a slightly more complex

autoregressive function:

fi(X) = 1p4fi4(x) + 8 (x) ©)
The deltaterm §, (x) is meant to model the “systematic error” of a lower-fidelity system, (I-
1), as compared to the next higher-fidelity system, |. It isimportant to note that (x) is
usually small in scale as compared to f, (x). In KOH, both the §, (x) and f (x) terms are

modeled as Gaussian processes.

A major difference between what we have done in this project and what Huang has done is
that we estimate the GP for the lower level model, f,(x), separately from §,(x). In addition,
there isan issue of “matching” the models at the points to construct the 6(x) term. Both
KOH and Huang et al. evaluate the model at the same data points (the same x values). We
evaluated the low and high fidelity data both at the same points to construct the deltaterm
and at different points.
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In our initial implementation, we focus on two levels of fidelity, a low-fidelity model (level
1) and a high fidelity model, level 2. We first estimate a Gaussian process for f1(x) based on
a sample set of model runs of the low fidelity model. Then, we estimate 5,(x) based on some
model runs of both the low and high fidelity models. Finally, we sum the two results to
obtain an estimate for the high fidelity model, fo(x); that is. fa(x) = f1(x) + 62(x).

The Gaussian process, auto-regressive approaches outlined above assume that the true,
unknown response is the sum of a linear model or constant term, aterm representing the
systematic departure (bias) from the linear model, and noise. The deltaterm is formulated

as

8() = b ()T B+Z,069 +¢ (=12 ..,m (10)

where by and f, are the basis functions and coefficients, respectively, of the linear model. Z,
isthe systematic departure and ¢, is the random error. Z, is modeled as a zero-mean

stationary Gaussian process. Huang and others often assume a constant term for the basis.
We feel that aregression term may be necessary to model the trend often seenin deltaas a
function of inputs.

4.3 Multi-fidelity Prediction Results Based on the Penetrator
Problem

This penetrator test problem hastwo levels of fidelity: alow fidelity model with
approximately 10K finite elements, and a high fidelity model with approximately 50K
elements and more detail in the modeling of internal structural elements. The application
here focuses on mechanical deformation.

As part of apreliminary investigation, we performed an orthogonal array (OA) parameter
study on the model. This allowed us to identify the important parameters in our model. In
the following discussion, x is an eight dimensional input space. We ran both the low and
high fidelity models at 13 points in the parameter space. These points are shown in Table 2
in the columns X1-X8. The output of the low and high fidelity models is displacement. The
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displacement predictions from the computational codes are denoted as f1true and forrue to
differentiate them from the Gaussian process estimates of the low and high fidelity results,
which are f1(x) and f(x), respectively. The (normalized) code output is shown on Table 2 as
well as graphed in Figure 11 as a function of the first input variable, X1. You can see that
the low fidelity code predictions of displacement are larger than the high fidelity code
predictions. It isthisdifference, the “deltaterm,” that we are trying to estimate with a
Gaussian process. Then, we will use the Gaussian processto predict what the delta term will
be in the case of 6 new points given in Table 3 which have values in the X parametersthat are

outside the training domain.

Table 2: Computational model results, f;rrue and forrue, @s a function of eight input variables.
X1 | X2 | X3 X4 X5 X6 X7 X8 | fitrue | f2true

Pointl1 |15 |5 10 | 0.375 | 0.0065 | 2625 | 12500 | 4.6 | 12.86 | 10.87
Point2 |20 |10 |10 |0.75 |0.0130 | 2750 | 12500 | 4.6 | 13.98 | 12.04
Point3 |15 |10 |15 |0.375 |0.0130 | 2750 | 13000 | 4.6 | 13.51 | 11.58
Point4 |20 |5 15 |0.75 |0.0065 | 2750 | 13000 | 4.7 | 15.69 | 13.73
Point5 |15 |10 |10 |0.75 |0.0130 | 2625 | 13000 | 4.7 | 14.46 | 12.31
Point6 |15 |5 15 | 0.375 | 0.0130 | 2750 | 12500 | 4.7 | 13.66 | 11.48
Point7 |15 |5 10 |0.75 |0.0065 | 2750 | 13000 | 4.6 | 13.38 | 11.18
Point8 |20 |5 10 | 0.375 [ 0.0130 | 2625 | 13000 | 4.7 | 16.09 | 14.04
Point9 |20 |10 |10 |0.375 | 0.0065 | 2750 | 12500 | 4.7 | 15.18 | 12.85
Point10 |20 |10 |15 | 0.375 | 0.0065 | 2625 | 13000 | 4.6 | 15.24 | 13.37
Point11 |15 |10 |15 |0.75 |0.0065 | 2625 | 12500 | 4.7 | 13.96 | 11.72
Point12 |20 |5 15 |0.75 |0.0130 | 2625 | 12500 | 4.6 | 14.30 | 12.38
Point13 |20 |10 |15 |0.00 |0.000 |2500 |12500 |4.5 |13.23 |11.43
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Figure 11: Displacement as a function of X1 for high and low fidelity codes, fitrue and forrue.

Thefirst step isto create a Gaussian process estimate of the low fidelity model. Then we
create a Gaussian process estimate of the deltaterm. To obtain the GP estimate f1(x), we
took the 13 points from a low-fidelity parameter study. The low fidelity GP model is: f1(X)
= by(X)"B1 + Z1(X) + €1, Where Z, is modeled as a zero-mean stationary Gaussian process. The
coefficients of the regression term are estimated by a standard linear regression procedure,
and we used maximum likelihood estimation of the covariance parameters governing the GP
term Z,.

After obtaining f1(x), we calculated the desired delta function between the high and low-
fidelity modelsas: fa(x) - f1(x) = 82(x). That is, we took the actual high-level results from
the 13 OA run, subtracted the GP estimate of the function, to obtain the desired values for
32(X). Then, we estimated the GP parameters based on the 13 OA pointsin Table 2. Inthis
case, 52(X) isgiven as: 82(X) = ba(xX) B2 + Za(X) + &2.

With the Gaussian process models of f1(x) and d2(x) developed, we can now use these to
predict f2(x) at some new points. We chose six new points shown in Table 2. We ran the
high fidelity model at these points to check the accuracy of our GP estimate, but we did NOT



run the low fidelity model at these points. Instead, we used the GP estimate f1(x). If the low
fidelity function evaluations were cheap enough computationally, one could use the code
results for the low fidelity model and not use a GP approximation of the low fidelity model.
Note that our approach has two Gaussian process terms added together to get the estimate of
the high fidelity model: fo(x) = f1(x) + d2(x). However, in practice, it may be desirable just to
create a Gaussian process model for the deltaterm if the “true” low fidelity calculations are

available.

Table 3: New X input points where we compare the GP prediction, fapredicteds With the high
fidelity model, f,

Point1 | Point2 | Point 3 Point 4 Point 5 Point 6
X1 17 25 15 20 15 20
X2 7 10 10 5 10 5
X3 13 10 15 15 15 15
X4 0.5 0.75 0.9 0.2 0.2 0.9
X5 0.01 0.013 0.02 0.005 0.005 0.02
X6 | 2700 2800 2700 2800 2800 2700
X7 | 12500 12500 12000 14000 14000 12000
X8 5 4.6 4.8 4.7 4.8 4.7
f2true | 14.70 12.77 11.18 15.41 14.89 11.90
f2predicted | 14.49 13.41 11.46 15.40 14.67 12.18
Error 0.21 -0.63 -0.28 0.01 0.22 -0.29
%Relative Error 1.46 4,96 2.50 0.06 1.46 2.40
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Figure 12: High fidelity prediction, fopredices, COMpared with the true high fidelity model, f,

Overall, we have very good agreement: the displacement predicted by the GP autoregressive
model and the displacement obtained by the high fidelity “true” code calculation are very
similar. The percentage error in the GP model is less than 5% in all six cases shown in Table
3 and islessthan 3% in five of the cases. The largest error, for point 2, is due to the fact that
this point represents a significant extrapolation of X1: the data upon which the GP models
were built (the 13 pointsin Table 2) only involved X1 at values of 15 and 20, but this point
has X1 at avalue of 25. Note that we constructed Gaussian process models for the low
fidelity model and for the deltaterm only based on 13 points in 8 dimensional space. Given
that we are using these GP models to predict the output at 6 new points (where each new
point involves extrapolation on at least one dimension), the predictions look good. Also,
note that the prediction of the low fidelity model gives higher estimates of displacement than
the high fidelity model and the delta term is always negative. Thisiswhat we expect based
on the original 13 data points. Figure 12 shows the “true”’ high level results for these six
points, the GP predictions of these results, as well asthe GP predictions of the delta term and
the low level model results.
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Based on these results, it appears that Gaussian process models for low fidelity results and an
estimate of the delta term between high and low fidelity to predict high fidelity resultsis a
promising approach. This could have many applications, especialy in optimization and
uncertainty quantification problems. The next sections explain the use of the two-fidelity GP

in trust-region optimization.
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5. Aspects of Optimization

5.1 Surrogate-Based Optimization

Surrogate-based optimization has become a common approach for solving optimization
problems that require the execution of a computationally expensive high-fidelity simulation
in order to obtain objective function and constraint values. The essence of such approaches
entails constructing low-fidelity models by fitting response surfaces to high-fidelity function
values or by reducing the numerical or physical fidelity of the simulation. Optimization
methods are then applied to these less expensive low-fidelity functions with periodic
corrections from the high-fidelity simulation to ensure convergence to alocal minimum of
the high-fidelity function. Many variations of this type of approach can be found in the
literature. Examples include [Book-2000; JSW-1998; Nash-2000]. Inthiswork, we focus on
the general trust-region framework presented by Alexandrov, Dennis, Lewis, and Torczon
[ADLT-1998] and on the specific variation described by Eldred, Giunta, and Collis [EGC-
2004].

The basic algorithmic structure of a trust-region surrogate-based optimization method is quite
similar to that of the classical trust-region method described in standard references such as

[DS-1983]. The processisiterative, with each iteration consisting of the following steps:

1. Construct surrogate and correction term for current iterate and trust region
2. Optimize corrected surrogate using appropriate method

3. Compute ratio of high-fidelity improvement to low-fidelity improvement at trial
iterate

4. Accept/reject iterate and adjust trust-region size based on ratio value
5. Check for convergence

Alexandrov, et al. provide the theoretical framework under which convergence for this class

of algorithms can be proved. Eldred, et a. explore different correction approachesin the

context of that theoretical framework and investigate their effectiveness in practice.
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5.2 Derivative-Free Optimization

Simulation-based optimization problems have an objective function whose evaluation
requires the results of a complex simulation and are often characterized by a relatively small
number of variables (i.e.,, n < 100). Moreover, derivatives often do not exist and/or are
difficult to estimate. Therefore, derivative-free methods have become a useful method of

solution.

5.2.1 The APPS Algorithm

In thiswork, we consider a derivative-free optimization method called Asynchronous Parallel
Pattern Search (APPS) [HKT-2001; Kold-2004]. The APPS algorithmis part of a class of
direct search methods which were developed primarily to address problems in which the
derivative of the objective function is unavailable and approximations are unreliable [Wrig-
1996; LTT-2000]. Pattern searches use a predetermined pattern of points to sample a given
function domain. It has been shown that if certain requirements on the form of the pointsin
this pattern are followed and if the objective function is suitably smooth, convergenceto a
stationary point is guaranteed [LT-1996; Torc-997; DLT-2000].

The majority of the computational cost of pattern search methods is the function evaluations,
so paralel pattern search (PPS) techniques have been developed to reduce the overall
computation time. Specifically, PPS exploits the fact that once the points in the search
pattern have been defined, the function values at these points can be computed
simultaneously [DT-1991; Torc-1992]. The APPS algorithm is a modification of PPS that
eliminates the synchronization requirements. It retains the positive features of PPS, but
reduces processor latency and requires less total time than PPS to return results [HKT-2001].
I mplementations of APPS have minimal requirements on the number of processors and do
not assume that the amount of time required for an objective function evaluation is constant

or that the processors are homogeneous.
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We consider the specific APPS algorithm as described in Kolda 2004 [Kold-2004]. Itisa
variant on generating set search as described in Kolda et al. [KLT-2003] and is provably
convergent under mild conditions [KT-2003; KT-2004; Kold-2004]. Omitting the

implementation details, the basic APPS algorithm can be simply outlined as follows:
1. Generate a set of trial pointsto be evaluated.

2. Send the et of trial points to the conveyor for evaluation, and collect a set of
evaluated points from the conveyor. (The conveyor isamechanism for shuttling trial
points through the process of being evaluated.)

3. Processthe set of evaluated points and see if it contains a new best point. If thereis
such a point, then the iteration is successful; otherwise, it is unsuccessful.

4. If theiteration is successful, replace the current best point with the new best point.
Optionally, regenerate the set of search directions and delete any pending trial points
in the conveyor.

5. If theiteration is unsuccessful, reduce certain step lengths as appropriate. In addition,
check for convergence based on the step lengths.

A detailed procedural version of APPS is given in Gray and Kolda[GT-2004], and a
complete mathematical description and analysisis available in Kolda [Kold-2004].

5.2.2 APPSPACK

The APPS algorithm described here has been implemented in an open source software
package called APPSPACK. It iswritten in C++ and uses MPI [ GL-1996; GLDS-1996] for
parallelism. The details of the implementation are described in detail in Gray and Kolda
[GK-2006]. There are both serial and parallel versions of APPSPACK, but to achieve the
goals of thiswork, we are solely interested in the parallel version. APPSPACK has been
successfully applied to problems in micro-fluidics, biology, groundwater, thermal design, and

forging; see [GK-2006] and referencestherein.

APPSPACK performs function evaluations through system calls to an external executable,
and no redrictions are placed on the language of this executable. Thissimplifiesits
execution and makes it amenable to customization. Of particular interest to usisthe
management of the function evaluation process. The procedure is quite general and merely

one way of handling the process of parallelizing multiple independent function evaluations
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and efficiently balancing computational load. This management system makes APPSPACK
amenable to the hybridization technique discussed later.

6. Novel Optimization under Uncertainty Algorithms

6.1 Optimization under Uncertainty Algorithms

To reduce the overall computing expenses associated with design optimization, we leveraged
further our experience with GPs by integrating them at both local and global levels of
optimization algorithms to construct new optimization under uncertainty (OUU) algorithms.
To that end, we constructed two OUU algorithms using “local” GPs (OUU-LGP) and one
OUU algorithm using “global” GPs (OUU-GGP). The development of an optimization
algorithm that combines both global and local information is an area of future research.

6.2 OUU-LGP

In the OUU-L GP approach, we used the GPs in a trust-region surrogate-based optimization
method in two different ways within the trust region. Inthe first approach, we used the GP
asasurrogate to the high-fidelity function. We implemented this approach in the DAKOTA
framework, making use of both the existing trust-region (OPT++) surrogate-based
optimization (SBO) infrastructure and our GP implementation. In the second approach, we
used the GP model as a correction between multiple model fidelities. To circumvent some
Dakota infrastructure limitations associated with multi-level surrogate constructions, we
implemented and successfully tested this approach in MATLAB. Futurework aimsto
complete thiswork within Dakota.

6.2.1 Trust-region surrogate-based optimization
In thiswork, we consider using a multi-fidelity Gaussian process model in the context of a

trust-region surrogate-based optimization method. In particular, we use Gaussian process
models in two related variations of the algorithm outlined above. Inthe first approach, we
use the Gaussian process as a surrogate to the high-fidelity function. This approach has been
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implemented in the DAKOTA framework and makes use of both the existing trust-region
surrogate-based optimization infrastructure [appropriate DAKOTA/Giunta reference here]
and the GP implementation described in Section4.1.2.

In the second approach, we demonstrate proof of principlein MATLAB since some required
features are not yet available in DAKOTA. Inthis scenario, we use the Gaussian process
model as a correction between multiple model fidelities. The implementation is similar in
gpirit to that in DAKOTA, but some of the specifics differ. We describe Steps 1-5 in Section
5.1in more detail as they pertain to our method. The MATLAB file appears in Appendix B.
In particular, Step 1 of the above algorithm consists of constructing a Gaussian process based
on statistical sampling of the high-fidelity function and the low-fidelity within the trust
region about the current iterate. The sampling is done within the more restrictive of the trust-
region bounds and the bound constraints on the optimization problem. Based on these, two
GP surrogates are constructed: one for the low fidelity model and one for the deltaterm, as
described above. By summing the two GP surrogates, we form a high fidelity surrogate
which isoptimized in Step 2. Optimization of the high-fidelity surrogate is done with the
MATLAB Optimization toolbox function fmincom. The fmincon function finds the
minimum of a constrained nonlinear multivariable function using a Sequential Quadratric
Programming (SQP) method. In this method, the function solves a quadratic programming
(QP) subproblem at each iteration. An estimate of the Hessian of the Lagrangian is updated
at each iteration using the BFGS formula, [Mat-2006]). Actual decrease is computed by
taking the difference between the high-fidelity function value at the current iterate and the
high-fidelity function value at the trial point predicted by the GP surrogate. The predicted
decrease is computed by taking the difference between the high-fidelity function value at the
current iterate and the GP surrogate value at the trial point. Thisratio isthen used to
determine whether or not to accept the trial point and how to adjust the trust-region size. The
thresholds are similar to those in the DAKOTA TRSBO method. There is no true
convergence check (i.e. norm of gradient goesto zero) due to the fact that no gradients are
used in this algorithm. Stopping criteria are minimum change in function value from one
iteration to the next, minimum trust-region size (corresponding to a minimum step size), and

the maximum number of iterations. All of these can be set by the user. Details can be found
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inthe MATLAB code listing in Appendix B. Notethat for computational efficiency, we
separated the Gaussian process calculation into two separate functions. libgpfull now just
calculates the optimal covariance parameters as well as the inverse of the covariance matrix,
and gp_quick takes these parameters as well asthe original sample data and desired input
location and provides an estimate of the output at that input location. By separating these
two functions, we only perform the calculation of covariance parameters and covariance
matrix once per trust region, and then use this information to calcul ate the expected value of

the high fidelity function at numerous points within the trust region.

6.2.2 Multi-fidelity Optimization Numerical Results
Table 4 shows the results from the trust-region optimization of the two-level Gaussian

process surrogate for the high fidelity function. Note that these results demonstrate that the
trust-region optimization is working, but is converging to local minima depending on where
the algorithm starts. Thisiswhat we expect, because the trust-region approach is alocal

optimization approach.

Table 4: Optimization results based on different starting points

Starting Point [x1,x2] | Optimal Point [x1,x2] F hi
[0,0] [ -1.0511, 0.8888] -1.0564
[-1,-1] [-1,-1] -1.1194
[-2,-2] [-1.0307, -0.9761] -1.1174
[1,1] [1.1369, 1.143] -1.0609
[2,2] [1.0493, 0.9878] -1.0303

Further work remains to be done, testing the trust-region approach with other functions,
specifically with functions in higher dimensions and with functions that exhibit a more
pronounced difference between the low and high fidelity versions. In addition, comparisons
of function evaluations for this approach vs. an approach of directly optimizing the high
fidelity function need to be performed.
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6.3 OUU-GGP

In the OUU-GGP approach, we used a Treed GP (tgp) algorithm [GL-2006] to enhance the
pattern search optimization algorithm, APPSPACK. Within an oracle module separate from
the search pattern, the tgp algorithm finds the predictive distribution for new sample points
conditional on the points that have already been generated and evaluated by the search
pattern. If the point recommended by tgp is a better point than those in the pattern, the search
pattern continues from there; otherwise, it is discarded. When cleverly applied to our test
problems, APPSPACK-tgp not only showed that the expected improvement statistic was
close to zero everywhere in the parameter space, but was also able to detect the correct global
minimum as opposed to a guaranteed local minima in the case of the unembellished pattern
search process. We now review this work.

6.3.1 Oracles

In recent years, some optimization methods have introduced an oracle to predict points at
which a decrease in the objective function might be observed. These points are specified in
addition to the points generated by the optimization method itself. Analyticaly, an oracleis
free to choose points by any finite process. (See[KLT-2003] and references therein.) The
addition of an oracle is particularly amenable to a pattern search methods like APPS. The
iterate(s) suggested by the oracle are merely additions to the pattern. Furthermore, the
asynchronous nature of the APPSPACK implementation makes it adept at handling the
evaluation of the additional points.

We used the tgp tatistical model as our oracle as a means to add robustness and to introduce
some global properties into APPSPACK. When the oracle is called, the tgp algorithm is
applied to the set of evaluated iterates in order to choose additional candidate points. In other
words, APPSPACK is till optimizing as normal, but throughout the optimization process, the
iterate pairs (x ,f(x)) are collected. Then, the tgp algorithm considers the current set of

collected iterate pairs and recommends one or more new iterates. These new tgp-points are
then evaluated to see if one of them is a new best point. If not, the point is merely discarded.
However, if atgp-point isanew best point, the APPSPACK search pattern continues from
that location.



6.3.2 Expected Improvement Criteria

As mentioned above, the oracle treats the output of the simulations as realizations of a Treed
Gaussian Process. The uncertainty about future computer evaluations can be quantified by
finding the predictive distribution for new input locations conditional on the points that have
already been evaluated. Since we now have a full probabilistic model for code output a new
locations, any statistic depending upon this output is easily obtained.

The expected improvement at a point x, E[min(fmin- f(x),0)], isauseful criteriafor choosing
new locations for evaluation. The paper by Jones et al. [JSW-1999] illustrates the use of this
statistic in optimization. Since the improvement is a random variable, this criterion balances
rewarding points where the output is highly uncertain, as well as where the function is
generally predicted to be better than the present best point. Each timethat the oracleis
called, a number of candidate locations are generated from an optimal space filling design.
The tgp model is then fit to the existing output, and the expected improvement is calculated
at each candidate location. The points with highest expected improvement are passed back to
the APPS algorithm for evaluation.

6.3.3 Theoretical Considerations

One of the main theoretical considerations in developing a hybrid method like the one
described here is convergence. Inthis case, the APPS algorithm is provably convergent
under mild conditions. Thisresult can be leveraged since we incorporate the iterate(s)
suggested by the Gaussian process as an oracle. Since the oracle points are given in addition
to those generated by the pattern search, there is no adverse affect on the convergence.

Future work includes investigating improvement to the convergence as aresult of the tgp
oracle. Moreover, we hope to incorporate the findings of tgp into the APPSPACK stopping
criterion. Currently, the primary stopping condition is based on the step length. This
criterion was chosen because it can be shown that if the objective function is continuously
differentiable, then the norm of the gradient (or an analogous measure of the constrained
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measure of stationarity in the bound-constrained case) can be bounded as multiple of the
step size [KLT-2003]. In other words, the steps only get smaller if the norm of the gradient is
decreasing. Alternatively, APPSPACK offers two additional stopping criteria. One is based
on whether or not the function has reached a specified threshold, and the other is defined in
terms of the number of function evaluations. We would like to add the additional stopping
condition that depends upon the expected improvement over the entire input space, a satistic
that is calculated each timethe oracleiscalled. Thiswill ensure that the tgp oracle does not
stop if there is high probability of finding a better location.

6.3.4 Numerical Results

We implemented our ideas and tested them against the molar function described in Section
3.2 with some promising results.

The version of APPSPACK enhanced by the tgp-oracle convergesto f =1.126 at (X1,X2) = (-

1.042, -1.058) which is the correct answer. Finding this solution took 63 total function
evaluations, where 15 of those function evaluations resulted from points suggested by the tgp
oracle. In Figure 13, the mean predicted output surface isillustrated in the left image and the
expected improvement over the input space is shown on the right (all the green coloring). In
the expected improvement image, the black dots are evaluated iterates generated by
APPSPACK whilethe red dots are evaluated iterates chosen by the tgp oracle. Notice that
the APPSPACK-tgp hybrid method, at convergence, has generated a uniform expected
improvement field over the space, that is, there were no points that the tgp oracle could
choose to affect the improvement function. Further notice that the response surface
generated from the collection of evaluated iterates, through convergence, maintains much of
the second-order structure observed in the true function. This point is noteworthy because, as
we already learned from our experiences with GPs, the response surface we building in an
enhanced design optimization context is actually a cheaper alternative to the costly truth

function or simulation.
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Figure 13: On the left, the resulting response surface of the molar function characterized by
the generated APPSPACK iterates. On the right, the APPSPACK-tgp hybrid showing
convergence to the true global maximum.

Now, using the same initial values as before, APPSPACK, without the tgp oracle,
convergesto alocal maximum (x1,x2) = (1.125, 0.632) where f = 1.043, using 41 function
evaluations. Examination of the expected improvement statistic showsthat it is close to
zero everywhere in the case of APPSPACK-tgp. However, in the case of APPSPACK
alone, large variations in the expected improvement statistic were observed over the input
space. These variations are illustrated by the white, yellow, and orange coloring in the
right image in Figure 14. This suggests that the tgp oracle would have improved the
optimization method by suggesting iterates from different parts of the input space, mainly
the ones with remaining large uncertainty.
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Figure 14: TGP fit to points from APPSPACK without the oracle. The mean predicted output
surface (left) and the expected improvement over the input space (right) for the results of
APPSPACK without the oracle. The black dots are the points evaluated during the pattern
search

The mean predicted output surface (left image of Figure 14) also shows that how dragtic is
the cogt of uncertainty in the unsampled input space — only a quarter of the second-order
structure was captured. Using response surface approximations based on such a poor input

space sampling would certainly spell disaster.

The maxima found with the oracle-enhanced version of APPSPACK were always higher than
the solution from APPSPACK without an Oracle. However, there is currently no guarantee
of locating the global solution if APPSPACK converges before the input spaceis fully
explored. When the algorithm converges to the global maximum, as shown in Figure 13, we
see that the expected improvement is everywhere zero. On the other hand, after convergence
to alocal maximum, there is still positive expected improvement over the input space, as
illustrated by the white and orange-colored regions in Figure 14.
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Figure 15: TGP fit after APPSPACK-tgp convergence to a local maximum

In Figure 15, we show an example where APPSPACK-tgp converges to alocal maximum f =
1.061 at (x1,X2) =(1.125, 1.137) in 42 total function evaluations, where 8 iterates resulted
fromthe tgp oracle. Figure 15 illustratesthe mean predicted output surface (left image) and
the expected improvement over the input space (right image) for APPSPACK-tgp. On the
right, the black dots are evaluated points chosen by APPSPACK, the red dots are evaluated
points chosen by the tgp oracle, and the open circles are candidate locations from a treed D-
optimal design.

This observation warrants investigation into a convergence criterion that includes the
expected improvement information provided by the oracle. Regardless, the tgp oracle allows
us to make an intelligent assessment of the robustness of our solution and to obtain a
probabilistic view of the global output surface.
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7.Concluding Remarks

This project focused on research and algorithmic development in optimization under
uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into
account uncertainty, we addressed three challenges in current simulation-based engineering
design and analysis processes.

1. Thefirst challenge required leveraging small local samples, already constructed by
optimization algorithms, to build effective surrogate models. We used Gaussian
Process Models to construct these surrogates. We developed two OUU algorithms
using “local” GPs (OUU-LGP) and one OUU algorithm using “global” GPs (OUU-
GGP) that appear competitive or better than current methods.

2. The second challenge was to develop a methodical design process based on multi-
resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-
regressive process (MF-BAP). This process allows us to exploit cheaper lower-
fidelity information instead of depending exclusively on costly high fidelity
information. Overall, the process yields overall computational savings whilst ill
allowing simulation-based design processes to be viable.

3. Thethird challenge involved the development of tools that are computational feasible
and accessible. We have developed MATLAB® and DAKOTA implementations of
our algorithms. Refinements of our implementation in DAKOTA are ongoing.

These algorithmic developments and implementations within Matlab/Dakota will help our
S& T community (and beyond) substantially reduce the computational cost of their modeling,
simulation, and design optimization efforts. Furthermore, the "R" in the "D" of our
numerical methods has furthered our thinking about what is possible in different Sandia
programs. For instance, the cost savings associated with the multi-fidelity GP models will
allow usto fully explore the quantification of uncertainty in software packages (within
Sandia's Verification & Validation Program and Sandia's S& T portfolio) that had thus far
remained unanswered due to computational constraints; by extending the notion of expected
improvement and efficient global optimization within our OUU algorithms, we can now
begin to look at resource alocation, decision support, and margin quantification problems
that were untractable until now.
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Appendix A: Gaussian Process Implementation in Matlab

function [Yest] = libgpfull (Yobs, X Xnew)

% | 1bpgfull takes as input a set of observed data Yobs,

% a set of inputs corresponding to these outputs X

% and a set of new inputs for which one wants a prediction, Xnew.
% Yest are the estimated val ues corresponding to Xnew, and sigest
% are the std. deviations of those estinmates

[ num obs, num var s] =si ze( X);
Y = Yobs- nean( Yobs);

for i = 1:numyvars
Xnorm(:,i) = (X(:,i) - mean(X(:,i)))./std(X(:,i));
Xprednorm(:,i) = (Xnew(:,i) - nean(X(:,i)))./std(X(:,i));
end

gpVar = 0.01;

cvparmslnit = 1*ones((numyvars+1),1);
b = 0.01*ones((numyvars+1), 1);

ub = 5*ones((numvars+1),1);

cvparnms = cvparnslnit;

thisLik = loglik(cvparns);

options = optinset('fm ncon');
opt new = optinmset (options, 'MaxFunEval s', 100)
cvparms = fmncon(@oglik,cvparnmslnit,[],[],[]1,[1,!b,ub,[], optnew

% CGet i nverse covariance matri X

E3=covvect or (cvpar s, Xnor m Xpr ednor m gpVar) ;
E5=E3' ;

E=covmat ri x(cvpar nms, Xnor m gpVar)\YV;

E2=E3*E;

Yest = E2 + nean(Yobs);

E4=covmat ri x( cvpar s, Xnor m gpVar) \ E5;

GPPredVar = E3*E4;

CovNew = covvect or (cvpar ns, Xpr ednor m Xpr ednor m gpVar) ;
GPPredVar = CovNew GPPredVar ;

PredVar = di ag(GPPredVar);

BoundLow=Yest - 2*sqrt ( PredVar) ;

BoundH gh = Yest +2*sqrt (PredVar);

sigest=sqrt (PredVar);

function L = |l oglik(cvparns)

CVM = covmat ri x(cvpar s, Xnor m gpVar) ;
L = log(det(CV™)) + Y *(CVMY);
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%L = log(cvparns(a))+l og(det(CVM) + (1/cvparns(a))*Y *(CVMY);
end

end

function CVYM = covmatri x(cvparns, Xnor m gpVar)

[m

n] = size(Xnorm;

CYM = zeros(m;

i=1:1:m

f

or j =1.m
ssqd = 0;
for k=1:1:n ;
ssqd=ssqd + cvparns(k)*(abs(Xnorn(i, k)-Xnorm(j,k)).”2.0);
end;
CYMi,j)= CWMi,j) + (cvparns(n+l)* exp(-.5*ssqd));

end;

CYM = CVM + (gpVar*eye(n));

end

fun

[m
[t,

ction CW = covvector(cvparns, X, T, gpVar)
n] = size(X);
ul = size(T);

CW = zeros(t,m;

i =1:

end

1:t;
for j=1:m
ssqd = 0;
for k=1:1:n;
ssqd = ssqd + cvparns(k)*(abs(T(i,k)-X(j,k))."2.0);
end;
CW(i,j)=CW(i,j)+ (cvparms(n+l)*exp(-0.5*ssqd));
end;
for i=1:1:t;
for j=1:m
k=1: 1: n;
if all (T(i,k)==X(j,k))
CWW(i, j)=CW(i,])+gpVar;
end;
end;
end;
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Appendix B: Trust Region Optimization with Two-
Fidelity Model Implementation in Matlab

% | nput/ Qut put Definitions

% x_mn vector; value of variables at solution (m ninum

%f_mn scal ar; value of high-fidelity function at solution (m ninmm
% stop_criteria = string; reason al gorithm stopped

% hi _fi pointer; high-fidelity function

%l o_fi pointer; lowfidelity function

% gp_f = pointer; Gaussian process

% x_init = vector; starting values of variables

% | ower _bounds = vector; |ower bounds on variabl es

% upper _bounds = vector; upper bounds on vari abl es

% num sanpl es scal ar; nunber of points to sanple for GP construction
% mn_TR size scal ar; mnimmsize of trust region allowed

% m n_f_change = scal ar; mninmum change in high-fidelity function from
% one iteration to the next all owed

% max_iters = scal ar; nmaxi num nunber of iterations all owed

% Notel: Currently we assume that if one variable has a finite | ower/upper
% bound, then all variables do. Variables do not have to have both | ower
% and upper bounds, nor do they have to have any bounds at all. Al

bounds

% must be finite - we don't check for infinite bounds. All bounds nust be
% consi stent - we don't check that |ower bounds are | ess than upper

bounds.

% Note2: The final three paraneters are used to determ ne when the
% al gorithm should quit. There is no real convergence check
% (i.e., no check of gradient nornj.

function [x_mn, f_mn, stop_criterial] = trnfo_gp(x_init, |ower_bounds,
upper _bounds, num sanples, mn_TR size, nmn_f_change, max_iters)

% The first thing we do is put everything is in colum format, if it isn't
% al r eady!

if (size(x_init,1) ==1)
X_init = x_init";

X_current = x_init
f _current = inf
el se
X_current = x_init;
f current = inf
end
if (size(lower_bounds, 1) == 1)
| ower _bounds = | ower bounds';
end
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if (size(upper_bounds, 1) == 1)
upper _bounds = upper_bounds';
end

% Set trust region sizes of interest. The initial trust region size

%is 1/2 the maxi num di fference between upper and | ower bounds. |If only
% one-si ded bounds are provided, the initial trust region size is the
% maxi mum absol ute val ue of the bounds. |[If there are no bounds, the

%initial trust region size is set to the normof x_init. The mninum
%trust region size is 1/2 the mninumdifference between upper and

% | ower bounds tines the tol erance provided by the user. |If only

% one-si ded bounds are provided, the mninmumtrust region size is the
% m ni mum absol ute val ue of the bounds tines the tol erance provided by
%the user. |If there are no bounds, the minimumtrust region size is
%the normof x_init tinmes the tol erance provided by the user.

if ((size(lower_bounds, 1) ~= 0) && (size(upper_bounds,1) ~= 0))
TR size = 0. 5*nmax(upper _bounds - | ower _bounds);
rel_mn_TR size = 0.5*m n_TR_si ze*m n(upper_bounds - | ower_bounds);
el seif ((size(lower_bounds,1) ~= 0) && (size(upper_bounds,1l) == 0))
TR si ze = nax(abs(| ower _bounds));
rel_mn_TR size = min_TR size*m n(abs(| ower _bounds));
el seif ((size(lower_bounds,1) == 0) && (size(upper_bounds, 1) ~= 0))
TR_si ze = max(abs(upper_bounds));
rel_mn_TR size = min_TR size*m n(abs(upper_bounds));
el se
TR size = norm(x_init);
rel_mn_TR size = min_TR size*norm(x_init);
end

% Set the random nunber to its initial state. This should give us
% reproduci bility for debuggi ng purposes. W can renove it later if we
% want .

rand(' state',0);

% lterate on x until converged.
for i = 1l:max_iters

% BEA N SAMPLI NG 1

% First sanple is the current iterate, i.e., the center point of the
% trust region

% sampl e(:,1) = x_current;

% Set the bounds for sanpling to the nore restrictive of the
% user -suppl i ed bounds and the trust region. Then sanple within those
% conput ed bounds.

% sanpl e_| bounds
% sanpl e_ubounds

max(sanpl e(:, 1)-TR si ze, | ower_bounds);
m n(sanpl e(:,1)+TR_si ze, upper_bounds);
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% for j = 1:numsanples

% for k = 1:size(sanple, 1)

% sampl e(k, j +1) = sanpl e_I| bounds(k, 1) +
rand* (sanpl e_ubounds(k, 1) - sanple_l bounds(k, 1));
% end

% end

% For each sanpl e point, conpute both high- and lowfidelity function
% val ues and their differences.

% for j = 1:numsanpl es+1

% hi _response(j,1) = hi _fi(samle(:,j));

% | o_response(j,1) =lo_fi(samle(:,j));

% di ff_response(j,1) = hi_response(j) - |lo_response(j);
% end

% f_current = hi_response(1l)

% END SAMPLI NG 1

f _previous f_current
% lterate on step until acceptable one found.
for j = Limax_iters

% BEG N SAMPLI NG 2

% First sanmple is the current iterate, i.e., the center point of the
% trust region

sanple(:,1) = x_current;

% Set the bounds for sanpling to the nore restrictive of the
% user -suppl i ed bounds and the trust region. Then sanple within those
% conput ed bounds.

sanpl e_| bounds
sanpl e_ubounds

= max(sanmpl e(:, 1)- TR size, | ower_bounds);
= m n(sanpl e(:, 1) +TR_si ze, upper_bounds);
for j = 1:numsanpl es
for k = 1:size(sanple,1)
sanpl e(k, j +1) = sanpl e_| bounds(k, 1) +
rand* ( sanpl e_ubounds(k, 1) - sanpl e_| bounds(k, 1));
end
end

% For each sanpl e point, conpute both high- and lowfidelity function
% val ues and their differences.

for j = 1:numsanpl es+1
hi _response(j,1) = hi_fi(sanple(:
| o_response(j,1) lo fi(sanple(:
di ff_response(j,1) = hi_response(]j

1))
1))
)-

| o_response(j);
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end
f_current = hi_response(1)
% END SAMPLI NG 2

% Cal cul ate the optimal values of the covariance paraneters governing the
% GP (only need to do this once, then use these paraneters everytinme you
%call a predicted value within the optimzation. Note that there are two
% val ues of optinmal paraneters: one for the low fidelity GP and one for
%the delta term

[parmsl, InvMrx1]
[parms2, InvMrx2]

i bgpfull (1 o_response, sanple');
i bgpfull (diff_response, sanple');

% Optimze the GP surrogate (gp_f =gp_lo + gp_diff). Include the
% upper and | ower bounds and the trust-region constraint.

options = optinset (' fmncon');

opt new = optinset (options, 'MaxFunEval s', 100);

%x trial, gp_trial] = fmncon(@x)gp_f(x, sanple, |o_response,
di ff_response), x_current, [], [], [], [], |ower_bounds, upper_bounds);

[x_trial, gp_trial] = fmncon(@x)gp_f(x, sanple, |o_response,
di ff _response, parnsl, InvMrxl,parms2, InvMrx2), x_current, [], [], [],
[1, lower_bounds, upper_bounds, @x)TR constraint(x, x_current, TR size),

opt new)

% Conpute hi _fi function value at the point generated by optim zing
% the GP.

f trial = hi fi(x_trial)

% Conput e actual decrease and predicted decrease. Do not compute or use
%the ratio, as it can lead to weird things |ike divide by 0.

actual _decrease = f_current - f_trial
predicted_decrease = f_current - gp_trial

% Det ermi ne whether to accept or reject trial step and adjust trust
% region size appropriately. If trust region size gets too snmall or
% step is accepted, exit the |oop.

i f (actual _decrease <= 0. 25*predicted_decrease) % step rejected
TR size = TR si ze/ 2
if (TR size <rel_mn_TR size)
br eak;
end
el se % st ep accept ed
Xx_current = x_trial
f current = f trial
if ((0.75*predicted_decrease <= actual _decrease) &&
(actual _decrease <= 1.25*predi cted_decrease))
TR size = 2*TR si ze
end
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br eak;
end
end

% I1f trust region size is too small or if the change in the val ue
% of the high-fidelity function reached the stopping tolerance,
%then it is tine to stop.

if ((TR.size <rel_mn_TR size) || ((f_previous - f_current) <
m n_f _change*abs(f_previous)))
br eak;
end
end
X_mn = x_current;
f mn=1f current;

if (TR size <rel_mn_TR size)

stop_criteria = '"trust region size reached m ni mumtol erance';
elseif ((f_previous - f_current) < mn_f_change*abs(f_previous))
stop_criteria = 'change in high-fidelity function reached m ni num
tol erance’;
el se
stop_criteria = 'nmaxi num nunber of iterations reached';
end

end

% Conpute gp lo + gp_diff.

function f_est = gp_f(x, sanple, |o_response, diff_response, parnsl,
I nvM rx1, parns2, | nvM r x2)

% Need to transpose the sanples and x for the GP code.

f_est = gp_quick(lo_response, sanple', x',parnsl, InvMrxl) +
gp_qui ck(di ff_response, sanple', x',parns2, |InvMrx2);

end

% Conput e val ue of the trust-region constraint.
function [C, Ceq] = TR constraint(x, x_current, TR size)

sun{(x - x_current).”2) - TR size;

C =
Ceq = [];

end
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% Conmput e val ue of high fidelity response
function hi_response = hi_fi(x)
% Since x is a vector, refer to it with only one index.
hi _response = (-exp(-1*(x(1)-1)."2) - exp(-.8*(x(1)+1).72) +
0. 05*si n(8*(x(1)+0.1)))*(-exp(-1*(x(2)-1).72) - exp(-.8*(x(2)+1).72) +
0. 05*si n(8*(x(2)+0.1)));

hi _response = -1*hi _response;

end

% onmput e val ue of low fidelity response
function | ow response = lo_fi(x)
% Since x is a vector, refer to it with only one index.
| ow response = (-exp(-1*(x(1)-1).72) - exp(-.8*(x(1)+1)."2))*(-exp(-
1¥(x(2)-1).722) - exp(-.8%(x(2)+1)."2));

| ow_response = - 1*| ow_r esponse;

end

%Cal cul ate the hyperparaneters governing the covariance matri x and the
% covariance matrix itself.

function [cvparns, I nvCovMatrix] = Iibgpfull (Yobs, X

% i bgpfull takes as input a set of observed data Yobs, and

% a set of inputs corresponding to these outputs X. Fromthis,

% it calculates the optimal values of the hyperparaneters governing
% the covariance, parnms, as well as the covariance matrix of the

% observations, Cov.

[ num obs, num var s] =si ze(X);
Y = Yobs- nean( Yobs);

for i = 1:numyvars

Xnorm(:,i) = (X(:,i) - mean(X(:,i)))./std(X(:,i));
end
%ritical assunption - small jitter term

gpVar = 0.0001;
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cvparnmslnit = 1*ones((numvars+1),1);
Y%evpar sl nit(1)=1;

b = 0.001*ones((numvars+1),1);

ub = 5*ones((numvars+1),1);

cvparnms = cvparnslnit;

thisLik = loglik(cvparns);

options = optinset('fm ncon');

opt new = optinmset (options, 'MaxFunEval s', 50);

cvparms = fmncon(@oglik,cvparnmslnit,[],[],[]1,[1,!b,ub,[], optnew)
%vparnms=[0.1,0.1,1]";

%>et inverse covariance matrix tines the target val ues
| nvCovMat ri x=covmat ri x( cvpar ns, Xnorm gpVar)\Y,

function L = |l oglik(cvparns)

% a, b] =si ze(cvpar ns) ;

CVM = covmat ri x(cvpar s, Xnor m gpVar) ;

L = log(det(CVv™M)) + Y *(CVMY);

% = log(cvparns(a))+l og(det(CVM) + (1l/cvparns(a))*Y *(CVMY);
end

function CYM = covmatri x(cvparns, Xnor m gpVar)
[mn] = size(Xnorm;
CYM = zeros(m;

i=1:1:m
for j = 1:m
ssqd = 0;
for k=1:1:n ;
ssqd=ssqd + cvparns(k)*(abs(Xnorn(i, k)-Xnorm(j,k)).”2.0);
end;

CVI\/'(i,j): CYMi,j) + (cvparms(n+l)* exp(-.5*ssqd));
WVMi,j)= CUMi,j) + exp(-.5*ssqd);

end;

CYM = CVM + (gpVar*eye(n));

end
end

%Cal cul ate the Gaussian process prediction

function [Yest] = gp_qui ck(Yobs, X, Xnew, cvpar s, | nvCovMat ri x)

% gp_qui ck takes as input a set of observed data Yobs,

% a set of inputs corresponding to these outputs X

% and a set of new inputs for which one wants a prediction, Xnew.

%It also takes as input the hyperparaneters governing the covariance
%matrix, as well as the Inverse covariance matrix tines the Y val ues.
% Yest are the estinmated val ues corresponding to Xnew, and sigsq

% are the std. deviations of those estinates

[ num_obs, num var s] =si ze( X);
Y = Yobs- nean( Yobs);

for i = 1l:numvars



end

end

ocrit

Xnorm(:,i) = (X(:,i) - mean(X(:,i)))./std(X(:,i));
Xpredno ni:,i) = (Xnew(:,i) - mean(X(:,i)))./std(X(:,i));

ical assunption - small jitter term

gpVar = 0.0001;

E3=covvect or (cvpar s, Xnor m Xpr ednor m gpVar) ;
E5=E3' ;

E2=E3*| nvCovMatri x;

Yest

= E2 + nean(Yobs);

%predi ct variance - we are not doing this yet

VE4=

covmat ri x( cvpar ns, Xnor m gpVar )\ E5;

%=PPredVar = E3*E4;
%CovNew = covvect or (cvpar ns, Xpr ednor m Xpr ednor m gpVar) ;
%=PPr edvar = CovNew GPPredVar;
%°r edVar = di ag( GPPredVvar);
%Nor nPredVar = PredVar *var ( Yobs);
%BoundLow=Yest - 2*sqrt (PredVar) ;
%BoundHi gh = Yest +2*sqrt (PredVar);
%i gsg=sqrt (PredVvar);

function CW = covvector(cvparns, X, T, gpVar)

end

[m size(X);
[ size(T);
CVV eros(t n;

n]
"
1: 1:
r

_,,_
o 1l

d:O'

j
S
f k=1:1:n;

ssqd = ssqd + cvparns(k)*(abs(T(i,k)-X(j,k))."2.0);

end;
CW(i,j)=CW(i,j)+ (cvparms(n+l)*exp(-0.5*ssqd));
YCWV(i,j)=CW(i,])+ exp(-0.5*ssqd);

end;
for i=1:1:t;
for j=1:m
k=1:1:n;
if all (T(i,k)=X(j,Kk))
CW(i,j)=CW(i,])+gpVar;
end;
end;
end;
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Glossary

A design (or control) variable is a variable that can actually be controlled in a [aboratory
experiment or that can be changed by a manufacturing process. These are also called factors
in the design of experiments literature.

Anuncertain (or noise) variable is a variable that cannot actually be controlled ina
laboratory experiment or that cannot be changed during a manufacturing process. These are
also called covariates in the design of experiment literature. While not controllable in
general, covariates can be measured.

A sampleisaset of (uncertain) variables whose values have been determined from a
probability distribution.

A point is a set of variables whose values have been fixed in some manner.
A design point is a set of design variables whose values have been fixed in some manner.

A design matrix (also, an experiment matrix) is a set of computer runs (or tests) consisting of
a combination of variable values to determine an unknown effect or response.

A design isamodel built from specified model parameters fixed in some combination.

A parametric space exploration or parametric study is an investigative process that generates
simulation output that can then be analyzed from systematic changes to the simulation input.

A Gaussian Process (GP) isa stochastic process (random function) which has a Multivariate
Normal distribution for each associated finite dimensional distribution function. The set of
GPs indexed by the process parameters and their prior distributions represent our prior
uncertainty regarding possible output surfaces.
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