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Abstract 

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a 
national security concern after the anthrax attacks of 2001. The ability to characterize such 
attacks, Le., to estimate the number of people infected, the time of infection, and the average 
dose received, is important when planning a medical response. We address this question of 
characterization by formulating a Bayesian inverse problem predicated on a short time-series 
of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit 
ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that 
these data are usually sufficient, especially if the model of the outbreak used in the inverse 
problem is an accurate one. In some cases the scarcity of data may initially support outbreak 
characterizations at odds with the true one, but with sufficient data the correct inferences are 
recovered; in other words, the inverse problem posed and its solution methodology are con- 
sistent. We also explore the effect of model error-situations for which the model used in the 
inverse problem is only a partially accurate representation of the outbreak; here, the model 
predictions and the observations differ by more than a random noise. We find that while there 
is a consistent discrepancy between the inferred and the true characterizations, they are also 
close enough to be of relevance when planning a response. 
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1 The median incubation period for anthrax as a function of dosage D. The solid line 
is Model A2 which assumes a dose of 2.4 spores at Sverdlovsk, while the dashed 
line is Model D, which assumes 300 spores. The solid symbols are median incuba- 
tion periods which were obtained from experimental investigations or from the data 
from the Sverdlovsk outbreak. Symbols which are not fi lled denote experiments 
where the population of primates were too small to draw statistically meaningful 
results. The experiments by Brachman et a1 [ 11 are shown by vertical lines between 
symbols. In these tests, only the lower and upper bounds of the incubation period 
were provided. These were not used for determining model parameters and are 
only provided for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PDFs for N (top), 7 (middle) and D (bottom) inferred from the time-series for Case 
A, as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is 
used for the PDFs plotted on the left, while the original one is on the right. The 
correct values for { N , T , D }  are {lo2, -0.75, loo}. Inferences are drawn, in both 
cases, with observation periods of 3 ,4  and 5 days’ length (blue, red and black lines 
respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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D, as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is 
used for the PDFs plotted on the left, while the original one is on the right. The 
correct values for { N ,  z ,D} are { lo4, -0.5,10°}. Inferences are drawn, in both 
cases, with observation periods of 3, 4 and 5 days’ length (blue, red and black 
lines respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case 
E, as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is 
used for the PDFs plotted on the left, while the original one is on the right. The 
correct values for { N ,  z ,D} are { lo4, -1.0, lo2}. Inferences are drawn, in both 
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lines respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case 
F, as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is 
used for the PDFs plotted on the left, while the original one is on the right. The 
correct values for {N,z ,D}  are { lo4, -1.5, lo4}. Inferences are drawn, in both 
cases, with observation periods of 3, 4 and 5 days’ length (blue, red and black 
lines respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

The time evolution of Case F plotted over 5 days. The observed data is plotted 
as symbols. We plot the number of patients showing symptoms, as collected over 
6-hour intervals, on the vertical axis. The black line shows the evolution of the 
average case of the N = 104,2 = -1.5,D = lo4 spores attack while the blue one 
plots the evolution of a large, low-dose attack, inferred from the PDFs in Fig. 7 
as N = 16,00,z = - l ,D  = 10 spores. We see that both the attacks behave very 
similarly over the first 5 days. Inset: We plot the evolution over 10 days. It is 
clear that the correct characterization (N  = lo4, z = - 1.5,D = lo4 spores) fi ts the 
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9 The inverse cumulative distribution of the dosages. The abscissa is the fraction of 
the population which receives a dosage equal or less than the ordinate. On top we 
plot the low-dose attacks, Case RA and RE3, where the plume missed most of the 
population centers. Below, are the high-dose attacks, Case RC and RD. The attacks 
on the left are the smaller attacks, conducted with a lower population density. Inset: 
we plot the histogram containing the number of people in each dosage bin. We see 
that while the histogram has a long tail, the bulk of the population receives doses 
which span a spectrum a decade wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for 
Case RA, as tabulated in Tables 3 and 4. The low-resolution time-series (24-hour 
resolution) is used for the PDFs plotted on the left, while the original one is on the 
right. The correct values for {N,z,loglo(D)} are { 161, -0.75,3.56}. Inferences 
are drawn, in both cases, with observation periods of 3 , 4  and 5 days’ length (blue, 
red and black lines respectively). PDFs develop from 8 days of data are also plotted 
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1 Introduction 

The anthrax attacks of 2001 [4] raised the credibility of aerosolized pathogens being used in bioter- 
rorist attack. Early warning, either in the form of an anomalous increase in syndromes detected 
by public health monitoring networks [5] or via detection by environmental sensors, holds the 
highest potential to reduce casualties. However, syndromic surveillance can only provide height- 
ened awareness-it results in neither defi nite evidence of an attack nor in the identifi cation of the 
pathogen. Also, the introduction of an aerosolized pathogen into a population may not always 
be captured on environmental sensors. Examples include small releases that may not travel far, 
low quality formulations (coarse and heavy particulate matter) which precipitate easily, as well 
as releases in areas which are not well instrumented. In such a case, the fi rst defi nitive diagnosis 
of a patient will be the fi rst intimation of an attack, but by then the disease may have established 
itself in the population. Being able to infer the characteristics of the release (also referred to as 
the bioterrorist or BT attack)-i.e., the number N of the people infected, the time z of infection, 
and the average dosage D received by the infected people-has important ramifi cations in plan- 
ning a response [6]. The inferred characteristics can also serve as initial conditions for various 
epidemic models that can predict the evolution and spread of the disease in a population [7] and its 
ramifi cation on society [6, 81. 

Inferring the characteristics of the outbreak can be challenging. The observables on which infer- 
ences are based consist of the time the diagnosed patients turned symptomatic (typically expressed 
as a time interval during which they developed symptoms) and the location of their residence and 
place of work. In case of a very mobile population, e g ,  a military force engaged in operations, 
the location of residence and/or work may be hard to defi ne. The model that relates the time of 
exhibition of symptoms to the characteristics of the genesis of the outbreak is the incubation pe- 
riod distribution, which in many cases is dependent on the dosage received. To be relevant in an 
operational, consequence-management sense, these inferences have to be drawn early in the out- 
break; a time-series obtained from a 3-4 day observation period may be considered representative. 
Apart from scarcity of observations, the incubation period distribution used in the inferences may 
be a poor model for the particular instance of the disease. Thus these inferred characteristics are 
expected to be rather approximate, and quantifying the uncertainty in the characterization becomes 
a key requirement of the inference process. 

In our previous study [9], we developed a Bayesian inverse formulation for BT attack character- 
istics ( N ,  z, 0) and demonstrated the feasibility of inference in simplifi ed settings. We developed 
probability density functions (PDFs) for N , z  and D using a rather unsophisticated but easy-to- 
implement numerical approach. These results may be considered only qualitatively accurate. In 
the present study, as in the previous one, we will limit ourselves to temporal analysis; we will not 
take the location of diagnosed patients into consideration. Further, all tests will be performed with 
anthrax as the pathogen. Broad uniform priors will be used in the inference process. We will oper- 
ate within a self-imposed limit of a 3-5 day observation period. We will adopt a more sophisticated 
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adaptive integration scheme so that the inferred PDFs are quantitatively correct. We will explore 
how the inferences are affected by the size of outbreak (N), the dosage received (D), and the fre- 
quency with which the data is collected. Inferences will be conditioned on two alternative time 
series, one with a six hour temporal resolution, and the other with a twenty four hour resolution. 
We will also show, given suffi cient data, how our approach recovers the correct characterization of 
the outbreak even though shorter time series may support characterizations signifi cantly different 
from the true one. This may be considered a demonstration of the consistency of the method. In 
the interest of realism, we also consider cases where the anthrax model used to generate the ob- 
served data (via simulated outbreaks) is different from the one used in inference. We verify the 
method in settings where every infected patient gets an identical dose as well as one where there 
exists a large spectrum of doses received. We conclude with an application of this method to the 
Sverdlovsk outbreak of 1979 [3]. The results of this study will provide a measure of the accuracy 
and robustness of this Bayesian method, preparatory to extending this purely temporal analysis 
into a spatio-temporal one. 



2 Previous Work 

The question of inferring the characteristics of the genesis of an outbreak from a partially observed 
epidemic has not been extensively studied. Walden and Kaplan [ 101 developed a Bayesian formu- 
lation to estimate the size and time of a bioterrorist attack which they tested on a low-dose anthrax 
attack corresponding, approximately, to the Sverdlovsk outbreak [3] of 1979, using an incubation 
period model developed by Brookmeyer [ll]. They also demonstrated the use of priors-prior 
belief regarding the size N of the outbreak-to develop a smooth PDF for N in spite of a small 
infected population (N = 100) and a short time-series (5 days long), with data collected on a daily 
basis. An alternative approach (maximum likelihood) was used by Brookmeyer and Blades [12] to 
infer the size of the 2001 anthrax attacks [4], before estimating the reduction of casualties by the 
timely administration of antibiotics. This inference process was diffi cult due to the small number 
of symptomatic patients (1 1 infectees in 3 separate attacks). They also used the anthrax incubation 
model in [l 11. Both [lo] and [l 11 developed similar expression for the likelihood function, Le., 
the probability of observing a time series given an attack at time 7 with N infected people. The 
incubation period distribution was not dose-dependent, and hence no dosages were inferred in the 
two studies. 

Signifi cantly more effort has been spent in characterizing the incubation period of inhalational an- 
thrax. The bulk of the work has been experimental, with non-human primates being subjected to 
anthrax challenges [13, 14, 15, 16, 17, I]. Brookmeyer et a1 [ l l]  developed a low-dose incubation 
period model applicable to the Sverdlovsk outbreak; their more recent work, based on a competing 
risks formulation, includes dose-dependence [18]. A more empirical study, but based on signifi - 
cantly more data, was done recently by Wilkening [2], where he compared four different models 
called Models A, B, C and D. Model D is a slight modifi cation of Brookmeyer’s dose-dependent 
model described in [18]. While Wilkening’s Model A agreed with Model D at the high-dose limit, 
their low-dose behavior was different. Further, Wilkening developed two variants of his Model A, 
A1 and A2. A1 is a simpler model but its comparison with experimental results is slightly worse 
than A2. In this study, we will use Wilkening’s Model D for simulated BT attacks while Model A2 
will be used in the inference scheme. A complete discussion is deferred till Sec. 3.2. 

The issue of whether a person exposed to a number of spores will actually contract the disease is 
a separate question that will not be addressed in the study. We will concentrate on inferring the 
number of people who are actually infected, not merely exposed to the pathogen. The problem of 
estimating the probability of infection from D spores was addressed by Brookmeyer et a1 in [ 181 as 
well as by Glassman [19] and Druett et. a1 [20]. Haas [21] has established that even at low doses, 
the risk to large populations is not statistically insignifi cant. 

An effort with aims similar to ours is the Bayesian Aerosol Release Detector (BARD) [22]. It poses 
an inverse problem to infer the location and height of an anthrax release (the approach is general 
but has only been tested with anthrax), the time of release and the quantity of material released. 
The observables are the number of respiratory visits to emergency departments collated in 24-hour 
intervals and by zip code - such information can be obtained from typical syndromic surveillance 
systems such as RODS [23, 241. The model that relates the observables to the characteristics of 
the outbreak includes a Gaussian dispersion plume [25], Glassman’s infection relation [ 191, and 
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a log-normal incubation period distribution; different means and standard deviations are used de- 
pending upon the dosage. The patient is assumed to visit the emergency department on completion 
of incubation. BARD develops a likelihood ratio - the ratio of the probability of obtaining the 
observables due to an anthrax attack to the probability of observing them in its absence - and if 
it is above a preset threshold, develops a posterior probability distribution for the location of the 
release, the quantity released and the time of release. It also supplies the zip codes of the location 
that contributed most to the result. BARD does not calculate the the number of people infected 
or the dosage - however, given PDFs for the location and quantity, the magnitude of the outbreak 
and the dosage may be trivially obtained by using the BARD inferences as the initial condition in 
a Gaussian plume to disperse the aerosol and using Glassman’s (or Druett’s [20]) model to decide 
the probability of infection. 
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3 The Inverse Problem 

In this section we formulate the inverse problem to infer the characteristics of a BT attack. In 
particular, we infer { N , T , ~ } ,  where N is the number of people infected, 7 is the time of the in- 
fection (counted in terms of days before the fi rst patient exhibits symptoms), a n d z  is the average 
dosage received by each person. The formulation is Bayesian and we develop a joint probabil- 
ity distribution for { N ,  7, E} ,  thus capturing uncertainty in the inference conditioned on the data. 
The observables (input to the inverse problem) are embodied in the time-series {ti, ni}, i = 0. . . M ,  
where rzi is the number of people developing symptoms in the time-interval ( t i -~ , t i ] .  M is the 
length of the time-series and is expected to be small-we limit the observation period to 3-5 days 
to be of relevance in response planning and consequence management. to corresponds to the time 
when the fi rst symptomatic patient is identifi ed. For lack of additional information, we will use 
broad uniform priors in our Bayesian inverse problem. 

In Sec. 3.1 we derive the inverse problem and the expressions for the PDFs. In Sec. 3.2 we describe 
the dose-dependent anthrax incubation period models used. We use Wilkening's [2] Model A2 in 
the inverse problem and Models A2 and D for simulating BT attacks. In Sec. 3.3 we verify our 
inverse problem. In particular, we demonstrate how as we increase M ,  the inverse problem recovers 
the correct values of { N ,  7, E }  even if shorter time-series support an alternative set of inferences 
for the BT attack's characteristics. 

3.1 Formulation of the Problem 

Consider an attack at time 7 where N people are infected, with each of the N people receiving 
the same dose of D anthrax spores. The incubation period obeys a dose-dependent log-normal 
distribution; we refer to its cumulative distribution function (CDF) as C(t ,D).  For a few days M 
(say 3-5 days) we can expect (1) a series ti, i = 0.. . M ,  of times, perhaps the endpoints of 24-hr 
intervals, when patients' symptoms are observed and (2) the series ni, i = 0.. . M ,  of new patients 
who turned symptomatic between ti - At and ti where ti - ti-1 = At,  i # 0, and At is a constant. We 
defi ne survival probability as &,,(t,D) = 1 - C(t ,D).  

We can state the problem as such: Given a time-series (ti, ni), i = 0.. . M ,  of patients showing 
symptoms over a few days, estimate (N,z ,D)  from these data. ni patients are assumed to have 
developed symptoms over the time interval between ti-1 and ti. We will henceforth assume that 
the time-interval ti - ti-1 = At is a constant, typically 6- or 24-hours. 

Let L = CEoni be the total number of people who have developed symptoms by t ~ .  Thus N - L 
infected people are still asymptomatic and the probability of such an event is {PsUI,(t~ - 7, D)}N-L.  
The probability that ni people will develop symptoms in the time interval between ti-1 and ti is 
{C(ti - 7,D) - C(ti - At - 7,D))"i. Since L symptomatic people may be chosen out of a total 
infected population of N in 

N !  
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ways and L symptomatic people can be divided into the sequence no, nl , . . . n~ in 

L! 

different ways, the probability of observing the {ti, ni},  i = 0.. .M time-series given a BT attack 
characterized by ( N ,  z, D), or equivalently, the likelihood function L , is 

L (N,z ,D)  3 p ({t@i},i = 0.. .MIN,z,D) 

M 
n { c ( t i - z , D )  -C(ti-l -z,D)}"i 
i=O 

We postpone the discussion of the CDF C(t ,D)  till Sec. 3.2. 

Eq. 1 has to be incorporated into an expression that allows inference. Exploiting Bayes rule, we 
obtain 

where n ~ , %  and ED are the priors for N ,  z and D and n({ti,ni},i = 0.. . M )  is the probability 
of observing a {ti, ni}, i = 0. . . M time-series in any circumstance. Note that the denominator 
simply acts as a normalizing constant and is implicitly obtained by normalizing this expression in 
Eq. 3. In this study, we use broad uniform distributions as priors. The joint probability distribution 
n(N,z,DI{ti,ni},i= O...M) is normalized as 

and marginalized to obtain individual PDFs g N ,  g, and for N ,  z and D viz. 
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A more detailed derivation can be found in [9]. 

The multidimensional integrals in Eq. 4 are evaluated using an iterative adaptive Monte Carlo 
method, often referred to as the VEGAS method [26]. It was observed that when the {ti, ni}, i = 
0.. .M time-series was short, the integrand P could be noisy, mostly zero in the bulk of the do- 
main with sharp peaks in certain localized regions. Adaptive quadrature approaches, though more 
accurate than Monte Carlo, were far slower, especially with short time-series data. We used the 
GSL [27] library’s implementation of the VEGAS algorithm in this study. 

3.2 Anthrax Incubation Models 

This subsection tersely states mathematical models we use to predict the onset time of symptoms 
in a person exposed instantaneously to D anthrax spores. The onset time is a random variable, and 
therefore described by a cumulative distribution function (CDF). 

The CDF for Wilkening’s “Model D” is given by (see App. A) 

which is a convolution of F(t;D), the probability that at least one spore out of a dose of D spores 
will germinate into a vegetative anthrax cell by time t and g(s;D)  which is the PDF of the time 
s taken, post-gemination, to reach a bacterial load at which time symptoms appear. F and g are 
defi ned as 

1 

P 
F(t;D,h,O) = - ( 1-exp (--&PO>> , where 

Q(t) = 1 -exp(-(h+e)t) 

and 

These distributions depend on a number of parameters: 

Nthresh, a threshold bacterial load in a person that causes symptoms 

0 t2, the bacterial load doubling time in a given medium (e.g. mediastinal lymph nodes where 
the spores germinate), which can be obtained in in vitro laboratory experiments 

0 tM, which is the time required to reach a bacterial load of Nthresh and is given by 
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0 tlug, a lag time in bacterial growth experiments (typically 1 hour). 

0 os, the variance of the log of the time required to reach the symptomatic bacterial load 

0 8, the probability rate of clearance of a spore (by the immune system), specifi ed in terms 
probability of clearance per spore per day 

0 h, the probability rate of germination of a spore, specifi ed in terms of probability of germi- 
nation per spore per day 

M,, the median time to symptoms, is set to t M  in Wilkening's models used here. The values of 
the parameters for Model D are 8 = 0.109 day-', h = 8.79 x day-', tlug = 1 hour, t2  = 
2.07 hour, Nthresh = lo9 and os = 0.544 day-'. 

Sartwell [28] found that the incubation period for a number of diseases were log-normally dis- 
tributed, which is at odds with Eq. 5. Wilkening's Model A2 assumes a log-normal distribution, 

where to, the median incubation time, is obtained by solving the integral equation obtained from 
Eq. 5 

rtn 

However, while solving for to, Wilkening used a slightly different set of parameters: 8 = 0.1 1 day-', 
h = 8.84 x lop6 day-', tlug = 1 hour, t2  = 2.06 hour, and os = 0.542 day-'. The reason for the 
slight change in parameters as well as the difference between Models A2 and D is discussed below. 
This completes the specifi cation of the Model A2. 

The parameters in Eq. 5 and 8 were obtained by fi tting to the median incubation period as observed 
in experiments with non-human primates (performed by Henderson et a1 [13] and Friedlander et 
a1 [16]) and the data from the Sverdlovsk outbreak. However, the average dosage during the 
Sverdlovsk outbreak had to be inferred from atmospheric dispersion models and the probability of 
exhibiting symptoms (in infi nite time) given a dose of D spores. This was done by Wilkening [2]. 
If one uses Glassman's model [19] for the probability of infection, one obtains an average dose of 
2.4 spores. Alternatively, if one uses Eq. 11 (which is similar to Druett's [20] in form and was used 
by Brookmeyer in [18]; see App. A) one obtains a dose of 300 spores. Wilkening retained both 
the possibilities and incorporated them into separate models. Model D is based on a dose of 300 
spores at Sverdlovsk while A2 assumes 2.4 spores. 

In Fig. 1, we plot the median incubation period as predicted by Model A2 and D, as a function of 
dosage D. The dosage at Sverdlovsk, inferred as 2.4 spores (represented by 0 )  is used to derive 
the parameters for Model A2 (solid line); the alternative inference of 300 spores (represented by a 
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Figure 1. The median incubation period for anthrax as a function of dosage D. The solid line is 
Model A2 which assumes a dose of 2.4 spores at Sverdlovsk, while the dashed line is Model D, 
which assumes 300 spores. The solid symbols are median incubation periods which were obtained 
from experimental investigations or from the data from the Sverdlovsk outbreak. Symbols which are 
not filled denote experiments where the population of primates were too small to draw statistically 
meaningful results. The experiments by Brachman et a1 [l] are shown by vertical lines between 
symbols. In these tests, only the lower and upper bounds of the incubation period were provided. 
These were not used for determining model parameters and are only provided for reference. 



fi lled V) is used for Model D (dashed line). Studies by Henderson [13] with 2.1 x 16 and 7.6 x lo5 
spores (represented as fi lled 0)  and Friedlander with 3.5 x 16 spores (represented by fi lled A) 
were used to derive the parameters of both the models. Studies by Ivins et a1 [17] (unfi lled A) and 
Gleiser et a1 [15] (unfi lled 0) were conducted with very few primates and consequently are plotted 
only for reference. Brachman [ 11 conducted studies where he tried to simulate the effect of a low 
dose, received regularly over an extended period of time, as might be the case in a contaminated 
wool-sorting mill. The primates went through extended periods when they received no spores at 
all. The dose was calculated as the total number of spores breathed in and was generally low, 
between 1000 and 10,000 spores. We plot the ranges of incubation periods observed (only the 
range was provided) for various dosages for reference. 

We see that the tests by Gleiser et a1 and Ivins et a1 agree with both the models, which in turn agree 
with each other, except at the low dose limit. Brachman’s tests show median incubation periods 
which are at odds with the models’ predictions; however the mode of infection, that approximating 
a continuous, low-level infection process spread over days or months was very different from the 
quick (timescale of an hour) challenge one would expect in a BT attack. Both the models show a 
kink at D = lo3; this is because they are evaluated with a lower value of h ( = 1.3 x loe6 day-’ ) 
corresponding to a primate ID50 of 55,000 spores for comparison with primate anthrax challenge 
results at the high dose limit, while the low dose predictions were developed with a human ID50 of 
8600 spores for comparison with the inferences of the dose received at Sverdlovsk. To the best of 
the authors’ knowledge, this is the sum total of experimental data obtained from anthrax challenges 
of non-human primates where incubation times were measured. We have omitted a study by Klein 
et a1 [29] in which an incubation period increase was observed with increasing doses, because only 
one primate was subjected to a given dose, making the behavior statistically unreliable. 

3.3 Verification of the Inverse Problem 

In this section we verify the inverse problem formulated in Sec. 3.1. We use Wilkening’s Model 
A2, as described in Sec. 3.2, to simulate inhalational anthrax outbreaks of different sizes. Since 
the model provides a PDF of the incubation period, the result (time-series) of a simulated outbreak 
is stochastic i.e. it can be thought of as the sum of an expected outbreak behavior and a noise term. 
The same model is used for inference i.e. there are no systematic errors between the inference 
and simulation models. Thus the uncertainty in the inference is due to incomplete observation 
(a short time-series) and the effect of the noise. We investigate how the quality of the inference 
varies with the size of the outbreak and the dosage received. We also investigate whether a higher- 
resolution time-series spanning the same observation period performs signifi cantly better than a 
low-resolution one. 

In Table 1, we list time-series at 6-hour resolution; that is, the number of patients showing symp- 
toms collected over 6-hour intervals obtained from 6 simulated outbreaks. All infected patients 
received an identical dose D. N indicates the number of people infected who will develop symp- 
toms over time. z is the time of attack, measured in days prior to the exhibition of symptoms in the 
fi rst diagnosed patient. Thus, z is always a negative quantity. 
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In Figs. 2, 3, 4, 5,  6 and 7, we plot the resulting PDFs for {N , z ,D}  , for Cases A, B, C, D, 
E and F, per the time-series listed in Table 1. In Table 2, we summarize the MAP (maximum a 
posteriori) estimates and 90% confi dence intervals (CI) for N ,  z and logo(D) as obtained from 
the high-resolution time-series corresponding to 5 days of data. We see that the MAP estimate for 
N (the value of N corresponding to the peak of the PDF) is generally close to the correct value 
even with 3 days of data; increasing the length of the observation period to 5 days usually sharpens 
the PDF, thus showing a reduction in uncertainty with more data. This observation holds true for 
small attacks (N  = lo2) as well as for large ones (N = lo4). An exception is Case F, which will be 
discussed later. Using a 6-hour resolution time-series, as opposed to a daily one, has the effect of 
sharpening the PDFs. The time of attack z is also inferred quite easily, except for the small, low- 
dose Case A. Larger attacks (Case D, E and F) have sharp PDFs for z, as compared to Cases A, B 
and C. This is a direct consequence of the number of symptomatics in the time-series. The PDF for 
z is naturally affected by the temporal resolution of the time-series, since it decides the resolution 
with which PDF for z can be developed. However, the resolution does not automatically translate 
into a lower degree of uncertainty. While the PDFs developed from the 6-hour time-series are 
smoother that those developed from the 24-hour time-series, they are not always sharper/narrower. 
The dosage D is the hardest to infer. Figs. 2 ,3  and 4 show that it is virtually impossible to infer the 
dosage for small (N  = lo2) attacks - the PDFs spread over 5 orders of magnitude. Table 2 shows 
that the MAP estimates for dosage for the small attacks are incorrectly inferred. Large attacks 
(N  = lo4) allow the development of PDFs for D which are slightly more informative. 

Figs. 5,6 and 7 demonstrate how data from a partially observed outbreak (i.e. data from the fi rst 3-5 
days of an attack) may support multiple hypotheses, and at times, support the “wrong” hypotheses 
more than the correct one. Case D shows peaks in the PDF at N N 4 x lo3 and N N lo4. Peaks in 
the PDF for dosage (measured as loglo(D)) occur at 10 spores and between lo4 and lo5 spores. 
These two PDFs, taken together, indicate that the data could be generated from a smaller, high- 
dose attack or a larger, low-dose attack. For this particular case, the PDFs overwhelmingly indicate 
a large, low-dose attack, which is the correct characterization. A similar ambiguity is observed in 
Fig. 6. In both these cases, the higher-resolution time-series did rule out the alternative hypotheses. 
In Case F (Fig. 7; N = 104,z = -1.5,D = lo4), we observe a similar existence of 2 hypotheses, 
with data initially (Le. up to Day 5 )  supporting the wrong hypothesis (a larger, low-dose attack) 
far more than the correct one. Increasing the temporal resolution makes matters worse as the peak 
at the higher end in the PDF for dosage actually shrinks. We characterize the large low-dose attack 
approximately as N = 16 ,000 ,~  = -1 with a dosage of 10 spores. The evolution of this large, low- 
dose attack is plotted in Fig. 8. Over the fi rst 5 days of the outbreak’s evolution, the inferred low- 
dose attack behaves very similar to the actual attack (N = 104,7 = -1.5,D = 10 spores) though, 
as indicated by Fig. 7, the data supports the low-dose attack better. In Fig. 8, inset, we plot the 
evolution of both the attacks, along with the observed data (in symbols), over 10 days. It is clear 
that the large, low-dose attack, as inferred with 5 days of data, does not fi t the data at all, and 
would not be supported if we had a time-series that spanned 7-8 days. This is verifi ed by plotting 
the PDFs for N ,  T and loglo(D), developed from time-series 6 and 7 days long, in Fig. 7. However, 
such a long observation period would be irrelevant for consequence planning purposes. We stress 
that while a Bayesian analysis may identify competing hypotheses, the degree of belief assigned to 
each is determined by data. In a partially observed attack, this characterization may be completely 
erroneous, especially if the data is scarce. The only possible remedy is the use of informative 
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priors for N ,  z and/or D, not the broad uniform priors used in this study. In their absence, such 
ambiguities will remain and will have to be accounted for in the consequence management plans 
which use these inferences. How this might be done is beyond the scope of this study, but Sec. 5 
outlines a few possibilities. 

To summarize, solution of the inverse problem successfully provides N and z for small and large 
attacks. D can be inferred for large attacks. The PDFs are sharper for large attacks and for high- 
dose attacks. The effect of higher temporal resolution, which captures the evolution of the outbreak 
better, is generally to reduce the uncertainty caused by noise and to sharpen the PDFs. When work- 
ing with partially observed data, the Bayesian method may identify multiple hypotheses which are 
supported, to a larger or smaller extent, by the data. In some cases, e.g. Case F, the data might 
even support (initially) the wrong hypothesis, but the correct characterization is recovered as more 
data becomes available. This may be considered a proof of consistency of this inverse problem. 
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Figure 2. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case A, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,z ,D}  are 
{ lo2, -0.75,10°}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 3. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case B, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,z,D} are 
{IO’, -2.25, IO’}. Inferences are drawn, in both cases, with observation periods of 3 ,4  and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 4. PDFs for N (top), 7 (middle) and D (bottom) inferred from the time-series for Case C, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for { N , T , D }  are 
{ lo2, -2.25, I@}. Inferences are drawn, in both cases, with observation periods of 3,4 and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 5. PDFs for N (top), z (middle) and D (bottom) inferred from the timeseries for Case D, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The c o m t  values for {N,z,D} are 
{1@,-0.5, loo}. Inferences are drawn, in both cases, with observation periods of 3 , 4  and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 6. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case E, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,z ,D} are 
(104, -1.0, le}. Inferences are drawn, in both cases, with observation periods of 3 , 4  and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 7. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case F, 
as tabulated in Table 1. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,.r,D} are 
{lo4, -1.5, IO4}. Inferences are drawn, in both cases, with observation periods of 3 , 4  and 5 days' 
length (blue, red and black lines respectively). 
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Figure 8. The time evolution of Case F plotted over 5 days. The observed data is plotted as 
symbols. We plot the number of patients showing symptoms, as collected over 6-hour intervals, 
on the veltical axis. The black line shows the evolution of the average case of the N = 104,2 = 
-1.5,D = IO4 spores attack while the blue one plots the evolution of a large, low-dose attack, 
inferred from the PDFs in Fig. 7 as N = 16,00 ,~  = -1,D = 10 spores. We see that both the attacks 
behave very similarly over the first 5 days. Inset: We plot the evolution over 10 days. It is clear 
that the correct characterization (N = 104,2 = -1.5,D = IO4 spores) fits the observed data far better 
than the large, low-dose attack. 
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Table 1. The time-series as obtained from 6 different outbreaks, simulated with the parameters 
{ N , z , D }  as mentioned at the bottom of the table. The table has been divided into 24-hour sections, 
where the components of the time-series are summed up to produce the low-resolution time-series 
(24-hour resolution) used to investigate the effect of temporal resolution. 

time (days) 

0.0 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1 S O  
1.75 
2.0 
2.25 
2.50 
2.75 
3.0 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.0 

5.25 
5.50 

Case A 

1 
0 
0 
1 
2 
0 
1 
2 
1 
1 
2 
3 
2 
1 
1 
1 
2 
1 
1 
3 
1 
1 
1 

Case B 

1 
2 
1 
1 
2 
3 
2 
1 
1 
1 
3 
1 
1 
3 
1 
1 
1 
5 
4 
2 
1 
3 
1 

100 
-2.25 
100 

Case C 

1 
2 
1 
1 
2 
3 
3 
1 
2 
2 
3 
4 
2 
3 
2 
3 
2 
5 
5 
2 
1 
3 
5 

100 
-2.25 

10,000 

Case D 

7 
12 
39 
50 
77 
77 
98 
126 
162 
146 
148 
149 
163 
181 
162 
165 
177 
169 
217 
167 
182 
163 
188 

10,000 
-0.5 

1 

Case E 

2 
13 
18 
39 
38 
62 
81 
115 
129 
137 
140 
160 
190 
174 
181 
200 
199 
236 
201 
215 
217 
236 
207 

10,000 
-1.0 
100 

Case F 

6 
21 
25 
55 
86 
138 
155 
181 
206 
253 
286 
288 
298 
290 
3 27 
37 1 
339 
33 1 
327 
347 
319 
309 
298 

10,000 
-1.5 

10,000 
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Table 2. The MAP estimate and the 90% confidence intervals (in parentheses) for N ,  2 and 
Zoglo(D) as calculated from Figs. 2, 3, 4, 5 ,  6 and 7. Only the high-resolution time-series from 
Day 5 have been used to calculate the estimates and CI separately. The number in the curly brackets 
{} is the correct value. 

Case 

A 

B 

C 

D 

E 

F 

N 

70, (40.35 - 122.9) 
{100) 

{100) 

{100) 

{ 10,000) 

{ 10,000) 

{ 10,000) 

110, (65.8 - 148.5) 

150, (91.1 - 196) 

9800, (9460 - 10,370) 

10,200, (8263 - 10,849) 

18,000, (10,770 - 18,930) 

7 

-1.75, (-2.92 - -1.044) 
{ -0.75) 

-2.0, (-3.12 - -1.33) 
{ -2.25) 

-1.75, (-2.86 - -1.21) 
{ -2.25) 

-0.50, (-0.78 - -0.27) 
{ -0.50) 

-1.0, (-1.567 --0.60) 
{ - 1 .OO) 

-0.75, (-1.72 - -0.523) 
{ - 1.50) 

0.0, (0.18 - 4.16) 
(0) 

(2) 

(4) 

(0) 

(2) 

(4) 

0.00, (0.145 - 4.02) 

0.0, (0.153 - 4.11) 

0.00, (0.023 - 1.02) 

1.75, (0.921- 3.33) 

0.75, (0.158 - 2.02) 



4 Results 

In this section, we apply the inverse problem methodology developed in Sec. 3 to more realistic 
situations. We begin with tests in which we relax the assumption of people receiving a uniform 
dose; instead we allow N infected geographically-distributed people to receive dosages consistent 
with atmospheric dispersion, and focus on inferring a representative (average) dose 0. In Sec. 4.1, 
we use Wilkening’s Model A2 to simulate BT attacks and then infer its characteristics after an in- 
complete observation. An average dosage is inferred for the infected population. Then, in Sec. 4.2 
we use Wilkening’s Model D (see Sec. 3.2) to simulate the outbreak while Model A2 is used for 
inference. Infected people are assumed to receive the same dose. This introduces a systematic 
error in the inference which is unrelated to the incomplete nature of the observations/time-series; 
that is, even in the limit of infi nite data, the errors will not tend to zero. In Sec. 4.3 we relax the 
assumption of equal dosage and repeat the analysis in Sec. 4.1 while using Model D for conducting 
the BT attack simulations. In Sec. 4.4 we apply this inference technique to the Sverdlovsk outbreak 
of 1979. 

4.1 Variable Dosage Cases with Model A2 

In this subsection we relax the assumption that all the infected people receive the same dosage, but 
conduct the simulated attacks with Wilkening’s Model A2 as in Sec. 3.3. In order to obtain a re- 
alistic distribution of dosages in a geographically distributed population, we simulate an explosive 
point release of a quantity of spores at a height of 100 meters with a Gaussian plume model. This 
has the net effect of exposing different numbers of people to different dosage levels, as described in 
Appendix B. We see, from Fig. B.l, that given a quantity of spores, the number of people infected 
depends on the total population in the domain, the orientation of the plume and the population dis- 
tribution in the domain. A release does not lead to many infected people if the high concentration 
isopleths of the plume m i s s  the localized regions of high population densities. 

In Table 3 and 4 we list the time-series obtained from Cases RA, RB, RC and RD. We also list the 
cumulative dosage levels D0.0l,Do.25, D0.50~00.75 and 00.99. Thus 1 % of the population receives 
a dosage of 00.01 spores or less, 75% of the population less than 00.75 spores and 00.99 is very 
close to the maximum dosage. This is a measure of the width of the spectrum of dosages. In 
Fig. 9, we plot the inverse of the cumulative dose distribution i.e. the abscissa is the fraction of the 
population which receives a dosage equal or less than the the mantissa. Inset, we plot a histogram 
of the number of infected people (who will ultimately exhibit symptoms) in each dosage bin. 
We note that while the spectrum may easily span two orders of magnitude, about 80% of the 
infected people lie within a range of doses that span a decade. We will essentially try to estimate 
a representative number for this span, by fi tting the inverse model developed in Sec. 3.1, which 
assumes a constant dosage. This is a source of model error, and adds to the uncertainty caused by 
incomplete observation and the stochastic nature of the data. This model error is not expected to 
diminish with the availability of data and thus the one of the aims of this investigation is to quantify 
it. 

In Figs. 10,11,12 and 13 we plot the PDFs for { N ,   log^^(^)} as inferred from the time-series in 
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Table 3 and 4. In Table 5, we summarize the MAP estimates and the 90% CI for { N ,  ‘t , loglo(~)} 
, as obtained from the PDF shown in the fi gures. Only the PDFs from the time-series from Day 5 
have been used to calculate the MAP estimates and CIS. We see many of the behaviors observed 
in Sec. 3.3. Dosage is diffi cult to infer for all attacks (large confi dence intervals), while the 
time ‘t is easy for all cases. We can bound the size N of the attack quite accurately for all the 
cases, regardless of resolution of the time-series. We also plot the PDFs obtained from seven 
days of data for reference. In all cases the MAP estimates for N ,  obtained from 5 days of data 
are within 20% of the correct characterization. Further, the 90% CIS invariably bracket the true 
characterization. The MAP estimates obtained from the low and high-resolution time-series are 
similar. The 90% CIS obtained from the high-resolution time-series are generally slightly tighter, 
as a result of reduction in uncertainty due to stochastic noise - however, since this reduction is 
rather muted, the contribution of stochastic noise to uncertainty in the inference is rather modest, 
compared to model error. Thus while the model errors incurred by using an inverse problem 
derived under the assumption of constant dosage are not negligibly small, the current formulation 
may be suffi cient for placing bounds on the characterization of the BT attack. 
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Table 3. The time-series as obtained from four outbreaks simulated using Wilkening's Model 
A2, with the parameters {N , z ,D}  as mentioned at the bottom of the table. The table has been di- 
vided into 24-hour sections, where the components of the time-series are summed up to produce 
the low-resolution time-series (24-hour resolution) used to investigate the effect of temporal reso- 
lution. The infected patients receive a spectrum of dosages, denoted by the mean dosage B and 
~0.01,~0.25,Do.50,00.~~ and D0.99. x % of the population receives a dosage of D, or less. The 
time-series are continued past Day 5 to Day 8 in Table 4. 

Time (days) 

0.0 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1 S O  
1.75 
2.0 

2.25 
2.50 
2.75 
3.0 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.0 

Do.01 
00.25 

D0.50 
00.75 

Case RA 

4 
8 
6 
11 
6 
9 
8 
17 
13 
9 
3 
6 

318 

2912.8 
-1.5 

5.3 x 101 
1.23 x 103 
2.91 x 104 
4.12 x io4 
8.28 x 104 

Case RB 

3 
2 
5 
12 
13 
26 
28 
48 
54 
64 
69 
52 
81 
61 
88 
105 
68 
65 
88 
87 
76 

2989 

2776.8 
6.5 x 10' 

-1.5 

1.15 x 103 
2.59 x io4 
3.95 x io4 
8.69 x io4 

Case RC 

1 

6 
10 
6 
10 
8 
17 
11 
16 
15 
13 
19 
14 
20 
22 
7 
8 

454 
-1.25 

13,870.5 
1.39 x lo2 
3.96 x 103 
1.34 x io4 
1.91 x io4 
5.79 x io4 

Case RD 

9 
8 
8 

23 
34 
46 
69 
84 
118 
115 
129 
153 
125 
163 
134 
156 
175 
129 
144 
154 
129 

4537 
- 1.25 

13,150.4 
1.32 x lo2 
3.47 x io3 
1.24 x 104 
1.87 x io4 
5-91 x 104 



Table 4. Continuation of Table 3 beyond Day 5. The time-series as obtained from four outbreaks 
simulated using Wilkening’s Model A2, with the parameters {N , z ,D}  as mentioned at the bottom of 
the table. The table has been divided into 24-hour sections, where the components of the time-series 
are summed up to produce the low-resolution time-series (24-hour resolution) used to investigate 
the effect of temporal resolution. The infected patients receive a spectrum of dosages, denoted by 
the mean dosage and D0.01, D0.5, D0.507D0.75 and D0.99. x % of the population receives a dosage 
of 0, or less. 

Time (days) 

5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.0 

7.25 
7.50 
7.75 
8.00 
N 

D 
Do.01 

00 .25  

Do.50 

z - 

00.75 

D0.99 

~ 

Case RA 

9 
8 
10 
8 
8 
7 
7 
6 
7 
4 
6 
3 

318 
-1.5 

2912.8 
5.3 x 101 
1.23 x 103 
2.91 x 104 
4.12 x 104 
8.28 x 104 

Case RB 

69 
90 
78 
85 
83 
55 
71 
75 
59 
67 
63 
59 

2989 
-1.5 

2776.8 
6.5 x lo1 
1.15 x io3 
2.59 x 104 
3.95 x 104 
8-69 x 104 

Case RC 

7 
16 
8 
11 
12 
14 
10 
7 
7 
6 
6 
10 

454 
-1.25 

13,870.5 
1.39 x lo2 
3.96 x io3 
1.34 x io4 
1.91 x 104 
5.79 x io4 

Case RD 

128 
108 
147 
121 
106 
113 
90 
100 
95 
85 
75 
76 

4537 
-1.25 

13,150.4 
1.32 x lo2 
3.47 x 103 
1.24 x 104 
1.87 x io4 
5.91 x 104 
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Figure 9. The inverse cumulative distribution of the dosages. The abscissa is the fraction of the 
population which receives a dosage equal or less than the ordinate. On top we plot the lowdose 
attacks, Case RA and RB, where the plume missed most of the population centers. Below, are the 
high-dose attacks, Case RC and RD. The attacks on the left are the smaller attacks, conducted with 
a lower population density. Inset: we plot the histogram containing the number of people in each 
dosage bin. We see that while the histogram has a long tail, the bulk of the population receives doses 
which span a spechum a decade wide. 



Figure 10. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case 
RA, as tabulated in Tables 3 and 4. The low-resolution time-series (%-hour resolution) is used 
for the PDFs plotted on the left, while the original one is on the right. The c o m t  values for 
{ N , z , l o g , , , ( q ) )  are (161,-0.75,3.56}. Inferences are drawn, in both cases, with observation pe- 
riods of 3,4 and 5 days’ length (blue, red and black lines respectively). PDFs develop from 8 days 

39 of data are also plotted for reference. 
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Figure 11. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case 
RB, as tabulated in Tables 3 and 4. The low-resolution time-series (%-hour resolution) is used 
for the PDFs plotted on the left, while the original one is on the right. The m t  values for 
{N,z,log,o@)} are (1453,-0.75,3.563}. Inferences are drawn, in both cases, with observation 
periods of 3, 4 and 5 days' length (blue, red and black lines respectively). PDFs develop from 8 
days of data are also plotted for reference. 40 



Figure 12. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case. 
RC, as tabulated in Tables 3 and 4. The low-resolution time-series (24-hour resolution) is used 
for the PDFs plotted on the left, while the original one is on the right. The correct values for 
{N,z,log,,,(q} are (453,-0.75,4.229}. Inferences are drawn, in both cases, with observation 
periods of 3, 4 and 5 days' length (blue, red and black lines respectively). PDFs develop from 8 
days of data are also plotted for reference. 41 



Figure 13. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case 
RD, as tabulated in Tables 3 and 4. The low-resolution time-series (24-hour resolution) is used 
for the PDFs plotted on the left, while the original one is on the right. The correct values for 
{N,?,loglo(D)} are (4453, -0.5,4.22}. Inferences are drawn, in both cases, with observation pi- 
nods of 3 ,4  and 5 days' length (blue, red and black lines respectively). PDFs develop from 8 days 
of data are also plotted for reference. 42 



Table 5. The MAP estimate and the 90% confidence intervals (in parentheses) for N ,  z and 
Zoglo(D) as calculated from Figs. 10, 11, 12 and 13. The time-series from Day 5 have been used to 
calculate the estimates and CI. The number in the curly brackets {} is the correct value. 

RA (6-hr resolution) 
RA (24-hr resolution) 

RB (6-hr resolution) 
RB (24-hr resolution) 

RC (6-hr resolution) 
RC (24-hr resolution) 

RD (6-hr resolution) 
RD (24-hr resolution) 

N 

400, (228.8 - 581) 
400, (225.8 - 580.2) 

(318) 

4100, (2288 - 4444) 
2400, (2226 - 4304) 

{ 2989) 

700, (422 - 925) 
700, (381.7 - 869.4) 

(454) 

4200, (3867 - 4895) 
4200, (3894 - 5143) 

(4453) 

z 

-1.5, (-1.93 - -0.714) 
-1.0, (-1.86 - -0.105) 

{-1.5) 

-1.5, (-1.84 --0.559) 
-1.0, (-2.80--0.133) 

{-1.5) 

-1.5, (-1.95 - -0.706) 
-1.0, (-1.85 - -0.104) 

{ -1.25) 

-1.5, (-1.97 - -1.28) 
-1.0, (-1.58 - -0.083) 

(-1.25) 

3.0, (0.49 - 4.12) 
3.0, (0.48 - 4.12) 

(3.46) 

4.00, (0.714 - 4.249) 
4.00, (1.098 - 4.439) 

(3.44) 

4.0, (0.3 - 4.33) 
4.0, (0.27 - 4.43) 

(4.14) 

4.25, (3.8 - 4.7) 
4.00, (3.8 - 4.7) 

(4.11) 

43 



4.2 Uniform Dosage Cases with Model D 

Given the poor characterization of inhalational anthrax (see Sec. 3.2), it is unlikely that a particular 
model of anthrax (for instance, the one used for inferring the attack characteristics) will be an 
accurate representation of its actual behavior in an infected population. Thus in the the interest 
of realism, one must consider the possibility of there existing a systematic difference (perhaps 
small) between the actual evolution of the attack and the model used to interpret the observed data. 
Since experimental results support Wilkening’s Model D (Eq. 15) to the same extent as Model A2 
(FQ. 16), in this subsection we will conduct BT attacks with Model D while inferring them using 
Wilkening’s Model A2. In Table 6 we list the time-series obtained from 6 different simulations, 
conducted using Wilkening’s Model D. As in Table 1, the time-series have a 6-hour resolution, 
with 24-hour demarcations to indicate the components that have to be summed to obtain time- 
series with 24-hour resolution. The values of N ,  z and D are mentioned at the bottom of the table. 

In Figs. 14, 15, 16, 17, 18 and 19 we plot the PDFs for { N , T , D }  for Cases G, H, I J, K and L 
per the time-series in Table 6. In Table 7, we summarize the MAP estimates and 90% confi dence 
intervals (CI) for N ,  ‘t and loglo(D) as obtained from the high-resolution time-series corresponding 
to 5 days of data. We see that many of the characteristics of the inferences in Sec. 3.3, in particular 
the non-unique/ambiguous characterizations, are reproduced here too. MAP estimates of N are 
within a factor of 2 of the correct answer, regardless of the size of the BT attack. MAP estimates 
of z are consistently off by about a day. The dosage D is impossible to infer for small attacks. The 
net effect of higher-resolution time-series is to generate smoother PDFs. The inferences for Cases 
J and K show support for two different characterizations-a small, high-dose attack and a larger 
low-dose attack. In both cases the dual characterization disappears by the time the time-series 
incorporates Day 5 data. We also plot the PDFs for Case K obtained from 8 days of data using the 
6-hour resolution time-series; they are close to the true characterization, except in case of dosage. 

The systematic difference between Wilkening’s Model D (used for simulated attacks) and Model 
A2 (used for inference) explain some of the mis-characterizations. In Fig. 1 we see that Model 
D predicts longer median incubation periods. Thus, given identical initial conditions, Model D 
predicts a slower increase in the epidemic curve vis-a-vis Model A2. Consequently, when data 
generated by Model D is interpreted using Model A2 (during the inference process), the slower 
increase is accommodated by reducing the number of index cases; Model A2 will consistently 
underestimate the size of the outbreak. The dosage and time of attack will also be “adjusted” 
by Model A2 to fi t the data. This is quite clear in the large attacks, Cases K and L. The low- 
resolution time-series supports two characterizations for Case K-a small, high-dose attack or 
a larger low-dose attack, both about 1 day before the first exhibition of symptoms. The high 
resolution time-series also supports a dual characterization-a larger attack, 0.75 days before the 
fi rst exhibition of symptoms or a smaller attack, 1.5 days prior to symptoms, both at a very high 
dose. However, when a time-series 8 days long is used, we recover the correct characterization. 
In Fig. 20, we plot the evolution of the outbreak as predicted by Model A2 for various values of 
{ N ,  z ,D}  . With {N,‘ t ,D} = { lo4, -0.75, lo2}, the correct values, we obtain the solid black line. 
It is signifi cantly different from the time-series (plotted with symbols) which was generated using 
Model D, especially if the long term evolution of the outbreak is considered. Thus it is unlikely 
that Model A2 will correctly characterize the attack. With { N , z , D }  = (5000, -1.6,15,848}, the 
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approximate MAE' estimate after 5 days of data, we obtain the blue line. The fi t to the observed 
time-series is moderate, though once a longer time-series (8 days long) is considered, it becomes 
untenable. Using { N ,  z, D} = { 10,500, -0.75, l}, the MAP estimate after 8 days, we obtain the 
dashed line which shows a good fi t only if the latter part of the outbreak in considered. While 
the MAP estimates for N and z are very close to the true value, D is not and the consequently 
the closeness of the MAP estimates of N and z to the true values must be considered fortuitous. 
This discrepancy is due to the difference between Models A2 and D and cannot be overcome by 
more data (Le., a longer time-series). We believe that a similar argument explains the discrepancy 
between the characterization and simulation as seen in Fig. 19, where the inferred attack size is a 
factor of 2 smaller than the true one and the time of attack is a day too late. 

Model A2 and Model D are perhaps the two most accurate models of the evolution of inhalational 
anthrax. Even under model uncertainty, time-series of 3-5 day observation periods generate infer- 
ences which may be of use in consequence management. Regardless of the size of the attack, the 
MAP estimate for N is within a factor of 2 of the true fi gure. z is usually inferred a day too late. 
This particular behavior is true only when Model D is used for the simulation and Model A2 is 
used for inference. In case the models were switched i.e., the BT attacks were simulated by Model 
A2 and inferred by Model D, the inferences of the attack's size would be overestimates (though 
still within a factor of 2) and z would be a day too early. Dosages pose the stiffest challenge and 
are impossible to infer for small attacks (N  = 100). These general observations hold true if all the 
infected people receive the same dosage D (as might be expected for an aerosol release in a closed 
environment). In the next subsection, we consider variable dosages. 
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Table 6. The time-series as obtained from six outbreaks simulated using Wilkening’s Model D, 
with the parameters { N , z , D }  as mentioned at the bottom of the table. The table has been divided 
into 24-hour sections, where the components of the time-series are summed up to produce the low- 
resolution time-series (24-hour resolution) used to investigate the effect of temporal resolution. All 
infected patients receive the same dosage of D spores. The time-series for Case K, beyond Day 5 ,  
is {173,187,170,181,170,166,164,152,158,150,129,139}. This is used later in the text. 

Case H 

1 
0 
0 
1 
3 
0 
1 
2 
1 
1 
2 
3 
2 
1 
1 
1 
2 
1 
1 
3 
1 
1 
1 

time (days) 

0.0 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1 S O  
1.75 
2.0 

2.25 
2.50 
2.75 
3.0 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.0 

5.25 
5.50 

N 

D 
z 

Case I 

1 
1 
3 
1 
3 
1 
1 
4 
3 
3 
4 
3 
3 
1 
1 
1 
1 
2 
1 
3 
1 
2 
0 

Case G 

1 
0 
1 
2 
1 

1 
1 

100 
-1.75 

1 

Case J 

1 
2 
20 
34 
65 
63 
84 
114 
148 
143 
145 
151 
164 
185 
165 
167 
182 
181 
217 
168 
187 
168 
191 

10,000 
-0.75 

1 

Case K 

6 
10 
42 
53 
88 
100 
116 
151 
204 
183 
181 
182 
189 
207 
177 
181 
192 
185 
215 
174 
187 
173 
187 

10,000 
-0.75 
100 

Case L 

2 
22 
66 
128 
153 
21 1 
224 
237 
266 
292 
274 
273 
263 
25 1 
258 
235 
214 
210 
205 
222 
200 
196 
196 

10,000 
-0.75 

10,000 
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Figure 14. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case G, 
as tabulated in Table 6. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for (N,.r,D} are 
{lo’, -1.75, loo}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 15. PDFs for N (top), T (middle) and D (bottom) in feed  from the time-series for Case H, 
as tabulated in Table 6. The low-resolution timeseries (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,T,D} are 
{ 102,-0.75, Id}. Inferences are drawn, in both cases, with observation periods of 3 ,4  and 5 days’ 
length (blue, red and black lines respectively). 
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Figure 16. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case 
I, as tabulated in Table 6. The low-resolution time-series (%-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The m m t  values for { N , z , D }  are 
{ lo2, -0.75,1@}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 days' 
length (blue, red and black lines respectively). 
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Figure 17. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case J, 
as tabulated in Table 6. The low-resolution timeseries (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for { N , z , D }  are 
{ lo4, -0.75,10°}. Inferences are drawn, in both cases, with observation periods of 3 ,4  and 5 days' 
length (blue, red and black lines respectively). 
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Figure 18. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case K, 
as tabulated in Table 6. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N , z ,D}  are 
{IO4, -0.75, Id}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 days' 
length (blue, red and black lines respectively). 
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Figure 19. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case L, 
as tabulated in Table 6. The low-resolution time-series (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for { N , z , D )  are 
{ 104, -0.75,1@}. Inferences are drawn, in both cases, with observation periods of 3 ,4  and 5 days' 
length (blue, red and black lines respectively). 
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Figure 20. Evolution of Case K as predicted by Model A2 (used in inference) with various ini- 
tial values of { N , z , D }  . The symbols are the data that constitute the time-series Case K in Ta- 
ble 6. Using { N , z , D }  = {1@,-0.75,1@}, we obtain the solid black line. Using {N , z ,D}  = 
{5OOO,-1415,848). the MAP estimate after 5 days of data, we obtain the blue line. Inset: Using 
{N , z ,D}  = {lO,SoO,-O.75, l}, the MAP estimate after 8 days, we obtain the dashed line which 
shows a good fit only if the latter part of the outbreak in considered. 
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Table 7. The MAP estimate and the 90% confidence intervals (in parentheses) for N ,  T and 
Zoglo(D) as calculated from Figs. 14, 15, 16, 17, 18 and 19. Only the high-resolution time-series 
from Day 5 have been used to calculate the estimates and CI separately. The number in the curly 
brackets {} is the correct value. 

Case 

G 

H 

I 

J 

K 

L 

N 

90, (53.75 - 132.5) 
{100) 

{100) 

(100) 

{ 10,000) 

{ 10,000) 

{ 10,000) 

70, (41.75 - 123.2) 

55, (53.46 - 147.7) 

10,500, (9678 - 10,960) 

4,900, (4807 - 5478) 

5,600, (5,502 - 5,713) 

z 

-1.75, (-2.98 - -1.15) 
{ - 1.75) 

-1.75, (-2.98 - -1.09) 
{ -0.75) 

-2.25, (-3.25 --1.51) 
{ -0.75) 

-0.50, (-0.75 - -0.27) 
{ -0.75) 

-1.5, (-1.73 - -0.70) 
{ -0.75) 

-1.25, (-1.725 - -1.05) 
{ -0.75) 

0.0, (0.15 - 4.09) 
(0) 

(2) 

14) 

(0) 

(2) 

(4) 

0.00, (0.17 - 4.195) 

4.5, (0.169 - 4.61) 

0.00, (0.018 - 0.49) 

4.3, (0.077- 4.483) 

4.5, (4.42 - 4.687) 



, 

4.3 Variable Dosage Cases with Model D 

In this subsection we relax the assumption that all the infected persons receive the same dosage 
but conduct the BT attacks in the same manner as in Sec. 4.2 i.e., with Wilkening’s Model D 
with the incubation period given by Eq. 15. A realistic distribution of spores among an infected 
population is obtained in a manner identical to the one described in Sec. 4.1. Inferences are done 
with Wilkening’s Model A2 Le., with an incubation period given by Eq. 16.. 

In Table 8, we list the time-series obtained from Cases M, N, 0 and P. We also list the cumulative 
dosage levels DO.01,~0.25,DO.50,~0.~5 and D0.99. In Figs. 22, 23, 24 and 25 we plot the PDFs 
for { N ,  z, loglo(D)} as inferred from the time-series in Table 8. In Table 9, we summarize the 
MAP estimates and the 90% CI for { N ,  z, loglo(D)} , as obtained from the PDF shown in the 
fi gures. Only the PDFs from the time-series from Day 5 have been used. We see much the same 
behavior as in Sec. 4.2: the MAP estimate for N is within a factor of two of the true result and 
z is estimated a day too late. Further, N is underestimated, per the explanation in Sec. 4.2. The 
effect of the higher-resolution time-series is again rather muted; the systematic model errors and 
the approximation caused by fi tting a constant dosage model to variable dosage data overwhelm 
the reduction in uncertainty (due to noise) that the higher-resolution data achieves. As observed 
before, dosage is diffi cult to estimate for the small lower-dose attack. In Cases N and 0, we also 
see dual characterizations of the attack. 
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Table 8. The time-series as obtained from four outbreaks simulated using Wilkening’s Model 
D, with the parameters { N , T , D }  as mentioned at the bottom of the table. The table has been di- 
vided into 24-hour sections, where the components of the time-series are summed up to produce 
the low-resolution time-series (24-hour resolution) used to investigate the effect of temporal reso- 
lution. The infected patients receive a spectrum of dosages, denoted by the mean dosage and 
D0.01 ,Do.25,Do.5o,D0.75 and D0.99. x % of the population receives a dosage of D, or less. 

Time (days) 

0.0 
0.25 
0.50 
0.75 
1 .oo 
1.25 
1 S O  
1.75 
2.0 

2.25 
2.50 
2.75 
3.0 

3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.0 

5.25 
5.50 

N 

D 
Do.01 

7 
- 

00.25 
D0.50 
00.75 
D0.99 

Case M 

1 
1 
0 
1 
3 
2 
2 
1 
2 
2 
4 
2 
3 

4 
0 

161 
-0.75 

3603.5 
3.41 x lo2 
1.99 x io3 
3.34 x 103 
4.79 x 103 
9.17 x 103 

Case N 

1 
8 

20 
16 
9 
18 
28 
30 
37 
27 
41 
39 
34 
32 
25 
33 
27 
33 
33 
23 
23 
25 
25 

1453 

3660.77 
2.65 x lo2 

-0.75 

2.13 x io3 
3.5 x io3 
4.8 x 103 
9.51 x io3 
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Case 0 

1 
5 
6 
13 
12 
14 
13 
13 
17 
15 
17 
14 
9 
14 
16 
12 
14 
11 
6 
11 
15 
7 
6 

453 
-0.75 

16,941 
3.1 x lo2 
9.8 x io3 
1.65 x 104 
2.09 x io4 
6.74 x 104 

Case P 

3 
14 
36 
81 
77 
94 
123 
132 
129 
159 
126 
149 
131 
129 
136 
100 
125 
104 
110 
106 
90 
80 
101 

4453 
-0.5 

16,532 
3.0 x lo2 

9.45 x 103 
1.57 x 104 
2.07 x 104 
6-51 x 104 

. 
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Figure 21. The inverse cumulative distribution of the dosages. The abscissa is the fraction of the 
population which receives a dosage equal or less than the the ordinate. On top we plot the lowdose 
attacks, Case M and N, where the plume missed most of the population centers. Below, are the 
high-dose attacks, Case 0 and P. The attacks on the left are the smaller attacks, conducted with a 
lower population density. Inset: we plot the histogram containing the number of people in each 
dosage bin. We see that while the histogram has a long tail, the bulk of the population receives 
doses which span a specbum a decade wide. 



Figure 22. PDFs for N (top), T (middle) and D (bottom) inferred from the timeseries for Case M, 
as tabulated in Table 8. The low-resolution time-series (&hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for {N,z,log,,(Q} 
are { 161,-0.75,3.56}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 
days’ length (blue, red and black lines respectively). 
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Figure 23. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case N, 
as tabulated in Table 8. The low-resolution timeseries (24-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The m m t  values for {N, 2, loglo(q} are 
{ 1453, -0.75,3.563}. Inferences are drawn, in both cases, with observation periods of 3.4 and 5 
days’ length (blue, red and black lines respectively). 
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Figure 24. PDFs for N (top), T (middle) and D (bottom) inferred from the time-series for Case 0, 
as tabulated in Table 8. The low-resolution time-series (%-hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The comect values for {N,z,log,@)} 
are (453,-0.75,4.229}. Infemnces are drawn, in both cases, with observation periods of 3,4 and 
5 days' length (blue, red and black lines respectively). 
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Figure 25. PDFs for N (top), z (middle) and D (bottom) inferred from the time-series for Case P, 
as tabulated in Table 8. The low-resolution timeseries (24hour resolution) is used for the PDFs 
plotted on the left, while the original one is on the right. The correct values for { N , T , I o g # ) }  
are {4453, -0.5,4.22}. Inferences are drawn, in both cases, with observation periods of 3,4 and 5 
days' length (blue, red and black lines respectively). 
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Table 9. The MAP estimate and the 90% confidence intervals (in parentheses) for N ,  z and 
Zoglo(D) as calculated from Figs. 22, 23, 24 and 25. Only the time-series from Day 5 have been 
used to calculate the estimates and CI. The number in the curly brackets {} is the correct value. 

Case 

M (6-hr resolution) 
M (24-hr resolution 

N (6-hr resolution) 
N (24-hr resolution 

0 (6-hr resolution) 
0 (24-hr resolution) 

P (6-hr resolution) 
P (24-hr resolution) 

N 

170, (130.1 - 243.9) 
170, (124.9 - 238.9) 

W 1 )  

760, (722 - 945.5) 
760, (699.6 - 887.8) 

{ 1453) 

330, (301 - 709.7) 
330, (301.9 - 710) 

(4531 

2800, (2726 - 2992) 
2800, (2726 - 2998) 

(4453) 

z 

-1.5, (-2.3 - -0.864) 
-2.0, (-3.7 - -0.265 ) 

{ -0.75) 

-1.75, (-2.09 - -1.359) 
-2.00, (-3.883 - -1.026) 

{ -0.75) 

-1.75, (-2.24 - -1.47) 
-2.00, (-3.90 - -1.13) 

{ -0.75) 

-1.5, (-1.72 - -1.272) 
-2.0, (-3.90 - -1.13) 

{ -0.75) 

2.0, (0.235 - 3.82) 
2.5, (0.263 - 3.87) 

(3.56) 

4.25, (1.106 - 4.722) 
4.50, (4.096 - 4.724) 

(3.56) 

4.5, (0.99 - 4.72) 
4.5, (1.03 - 4.72) 

(4.23) 

4.5, (4.275 - 4.725) 
4.5, (4.275 - 4.725) 

(4.22) 
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Variable 

N 

loglo(D) 
z 

4.4 The Sverdlovsk Incident of 1979 

MAP estimate 90 % confi dence interval True fi gure 

50 (41.15 - 66.49) 75 - 80 
-2 (-7.81 - -1.09) -2 
1.3 (0.178 - 3.5) 2.4,300, 100-2000 

It is suspected that on April 2"d, 1979, there was an accidental release of a high-grade anthrax 
formulation from a military facility in Sverdlovsk, Russia [3]. 70 people are believed to have 
died [3, 1 I] and it has been estimated that 80 were infected [l l] .  This estimate was obtained under 
the assumption that all the fatalities were due to inhalational anthrax. The Sverdlovsk outbreak 
provides a good real-world test case for our inference procedure. Wilkening [2] estimates that the 
average dosage was either around 2-3 spores, based on his Model A, or around 300 spores based 
on his Model D, which is similar to the competing risks model of Brookmeyer [18]. Meselson [3] 
estimates 100-2000 spores as the likely dosage. 

The Sverdlovsk case presents signifi cant challenges. It was a low-dose attack infecting fewer than 
a hundred people. The fi rst patient was detected on April dh, 1979. The time-series of symptom 
onset is available on a day-by-day basis in [30]. Around April 12fi, tetracycline was administered 
around Sverdlovsk; around the middle of April people were vaccinated. These prophylactic mea- 
sures probably cured a few and increased the incubation period in others. Further, the data we 
work with almost certainly contains some recording errors. Also, the data was reconstructed from 
a variety of sources; public health records had been confi scated by the KGB [3]. Noisiness of the 
data, the effect of prophylaxis (which is not modeled in our inference process), and the small size 
of the infected population are expected to stress our inference process. 

In Fig. 26 we plot the inferences for N ,  z and loglo(D), based on the data in [30]. Model A2 is used 
for inference. The data was collected on a daily basis for 42 days, the duration of the outbreak. 
The time-series used in this study is { 2 ,0 ,4 ,3 ,2 ,5 ,7 ,  3 ,4 ,3 ,4 ,5 ,0 ,  1,0,0, 1, 2, 1, 1, 0, 1 ,0 ,2 ,  
0, 1, 0, 0, 0, 0 ,2 ,0 ,0 ,2 ,  1, 1,0, 1 ,2 ,0 ,0 ,  1). The inference for N centers around 50 consistently, 
though the earlier inferences underestimate N .  The time of release z was easy to infer. The PDFs 
for dosage are unclear. The data in [30] shows a long tail after April lSth, roughly after 5-6 days 
of the start of prophylaxis, when the antibiotics might be expected to affect the progress of the 
disease. Since we do not model the effect of prophylaxis, we do not include data beyond April 
18*. However, we are certainly within a factor of two of the correct value of N even with 9 days 
of data. In Table 10, we summarize the MAP estimates and confi dence intervals developed from 9 
days of data. 

Table 10. MAP estimates and 90 % CI for the inferences for the Sverdlovsk incident, after 9 days 
of data. The average dosage at Sverdlovsk is unknown. Wilkening [2] calculated it to be 2.4 spores 
or 300 spores, while Meselson et a1 [ 3 ]  estimated it to be 100-2000 spores. 
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figure 26. PDFs for the N, T (above) and log,o(dose) (below), for the Sverdlovsk attack. Blue, 
red and black lines denote inferences that use 3.5 and 9 days of data. 
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5 Conclusions 

We have developed a promising and extensible approach to characterizing a BT attack, Le., esti- 

D based on a time-series of people developing symptoms. In this particular study, we have used 
aerosolized anthrax as the pathogen. The time-series used in this study have a resolution of 6 hours 
and 24 hours. The problem of characterizing the attack is posed as a Bayesian inverse problem 
and the inferred characteristics are provided as PDFs for { N ,  z, loglo(D)} . The forward model 
used in the inversion was Wilkening’s Model A2 [2], which is a dose-dependent incubation pe- 
riod distribution for inhalational anthrax. We have empirically demonstrated the consistency of 
this method-i.e., if the observed time-series and the model prediction differ only by a stochas- 
tic noise, then, given increasing amounts of data, the PDFs sharpen and the correct values of 
{ N ,  z , log lo (~ )}  are recovered. This was verifi ed by conducting simulated attacks with Wilken- 
ing’s Model A2 wherein all infected people were given the same dosage. It was observed that in 
case of a partially observed outbreak, i.e., with time-series 3-5 days long, the MAP estimates for 
N and z are largely correct, regardless of the size of the attack. However, it is difficult to infer 
dosage for small (N = 100) attacks. The use of a higher-resolution time-series (6-hour resolution) 
generally led to smoother and mostly narrower PDFs; thus, better capturing the structure of the 
data results in a reduction of uncertainty due to noise and the short time-series. We also notice 
that partial observation can lead to non-unique characterizations-multimodal PDFs that indicate 
that the scarce data may support very different characterizations. The inverse problem, formulated 
under the assumption of constant dosage, was used to characterize BT attacks where the infected 
population received a spectrum of doses, as obtained from an atmospheric dispersion model. This 
incurs model errors in addition to errors caused by incomplete observation and stochastic noise. 
However, the 90% CI obtained from 5 days of data invariably bracketed the true characterization. 
The effect of a high-resolution time-series on the reduction of uncertainty in the inferences was 
rather muted. Thus while the model errors incurred by applying a constant-dose model to a vari- 
able dose case were not negligible, the inverse problem was completely successful in bounding the 
characterization. 

i mating the number of people infected N ,  the time of the attack z, and the average dosage received 

* 

Given the paucity of experimental data on the incubation period of anthrax, it would be unrealis- 

the particular straidpreparation of the pathogen, should an anthrax-based BT attack occur. We 

tematic, as opposed to stochastic, difference between the forward model and the phenomenon that 
produces the time-series-by simulating the BT attacks using Wilkening’s Model D. Models A2 
and D reproduce experimental results in non-human primates best and thus can be considered to 
be closest approximations to the true behavior of inhalational anthrax. The introduction of the 
systematic difference degrades the inferences. Model A2 predicts slightly shorter incubation pe- 
riods; when “fi tted” to data generated by Model D (which predicts an epidemic curve that rises 
in time slower than A2’s predictions), the inference method compensates by underestimating N .  
The time of attack is estimated to be about a day too late. Dosage is diffi cult to estimate for small 
attacks. These general observations hold true when the assumption of uniform dosage is relaxed. 
The MAP estimates of N are within a factor of two of the true fi gure. Here again the effect of a 
higher-resolution time-series is rather muted-the errors introduced by the difference in models 

# tic to expect that the forward model in any inference procedure would be an accurate model for 

incorporate this reality in this study. We address the issue of “model uncertainty”-that of a sys- 6 
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Table 11. A summary of the effect of an attack’s properties and the data collection methodology 
on the quality of inferences of attacks where infected people receive a spectrum of doses i.e. Cases 
RA, RB, RC RD, M, N, 0, P and the Sverdlovsk incident of 1979. 

Attack’s and 
time-series 
properties 

Size of 
attack 

Resolution of 
observed data 

Discrepancy 
between attack 
and inference 

models 

N 
Bounded successfully 

regardless of size. 

Neither MAP estimates 
nor CIS much 

affected by higher 
resolution. 

MAP estimate within 
a factor of 2 

(underestimate) 

Inferred characteristics 

‘I: 

MAP estimate within 
time-series resolution, 

irrespective of size. 

MAP estimates within 
time-series resolution; 
consequently, higher 

resolution has a 
favorable effect. 

MAP estimate a day too 
late (consistently) 

lO&o(D) 
MAP accurately estimated 

but CIS are large, 
irrespective of size 

of attack. 

MAP estimates more accurate 
with higher resolution; CIS 
not signifi cantly affected 

MAP estimates close, except 
for small, lower-dose attacks; 

CIS are wide. 

and the uniform dose assumption in the forward model completely dominate the noise that could 
be reducedhectifi ed by higher-resolution data. Non-unique characterizations were also observed; 
with the availability of more data, the PDFs became unimodal. However, due to the systematic 
errors introduced by “model uncertainty,’’ the correct characterization was not recovered exactly. 
We summarize these in Table 11. 

We fi nally applied the Bayesian approach to the outbreak at Sverdlovsk. The outbreak was small 
(about 80 were infected, and 70 died) and due to prophylaxis during the outbreak, the course of the 
disease was modifi ed. Using pre-prophylaxis data, our MAP estimate of N was 50 after 9 days of 
(daily) data. The time of attack was estimated to be -2, which agrees with the generally accepted 
reconstruction [3]. The dosage, as might be expected from the small size, was indeterminate. 

Due to the Bayesian nature of the approach, the method is extensible; Le., non-temporal aspects 
of the phenomenon being inferred can be incorporated via prior distributions. In the absence of 
such additional information, the present inferences were drawn using broad uniform priors. One 
of the easiest ways of improving the effi ciency of this method is to construct informative priors 
for N and ‘I: from data collected by syndromic surveillance systems [5 ] .  Priors drawn from such a 
source will invariably favor values of N higher than the true one and may serve as a counterbalance 
to our Bayesian methods that tend to underestimate N .  Further, our approach is purely temporal; 
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while it exploits the rise of the epidemic curve, it completely ignores the spatial distribution of the 
symptomatic patients, which may be reliably expected to align with the wind direction. Work on 
this extension to the present approach will commence shortly. 

Ultimately, characterization of a BT attack is of little value if not coupled to a response plan. Given 
the rarity of human inhalational anthrax, any appreciable number of anthrax cases ( e g ,  more than 
3) over a 1-2 day period will probably lead to the implementation of response plans and conse- 
quence management. Some of the responses-for instance, city-wide prophylaxis-do not need 
much characterization beyond the identifi cation of the pathogen. Yet if this response is triggered 
by the diagnosis of patients, rather than by early warning sensors, one must expect that prophy- 
laxis would arrive too late to be of help to many infected people. In such a case provisions would 
have to be made for medical personnel and material, which in certain instances may overwhelm 
local resources. While a broad and rapid response has its attractions, one could also respond in 
a measured manner by placing requisitions for certain resources while alerting others. Our abil- 
ity to describe attack parameters probabilistically provides a simple means of estimating what the 
requisitions should be, based on an acceptable level of risk; what is less clear is the extent of the 
alerts that would need to be issued. Alerting of resources, with a view towards rapid requisition- 
ing and delivery in the near future, can be thought of as a means of hedging against the risk of 
an inadequate initial requisition. Thus, we begin to see the outlines of a risk-based approach that 
designs a response commensurate with the BT attack at hand. Apart from being sustainable, such 
an approach will be smaller and quicker; it may also be safer, since a broad and rapid response can 
be vulnerable to feints. 
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A Derivation of Anthrax Incubation Models 

In this Appendix, we discuss in detail the derivation of two mathematical models from prior liter- 
ature for predicting the onset time of symptoms in patients exposed to anthrax. In particular, we 
consider Wilkening’s Model D and Model A2[2] which extend Brookmeyer et al. [18]. 

< 

* Anthrax spores are “inert” - they do not reproduce. Under favorable conditions, for instance in 
human lymph nodes or in a blood agar medium, they fi rst germinate into vegetative anthrax bac- 
terial cells and proceed to replicate. While inside a living being, anthrax spores are acted upon 
simultaneously by two competing processes (1) clearance (e.g. by the immune system) at rate 8 
per spore per day and (2) germination into vegetative cells at rate h per spore per day. Thus given 
a person with D spores (initially), the governing equation for the remaining number of spores A 
is A = (h  + €))A. The number of spores that germinate Ag are given by the relation Ag = LA. The 
solutions for these equations are 

D h  
g - h + e  A - -exp(-(h+O)t). A = Dexp(-(h+B)t) and 

The probability that a spore will germinate is q = Ag/A = h/(h+ e). Then, given a person with D 
spores (initially), the number of spores that will germinate in infi nite time is v = D h / ( h +  e). 
In reality, the number of spores that germinate will vary. The probability that X spores germinate, 
0 5 X 5 D, is given by the binomial distribution: 

D! D !  v x  D-X 
$(I -q)D-x = - (1-;) X ! ( D  - X )  ! X ! ( D - X ) !  D 

D D ( D -  1). .. ( D - X +  1) vx 
- - Dx -(l-i) X !  

(9) 

. In the limit that v << 1 or X / D  << 1, the probability P ( X )  that X spores will germinate is given by 

VX 
D-x - l.-.exp(-v).l. - 

D! 
$(1 - 4 )  X !  

P ( X ) =  lim 
D+ X ! ( D  - X )  ! 

The probability that at least 1 spore will germinate (also called the attack rate) is 

p = 1 - P(X = 0) = 1 - exp (-v) = 1 - exp - - ( :e)* 

Given D spores initially, the number of spores that will germinate by time t is 

h D  I’ igdU = I’ Dhexp (- ( h + e)u) du = - ( 1 - exp (- (A + e)t)) . 
h+e 
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Thus the probability of 1 spore germinating by time t is 

h 
(1  -exp(-(h+0)t)) = -Q(t). 

h 
h + 0  h+0 

Note that limt+, Q(t)  + 1. 

The probability that at least 1 spore will germinate by time t is 

- 
Note that limt+, F + p .  We defi ne 

F is the cumulative distribution function for a spore to germinate into a vegetative cell. Vegetative 
cells multiply, though the rate of multiplication varies for each cell. However, given a colony of 
vegetative anthrax cells, there is a growth rate c and one may fi nd a time 6 in which the population 
A of the colony doubles. Further, we assume that people exhibit symptoms when the bacterial load 
reaches Nthresh, which takes, on average, time tM. 

where log denotes the natural logarithm. Typically, the expression for t~ is written with a lag time 

In reality, the time s to symptoms, post-germination, will follow a distribution. Since s 2 0, Wilken- 
ing [21 assumed it to be lognormal (Brookmeyer, in [18], assumed it to be exponential) 

Ms is the median time to symptoms, post-germination, and one can set it to be equal to tM. Thus 
the probability that at least a single spore germinates and the bacterial load reaches Nthresh so as to 
generate symptoms by time t ,  i.e. the cumulative distribution function for the incubation period is 
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This is Wilkening's Model D. The values of the parameters are 0 = 0.109 day-', h = 8.79 X 

lop6 day-', tlag = 1 hour, t2  = 2.07 hour, Nthresh = lo9 and os = 0.544 day-'. 

Sartwell [28] found that the incubation period for a number of diseases were log-normally dis- 
tributed, which is at odds with Eq. 15. Wilkening's Model A2 assumes a log-normal distribution, 

where to, the median incubation time, is obtained by solving the integral equation obtained from 
Eq. 15 

However, while solving for to, Wilkening used a slightly different set of parameters: 8 = 0.1 1 day-', 
h = 8.84 x lop6 day-', tlag = 1 hour, t 2  = 2.06 hour, and os = 0.542 day-'. 
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b 

B Methodology for Obtaining a Dosage Distribution Consis- 
tent with Atmospheric Dispersion over a Geographically Dis- 
tributed Population 

r 

The distribution of dosages due to an atmospheric release of an aerosol can be modeled using a sim- 
ple Gaussian plume model [25]. Further, if this release occurs over a domain with a non-uniform 
population distribution, one obtains a distribution of exposed people over a dosage spectrum. In 
this section, we describe a simple way to obtain a population-dosage distribution. 

c 

We consider a square domain, L km on each side. In this study L = 10 km. The domain is divided 
into N blocks per side; in this study N = 100. 25 population clusters are chosen in the form of 
Gaussian kernels Aexp(-r2/R2), where r2 = Ix - x0l2. The strength of the kernel A, its center xo, 
and its lengthscale R are chosen randomly. The population density in any block, with its center 
at x, is a sum of the strengths of all the 25 kernels. The strengths of the kernels are scaled to 
obtain a total population (in the domain) of Pdomain. The population in a given block is obtained by 
multiplying the population density with the block area. This creates a geographically distributed 
population distribution. 

The number of people exposed (Le., people who breathed in the aerosol, but may or may not 
develop symptoms) and infected (i.e., people who will develop symptoms) is dependent on the 
location and size of the release and direction of the wind. We release 1013 spores at the origin, at 
a height of 100 meters. A wind speed of 4 d s ,  and a Pasquill stability class of “B” is assumed. 
Pasquill stability classes indicate atmospheric stability; this particular case (class B) indicates a 
moderately unstable atmosphere with a 4 m/s wind and strong daytime insolation. Details of 
Pasquill stability classes and atmospheric dispersion are in [25]. In our study, wind directions are 
measured in degrees from due north; that is, a wind direction of zero degrees is a wind from due 
north, 90 degrees is a westerly wind and a direction of 180 degrees is a wind from due south. The 
release is assumed to be an explosive point release, and the concentration of the aerosol at any 
point (x7y) on the ground and any time t is given by [25] 

I 

where (x’, y’) are the coordinates of (x, y )  in a frame of reference where the x-axis is aligned with 
the wind. 02, oy and ozl are coeffi cients dependent on f and the Pasquill stability class. H is the 
height of release and x is the concentration of the aerosol in spores per unit volume. u is the wind 
velocity. QT is the total number of spores released. The relation between x’ and x is given by 

-sin(n:-e) ) ( f: ) 
cos(n: - 0) sin(n: - e) 

where 0 is the wind direction. Assuming a breathing rate p of 30 liters a minute, one can obtain 
an expression for the number of spores breathed in per unit time. Integrating over infi nite time, 
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2wo -I 
Figuw B.l. Dosage plumes plotted over the population distribution for e = 170" (left) and 125" 
(right). We see on the right that the extremities of the plume extend into a high population density 
region. Thus we may expect a substantial number of high-dosage cases, resulting in a higher average 
dosage D. 

one obtains the total number of spores D breathed in by a person positioned at (x,  y )  (alternatively, 
(2,Y)) 

The dosage in a given block is decided by the location of its center. Using Glassman's formula 
to judge the probability of showing symptoms (in infi nite time) given a dosage D, we get the 
probability density P(D) . 

with DO = 8000 and S = 3.2888. Glassman's relation is used if we employ Model A2 to simulate 
the BT attack; if Model D is used, we employ Eq. 11 to determine the probability of infection, 
given a dose D. Since the population in a block is known, we can use the cumulative distribution 
determined from the probability distribution above to calculate the number of people in the block 
who will become infected and proceed to develop symptoms over time, per the incubation period 
model. 

In this study, we employ P&min = 3 x 1 6  and 3 x lo6; 8 = 1700 and 125'. The dosage plumes, 
superimposed on the population distribution, are plotted in Fig. B.l .  
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