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Abstract

A finite temperature version of ”exact-exchange” density functional theory (EXX) has been im-
plemented in Sandia’s Socorro code. The method uses the optimized effective potential (OEP)
formalism and an efficient gradient-based iterative minimization of the energy. The derivation of
the gradient is based on the density matrix, simplifying the extension to finite temperatures. A
stand-alone all-electron exact-exchange capability has been developed for testing exact exchange
and compatible correlation functionals on small systems. Calculations of eigenvalues for the he-
lium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement
with highly converged quantum Monte Carlo calculations. Several approaches to the generation of
pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult
problem of finding a correlation functional compatible with EXX has been studied and some initial
findings are reported.
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Chapter 1

Introduction and Motivation

An integral component of the High Energy Density Science (HEDS) work done at Sandia is the
use of advanced modeling codes such as ALEGRA to simulate the complex evolution of materi-
als through solid, liquid, vapor, and plasma phases in HEDS experiments. These codes require
accurate equation-of-state (EOS), conductivity, and opacity models if high-fidelity results are to
be obtained. A particularly difficult region to characterize is the “warm dense matter” regime
that extends from near solid conditions into the vapor dome and temperatures up to several eV.
This region of phase space includes the molecular-to-atomic dissociation phase for dense hydro-
gen and its isotopes, and the metal-insulator transition for liquid metals. In recent years, much
progress has been made in the understanding and accurate modeling of these regimes through the
use of quantum molecular dynamics based on finite temperature density-functional theory (FT-
DFT), which enables the calculation of manifestly consistent EOS, conductivities, and low-energy
opacities [1, 2, 3, 4]. Although the application of density functional methods to high energy den-
sity science is rather new, DFT is a powerful and commonly used tool in Material Science and
Technology (MS&T) research. Applications include surface science, the properties of water, the
study of defects in materials, insulators, complex materials, optical ceramics, and oxides.

The commonly used DFT codes of today employ relatively simple but efficient, explicit function-
als of the density, categorized as local density or generalized gradient approximations (LDA and
GGA), respectively. These functionals have proven to give quite accurate results for many prop-
erties of interest. However, as numerical methods have evolved, and large systems and complex
problems have been studied with high precision, the deficiencies of these functionals have become
the limiting factor to needed improvements in accuracy. It is well-known that LDA and GGA
functionals typically underestimate the energy gap between occupied (valence) and unoccupied
(conduction) bands by 1 to 2 eV, shifting behavior more towards a metal and underestimating met-
allization densities and pressures. In HEDS applications, when the temperature is comparable to or
smaller than the gap, the conductivity and the low-energy opacities will be significantly increased.
In these HEDS applications it is often the case that the temperature is high enough to thermally
populate many of the conduction bands, and therefore corrections to the band gap have a corre-
sponding effect on the pressure and energy, as well as the conductivity and optical properties. The
only way to self-consistently improve calculations where the erroneous gap influences the results
is to develop and use an improved functional. Improvements to the accuracy of the exchange func-
tional will provide a significantly enhanced tool for MS&T research as well. For example, since
defect formation energies and charges depend on the position of defect levels in the gap, improve-
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ment in band gaps will help in identifying defects and predicting defect populations, kinetics, and
properties during growth and processing, and following radiation damage in materials of interest
to Sandia (e.g., alumina).

Accordingly, we have developed and implemented a much more advanced treatment of the exchange-
correlation functional into Sandia’s state-of-the art plane-wave DFT computational framework, So-
corro. This approach centers on using the known exact expression for exchange in the functional.
The exact expression is a highly non-local, implicit functional of the density (an explicit functional
of the Kohn-Sham orbitals). Doing this leaves the evaluation of the smaller correlation contribution
as the only remaining approximation. Several groups have already performed small-scale investi-
gations of this sort. Use of exact exchange (EXX) is found to essentially solve the band gap and
metallization problems. It remains an important and challenging problem to combine EXX-DFT
with molecular dynamics for systems of several tens to hundreds of atoms, but the potential return
is broadly important and should have enduring impact in computational material science.
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Chapter 2

Mathematics of the optimized effective
potential (OEP)

Introduction

The Kohn-Sham Density Functional Theory (DFT) [5] has become one of the most powerful tools
for understanding and predicting the properties of materials. DFT has been applied to an ever
increasing number of different types of systems and phenomena, and the results have frequently
been remarkably useful. Nevertheless, the accuracy of the results remains an important issue for
many potential applications of DFT. The main source of error in DFT calculations is the use of
an approximate expression for the exchange-correlation energy,EXC. Such an approximation is
necessary for practical calculations, but improving the quality of the approximation, and hence,
the accuracy of the calculations, is of great interest. Conventional variants of DFT, such as LDA
and GGA, takeEXC to be an explicit functional of the electronic density. Since the noninter-
acting Kohn-Sham orbitals are implicit functionals of the electronic density [6], expressions for
EXC that explicitly depend on the Kohn-Sham orbitals are also consistent with the DFT frame-
work. An important example of such a functional is the functional used in the exact-exchange
approximation[7, 8, 9, 10, 11, 12, 13]. An explicit dependence on the orbitals allows approximate
EXC expressions to capture physical behaviors of the exact Kohn-ShamEXC that can not be practi-
cally incorporated in an expression that is an explicit function of only the electronic density. One
example is the absence of self-interaction in the exact Kohn-Sham energy. Another example is the
complex, non-local behavior of the exact exchange energy.

The difficulty in using anEXC expression that is explicitly dependent on the orbitals is that it is
impossible to straightforwardly take the functional derivative ofEXC with respect to the electronic
density. Therefore, standard self-consistent methods of minimizing the energy with respect to the
density can not be used. The solution to this problem is provided by the Optimized Effective
Potential (OEP) formalism. Since the energy is a functional of the Kohn-Sham orbitals, and the
orbitals are solutions of the Kohn-Sham equation for some local potential, the energy can be viewed
as a functional of the potential. The OEP is defined to be the potential that minimizes the energy.
This minimization with respect to the potential is equivalent to the usual minimization with respect
to the density. Traditionally, the OEP has been calculated by solving the OEP integral equation,
in which the gradient of the energy with respect to the potential is set to zero [7, 8, 9, 11], or by
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directly evaluating and inverting a response function [10, 12, 13].

Two recent papers have proposed calculation of the OEP by means of an iterative minimization of
the energy [14, 15]. Hyman, Stiles, and Zangwill used Lagrange multiplier methods to derive an
expression for the gradient of the energy with respect to the potential and proposed using this gra-
dient to minimize the energy iteratively. Kummel and Perdew derived a nearly identical expression
and, although they did not claim that this expression gives the gradient, they noted that it provides
a good update to the potential during an iterative minimization. In this paper, we present a new
derivation of the gradient based on the density matrix. Our work goes beyond the previous papers
in the following ways: (1) We believe that our derivation is particularly transparent, and therefore,
it demonstrates that this expression is, in fact, the correct gradient. (2) The previous work assumed
a negligible electronic temperature. Since our derivation is based on the density matrix, it is easily
extended to finite temperatures, where the orbitals are partially occupied.

One of the most exciting recent applications of DFT has been high energy density physics. In
this application, electronic temperatures that are substantial compared to the band gaps of typical
semiconductors are common. This makes the results sensitive to the band gap, which is too small in
the standard versions of DFT. Therefore, the capability of performing calculations with advanced
functionals that have explicit dependence on the orbitals at non-zero temperature is particularly
exciting for high energy density physics applications.

As an alternative to iterative minimization of the energy using the gradient, it is possible, in prin-
ciple, to find the OEP by solving the equation in which the gradient is set to zero. Therefore, our
work provides the finite temperature equivalent of the standard OEP equation, giving the correct
necessary condition for local optimality.

In this article, we derive the OEP method in a finite temperature regime by considering the pertur-
bation of the density matrix resulting from a perturbed Hamiltonian. The gradient will reduce to a
combination of orbital shifts as one sees in the zero temperature limit plus some corrections which
come from the finite temperature. In section 2, we begin with a mathematical discussion of the
perturbation theory of analytic functions of Hermitian operators. After a short review of density
functional theory, we apply the results of Section 2 to the density matrixρ viewed as a function of
the Kohn-Sham HamiltonianH, and thereby derive a finite temperature OEP equation in terms of
H andρ . This motivates the subsequent section, which describes the gradient expression inorbital
form. We conclude with some computational results demonstrating the accuracy of the method. A
more streamlined version of these results with alternative derivations of some of the expressions
has been published recently [16].

The perturbation theory of matrix-analytic functions

Let f (x) be an analytic function ofx and f (A) be the extension off to a matrix-analytic function
(see [17], chapter 6) on some algebra of Hermitian operators with a finite (or countable) spectrum.
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Thus,

[A, f (A)] = A f(A)− f (A)A = 0 (2.1)

fi = f (ai) (2.2)

where theai are the eigenvalues ofA and thefi are the eigenvalues off (A).

For an unconstrained variationA→ A+δA the variations of (2.1) and (2.2) are

[δA, f (A)]+ [A,δ f (A)] = 0 (2.3)

δ fi = f ′(ai)δai . (2.4)

In a basis whereA is diagonal (ai = Aii , f (ai) = [ f (A)]ii ), (2.3) and (2.4) become,

(ai−a j) [δ f (A)]i j = ( f (ai)− f (a j))δAi j (2.5)

δ [ f (A)]ii = f ′(ai)δAii . (2.6)

Thus (2.3) and (2.4) appear to be sufficient to determineδ f (A) in terms ofA,δA.

We may, somewhat informally, write the result as one equation

[δ f (A)]i j =
f (ai)− f (a j)

ai−a j
δAi j (2.7)

where it is understood that we treatf (ai)− f (a j )
ai−a j

as adivided difference, taking the limit asai → a j .

A more rigorous proof of these results can be made in the following theorem, which also makes
clear what happens in the presence of a repeated eigenvalue.

Theorem 2.0.1 The expansion of f(A+δA)− f (A) = δ f (A) to first order inδA is given by

[δ f (A)]i j = lim
ε→0

f (ai + ε)− f (a j)

ai−a j + ε
δAi j

where the matrix elements are taken in an basis in which A is diagonal.

Proof: Since f is analytic, it suffices to prove this theorem forf (x) = xk and extend by linearity.

δ f (x) = ∑
m+n=k−1

AmδAAn
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in a diagonal basis,

[δ f (x)]i j = ∑
m+n=k−1

am
i an

j δAi j

= ∑
m+n=k−1

lim
ε→0

(ai + ε)man
j δAi j

= lim
ε→0

(ai + ε)k−ak
j

(ai + ε)−a j
δAi j

and the summation is interchanged with the limit.

Note that one could clearly obtain higher order derivatives in terms of higher order divided differ-
ences via the same approach. To simplify forthcoming derivations, we omitε ’s and limits, with the
understanding that appropriate limits are to be taken for divided differences of the formf (x)− f (y)

x−y .

We may interpret (2.7) as the equation which specifies the action of theJacobian, ∂ f (A)
∂A on an

arbitrary Hermitian operator of the mappingf .

Practical application of the Jacobian

An A-diagonalizing basis might not be a convenient means to compute the application of the Jaco-
bian to an arbitrary variation. We present here a short digression on how such computations can be
carried out iteratively, without diagonalizingA.

We will be interested in applications of linear operators to Hermitian (or anti-Hermitian) matrices.
To avoid some of the confusion entailed inoperators of operatorsdiscussions, we introduce some
notation, which we hope is clarifying. We denote the application of a linear operator on a matrix
with brackets,L [A]. In terms of indices we may write this asL [A]i j = ∑kl Li jkl Akl. For Hermitian
matrices, we write〈X,Y〉= tr{XY}, and it is well known that this is a non-degenerate inner product
on the vector space of Hermitian matrices. For a vector subspace of Hermitian matrices,A, we let
A⊥ = {B : ∀X ∈ A,〈X,B〉= 0}.

We denote the linear action of a commutator adX [Y] =−adY [X] = [X,Y].

Lemma 2.0.2

〈X,adY[Z]〉=−〈adY[X],Z〉 .

Proof: Applying the trace identity tr{AB}= tr{BA},

tr{X(YZ−ZY)} = tr{XYZ−YXZ}
= −tr{(YX−XY)Z}
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Thecentralizerof X is the setCX = {Y : [X,Y] = 0}. CX is the nullspace of adX.

Lemma 2.0.3 C⊥X is the range of adX.

Proof: For anyY and someZ ∈ CX, by lemma 2.0.2,〈adX(Y),Z〉 = −〈Y,adX(Z)〉 = 0, thus
Range{adX} ⊂C⊥X .

From elementary dimension counting,

dim{Range{adX}}+dim{Null{adX}} = dim{CX}+dim{C⊥X }
dim{Range{adX}}+dim{CX} = dim{CX}+dim{C⊥X }

dim{Range{adX}} = dim{C⊥X }

where dim{CX}= dim{CX} obtains the last line.

Let Xi j =
f (ai)− f (a j )

ai−a j
Yi j in anA-diagonalizing basis. Then according to (2.1) and (2.3),

adA[X] = adf (A)[Y]. (2.8)

The operator, adA, has a non-trivial nullspace. However,CA ⊂ Cf (A) implies Range{adf (A)} ⊂
Range{adA}, by lemma 2.0.3, thus equation (2.8) has a unique solution.

Since we are dealing with a linear space (albeit of matrices), with a linear operator and an inner
product, we can use a Krylov-based iterative solver to solve (2.8) (e.g. conjugate gradient or
MINRES [18, 19]) with some initial guess,X0, yielding

X = X0+c1adA[X0]+c2ad2
A[X0]+ · · ·

with X−X0 ∈C⊥A .

By (2.4), we additionally requireXii = f ′(ai)Yii . For example, if we take

X0 =
1
2

(

f ′(A)Y+Y f ′(A)
)

+X1,

whereX1 ∈C⊥A is arbitrary, then the iterative solution of (2.8) will be correct, i.e.X = δ f (A). In
the remainder of this article we takeX1 = 0.
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Density functional theory review

Let ρ be a density matrix (Hermitian),K be the kinetic energy operator,VI be the ionic (and
external) potential, withEHXC(ρ) the Hartree, exchange, and correlation energy. WithS(P) =
−tr{ρ log(ρ)+(I −ρ) log(I −ρ)} as the entropy expression, the variational energy is

E(ρ) = tr{ρ(K +VI )}+EHXC(ρ)− 1
β

S(ρ). (2.9)

The unconstrained derivative is

∂E
∂ρ

= K +VI +
∂EHXC

∂ρ
+

1
β

log(ρ(I −ρ)−1). (2.10)

The Kohn-Sham Hamiltonian is given byH = K +VI +V whereV is the self-consistent potential
(to be determined). In the Kohn-Sham DFT,ρ is the minimizer of tr{ρH}− 1

β S(ρ) with tr{ρ}= n,
which is equivalent to the conditions,

ρ =
1

1+eβ (H−µI)
= fβ (H−µI) (2.11)

tr{ρ} = n (2.12)

for some chemical potentialµ. Thus, we can considerρ to be parametrized by two unknowns
V and µ with two relations (2.11) and (2.12). Note: one could absorbµ into V, but we find it
advantageous to keep it distinct in its role as a Lagrange multiplier.

With ρ satisfying these relations, the energy differential simplifies

∂E
∂ρ

= K +VI +
∂EHXC

∂ρ
+

1
β

log(ρ(I −ρ)−1)

= K +VI +
∂EHXC

∂ρ
− (H−µI)

=
∂EHXC

∂ρ
− (V−µI).

Finite temperature OEP with density operators

From section 2, the density matrix is related to the Kohn-Sham Hamiltonian,H, by (2.11) and
(2.12). Letεi be the eigenvalues ofH, and letωi = fβ (εi−µ) be the eigenvalues ofρ . The divided
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differences can be stably computed with the formula

fβ (x)− fβ (y)

x−y
=− eβ (x+y)/2

(1+eβx)(1+eβy)

(

sinh(β (x−y)/2)

(x−y)/2

)

where a test forx = y is required for the evaluation of the last factor. We note in particular that
fβ (x)− fβ (x)

x−x = d
dx fβ (x) =−β fβ (x)(1− fβ (x)).

Let E(ρ) be a function of a density matrix,ρ . We can implicitly defineE(H) = E(ρ(H,µ(H))).
Formally varyingE(H),

δE(H) = tr

{

∂E(ρ(H,µ))

∂ρ
δρ
}

. (2.13)

in anH-diagonalizing basis,

δρi j =
ωi −ω j

εi− ε j

(

δHi j −δ µδi j
)

. (2.14)

By (2.12), the trace ofδρ vanishes,

δ µ =
∑i j δi j

ωi−ω j
εi−ε j

δHi j

∑i j δi j
ωi−ω j
εi−ε j

=
tr{ρ(I −ρ)δH}

tr{ρ(I −ρ)} .

Thus, in anH-diagonalizing basis,

δE = ∑
i j

∂E
∂ρi j

ωi−ω j

εi− ε j

(

δHi j −δ µδi j
)

= ∑
i j

∂E
∂ρi j

ωi−ω j

εi− ε j

(

δHi j −
∑k ωk(1−ωk)δHkk

∑k ωk(1−ωk)
δi j

)

= ∑
i j

(

ωi−ω j

εi− ε j

∂E
∂ρi j
−δi j

ωi(1−ωi)

∑k ωk(1−ωk)
∑
pq

δpq
ωp−ωq

εp− εq

∂E
∂ρpq

)

δHi j
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and the gradient is therefore

∂E
∂Hi j

=
ωi−ω j

εi− ε j

∂E
∂ρi j
−δi j

ωi(1−ωi)

∑k ωk(1−ωk)
∑
pq

δpq
ωp−ωq

εp− εq

∂E
∂ρpq

(2.15)

∂E
∂H

=
∆ω
∆ε

[

∂E
∂ρ

]

− ρ(I −ρ)

tr{ρ(I −ρ)} tr
{

∆ω
∆ε

[

∂E
∂ρ

]}

(2.16)

=
∆ω
∆ε





∂E
∂ρ
−

tr
{

∆ω
∆ε

[

∂E
∂ρ

]}

tr
{∆ω

∆ε [I ]
} I



 (2.17)

where ∆ω
∆ε [·] stands for the Jacobian,ωi−ω j

εi−ε j
, in a general basis. tr

{∆ω
∆ε [I ]

}

= −β tr{ρ(I − ρ)},
though we will keep it as it is in (2.17) to make the tracelessness of∂E

∂H more manifest.

The application of the Jacobian, to obtain∂E
∂H = ∆ω

∆ε

[

∂E
∂ρ −

tr
{

∆ω
∆ε

[

∂E
∂ρ

]}

tr{∆ω
∆ε [I ]} I

]

, can be done by iteratively

solving

[

H,
∂E
∂H

]

=

[

ρ,
∂E
∂ρ

]

(2.18)

with initial guess

(

∂E
∂H

)

0
= −1

2
β
(

ρ(I −ρ)
∂E
∂ρ

+
∂E
∂ρ

ρ(I −ρ)

)

+β
tr
{

∆ω
∆ε

[

∂E
∂ρ

]}

tr
{∆ω

∆ε [I ]
} ρ(I −ρ). (2.19)

Note: limβ→∞ βρ(I − ρ) ∝ δ (H − µI), a delta function on the spectrum ofH. Thus in the low

temperature limit, only the eigenvalues ofH nearµ contribute to
(

∂E
∂H

)

0
.

To obtain an OEP gradient, we restrict the variability ofH to H = H0 +V whereH0 = K +VI is
fixed andV is a local operator. The gradient is then

∂E
∂V(r)

= ∑
i j

φi(r)
∂E

∂Hi j
φ∗j (r) (2.20)

whereφi(r) is the eigenvector ofH with eigenvalueεi in the position representation.
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Finite temperature OEP with orbitals

Instead of representing the density as an operator, it is often more practical to expressρ in terms
of an incomplete basis of partially occupied orbitals. Letφ1,φ2, . . . be a complete eigenbasis ofH
sorted non-decreasingly in eigenvalue. LetN be sufficiently large thatωi>N ∼ 0. Then we may
write truncate the basis so that

ρ = φΩφ† (2.21)

whereφ =
[

φ1 φ2 · · · φN
]

, with Λ the diagonal matrix of eigenvalues andΩ the diagonal matrix
with entriesω1, . . . ,ωN (i.e. Ω = fβ (Λ− µI)). Note, N will usually be much smaller than the
number of primitive basis functions, soφ will be a rectangular matrix with orthonormal columns,
i.e. φ†φ = I (theN×N identity) andφφ† is the orthogonal projector onto the span of theφi (and
hence commutes withH).

Let χ andζ be given by

χ = tr

{

∆ω
∆ε

[

∂E
∂ρ

]}

= ∑
i≥1
−βωi(1−ωi)φ†

i
∂E
∂ρ

φi

ζ = tr

{

∆ω
∆ε

[I ]

}

= ∑
i≥1
−βωi(1−ωi)

and letĒ andJ̄ beN×N matrices given by

Ē = φ†∂E(φΩφ†)

∂ρ
φ

(

i.e. Ēi j =
∂E(φΩφ†)

∂ρi j

)

(2.22)

J̄ = φ†∆ω
∆ε

[

∂E
∂ρ
− χ

ζ
I

]

φ
(

i.e. J̄i j =
ωi−ω j

εi− ε j

(

Ēi j −
χ
ζ

δi j

))

. (2.23)

Note that by these definitions,[Ω, Ē] = [Λ, J̄].

Sinceωi>N ∼ 0, the expressions forχ andζ can likewise be truncated,

χ = ∑
1≤i≤N

−βωi(1−ωi)Ēii =−β tr{Ω(I −Ω)Ē}

ζ = ∑
1≤i≤N

−βωi(1−ωi) =−β tr{Ω(I −Ω)}

and by (2.15)

(I −φφ†)
∆ω
∆ε

[

∂E
∂ρ
− χ

ζ
I

]

(I −φφ†) = 0,
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thus, we may write (2.16) as

∂E
∂H

=
∆ω
∆ε

[

∂E
∂ρ
− χ

ζ
I

]

= φψ† +ψφ†, (2.24)

whereφ†ψ = ψ†φ = 1
2J̄. This gives an orbital form of equation (2.20),

∂E
∂V(r)

= ∑
1≤i≤N

φi(r)ψ∗i (r)+ψi(r)φ∗i (r) (2.25)

which is similar to the equation derived in numerous sources in the OEP literature [14, 15], with a
modification of theψ to accommodate the finite temperature regime.

It remains to solve forψ, which we may decompose asψ = ψ⊥+ 1
2φ J̄, whereφ†ψ⊥ = 0. We

can derive an equation forψ⊥, by multiplying equation (2.18) on the left by the projectorI −φφ†

(which commutes withH) and on the right byφ and employing (2.24),

(I −φφ†)

[

H,
∂E
∂H

]

φ = (I −φφ†)

[

ρ,
∂E
∂ρ

]

φ (2.26)

(I −φφ†)(Hψ−ψΛ) = −(I −φφ†)
∂E
∂ρ

ρφ (2.27)

Hψ⊥−ψ⊥Λ = −(I −φφ†)
∂E
∂ρ

φΩ. (2.28)

The LHS and RHS of (2.28) are orthogonal toφ , by construction. Thus we have a well-defined
equation forψ⊥. An iterative method can thus be used to solve forψ⊥ without any special initial-
ization beyondφ†ψ⊥ = 0.

Computational results

In order to test the above approach, it was implemented in the orbital representation within the
Socorro electronic structure software using a plane wave basis set and norm-conserving pseudopo-
tentials. The conjugate gradient algorithm was used to solve the linear systems involved in the
evaluation of the gradient. Using this algorithm, the computational cost of solving the set of linear
systems determiningψ⊥ is comparable to the cost of solving the Kohn-Sham eigenproblem forφ .
Therefore, each gradient evaluation is approximately as computationally expensive as one step of
the self-consistency loop in a standard DFT code.

For traditional approximations to the exact DFT, such as the Local Density Approximation (LDA)
and Generalized Gradient Approximation (GGA),EHXC is an explicit functional of the electronic
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density, which is the diagonal of the density matrixρ in a position representation. In this case,
∂EHXC

∂ρ has the form of a local potential operatorVHXC, and the energy minimum occurs at self-
consistency, i.e., whenV = VHXC. In this case, the OEP is the self-consistent potential, and the
results of our iterative minimization approach can be compared directly to well-tested results ob-
tained from conventional self-consistent methods. Therefore, we have tested our OEP approach by
applying it to LDA calculations.

Our test system consists of a two atom unit cell of silicon in the diamond structure. We used a
20 Rydberg plane-wave cutoff and a 2× 2×2 Monkhorst-Pack k-point sampling. This k-point
sampling does not give a converged total energy, but this is not an issue for the purpose of testing
our approach. Two electronic temperatures were used: (1) Room Temperature (kBT = 25.67 meV),
and (2) High Temperature (kBT = 1.0 eV).

In order to test the correctness of the our gradient, we used the finite difference approach. During
each of a series of steps, the value ofV at each point on a real-space grid was varied by a small
(o(10−4)) random perturbation∆V(r). During this random walk, the energy and the gradient were
evaluated at each step. A linear approximation to the change in energy during each step is given
by

∆E ≈
∫ ∂E

∂V(r)
∆V(r)dr. (2.29)

For the small steps taken in this test, we would expect this linear approximation to be accurate if the
gradient is accurate. Therefore, we can compare this predicted energy change to the actual energy
change observed during the random walk. The results of this comparison for the high temperature
case are shown in Fig. 4.1. Since the step direction is random, this represents a very stringent test
of the accuracy of the gradient, and we believe that the excellent agreement between the predicted
and actual energy changes demonstrates that our approach gives an accurate gradient, even at large
electronic temperatures.

The OEP is found by using the gradient to iteratively minimize the energy. We implemented this
minimization using Chebyshev acceleration on the fixed point equationxi+1 = xi + τ∇ f (xi) for
some fixedτ empirically chosen. The convergence of the energy of our test system during this
process is shown in Fig. 2.2. The errors in the energy were evaluated by comparing the energies
obtained during the iterative minimization to the result of a highly converged self-consistent cal-
culation. The convergence demonstrates that the iterative OEP and self-consistent approaches give
the same result, as would be expected for the LDA energy functional. The convergence is only
weakly dependent on the electronic temperature. The asymptotic rate of convergence obtained in
the iterative OEP approach is not as rapid as the highly optimized mixing methods typically used
in self-consistent calculations, but a reasonable accuracy for practical purposes (10−4 Ry.) can be
obtained easily.
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Figure 2.1. A comparison of the energy change predicted from
the gradient and the actual energy change observed during a ran-
dom walk in the potential. The filled circles are the calculated
values. The solid line is a guide to the eye representing perfect
agreement.
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Figure 2.2. The error in the energy, as well as the square-norm
of gradient, during the iterative minimization on a log scale.
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Finite Basis Set Issues

It has recently been noted [20] that the exact exchange OEP optimization problem seems to suffer
from certain pathologies which lead to either non-uniqueness of the effective potential at optimality
or the equivalence of the calculated OEP density and energy to that of the corresponding Hartree-
Fock quantities.

The argument can be summarized as follows. LetP be any two-point Hermitian function (i.e.
P(x1,x2) = P̄(x2,x1)). The total energy functional, in either the Hartree-Fock or exchange-only
KS schemes, is

E[P] =
∫

δ (x−x′)
[

−1
2

∇2
x +vext(x)+

1
2

vJ(x)

]

P(x,x′)dxdx′+EX

where

vJ(x) =
∫

P(x′,x′)
|x−x′| dx′

EX = −1
2

∫ |P(x,x′)|2
|x−x′| dxdx′.

For the Hartree-Fock method,E[P] is minimized over allP of the formP= ∑ne
i=1φi(x1)φ̄i(x2) where

〈

φi ,φ j
〉

= δi j . The local optimality conditions for HF are
[

P, ĤHF
]

= 0, where

ĤHF =−1
2

∇2+vext +vJ + K̂

where

K̂φ(x) =

∫

P(x′,x)
|x−x′| φ(x′)dx′.

For exact exchange-only Kohn-Sham,E[P] is also optimized with the added condition that theφi

are eigenfunctions of

ĤKS =−1
2

∇2+vext +vJ +vX

for some local potentialvX, which implies
[

P, ĤKS
]

= 0. Since this merely restricts the search
space for optimizingE[P], the exact exchange-only KS solution cannot have a lesser energy than
the exact HF solution.
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The paper by Staroverov et al [20] explores seemingly paradoxical results where, in certain finite
bases, it is possible to construct avX such that

[

P, ĤKS
]

= 0 (i.e. P satisfies the exact exchange-
only KS constraints) whenP is the optimum of the associated Hartree-Fock problem. Thus the
minimum exact exchange-only KS energy coincides with that of HF andP minimizes of both
problems.

The essence of the argument is the observation thatĤKS− ĤHF = vX− K̂, and hence
[

P, ĤKS
]

= 0
if
[

P, ĤHF
]

= 0 and[P,vX] =
[

P, K̂
]

. TakingP to be the HF minimizer gives the first condition,
and a the choice of basis functions provides the second. Letaµ(x) be real basis functions for
the orbitals, thusP(x1,x2) = ∑µ1,µ2

Pµ1µ2aµ1(x1)aµ2(x2), andbν(x) be real basis functions for the
potentials,vX = ∑ν vν

Xbν(x). Then the relevant products are

(vXP)(x1,x2) = ∑
µ1µ2ν

vν
XPµ1µ2bν(x1)aµ1(x1)aµ2(x2)

(K̂P)(x1,x2) = ∑
µ ′µ2

Pµ ′µ2

(

∫

P(x′,x1)

|x1−x′| aµ ′(x
′)dx′

)

aµ2(x2)

= ∑
µ1µµ ′µ2

Pµ ′µ2

(

∫ Pµµ1aµ(x′)aµ1(x1)

|x1−x′| aµ ′(x
′)dx′

)

aµ2(x2)

= ∑
µ1µµ ′µ2

Pµµ1Pµ ′µ2

(

∫ aµ(x′)aµ ′(x
′)

|x1−x′| dx′
)

aµ1(x1)aµ2(x2).

Clearly, we can havevXP = K̂P by

bν(µ,µ ′)(x) =
∫ aµ(x′)aµ ′(x

′)

|x−x′| dx′

vν(µ,µ ′)
X =

Pµµ1Pµ ′µ2

Pµ1µ2

for some appropriate choice of index map,ν(µ,µ ′) (generically,Pµ1µ2 is non-vanishing). Staroverov
et al acknowledge that this construction reveals that for a generic basis of wavefunction,{aµ}, there
is at least one choice of potential basis,{bν} such that non-local effects can besimulatedby an
appropriate choice of local potential. Even for{bν} not so pathologically chosen, we might expect
to see some ability to simulate non-local parts ofK̂ with a sufficiently large number of local basis
functions.

A truly degenerate case

It is certainly possible that, in a finite wavefunction basis, the optimal energies given by both the
OEP and HF methods coincide. One very contrived example is a basis consisting ofne functions
a1, . . . ,ane where theai(x) are the exact orbitals of the Hartree-Fock energy. In such a basis, no
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matter whatvX may be, theP corresponding to the eigenvectors ofĤKS is the identity matrix and
the solution coincides with the Hartree-Fock solution. Without much effort one can select a basis,
which ensures that the Kohn-Sham solutions are arbitrarily close to the Hartree-Fock solutions,
independentof the choice of basis forvX. Our thesis is that this example is generic. If the wave-
function basis is sufficiently small, and spans the HF solution, then the xOEP solution will be
forced to resemble the HF solution. Staroverov et al, in contrast, have considered the wavefunction
basis fixed and reasonably rich, while having too large a potential function basis.

The origin of the pathology

One problem in the identification of the source of these apparent pathologies is that it is easy to
carry over intuitions from previous methods for DFT that do not apply to OEP calculations. One
of these is that the energy is variational in the wavefunction basis, i.e. as one adds more elements
to the basis, the optimalE value must decrease. This is true for traditional DFT and HF, but is
not true for xOEP. In xOEP,E[P] is variational invX and, hence, the local potential basis, but
not the wavefunction basis, which serves merely to accurately calculateE as a functional ofvX.
Additional basis functions allow for more accurateĤKS wavefunctions, of course, but this need
not be accompanied by a decrease inE[P], it may increase, in fact. For example, consider the
case above in which the basis initially consists of exact HF orbitals. If the wavefunction basis is
extended by a generic basis function,E[P] can be expected to increase.

In summary, the origin of the apparent pathologies discussed above is that it is assumed that the
bases uses to represent the potential and the wavefunctions can be varied independently, while
in fact, the optimized effective potential is properly defined in terms of the exact solution of the
Kohn-Sham equations for a given variational potential. Practical calculations require the use of a
finite basis for the wavefunctions, which is not a problem as long as the chosen finite basis gives
a sufficiently accurate representation of the exact wavefunctions. The following procedure should
obtain the correct OEP solution using finite bases. (1) Choose a{bν} potential basis and an initial
{aµ} wavefunction basis, and solve the finite dimensional OEP problem. (2) Extend the{aµ}
basis with new elements, keeping{bν} fixed, untilE[P] converges. One then has an upper bound
on the true OEP energy, variational invX. Augment{bν} and iterate beginning with step (1) until
the energy is converged.

Plane-wave calculations

Results obtained using plane-wave bases typically converge smoothly and steadily with the plane-
wave cutoff, and therefore, it may be possible to circumvent the double loop of convergence tests
described above. Consider the plane-wave bases,aµ(x) = eiµ ẋ andbν(x) = eiν ẋ where||µ||2≤ εC.
Clearly, the eigenvectors of̂HKS have no dependence of any potential basis elements with||ν||2 >
4εC. In periodic systems, the number of basis elements for potentials can be no larger that eight
times the number of basis elements for wavefunctions. If the wavefunctions haven degrees of
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freedom, then the potentials should have, at most,∝ n degrees of freedom. The construction of
Staroverov requires∝ n2 basis functions for potentials and does not apply to plane wave bases.
These considerations raise some doubt regarding the nature of their manipulations.

There is some reasonably physical reasoning to suspect that the dimension of potential space
should be proportional (if not less than or equal) to the dimension of wavefunction space. One
interpretation of the termlocal as applied to a finite basis representation ofvX is thatvX approxi-
mately commute with the position operator. In a finite wavefunction basis, the position operators
are matrices of order|{aµ}|. Hence, the space of operators which commute with the finite basis
position operators can be no more than|{aµ}| dimensional.

For our own plane-wave work, we take||ν||2 ≤ εC, ensuring an equal number of degrees of free-
dom. This also has the effect of removing certain null-vectors of thevX minimization which
ultimately arise from the ability of the wavefunction basis to represent the first-order orbital shifts
used to compute the OEP gradient.

Discussion

We have found and verified an expression for the gradient of the Kohn-Sham energy with respect
to the local potential appearing in the Kohn-Sham Hamiltonian. Our derivation based on the den-
sity matrix naturally provides a result that is valid at finite temperature. The cost of evaluating
the optimized effective potential using this approach should be comparable to the cost of a tradi-
tional density functional calculation using standard functionals such as the LDA or GGA, but a
greatly extended family of exchange-correlation functionals that have an explicit dependence on
the Kohn-Sham orbitals can be considered. We have identified the source of an apparent pathology
in iterative OEP calculations using a finite basis, and described a systematic procedure to obtain
the correct OEP solution.
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Chapter 3

Implementation of the OEP in Socorro

Our iterative approach to solving for the OEP was implemented in the Socorro electronic structure
software in the orbital representation using a plane wave basis set and norm-conserving pseu-
dopotentials. There have been no previous implementations of the OEP which address both our
scientific goals (finite temperature simulations, calculation of variational quantities at the opti-
mum) and our computational goals (production quality with pseudo-potentials, proper handling of
cutoffs, and good convergence and preconditioning). We have made substantial progress towards
our goals in both these areas. In the process, we have isolated and circumvented a number of com-
putational pitfalls, which we believe have not been noted before. This section reviews our OEP
implementation and discusses the computational issues that we have identified.

Review of the OEP

We have a “bare” HamiltonianH0 = K +VI representing the sum of kinetic energy and ionic (or
otherwise external) potentials. TheVI operator is theoretically local, but in practice, it is much
more computationally effective to use a non-local pseudo-potential. We will hence considerVI to
be a general operator.

We consider two energy functions

E∗ = H0•ρ +V •ρ +
1
β

(ρ • logρ +(I −ρ)• log(I −ρ))

E = H0•ρ +EHXC(ρ)+
1
β

(ρ • logρ +(I −ρ)• log(I −ρ))

= E∗+EHXC(ρ)−V •ρ

where we adopt the conventionA•B = tr{AHB}. In the OEP formulation, we considerρ to be
a function ofV defined by the condition thatI • ρ = n and E∗(ρ) is minimized withV fixed.
This is equivalent to the condition that∂E∗

∂ρ = µI , for some Lagrange multiplierµ. Thus we may

equivalently takeρ(V) = (I +eβ (H0+V−µI))−1, whereµ is selected to ensureI •ρ(V) = n.

We then minimizeE(ρ(V)) as a function ofV. In translating derivatives inρ to derivatives inV
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we make use of achain rulefor functions of Hermitian matrices,

∂F( f (X))

∂X
=

∆ f
∆x

[

∂F(Y)

∂Y

∣

∣

∣

∣

Y= f (X)

]

where the action of∆ f
∆x [·], in anX diagonal basis (lettingxi = xii be the eigenvalues ofX), is given

by

(

∆ f
∆x

[Z]

)

i j
=

f (xi)− f (x j)

xi−x j
Zi j

where f (xi)− f (x j)
xi−x j

is a divided difference (i.e. taking derivatives whenxi = x j ).

For the application of interest, our function isω(ε) = 1
1+eβε . The gradient ofE as a function ofV

is

∂E
∂V

=
∆ω
∆ε

[

∂E
∂ρ

+νI

]

=
∆ω
∆ε

[

∂EHXC

∂ρ
−V +νI

]

.

whereν (actually the derivative ofµ) is selected so thatI • ∂E
∂V = 0. Thus, for OEP, whereV is

restricted to be a local operator, and the gradient is

∂E
∂V

= diag

[

∆ω
∆ε

[

∂EHXC

∂ρ
−V +νI

]]

,

where we understand the diag above to be the diagonal piece of a Hermitian matrix taken in real
space.

At this point, we should comment that when∂EHXC
∂ρ is a local operator, as in the case of LDA, then

one can motivate the so-calledself-consistentiterationV ← ∂EHXC
∂ρ + νI , which should converge

nicely as long as∆ω
∆ε does not change much. This is one reason why LDA calculations have never

needed to think about∆ω
∆ε or a gradient formulation of LDA.

As an aside, in Hartree-Fock it is the case that∂EHXC
∂ρ is non-local but that there is no restriction

on ρ , which can be thought (perversely) as there being no locality restriction onV, and thus HF is
effectively doingV← ∂EHXC

∂ρ +νI as well.

However, when doing exact exchange∂EHXC
∂ρ is a non-local operator, and it is not clear how a fixed-

point scheme, similar to that of LDA could be generated. This leaves us with the gradient search
as our best available approach.
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Review of the application of∆ω
∆ε [·]

A full diagonalization ofH = H0 +V is computationally impractical for large basis sets. We
review here how the OEP gradient can be found by solving for∆ω

∆ε [Z] (for Z a Hermitian operators)
iteratively on a set of orbitalsφ =

(

φ1 · · · φN
)

which are the lowestN eigenvectors ofH with
eigenvaluesεi and occupationsωi (we assumingωi ∼ 0 for i > N).

We will generalize slightly, to the computation of∆ω
∆ε [Z+νI ], whereν is chosen so that tr{∆ω

∆ε [Z+νI ]}=
t (in the case where there is no trace constraint,ν = 0. Let Ē andJ̄ beN×N matrices given by

Ē = φ†Zφ

J̄ = φ†∆ω
∆ε

[Z+νI ]φ =

[

ωi−ω j

εi− ε j

]

◦ (Ē +νI) ,

where
[

ωi−ω j
εi−ε j

]

is theN×N matrix of divided differences,◦ denotes elementwise multiplication

andν is chosen such that tr{J̄}= t. Let ψ⊥ satisfyφ†ψ⊥ = 0 and

Hψ⊥−ψ⊥Λ = −(I −φφ†)ZφΩ, (3.1)

whereΛ,Ω are diagonal matrices with entriesεi ,ωi respectively. Then

∆ω
∆ε

[Z+νI ] = ψ⊥+
1
2

φ J̄.

We see that we can compute∆ω
∆ε [Z+νI ] from products of the formZφ . However, this does require

an iterative solution to (3.1). It is customary to allow fairly loose tolerances for the underlying
eigenproblem when far from convergence. Thus,φ may be substantially different from the true
lowest eigenvalues ofH and[φφ†,H] may not be small. In that case, we can do additional projec-
tion,

(I −φφ†)Hψ⊥−ψ⊥Λ = −(I −φφ†)ZφΩ,

to ensure that we take a principle submatrix of the[H, ·] operator on the left hand side, and thus
a well-posed problem. Even so, if an iterative solution method requiring positive definiteness is
used, poorly convergedφ can lead to a principle submatrix which is not positive definite.

Generally, we have found that we require our tolerances for the eigenvectors,φ , to be a bit higher
than those required for self-consistent LDA.
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Iterative Algorithms

There are two main iterative loops involved in the iterative OEP algorithm: an inner loop that
solves a linear system in order to evaluate the gradient at a given potential and an outer loop that
uses the resulting gradient to minimize the energy with respect to the potential.

The conjugate gradient algorithm was used to solve the linear systems in the inner loop. Standard
preconditioning techniques identical to those used in iteratively solving for the eigenvectors of the
Hamiltonian in a standard plane wave DFT code are effective in this case. Using the conjugate al-
gorithm, the computational cost of solving the set of linear systems determiningψ⊥ is comparable
to the cost of solving the Kohn-Sham eigenproblem forφ . Therefore, each gradient evaluation is
approximately as computationally expensive as one step of the self-consistency loop in a standard
DFT code.

The outer loop, in which the energy is minimized, replaces the self-consistency iteration in a stan-
dard DFT code. Minimization requires different algorithms than self-consistency, and therefore, a
considerable amount of effort was spent optimizing the outer iteration. Since line minimization is
expensive and the Hessian in this case is difficult to apply, we converged on afixed stepapproach
such as Richardson iteration.

The basic relaxation step is of the form

xi+1 = xi− γgi ,

wheregi = ∇ f (xi), which linearizes to

xi+1 = xi + γ(b−Axi).

The iteration on the errorei = xi−x∗ is given by

ei+1 = (I − γA)ei

ei = (I − γA)ie0

from which we see thatei → 0 only if −1≤ 1− γλ ≤ 1 for all eigenvaluesλ of A.

If the eigenvalues ofA occur in(0,1) then convergence occurs whenγ ≤ 2 andγ = 2 is the largest
convergent step size. In practice, we do not start with the spectrum ofA in (0,1), but we scale
all gradients by an empirically determined factor to place the eigenvalues ofA between(0,1) in a
more-or-less centered fashion.

With γ = 2, if λmin = ε or λmax = 1− ε, the error in the extreme modes will be|1−2ε|i . Thus
convergence is eventually dominated by the value ofκ = 1

ε , which is approximately equal to the
condition number ofA.
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One technique which works well when good estimates of the Hessian norm and condition number
are available isChebyshev acceleration. One considers a Chebyshev polynomial,Ti , affinely trans-
lated so that(−1,1)→ (ε,1) where the eigenvalues of the Hessian occur in(ε,1). The goal is to
haveei = 1

Ti(β )Ti(β −αA)e0 whereα = 2
1−ε andβ = 1+ε

1−ε . The Chebyshev polynomials, given by

T0(y) = 1

T1(y) = y

Ti+1(y) = 2yTi(y)−Ti−1(y).

The error will decrease roughly as1
Ti(β ) ∼

(

1−√ε
1+
√

ε

)−i
with a need for periodic resets to correct

non-linearities (which should be reasonable to perform after 2/
√

ε steps).

The recurrences for Chebyshev polynomials can be re-arranged a bit to give

τ0 = 1

τ1 = 1

τi+1 = 2τi−βτi−1

x1 = x0−αg0

xi+1 = xi +
1

τi+1
(τi−1β (xi−xi−1)−2τiαgi)

and thus we need only keep around avelocityvectorxi−xi−1 and mix it with the gradient to obtain
the update.

With a good preconditioner in place (such as that discussed in the next section), it is reasonable
to assume that Hessian norms and condition numbers are fairly insensitive to problem size. We
have observed that the same pair of parameters achieve nearly the same convergence on 2 atom, 8
atom, and 64 atom silicon, supporting this intuition. This also suggests that one might use smaller
systems to estimate the optimal convergence parameters for larger ones.

Preconditioning the Outer Loop

Effient convergence of the outer loop in the iterative OEP algorithm requires a good preconditioner
for the minimization algorithm. We have developed a preconditioner based on the OEP gradient in
the non-interacting free metal

Since the system is non-interacting, theEHXC term vanishes andV = 0 is optimal. The gradient is

∂E
∂V

= diag

(

∆ω
∆ε

[0]

)
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which can be varied byV→ 0+δV to obtain the variation of the gradient,

δ
∂E
∂V

= diag

(

∆ω
∆ε

[−δV]

)

+diag

((

δ
∆ω
∆ε

)

[0]

)

= −diag

(

∆ω
∆ε

[δV]

)

Thus we see that the Hessian is given by the action of the Jacobian restricted to local operators
δV. There being no possibility of confusion, we will drop theδ and useV for a variation of the
(vanishing) optimum effective potential.

Let us suppose that we have a discrete set of wave numbersK ⊂R
3, which we will use to represent

the occupied orbitals of an idealized system. In this case, the density operator is

ρ(x̄, x̄′) = ∑̄
k∈K

|k̄ >< k̄|= 1
N ∑̄

k∈K

e−ik̄·(x̄−x̄′).

with ρ(x̄, x̄) = ne/N wherene = |K| is the number of electrons andN is the unit volume.

We can carry out a general derivation for planewaves in finite temperature, by takingDk̄k̄′(β ) =
ω(εk̄)−ω(εk̄′ )

εk̄−εk̄′
and thus the localized Jacobian is given by

V(x̄) → ∑̄
k,k̄′

Dk̄k̄′(β )|k̄ >< k̄|V|k̄′ >< k̄′|

= ∑̄
kk̄′

e−ik̄·x̄eik̄′·x̄Dk̄k̄′(β )

∫

d3x̄′eik̄·x̄′e−ik̄′·x̄′V(x̄′)

= ∑̄
kk̄′

Dk̄k̄′(β )
∫

d3x̄′e−i(k̄−k̄′)·(x̄−x̄′)V(x̄′)

= ∑̄
α

dᾱ(β )

∫

d3x̄′e−iᾱ ·(x̄−x̄′)V(x̄′)

= ∑̄
α

dᾱ(β )|ᾱ >< ᾱ|V

wheredᾱ(β ) = ∑k̄−k̄′=ᾱ Dk̄k̄′(β ). We notes that if
∫

d3x̄V(x̄) vanishes, then so does the integral of
the RHS, thusν = 0, and the sum over̄α can be restricted tōα 6= 0̄.

We may consider a more specific metallic case where the possible states are allR
3 with

εk̄ = ||k̄||2

ω(k̄) =
1

1+eβ (||k̄||2−µ)
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whereµ is selected by
∫ 4πk2dk

1+eβ (k2−µ)
= n, for some constantn.

Passing from sums to integrals we find (takingα = ||ᾱ||),

dα(β ) = ∑̄
k

D(k̄+ 1
2ᾱ)(k̄− 1

2ᾱ)

=

∫ ω(k̄+ 1
2ᾱ)−ω(k̄− 1

2ᾱ)

2k̄ · ᾱ d3k̄

dα(β ) =

∫

1

1+eβ ((x+ 1
2α)2+y2+z2−µ)

− 1

1+eβ ((x− 1
2α)2+y2+z2−µ)

2xα
dxdydz

=
∫

r∈R+

∫

x∈R

πr

1

1+eβ ((x+ 1
2α)2+r2−µ)

− 1

1+eβ ((x− 1
2α)2+r2−µ)

xα
dxdr

=
∫

x∈R

π
log 1+eβ ((x− 1

2α)2+r2−µ)

1+eβ ((x+ 1
2α)2+r2−µ)

∣

∣

∣

∣

∞

r=0

2βxα
dx

=

∫

x∈R

π
log eβ ((x−1

2α)2−µ)

eβ ((x+1
2α)2−µ)

− log 1+eβ ((x− 1
2α)2−µ)

1+eβ ((x+ 1
2α)2−µ)

2βxα
dx

=
∫

x∈R

π
2xα

1
β

log
e−β ((x+ 1

2α)2−µ) +1

e−β ((x− 1
2α)2−µ) +1

dx.

Taking the limit asβ → ∞, noting that limβ→∞
1
β log(eβc +1) = max{c,0} for all c,

dα(∞) =
∫

x∈R

π
2xα

(

max

{

µ− (x+
1
2

α)2,0

}

−max

{

µ− (x− 1
2

α)2,0

})

dx

=

∫ 1
2α+

√µ

x= 1
2α−√µ

π
xα

(

(x− 1
2

α)2−µ
)

dx

=

∫ 1
2α+

√µ

x= 1
2α−√µ

π

(

x
α
−1+

1
4α2−µ

xα

)

dx

= π

(

x2

2α
−x+

1
4α2−µ

α
log|x|

)
∣

∣

∣

∣

∣

1
2α+

√µ

x= 1
2α−√µ

= −π

(

√
µ−

1
4α2−µ

α
log

1
2α +

√µ
∣

∣

1
2α−√µ

∣

∣

)

.

We now note some of the features ofdα(∞). It is continuous everywhere, taking the value−π√µ
atα = 2

√µ . It is differentiable for allα 6= 2
√µ (where it is infinite), which is associated with the

Friedel oscillations in metals.
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For largeα,

dα(∞) = −π

(

√
µ−

1
4α2−µ

α
log

1+
2
√µ
α

1− 2
√µ
α

)

= −π

(

√
µ−

(

1
4

α− µ
α

)

2

(

2
√µ
α

+
1
3

(

2
√µ
α

)3

+ · · ·
))

= −π

(

4µ3/2

α2 −
(

1
2

α− 2µ
α

)

(

1
3

(

2
√µ
α

)3

+ · · ·
))

∼ −π
8µ3/2

3α2 .

For smallα,

dα(∞) = −π

(

√
µ−

1
4α2−µ

α
log

1+ α
2
√µ

1− α
2
√µ

)

= −π

(

√
µ−

(

1
4

α− µ
α

)

2

(

α
2
√µ

+
1
3

(

α
2
√µ

)3

+ · · ·
))

∼ −π
(

2
√

µ− α2

6
√µ

)

.

A bit of empirical curve fitting and rearrangement of expressions then shows that

C
√

µ ≤ dα(∞) ·
(

1

1+ α2

µ
+

3α2

4µ

)

≤ 2C
√

µ

for some C, which implies that

1

1− ∇2

µ
− 3∇2

4µ
or 1− 3

4µ
∇2

should be a good preconditioner in the low temperature regime. This is the preconditioner that we
use in our OEP implementation, and it seems to be doing a good job even on non-metallic systems
such as silicon and at substantial finite temperatures.
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Potential cut-offs

Another issue that arises in the implementation of the iterative OEP algorithm is making sure that
we do not include modes in the variational space of the potential that have an extremely weak ef-
fect on the energy evaluated using a given plane wave representation of the waevefunctions. Such
modes lead to an extremely poorly conditioned minimization problem and very poor convergence.
This issue is closely related to the problem discussed above in the theory section of making sure
that the Kohn-Sham equations are accurately solved for each potential occuring during the mini-
mization of the potential.

Let us consider the case where we have used a planewave basis with some cutoff||k̄|| < kW and
fully diagonalizedH = H0+V into a complete eigenbasisφ1, . . . ,φN (whereN is the dimension of
the planewave basis). Let us also assume that we have likewise represented the local operator,V,
in a planewave basis with a cutoff ofkV .

We consider the case whereV = V∗+ εeiᾱ·x̄, whereV∗ is the optimal andv is small. Then the
gradient atV is

∂E
∂V

= diag

(

∆ω
∆ε

[

∂EHXC(ρ)

∂ρ
−V∗− εeiᾱ ·x̄ +(ν∗+vγ)I

])

=−εdiag

(

∆ω
∆ε
[

eiᾱ ·x̄− γI
]

)

whereγ is chosen to make∂E
∂V traceless. In terms of the complete eigenbasis,

∆ω
∆ε
[

eiᾱ·x̄] = −∑
i j

(

ωi −ω j

εi− ε j

)

(

φ†
i eiᾱ·x̄φ j

)

φiφ†
j , (3.2)

from which we see a vanishing gradient for||ᾱ|| > 2kW. This is to be expected, however, since
the coupling betweenV andρ in E∗ is V •ρ andeiᾱ·x̄ •ρ identically vanishes when||ᾱ|| > 2kW.
One way to look at this is that high frequency modes ofV have no effect onρ in the presence of
cutoffs, and thus, no effect on the energyE. If we started the minimization fromV = V∗+ εeiᾱ ·x̄,
we could not expect to seeε decrease.

However, this is not enough. We have observed that withV cutoff at 2kW the convergence of the
gradient search is very sub-linear.

In fact, any first order perturbation toV∗ which gives a second order gradient could not be expected
to decrease rapidly (i.e. linearly) in a gradient-based minimization. Such perturbations are then
null vectors of the objective functionE(ρ(V)).

Consider that in order for a term in (3.2) to contribute significantly to the sum, at least one ofφi or
φ j must haveωi ,ω j non-vanishing, i.e. bepartially occupied. In a typical calculation, the partially
occupied states have planewave components which become vanishingly small for||k̄|| > k0 with
k0 independent ofkW so long askW is picked to be well enough abovek0 (an extreme case is the
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free non-interacting metal in whichk0 is minimal and independent ofkW for kW > k0). Thus if
||ᾱ|| > kW +k0 the first order contribution toρ will be likewise small and ill-conditioning of the
optimization results.

This ill-conditioning is entirely non-physical, coming from the choice ofkW. If we consider the
effect of increasingkW, k0 would change negligibly, and thuskW + k0 would increase and more
ᾱ ’s would be able to significantly contribute (3.2). In non-OEP formulations, the criterion forkW

is to provide a good representation of the partially occupied orbitals. However, the OEP gradient
couples unoccupied and partially occupied orbitals, and this coupling can only be represented
faithfully so long as the unoccupied orbitals can be represented faithfully.

We have used a more stringent cutoff forV therefore, taking it to bekW instead of the customary
2kW. We have found, with experiments on silicon, that the number of correctly converged digits
in the resulting energies did not change. This is to be expected, since a tiny contribution to the
gradient indicates a tiny contribution to the overall energy.

OEP Hellman-Feynman correction

Once an OEP calculation has been performed, it is important to be able to calculate variational
quantities (such as forces) at the optimum. One of the surprising results we’ve obtained is the
failure of the Hellman-Feynman theorem in general OEP problems.

The Hellman-Feynman theorem is the basis for doing perturbative analysis of LDA approximations
or Hartree-Fock to obtain variations in the ground state energy as a result of a varying Hamilto-
nian. It says that if the bare Hamiltonian is a linear functonH0(s) = H0 +sH1, andEmin(s) is the
minimum ofE (as a function ofV) with the givenH0(s), then

dEmin

ds
= H1•ρ(V)

whereV is the minimizer ats= 0, giving a linearization of the energy which is independent of any
first derivatives ofV at the minimum. These first order variations of the minimum energy are the
basis for the calculation of a variety of bulk material properties, like conductivity, the dielectric
constant, as well as stress and strain. This is what one would generally expect from an arbitrary
function of the formf (s) = minxF(s,x), a short sketch of why being,

∂
∂x

F(x,s) = 0

d
ds

F(x(s),s) =
∂
∂x

F(x(s),s)
dx(s)

ds
+

∂
∂s

F(x(s),s)

= 0+
∂
∂s

F(x(s),s).
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However, our problem is analogous to

∂
∂y

F(x(y,s),s) =
∂
∂x

F(x(y,s),s)
∂x
∂y

= 0

d
ds

F(x(y(s),s),s) =
∂
∂x

F(x(y,s),s)

(

∂x
∂y

dy(s)
ds

+
∂x
∂s

)

+
∂
∂s

F(x(y(s),s),s)

=
∂
∂x

F(x(y,s),s)
∂x
∂s

+
∂
∂s

F(x(y(s),s),s),

and it is this ∂
∂xF(x(y,s),s)∂x

∂s term, which comes from the fact that the relation betweenx andy is
dependent ons, that we must account for.

For the OEP formulation,

d
ds

E =
∂E
∂H
•H1+

∂E
∂s

=

(

∂EHXC

∂ρ
−V + µI

)

• ∆ω
∆ε

[H1]+ tr{ρH1}

=
∆ω
∆ε

[

∂EHXC

∂ρ
−V + µI

]

•H1+ tr{ρH1}

The second term vanishes if

• H1 is local (since the local part of∆ω
∆ε

[

∂EHXC
∂ρ −V + µI

]

vanishes)

• LDA: ∂EHXC
∂ρ is local (since∂EHXC

∂ρ −V + µI vanishes)

• Hartree-Fock:V is not restricted to be local (since∂EHXC
∂ρ −V + µI vanishes)

Thus, this correction is not present in the previous methods of LDA and Hartree-Fock. Corrections
to higher order derivatives are thus also expected to appear in an OEP problem with non-local
∂EHXC

∂ρ .
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Chapter 4

Tests and Applications

We applied our implementation of EXX using a plane-wave basis and our iterative OEP algorithm
to study small molecules, bulk semiconductors, and defects in silicon. In these calculations, we
neglected correlation and takeEHXC to be the sum of the Hartree and exchange energies.

Convergence Tests

We repeated the convergence tests for our iterative OEP algorithm described above for the LDA
functional using the EXX. This verifies that the method works correctly using aEHXC that can not
be written as an explicit functional of the electronic density. The test system consisted of a two
atom unit cell of silicon in the diamond structure. We used a 20 Rydberg plane-wave cutoff and a
2×2×2 Monkhorst-Pack k-point sampling. This k-point sampling does not give a converged total
energy, but this is not an issue for the purpose of testing our approach. Two electronic temperatures
were used: (1) Room Temperature (kBT = 25.67 meV), and (2) High Temperature (kBT = 1.0 eV).

In order to test the correctness of our gradient, we applied the finite difference approach to the
EXX energy functional. During each of a series of steps, the value ofV at each point on a real-
space grid was varied by a small (o(10−4)) random perturbation∆V(r). During this random walk,
the energy and the gradient were evaluated at each step. A linear approximation to the change in
energy during each step is given by

∆E ≈
∫ ∂E

∂V(r)
∆V(r)dr. (4.1)

For the small steps taken in this test, we would expect this linear approximation to be accurate if the
gradient is accurate. Therefore, we can compare this predicted energy change to the actual energy
change observed during the random walk. The results of this comparison for the high temperature
case are shown in figure 4.1. Since the step direction is random, this represents a very stringent test
of the accuracy of the gradient, and we believe that the excellent agreement between the predicted
and actual energy changes demonstrates that our approach gives an accurate gradient, even at large
electronic temperatures.
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Figure 4.1. A comparison of the energy change predicted from
the gradient and the actual energy change observed during a ran-
dom walk in the potential. The crosses are the calculated values.
The solid line is a guide to the eye representing perfect agreement.
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Figure 4.2. The convergence of theexact exchangeenergy, as
well as the square-norm of gradient, during the iterative minimiza-
tion on a log scale. The top plot was run at room temperature
(25.67 meV) and the bottom at high temperature (1 eV).g = ∂E

∂V(r)
from (2.25).
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The convergence of the energy of our EXX test system during theapplication of the iterative OEP
algorithm is shown in Fig. 4.2. The errors in the energy were approximated by comparing to the
converged result. As in the LDA case, we found that the convergence of the EXX energy is only
weakly dependent on the electronic temperature. The asymptotic rate of convergence obtained in
the iterative OEP approach is not as rapid as the highly optimized mixing methods typically used
in self-consistent calculations, but a reasonable accuracy for practical purposes (10−4 Ry.) can be
obtained easily.

EXX results for H 2 and bulk Si and Ge

The bond length of the H2 molecule was calculated using our plane-wave implementation of EXX.
Pseudopotentials were not used, so the hydrogen nucleus was represented by a Coulomb diver-
gence regularized by the finite plane-wave basis set used in the calculations. Convergence with
respect to supercell size (which gives the distance between molecules) and plane-wave cutoff was
established. The resulting bond length was 1.40 atomic units, identical to the experimental result,
and in good agreement with the EXX result of 1.39 atomic units found using a Gaussian basis
set and discussed elsewhere in this report. This shows that, like conventional DFT exchange-
correlation functionals such as LDA and GGA, the EXX can give good structural properties.

The band gaps of Si and Ge were also calculated. Pseudopotentials generated within the KLI ap-
proximation using the FHI code were used. The results can be compared to EXX results obtained
using a very different technique by Städele et al [12]. In the case of Si, our calculations gave a band
gap of 1.28 eV, in good agreement with the values 1.23 eV from other EXX calculations, and 1.17
eV from experiment. In the case of Ge, our calculations gave a band gap of 0.72 eV, which can e
compared to 0.94 eV from other EXX calculations, and 0.66 eV from experiment. The differences
between our EXX results and those of Städele et al are within the expected uncertainties due to
differences between our pseudopotentials (KLI) and their pseudopotentials (full EXX) [12]. As
observed before, EXX band gap values are in much better agreement with experiment than con-
ventional exchange-correlation functionals such as LDA and GGA. This is particularly dramatic
for the case of Ge, where LDA predicts metallic behavior (the absence of a band gap).

Finally, we calculated the Si band gap as a function of temperature using EXX and LDA. The
results are shown in Fig. 4.3. Note that these calculations neglect the effects of ion motion,
such as thermal expansion, and therefore, they can not be straightforwardly compared to finite
temperature experimental results. As discussed above, the EXX result at low temperature is much
closer to the experimental result than the LDA result. The curves giving the calculated results
come in flat at zero temperature. This is the expected behavior for all semiconductors when using
energy functionals, such as EXX and LDA, that depend only on the temperature via the electronic
density matrix. This behavior results from the absence of a linear dependence of the density matrix
of a semiconductor on the temperature at zero temperature. In contrast, GW calculations show a
decrease in the band gap with temperature at small temperatures. The EXX band gap is observed
to increase more with temperature than the LDA result, and there are signs of a plateau in the EXX
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Figure 4.3. Our calculated band gap of silicon as a function of
temperature using EXX and the LDA.

band gap at high temperature.

EXX results for the silicon interstitial

Due to the favorable scaling of our iterative OEP algorithm, we were able to perform unprecedented
EXX calculations for defects in 216 atom unit cells of silicon. Figure 4.4 shows the results for the
-2 charge state of the silicon self-interstitial in the ground state ([110] split) configuration. The
EXX calculations were performed using PBE relaxed atomic positions. As mentioned before,
the EXX band gap is in good agreement with experiment and much larger than the PBE band
gap. The allowable charge states of the silicon self-interstitial range from +2 to -2, and therefore,
the -2 charge state should have two filled levels within the band gap. This is observed in the
EXX case. However, in the PBE case, the lower level has moved down and submerged into the
valence band, while the upper level is unphysically close to the conduction band edge, which, in
the presence of defect band dispersion, can lead to partial loss of charge from the upper level to the
conduction band edge. Such a loss of charge from a defect level can lead to incorrect results for the
properties of defects in conventional DFT calculations. Our results show that the EXX provides
a promising approach to avoiding unphysical band overlap problems and the associated errors in
defect calculations.
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Chapter 5

Pseudopotentials

One challenge when using a new density functional is finding a way of generating pseudopotentials
consistent with that functional. It is possible, of course, to use pseudopotentials developed with
another functional, for example LDA. However, such use is not advisable, as the core density
replaced by an LDA pseudopotential will not be exactly the same as that replaced by an EXX
pseudopotential. We have therefore sought to find a way to generate pseudopotentials consistent
with our EXX density functional.

We considered several options for generating EXX-consistent pseudopotentials. First, we consid-
ered using one of the wide range of Hartree-Fock pseudopotentials in current use. Such an option is
potentially possible, however Hartree-Fock codes do not typically derive the separable pseudopo-
tentials required by the Socorro program, and it was not known whether there were fundamental
inconsistencies with the very non-local Hartree-Fock Hamiltonian and the separability algorithms.
Secondly, we considered using the FHI98PP software [21] that is in wide use in the DFT commu-
nity and that contains a KLI functional. The KLI functional is an approximation to the full EXX
functional, and might possibly produce core densities arbitrarily close to the EXX core densities.
Thirdly, we considered writing our own all-electron DFT code to produce our own core densities
and pseudopotentials. We have, in fact, put together an all-electron DFT functionality [22] that we
have used for rapid development of algorithms for EXX potential generation. Using this capability
for pseudopotential generation remains an option that could be pursued at some point. Finally, we
considered obtaining existing software to generate these potentials. We obtained code from the
Goerling group [23] and code from the Engel group [24]. After an initial assessment of the two
programs, we decided that the code from the Engel Group was more mature, and have used that
program to generate EXX pseudopotentials.

Figure 5.1 shows a comparisons for the Si atom of LDA and KLI pseudopotentials constructed with
the FHI98PP and the EXX pseudopotential constructed with the Engel group’s program. We are
currently in the process of testing these potentials in the Socorro program to insure they reproduce
meaningful physical properties.
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Figure 5.1. A comparison of Si pseudopotentials computed
(top) using the Fritz-Haber pseudopotential code with the LDA
XC functional, (center) using the Fritz-Haber pseudopotentialcode
with the KLI XC functional, (bottom) using the Engels group’s
pseudopotential code with the EXX XC functional.
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Chapter 6

Small system tests of the OEP

We now report the performance of EXX methods on a variety of test systems. We report a compar-
ison of a spectrum of excitation energies for Helium and Beryllium atoms, we report the accuracy
of the functionals for molecular hydrogen geometries with stretched H–H bond lengths, and we
report the behavior of the band gap of Helium atom at elevated temperatures. These test problems
have been computed using an all-electron EXX method described in reference [22].

Helium Atom

Figure 6.1 shows a comparison of Helium excitation energies to the (essentially exact) QMC-
derived exchange-correlation functional as well as to HF and to other LDA, GGA, and Hybrid
functionals. The two methods derived in the current LDRD project, labelledEXX andEXX-GGA
in the figure, perform significantly better than the HF method and the other density functionals.
The average error of the EXX (0.016 h) and the EXX-GGA (0.014 h) methods is significatly lower
than that from HF (0.107 h), LDA (0.241 h), GGA (0.227–0.232 h) or hybrid (0.160 h) methods.
Furthermore, the EXX values differ from the QMC-derived values by essentially constant values
across the entire spectrum, whereas the errors in the other methods fluctuate considerably. As a
result, the EXX methods are the only ones that properly predict the ordering of the excited states.

Beryllium Atom

Figure 6.2 reports a similar comparison for Beryllium atom. On the average the HF excitation
energies differ by 0.075 h, the LDA, BLYP, and PBE values differ by 0.050–0.070, and the B3LYP
values differ by 0.038 h. In contrast, the EXX values differ by only 0.004 h, nearly a factor of ten
smaller average difference than the best of the standard DFTs. Moreover, as was seen in He, the
OEP excitation energies differ from the QMC values by a constant shift, whereas the LDA, GGA,
and HF values fluctuate much more about their averages. The figure illustrates that not only does
the EXX perform better on the average, but that each individual excitation value once again differs
from the exact levels by a small, nearly constant shift.
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Figure 6.1. A comparison of the excitation energies for differ-
ent states of Helium atom, using the Hartree-Fock (HF) method,
and density functional theory using the LDA, BLYP, PBE, B3LYP
functionals, as well as the EXX and EXX-GVB method develop in
this LDRD project.

Figure 6.2. A comparison of the excitation energies for different
states of Beryllium atom, using the Hartree-Fock (HF) method,
and density functional theory using the LDA, BLYP, PBE, B3LYP
functionals, as well as the EXX method develop in this LDRD
project.
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Figure 6.3. A comparison of the dissociation behavior of differ-
ent density functionals showing that traditional gradient-corrected
density functionals (BLYP), hybrid functionals (B3LYP), and even
simple OEP/EXX functionals produce energies that are incorrect
for molecular hydrogen at geometries with stretched H–H bonds.
In contrast, a method from the current work (EXX/GVB) does in
fact produces correct energies for the stretched hydrogen geome-
tries.

Hydrogen Molecule

The limitations of the Hartree-Fock wave function for describing partially bonded electronic con-
figurations are well known: the single electronic configuration limits the ways the wave function
can be variationally minimized, and thus the energies from Hartree-Fock wave functions do not
approach twice the energy of a single H atom as they should. Figure 6.3 shows energies (eV) for
molecular hydrogen as the H-H distance (Å) is increased. Several things are notable about this
figure. First, the GGA and Hybrid DFT approaches also dissociate to the incorrect limit, even
though, being DFT approaches, they don’t necessarily suffer from the same limitations. Further-
more, the EXX approach alone dissociates to the same limit that the HF approach would. In the
examples above with He and Be atoms, using EXX “fixed” many of the inconsistencies of using
a HF wave function, but this is not the case for dissociating chemical bonds. Thirdly, we see that
a solution comes from using not a pure Hartree-Fock method in our optimized effective potential
optimization, but a correlated wave function approach [22, 25], which then does dissociate to the
proper limit.
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Figure 6.4. A comparison of the band gaps versus temperature
using the Hartree-Fock (blue), LDA (green) and EXX (red) meth-
ods. Note that the band gap of the EXX method approaches the
LDA method at sufficiently high temperatures.

Finite Temperature EXX Simulations

One of our primary motivations for developing an exact exchange capability for DFT calculations
as a tool for correcting the systematic errors in the DFT band-gap in finite-temperature molecular
dynamics calculations. Thus, realistic performance at finite-temperature is very important to our
work. Figure 6.4 shows a comparison of the HF, LDA, and EXX band gaps for Helium atom.
Hartree-Fock methods systematically overestimate the band gap, and LDA methods systematically
underestimate the band gap. The results from Figure 6.1 suggest that at zero temperture the EXX
results are very close to the correct values. Figure 6.4 shows that as we raise the temperature the
EXX results approach the LDA results, which are correct at sufficiently high temperature. This
study demonstrates that EXX band gaps have the correct behavior at low and at high temperatures.
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Chapter 7

Correlation compatible with Exact
Exchange

In order to explain the necessity of adding a compatible correlation to exact exchange (EXX) we
will use the jellium surface model system in an illustrative example. This model is obtained by
performing a self-consistent LDA calculation on a system where electrons move in an external
potential of a uniform positively charged background in halfspace. [26] The model itself can be
seen as a well-defined procedure to produce densities from which all other quantities can be deter-
mined using the Kohn-Sham equations [27] with the LDA exchange-correlation functional. The
non-homogeneous densities that define the model are expressed in the dimensionless parameter
rs = a0(3/(4π)n̄)1/3, wheren̄ is the density of the positive background, anda0 is the bohr radius.
The total system of positive background and electrons is neutral and the bulk electron density,
nbulk, far inside the half space positive background is then equal to ¯n. Typical jellium surface
model densities are shown in Fig. 7.1.

-20 -15 -10 -5 5
z�a0
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0.4

0.6

0.8

1

n�nbulk

Jelliumsurface densities for rs=2.07and5.00

Figure 7.1.Examples of two jellium surface densities with differ-
entrs-values.rs = 2.07 corresponds to the valence electron density
in aluminum. Largerrs corresponds to lower density.
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Table 7.1.Exchange surface energies, in erg/cm2, for the jellium
surface model. Mean absolute relative errors (mare) are compared
to the EXX results [28].

rs LDA PBE EXX
2.00 3036 2436 2624
2.07 2673 2125 2296
2.30 1808 1393 1521
2.66 1051 769 854
3.00 668 464 526
3.28 477 315 364
4.00 222 128 157
5.00 92 40 57
mare 29% 13% −

For a given jellium surface, that is, density, the only part ofthe energy that changes using different
functionals,εxc(r ; [n]), is the exchange-correlation part, so we only examine this part of the energy.
An exchange-correlation surface energy is defined by subtracting the energy an equal amount of
electrons would have had in a uniform electron gas with the bulk density (this is equivalent to the
LDA expression):

σxc =

∫

n(z)[εxc(r ; [n])− εLDA
xc (nbulk)]dz. (7.1)

This expression can be divided into an exchange and a correlation part,σxc = σx+σc. This division
is arbitrary, since only the fullσxc is a physical quantity, not the separateσx andσc. We will here
follow the standard division and defineσx as the quantity obtained by insering the EXX functional
into Eqn. 7.1. The correlation part is defined as ’the rest’ and need to be derived with methods
outside of DFT. Table 7.1 shows the jellium surface model surface exchange energies for the LDA,
PBE, and EXX exchange functionals. The EXX results are from Ref. [28]. EXX being the correct
result, the two other functionals are compared to the EXX results by calculation of the mean
absolute relative error, mare. As is seen, LDA deviates strongly from the correct answer with 29%
mare, while PBE is doing better with 13% mare. Taken out of perspective this discrepancy would
be sufficient to motivate the use of the much more computationally expensive EXX functional.
However, as pointed out before, the physical quantity is the full exchange-correlation energy, not
the separate exchange or correlation energies.

In Tab. 7.2, the surface correlation energies for the same jellium surface model is given. Here the
RPA+ is the best available approximation for the exact correlation energy [29]. As seen, also the
correlation is far off, in particular for LDA with a 63% mare from the RPA+ results. However,
combining exchange and correlation into the real physical quantity, results are given in Tab. 7.3,
the errors made in exchange and correlation are cancelling to the extent that LDA only has a 2%
error and actually is better than PBE, which had both the separate exchange and correlation better
than LDA. This effect is due to the LDA correlation being ’compatible’ with LDA exchange. Both
the LDA exchange and correlation are derived from a model system, the uniform electron gas, for
which LDA thus is the correct answer. Applying LDA to a non-uniform electron gas, such as the
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Table 7.2. Correlation surface energies, in erg/cm2, for the jel-
lium surface model. Mean absolute relative errors (mare) are com-
pared to the RPA+ results [29].

rs LDA PBE RPA+
2.00 317 827 789
2.07 287 754 719
2.30 210 567 539
2.66 136 381 360
3.00 95 275 255
3.28 72 215 199
4.00 39 124 111
5.00 19 67 56
mare 63% 8% −

jellium surface densities in Fig. 7.1, errors made in exchange has a tendency to cancel with errors
made in the correlation as is seen in Tabs 7.1-7.3. PBE is not constructed from a model system and
thus does not have compatible exchange and correlation, see the tables.

Table 7.3.Exchange-correlation surface energies, in erg/cm2, for
the jellium surface model. Mean absolute relative errors (mare) are
compared to the EXX/RPA+ results.

rs LDA PBE EXX/RPA+
2.00 3354 3264 3413
2.07 2960 2879 3015
2.30 2019 1960 2060
2.66 1187 1150 1214
3.00 763 739 781
3.28 549 530 563
4.00 261 252 268
5.00 111 107 113
mare 2% 5% −

So, what correlation should be used for EXX? Let us examine thejellium surface model again. If
we use no correlation at all, thus approximating the EXX/RPA+ numbers in Tab. 7.3 with the EXX
numbers in Tab. 7.1, we would make errors between 23 and 50%, with a mare of 33%. Combining
the EXX in Tab. 7.1 with LDA/PBE correlation in Tab. 7.2 would make errors between 14/1 and
33/10%, mare 21/3%. It would thus be reasonable to use PBE correlation together with EXX.
This exercise shows that the usual practice of adding no or LDA correlation to EXX results is not
well founded.

We will now proceed and use the jellium surface model system to construct a partially compatible
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correlation for EXX by parametrizing the RPA+ correlation inTab. 7.2. We will follow approx-
imately the same procedure as in [30]. We will use an index dependent on the dimensionless
density gradient parameters2 = |∇n|2/(4(3π2)2/3n8/3) to interpolating between ’interior’ (s= 0,
LDA correlation, index=1) and edge region (s→ ∞, index=0):

XIDX(s2) = 1−cs2/(cs2+1) (7.2)

FIDX(s2) = 2/(1+exp(s2/t)) (7.3)

These two possible indices are shown in Fig. 7.2, for the values ofc and t obtained in the fits
described below. TheXIDX index is used in the am05 functional[30].
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XIDX Hc=1.4805, blueL
FIDX Ht=0.3123, redL

Figure 7.2. Examples of two possible indices to interpolate be-
tween ’interior’ (LDA correlation, index=1) and edge region (in-
dex=0) .

For the interior region, far from the surface, where the density is slowly varying (see Fig. 7.1),
LDA correlation (LDAc) is a suitable functional. For the edge region we will use a scaled LDA
correlation, with the scaling set by fitting. The two correlation functionals we here construct thus
have the following form:

EXXc(n,s) = IDX(s2)∗LDAc(n)+(1− IDX(s2))∗ (g1+g2∗ rs(n))∗LDAc(n) , (7.4)

where IDX is eitherXIDX or FIDX from Eqn. 7.3, andg1 and g2 are fitting constants. Note
also thatrs here is calculated from the local density, not the bulk/positive background density as
above. In the construction of am05 [30] only one scaling constant,g1, was used, but to accurately
represent the RPA+ data in Tab. 7.2, two fitting constants are needed. Also note that we correctly
would obtain the LDAc for a uniform electron gas system wheres2 = 0, sinceIDX(0) = 1 by
construction.
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The constants,(g1,g2,c) for EXXXcand(g1,g2, t) for EXXFc, are fitted by non-linear fitting to
the RPA+ data in Tab. 7.2. In this case we use the PW parametrization [31] of the LDAc. The
PZ correlation [32] would be equally suitable but would give slightly different values of the fitting
parameters. Both forms of the index give equally good fits and reproduces the RPA+ results in
Tab. 7.2 to within error bars (±1 erg/cm2). The constants take the values

EXXXc : (g1,g2,c) = (0.02245,0.03672,1.4805) , (7.5)

EXXFc : (g1,g2, t) = (0.3060,0.04108,0.3123) . (7.6)

In order to compare the two here created correlation functionals with GGA correlations (PBEc [33]
and PW91c [34]) and the PW [31] and PZ [32] parametrizations of Ceperley and Alder’s Monte
Carlo derived LDA correlation [35], we examine the accumulated surface correlation energy ob-
tained from the correlation part of the integrand in Eqn. 7.1 integrated from−∞ to z. This accumu-
lated surface correlation energy is shown in Fig. 7.3 for the same twors values as in Fig. 7.1. It is
clearly seen that scaling the LDA correlation in the edge region makesEXXXcandEXXFcbehave
like the GGA correlations even though the derivation of the here presented correlation functionals
has nothing in common with the derivation of the PBEc and PW91c. We also see that the main
difference from the GGA correlations is picked up outside of the surface. It is also interesting to
note that despite that the indices in Eqn. 7.3 are quite different (see also Fig. 7.2) the final results
are very similar. A final, obvious, observation is that the accumulated surface correlation indeed
converge towards the RPA+ values that the full integrals were fitted to.

We have constructed two correlation functionals that reproduce the correct correlation in two model
systems, the uniform electron gas and the jellium surface system. This correlation is thus par-
tially compatible with EXX. The two correlation functionals seems to reproduce GGA results for
moderate values ofs2. Full and realistic testing is needed before any final conclusions about the
performance of these two correlation functionals can be made.
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Figure 7.3.Accumulated surface correlation energy.
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Appendix A 
 
 
Expressions for the Exchange Energy and 
Exchange Derivative 
 
 
 
Implementation of the exact-exchange, optimized-effective-potential technique in 
Socorro required us to write subroutines for computing the exchange energy and the 
derivative of the exchange energy with respect to a Kohn-Sham function. A significant 
challenge was to deal with the integrable divergences that arise in the expressions for 
these quantities. The expression for the exchange energy is derived first below and we 
discuss the treatment of the integrable divergence. The expression for the derivative of 
the exchange energy is then derived further below. In these derivations, ρ r, ′ r ( ) is the one 
electron density matrix at r and r′, 
 
 ρ1 r, ′ r ( )= e fn,kφn,k

* r( )φn,k ′ r ( )
n
k

∑ , 

where φn,k r( ) is a Kohn-Sham function, 
 
 φn,k r( )= un,k r( )eik ⋅r  
 
fn ,k  is its occupation, and e is the electron charge which is equal to 2  in Rydberg 

atomic units. The exchange energy, Ex, is then 
 

 Ex = −
1
2

ρ1 r, ′ r ( )ρ1
* r, ′ r ( )

r − ′ r 
d3rd3 ′ r ∫  

 

       = −
e2

2
fn,k f ′ n , ′ k 

φn,k
* r( )φn,k ′ r ( )φ ′ n , ′ k r( )φ ′ n , ′ k 

* ′ r ( )
r − ′ r 

d3rd3 ′ r ∫
′ n 
′ k 

∑
n
k

∑  

 

       = −
e2

2
fn,k f ′ n , ′ k u ′ n , ′ k r( )un,k

* r( )∫
′ n 
′ k 

∑
n
k

∑ e− i k− ′ k ( )⋅r u ′ n , ′ k 
* ′ r ( )un,k ′ r ( )

r − ′ r 
ei k− ′ k ( )⋅ ′ r d3 ′ r ∫

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r  

 61



 

       = −
e2

2
fn,k f ′ n , ′ k h ′ n , ′ k ,n,k

* r( )∫
′ n 
′ k 

∑
n
k

∑ e−i k− ′ k ( )⋅r h ′ n , ′ k ,n,k ′ r ( )
r − ′ r 

ei k− ′ k ( )⋅ ′ r ∫ d3 ′ r 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r  

 

       = −
e2

2
fn,k f ′ n , ′ k h ′ n , ′ k ,n,k

* r( )∫
′ n 
′ k 

∑
n
k

∑ e−i k− ′ k ( )⋅r h ′ n , ′ k ,n,k G( )
G
∑ ei k− ′ k +G( )⋅ ′ r 

r − ′ r ∫ d3 ′ r 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r  

 

       = −2πe2 fn ,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k 

∑
n
k

∑ e−i k− ′ k ( )⋅r h ′ n , ′ k ,n ,k G( )
k − ′ k + G 2 ei k− ′ k +G( )⋅r

G
∑

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
d3r  

 

       = −2πe2 fn ,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k 

∑
n
k

∑ h ′ n , ′ k ,n ,k G( )
k − ′ k + G 2 eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
d 3r  

 

       = −2πe2 fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k 

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r  

 
       = −2πe2 fn ,k f ′ n , ′ k h ′ n , ′ k ,n,k

* r( )∫
′ n 
′ k 

∑
n
k

∑ H ′ n , ′ k ,n,k r( )d3r  

 
We next discuss the treatment of the integrable divergence that appears in this 

expression. In DFT plane wave calculations, un,k r( ) is normalized over a cell volume (Ω) 
and is constrained to be orthogonal to u ′ n ,k r( ) when n′ ≠ n. As such, the integrals of 

 and  over the cell volume − h ′ n = n ,k,n ,k r( ) h ′ n ≠n ,k,n ,k r( ) h ′ n = n,k,n ,k G = 0( ) and  
− have the values 1 and 0, respectively.  In the latter case, the terms  will 
also be equal to 0 and the numerical problem of dividing by 

h ′ n ≠n ,k,n,k G = 0( )
H ′ n ≠n,k ,n,k G = 0( )

G 2 = 0 is avoided by 
skipping them. In the former case, the terms H ′ n = n,k ,n,k G = 0( ) are undefined and thus 
require special treatment. To treat these terms, I begin by separating them from the 
others: 
 

fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k 

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r  
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     = fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k ≠k

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k f ′ n ,k h ′ n ,k,n,k
* r( )∫

′ n 
∑

n
k

∑ H ′ n ,k,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

 

 

     = fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k ≠k

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k f ′ n ,k h ′ n ,k,n,k
* r( )∫

′ n ≠n
∑

n
k

∑ H ′ n ,k,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k fn,k hn,k,n,k
* r( )∫ Hn,k,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

n
k

∑

 

 

     = fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k ≠k

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k f ′ n ,k h ′ n ,k,n,k
* r( )∫

′ n ≠n
∑

n
k

∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k fn,k hn,k,n,k
* r( )∫ Hn,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

n
k

∑

                    + fn,k fn,k Hn,k,n,k G = 0( )[ ] hn,k,n,k
* r( )∫ d3r

n
k

∑

 

 

     = fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k ≠k

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k f ′ n ,k h ′ n ,k,n,k
* r( )∫

′ n 
∑

n
k

∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                    + fn,k fn,k Hn,k,n,k G = 0( )[ ] hn,k,n,k
* r( )∫ d3r

n
k

∑

 

 
The divergent terms are in the final sum in the expression above. Gygi and 

Baldereschi [PRB 34, 4405 (1986)] noted similar divergent terms in their expressions for 
the matrix elements of the Hartree-Fock exchange operator in the reciprocal space 
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representation. They noted that the divergence is integrable in that the analytic integral of 
 over the Brillouin zone is finite. Given this, they replaced the divergent 

terms as shown below: 
Hn,k,n,k G = 0( )

 

     Hn,k,n,k G = 0( )= hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F k − ′ ′ k ( )

′ ′ k ≠k
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

 

                           = hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
 

⎭
 
where F is a function which is periodic in reciprocal space, has the same type (i.e. q −2 ) 
of divergence as , and is sufficiently smooth that it can be numerically 
integrated using a modest number of  points in the Brillouin zone. I note that the k-point 
mesh used to perform the (partial) numerical integration of F does not have to be the 
same mesh on which the wave functions are computed. As such, this replacement allows 
for calculations at a single k-point in the Brillouin zone. The expression given above for 
the exchange energy is then written as 

Hn,k,n,k G = 0( )

 

Ex = −2πe2 fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫

′ n 
′ k ≠k

∑
n
k

∑ H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                      + fn,k f ′ n ,k h ′ n ,k,n,k
* r( )∫

′ n 
∑

n
k

∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ d3r

                      + fn,k fn,khn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ hn,k,n,k

* r( )∫ d3r
n
k

∑
⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 

 

    = −2πe2 fn,k f ′ n , ′ k h ′ n , ′ k ,n,k
* r( )∫ H ′ n , ′ k ,n,k r( )

′ n 
′ k ≠k

∑
n
k

∑ d3r
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                     + fn,k f ′ n ,k h ′ n ,k,n,k
* r( ) ˜ H ′ n ,k,n,k r( )∫

′ n 
∑

n
k

∑ d3r

                      + fn,k fn,k hn,k,n,k G = 0( )
2

F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n
k

∑
⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
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    = −2πe2 fn,k f ′ n , ′ k S ′ n , ′ k ,n,k
′ n 
′ k ≠k

∑
n
k

∑ + fn,k f ′ n ,k
′ n 

∑
n
k

∑ ˜ S ′ n ,k,n,k

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                      + fn,k fn,k hn,k,n,k G = 0( )
2

F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n
k

∑
⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 

 
 
 

We next derive the expression for the derivative of the exchange energy with 
respect to a Kohn-Sham function. 
 
1
Ω

δEx

δφn,k
∗ r( )

= −
e
2

fn,k
ρ1

∗ r, ′ r ( )φn,k ′ r ( )
r − ′ r 

d3 ′ r ∫  

 

       = −
e2

2
fn,k f ′ n , ′ k φ ′ n , ′ k r( ) φ ′ n , ′ k 

* ′ r ( )φn,k ′ r ( )
r − ′ r 

d3 ′ r ∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k 

∑  

 

      = −
e2

2
fn,k f ′ n , ′ k u ′ n , ′ k r( )ei ′ k ⋅r u ′ n , ′ k 

* ′ r ( )un,k ′ r ( )
r − ′ r 

ei k− ′ k ( )⋅ ′ r d3 ′ r ∫
⎡ 

⎣ 
⎢ 

⎤

⎦
⎥

′ n 
′ k 

∑  

 

      = −
e2

2
fn,k f ′ n , ′ k u ′ n , ′ k r( )ei ′ k ⋅r h ′ n , ′ k ,n,k ′ r ( )

r − ′ r 
ei k− ′ k ( )⋅ ′ r d3 ′ r ∫

⎡ 

⎣ 
⎢ 

⎤

⎦
⎥

′ n 
′ k 

∑  

 

       = −
e2

2
fn,k f ′ n , ′ k u ′ n , ′ k r( )ei ′ k ⋅r h ′ n , ′ k ,n,k G( )

G
∑ ei k− ′ k +G( )⋅ ′ r 

r − ′ r 
d3 ′ r ∫

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k 

∑  

 

       = −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( )ei ′ k ⋅r h ′ n , ′ k ,n,k G( )
k − ′ k + G 2

G
∑ ei k− ′ k +G( )⋅r

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ ′ n 

′ k 

∑  

 

       = −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( ) h ′ n , ′ k ,n,k G( )
k − ′ k + G 2

G
∑ eiG⋅r

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ ′ n 

′ k 

∑ eik⋅r  

 

       = −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k 

∑ eik⋅r  

 65



 
       = −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( )H ′ n , ′ k ,n,k r( )

′ n 
′ k 

∑ eik ⋅r  

 
Then 
 
1
Ω

δEx

δun,k
∗ r( )

= −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( )H ′ n , ′ k ,n,k r( )
′ n 
′ k 

∑  

 
The treatment of the integrable divergence in this expression proceeds in the same way as 
noted above for the exchange energy. I begin by separating the divergent term from the 
others: 
 

f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k 

∑  

 

    = f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k ≠k

∑ + f ′ n ,ku ′ n ,k r( )
′ n 

∑ H ′ n ,k,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 

    = f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n ,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k ≠k

∑ + f ′ n ,ku ′ n ,k r( )
′ n ≠n
∑ H ′ n ,k,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

               + fn ,kun,k r( ) Hn,k,n ,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 

 

    = f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n ,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k ≠k

∑ + f ′ n ,ku ′ n ,k r( )
′ n ≠n
∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

               + fn ,kun,k r( ) Hn,k,n ,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + fn,kun ,k r( )Hn,k,n ,k G = 0( )

 

 

    = f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k ≠k

∑ + f ′ n ,ku ′ n ,k r( )
′ n 

∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

               + fn,kun,k r( )Hn ,k,n,k G = 0( )

 

 
The divergent term is in the final sum in the expression above. As explained 

above, Gygi and Baldereschi [PRB 34, 4405 (1986)] noted similar divergent terms in 
their expressions for the matrix elements of the Hartree-Fock exchange operator in the 
reciprocal space representation. They further noted that the divergence is integrable in 
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that the analytic integral of Hn,k ,n,k G = 0( ) over the Brillouin zone is finite. Given this, 
they replaced the divergent term as shown below: 
 

     Hn,k,n ,k G = 0( )= hn,k,n ,k G = 0( ) F q( )dq
BZ
∫ − F k − ′ ′ k ( )

′ ′ k ≠k
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

 

                           = hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

 
where F is a function which is periodic in reciprocal space, has the same type (i.e. q −2 ) 
of divergence as , and is sufficiently smooth that it can be numerically 
integrated using a modest number of  points in the Brillouin zone. I note that the k-point 
mesh used to perform the numerical integration of F does not have to be the same mesh 
on which the wave functions are computed. As such, this replacement allows for 
calculations at a single k-point in the Brillouin zone. The expression given above for the 
exchange derivative is then written as 

Hn,k ,n,k G = 0( )

 

1
Ω

δEx

δun,k
∗ r( )

= −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( ) H ′ n , ′ k ,n,k G( )eiG⋅r

G
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

′ n 
′ k ≠k

∑
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                                       + f ′ n ,ku ′ n ,k r( )
′ n 

∑ H ′ n ,k,n,k G( )eiG⋅r

G≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

                                       + fn,kun,k r( )hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
⎫ 
⎬ 
⎭ 

 

 

               = −2πe2 fn,k f ′ n , ′ k u ′ n , ′ k r( )H ′ n , ′ k ,n,k r( )
′ n 
′ k ≠k

∑
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

+ f ′ n ,ku ′ n ,k r( ) ˜ H ′ n ,k,n,k r( )
′ n 

∑

                                       + fn,kun,k r( )hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
⎫ 
⎬ 
⎭ 

 

 

                = −2πe2 fn,k f ′ n , ′ k D ′ n , ′ k ,n,k r( )+ f ′ n ,k
˜ D ′ n ,k,n,k r( )

′ n 
∑

′ n 
′ k ≠k

∑
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                                       + fn,kun,k r( )hn,k,n,k G = 0( ) F q( )dq
BZ
∫ − F ′ ′ k ( )

′ ′ k ≠0
∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⎫ 

⎬ 
⎪ 

⎭ 
 

 

⎪
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To complete this section, we comment on the possibility of alaising errors. Note 

that whereas  for un,k G( )= 0 G > Gmax , h ′ n , ′ k ,n,k G( ) and H ′ n , ′ k ,n,k G( ) can be non-zero for 
G ≤ 2Gmax  and  can be non-zero for D ′ n , ′ k ,n,k G( ) G ≤ 3Gmax . Furthermore, the mesh 
typically used in a DFT plane wave calculation is only able to resolve functions having 
non-zero Fourier coefficients for G ≤ 2Gmax . As such, D ′ n , ′ k ,n,k r( ) will not be resolved 
and  will therefore contain aliasing errors for D ′ n , ′ k ,n,k G( ) Gmax < G ≤ 2Gmax . This is not a 
problem in practice because only D ′ n , ′ k ,n,k G( ) for G ≤ Gmax  are needed to update un,k G( ) 
and these coefficients do not contain aliasing errors. (The same comments apply to LDA 
and GGA exchange derivatives.) 
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