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Abstract

This report examines the localization of time harmonic high frequency modal fields in two dimensional
cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to
unstable localized modes are known as scars. This paper examines the enhancements for these unstable
orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes
the treatment of interior foci.
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1 INTRODUCTION

Calculations of steady state electromagnetic shielding in a linear system make use of conservation of
power [1]. At high frequencies such calculations frequently make assumptions about the homogeneity of
the fields inside the shielded volume or cavity, and make use of free space or unloaded transmission and
receiving properties of apertures and antennas [1]. When losses are sufficient to result in a high degree
of modal overlap, statistical homogeneity of the fields are often assumed. This approach is used in mode
stirred chambers (with mechanical or other modal stirring) and in other calculations [2]. Transmission and
receiving properties of apertures and antennas in this limit also approach free space unloaded levels [3], [4].

Interest in high frequency (or high energy) behavior of modal fields has been of considerable interest
in recent years [5]. The idea of high frequency modal fields being composed of a random distribution of
plane waves [6], leading to normal distributions of the field amplitude [7], [5] has been used in various areas,
including problems in electromagetics [8]. Recently antenna radiation and coupling problems have been
investigated using these chaotic field assumptions [9], [10], [11], [12], [13]. Many experimental verifications
of predictions have also been carried out [14], [15], [16], [17].

Cavities which have boundary shapes supporting interior regions of stability can exhibit various types
of confined modes. These include whispering gallery and bouncing ball modes [18], [19], as well as modes
along closed geodesic curves [20]. These modes may be identified by means of ray tracing and examination
of stability exponents for the closed orbits. High frequency asymptotic methods have been developed to
examine these types of modes [18], [19], [20]. Such localized modes exhibit nonhomogeneous field behavior
and may have higher or lower quality factors than the homogeneous field distributions (depending on the
type of mode). Antennas and apertures in these regions will couple into these localized modes.

Enhancements along unstable periodic orbits also exist and have been called scars [21], [22], [23]. These
have been investigated extensively for the Schroedinger equation and use has been made of high frequency
(energy) semiclassical techniques [24], [25], [26], [27], [28]. Recently there has appeared discussions of
bounding levels at interior foci [29]. A method was also introduced to treat constant energy scarring
for convex wall geometries (without foci) [30], which is convenient for treatment of the time harmonic
electromagnetic problems that are the focus of this report.

This report is directed at understanding the high frequency behavior of modal fields in two dimensional
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cavities. In particular, the localization of the eigenfunctions about unstable periodic orbits, is investigated.
The approach used by Antonsen [30], on convex mirror geometries in two dimensions, is generalized by
introducing the elliptical high frequency formalism, used previously by Vaynshteyn [18] on stable orbits.
This combined approach not only gives a feel for the accuracy in the convex mirror case but also enables
us to treat unstable orbits with concave mirrors. The method is illustrated by investigating the horizontal
bouncing ball scars in the stadium cavity.

The first half of the report combines the elliptic geometry approach with the random phase reflection
coefficient in the convex boundary example of the bow tie cavity. A slightly different description of the
eigenfunctions is adopted here than in previous work, regarding the eigenfunction as asymptotically made
up of scarred projections and a random plane wave component. This view is useful in the second half of the
report on the stadium cavity. Projections of the eigenfunction and integrals of the square are calculated and
compared to previous results and to statistics assembled by numerical simulations of the eigenfunctions.
The main reason for this first half on the convex walls is to illustrate the method in a simpler geometry than
that encountered in the concave case. We also briefly consider the asymptotic nature of the construction
and how higher order approximations can be found. The asymmetrical bow tie geometry is also briefly
discussed and the odd problem statistics are constructed.

The second half of the report generalizes the method to the concave boundary example of the stadium
cavity. The complicating feature here is the presence of interior foci along the scarred orbit that must be
treated. Separate regions at the focus and on either side of it are used to construct the eigenfunction along
the orbit. The random phase reflection coefficient in this case needed to be modified to have conjugate forms
on either side of the focus. Matching of the solutions in the various regions could only be accomplished
by allowing a subwavelength shift of the focal region. The normalization using the electromagnetic
energy theorem results in a principal value evaluation at the focus. Projections of the eigenfunctions and
integrals of the square are calculated and compared to statistics assembled by numerical simulations of the
eigenfunctions. Also point statistics both near the focus and away from it are discussed. Finally use of the
frequency difference between the cavity eigenvalues and the scar modes is used to determine the random
phase reflection coefficient for several scar realizations in the stadium. Normalization of a single point value
along the orbit allows a quantitative comparison of the spatial distribution of the scar mode constructions
with the numerical simulations. These comparisons show agreement between the matched three regions
(with focal point region shift) and the numerical constructions.

2 CONVEX MIRRORS AND BOW TIE CAVITY

The bow tie cavity has been used as a canonical shape for an unstable ray geometry with convex
boundaries [30].
2.1 Geometry

One quarter of this cavity is shown in Figure 1.
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Figure 1. Quarter bowtie cavity geometry.

The cavity boundaries are described by the intersection of circles. Ray analysis leads to foci outside the
cavity. Note that the bow tie cavity area is needed and is given in the Appendix. The length of the orbit is
taken as L and, in general, is set equal to L, or L, depending on which direction is being considered (in
this report these are both equal).

2.2 Previous Bow Tie Scar Model

Antonsen [30] introduced a Fourier expansion for the field along the scar (the x direction in this case)
orbit (for the even case in )

IR

u =

>V, () cos (k)

where

kp = (pi 1/2)7[-/6’ p= 172737'--
and the orbit length L = 2¢. The Fourier amplitudes were then solved from a modal equation which
resulted from the approximation of very large radius of curvature R of the mirrors

2
v/ (y) + {/-c?—kf, (1—%
This form leads to a parabolic cylinder function for the field local to the scarred orbit. Unlike typical

Gaussian beam modes [18], the propagation here takes place in both the axial and transverse directions
because of the unstable mirror geometry. The transverse differential equation therefore has two solutions
which must both be considered. Antonsen [30] introduced a random phase reflection coefficient with unit
magnitude to represent the reflection from the chaotic region of the cavity (the problem was taken to be

}Vp(y)%o
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even in y also). The amplitude becomes

V2 (0) = V2 = v®L2G: (M, A) / (AWTL)

where A is the cavity area (including all four quarters of the cavity),

2(A—1)""7 1 _
= <7)2 =—(A—1)"Yexp[rA1 /2] 22 |T (1/4 — i1 /2)]?

UL w0 7
where U, is a parabolic cylinder function discussed below (I'(z) is the gamma function [31]), v is a unit
Gaussian random variable of unit variance with density

G1 (A1, A)

the variable

A= (K — k) L/ [k(A—1)]
measures the difference in frequency between the operating wavenumber k and the scar wavenumber k,, and

A—1=+RL/R

Note from T'(2) ~ e #2*~1/2{/21, 2 — oo that

T (1/4 — A1 /2)] ~ e ™ /4 (A /2) 74 V2r , A — o0

G1 (A, A) ~ 4/ (A — 1) M ~4/y/2(k — k) L, AL — 00
and with T (1/4) ~ 3.62561

G1(0,A) = % (A—1)""221212(1/4) ~ 5.9 (A — 1) /2

The solid curve of Figure 2 shows the projection amplitude versus the random plane wave projection [30]

G () =

2/00 sin’ ()\/4—C2)d
2R g

T (M- (?)

A=2(k—ky)L
shown as the dashed curve (the factor of four from the even symmetry about the x and y axes is included
in this definition). Note from the Appendix that

Go(\) = — {(1 - %) O (VINTT7) + s (3) (1 + %) s (\/W)} - Aj‘ﬁ {sin (1/2) — cos (A/2)}

L A>>1

S =
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where
C(z) = / cos (mt?/2) dt
0

S(z)= /OZ sin (mt?/2) dt

are the Fresnel integrals [31]. The value at zero is

G.0)= 5=

and thus at A = 0 for these parameters (L =2 m, A ~ 4.6771 m?) we have

<\/va2> — LG, (0) JA~ 13

As shown in the Appendix, the peak of the solid curve is near

/\1pk ~ 0.17
with the value

G1 (Mpr, A) ~ 6.8 (A —1)"/2
The peak of the quantity on the graph for these parameters is thus

<\/kLVp2> = L2Gy (A\ipi, A) JA ~ 5.2
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Figure 2. Comparison of bow tie scar projection, random plane wave projection, and numerical histogram

from a boundary element moment method solution.

Figure 2 also shows a comparison of the model results with a histogram made from the numerical
solution of the bow tie cavity.

Note that stability exponents for this geometry are given by [32] (this is also derived in the Appendix)

Ay = {1 +L/R++\/(1+L/R) - 1} =2(L/R)(2+ L/R)+1+2(1+L/R)\/(L/R) 2+ L/R)

The plus sign A, becomes the same as A in the limit L/R — 0, however it does not produce the same
value for the given geometry A, = 3.47 versus A = 2.26. This is a consequence of the simplifying limit of
large radii taken in the Fourier expansion approach. The next section gives an alternative derivation of the
results using a description involving curved trajectories, which gives a feel for the accuracy of the preceding
model and allows the generalization in the following sections to the case involving unstable concave mirrors
and interior foci.

2.3 Elliptical High Frequency Analysis

Vaynshteyn [18] discusses high frequency approximations for stable modes between concave mirrors.
Here we wish to consider the generalization to unstable modes between convex mirrors. For two dimensions,
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Figure 3. Ellitical geometry applied to bow tie cavity along horizontal bouncing ball orbit.

the elliptic cylinder is fit to the local boundaries at the ends of the unstable orbit £ = £, as shown in Figure
3. The elliptic cylinder coordinates are related to the Cartesian system by means of

x = dcosh(siné

y = dsinh { cos&
where

—0 < (<
—7m/2 < €< /2

To match the local radius of curvature R at the ends of the orbit we take the focal positions (which in
this case are exterior to the region) to be

d=0\/1+R/I (1)
2.3.1 high frequency approximation

The modes of the Helmholtz equation
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V2u+ ku =0
are now investigated. This equation can be written in these two-dimensions as

2 2
g—g—i—g—;—i—'f (coshQC—sin2£)u:0

where

v =kd = ki\/1+ R/l

On the mirror we want

u=0,&==x, —C <<
We assume v >> 1 and that sinh® ¢ << 1. We take the function u to be even about the z and y axes. We
seek a solution of the form [18]

u=W (f’ C) ei’ysing LW (_574-) efiﬂysinf
Substituting into the Helmholtz equation gives

82W+82W+2, g8VV+
— + —5 + 2iycosE——
oc o T e
Now ignoring the 92W/9¢* term [18] (note that these approximations are shown in the Appendix to be
consistent with the leading approximation) and using sinh? ¢ ~ ¢?, we have

(’yz sinh? ¢ — i'ysing) W =0

O*W ow
4 2iycos E— + (2% —iysinE) W 0
e 7y cosé o (v?¢* —iysing)
Next taking
W = ! R

3
o= /0 C(C)lfﬁ = arcsinh (tan &)

gives
0% ov 72
—ti—+—U =0
) or2 JrZ@U + 4
Letting
VU (0,7) =e %9 (s,7)
gives
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0% 72
W‘F(Z-‘FS)’Q/J—O

This is a form of the equation of the parabolic cylinder functions. The solution that is outgoing in 7 is [30]

Uy (s,7) = e~ (s Hi/2)/4ry (—is77'e_i”/4

where U (a, z) is the standard solution [31]. The parabolic cylinder function is related to other standard
definitions by [31] U (a,z) = D_,_1/2 (2). Following [30] the total transverse solution is taken as the
incident plus reflected form

¥ (s,7) = cRe [Uy (5,7) + €U (s,7)]
The transverse boundary condition in 7 is a reflection with a random phase ® (k?) which was introduced
by Antonsen to match to the chaotic region of the cavity. The boundary conditions at the mirrors imply

u(£€0,¢) =W (&0, Q) €780 + W (=€, () e 580 =0, —((, < (< (,
or

U (00, 7) €780 + W (=00, 7) €750 =4 (s,7) cos (ysiné, — so0) =0, —(5 < 7/4/27 <,
with

oo = arcsinh (tan ;) = In [tan, + sec ;]
Thus we take

ysingy —sog =kl —soo=(p—1/2)mr=k,l,p=1,2,3,...
Note that

op = %ln <§—f§) = Arcsinh (\/K/R)

This can also be written in terms of the stability exponents as

o0 = 5[ 1)/ (1A =3Iy = yIn(As)

where (see the Appendix) A3 = Ay and + (\x — 1) /2= (d+ () /R.

The separation constant s is then

(k= k) L/
Arcsinh [ L/ (2R)}

Now if /L/(2R) << 1, and assuming k >> |k — k,| this becomes s, ~ (k—k,)/LR/2 =
(k? — k2) \/LR/ (8k?) = A1 in agreement with the previous Fourier analysis [30].

sp=(k—kp)l/oo=

=2(k—k,) L/In (A)

In summary the solution is
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Up =1 (sp, ¢V 2k;d> cos [kdsin€ — spArcsinh (tan§)] /y/cos €

where

P (Spa T) =cRe [UJr (Spv T) + eZ%U«*k (sp, T)]
and the phase phase & (kz) describes the phase relation between a wave leaving the vicinity of the unstable
periodic orbit and one returning [30] with the variation of the pth component along the orbit. Reducing the
form of this solution to the horizontal orbit 7 =0 = ( we have x = dsin§ and

=0 (5 0)cos | = sy (55 ) | /T

or

up =P (8p, 0) cos [kpx + po ()] /+/1 — 22 /d?

- (52) 0 (32)]

2.4 Spatial Variations of Eigenfunctions

where

It is instructive to compare the variation of the eigenfunctions on the axes with the sinusoidal
distributions and the preceding scar constructions when k¥ — k;, and s, — 0. The bow tie has / = 1 m in
both the xz and y directions and has R = 10 m in the y direction and R = 1.5 m in the x direction. Figure
4 shows a scar along the y axis for k¢ ~ 67.625 and k,¢ ~ 67.544 for p = 22 and s, ~ 0.260.
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Figure 4. Electric field intensity plot for quarter bow tie cavity at a frequency of 3.2266 GHz, which is near

a vertical scar frequency.

The vertical distribution of the electric field is compared to the cosine cos (k,y) and to
cos [kpy +po ()] / (1 — y2/d2)_1/4 in Figure 5.

Figure 6 shows a scar along the x axis for k¢ ~ 61.138 and k,¢ ~ 61.261 for p = 20 and s, =~ —0.165.

The horizontal distribution of the electric field is compared to the cosine cos (k,x) and to
cos [kpz + po (x)] / (1 — 3172/d2)_1/4 in Figure 7.

It is clear from the above comparisons that more than one p component is present in the spatial
distributions even when k is very near to a particular value of k,. We expect this since at high frequencies
there are high angle rays crossing the orbits from the outer chaotic regions of the cavity.

2.5 Normalization of Eigenfunctions

The method used for normalization of the eigenfunction components by Antonsen [30] is now put into
the framework of the electromagnetic energy theorem [33]

9 (we) LB . O

Ow Ow Ow
Integrating over the cavity volume and using the divergence theorem

‘7 . <:§z£2 ><;££* _F lz* X éz%z{) — i [69 (OJIL);Ei ':Ei* _%
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Figure 5. Spatial distribution of electric field along vertical scarred orbit compared to the simple sinusoid

and scar construction.
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Figure 6. Electric field intensity plot for quarter bow tie cavity at a frequency of 2.9171 GHz, which is near

a horizontal scar frequency.
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Figure 7. Spatial distribution of electric field along horizontal scarred orbit compared to the simple sinusoid

and scar construction.
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S Oow v v ow ow

w
where the unit vector n in the divergence theorem points out of the cavity region. Using n x E = 0 on the

walls we find

oL D oE\ .. 0 B
ﬂ-<%><ﬂ)—ﬂ-(ﬂx8w>—ﬂ aW(QXE)—O

Then
j H -H* E-E*dV = .
Z/V('uo_ '+ ek E7) /V<3w ow
Noting that

gl - H* = =3 (V x B) - (V x E')

and here that

L =ue,
i: JZQZ
so that
VXE=Vx(ue,) =Vuxe,
and
el B =¢ |u\2
* €0
pl - H* = 5 [Vl
e, x (Vuxe,)=Vu
so that
€0 2 21,12 _ @ * L0
i3 V(|Vu\ + k° ul )dV—/V<8sz+u T av
Now using
[Vul* = Vu-Vu* = V- (u*Vau) — u*Viu =V - (u*Vu) + k2 [u]?
gives
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i250/ |u|2dV:/ (S—UJ;+U*%JZ>dV
1% v \ow w

i250/ WdS:/ <g—qu+u*6JZ>dS
A A W 3w

We now select the current to produce the pth component of the normal derivative (magnetic field) on y =0
when k is not an eigenvalue of the cavity [30]. From Maxwell’s equation

In two dimensions

VxE=Vuxe, =iwu,H
we have

i
=—-2e, xVu
W

0
Now for convenience we take n to point from the horizontal periodic orbit into the upper cavity region or e,

i

nx H=—mnx(e xVu)
Wity
1 ] 1 i Ou
e xH)=—e¢,  [nx(e xVu)=-—mn-[e, x (e xVu)=—n Vu=———
Witg Who Wito who On
and thus we take
i2 0
Jo=——25m), y=0
wity On

where u,, denotes the pth scarred eigenfunction component

. 8 *
i250/ lul®> dS = 2 [—@l Up —i—u*i (l%)] d(n)dS
A Ho JAa Ow

Oww On w On

i2 OulOuy, 9 [10du,
= e {‘a—w; an Vo, (;a—n>] de

where C' is a path along the scarred orbit. In our case the function is taken to be real

2gg = [ [-0uLdup O (10u
'MOEO/AW| dS—/C[ Ow w On +u8w w In de

If we assume that for high frequencies the components of the eigenfunction are approximately orthogonal
along the orbit (as shown in the Appendix)

2 _Qup 10wy 10 (Oup) 1 Oup
ALOEO/AM| 45 /C[ Ow w On +upw8w on w2up on dt

Now
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Up =1 (sp, ¢V 2k;d> cos [kdsin€ — spArcsinh (tan§)] /y/cos €

Oy _ Y21 (o, ¢/BRa) cosldsin — s, Aresin (an )] /v/eonE
¢

Up (£,0) =1 (8p,0) cos [kdsin — s, Arcsinh (tan&)] /+/cos €

Ouy, v 2kd

___(g,O)ZZdCOsg

o Y’ (sp,0) cos [kdsin & — spArcsinh (tan £)] /v/cos &

where

Y (sp,7) =cRe [U+ (sp,7) + ezq’onkr (Sp, T)]
If we let k approach an eigenvalue then the normal derivative of u, vanishes on the scar 9’ (s,,0) = 0
(because we have selected the even modes across the scarred orbit). Therefore it is only the operation of
taking the w derivative of these terms which prevents their vanishing

10 [0u,
@/théwa%ﬂ“
aup hg
uoso/\uldS/ waw<<) B g

8up = /29’ (s,0) cos [kdsin € — s,Arcsinh (tan £)] //cos €

where the metric coefﬁments are

Thus

he = he = dy/sinh? ¢ 4 cos? &

It is only the w derivative operation on v’ (s, 0) which contributes so that

,uoao/ lul® dS
A

VB [ o0 2 o)

Now taking the normahzatlon to be

cos? [kdsin & — s,Arcsinh (tan £)] &

=0 cos§

/ lul>dS =1
A

and transforming to
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o = Arcsinh (tan §)

do = sec&dé

oo = %ln (%) = Arcsinh (\/K/R)
sin¢ = tanho

10,
11020 = /27 (5, 0) " %ﬂf (5p,T)

The Appendix has some comments on the simultaneous choice of normalization and current source strength
relative to a source free form of the energy theorem. If we average over the rapidly varying cosine we find

[
2/ cos? (kdtanh o — s,0) do
=0 0

1 0
Hogo ~ /27 (s, 0) — 8—w1// (Sp.7)

=0

We approximate this derivative as Antonsen suggested [30] with the outer region phase derivative

0P
~ cRe [Z%

a 7 *
g (m7) e UY (5p,0)
=0

Since we are choosing only the even eigenfunctions we must have the normal derivative vanish on the scar
orbit. This implies the resonance condition

2Re [U}, (sp,0) + €U (s,0)] =0

or
U’ (8p,0) + €U (s,0) + U (5,0) + e U (s5,0) =0
(L+e"®0) UY (sp,0) + (1 +e ") U/ (55,0) =0
. 1+ eiéo — 761'4)0 — U-l‘r (Spvo)
1+ e~i®o U (sp,0)
or

Using this with the Wronskian [30]

ULUL —UYUL =i
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gives

Re [U4 (5, 0) + €U (s,,0)] = Im [T} (5,,0)]

2
|Ujr Sps )|
Therefore
. 1
tog0 ~ cRe [Uy (sp,0) + €U (sp,0)] che [zaa—we’%U*’ $ps 0 }\/ Y00
Im [U, (sp,0)] 1 [ 0P
=-—c———"——cRe |i—U, (s ,0)} v/ 2v0¢
U (5,00 w T
or
ok (d® > UL (sp,0)] d+¢
=2 (22 —1”\/21 £
mer= ek () oo V" (a5
and thus

d®o\ Im* [U} (sp,0)] d+/0

1=c2(— )| — =P A /ovIn| —=
¢ (de) U s )f VT \a=e

The phase @ indicates the reflection phase of the pth component. Following Antonsen [30] the average

derivative is set by taking APy = 27 and the spacing between eigenvalues to be given by the Weyl

asymptotic result Ak ~ 72/ (k*V'), or in two-dimensions Ak? = 2kAk ~ 4w /A [5]. In this case the

even-even eigenvalues are spaced as if the cavity had one quarter the total area [30].

Ak? ~ 167/A
Thus we take [30]

A\ _ 8 ,
dk? A

where v is the Gaussian random variable with unit variance discussed previously. Now introducing this
outer phase derivative gives the normalization constant

Im® [U, (sp,0)] (d—l—E)
2 =028/ |A In
/ \/_ |U/ Sp, )}2 d*g
Thus we have the solution
Up (z,0) = 20v/2 cos [kx lspln (ji—x)] (1 —$2/d2)71/4
U (5 0)] [ AvZTIn ()
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2.6 Projections Along Orbit

We now consider projections along the scarred orbit and compare scar projections with projections of
the random plane wave form of the field.

2.6.1 fourier projection

The Fourier expansion of the pth eigenfunction component is

uyp (z,0) LZVppcos( k)

Now taking the projection

20v/2
U7 (55, 0)] ([ AvZT In (424)

¢
Vprp = 2/ cos (ky ) up (z,0) de =
0

0
/o (1 22/d?) ™" {cos ((ky + k) & + po () + cos ((ky — k)2 + po (2))} da

m(@) = gop {n () /0 - (F5)

Now dropping the first term (which will depend on O (1 / (kp + kp/)2) and will consequently be small for

where

high frequencies)

Viprp ~ / 2/cl2 1/4cos((kp—k:p/):lc+po(:1c))dx
|U% (5,0 | ln %

202/
U2 (5,,0)] [ AvVZTIn ()

/01 (1—2202/d%) " cos [(kp — k) bx + (k—ky) £ {a: —In (j‘:ﬁﬁ) /In (%) H dz

Let us expand the term in braces for d >> /¢

{xln<%)/ln<ijzj)}wx(lxQ)(g/d)Q/gjL,“

~

and
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2020

U2 (59, 0)] [ Av/27In (424)

Virp ~

/01 (1— 222/d?) " cos [(kp ) b+ (k — k) £ {x (1—a2) (¢/d)° /3}} dz

If we drop the terms for (£/d)* — 0 we see that

2uv/2
Vi ~ V2 /cos p—p)mz)dx

U (s, 0)] Ax/ﬂl %

5p/p2v\/§€

U} (55, 0)] (%)

2.6.2 scar projection

Instead of representing the eigenfunction in terms of Fourier components suppose we define the

projection operator as

¢
V, = 2/ (1- w2/d2)71/4 cos [kpx + po (z)] u (x,0) dzx

As shown in the Appendix, the pth components are asymptotically orthogonal, so that if the eigenfunction

is made up of a sum

0) ~ Zup (z,0)

this projection is

Vp ~ — 2 /d?) T2 os? [kpz + po (z)] dz

’U/ $p, 0 ’\/Tdi/
po () = %SP {m (2—:6) (/) ~1n (Zti)}

Now averaging over the rapidly varying k,z we find

where again

20dv/2 f/d
v, ~ vdv/2 / —1/2
+

|U% (57, 0)] ln d_
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~ Arcsin (¢/d)
U (55, 0)] [ AvZ7In (424)

Taking the average of the square yields

(VELVZ) ~ 12 () /A
where
4,/0/d (d/0)* Arcsin® (¢/d)
G1 (Sp> = 2
|Uﬁ- (sp; 0)| In (%>

and

Wi =exp[ms,/2] T (1/4 —is /2)|2

0 (0 ” p

1 2

— 00

T 2 = %
AT
and again s, = (k — kp) (L/2) /Arcsinh[ L/ (2R)} and d = ¢1/1 + R/{. Note that in terms of the stability
exponent

Gy (s,) = (VAL 1) (d/0)* Arcsin® (¢/d)
Y (VA 1) UL (59,0) In (A)

0/d AM—1 VA1 A -1

TN+l A+ (VA; +1)°

5p = 20— ) L/ (A4)
Now if we examine the limit R/¢ — oo

(VREVZ) - L? (2R/D)" 2
o {0 - k) VERTER) 0 4

which is the same as Antonsen’s result [30].

2.6.3 elliptic system projection

It is instructive to carry out the projection in elliptic cylinder coordinates. Transforming the projection
operators gives

€o d¢
V, =2 s [kdsin§ — spArcsinh (t he——
» /o cos [kdsin& — s, Arcsinh (tan €)] u, 5\/@
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he = dy/sinh? ¢ + cos? € — dcos &

with pth eigenfunction

Up =1 (sp, QY 2k;d> cos [kdsin € — spArcsinh (tan§)] /y/cos €

or

up = v2v2 cos [kdsin§ — spArcsinh (tan§)] /1/cos§

U (s, 0]/ Av/Z7In (44)

Thus

Vo v2dV/2
=
U (5,,0)] /AvZY In (%)

Now for kd large we average over the cosine function and find

€o
2 / cos? [kdsin & — s,Arcsinh (tan £)] d¢
0

v2d+/2€,
U4 (s, 0)] [ AvET 0 (44)

Vo =

&y = Arcsin (£/d)

which is the same answer as obtained previously.

2.6.4 random plane wave projection

Let us first consider the random plane wave projection with the simplifying assumption of d large

¢

Vor = / cos (kpx) uy (,0) dz
—t

with [30]

N
Up :th \/2/ (AN) Re Zajeiaj-‘riﬁ'ﬁ
0 =

where a; are real random numbers with <a§> =1, |k| = k are random vectors uniformly distributed in
angle, and the random phases o; are uniformly distributed on a 27 interval. Thus

0 N
Vp7’ = / cos (kpSC) th A /2/ (AN) Re Z a; eia]' +ikxz cos 6 dx
) —00 .
Jj=1
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Y
= /_é cos (kpz) J\}E)HOO \/m

Jj=1

N
Z a; cos (aj + kx cos 9)] dx
N
2 .
V2= lim 2/(AN)Y
j=1

hm v2/ (AN") Zajaj / / cos (kpz) cos (kpa') cos (aj + kax cos 8) cos (aj + ka' cos 0) dxda’

If we average over the amphtudes a; and regard different j values as independent the cross terms vanish

N
2
2 .
<Vp7’>aj,a]- = lim N jEZl /4 /4 cos (kpz) cos (kpz') (cos (aj + kx cos 0) cos (aj + ka' cos 0))a, dxdz’

11
(cos (o + kx cosB) cos (a; + k' cos N)a, =55

/ [cos (k (z — ') cos ) + cos (2a; + k (z + 2) cos )] da;
2m 2 0

1 1 1
= 5 cos (k(z —2') cos ) = 5 cos (kx cos 0) cos (kz' cos 0) + 3 sin (kz cos 0) sin (kz’ cos 0)

4

N 0
1
2 _ - / /
( LPT>aj,aj = J\}lm jEZI /4 cos (kpx) cos (kx cos ) dx /4 cos (kpz") cos (kx' cos @) dx

|
g
\

Z/ cos (kpx — kx cos8) + cos (kyz + kx cos0)] dx

¢
/ [cos (kpa' — ka' cos @) + cos (kpz' + kz' cos0)] da’
—

or

i n (k, —k0059)€+sin(kp+kcose)€ 2
= kp — kcosf kp + kcosf

1 T Isin (k, — kcos@) ¢ sin (k, + kcosf) £ 2d9
- 27A k, — kcos 6 ky + k cos @
Now when k — k, the first term peaks for  — 0,27 and the second term peaks for § — . Thus we find

(and 6 = (/\/kL/2)
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n? 2) 0]

vy = L /00 [Sin(kp—k+k92/2)€rde+i 0 [sin(k p—k+ k(0

rr/ T 2rA kep — k + k6% /2 2mA kp —k+ k(60—

- ((ky— k) 0+ ¢

/ sm
‘WA¢W— (ky — k) €+

dg

Letting
A=2(k—ky)L

9 sin? (/4 - C)
(Vor) = 27rA\/_/ (\a— %) “

<x/ﬁvp2>r = L2G()) /A

1 [ sin®(\4—-¢C2
G(\) = 2_/ (/—22)dC
TJooo (A4-(7)
Noting from symmetry that [30]

<\/Evp2>r = 12G, ()) /A

with

Gy (\) = 4G (\)

we obtain the previous result.

2.6.5 random plane wave projection with elliptical projection operator

m)* /2

Suppose we use the random plane wave form of the field and take the projection with

L
v, = 2/ (1— 22/d?) ™" cos [y + po (2)] ur (x,0) da
0

o (52) 0 (32)]

spArcsinh [ L/ (2R)] =\/4

with

Then



Vor = 2/6 (1- 91:2/d2)71/4 cos [kpx + po ()] A}im V2/(AN)Re
0 —00

The variance of this random variable is then [30]

N
§ :ajewq—&-zkzcos@ dr
J=1

‘ 2/ 2\~ 1/4
F,(0)+F_(9) = 2/0 (1—a?/d*) cos [kpx + po (x)] cos (kx cos 8) dx

¢
= / (1- xz/d2)71/4 [cos {kpx + po (x) + kx cos 0} + cos {kpz + po (x) — kx cos 0}] dx

Now for large k and k, we can take K — k, and the first term peaks for § — 7 and the second term peaks

for 0 — 0,27 (and 6 = {/+/kl/2)
k, — kcosO ~ (k, — k) + k0% /2

ky + kcos ~ (k, — k) + k(6 —n)° /2
and

F,(0)+F_(0)~

/OZ (1—a2/d?) " [cos{((kp B+ k(O — 1) /2) 2+ po (x)} +cos { ((ky — k) + k6%/2) 2 + po (x)}} d

The contributions from the two points combine (outside the integral there is a factor of two)

1 [ ¢ —1/4 ’
(V2 ~— / (1—2?/d?) cos { ((kp — k) + k607 /2) 2 + po (x) } dx| db
" T —00 0

0o 4 2
zﬁm/_ l/o (1—x2/d2)1/4cos{((kp—k)—i—CQ/f):E-i-po(:E)}dac} d¢

) 0 2
RJJWA#\/W/Q/O l/o (1—x2/d2)_1/4cos{()\/4—CQ)x/ﬁ—po(x)}dx] d¢

A=2(k— k)L
(VELVZ) = L*G()) /A
with
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2

0o 4
G\ = _/0 [/0 (1 —x2/d2)71/4cos{()\/4 — CZ) x/l — po (x)}dx/ﬁ] d¢

2

=— /000 [/01 (1 —x2£2/d2)_1/4 cos { (/4 — C2) x —po (z€)} dm] d¢

7
If we take the limit £ << d then the inner integral becomes

) 14 ) £ ) _sin ()\/4—§2)
/O (1—22/d?) " cos {(\d—¢ )x/e—po(x)}dx/éﬂ/o cos { (A/4 = ¢ )w/ﬁ}dﬂﬁ/ﬁ—m

and thus

1 zsin® (A4 - )
GO ﬂ/o o

which, except for a factor of four, is the same as the result in [30]. Noting the factor of four, we have [30]

<\/Ev,3>r — 12G, () /A

2

GS(A)=4G(/\)=—/OOO UO (1—2202/d?) " cos { (M4 = ¢*) z — po (xb) } da| dC

™

2.6.6 projection comparisons

We have already shown the comparison between the numerical solution histogram and the existing
scar theory for the case where A ~ 1+ /8L/R = 2.265. Figure 8 shows a comparison of the scar theory
projections (using the preceding Vaynshteyn constructed formulas, without taking the limit as ¢/d — 0)
and the Fourier projections (with the Fourier series solutions) for both the scar theory and the random
plane wave fields.

Figure 9 shows the same comparison for the case where L = 2 m and R = 2 m or A ~
1+ /8L/R ~ 3.83 (with A ~ 4.76429 m?). Note that the actual stability exponent in this case is

2
Ay = [1 +L/R++/(1+ L/R)2 — 1} ~ 13.93. The main reason for the discrepancy in this plot is the

approximation of d = £4/1 + R/¢ = 1.732 m versus the asymptotic form d ~ v R¢ = 1.414 m. Nevertheless,
even for such small values of the radius of curvature, the Fourier approach yields very close answers.

2.7 Integral Of Square Along Scar

The integral of the square of the field along the scar is a quantity of interest [30]

1t

pP=— u® (z,0) dz
LJ_,

If we insert the Fourier series for the eigenfunction [30]
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------- Random plane wave (cosine projection)
= Scar theory (cosine projection)

m Scar theory (Galerkin projection)
Random plane wave (Galerkin projection

Figure 8. Comparison of scar projections and previous Fourier projections (using Fourier series solution) for

both scar theory and random plane wave field for L =2 m and R = 10 m.
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Random plane wave (cosine projection)
= Scar theory (cosine projection)

Scar theory (Galerkin projection)
Random plane wave (Galerkin projection

4 A=3.83

Q oosmssneses

-5.0

Figure 9. Comparison of scar projections and previous Fourier projections (using Fourier series solution) for

both scar theory and random plane wave field for L =2 m and R = 2 m.
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14 14
12«2
P:—/ u? (x,O)dzzzz §p T2 V;,Vp,/ cos (kp) cos (ky x) dx

and

(VREP) = 257 (VL) = 2 3761 ()

Because of the summation over p, and the repetition of the value of this sum, it is convenient to use the

abscissa
p= (k= k) O/
where we do not give the value of p [30].

Alternatively if we use the elliptic system construction and the expansion

u(x,0) ~ Zup (x,0)

the asymptotic orthogonality in the Appendix gives similar results

T2 A
The acceleration scheme involving the random plane wave contribution [30] is useful. It involves the

subtraction of G (A) from the summand and addition of the average of the random plane wave contribution
to P

(VRLP) = 2 > (VRLV?) = 2361 (sy)

(VRLP) = % " (G1 (55) = G ()] + (VALP,)

2.7.1 average of random plane wave over interval

Let us consider the integral

1
P = —/ u?dx
L]

Using the random plane wave representation

N
u, = lim /2/(AN)Re Zajemﬁzk.z

N—o00 -
Jj=1

where a; are real random numbers with <a?> =1, |k| = k are random vectors uniformly distributed in
angle, and the random phases «; are uniformly distributed on a 27 interval we have
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Y N N’

LPT:/ lim +/2/(AN) Zajcos(aj+k:xcos0) lim +/2/(AN’) Zaj/cos(aj/—&—kxcose) dx
7@N~>oo N’'—oco

j=1 =1

/ lim +/2/(AN) Z hm V2/(AN") Zaja]/cos (aj + kx cos ) cos (aj + kxcos ) dx

N—oo

If we average over the amphtudes a; and regard dlfferent j values as independent the cross terms vanish

i 2T

= 1/A

However if we average only the even part with respect to z (since we are considering only the even
solution here)

N’

Y N
LP. = / A}im v2/ (AN) Zaj cos () cos (kx cos 0) Nl/im 2/ (AN") Z ajr cos (ayr) cos (kz cos0) | dx

—t j=1 j'=1

/ lim /2/(AN) Z hm V2/ (AN") Z ajajr cos (o) cos (ayr) cos (o + ka cos ) cos (o + kx cos 0) dx

N—o0
L j'=1

If we average over the amphtudes a; and regard different j values as independent the cross terms vanish

L(Pr)y; 0, = ]\}Hoo N Z/ cos® (o) cos® (v + kx cos 0)> dx

where
(cos® () cos® (aij + ka cos 0)).

11 [ 1
=51 / [1+ cos (2a)] [1 4 cos (2a;) cos (2kx cos 0)] dar; = 1 [1 4 cos (2kx cos §)]
0

Now averaging over 6
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2m N 0
' . 2 1
L(P.) = 1\}2%0 AN E / 427r/ [1 + cos (2kz cos 0)] dOdx = Nhfloﬁ;:l /_e de

Symmetries as in G (A\) thus give [30]

Therefore

(VEL(P = B)) = (VRLP) = 2 (VL) = 2 37 [G1 () = G ()]

where

=(k—kp)l/m=)\ (47) = sp%Arcsinh\/é/ = z—; In(Ay)

2.7.2 comparison of integral of square

We now compare calculations of the mean of the integral of the square of the eigenfunction along the
orbit for the case where L = 2 m and R = 10 m. Figure 10 shows the original Fourier form of the terms in
the summation with various numbers of terms included. This shows that very few terms are needed; near
the peak only a single term is required to achieve reasonable accuracy.

Figure 11 shows a comparison of the Fourier trigonometric calculation versus the elliptical calculation
with a single term in the summation. They are nearly identical for this case.

Figure 12 shows the calculated histogram from the numerical calculation for the difference versus p.
Notice that the height of the difference is overestimated by the theory by nearly a factor of two. This is also
true in the previous work [30].

It should be noted that the total integral of the square over the orbit is dominated by the level of the
random plane wave average as shown by the histogram in Figure 13.

2.8 Alternative Eigenfunction Representation and Integral Along Scar

It is instructive to consider the approximation of the eigenfunction as

U~ Zup + Uy — Zc'rpup
p p
where u, are the scar components (and might be a single term or a truncated sum) and w, is the random

plane wave symmetrized field. The projections of u, on the u, are removed by the final terms so we do not
double count these contributions (where we assume asymptotic orthogonality approximately holds)
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Figure 10. Comparison of the mean of the integral of square of eigenfunction minus the square of the random

plane wave for various numbers of terms included in the summation. The Fourier expansion is used here.

= Scar theory (cosine projection)
Scar theory (Galerkin projection)

N
wn
I

N
=}
!

A=226

<(kL)M2(P-P)>
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Figure 11. Comparison of trigonometric functions versus elliptical functions.
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Quarter Bowtie

k0= 501 values 47.637-87.485
175 Kp= 50 Yalues 1.57-155.5
20 bins

<(k LY2(P-<P>)>

-0.5 -0.3 -0.1 0.1 0.3 05

Figure 12. Histogram for the mean integral of the square of the eigenfunction minus the random plane

wave from numerical simulation of quarter bow tie cavity with L = 2 m and R = 10 m as a function of
w=(k—kp)t/m.
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k0= 501 yalues 47.637-87.485
2 kp= 50 values 1.571155.5
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Figure 13. Histogram for the mean integral of the square of the eigenfunction over the scarred orbit from

the numerical simulation of the quarter bow tie cavity with L = 2 m and R = 10 m as a function of
p=(k—ky)l/m.
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¢ ¢
c'rp/ u§d$~/ UpUpdx
—¢ —L

Now taking the integral of the square along the orbit gives

¢ ¢ ¢ 2
/ u?dz ~ Z/ uyda —l—/ Uy — Zc’rpup dx
—¢ o)t —L -
¢ ¢
/
~ Zp:/_zupdx—i—/_[ur (ur —Zp:crpup> dx
~ Z/ 2dx+/ uldr — ZCT’P/ Uy UpdT

¢
NE/ (1-d2) f)dac—i—/ uldz
—t

and

¢ ¢ ¢ ¢ 2l e
/ZUQd:Ef/eu%deZ 1- (/eurupdx//euidz> /Zuf,d:r

P
where the cross terms do not appear as a result of the definition of the constants. Then taking the mean

(P) —(P,) %ZV >da:—/_i<c;2puz2)>dx]

with

(crur) = < (up /i upupde/ /i uf,d:r) 2>
_ <u§, (2) [ 2 up (") uy () da” L 2 up (&) uy (2') da’ | ( [ 2 2 () dx>2>
i [ i / i (ur () ur (@) y (2" uy (o) da” o/ ( / 2 u2 () d:c> 2

where the averages do not apply to uf, simply because the expression is homogeneous in the random variable
2 (which cancelled out in the previous line). Using the two dimensional correlation function [5]

(G 1) (1) = do (o =27 + = )7

but adding the image on the symmetry line y = 0, we have
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(Auy, (2,0)u, (2/,0)) = 4Jy (k |z — 2'|)
and thus

<;2p §>*—u / / Jo (k (x — ")) up (z) up (2) dedz’/ (/ 2d1’>

Then (we can insert averages due to the homogeneous nature of the expression)

4 ‘ ‘ / ! / ‘ 2 i i ‘ 2
GELEDY {1—Z/_Z/_ZJo(k(x—x))(up(x)up(x)>dxdx/(/_Z<up>dx> ] 5 | G

Now inserting the scar function

up (,0) = 20v2 cos? [k + po (2)] (1 — 22 /d?) "/
U (s, 0)] [ AvZTIn (42£)
with mean square
2 8 2 9, 2y —1/2
up (2,0)) = cos” [kpx + po ()] (1 —z7/d
e P AV () it )
po (x) = %sp {ln (Z—ti) (z/f) —In (Zfi)}
‘ 8d
u?) (2,0)) dx ~ 5 Arcsin (£/d)
[ o UL (s O A2 (45
and
1 4d
(P) = (P) =~ 5 Arcsin (¢/d) —
tA 2 LU; (5, 0)|* v2y In (%)
¢ e
2 [ [ doeto =) cosliye -+ po )] (1= a/) " coslhya+ oo )] (1= 2 d) 7 o

/ (dArcsin (£/d)))
If we take the limit ¢ << d (with s, not too large) we return to the Fourier form of the scar function (and
sp — A1)

2d

P-P)~— -
k7 DV v
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1 ¢ ot / ‘ / | / |
_/Z/ZJo(k(x—x)){cobk’p(l“—m)+co&k:p(x+:n)}dxdx]

Letting u = 2 — 2’ and v = z + 2’ (and including 1/2 for the Jacobian of the transformation) gives

20— |u\
/ o (ku) cos (kpu) dvdu
2Z+|u\

(P =B £AZ U (5,0 }\/— 2£

20 20— |u\
/ / o (ku) cos (kpv) dvdu
20 ) o 24+|u\

9 2
z /0 Jo (ku) cos (kpu) (20 — |ul) du

7 LU (5p,0 ’ v2y K
- Jo (ku) sin {k, (20 — |u|)} du]
kyt Jo
To approximate
1
(P—P) =~ % Z 4/ (4€)2 - / (1 —w) Jo (2klu) cos (2k,lu) du
AR

1 1

e / Jo (2ktu) sin {2k, ¢ (1 — u)} du}
pt Jo

for high frequencies we drop the second term and approximate the Bessel function as

cos (2klu — w/4)

To (2ktu) ~ wiTu

to find

P-P %; |U'+(Z,(§)£|)2m Nﬁ/ u) {cos (2 (lc—kp)ﬁu)+sin(2(k:—kp)£u)}du]
el ooy

where

Ap =4 (k—ky) e
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Now it turns out that

¢ e ¢
Gs (\p) ~ \/ﬁ% /—z /—z 2Jo (k (z — 2")) (up (2,0) u, (2',0)) dedz’/ /—e (u} (x,0)) da

or

Gs (M) = u) cos (Apu/2 “;ﬁ/owwc

d
\/ﬂ/ R MW

, Ap — 00

»&Q‘
S
hsj

NG
where this is summed in the Appendix in terms of Fresnel integrals. Therefore

<*/ﬁ(_ > AZ

107 (Ay, 0) Alp, 0 5 — Gs(Ap) N%;[Gl(Alp’A)—Gs(ApH

where

2(A— 1)*1/2

1;

and we have used

VAT +1
<Pr>:2/‘4

Thus with this direct inclusion of the random plane wave component in the eigenfunction we obtain the
same result [30]. This approach will prove useful in the stadium cavity in the second part of the report.

VA AT

We have seen that cancellation of G; — G5 occurs for p — 0 and Ay, A, — 00, For p — oo and
A1p, Ap — —00, we do not see cancellation, but G; decays exponentially. The random plane wave
contribution also converges. For example if we use the asymptotic form of G for p > 1 with k = k, we find

2 & 2.6124
— G, = ~ 0.1
A Z:l (Ap) ~ A Z (47p) 3/2 Ar3/2

p_
Note that we have dropped the length units here and in the graphs. The p = 0 term in this case, where
k=kp, is

2 16
26 (0) = —— ~0.64
G+ (0) SAe ~ 004335

and the peak of the scar function (which is also near k = k, and is more rapidly varying than the rest of
the summation) is
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2
ZGI ()\lpk, A) ~ 2.6
Thus near the peak
<\/kL (P — PT)> ~2.6—0.6—01~1.9

2.9 Point Value Statistics

It is of interest to examine the statistics of some point values of the field in the cavity. It is convenient
to plot the quantity A (u?) = A (E?) as a function of s, ~ A;. We note that this quantity from the random
plane wave contribution alone is expected to approach unity for the random plane wave field out in the
volume of the cavity (away from the axis symmetry lines), approach two on the axes, and approach four at
the origin. These values agree with general trends shown on Figures 14, 15, 16, and 17.

There is no clear enhancement near zero. To get a feel for the scar enhancement of the point values let
us take

/
uwg up—&—ur—g Crplp
P P

with

¢ ¢
c'rp/ u§d$~/ UpUpdx
¢ —L

Now taking the average of the square along the orbit gives

()~ Y () + <( : z) >

P

~ )+ < ( : z) >

p

~ D)+ (ur) = 3 (et )

2 2 ‘ £,
~Z<up>+<u,,>Z</Zur(m,())u,,(:r,O)up(:v,())up(:v,O)d:r//eupd:c>

p p

2 2 ‘ ’ / ’ ¢ 2
~Z<up>+<uT>—;/e (ur (z,0) ur (2',0)) up (x,0) up (w,O)dm/[eupdx

p

2 2 ¢ 4 / / / ¢ 2
N§<up>+<ur>—;/ZZJo(ka:—x|)<up(x,0)up(x,O)>dw//£<up>dx

The final integration can be carried out approximately, noting that we are eventually interested in averaging
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over local oscillations on the orbit

‘ / / ! ‘ 2 8 2 2\ —1/4 2
4/_ZJ0(1<;\$—9U|)<up(x,0)up(x,O)>dx//_€<up>dxNCOb[k;px—Fpo(x)] (1—a?/d*) 4\/%

£ I L
/ COs (k? |33 X ‘ 7T/4) COS [kpx/ + po (.’El)} (1 _ $/2/d2)_1/4 d.’El// cos? [kpx/ + po (.’El)} (1 o $/2/d2)_1/2 dz’
—L

¢ Ve —a'|

~9 1/5 cos (k|z —a'| —m/4)

wk J 4 |z — /|

\/7/ cos ((k — k;x|fv_—x$/|—7"/4>dx
\/7/ cos )\|x—|a;'|zij4;f)—7r/4)dx/

where we dropped the phase and amplitude variation in the final expressions. Suppose we examine the
integral for k =k,

¢
[cos (kp |z — 2'|) + cos (kp (z + 2'))] dz’/ /_Z cos® (kyx') dx’

¢ CO§(7T/4)da¢':i/_w dx’ +L/Z dx’ :\/5(\/H_x+\/E)

The first term in the summand is

—1/2

<Au§ (z,0)) =

cos? [kyx + po ()] (1 — 2% /d?)
U1 (5,0)[ V2Rd3 1n (4£) "

exp [msp/2] [T (1/4 —isp/2)° 2 2y ~1/2
= cos” [kpz + 1—a%/d
mVkdIn (Ay) [kp + po (@) ( =/ )
and if we average over the oscillations of the cosine in z
1 -1/2
(Au? (z, O)>m = (1—2%/d?)
’ U (s, 0)[* VR4 n (44
Therefore
(Au? (z, 0)), ~ Z (Au? (z, 0)>w + (Au? (z,0))
P
¢ ¢
= / (ke =) g (2.0), (,0) d'/ / () da
- _
Thus
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(Au® (2,0))  — (Au} (z,0)) ~ Z

p

(A2 (a \/7/ cos Alx—il/ff)—w/@ y

If we keep only the term for k¥ — k,, and (from the Appendix) use the peak value as s, — 0

-2
|U% (spk, 0)] ™ ~ 3.4
as well as use the stability exponent

7= VA

(VA+ +1)
we find
2 AyAy -1 _22/d? —-1/2
(up (@00, < e e+ Dman O ° /)
and

(Au? (x,0)>x—<Auf (2,0)) ~ \/L_L (\/% +” jiJ)rl;(lA*_) (1- :52/d2)_1/2 - 2\/% (\/1 +ax/l4 /1 - x/é)}

If the stability exponent approaches unity (with ¢ << d) we drop the function of z and expand the
logarithm to obtain

1.7
S -
v EL(Ay —1)
Thus the first term will dominate for stability exponents very near unity. We would also expect that these
formulas give an indication of the form of the amplitude as a focus is approached, but fail to be accurate
within several wavelengths of the location. Thus taking a half wavelength distance (d — z) = dy > O (7 /k)
gives

<Auf, (z, O)>

7T(A+ — 1)

(1—22/d?) " ~1/V2(d—2) jd = %<o< ?):o
f T

(V5 4) iy

(Au, (2,0)), <O [ﬁl)}

This behavior with stability exponent is the same as given recently by a different method [29]. Note that
the size of the stability exponent in the bow tie cavity is connected with how close the focal point d comes
to the interior cavity region (and how small df can be). The random plane wave level on the symmetry axis
is

<Au% (z,0)) =2
In our particular bow tie cavity, we are away from the focus and can drop (1 -2/ d2)
exponent A, ~ 3.47, leading to

_1/27 with stability
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34\ /Ay —1 1.5
(Au? (2,0)) < + ~ ~0.13
* T WVEL (VA +1)In(Ay) VKL
Thus we see that there is little effect from the scar. There is doubling of the random plane wave level on the
symmetry axis. We have chosen to regard this symmetry doubling as separate from the scar enhancement,

as Antonsen did.

2.9.1 point statistics from simulations

Several plots are given both out in the volume of the cavity as well as on the y axis (where L = 2 m
and R = 10 m). Figure 14 shows the value of (Au?(0,0)). This is showing a trend near four.
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Quarter Bowtie
Point Value (0.0,0.0)

k0= 501 values 47.637-84.485
kp= 50 values 1.57-155.5
25 bin

6 — —

A<E?>

Figure 14. Point histogram of the electric field at the center of the bow tie cavity (on both z and y symmetry

planes).
Figure 15 shows (Au? (0,0.2 m)) and a trend toward the value two.

Figure 16 shows <Au2 (0,0.6 m)> and a trend toward the value two.

Figure 17 shows the field out in the cavity <Au2 (0.5 m, 0. m)>, with a trend toward unity.

2.10 Odd Symmetry Along Orbit

The case where the eigenfunction exhibits odd symmetry along the scar orbit is now examined.

2.10.1high frequency elliptical solution

We take the function u to be even with respect to the y axis but odd with respect to the z axis. We
seek a solution of the form

u=W (&) e —W (=€, (e e

The boundary conditions at the mirrors imply

Fu (££,,¢) = W (&, () €70 — W (=€, () e 580 =0, —((, < ( < (g
or with

U (o,7) = e 5% (s,7)
we have
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Quarter Bowtie
Point Value (0.0,0.2)

k0= 501 values 47.637-84.485
+ kp= 50 values 1.57-155.5
25 bin

30

00 & L L L L L

Figure 15. Point histogram of the electric field along y axis at y = 0.2 m where L =2 m and R = 10 m.

Quarter Bowtie
Point Value (0.0,0.6)

k0= 501 values 47.637-84.485
+ kp= 50 values 1.57-155.5
25 bin

30 -

05 [~

00 & L L L L L

Figure 16. Point histogram of electric field along y axis at y = 0.6 m, with L =2 m and R = 10 m.
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Quarter Bowtie
Point Value (0.5,0.5)

k0= 501 values 47.637-84.485
L kp= 50 values 1.57-155.5
o 25 bin
20
15
NA (]
w,
Yot m
05
00 & I I I I I
-5 4 3 2 1 0 1 2 3 4 5
A
1

Figure 17. Point histogram of electric field out in the volume with z =y = 0.5 m.



¥ (00, T) ersingo _ (=00,7) e~ tYsingo — Y (s, 7)sin (ysingy — sop) =0, —Co < 7/4/27 < (o
with

oo = arcsinh (tan ;) = In [tan &, 4 sec &)
Thus we take

vsinéy —sog =kl —sog =pn =kpl,p=0,1,2,3, ...
Note that

o0 = %ln (Z—i_ﬁ) = Arcsinh (\/ﬁ/R) = iln (As)

The separation constant s is then

(k — k) L/2

o=kt =

=2(k—ky)L/In(Ay)

In summary the solution is

u=1 (Spa QY 2kd) sin [kdsin § — spArcsinh (tan§)] /+/cos &

where

Y (sp,T) =cRe [U+ (sp,7) + e'®o U7 (sp, 7')]
and the phase phase ®g (k:Q) describes the phase relation between a wave leaving the vicinity of the unstable
periodic orbit and one returning [30].

2.10.2energy theorem normalization

If we let k approach an eigenvalue then the normal derivative of u, vanishes on the scar e (sp,0) =0
(because we have selected the even modes across the scarred orbit). Therefore it is only the operation of
taking the w derivative of these terms in the energy theorem which prevents their vanishing. We thus find

2 o 10 8Up
,uoso/AM dS_/Cupwaw <8n e

The metric coefficients in this system are

he = hg = dy/sinh® ¢ + cos? ¢

o 19 [Ouy\ h
2 50 _ 29 ()

Thus

where
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aup = /29 (sp,0) sin [kdsin € — s,Arcsinh (tan £)] /+/cos &

It is only the w derivatlve operation on ¢’ (s,,0) which contributes

,uoao/ lul® dS
A

- \/_/ ¢ 8177 - %w/ (SZNT)

Now taking the normahzatlon to be

. : . dg
2 — [
sin® [kdsin§ — s, Arcsinh (tan §)] cosE

7=0

/ lul>dS =1
A

o = Arcsinh (tan ¢)

and transforming to

do = sec&dé

sin€ = tanh o
gives

9
Ho€o = \/_77[} Spv - _ww (Sva)

If we average over the rapidly varying sine we find

oo
2/ sin? (kdtanh o — s,0) do
7=0 0

g0
7=0

10
togo ~ /27 (sp, 0) " %1& (5p,T)

We approximate this derivative as Antonsen suggested [30] with the outer region phase derivative

Dy
%W (sp,7) oN cRe [i%el%U_ﬁ/ (sp,O)}

Since we are choosing only the even eigenfunctions we must have the normal derivative vanish on the scar
orbit. This implies the resonance condition

2Re [U}, (sp,0) + €U (sp,0)] =0
or

Ul (sp, )+ei%U_T_’ (5p,0) +UY (55,0) + “I’OU’ (5p,0) =0
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(L+e"0) U (sp,0) + (L + e ") U (55,0) =0

_ 1 + ei<I>0 _ 761@.0 _ U-li- (Spv 0)
or 1+ei Uy (sp,0)

Using this with the Wronskian

ULUE —UYUy =i

gives
Do Im |U,(s,,0)
Re [Us (sp,0) + €U (sp,0)] = ﬁ
4 (sp, 0
Therefore
iPoT* 1 oo 0 z<I>0 */
togo ~ cRe [Ug (sp,0) + e U+(sp,0)}che law UY (sp,0) | v/2v00
Im [U', (sp,0)] 1 [.acpo , }
=—c———————=—cRe [i—U. (sp,0)| v/2700
UL (5, 0 @ Ow "
or
Ok (d®o\ Im? [UL (s,,0)] d+ ¢
2 0 + \°p>s
- i VO Il e o S 2 et Iy P e
“Hoso = Ck6w<dk2> U, (s5,,0)|” 7n(d—ﬁ)
or
d®y\ Im* [U} (sp,0)] d+¢
1=¢ (—) — V2yln | ——
dk? ’U.ﬁ. (sp,O)}Q d—"/
or

? =v?8/

A\/—Im (VY (5, 0)] In (jji)

U (s,,0)|?

where we have again used [30]

oo A (a7
8 \ dk?

Thus we have the solution
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up (2,0) = 202 sin [km — %sp In (%)] (1 - $2/d2)*1/4
(U7 (59, 0)] [ Av/Z7In (42£)

_ 20v/2 sin [kya + po ()] (1 — 22 /d?)

U4 (s, 0)] [ AvZT I (42)

=120+ (52)

2.10.3projection operation

—1/4

where again

Let us take the projection operator to be defined by

¢
Vp = 2/0 (1- x2/d2)_1/4 sin [kpx + po (x)] w (z,0) dx

20V/2 ‘ -
~2 vv2 / (1—2*/d?) 12 Gin? [kpz + po (z)] dz
0

UL (57, 0)| [ AvZTIn (44)
Suppose we transform the projection to elliptic cylinder coordinates

€o
Vp = 2/ sin [kdsin € — spArcsinh (tan §)] uphe
0

he = dy\/sinh? ¢ + cos? € — dcosé

_dk
\ecosé
with pth component

up =1 (sp, Y de) sin [kdsin & — s, Arcsinh (tan§)] /1/cos &

1/’ (Spa T) = CRG [U+ (Spv 7_) + eiq)O U—T— (Spv T)]
On axis ( =0

2v/2
Up = v2v2 sin [kdsin & — spArcsinh (tan§)] /4/cos &

|U‘IF (51770)} A2y 1n (%)

so that
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9 o
v, = v2dy/2 2/ sin? [kdsin & — s, Arcsinh (tan §)] d€
0

0% G002V 0 (22)

Now for kd large we average over the sine function and find

v2dV/2€,
0% (5. 0)] / AvVEY I ()

‘/p:

where

&y = Arcsin (£/d)
which is the same answer as obtained previously in the case where the solution had even symmetry along
the orbit, except that here

kyl = pm

2.10.4random plane wave projection

Let us first consider the random plane wave projection with the simplifying assumption of d large and
projection

¢

Vor = / sin (kpx) u, (z,0) dz
—

with [30]

N
Uy :]\;lm \/2/ (AN) Re Zajeiaj'i‘iﬁ'ﬁ
[eS) =

where a; are real random numbers with <a§> =1, |k| = k are random vectors uniformly distributed in
angle, and the random phases o; are uniformly distributed on a 27 interval. Thus

4 N
Vi = / sin (kpo) lim 1/2/ (AN) Re D aetestikreost gy
iy —00

j=1

¢ N
= / sin (kpx) A}im v/2/ (AN) Z ajcos (aj + kx cos0) | dz
) —00

Jj=1

N
Vi = Jim VETAN 3
]:
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hm v/2/ (AN") Z a;a; / / sin (kpx) sin (k') cos (oj + kx cos 0) cos (ajr + ka'’ cos 0) duda’

If we average over the amphtudes a; and regard different j values as independent the cross terms vanish

2 —
(V. . I\}—>oo N Z/ / sin (kpx) sin (k') (cos (a; + kx cos 0) cos (o + k' cos 9)) dxdz’
with
11

(cos (o + kx cos0) cos (a; + k' cos 9)>aj =—c

55 / [cos (k (x — ') cos ) + cos (2a; + k (z + 2") cos 0)] da;
T4 Jo

1 1
= 5 cos (k(z —2")cosf) = 5 cos (kz cos 0) cos (kz' cos 0) + 3 sin (kz cos 0) sin (kz’ cos 0)

and
, ¢
<Vpr>aj7aJ = A}_)OO AN Z/ sin (kpx) sin (kz cos 6) dx /_é sin (kpa') sin (kx' cos 6) dz’
= A}gnoom 2/ cos (kpx — kx cos ) — cos (kyz + kx cos0)] dx
¢
/ [cos (kpa' — ka' cos @) — cos (kpa' + k' cosf)] da
—t
or

(V2) = lim LZN: n(ky — keosd) £ sin(k, + kcosd) (]2
B = k: — kcosf kp + kcos

1 m sin (kp — kcost) ¢ sin(k, + kcos0)( 2d0
- 21A kp — kcosf kp + kcos6
Now when k — k, the first term peaks for § — 0,27 and the second term peaks for § — w. Thus we find

(and 6 = ¢/\/kL/2)

rr/ T 9rA ky — k + k62 /2 kp —k+k(0—7)°/2

oo [sin (k. — 2 2 oo [sin(ky, —k+k 2
(V2 = 1/ [ (ks k+k9/2)£] d0+ﬁ7 [s( +k (0~ )/>]d0

_ sin ((kp — k) £+ ¢7) ’

_wA,/M / l (kp — k) €+ ¢

dg
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Letting

A=2(k—k,)L

2y sin® (A\/4 — C)
(Vir) = 27TA\/_/ (A/4— g) d

<x/ﬁvp2>r — LG (\) /A

_ 1 < gin? (\/4 C)
G(A)—Qﬂ/_w—(/\M S

Introduction of the symmetries gives

Gs(A) =4G (V)

the same as the even case.

Suppose we use the random plane waves and take the projection with

¢
Vpr = 2/ (1- xz/d2)71/4 sin [kpx + po (2)] ur (z,0) dx
0
with

N
Uy = A}im V2/(AN)Re Zajemjﬂk.g
> =1

where a; are real random numbers with <a?> =1, |k| = k are random vectors uniformly distributed in
angle, and the random phases «; are uniformly distributed on a 27 interval.

14
V;)T:2/ (1_$2/d2)*/ Sln[k‘ .’E+p0 hrn /9 AN Re Za ezaj—i-zkwco:s@ dx
0

The variance of this random variable is

(V) = ﬁ/o ! [Fy (0) + F_ (0))°do

¢ —1/4
F,(6)+F_(0) = 2/0 (1-2a/d) sin [kp2 + po ()] sin (kz cos 0) dx

¢
= / (1- x2/d2)_1/4 [cos {kpx + po (x) — kx cos 0} — cos {kpz + po () + kx cos 0}] dx
0

71



Now for large k and k, we can take k — k, and 6 — 0,7 (and 0 = (/+/k(/2)
ky —kcos = (k, — k) + k67 /2

ky+ kcosO ~ (k, — k) + k(0 —n)° /2
and

F(0)+ F" (0) ~

/015 (1 —:102/d2)71/4 [cos{((k:p — k) +k0%/2) x +po ()} —cos{((k:p —k)+ k(0 —7) /2) x + po (x)H dx
1

ot —1/4
(Vi) ~ 5d |, [/0 (1—2*/d?) cos { ((ky — k) + k0%/2) z + po (z) } dz

_/Oe (1 _xQ/dQ)*”“cos{((kp k) k(O —W)Q/z) 2+ po @)}m] do

~ 1 > ‘ 2/ 12\~ 1/4 2 :
Nr\/m/—oo l/o (1—2?/d*) cos{((kp—k:)—i-C/ﬂ)x—i—po(x)}d:c} d¢

) 0 2
RJJWA#\/W/Q/O l/o (1—xz/dz)_1/4cos{()\/4—CQ)x/é—po(x)}dx] d¢

A=2(k—k)L

o) = i (757 w0 -0 (75)]

spArcsinh [ L/ (QR)] =\/4

the same as the even case.

Thus the odd symmetry along the orbit results in the same statistics but with resonances at k¢ = pw
instead of at k,¢ = (p —1/2) 7.

2.11 Odd Symmetry Perpendicular To Orbit
The case where the electric field is odd with respect to the normal direction to the orbit is now
considered. This will be useful to consider before treating the case where the bow tie cavity is asymmetric

with respect to the normal direction to the orbit. To start this problem we first require a form of the
normalization condition that can be used for this parity (as well as in the asymmetric case).
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2.11.1second normalization condition

A second normalization condition can be arrived at by looking at the magnetic current

Iz = (u; - u;) 0 (n)

where u; is the pth component of the eigenfunction immediately above the orbit and u, is the pth
component immediately below the orbit. The energy theorem [33] with magnetic currents is found from

Maxwell’s equations
VXE=—J,,+iwud

V x ﬂ = —iw€0E
by taking

oE X . OH
V'(%Xﬂ +E Xa_)

w
) ) i e g OH
' —E~Vx%—%-Vxﬂ +aw~V><E E anw
Next we can write
OE 0 0Ly . OH 0 (wpo)
VX@w_aw(VXE)_ ow +Wu03w+z ow H
OH 0 . O0E  .0(weo)
anw—aw(Vxﬂ)——zwaoaw—z R E
and thus
oE . . OH

w w w
Integration over the volume and application of the divergence theorem yields

fs(%xﬁ LB aw) wdS =i [ (ol B+ 20l BV /V(aw I

Using n x £ = 0 on the walls we find

. OH\ _oH ~
ﬂ'@xm)—%'(ﬂ@—o

+H"- 0L, ) av
Oow
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and

Noting that

and here that

so that

and

so that

Now using

gives
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i ot +€oE-E)dV—/V<aw I+ H m)dv

€0

poH - H' = 23 (V x ) - (V x EY)
L =ue,
im: mzCy

VxE=Vuxe, =iwuH

§I~(Vuxgz):gy-Vu:%

eE-E* =cuf’
* €0 2
pi - H* = -5 [Vl

e, X (Vuxe,)=Vu

U N I = X A vy Y
sz/V(|Vu| + k7l )dV_/V [&,u <w,u0 8n) me+wu0 on  Ow

[Vu|? = Vu - Vu* = V- (u*Vu) — u*Viu =V - (u"Vu) + k? |ul?

av



9 B [ 0 [(10u 1 0u* 8Jz |
250u0/‘/|u\ dV—/V_ . (w@)J +w8n c%J_dV

In two dimensions

2 [ 0 [10u 1 O0u* 0Jpz |
260u0/A|u| dS—/A_—a <w8>J +w8n &J_dS

Now inserting the magnetic current excitation

Jme = (uf —uy ) 6 (n)
and assuming asymptotic orthogonality along the scarred orbit

1 0u _ 10u, 0 _
260/1,0/|’U,| ds = /{ % (w 8;)(;—up)+wa;8w(u+ up)]cM

Now in this case we regard the magnetic field du,/dn as continuous across the scar and the electric field u,
as discontinuous, when the magnetic current drive is present. As resonance is approached, the discontinuity
will disappear and u;r —u,, — 0. Thus we keep only the derivative term in frequency

250%/ |u|2(zsﬁ/ L0 0\ uryar
A C

w On Ow
This form will clearly provide a normalization on the odd amplitude coefficient. Let us transform to the

elliptical system

2 _ 18up 0 + - hg
260,u0/A\u| ds = /Cw o 7w (u) up)hgdf

o 1 9u, 0
- S )

where n points in from the upper region. Now taking the area integral equal to unity gives
\/_ 0 Oup 90
2e0pg = —— —u,)d
0fg = /6 or aw u’p ) §
2.11.20dd normal scar problem

Suppose we have geometric symmetry but we focus on the odd problem. The high frequency solution is
taken as

u, = £cRe [Uy (sp,7) + €U (s, 7)] cos [kdsin€ — spArcsinh (tan €)] /y/cos €
using the energy theorem

o ou B
250,%,—__1/—/f 3Tp8w ) de

to determine the normalization. The resonance condltlon is
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or
2Re [Uy (s, 0) + €U (s,0)] =0

= (L+e7'%) Uy (5,0) + (1 + ") UL (55, 0)
or

_ U+ (Spa 0) _ ez‘q)o
U (sp,0)
Now taking the derivatives with the outer phase derivative dominant

0P

— (u} —u;) = 2c=——Re [ie'®°U* (s,,0)] cos [kdsin & — s,Arcsinh (tan & cos &
Ow ~ P P Ow e P
0Py : .
= 208_w Im [Uy (sp,0)] cos [kdsin & — spArcsinh (tan €)] /4/cos &
% = cRe [U/, (sp,0) + €U (sp,0)] cos [kdsin{ — s,Arcsinh (tan )] //cos €
= —m Im [Uy (sp,0)] cos [kdsin & — s,Arcsinh (tan&)] /+/cos €
+ \°ps

and the Wronskian

U\Uy —UU; =i
Then the energy theory gives

1, —Im?[U, (5,,0)] 8¢ [ o .

Solly = —c w/27——/ cos” [kdsin & — s,Arcsinh (tan &)] d€/ cos €
w |U+ (SP, 0)‘2 dw —&o 3

Transforming to

o = Arcsinh (tan ¢)
do = sec&d€

1 d+7¢ . 1
00 =5 In (m) = Arcsinh (\/E/R) =1 In(Ay)

sin¢ = tanh o
gives
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Lo Im” [U (sp,0)] %0 /00 2

g = —C\2y———————2 cos” (kdtanho — s,0) do
Ho€o w Y |U+ (5p70)‘2 aw 0 ( P )

If we approximate the integral for large kd by averaging over the cosine we find

1, ~—Im?[U, (sp,0)] 0% s ~—Im?[Uy (sp,0)] d®y
o~ —C 2——0' :20 2— Eo——=0
o YT, G2 00 7 T YT T, (s 0 Rz
or

Im? [U, (sp,0)] d®o (d+£>
1ary/2y— o 1770, (212
"L (s ) k2 a7
Now using [30]

gives

2
Uy (Spa0)| 8 02~ 2
5 ~
Im* [U (sp, 0)] V27AlIn (%)
The only difference between this amplitude for the odd case and the amplitude in the even case is that the
derivatives are missing. The normal derivative on the scar is then

Ouyp 1 Ouy, v 8 . .
—L =L = cos [kdsin € — spArcsinh (tan € cosé
or V2 ol Uy (sp,o)J A (42) [ b (tan€)] /v/

Now let us find the projection

¢
V) = —2/ (1 —x2/d2)71/4cos [kpx + po ()] %? (x,0)dzx
0 Y

= b f (400 (£22))

Transforming to elliptic cylinder coordinates

where

Loune _ds
k OC he \/cos&

o
V, = —2/ cos [kdsin§ — s, Arcsinh (tan &)
0

Lou_de
k Ot \/cos &

o
=—2y/2y / cos [kdsin& — spArcsinh (tan €)]
0
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= Y 8 z\/2’y /EO cos? [kdsin ¢ — s, Arcsinh (tan ¢)] e
|Us (sp,0)] \/—Aln(dw)k o P cosé

If we average over the cosine for large kd we have

v

T G0 )J i (&=

/N
V, ~

—\/_/ secdE

= v/k Sv2y In (sec&, + tan&;)
|U+ (SP50)| Aln (%)

sinhog = tan¢,,

sec{, = cosh oy

In (sec &, + tané,) = oy
Alternatively transforming to o =Arcsinh(tan¢) gives

V! = Y —+/2 / cos? (kdtanh o — s,0) do
P Uy (sp,0 \l\/—Aln(ie »0)
Now for large kd
v voo/k 82y __ v/k len <d+€)
P UL (sp, 0)[\| Aln (d_jlzj) Uy (5p,0)| || A d—1t
Thus we find
1 2021
(RLVELV;?) = . (2L
g Uy (sp,0))7 A d—¢
where

Ui (s,7) = e/ /4y (—z’s,Te_i”/4>
and U is the standard parabolic cylinder function [31], with limit

Uy (5,0) = e~ T(s+i/2)/4gis, /2—1/4 ﬁ

I'(3/4 —is/2)
Thus
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<kL\//<:LVf> = e™#/2 |0 (3/4 — is,/2)]

or in terms of stability exponent

2 4LVLId (d+(
TA d—1{

<kL\/_V’2> Lor/2gmn/2 |0 (314 — is, [2) (\/E“) \/%_)1

ST
Vi = LA

5p=2(k— k) L/ In (A)
Noting the asymptotic form

1
271/ 2emsn/2 |1 (3/4 — is,/2)° ~ /5y , 8p — 0
we see that this projection grows as /s,

4L./2Lds d+/{
/T2 P
<k:L kLV;D> 1 ln<d£),sp—>oo

2.11.3random plane wave odd projection
Suppose we use the random plane wave representation and take the projection with

4
V) = 72/ (1—22/d?) " cos [kyx + p ()] = - aa“r (z,0) da
0

where

N
Up = th \/ 2/ (AN) Re Zajeiaj'i‘iﬁ'ﬁ

where a; are real random numbers with <a§> =1, |k| = k are random vectors uniformly distributed in
angle, and the random phases o; are uniformly distributed on a 27 interval. The normal derivative is then

1 Ou, N

- — 1 y 1aj+zkr

The variance of this random variable is
V2 = ! u F’ 0+ F' (0 2 de
< p > r orA o [ (6) + ( )]

¢
FL(0)+ F.(0) = 2/ (1- x2/d2)71/4 cos [kpx + po (x)] sin O cos (kz cos 0) dz
0
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¢
= / (1—2?/d?) 1/ [cos {kpx + po (z) + kxz cos 0} + cos {kpz + po (x) — kx cos 0}] sin Odz
0
Now for large k and k, we can take k — kj and 6 — 0,7 (and 6§ = (/\/k(/2)

ky — kcos® =~ (k, — k) + k62 /2

ky + kcosO ~ (k, — k) + k(0 —m)° /2

and
F(0)+ F" (6) ~ /Z (1—a2/d?)
0
[(ﬂ—@)cos{((kp—k)+k(9—77)2/2>x+p0(x)}+9005{((kp—k)+k92/2)x+po(x)}] dx
o Lot o ) o —1/4 ‘
<Vp>r~m/0 V (1—a?/a®) """ (= 0)cos { ((kp = k) + k(0 = 7)* /2) &+ po (a) } da
p 2
+/ (1x2/d2)_1/40cos{((kpk)+k02/2)x+po(x)}d:r] do
0
~ 1 > ‘ 22\ "1/4 . _ 2 ’
N—WA(k£/2)3/2 [m l/@ (1—2?/d*) ¢ cos {((kp k)—&—C/E):U—I-po(:B)}dx] d¢
N 2 oo 4 2 o\ —1/4 cos g/l — . xz
s [0 ) o s -]
A=2(k— k)L
po () = %sp {ln <%) (/) — In <§+z)}
spArcsinh[ L (QR)] = )\/4
(LY VE) =126 () /A
with '

2

[e's) £
G’(A):—/O [/0 (1f:cz/dQ)_l/ZL(cos{()\/ZlfC2)x/€*p0 (z)}dx/t| d¢
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Now due to the symmetries we take

(L2 V2) = LG, (\) /A

0o 4 2
G’S(A):4G’:§/O [/O (1—xQ/dQ)‘”‘*gcos{(A/zx—g2)x/4—p0(x)}dx/4 d¢

_ ? o |:/ (1 —$2£2/d2)_1/4CCOS{(A/4_CQ)x_pO (;pf)}d$:| dC
0

If we take the limit £ << d then the inner integral becomes

/OZ (1—a2/d?) " Coos { (A4 — )/l — po ()} da/ — /OZCCOS{(A/ZL — () )t} da/t = g%

and thus

16 /°° sin® (\/4—¢?)
— | 3¢
0

s(A) — 2
() = — /i)

dg

sp=A\/In(As)

Figure 18 shows a comparison of the odd scar projection (solid curve) and the random plane wave
projection (dashed curve is the preceding simplified expression). The dotted curve is the large s, form of
the odd scar theory (it is set to zero for negative s,). There is no enhancement of the field relative to the
random plane wave projection but there is a reduction (antiscar) for s, < 5. However because the scaling
here is (kL)g/ % versus (kL)l/ % in the even case, the contribution from the odd case is correspondingly
smaller.

Figure 19 shows the comparison between the histogram generated along the L = 2 m and R = 10 m
orbit in the symmetric bow tie for the odd problem (normal derivative of the field) along with the odd scar
theory projection and the random plane wave projection.

2.12 Asymmetric Bow Tie Cavity

The case where the outer regions are not symmetrical is now considered. We first generalize the original
energy theorem to the case where the function is not even on the orbit.

2.12.1first normalization condition

From the energy theorem

i2so/ |ul? dS:/ (g—uJ;wLu*aJZ)dS
A A (%) ow

with in this case
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Figure 18. Comparison of scar projection and random plane wave projection for electric field which is odd

with respect to the normal of the orbit. Geometry is L = 2 m and R = 10 m. The dotted curve is the
asymptotic scar projection for large s,,.
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Quarter Bowtie - Odd Case

Integrate from (0,0) to (0,1)

L k0= 502 values 47.616-87.944 W
kp= 50 values 1.57-155.5 _ [
50 bins
15 I
& C— Numerical B [T ATHILU
guof Anaiytica Rancom _ LT
:7!’ M L] /4’42’/
L i | B
==l
st |
0 . . . . . . . .
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S

Figure 19. Odd problem in symmetric bow tie cavity. Histogram is for the projection of the normal derivative

of the field on orbit (magnetic field). Theory is odd scar mode projection and odd random plane wave
projection.
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i (Ouf  Ou,

= (T T ) )Ly =0
Wity ( on on ).y

we have (we take u to be continuous at y = 0)

. 2 4 [ [ Oul (Oup Qu\T 91 (0w Ouy
1260/,4‘u| dS_uo/C[ 8ww<8n on tu Ooww \ On on de

Taking the eigenfunction as real and assuming the integrals along the scar produce approximate
orthogonality (we take u, to be continuous at y = 0)

5 o 1 du, 1 (Ouf  Ou, o1 (out Ou,
2€O/A|u‘ ds_uo/c[ Ow w \ On on +up5'ww on on de

Now in the elliptic system
oul  Ouy out  Ou-
260/ ‘u|2d5:i/ _%l ﬁ_& +upil Up _ Up Edf
A Lo Jo Ow w \ 0C ¢ Oww \ 9OC o¢ he
/ lul>ds =1
A

S [ Qu,1 (Ouf  Ou, o 1 (0uf  Ouy
2oty = /50 e (e T) e (T -] @

Now noting that we eventually want to take the limit as the eigenfunction derivative becomes continuous
across y = 0

Setting

gives

o 19 (Ouf Oul
2 — —_—— p __ P
€0ko /50 e Ow < oC 0 >d£

1 — (% o (Out  Ou,
Tw 27/_50%7%(87 a 3T)d§

2.12.2even and odd decomposition

Suppose we decompose the general field by writing

Up =P (Sp, T) cos [kdsin§ — s, Arcsinh (tan§)] /+/cos§

and

Y =9+,

with the even and odd functions defined as
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Y, = ceRe [Uy (sp, |7]) + €U (sp, | 7])]

¥y = coRe [Uy (s, |7]) + €U (s, |7)] sgn ()
where in the asymmetric case we have two random phase functions. Note that the even solution is
continuous at 7 = 0, whereas the odd solution has continuous normal derivative at 7 = 0. Thus the scar
continuity conditions apply separately to these two. Continuity of the normal derivative only involves the
even part

2Re [U}, (sp,0) + €U (s,0)] =0

= (1+e ") U/ (sp,0) + (1 + € ) U7 (sp,0)
or

2
ei<I>0 — U/ (Sp’ ) — [U-/&- (S;Da O)}

U (5,0) U (s,,0)]
whereas continuity of the field only involves the odd part

2Re [Uy (sp,0) + €' *1U (s,0)] =0

= (1+e ") Uy (5p,0) + (L + ) Ut (55, 0)

or

oi®1 — _U+ (8p;0) _ _[U+ (Spao)]Q
Uz (59, 0) U (sp,0)|

The normalization conditions are
oulr  Ou;
2euto = V2 / Rx e

o au _
2801y = — \/ /5 8;&» T =) dg

where we write
.t -
2up = u, +u,

Bup B au; Bu;
T or or

Using these relations, the even and odd normalization conditions also separate as
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1 o 9 [Ouf  Ou
250#0:—\/2’)//() (U;+Up)—w<a—:a—:>d§

1 o /Ouf  Ous\ O

2o = S [ (G T ) o (uf )
where only the even condition shows up in the first and only the odd shows up in the second. Thus we
end up with two separate two-by-two systems for the coeflicients and for the resonant frequencies. Since
we have assumed that the local geometry is completely symmetric, this splitting is not too surprising.
The question is if and how the random phases are connected (should even and odd resonant frequencies
be degenerate?). We anticipate that as k — k, the coupling between even and odd problems is reduced,
since the local geometry is symmetric and the ray ”spends large amounts of time” in the region of the scar.
If the phases are not correlated, then the even and odd scar modes will in general resonate at different
eigenfrequencies. There could be accidental degeneracies if the two phases are realized in a certain way to
make the two resonant frequencies the same, but in general they will be distinct. This means that statistics
along the scarred orbit in the general case will be the same as the even case for F, and the same as the odd
case for H, (assuming the area is maintained the same). Note that the frequency derivatives of the phase
functions will be approximately the same as in the symmetric cavity since the average modal spacing for
each set of modes is expected to be the same.

2.12.3comparisons of even-odd theory with asymmetric simulations

The asymmetric bow tie cavity has L = 2 m and R = 10 m along the orbit. The other two radii are
R =15 m and R = 2 m, creating the asymmetry. Figure 20 shows the projection of the electric field along
the orbit compared to the even scar theory. The agreement looks similar to the symmetric cavity results.

Figure 21 shows a comparison of the asymmetric cavity histogram for the projection of the normal
derivative of the electric field on the orbit with the odd theory. The results look similar to the symmetric

cavity for the odd case.

Figure 22 shows electric field intensity for a typical eigenmode in the top half of the asymmetric bow
tie cavity. The chaotic nature of the field for typical eigenfunctions is apparent.
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Asymmetric Half Bowtie
Integrate from (0,0) to (0,1)

k0= 947 values 41.888-83.755
kp=50 values 1.57-155.5
L 50 bins
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Figure 20. Comparison of histogram for the projection of the electric field along the orbit in the asymmetrical

bow tie cavity with the even theory and random plane wave projection.
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Asymmetric Half Bowtie - Odd Case

Integrate from (0,0) to (0,1)

k0= 945 values 41.909-83.730
kp= 50 values 1.57-155.5

50 bins M M
15 | ]

U " |
o 1 Numerical —
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Figure 21. Histogram is for the projection of the normal derivative of the field on the orbit (magnetic field) in

the asymmetric bow tie cavity. Theory is odd scar mode projection and odd random plane wave projection.
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FRAWE OF REF: PART SHELL SURFACE: TOP
4.590+01,

4. 130+04]

3.670+011

3.210+0444

2.730+04

2.300+04]

1.840+04]

1.380+04]

9.180+00

4.59[[?
"

7.900-06]

Figure 22. The electric field intensity of a typical eigenfunction in the asymmetric bow tie cavity showing

random behavior.

Figure 23 shows electric field intensity for a vertical scar p = 15 in the top half of the asymmetric bow
tie cavity.

Figure 24 shows electric field intensity for another vertical scar p = 19 in the top half of the asymmetric
bow tie cavity.

Figure 25 shows electric field intensity for a horizontal scar along the symmetry line in the top half of
the asymmetric bow tie cavity.

3 CONCAVE MIRRORS AND STADIUM CAVITY

The stadium cavity will be used as a canonical example of an unstable cavity with concave walls. The
application of the scar theory of Antonsen to the stadium cavity with a bouncing ball mode between the
concave walls is now considered.

3.1 Geometry

Taking the wall radius of curvature to be R and the path across the major axis to be L > 2R, we write
the stability exponents as (here we reverse the sign of R for the concave mirror from the formulas above in
the bow tie cavity for the convex mirror)

89



Seat £
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Figure 23. Vertical scar electric field intensity in asymmetric bow tie cavity k¢ ~ 45.654 and with p = 15,
kpl ~ 45.5531.
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Figure 24. Another vertical scar electric field intensity plot with k¢ ~ 58.065 and with p = 19, k,¢ ~ 58.12.

90



RESULTS: 97-SCAT E, F= 2.78530000E+089 W2 DMCT:

LPHOMN 3D0F VECTOR - ¥ MIN: 3.10E-04 Wad: 6.31E+01 WALUE DPTION:ACTUAL

FRAME OF REF: PRRT SHELL SURFRCE: TOP
6. 300404,
5. Ba0+)
5. 0500

4,420+

3.730+04

316001}

2.570+04
1. 850+
1. 26040

]

3.140-04

Figure 25. Horizontal scar electric field intensity in asymmetric bow tie cavity.
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Ay =) = [(L/R—l)i (L/R—I)Q—lr

Ay =2(L/R—2)(L/R)+1+2(L/R—1)\/(L/R—2)(L/R)
If we take L = 2.2R (we are using L = 0.55 m and R = 0.25 m in these short stadium examples) then

Ay =3.472
For this geometry we chose the value of A; to be the same as in the bow tie cavity and intended to apply
the same scar theory results. However it is clear from a picture of the fields in Figure 26 that more is going
on (for example, the hot spot at the focus).
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Figure 26. Bouncing ball mode along horizontal axis in stadium cavity at 4.205 GHz. The geometry has

L =0.55mand R =0.25 m.

The resonance condition can be easily found by tracing a ray along the orbit. Starting at the origin
using time dependence e~ %, we reflect off the mirror at # = ¢ with a 7 phase shift, then pass through the
right focal point with a —m/2 phase shift [34], and back to the origin with 2prm total phase accumulation
(required at the symmetry line).

2kl +m—m/2=2p1, p=1,2,...

Because of the foci, the simple Fourier expansion of the field used in the convex case is not justified.
We break up the cavity into three regions and assume evenness of the field. Region 1 is between foci and
Region 2 is outside the foci. Region 3 is in the vicinity of the foci. We now want to solve the problem
between concave mirrors containing two foci. Here we will apply Vaynshteyn’s method along the major axis
of the elliptical cavity. We can adjust the ellipse to match local curvature and separation distances of the
stadium.

3.2 Elliptical High Frequency Analysis In Outer Two Regions

Vaynshteyn has treatments for stable modes between concave mirrors. Here we wish to consider the
generalization to unstable modes between concave mirrors. Following Vaynshteyn [18] we have Figure 27
where

x = dcosh(sin
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Figure 27. Elliptic cylinder geometry for modeling stadium horizontal scar.

y = dsinh { cos &

—0 < (<
—m/2<E< /2
We take
L=2
where
¢ =dcosh(,

On the mirror we have

x = dcosh(ysiné

y = dsinh ( cos&
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V1= ly/ (dsinh o)J* = sing

As y — 0 we have

siné ~ 1 — % ly/ (dSiDhCO)]Q
and

y? cosh(,
2d sinh? ¢,
On a circle of radius R, centered at (zg,0) where zo = dcosh (, — R, we can write

z ~ dcosh(y —

(w—xo)Q +y? = R?

2
r=dcosh(y — R+ +/R*—y? ~dcosh(, — ;JT%

Thus
R = dsinh* ¢,/ cosh ¢,
Also
R =d(coshy — 1/ cosh ()
¢ = dcosh(,
and
R=1(—d*/t

d= /Ll —R)=10/1-R/L

3.2.1 modal description in region one: between foci

Figure 28 shows the regions near the scarred orbit on the major axis.
The modes of the Helmholtz equation

Viu 4 ku =0
are now investigated. This can be written in these two-dimensions as [18]

2 2
g—;;—%g—g—#f (cosh2§—81n2§)u:0
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Figure 28. Elliptical cylinder geometry showing the three regions about the focal point used in modeling the

horizontal scar.
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where

v =kd = ki/1— R/l

We assume v >> 1. On the mirror we want

u=0,(==%(, & <[] <m/2

We will solve the problem separately in the several regions of the stadium cavity. We assume in the
first region that we are inside the foci with —¢, < £ < &, and that near the orbit we have sinh? ¢ << 1. We
take the function u to be even about the x and y axes. We seek a solution of the form [18]

u=WI( Qe+ W (=) e g <&
Substituting into the Helmholtz equation

o*Pw  *wW ow

—— + —— + 2iycosé—— + (¥ sinh? ¢ — iysin&) W =0

Now ignoring the ?W/9¢* term [18] and using sinh? ¢ &~ ¢?, we have (this is the first term of an asymptotic
series as discussed in the appendix)

O*wW . ow L
e + 217cos§8—§ + (v2¢% —iysiné) W = 0
Now we take
W = ! v

3
o= /0 ccc)lsgf = arcsinh (tan &)

oo = arcsinh (tan &) = In [tan &, + sec &)

gives
0% ov 72
oY Ty =
) or2 JrZ@U + 4 0
Letting
U(o,7)=e "7 (s,7)
gives
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82’(/J

92 + ( 1 + s) =0

This is a form of the equation of the parabolic cylinder functions. The solutions are (we are using notation
and normalization consistent with Antonsen [30])

¥ (s,7) = cRe [Uy (5,7) + e UT (s,7)]

Ui (s,7) = e ™A/ (g, e/

where U (a, z) is the parabolic cylinder function in Abramowitz [31]. The transverse boundary condition in
7 is a reflection with a random phase ®q (k:Q) which was introduced by Antonsen to match to the chaotic
region of the cavity. The asymptotic form of the parabolic cylinder function gives

ir?/4—(1/2—is)InT _ ei72/47_i571/2

Uy (s,7)~e , T — 400

3.2.2 modal description in region two: outside foci

In the second region outside the foci we assume that —(, < ¢ < (, and that cos?{ << 1. We seck a
second solution of the form

_ W(f,C) eifycosh( + W(—§;<) e—i'ycosh( , |£| > 50
x = dcosh(sin¢&

y = dsinh { cos&
Note that the sign change in the exponential goes with the sign change of £ before the limit £ — /2 is
applied. The parity in £ is actually required since the Region 1 matching (which is even in £) will make the
disjoint region two’s have even parity also. The fact that this introduces the standing wave in Region 2 is
comforting.

In this second region we could also change the coordinate system to have, —m < £ < 7, and 0 < ¢ < oo.
This makes the coordinates continuous across y = 0. Substituting into the Helmholtz equation

2 2
g;; + ZCQ + (cosh2 ¢ — sin? §) u=0
oW + ald + 24y sinh C—W + (z cosh ¢ + v cos §) =0
o7 o TS T\ v

Let us now substitute the second term W (—¢&,¢) e ¢ into the Helmholtz equation

yw+y
bl ac? 8C

The original equation is not recovered by choosing a change in sign of £. It can be recovered by a +in shift

— 2iry smh( + (—iycosh¢ ++*cos? ) W =0
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in ¢ where cosh (¢ £ im) = — cosh ¢ and sinh ({ £+ iw) = —sinh {. Let us take

u=W (&) e + W (&, ¢ —im) e eohC ¢ > ¢

Now ignoring the 9?W/d¢? term and using cos? & = cos? (/2 — || — 7/2) = sin? (7/2 — |¢]) ~
(m/2 — |€])?, we have

o*w ow

3_52 + 2i*ysinh§a—c + [i’ycosh( +~%(7/2 - |£\)2} W =0

We will focus on the £ > 0 side so we can define ¢ = 7/2 — ¢, |§'} < m/2—=¢,. To generalize to both sides
of Region 2 we can take ¢’ = +7/2 — ¢

0*W ow

57 + 21"ysinh(a—c + (iycosh ¢ +~%E) W ~ 0
(If we avoided the focal region, should we connect the region with y > 0 interior to the focus to the region
y < 0 outside the focus? Does this lead to a more symmetrical looking transverse solution? In other words

we could take & =& —7/2 > 0 and cos{ = cos (¢’ 4+ 7/2) = —sin¢’ ~ —¢".) Now letting

1
W= )
v/sinh ¢
T =/29¢

a/—/c dc = In [tanh (¢/2)]

oo Sinh ¢
gives
0 da’ 0 0
ihel —sinncle 9 9
sin CaC sin Cac %~ Do’
31@+93+1@@~0
or’? Y90 T4 U7
Note that

oo [T
oo sinh ¢ oo Sinh ¢

ot = In [tanh (¢, /2)]

sinh (¢ —imw) — —i4/sinh ¢
Note that this sign of the square root agrees with that used in the ray tracing phase shift through the focus.
Because of the mirror boundary condition this equation must be integrated under the restriction that
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VU (0p,7') =V (—0p, ') eX

X =-2vcosh(y+m(2n—1)+7/2=—-kL+7(2n—1)+7/2
Letting

V(o' r) = e (s, 1)
gives

The mirror condition gives
1= ei25’06+ix
2s'a(,+ x = 2mm
2s'oh=2mr+kL—7(2n—1)—7/2=2(m—n)7m+7/2+kL

=—(2p—-1/2)n+kL=(k—k,)L
where

kpyL = (2p —1/2)

p=1,2, ..
We take the real part at the end of the Region 2 construction.

3.2.3 more symmetrical version of region two solution

It turns out to be convenient to take the solution in Region 2 as

w=e T (€,€) €O LW (€, ¢ —im) e O] jg] > &

This choice eliminates a factor e?™/4 that would appear in subsequent sections.

3.2.4 more general version of region two solution

To make sure we have not missed any choices in the second solution, suppose we take the solution in
Region 2 to be more generally

u= e*iﬁ/4*i¢‘1/2 [W (674) ei'ycoshg“ + GZQIW(&,C* ’Lﬂ') efi'ycosh(] , |£‘ > €0
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B 1 {\II (o’ T/)eifycosh(—iw/4—i<1>1/2 L (—o, 7 e—z”ycosh(+i7r/4+i<bl/2]

v/sinh ¢

= \/sii—hﬁﬂj (s',7") cos (ycosh ¢ — s'a’ — /4 — ®1/2)

where
Y (s',7") = cRe {U+ (s',7") + ' ®oU (5/,7/)}
Uy (s,7) = e "H/2/4y (_,L'S’Te—iw/zl)
T =€
¢ =+r/2-¢

25’0y = 2¢'In [tanh (¢,/2)] = (k — kp,) L

,_ [ A
o = /OO SnhC In [tanh ({/2)]

The mirror condition gives

cos (ycosh ¢y — s'ofy — /4 — ®1/2) = cos (kpl — /4 — 1/2) =0
or

kl —m/4—D1/2 =7 (p—1/2)
At this point we can think of k, and hence s’ as still arbitrary (k, and s’ are directly related). The
introduced phase ®; is selected to match the mirror boundary condition.

3.2.5 modified region one solution

Because the solution must be even in ¢ we can write in Region 1

u=C[W (&) e ™+ W (=€, e 5] | ¢ <&

[\Il (0,7)e75mE L W (—g,7) e Sing]

Y (s,

COS

~—

cos (ysin& — so)

H
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%/iil_T;COS ('ycosf/ — sor) L =m/2-¢

For matching purposes (with Region 2) it is convenient to take

=2C

¥ (s,7) = cRe [e_”/‘lUJr (5,7) + ei™/Aei®oys (s, T)]

3
o= /0 & _ arcsinh (tan§)

cos&
=In(tan& +sec{) =1n {tan% &+ 77/2)} = —In{tan (¢'/2)}

T=2

Uy (s,7) = e~ T(sHi/2)/47y (—is,Te_i”/4>

3.3 Behavior Near Focal Region And Matching

We now consider matching through the focal region.

3.3.1 approach of focal point

We first take the limits of the outer two regions as the focal region is approached. However to allow
flexibility in phase matching at the focus, we will allow the focal point to shift by a small amount in the
Region 1 and Region 2 solutions (this is somewhat similar to matching done in a nonlinear shock problem
[35] where the matching boundary is allowed to vary to first order in position) relative to the Region 3
solution

d—d+46

v —v+kd
where § << d is a geometrically small shift. Thus in Region 1 we find

u ~ 2CcRe [e_i”/4U+ (s7 m{) + e”/‘*eiq’UUj‘r (s, \/%Cﬂ

& eos [y (1-€7/2) + ko + s (£'/2)] , € =0
In Region 2 we find

u ~ 2cRe [U+ (s', \/ﬁfl) + ey (s’, m{’)}
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¢V cos [y (14 ¢3/2) + k6 — ' In(¢/2) — /4 —®1/2] , ¢ —0
where

s'In [tanh (y/2)] = (k — kp) ¢

kpl —m/4—®1/2=m(p—1/2)

3.3.2 small shift in focal position
We can also view this shift as a change in the original coordinate system (z,y) or (&,() or (5’, ¢ )
2 =dcosh(siné = dcosh(cosé ~d (1 + C2/2 — 5/2/2)

y = dsinh ( cosé = dsinh (sin &’ ~ d¢€’
SURIN
to the focal coordinate system (z’,y’) or (f ,C) with

, ~ ~ ~2 ~12
x—0=a" =dcosh(cos& Nd(lJrC /2—¢& /2)
1 . > .o ~
y=1y =dsinh(sin§ ~ d{§
Thus the small shift § enters as an additive correction as in the preceding section.

3.3.3 focal region three

Near the focus £ = /2 and ¢ = 0 we approximate the Helmholtz equation

2 2

—gg; + —ZCZ + 2 (cosh2 ¢ — sin® f) u =0
or

0? 0?

8_;;+8_CZ + 4?2 (sinhQC—&—cosQﬁ)u:O

as & =71/2 — £ (we are assuming that ¢* << 1 and that £* << 1)

2 2
g—;; + Z_CZ +92 (sinh2§—|—sin2§')u:0
or
0?u  0*u
o Tag T (EHEu=0

Separating variables
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u=X(£)Z(C)

1O°X | 5.0 10%°Z 5.,
— = =0

<X8£’2+7§ )+(Zaq2 -c)
Taking the separation constant to be 2vg we find

PX
% + (=2vg+7*¢*) X =0

0?Z
? + (279+72C2) Z =0

Thus we find parabolic cylinder equations in both directions. Letting

EVoy=r
in the first and
CV2y=r1

in the second, gives

2
8—X+(g+17/2)X_0

or’? 4
027 1
w-‘r (g-i-sz)Z:O

u=XZ = CocRe Uy (—g,7") + B'U} (—g,7")] Re [Us (g, 7) + BU; (9, 7)]

— CycRe [U+ (*Q,{\/ﬂ) +BU: (fg,ﬁl\/ﬂ” Re [e*”/‘*m (g, g\/ﬂ) + /A BUE (g, gﬁ)}

For purposes of matching we take g = s = —s’ and B = ¢'® and B’ = ¢'®0

u = CycRe [U+ (s',g/\/ﬂ) + ei%Uj_ (s’,f'\/ﬂ)} Re [67iﬂ/4U_~_ (fsl,C\/ﬂ) + (3i7r/4(5i<1)°U_Tr (fs',C\/ﬂﬂ

Expanding as we leave the focal region

Uy (8,7) ~ ei72/47(1/27is) InT _ ei72/47_i871/2 T — too
u ~ 2Cy cos (®[,/2) cRe [e_i”/4U+ (—8', C\/ﬁ) + eim/deitoyy (—s’, C\/ﬂﬂ
/ —1/2 /2 / / ’ / .
(5 \/%) cos {5 v/2+5s'In(£/2) +s'In (Qm) - 0/2} , Region 3 — 1
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u ~ 2Cy cos (Pg/2) cRe [U+ (s’,fl\/ﬂ) + ey (s',fl\/ﬂ)}

-1/2
(CVZ’y) cos [CQ’}//Q —s'In(¢/2)—s'In (2\/27) —7/4— @0/2} , Region 3 — 2
These must match to the limiting forms of the outer solutions from the preceding sections

u ~ 2CcRe [e‘i”/4U+ (—s', \/%Q + e”/‘*eiq’on‘r (—s', \/ﬂo]

€72 cos [y (1—€2/2) + k6 — ' (¢//2)] , € =0
in Region 1, and to

u ~ 2cRe [U+ (s', \/%5') + eyt (s’, \/ﬂfl)}

¢ cos [y (1+¢2/2) + k6 — s'In(¢/2) —m/d—81/2] , ¢ —0
in Region 2, where

§'In [tanh ((/2)] = (k — kp) ¢

kl —m/4—D1/2 =7 (p—1/2)
The functional behaviors are identical, but the phases only match if

s'In (2\/%) —®,/2=—y—ké+nm

—s'In (2\/27) —Dp/2=7+kd—D1/24+n'7
and the amplitudes match if

Co (27) /" cos (®f/2) = C (~1)"

’

Co (27) " cos (®9/2) = (—1)"

3.3.4 evenness conditions on scar

Because we have selected the even functions with respect to the normal to the scarred orbit, we must
have the normal derivatives vanish on the scar center

Re {U; (5/,0) + U (s, 0)] —=0=Re [e*”/‘*U; (5,0) + e/ Ao (s, 0)}
where the left side is the Region 2 form and the right side is the Region 1 form. If we write the real part as
one half the sum of the function and its conjugate, we see that these conditions imply
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Ul (5',0)

ei® — _
Ui (s',0)
and
oi®o — U4 (5,0)
Ui’ (s,0)
Using the properties of the parabolic cylinder functions and s = —s’

U-/‘r (s,7) = o~ (s+i3/2) /A1 (—is,re*”/‘l)

e—ifr/zLU/+ (5,0) = o~ (s+i5/2) /4 (—is,0) = — [e—ﬂ(s+i3/2)/4U/ (iS,O)r

_ 7671-5,/2 [efw(s’+i3/2)/4U/ (72‘5/’ O) * — 7671'5’/2 {efw(s’+i3/2)/4U/ (*’L‘S/, 0)} * — 767FSI/2U-T-/ (S/, 0)

Taking negative the ratio of this to its conjugate gives

g UL(s0)  UY(s0)

Thus
D) = —Dg + 2jm, j=0,+1,+2, ...
but the multiple of 27 does not seem to add anything and thus we take
b, = — D
The single remaining condition then determines s’ = —s given a value of the reflection phase ®3. Note
that this choice of reflection phase conjugate implies that the incoming wave from the outer region travels
toward the scarred orbit in one region, but on the other side of the focus travels away from the scarred

orbit. This construction of the transverse dependence has thus allowed a consistent solution between the
two regions to be found.

3.3.5 summary of conditions

The summary of conditions is now given. The first is the evenness across the scar

Re [U, (s/,0) + e~ U7 (s',0)] =0 = Re [e—”/‘*U'+ (=s',0) + /1P (—s, 0)}

(the two conditions are now consistent) determines s’ given ®g. From the mirror condition

O1/2 =kl —7(p—1/4)
where k, and s’ are related by
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s'In [tanh ((/2)] = (k — kp) ¢
This can also be written in terms of the stability exponents as

—s'=s=2(k—kp)¢/In <§J_F—Z> =2(k—Fky)L/In(Ay)
where
1 {+d 1 A +1 1 1
0'6 =1In [tanh <C0/2)] = —Eln (m) = —5111 <>\+—+1) = —5111 ()\Jr) = —Zln <A+)
and

VAL -1
d/l = v+
(VAL +1)
and where A2 = Ax, Ay A =1=A,A_ and (A\x+ +1) /2 = (£ +d) /R. The phase matching conditions can
be written as

& /2=m(n+n)

k6 = —v—s'In (2\/27) — ®y/2+ nw
and the amplitude conditions give the coefficients as

’

C=(-1)"™"

Co = (—1)" (29)"*sec (®o/2)
It appears like the phase ®;1/2 adds nothing since it must be a multiple of 7 and sign changes in the Region
2 solution due to this phase are accompanied by sign changes in C' and in the Region 1 solution (which thus
can be absorbed into the amplitude coefficients). Furthermore the factor sec ($(/2) only enters because we
failed to set the problem up with symmetrical factors exp (+®(/2) in the combinations of parabolic cylinder
functions.

3.3.6 final set of conditions

Thus if we set ®1 to zero we have the evenness condition across the scar orbit to determine the allowed
values of the separation constant s’ in terms of the chaotic phase ®g

Re [U/ (s/,0) + e U (s,0)] =0
We have the mirror conditions which connect the separation constant values and the resonant frequencies k

kpt =7 (p — 1/4)
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s'In [tanh ((/2)] = (k — kp) ¢
We also have the focal point shift §

kS = —— s'In (2\/27) — By/2 +nr
and the amplitude constants (here we note that if n and n’ are both even or odd C' is one, but if they have
opposite parities, then C' = —1 which cancels the phase shift ®;/2 then an odd multiple of )

Cc=1

Co = (=1)" (29)"* sec (94 /2)

The transcendental equation for s’ can be written as
» T(is'/2+1/4)

—i®y | ,—in3/dgis
¢t T (—is'/2 + 1/4)

or by use of the duplication theorem

e—i(IDO e—iﬂ3/4ﬁ
I'(—is’ + 1/2) {cosh (ws’/2) + isinh (7s'/2)}
To get a feel for the connection with ®y for small s’ we can expand as

=0

T (is'/2 +1/4)
T (—is'/2 + 1/4)

~

L9 (is' 2+ 1/4) (is'/2) + {8 (i5' 2+ 1/0)Y + 0/ (is' /2 +1/4)] (is'/2)° /2
L4 (—is! /24 1/4) (=i’ /2) + [{0 (=is' 2+ 1Y + 0/ (=is' 2+ 1/4)| (=is'/2)° /2

L9 (1/4) (i5'/2) + [{¥ (Y + ¢/ (1/)] is'/2)° /2
L4 (1/4) (=is'/2) + [{9 1/ + 0/ (1/9)] (=is'/2)* /2

~

~ [ (1/4) (' /2)] [1 = (1/4) (=is'/2) + {1 (1/4) (=i /2)}
~ Ui (1/4) = 557 {3 (1/4))?
where 1 (z) is the digamma function [31].

3.3.7 focal shift in simulations

In the calculations of the focal point shift we use
bl =7 (p — 1/4)
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{+d
SI = 2(kp — k)g/h'l (m)
and the focal point shift §

k(d+06)=—s'ln (2\/kd) — (o +7/4+5'In2) /24 (n+1/8)7
The transcendental equation for s’ can be written as

iwtnsinme) _ D082 1/4)
e - .
T (—is'/2+1/4)

giving

k(d+06) = —s'In (2Vkd) +arg D (1/4+is'/2) + (n+1/8) 7

3.3.8 focal shift examples

We now look at several examples of focal shift that are used in spatial comparisons between the theory
and the numerical simulations in the next section.

Note that if & — k,, and therefore s’ — 0, the chaotic phase becomes

67l¢0 + 67271’3/4 =0

or

Oy~ 3n/A+(2m—1)w
The focal shift in this case becomes

kpd ~ —kpd — ®o/2 + nw ~ —kpyd+ (n—m+1/8) 7
Thus in this case denoting the shift by g

kp(d+do) ~(n—m+1/8)
Note that we can set m =0

@0 = 77’(/4
kpdo ~ —kpd+ (n+1/8)m
Co = (=1)" (27)"* sec (®y/2)
Let us examine the reflected phases below when we do not have k =k, (or s’ = 0 and 9 = —7/4) to
see what the evenness conditions look like. The values of k£ near k, are found from the numerical simulations

of the eigenvalues in each of these examples. This wave number eigenvalue is used to determine s’. Next,
® is found from the transcendental equation; we first use the small s’ expansion to do this, followed by the
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exact transcendental equation relation. These values are then used to determine the shifted focal point
location. Because we used a phase matching condition for the focal point shift, there is a set of discrete
choices possible for this focal point location. We explore these and examine which one seems to agree with
the spatial distribution from the simulations. The choice that agrees with the numerical simulation is listed
and the comparison it gives to the spatial variations of these scars with the numerical eigenfunctions are
illustrated in the next section. It appears in these examples that the focal point selection is the first one to
the right of the geometrical location d = ¢+4/1 — R//.

Using the resonant frequency

k= (p—1/4)m
we find

(d+d0) /L~ (n+1/8)/(p—1/4)

n+1/8 n+1/8 n+1/8—(p—1/4)\/1—R/¢
= — = — 1 — =

e vz p—1/4

For p = 8 (note that d/¢ = 0.3015, and from the simulation f = 4.205 GHz, k = 0.9955k,, so that from

(k—kp)L=s,1In (f;;—g) we find s, = 0.3520, and from the expansion &y = —n/4 + 1.2441, whereas an

exact evaluation of the transcendental equation yields ®y = —m/4 + 1.0743) with varying n we have

(d+ 8g) /€ =~ 0.2742,0.4032,0.5323,0.6613
The approximate form of the transcendental equation

e L T/ 4 is (In2 41 (1/4))] = 0

with
v (1/2) =9 (1/4)+In2+7/2=—" —2In2
v =0.5772
gives
e 0 4 e/ — s (4 4+ 2In2 4 7/2)] m e P 4 eI/ 1 — is'3.5343]
~ i | omim3/4—is'3.5343 _ ()
and thus

by =-—7m/4+5 (Y +2In2+7/2)
Therefore plugging this expansion into the actual shift formula
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k(d+9d)=—s 111(2\/7) ®y/2 4+ nm

kpl =7 (p— 1/4)

s =2(k, — k) {/In (%)

gives (we ignore terms of order (k — k) 9)

kp (d+8) ~ (ky — k) d — [m (4 Qkpd> + (Y +7/2) /2} 2 (ky — k) ¢/ In <§f—j> +(n+1/8)7

d {+d k, —k {+d n+1/8
d+ 6 [2111(4 2kpd>+'y +7/2 €1n<€_d>}( k) )€/1n<€—d)+p—1/4€

or

d {+d n—|—1/8
d+5~—{1n(4 2kpd>+27+7r/4—2£ <€ d)] Tk + o1

kp (d+6) ~ — [m (4 2k,,d) NEWES,

d {+d
— —1In
2 20

m)] s’ +m(n+1/8)

d L+d
2¢

kpéw—{ln(zl 2k:pd)+%’y'+7r/4——l m)} s+m(n+1/8) —nm(p—1/4)d/¢

Alternatively if we use the exact form

I (—is'/2+1/4)

1
Oy/2 =—-7/8— §slln2—argf(1/4+is’/2)

2argl’ (1/4 +1is'/2) =In [H]

kp(d+08) ~ (k, —k)d—s'In(2/7) +argl (1/4+1is'/2) + (n+1/8) 7

(d+5)/€~%[s'{%ln<ﬁ+3) 1n(2\/_)}+argf 1/4+w/2)] %
Thus

—s'In (2\/%) — By/2 = —0.717 — 0.622

and
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(d+ 6) /¢ ~ 0.2192,0.3482, 0.4773,0.6063

d+ 9§ =~ 0.06028,0.09576%,0.1313,0.1667
or using the exact transcendental equation values for the phase

(d+ ) /0 ~ 0.2227,0.3517, 0.4808, 0.6098

d+ 6 =~ 0.06124,0.09672*,0.1322,0.16769
The entry with the asterisk corresponding to n = 3 is the one immediately to the right of the geometric
focal point and the one used in the simulation comparison. Note that the coefficient of the Region 3 solution
has a factor of (—1)" = —1 for all cases where n is odd.

The second example p =9 (f = 4.768 GHz, k = 0.9997k, and s’ = 0.02641, &y = —7/4 + 0.09336, and
exact evaluation of the transcendental equation yields ®y = —/4 4 0.09321)

(d+60) [t~ (n+1/8)/(p—1/4)

(d+ 6p) /€ =~ 0.24286,0.35714,0.47143,0.58571

(d+6) /¢ ~ 0.2385,0.35275,0.46704, 0.57635

d+ 4 =~ 0.06558,0.097006*,0.12844, 0.1585
or using the exact transcendental equation values for the phase

(d+ 0) /¢ ~ 0.2385,0.35275, 0.46704, 0.57635
d + & =~ 0.06558, 0.097006*, 0.12844, 0.1585

where n = 3 for the solution with the asterisk. The simulation yielded a focus at 0.0986 m.

The third example p = 10 (f = 5.276 GHz, k = 0.99276k, and s’ = 0.71313, &y = —7/4 + 2.5204, and
exact evaluation of the transcendental equation yields ®, = —n/4 + 1.5672, the error being caused by the
large size of s’ in this case) and

(d+ 6p) /€ = 0.21795,0.32051, 0.42308, 0.52564

(d+6) /€ ~ 0.1267,0.2293,0.33185,0.4344

d + 0 ~ 0.03485,0.06305,0.09126*,0.1195
or using the the exact transcendental equation values for the phase

112



(d+ 6) /€ ~ 0.1423,0.24484, 0.34741,0.4500

d+ 6~ 0.03913,0.06733,0.09554, 0.12374
where n = 4 for the solution with the asterisk. Another scar associated with p = 10 is at k£ > k,. This has
(f = 5.3307 GHz, k = 1.003048k, and s’ = —0.3000, &y = —7/4 — 1.06024, and exact evaluation of the
transcendental equation yields &g = —m/4 — 0.93965)

(d+ 6p) /€ = 0.21795,0.32051, 0.42308, 0.52564

(d+9) /¢~ 0.2563,0.3589,0.46146, 0.5640

d+ 6 ~ 0.07049, 0.09869",0.1269, 0.1551
or using the the exact transcendental equation values for the phase

(d+0) /€ ~ 0.25436, 0.35692, 0.4595, 0.5620

d+ 6 ~ 0.06995,0.09815%,0.12636, 0.1546
where n = 3 for the solution with the asterisk.

The fourth example p = 11 (f = 5.843 GHz, k = 0.9971k, and s’ = 0.3148, &y = —7/4 + 1.1126, and
exact evaluation of the transcendental equation yields ®; = —m/4 4+ 0.95695)
(d+ d0) /¢ ~ 0.1977,0.2907,0.3837,0.4767

(d+9) /¢~ 0.1607,0.2537,0.3467, 0.4397

d + § =~ 0.04420,0.06977,0.09535",0.1209
or using the exact transcendental equation values for the phase

(d+0) /¢ ~ 0.1630, 0.2560, 0.3490, 0.4420
d+ 6 ~ 0.04483,0.07041, 0.095982*,0.12156
where n = 4 for the solution with the asterisk.
The fifth example p = 12 (f = 6.406 GHz, k = 1.00027k, and s’ = —0.0320, &y = —7r/4 — 0.1131, and

exact evaluation of the transcendental equation yields ®, = —7/4 — 0.1139)

(d+ dp) /€ =~ 0.18085,0.26596, 0.35106, 0.43617
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(d+ 6) /€ ~ 0.1843,0.2694, 0.3545, 0.4414

d+ 6 =~ 0.0507,0.0741,0.09750%,0.1214
where n = 4 for the solution with the asterisk.

The sixth example p = 13 (f = 6.914 GHz, k = 0.994858k, and s’ = 0.66188, & = —m/4 + 2.3393, and
exact evaluation of the transcendental equation yields ®y = —7/4 4+ 1.523898)

(d+ dp) /¢ =~ 0.16666, 0.245098, 0.32353, 0.40196, 0.48039, 0.558823
and using the the exact transcendental equation values for the phase

(d+6) /€~ 0.1099,0.1883,0.26674, 0.34517,0.4236, 0.50204
d+ ¢ ~ 0.0302,0.05178,0.07335, 0.09492*, 0.1165, 0.1381
where n = 5 for the solution with the asterisk.
The seventh example p = 14 (f = 7.482 GHz, k = 0.99829k, and s’ = 0.23731, & = —n/4 + 0.83872,
and exact evaluation of the transcendental equation yields ®g = —m/4 4 0.7749667)
(d+ d0) /€ =~ 0.15454,0.22727,0.300000, 0.37272, 0.445454, 0.51818

(d+ 6) /¢ ~ 0.13207,0.2048, 0.27753, 0.35025, 0.42298, 0.4957

d+ § =~ 0.03632,0.05632,0.07632,0.09632*,0.11632, 0.13632
and using the the exact transcendental equation values for the phase

(d+9) /¢~ 0.1328,0.2055, 0.2783, 0.3510, 0.4237, 0.4964
d+ d ~ 0.03652,0.05652,0.07652, 0.09652*, 0.1165, 0.1365
where n = 5 for the solution with the asterisk.
The eighth example p = 15 (f = 8.042 GHz, k = 1.000262k, and s’ = —0.039085, &, = —m/4—0.138137,
and exact evaluation of the transcendental equation yields ®, = —m/4 — 0.13789)
(d+ dp) /¢ ~ 0.144068,0.211864,0.279661, 0.347458,0.415254, 0.48305

(d+6) /¢ ~ 0.14755,0.21534, 0.28314, 0.35094, 0.41873, 0.4865

d+ ¢ ~ 0.04057,0.05922, 0.077864, 0.096508",0.115152,0.13379
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where n = 5 for the solution with the asterisk.
The ninth example p = 16 (f = 8.557 GHz, k = 0.996742k, and s’ = 0.517994, &y = —7/4 + 1.83075,

and exact evaluation of the transcendental equation yields &g = —7/4 + 1.35735)

(d+ dp) /€ = 0.198412,0.261905, 0.325397, 0.388888, 0.452381,0.515873
and using the exact transcendental equation values for the phase

(d+6) /¢ ~ 0.15966,0.22316,0.2866,0.35013,0.41363, 0.47713

d+ ¢ ~ 0.04391,0.06137,0.07883,0.09629,0.11375,0.1312
where n = 6 for the solution with the asterisk.
The tenth example p = 17 (f = 9.051 GHz, k = 0.991342k, and s’ = 1.46402, &g = —7/4 + 5.17423,
and exact evaluation of the transcendental equation yields ®, = —7/4 + 1.65189)
(d+ o) /€ =~ 0.30597,0.365672, 0.425373, 0.4850746, 0.544776

(d+9) /¢~ 0.1894,0.24913, 0.30883, 0.36853, 0.42823

d + 0 = 0.05209,0.06851,0.08493,0.101346*,0.11776
or using the the exact transcendental equation values for the phase

(d+9) /¢ ~ 0.222895,0.28260, 0.342298, 0.402000, 0.4617

d+ 6~ 0.0613,0.07771,0.094132*,0.11055, 0.126968
where n = 7 for the solution with the asterisk.

Another p = 17 case has k > k,. Thus we have (f = 9.1735 GHz, k = 1.00476k, and s’ = —0.804868,
Oy = —7/4 — 2.844647, and exact evaluation of the transcendental equation yields &, = —7/4 — 1.62756)

(d+ d9) /£ =~ 0.186567,0.246269, 0.30597
and using the the exact transcendental equation values for the phase

(d+9) /¢~ 0.23887,0.29857,0.358276
d+ ¢ ~ 0.06567,0.08211*,0.098526

where n = 4 for the solution with the asterisk.

The eleventh example p = 18 (f = 9.627 GHz, k = 0.9950263k, and s’ = 0.8913, &y = —n/4 + 3.1501,
and exact evaluation of the transcendental equation yields ®y = —7/4 4+ 1.66713)
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(d+ do) /¢ =~ 0.2887324,0.3450704, 0.4014085, 0.4577465, 0.5140845
and using the the exact transcendental equation values for the phase

(d+6) /¢ ~ 0.2346,0.29095, 0.3473, 0.4036, 0.45996

d+ 6 ~ 0.064517,0.08001, 0.09550%,0.1110, 0.1265
where n = 7 for the solution with the asterisk.

Thus we see in all but one of these cases (where the solution was almost exactly the geometrical focus)
that the first choice outside the geometrical point is the one that agrees well with the simulation. The
generality of this selection is not clear (other stadium geometries). Higher order terms in the solution (as
discussed in the Appendix) may allow the amplitude to play a role in the choice.

3.4 Field Comparisons On Axis

The field on axis is now compared. The field on axis, in Region 1

s —1/4 1 d—z .
up ~ cae” ™ 2/2d (d? — 2?) Cos {kx—s’iln (d+x>] , Region 1

~ coe” ™ 2V/2d (d* — x2)71/4 cos (kpz) , Region 1
and in Region 2

- 1 —d
Up ~ czx/ﬁ(f - d2) Y4 cos {kx - 5’5111 (i +d) - 7r/4} , Region 2

~ coV2d (2% — d2)_1/4 cos (ko — 7/4) , Region 2
where we have used

AT

U7 (—,0)
(+d
s’ln (m) :2(161;—]{,‘)6
d= 01— R/l

bl =7 (p — 1/4)
Near the focus

up = CocRe [U+ (s’,f’\/ﬂ) +e " Pous (%fk/ﬂ)}
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Re [67”/4U+ (—s',C\/ﬂ) +eim/Aeitoyy (—s’,g\/ﬂ)}

where
z=dcoshCcos¢ ~d(1+¢%/2) (1—-&7%/2) ~d(1+¢/2—¢7)2)

y =dsinh{sing’ ~ d¢¢’ (1+¢?/6) (1 —€7/6) ~dCe' (1+¢7/6 —£7/6)
The coefficient is found by using

eiq)l) —_ w
U7 (5,0)
and

1+cos(®g) Im[U} (5,0)]
i )
where the plus sign was selected by taking the limiting case s’ = 0 and ®; = —7/4 with [31]

cos (9g/2) = +

efﬂ(5’+i3/2)/4\/7__r

U-/i,- (S/, 0) _ 6771'(5 +i3/2)/4Ul (*’L'S/,O) = 72—1’5’/2—1/41“ (—is’/? n 1/4)

and
—i7r3/821/4ﬁ
UL (0,0) =S £ VT
OO =T
so that
Im (U’ (0,0
—m[ + (0,0)] = cos (/8)
U (0,0)]
Thus

U’ (s,0)|

Co = (—1)" (27) " sec (Bo/2) = (—1)" (2m)/* LTEE O

b= ()" () see (80/2) = (-1)" () T
T (is'/2 +1/4)|

Im {2is//267i377/81" (is'/2 + 1/4)}

Now from the definition of the new amplitude co in Regions 1 and 2

= —(=1)" 2y

2 = V2cRe [Us (5,0) + e U7 (5, 0)]

epe=™ /2 — \/2cRe [67”/4U+ (=8',0) + ™4 oUs (—5, 0)}
Thus in Region 3 we can write
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[T (is' /2 + 1/4)

B n 1/4
up (,0) = — (=17 (v/2)" 1~ {20572 B73T (is' /2 + 1/4) }

T (is' /2 + 1/4)|

1\ 1/4
=—(=1)" (/2 Im{zis’/2e—i37r/8]_“(is//2+1/4)}

ol (/) R )

(r2(x—-d—-0)/d
for x > d+ § and

I (is'/2+ 1/4)]

_ n 1/4
up (2,0) = — (—=1)" (v/2) Tm {2072~ 37/ (is' /2 + 1/4) }

cae™™ /2 Re {U+( g\/_) U*, vs (s ff)}

T (is'/2 4+ 1/4)|

Y 1/4
=—(=1)"(v/2) T {2%/2¢=i37/8T (is' /2 + 1/4)}

Cngqrs’/Q Re [U+ ( 5 \/_) +21S 1#/4% ( § \/_)]

& ~\2(d+6—2)/d
for x < d + 9. Note that the square root relation between the elliptical coordinates and the x coordinate
means that the derivative (or slope) in z is not zero at the focus! These distributions are compared to the
scarred eigenfunctions found from numerical simulations of the stadium cavity. Because of the random
variable v involved in the amplitude coefficient ¢, and hence in co, we adjusted the amplitude ¢y of the scar
distribution to match the simulation at one point (at one of the peaks, usually on the right side, and not at
the focus).

Figure 29 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 8 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k = k, or s/ = 0 in the sinusoidal distributions, not in the amplitudes, as given in the approximate
expressions at the top of this subsection). The tan curve is the Region 3 focal point region, shifted by the
theoretical focal point shift with n = 3. The electric field intensity plot in Figure 26 corresponds to this
scar.

118



10 p=8
\ f = 4.205 GHz
0 / ‘
S < /
-10 = k and kp
— Eiger

kp only
Focal Region

-20

0.00 0.05 0.10 0.15 0.20 0.25 0.30
x (m)

Figure 29. Comparison between simulation of eigenfunction (red curve) and p = 8 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.

Figure 30 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 9 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ =0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 3. Figure 31 shows the corresponding
electric field intensity.
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Figure 30. Comparison between simulation of eigenfunction (red curve) and p = 9 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.

Figure 32 shows a simplified comparison, with the curves in truncated to their regions of validity, of the
simulation and p = 9 scar theory.

Figure 33 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 10 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 4.

Figure 34 shows a comparison between the numerical simulation of another eigenfunction (red curve)
and p = 10 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the
same with k = k, or s = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the
Region 3 focal point region, shifted by the theoretical focal point shift with n = 3. Figure 35 shows the
corresponding electric field intensity.

Figure 36 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 11 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k = k,, or s = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 4.

Figure 37 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 12 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s/ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region
3 focal point region, shifted by the theoretical focal point shift with n = 4. The dashed tan curve is the
unshifted Region 3 focal point spatial distribution, which is misaligned with the Region 1 and Region 2
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Figure 31. Bouncing ball mode along horizontal axis in stadium cavity at 4.768 GHz. The geometry has
L =0.55m and R =0.25 m.
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Case where k ~ kp at scar
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Figure 32. Black and white simplified comparison between simulation of eigenfunction (diamonds) and p = 9

scar. The solid dot curves are Region 1 and Region 2 formulas. The open dot curve is the Region 3 focal
point region, shifted by the theoretical focal point shift.
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Figure 33. Comparison between simulation of eigenfunction (red curve) and p = 10 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 34. Comparison between simulation of another eigenfunction (red curve) and p = 10 scar. The

black curves are Region 1 and Region 2 formulas (the green curves are the same with £ = &, in the cosine
distributions). The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 35. Bouncing ball mode along horizontal axis in stadium cavity at 5.3307 GHz. The geometry has
L =0.55m and R =0.25 m.
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Figure 36. Comparison between simulation of eigenfunction (red curve) and p = 11 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 37. Comparison between simulation of eigenfunction (red curve) and p = 12 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.

distributions.

Figure 38 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 13 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 5. Figure 39 shows the corresponding
electric field intensity.

Figure 40 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 14 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 5.

Figure 41 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 15 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 5.

Figure 42 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 16 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k =k, or s’ = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3

focal point region, shifted by the theoretical focal point shift with n = 6.

Figure 43 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
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Figure 38. Comparison between simulation of eigenfunction (red curve) and p = 13 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 39. Bouncing ball mode along horizontal axis in stadium cavity at 6.9674 GHz. The geometry has
L =0.55m and R =0.25 m.
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Figure 40. Comparison between simulation of eigenfunction (red curve) and p = 14 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 41. Comparison between simulation of eigenfunction (red curve) and p = 15 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 42. Comparison between simulation of eigenfunction (red curve) and p = 16 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 43. Comparison between simulation of eigenfunction (red curve) and p = 17 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.

p = 17 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k = k,, or s = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 7. Figure 44 shows the corresponding
electric field intensity.

Figure 45 shows a simplified comparison, with the curves truncated to their regions of validity, of the
simulation and p = 17 scar theory.

Figure 46 shows a comparison between the numerical simulation of another eigenfunction (red curve)
and p = 17 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the
same with k = k, or s = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the
Region 3 focal point region, shifted by the theoretical focal point shift with n = 4. Figure 47 shows the
corresponding electric field intensity.

Figure 48 shows a comparison between the numerical simulation of the eigenfunction (red curve) and
p = 18 scar theory. The black curves are Region 1 and Region 2 formulas (the green curves are the same
with k = k,, or s = 0 in the sinusoidal distributions, not in the amplitudes). The tan curve is the Region 3
focal point region, shifted by the theoretical focal point shift with n = 7.

From examination of these comparisons we see that the scar theory produces quite good agreement
with the simulations for the form of the spatial distributions, including the focal point regions. From
examination of the field intensity plots and the corresponding values of s = —s’ in the preceding section, for
each of the p and k values, we see that the region of scar intensity is between foci (Region 1) when s > 0,
but is outside the foci (Region 2) when s < 0. The behavior between foci is consistent with the behavior
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Figure 44. Bouncing ball mode along horizontal axis in stadium cavity at 9.0707 GHz. The geometry has
L =0.55m and R =0.25 m.
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Figure 45. Black and white simplified comparison between simulation of eigenfunction (diamonds) and

p = 17 scar. The solid dot curves are Region 1 and Region 2 formulas. The open dot curve is the Region 3
focal point region, shifted by the theoretical focal point shift.
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Figure 46. Comparison between simulation of another eigenfunction (red curve) and p = 17 scar. The

black curves are Region 1 and Region 2 formulas (the green curves are the same with £ = &, in the cosine
distributions). The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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Figure 47. Bouncing ball mode along horizontal axis in stadium cavity at 9.1735 GHz. The geometry has
L =0.55m and R =0.25 m.
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Figure 48. Comparison between simulation of eigenfunction (red curve) and p = 18 scar. The black curves

are Region 1 and Region 2 formulas (the green curves are the same with k& = k,, in the cosine distributions).
The tan curve is the Region 3 focal point region, shifted by the theoretical focal point shift.
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in the bow tie cavity where the intensity on the orbit decays exponentially when s, < 0. The behavior in
Region 1 makes sense for k¢ < k,¢ since one would expect a slightly longer orbital length would be required
to achieve resonance along the elliptical path.

3.4.1 distribution of shifts

Let us attempt to find a distribution function for the shifts in focal point position. The normalized
shift function, without corrections (s’ = 0), is

n+1/8 4 1/8 n+1/8—(p—1/4)\/1—RJI
o/t = g —d/t =~ VI= R = —n >0

If we define

n.=(p—1/4)d/t —1/8
then

o/t =(n—nc)/(p—1/4) = (n—nc)/ (kpl/T)
Now suppose we take n — n. to be uniformly distributed between 0 and 1. Then k,00/7 will be distributed
the same way. If we consider the mean value

kp <60> /7T ~ 1/2
we note that for the range p = 8 — 36 we might expect (using p = 20 as an average) (0g) /¢ =~ 1/ (2p —1/2) —
0.0253 or (d 4 dp) = 0.090 m with a maximum of about 0.097 m.

The correction resulting from the phase is

ey ~ {%m (ﬁJFZ) ln(Q\/_)]S +argT (1/4 +is'/2) + 7 (n —ne)

and for small s’

v +7/4—

kp5~—{1n(4 2kpd)+1 @ (L1 s'+m(n—ne)

2 26 {—d
The value of the first term is —3.26 for s’ = 1 and p = 20 (—4.18 from the second expression). This
correction for nonzero s’ just forces a larger value of n to be chosen for the above geometrical focal point
criterion. Figure 49 shows the cumulative distribution for 8 < p < 36 (orange curve) and —5 < s < 5 with
the correction in s’ (blue curves). The preceding uniform distribution seems to fit the rising portion of the
distribution in the figure (0.083 m to 0.097 m) quite well. Note that this figure displays a distribution
for a uniform set of choices in p. For a wide range of p, the fact that the density of modes grows linearly
with frequency in the two-dimensional cavity, weights the distribution toward higher frequencies and higher
values of p.

In an attempt to automatically locate the shifted focal locations in the simulations (using all of the
eigenfunctions) of the stadium cavity, we calculated the elliptical projection operator (to be discussed in
later sections) on the scar with the focal location variable. This projection operator is defined using only
Regions 1 and 2. We then maximized its mean square value by varying the focus location. Figure 50 shows
the results as a function of s, where the size of the symbols are weighted by the value of the maximum
projection operator. The central horizontal clustering seems to populate the expected locations. The values
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Figure 49. Cumulative distribution of focal point shifts for 8 < p < 36 (and —5 < s < 5 for blue curve which

includes correction).
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Figure 50. An attempt at locating the shifted focal point locations by maximizing the elliptic projection

operator as a function of d..

below this level have small values and may not represent scarred eigenfunctions. The scattering of values
with larger positions above a gap from the horizontal cluster may also not represent scarred eigenfunctions.
We have investigated a few near s = 0 and observed that some are not scarred eigenfunctions but others
have broad projection operator maxima, for which visual observation would put the focal point near the
horizontal clustering, but the absolute peak discerned by the software was larger.

3.4.2 focal continuity condition when s is zero

It is instructive to let s = 0 and look at the effect of the focal shift on the u, (z,0) in Regions 1 and 2.
In this case we have k£ =k, and

kp(d+do) =(n+1/8)7
The pth component in Region 1 is

20I' (1/4 -
y Va0 cos () Tegion 1

VAU (0,0)] /7Aln (%)

and in Region 2 is
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4y~ 20T (1/4) Va (:L,Q B d2)—1/4 cos (k,x — m/4) , Region 2

YUY (0,0)] y[rAm (£4)

We note that

cos (kpx) = cos (kpx —m/4) , x =d+ do
Thus the phase continuity condition actually extends to zero distance from the shifted focal point. In other
words the asymptotic forms from the outer two regions are continuous at this point.

3.5 Normalization of Eigenfunctions

To apply the method used for normalization by Antonsen [30] to the stadium cavity we again use the
energy theorem [33]

|=xH*"+E"x— | = H-H E-E|\—-—-J"—E"-
V(awx—+—xaw Z[aw__+8w__ ! B
Integrating over the cavity volume and using the divergence theorem

j{ a—EXﬂ*+E*X6—ﬂ ‘Eds:i/(ﬂoﬂ'ﬂ*+soﬂ'ﬂ*)dv—/ a_Ei*_’_E*% av
S 0 0 14 Vv

w w ow

Using n x £ = 0 on the walls we find

- ow ow
OE N _ e (o PEN e 2
ﬂ(w ﬁ)—ﬁ-(ﬂxaw>—ﬂ 8w(n><E)—

Then

Noting that

poll - 1" = 25 (V X B) - (V x E)
and here that

E=ue,

J=J.e,

so that
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VXxE=Vx(ue,) =Vuxe,

and
ok - E* =0 |ul?
H-H* =2 vy
.u’(]— = ka
e, x (Vuxe,)=Vu
so that
5_0 2 2 2 _ @ * *an
i3 /V (|Vu\ + k* ul )dV—/V <8wJZ +u En av
Now using
|Vu|* = Vu - Vu* =V - (u*Vu) — u*'Viu =V - (u*Vau) + K [ul?
gives

1‘250/ |u|2dV:/ (g—qu+u*anz>dV
%4 Vv (09 (09

Now we take a single pth component for the current on axis

i [(Oul  Ouy
J, = p_ 27§ -0
w,uo(an ﬁn) ).y
and (we take u to be continuous at y = 0)

) 9 1 Ou 1 8u;‘; Ou,, - L 01 8u;‘; u,,
=2 |- Epde 2 T (e )
ZZEO/AW ds e [ e ( T o +u o0\ o -

Taking the eigenfunction as real and assuming the integrals along the scar produce approximate
orthogonality as discussed in the Appendix (we take u, to be continuous at y = 0)

2 0 1 Ouy 1 ou,t 78u; o 1 (out 78u;
2EO/A|U‘ dS_MO/C[ Jw w \ On on +up0ww on on de

Now in the elliptic system the metric coefficients are

he = he = dy/sinh? ¢ + cos2 ¢

and thus

oulr  Ou; our  Ou-
260/ lul® dS = L (Oup L (Oup Oy +upil Up 9 kdg
A Ho Je, Ow w \ 0¢ ¢ Oww \ O ¢ h¢
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1 ou, 1 (Ouf  Ou, 9 1 (Ouf  Ou, \] he
- ——— === |t | = — = || =4
Ho Joy Oow w \ 0¢ o0& Oww \ 0 o0& he
/ lul>ds =1

A

2T Qu, 1 (Ouf  Ouy 9 1 [Oul Ouj
— _Zr_- (P _ P =P _ P
o= [ s () s (5 )]

o Qu,1 [Ouf Ouy; o 1 [Ouf Ouy
AR YT PR YT e
0 Ow w \ 9 o0& OJww \ 9¢ 0¢

3.5.1 carrying out the integration

Setting

gives

The solution in Region 1 is

Up = 2{}/&90’_;2 cos (ysin& — so)
= 21&(377')/ cos (yeos&' —so) , & =m/2—¢

sin &
where

¥ (s,7) = cRe [e*”/‘LUJr (s,7)+ e”/4ei%Uj (S,T)]

13 d ' w/2 de’ ,
o :/0 Cofﬁ = arcsinh (tan &) = // Kgf/ = —In{tan (¢'/2)}

T=v27C
Uy (s,7) = e~ T(sHi/2)/47y (—is,Te_i”/4>
bl =7 (p— 1/4)
The solution in Region 2 is

2
up = ¥ (s',7") cos (yeosh ¢ — s'o’ — 7 /4)

v/sinh ¢

where
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¥ (s',7') = cRe [Us (=s,7') + 7"V} (=5,7)]
Uy (s,7) = e ™6Hi/D/4y (—is,Te’”/‘l)
T = V¢
¢ =+r/2-¢

25’0, = 2s'In [tanh (¢ /2)] = (k — kp) L

¢ d
o = /Oo sinﬁ( = In [tanh (¢/2)]

The solution in Region 3 is

uy = (-1)" (29! %Re (U, (s vm) + v (5.6 V)]

Re [e_i”/4U+ (—5',@“\/%) + e“r/4€i<p°Ujkr (—s’,@\/ﬂ)}

Here we apply the normalization with only Region 1 and Region 2 solutions separated by the coordinate
value ¢ = 7/2 (¢’ = 0) and cosh ¢, = ¢/d. The Appendix discusses the Region 3 contribution. To carry out
the integration we introduce a slight displacement A on either side of the focus, so that the integration
range is £ =0 to

¢ = Arcsin (1 — A/d) ~ g — 2A/d

and from ¢ equal to

¢ = Arccosh (1 + A/d) = +/2A/d
to (p. Then in Region 1 we have

aU+ uy, —4T i % *
8—5 - 8—5 = 4c\/27Re {e MU (s,7) + e ™Ay (3,7)}

Now taking the limit as 7 — 0

1

sin &’

cos (’y cos& — SO’)

oulf  Ouy , . .
( auCp — ng ) x Re [(3_”/4U’+ (5,0) + ™A (s, O)] —0
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or

U’ (s,0)

i®y _
< TV (5,0

- - =4c— - —imw /477! . . B
Ow w < o¢ aC > 4Cw\/2’y En Im [e Uy (3,0)} COsgcos (ysin€ — so0)
1 Im[e /U (s,0)]
c
Veose U (s, 0)f

up =2 cos (ysin& — so)

In Region 2 we have

8’(1,:'; 0“’; 4 ! / —id */ / /
T - o = /2y sinhCCRe [U+ (=s,7") + e "*oUy (—5,7)] cos (ycosh ¢ + so’ — 7/4)
out  Ou; -
( 52’7 — 81? > x Re [U} (=s,0) + e U} (—5,0)] — 0

or

L 0%0
N ’y\/sinhg w Ow

out  Ous
01 ( Up Up) Im U, (—s,0)] cos (ycosh ¢ + so’ — 7/4)

dww \ 9 o¢
2 Im [U, (—s,0)] ‘ ‘ ,
Up = mc A (—5,0)}2 cos (ycosh ¢ + so’ — 7w /4)

where we have used the Wronskian

U.Uy —UU; =i
Now assembling the normalization condition

o, 1 2 7i7r/4U/ ’0 T/2—1/2A/d
50u0:16c2\/27u060 o [e +(S )]/ cos? (vysiné — so) ds

k2 U, (3,0)|2 0 cos¢

d® Im® U], (—s,0)] [0 d¢
—16¢2\/2vu so—+—/ cos? (ycosh ¢ + so’ — m/4) —
ok | (—s,0)° Jyzaza ( / )smhc

Transforming the first integral to &

0%, Im® [e~"™/*U, (5,0)] [/ '

oy = 1602\/27u050—0 o [e + (s )] cos? (’y cos¢& — 50) 'd§
k2 / 2 !

|UJr (570)} V2A/d sin &
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d®y Im® [U, (—s,0)] [0 d
—1602\/27/%60—20L<82)] / cos? (ycosh ¢ + so’ — m/4) — ¢
k2 U (~-s,0)" Jy2asa sinh ¢
Transforming to o and ¢/’ = —¢”, with cos¢’ = tanh o and cosh ( = — coth o’ = cotho” and d¢’/sin¢’ = do
and d¢/sinh ¢ = do’ gives

D, Im? [e—i‘n'/4U/ (S,O)] ln(w?d/A)
= —16¢*\/2 — + /
Eolo ¢ \/7’)’,%50 2 ’U_ﬂ_ (S,OMQ )

cos? (ytanho — so) do
0®, Im? [U', (—s,0)] / G

0k2 |U_/~_ (_3’0)|2 71n(«/2d/A)
where o = In {tanh (¢o/2)} = 41 (52) <0.

+16¢% /271080 cos? (ycotho” + so” — 7 /4) do”

Noting that

U—/i- (*S/, 0) _ 67TS//27i37r/4U_t/ (S/, 0)
we see that

Im? [U, (—s,0)] _ Im? [e~""/4U7_ (s,0)]
U7 (~5.0)° U7 (5,0)|

SO

0%, Im? [e= /AU _(s,0
sty = 16¢°\/2ygc0 55 [ + (5,0

U (5.0)/°
ln(q/Qd/A) —ol
- / cos? (ytanh o — so) do + / cos? (ycotho” + so” — 7 /4) do”
0 71n(«/2d/A)

If we average over the rapidly varying sinusoids
0%, Im? [67“’/4[]/ (s,0)]
2 + 15
oo = —8¢"\/ 2700 575 3
O [ (5,0)]

This evaluation made use of a principal value interpretation of the energy theorem integration (in and &)
at the focal point. The Appendix discusses how the Region 3 contribution leads to this interpretation.

/
Oo

We now adopt Antonsen’s conjecture [30] that

-1
5  Ald®g
v = — | ==
8 | dk?
is the square of a unit Gaussian random variable and that v is a Gaussian random variable with zero mean
and unit variance.

147



3.6 Trigonometric Projection Operator

This section considers simplified definitions of the projection operator, motivated by the s — 0 limit of
the preceding scar functions.

3.6.1 no amplitude factors

Suppose we use the even trigonometric form

u;"; =ccos (kpx) , |z|<d

= ccos (kp |z| — 7/4)
motivated by the s — 0 limit of the high frequency scar functions in the preceding sections (as well as

|—1/4)

neglecting the amplitude factors ’1 — 22 /d? , to define a projection operator

d ¢
VpT = 2/ cos (kpx) u (x,0) dx + Q/d cos (kpx —m/4) u(z,0) dz

0
First we insert only the scarred component

£

d
ij; = 2/0 up (2, 0) cos (kpx) do + Q/d up (z,0) cos (kpx — w/4) dz
where in Region 1

1 Im [67”/4U_’~_ (s,0)]

up (2,0) ~ 2\/mc LG 0)|2 cos (ysin& — so)
2 _
~ Y V2d (d* — z?) Y4 cos [kpz + p1 (z)] , Region 1

@)Y U (=5/,0)] /A (£4)

and in Region 2

2 Im [U-/s— (s’,O)]

!/
up (2,0) ~ \/WC o (5’,0)|2 cos (ycosh ¢ — s'o’ — 7 /4)

2 _
~ Y V2d (z® — d?) Y4 cos [kpz — m/4 + p2 (z)] , Region 2

(@) U7 (5,0)] \JAm (£4)

with

Ujr (—SI, 0) _ eﬂ's’/2—i37r/4Uj;/ (S/, 0)
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V2v U}, (s,0)] V20 U, (s',0)]

(27)1/4 Im [e=i7/4U (5,0)] 1/ Aln (”d) o (27)1/4 Im [UY (s',0)] {/Aln (ZH)
and
' (%) =2k, — k) !
p1(z) = ls’ {1n (Zji) —1In (ﬁt—j) (x/é)}
pa () = ls’ {1n (i J_r ;l) —In (%) (x/é)}
Thus
ij]; =2 2v \/Q_d/d (d* — x2)_1/4 cos [kpx + p1 (x)] cos (kpx) dx
2 UL (5, 0)] /Al (£4)
+2 2v \/_/ M cos [kpx — m/4 + pa (z)] cos (kpx — 7/4) dz
(@) U7 (5,0)] \JAm (£4)
_ 9 2v
@) U7 (=o', 0) Aln(”d)
\/ﬁ/od (d* — xQ)_1/4 {cos® (k) cos (p1 (z)) — sin (kpz) cos (kyx) sin (p (z))} do
+2 20
UL (s, 0)] ([ Aln (£4)
\/_/ 4 {cos® (kyz — m/4) cos (ps (z)) — cos (kpz — m/4) sin (k,z — 7/4) sin (ps (z)) } dz

Now if we average over the rapidly varying sinusoids

2v
4\ / £4d
v) |U+<—870)’ Aln(efd)

d
VP~ \/ﬁ/ (d* — x2)71/4 cos (p1 (x)) dz
0
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i 2v @/Z (;EQ — d2)_1/4 cos (p2 (z)) dx
d

(@)U (5,0)] JAm (£4)

o v <2f>7 A (74) ot (125) o (5) o
B [ () (2

(@) U7 (5,0)] A (£4)

3.6.2 no amplitude factors and elimination of phase shifts

If we drop the phase shifts p; () and ps (x) in the integrands of the preceding results we find

20v/2d
(29)"/* | [ A (£4)

The first integral is

T _
Vpp_

1 ! —~1/4 1 ¢/d —-1/4
A (—s’,0)|/0 (1—2?) clx—l——|Ujr (S/’0)|/1 (*—1) dx

' on-1/4 , 1 ' —1/4 712_P(3/4)F(1/2)_23/273/2
e =g [ e - SRS -

A~ 1.19814 ~ 0.76275 (7/2)
The second integral can be evaluated by letting 22 = u, followed by the transformations 1 — 1/u = v or
u=1/(1-v),u—1=uv/(1-v)and du=dv/ (1 —v)*

2/d 3 1 (¢/d)? 1 1—(d/0)?
(z* —1) Yy = = (u— 1)_1/4 w2 du = = (1- v)_5/4 v Y4
1 2 1 2 0

1 3 1

where B, (a,b) is the incomplete beta function [31] and Arccosh(¢/d) = {,. Note that the final equalities

are noted because if we had included the amplitude factors |1 -2/ d2}_1/ * in the projection operator we
would have obtained 7/2 in Region 1 and ¢, in Region 2 as shown in the next subsubsection.

3.6.3 amplitude factors present with no phase shifts

If we include the amplitude factors but no phase shifts
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d 0
Vop = 2/ u(z,0)Vd (d® - $2)71/4 cos (kpx) dx + 2/ u(z,0)Vd (2% - d2)*1/4 cos (kpx — m/4) dx
0

d
Inserting the high frequency solutions

Vip = doy/2d / — )% cos? (kpx) dx

29)* U, (—,0 Aln ”d
g +

¢
+ A0v2d / (z* — dz)fl/2 cos? (kpyx — m/4) dx

@) |U% (s7,0)] {/Aln (%)

Now averaging over the cosines gives

V) ~ 20v/2d / 1/2 da

v Radlog —s'.0 Aln Hd
v +

+ 20v/2d /Z/d x —1) Y2 gy
29 U7 (s1,0)] /A (£24)

20v/2d
(27)1/4 Aln (Z+d)

~

/2 Co
T, (—s0)] 0% (s’,0)|]

Squaring gives

, 02842
T V27AIn (id)

2
m/2 Co
A A (8’70>}]

where
Co = Arccosh (¢/d) = (f/d—i— VO] — )

2
A=7R*+2R(L - 2R) = 4R? <7r/4 + 5R>

9 v28d?

™ (&) mf

(|7 (is'/2 + 1/4)| w/2 + |T (—is' /2 + 1/4)| ¢o]?

s'In (%) = (ky — k)L =2 (ky — k)
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Scar projection
No amplitude divergence factors|

25 7

|
20 7 :

[any
(&)
L

<sqrt(kL)Vp2>

-4 -2 0 2 4

Figure 51. Comparison of projections with and without amplitude factors. The phase shifts are neglected
in both regions.

d=0/1- R/l

byl =7 (p— 1/4)

(VELV,) ~ JWZK ”(%) T (is'/2 4+ 1/4)| m/2 + T (—is' /2 4+ 1/4)| G,

8d2/7T . 2 2
~ I'(is 4H" |
2d/£A1n(%> | ( /2+1/ )‘ [ /2+<0]

1 {+d
A = (= k) VRE = —5'3 In ﬁ R/l
Figure 51 shows the comparison of these projections with and without the amplitude divergence factors,
with the phase factors neglected. There is a slight reduction of the peak level without the amplitude factors.

3.6.4 no amplitude factors and focal point shift

Because we believe that the focal point in the simulations shifts slightly with realization of the scarred
orbits, it is convenient for comparisons with this simplified theory to use a simple modification to capture
the average results. We simply replace d in the theory with the the average shift location
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Figure 52. Effect of applying average focal point shift without phase factors or amplitude divergence factors

d—d.=d+ (9)
where we could select the average discussed previously (dg) = £/ (2 (p) — 1/2) or something slightly larger
to capture the increases due to s # 0. Figure 52 shows the variation of the projections with d.

3.6.5 projection without amplitude factors but with phase factors and focal point shift

Applying the average focal point shift and retaining the phase factors we have

Viop ™
L /1 (1- mQ)_1/4 cos Fs’ {111 <1+_x> —x(d./0)In <—£+ de) H dz
@ U (=5,0)] {/Aln (%) ’ 2 l—g ¢ (—d,
¢/d.
+ 20\/2d, / (a® — 1) cos [15/ {111 <x+1> e (d/Om <€+de>}] .
(94 |UL (5, 0)] /Aln (4 ) 2 21 =

Figure 53 shows the comparison with a numerical histogram from the boundary element solutions using
de ~ 0.094. Notice that the tails of the scar trigonometric projection decrease rapidly with s. This is a
consequence of interference in the integrand resulting from the phase factors p; and ps. Also shown is the
projection of the random plane wave representation, which will be given below. Notice that the histogram
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Short Quarter Stadium Scar Amplitude vs. Frequency Separation
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15 \ 1 Numerical [
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Figure 53. Comparison of trigonometric projection and numerical histogram for short stadium cavity along

horizontal bouncing ball scar. The scar theory used an average shifted focal point d. =~ 0.094 m.

seems to show another scar p’ component contributing to the trigonometric projection. The amplitude of

the next peak does not seem to be too far above the random plane wave projection. The next section looks
at an explanation for this next peak.

3.6.6 projection of next scar component

The contribution of the other scar components can in general can be written as

d ¢
Vprer = 2/0 Uptm (2, 0) cos (kpx) dz + 2/d Uptm (2, 0) cos (kpx — w/4) dz

2v

@) U (=shy4m:0) ]/ Aln (24

=2

d
) \/ﬁ/ (d? — x2)_1/4 cos [karm:c + pletm) (:1:)} cos (kp) dx
0

2v

207 10 (s 0] 10 (52

+2

¢
\/ﬁ/ (z* - d2)71/4 cos {kpﬂnx —7/4 +pép+m) (ac)} cos (kpx — m/4) dx
d

Averaging over the rapidly varying part (or taking only the difference arguments in the cosines) gives

154



20v/2d

@D UL (=8} 0) |/ AT (£:4)

/01 (1—22) """ cos Bs;+m {m G f;) —2(d/0)In <ﬁj—§)} + mm:d/ﬁ} dz

20v/2d

N4 U (554,0,0)] /AIn (££2)

¢/d
/ (z® — 1)71/4 cos ES;HR {ln (i + 1) —x(d/f)In (%)} + mmcd/é} dx
: _ _

VT

p,pt+m =

+

where

t+d
S;H—m = Q(k’p+m — I{I) £/1H <m)

kpyml =7 (p+m—1/4)
Figure 54 shows several trigonometric projections, all without amplitude divergence factors. The black
curve shows the result without phase factors p; and py and no shift in focal location from the geometrical
point. The light grey curve has phase factors p; and ps but no shift in focal location. Notice the rapid drop
in the tails of the peak due to these phase factors. The dark grey curve is the projection with phase factors
p1 and py but a shift in average focal location (in this case to d, = 0.1 m). This gives a slight drop in peak
amplitude. The green curve is again the random plane wave trigonometric projection. The blue curve is
the pth trigonometric projection of the (p + 1)th component. The purple curve is the pth trigonometric
projection of the (p+ 2)th component. Notice that these contributions lie in the region of the second
histogram peak and have similar amplitudes. It therefore seems that the reason for the second histogram
peak is lack of orthogonality in the trigonometric projection.

3.6.7 random plane wave projection

Suppose we use the random plane waves and take the projection with

14
T _ cos (kpz) , || < d
Vir = /e“’“ (z,0) { cos (ky |z| — 7/4) , 2| > d | %

The variance of this random variable is

1 27

2, =5ea [ @O+ F @) a0

d ¢
F.(0)+F_(0) = 2/ cos (kpz) cos (kz cos 0) dx + 2/ cos (kp |z| — 7/4) cos (kx cos 0) dx
0 d
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Scar projection
k not equal to kp

k not equal to kp and de = 0.1 m
i Next mode (p + 1)

A 15 Next mode (p + 2)
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=
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Figure 54. Comparison of various trigonometric projections without amplitude divergence factors. The effect

of phase factors reducing the tails of the peak, the reduction of the peak due to the average focal shift, and

the lack of othogonality of the trigonometric operator with respect to the scar components are the effects
illustrated.
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_ sin{(kcosO+kp)d}  sin{(kcosO+kp)l—m/4} sin{(kcosf+k,)d—m/4}
B (kcost + k) (kcost + k) (kcosf + k)

sin {(kcosf — k) d} n sin {(kcos® —kp) (L +7/4}  sin{(kcost —k,)d+m/4}
(kcost — k) (kcost — k) (kcosb — k)

Now suppose we look near the singularities when k — k, (and 0 = (//k(/2)
ky — kcos® =~ (k, — k) + k62 /2

ky+kcosO~ (k, — k) + k(0 —7)* /2

1 2 1 2

2 ~ _ 2 - 2
<Vp>r~ 574 F+<9)d9+27rA ; F=(6)do
1 /27r [sin{(kcosO + k,)d} +sin{(kcosf + k,) { —m/4} — sin{(k0089+kp)d—7r/4}]2d9
2w A Jo (k cos 0 + k,)*
n 1 /27r [sin{(kcost — k,)d} +sin{(kcosf — k) ¢ — w/4} —sin{(kzcos@—kp)d—w/4}]2d0
2mA Jo (k:cos@—k;p)2
~ L
T rA

2
do

/00 [sin { ((k, — k) + k0% /2) d} + sin { ((k, — k) + k0% /2) £ — w/A} — sin {((kp, — k) + k0% /2) d — 7 /4}]
e ((ky — k) + k6% /2)°

1 oo
T rAVE]2 /_oo

[sin { ((kp — k) €+ (%) (d/0)} +sin {((k, — k) 0+ %) — 7/A} — sin {((k, — k) £+ %) (d/0) — m/4}]

2
d

2 ¢
((kp = k) £+ )" /02
L2 [sin{(W4 =) @/} +sin {(A4 - ) +7/4) —sin{(A4 - %) (d/0) +7r/4}]2d</ (2m)
AVEL J - (\d—¢?)
where
AN=2(k—k,)L

Thus we can write the ransom plane wave projection as

157



<wc_va2>r ~ L2G()) /A

where

G(A):%/m

—0o0

[(1—1/v2)sin {(A\/4 = () (d/0)} +sin (\/4 = ®) /V2 + cos (A4 = (*) /2 — cos { (A4 = ®) (d/0)} / V2]
(va-¢)’

Introducing the symmetries along the axes we again take

2
d¢

G, (\) = 4G ()
Thus we plotted

<\/Evp2>r ~ L2G, () /A

on the preceding graphs for the random plane wave trigonometric projection.

3.7 Elliptical Projection Operator

It is more useful to set up the projection operator based on the pth component field on axis. In Region
1it is
2 _
Uy ~ v V2d (d* — 2?) Y4 cos [kpx + p1 (z)] , Region 1
1/4
(29)* U7 (5,0)] |/ Aln (4)

and in Region 2 it is

2 —
up ~ Y V2d (a* — d?) Y4 cos [kpx — m/4 + pa (z)] , Region 2

(29! U7 (,0)] A (£4)

where
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Noting that

U (5,0)] = e™'"/2|U", (s',0)]
we define the Galerkin-type projection operator as

d
e“|5"/4vp = e*’“//42\/8/ u(z,0) (d* — :1:2)_1/4 cos [kpx + p1 (z)] dx
0

4
4o 2 [ 0) (22 = ) cos by — 4+ pa ()] o

d
where we have maintained the exponential scaling of the eigenfunction form of the projection operator
between the two regions. If we insert a series form

UNE Up

P
assuming asymptotic orthogonality holds, as discussed in the Appendix, we obtain
’ ’ d —-1/4
els |/4Vp ~e T /42\/c_i/0 up (z,0) (d* — 2?) cos [kpx + p1 (z)] dx

ers /42\/_/ up (z,0) (2° d2)_1/4cos [kpx — /4 + po (x)] dx

Now inserting the high frequency solution gives

d
exp (]| /4) V,, = 2Vd 2v \/ﬁe_”//‘l/ (d* — 552)71/2 cos? [kpz + p1 (v)] dz
(2'y)1/4|U’+ (=5, 0)| Aln(“d) 0

2 i [ _
+2\/c_l k V2de™ /4/ (z® — d?) 2 cos? (kpx — m/4 + p2 ()] da
1/4}U+ / O ’ Aln (l+d> d

Averaging over the rapidly varying cosine factors gives

exp (w|s'] /4) Vy ~ 2y/2ud e / 124,
(@)Ut (=s',0)] (£4)

2v/2vd o7 /4/ “1/2 4
1/4 \U/ s 0 | Aln Z+d
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2v/2vd /2 s’ /4 Arccosh (¢/d)

~ 677‘—5//4—4-6 A\
(27)1/4 Aln (%) l iU_/;'_ (75/,0)| |U'/f' (S/,O)| ]

N 2v/2vd [e—”’ T2 e o 1
e fam () L ORE0L T 0L 0)
or
2v/2 ,
exp (7 |s] /4) V}, ~ V2vd (6”5/27r/2+e7TS /QCO)
(29)"/4 \/A U (5,0) UL (+/,0)] In (£4)
where

Co=n (b/d+/PIE=T)

Note that for s = —s' =0

2vd (z
2
/4, |7 Aln (%)

The quantity considered in the bow tie cavity is given in the stadium by

Vp ~ +Co) T (1/4)

(VELVZ) = 12Gi (s) /A

where

2 (d/€)3/2 ws/4 m/2 ws' /4 Co i
xp (7 |s Gq(8) ~ e e
PTG n(£4) [ 0, (5.0 |U% (,0)]

2(d/0)>?

U (5,0) U (s/,0)| In (%)
The value at s = 0, using the geometrical focal point d, is

, 2
(eﬂs/2ﬂ_/2+ 7S /QCO)

<\/Evp2> = L2G, (0) /A ~ %% (g + 40)2r2 (1/4) ~ 25.45
mln (725

and the asymptotic forms are

1 1 rs/a |l (=38'/2 +1/4)] -1/4
AT A T ov S C
|+<S=)| }+(5= )} ™
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Short Quarter Stadium
Integrate from (0,0) to (0.275,0)

k0= 745 values 86.05-418.87
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Figure 55. Comparison of scar projection and numerical histogram using geometrical focal location. Also

shown for reference is the bow tie scar theory. Finally the random plane wave projection is plotted.

1 — 1 Y o8 /2 —1/4
]Ujr(—s’,O)} = ’U_/,'_(S,O)‘ e V2s , 8 >>1

Figure 55 shows a comparison of the scar projection using the geometrical focal location d =~ 0.083 m and

the numerical histogram data from the boundary element simulation, using the elliptic projection operator
and geometrical focal location (this includes amplitude divergence factors and phase factors). Notice that

the projection operator with the phase factors widens the tails about the peak (the theory result is similar
to the preceding trigonometric result). The theory peak somewhat overestimates the numerical results. The
bow tie cavity results are shown for comparison. the random plane wave projection is also given.

Figure 56 shows the comparison when the average shift location is used d — d. = d + (J) ~ 0.092 m in
the theory as well as in the numerical histogram projection. The random plane wave projection discussed
in the subsubsection below is plotted. The bow tie theory is also shown. The theory result still somewhat
overestimates the numerical result at the peak.

Figure 57 shows the comparison when the average shift d. = d + (§) ~ 0.092 m is used in the theory, for
which we align this location in the scar component u, (since we have not inserted the shift or the Region
3 form), and the numerical histogram with the shift being determined for each eigenfunction represented
from the shift theory discussed above d + ¢ (using the first value of n giving a point to the right of the
geometrical focus). This comparison thus depicts more consistent alignment between two quantities (since
the numerical solutions contain the shifts). The theory result and the numerical result are somewhat closer
at the peak. Note from the Appendix that the Region 3 contribution does not significantly change the
theory result. The random plane wave projection discussed in the subsubsection below is plotted and the
bow tie theory is also shown.
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Short Quarter Stadium
Integrate from (0,0) to (0.275,0)

k0= 745 values 86.05-418.87

kp= 47 values 8.57-534.1
25 80 bins
. I
\ 1 Numerical (d=0.092)
= Bowtie Random Plane Wave

s Stadium Scar Theory (0.092 focus),
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g Stadium Random Plane Wave
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Figure 56. Comparison of scar projection and numerical histogram using average shift focal location of 0.092

m. The projection of the random plane wave is plotted. Also shown for reference is the bow tie scar theory.
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Short Quarter Stadium
Integrate from (0,0) to (0.275,0)

k0= 745 values 86.05-418.87
kp= 47 values 8.57-534.1

25 80 bins
20
1 Numerical (shifted focus)
= Bowtie Random Plane Wave
Nﬂmls = Stadium Scar Theory (0.092 focus)_____
g = Bowtie Scar Theory
2 Stadium Random Plane Wave
\

) \
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Figure 57. Comparison of scar projection and numerical histogram using average shift focal location of 0.092

m in the theory but the functional shift from the theory to define the projection operator in the numerical

histogram. The projection of the random plane wave is plotted. Also shown for reference is the bow tie scar
theory.
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3.7.1 next components and orthogonality

The orthogonality using this elliptical projection operator is discussed in detail in the Appendix. The
next modes using the projection

d
exp (7 [sh ] /4) Vypm = 2V/de ™55/ / i (3,0) (@2 = 2%) ™" cos [y + pi (2) da
0

¢
—&—2\/36“;/4/ Uptm (2,0) (2% — d2)_1/4 cos [kpr — /4 + po (x)] dz
d

give
exp (7 4] 1) Vi ~
1
2072 e_”“‘é/‘l/ (1- :102)71/2 cos {mﬂ' In <1 i :1c> /In (i + 3)} dx
7 U (=5 4m:0)] 1/ Aln (%—g) ’
cn [ _
+ 20724 e”p/4/ (z®—1) 2 cos [mﬂ' In <z—+i) /In (%)] dx
(29 UL (5, 0) |/ Aln (£22) :
where

t+d
S;H»m = Q(kp+m — k) €/ln <m)

kptml=m(p+m—1/4)

1., , t+d t+d
§(sp+mfsp):(kp+mf )ﬁ/ln( d) mw/ln(m)

In the first integral we let In[(1 + ) /(1 — z)] = 2y or « = tanh (y)

/01 (1-22) 2 cos [mw1n<“x>/1 (ﬁfj)}dx:/ooocos {Qmﬂ'y/ln <§fcdl)] Coscfly(y)

T 2 t+d
= 2/cosh mn*/In <—€—d)]

In the second integral we let In ((z + 1) / (z — 1)) = 2y or = = coth (y)
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Figure 58. The black curve shows the scar projection using the geometrical focal point. The solid blue curve

(which is almost zero) shows the projection for the m = 1 next component. The solid purple curve (again
nearly zero) shows the projection for the m = 2 next component. The solid green curve is the random plane

wave projection. The dotted blue and purple curves show the trigonometric projections of the m = 1 and
m = 2 components.

e ) O A S

Lin(4 sinh (y)

L, <€+d)/°°cos( ) dy
=—mn{--— mny
2 (—d) J; sinh [%yln (%)}
Loy (LAY [ dy
=5 ()" <m>/ costmmy) 2
0 sinh |5 (y +1)In (e_t_dﬂ

Figure 58 shows the pth elliptical projections for (p + 1)th (blue solid curve near zero) and for the (p + 2)
components (purple solid curve near zero). The preceding trigonometric projections are also shown, along
with the pth elliptical scar projection. Notice that the new projections exhibit near othogonality.

3.7.2 random plane wave projection

Suppose we use the random plane waves and take the projection with

d
exp (7 |s'] /4) V. = 27 /4 / (1- 302/d2)71/4 cos [kpz + p1 (@)] uy (2,0) dz
0
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14
+267TS//4/ (£E2/d2 . 1)—1/4 cos [ka _ 7T/4 + po (1‘)] Uy (I,O) dz

The variance of this random variable is

exp (w1512 (V2), = 5oz [ 1Py (6)+ P (0) ap

d
Fy (0) + F_(0) =2~/ / (1- x2/d2)_1/4 cos [kpx + p1 ()] cos (kx cos 0) dx
0

L
L 9ems' /4 / (?/d? — 1)—1/4 cos [kpz — /4 + p2 (v)] cos (kx cos 0) dx
d

d
=7/ / (1- x2/d2)_1/4 [cos {kpx + p1 (@) + kx cos 0} + cos {kpz + p1 () — kx cos0}] dz
0
¢
—|—e”'/4/ (2*/d* — 1)_1/4 [cos {kpx — /4 + pa (x) + kx cos 0} + cos {kyx — 7/4 + p2 (x) — kx cos0}] dx
d
Now for large k and k, we can take k — k, and 6 — 0,7 (and 0 = ¢/+/k(/2)
ky —kcos = (k, — k) + k67 /2

ky+ kcosO ~ (ky, — k) + k(0 —m)° /2
and

Fy(0)+F_(0) = —”3//4/d (1_x2/d2)71/4
0
[COS{((kp —k)+ k(0 —7)° /2) x+p1 (ac)} + cos { ((kp — k) + k02/2) 24 (x)}} i
’ £ 9 9 _
+e™s /4‘/d (1_ /d 71) 1/4

{cos{((kp —k) 4+ kO —7)? /2) T —7/4+ po (ZE)} +cos { ((k, — k) + k0% /2) z — w/4 + ps ($)}} dx

21 d
exp (m|s'| /2) (Vi7), = %LA ; [e_”//‘*/o (1- x2/d2)71/4 cos { ((kp — k) + k60%/2) 2 + p1 (z) } da
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, 2
—|—e”sl/4/d (z?/d* — 1)71/4 cos { ((kp — k) + k0°/2) & — /4 + py (2) } dm] df
+ﬁ/@2ﬂ [e_ﬂs'm/od (1_x2/d2)71/4cos{((k — k) + k(60— ) /2)m+p1( )}dm
4™ /4 /; (xg/dQ B 1)71/4 cos{((k —k)+ k(O ) /2) — /4 + py (x)} dm] do

d
—7s’ /4 7562 2\ —1/4 - 2 z 1 (z -
Mww/ [ | =) o {(, = 1)+ )41 (@)} a

’ 2
+em’/4/d (@2 /d> = 1) cos { ((ky — k) + C/0) & — 7/4 + ps ()} dw] d¢

d
~ —ms'/4 — 22/ cos ) x/l—pi(z)} da
b o ranns

2

Lo/ /: (?/d2 — 1)—1/4 cos {(\/4— () z/t+m/d—ps(2)} dx] d¢

where
A=2(k—k,)L
s'In[tanh ((,/2)] = &’ 11 (ﬁ Z) (k—kp) € =)\/4
(VELVZ) =12G(\) /A
with '
o d
exp (m|s'| /2) G (\) = % /0 le‘”sl/4/0 (1- 302/d2)71/4 cos{(N4— ) x/l—pi(2)}da/t

, 2
s [ @ = 1) cos {34 ) e+ 4= (0)

Introducing the symmetries

G, = 4G
with

167



<\/k_va2>r — 12G, () /A

and

exp (m|s'] /2) Gs (\) = 4 /000 [{3_”sl/4/O (1- x2/d2)71/4 cos {(\/4— ) x/t —py (x)} dz /¢

™

2

+ems /A /Z (2/d* - 1)_1/4 cos {(\/4— ) a/t+m/4—pa(z)} da:/é] d¢
d
o] 1
- % (d/£)2/0 {6”8’/4/0 (1—22) " cos { (A4 — ) 2 (d/0) — p1 (xd)} da

s [ “1/4 i
Lems /4/1 (z271) cos{()\/4f(2)$(d/£)+7r/4*p2 (:L’d)}dx] dc

1 (wd) = %s' {m (1 fi) o (ﬁf—j) (xd/e)}

po (wd) = %s' {m (i - D o (ﬁf—j) (xd/e)}

To understand why the random plane wave projection is small for large s we drop the phase and
exponential factors in the projection with the random plane wave by setting s = 0 (but we keep A\ # 0).
This gives the red curve in Figure 59.

3.8 Integral Of Square Along Scar

Consider the scar components of the eigenfunction
un S,
2

Taking the integral along the orbit to be

I 1/t
P= Z/4UQ (z,0)dx ~ ;Z/eui(a())dz
where we assumed approximate orthogonality. Thus a single p component gives
¢ 8v2d/l
2

P - - d ~
b L/_L]up(x,O) z 29 Aln (%)

1 d 2 _ 2 71/26052 . i
{|U4<s,o>|2/o (& =% [y + p1 ()] d
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—Scar projection

Next mode (p + 1)

20 Next mode (p + 2)
Random Plane Wave

= 5 =0 in projection operator

=
4]

10

<sqrt(kL)Vp2>

(k- kL /In(A,)

Figure 59. The phase and exponential factors have been dropped in the projection resulting in the red curve,

which approaches the scar function. Note that the abscissa has the same values as s.
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1 ‘ 2 o\ —1/2 2 _
i 6 i

Averaging the cosines for high frequencies gives

1/ 42d/t
Pp:—/ ul (x,0) dx ~ 72 / T
—¢ (27)77 Aln ( v )
Taking the mean value (and multiplying by vkL)

/2 o
U (s,0)[7 }U’ (s',0)|

(VALE,) ~ Af\/(é_-i-d)

m/2 + Co 2]
\U% (s,0) | |U% (—s,0)]
4./d/¢

~ eﬂs/27r/2+eﬂs//2<-
AU, (5,0) U (/,0) [ In (£24) ( )

2./2d/¢ /
~ 7/ T (—is/2+ 1/4)|2 (6”5/27r/2 + e /2Co>
TAln (“d)

or

<\/—P> (¢/d) exp (m[s| /2) G (5)

7rs/27-r/2 + ef'ns/QCO
where we plot it against the abscissa with p buppressed

1 {+d 1
w=(k—kp)t/m=\/(4dnm) = 55— 1 (4 d> EID(AQ ~ 0.099s

Figure 60 shows the result for the pth component along the horizontal orbit in the stadium cavity.

3.8.1 addition of random plane wave

Another approach to include other components in the eigenfunction is to add the random plane wave
distribution (symmetrized on the even orbit). We again consider the approximation of the eigenfunction as

U~ E Up + Uy — g Croplp

P P
where u,, are the scar components (and might be a single term or a truncated sum) and u, is the random
plane wave symmetrized field. We assume asymptotic orthogonality (see the Appendix) and remove the
overlap of the scar components from the random plane wave

L L

C'Tp/ usda ~ / upupde
iy _
We expect the random plane wave term to capture high angle chaotic rays which do not exhibit foci along

the orbit, whereas the scar components u, have foci along the orbit. Now we write the integral of the
square along the orbit as
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Figure 60. Integral of the square of the pth scar component along the horizontal orbit of the stadium cavity.
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¢ ¢ ¢ 2
/ wda ~ E / upda —|—/ Up — g Crpttp | dx
— P — -

or

¢ ¢ ¢
20(P—P,) ~ / u?dr — / u?de ~ Z (1-d2) / usda
.y —¢ » —L

~ ; {1 — (/2 upupde/ /2 uidm) 2] /2 ugdac

Taking the mean

4 4
-y~ S| [ e [ e

with

() = <( [ et [ d>>
=<u§<x> [ w0 [ @y @) ( /_Zug(x>dx>2>
— 2 (2) /_Z /_i<ur (&) tr (&)}t (27 p (2" o’ ( /_Zug@mx)?
@) [ [ @ @) @y ' (/ (2 (x )

where the expression is homogenous in up and thus the v? random variable cancels. Using the correlation
with an image on the even orbit

(Aur () ur () = 4Jo (k (z — 27))

we have

¢ 2 ¢
(P-P)~ [ IR xx><up<x>up<’>>dxd:c'/<%/£<u§>dw>]% () da

Inserting the ﬁeld on axis, in Region 1
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2 _
Uy ~ Y vad (d* — z°) Y4 cos [kpz + p1 (2)] , Region 1

(27) 1/4|U’ (s,0) } Aln (“‘d)

and in Region 2

y ~ S (_jz” Aln(ﬁﬁ)m&uﬁ)1/4cos[kpx_w/4+p2 (2)] , Region 2
where
o (F20) =2 k)
= b (280 u(122)
- {n(24) 0 (220}

64d (
A? (2’)/)1/2 In (%’—g)

L ol
% /—e /_g Jo (k (2 — xl)) <up () Up ($/)> drdz’ =

1 ¢ _
W / (SEQ — d2) 1/4 COS [kp$/ — 7T/4 +p2 ($l)]
+

L
/d o (k (= 2')) + Jo (k (z + 2')] (2% — d2) /" cos [kpx — 7/4 + ps (x)] dwda’

1 ‘ 2 2\ —1 ’ ’
+}U_’~_(—S,O)HU_’,’_(S,O)’/(1 (2" — d?) /4cos[k:px — /4 + pa ()]

d
/0 [Jo (k(z — ') + Jo (k (z + 2'))] (d* — 2°) Y4 cos (kpz + p1 (x)] dedz’

1 o —1/4 , ,
o, € 7 sl @)

4
/d Lo (k (z — 2')) + Jo (k (@ +2')] (2% — d2) /" cos [kpx — 7/4 + ps (x)] dwda’

}U’ | % cos [kpz” + p1 ()]
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d
[Jo (k(z—2") + Jo (k(z +2"))] (d2 — £E2)

0
We want to find an approximate form which only involves the difference k — k,. The first thing to do is to
expand the Bessel functions for large argument

M4 cos (kpz + p1 (x)] dedx’ }

4 Yi _
%‘/7@/75 Jo (k(z—gg’)) <Up (x) Uy (ZE/)> dada’ ~ 32dm

) (1)

1 ¢ 22 g2y ¢ 22 g2 cos (k|z' — x| —7/4)  cos(k(z' +x)—m/4)
|Ujr(—s,0)\2/d ( d) /d ( a ) [ |2 — z| * V' +x ]

[cos (ky (v — &) + p2 () — p2 () + sin (ky (¢ + 2) + p2 () + p2 (2))] dwda’

2 ¢ 2 a\—1/4 d 2 21/ cos (k(z' —x) —7/4)  cos(k(x' +z)—m/4)
+\U/+(—s,o)HU'+(s,o)}/d (" =) /o(d ) [ - - N }

[cos (kp (x — 2') + /4 + p1 (x) — p2 (2')) + cos (ky (z + 2') — 7/4 + p1 () + p2 (2))] dzda’

1 I 2 _ 02\ 71/ d 2 _ 2yl cos (k|z' —z| —7/4)  cos(k(z' +x)—7/4)
e R R R e

[cos (ky (@ — &) + p1 (2) = pu (&) + cos (ky (z +2') + py () + p1 (2f))] dada’ }
Now dropping terms without the difference wavenumber gives

14 [t r* , , , 4./d/m
_—— Jo (k(z—2)) (up (z) up (27)) dedz” ~
L2A/_e/—z o (k )y () p () k(2 A2 U (—s,0)| |U% (s,0)|In (%)

¢ ¢
ews’/2/ 22— 2 —1/4/ 22 — 2 —1/4
@) [ @)

l ((k = kp) |2 — 2| = 7/4+ (p2 (x) — p2 () sgn (2/ — )
[ — ]

Csin((k — ky) (@ +2) —7/d—ps (&) —p (x’w dada’

¢ d
+2/ (w’2 _ d2)71/4/ (d2 _ 332)71/4
d 0
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LT ELCE T IR E AL ELC e

Vil —x o+

s/ /d (d? - m/2)—1/4 /d (d? — x2)—1/4
0 0

l ((k = ky) |2 — 3] = 7/4+ (p1 (2) = p1 () sen («' — @)
@ —a]

o (b= hy) (&' +2) /4= pu () = 1 (29)

} dadz’ }

4,/t7d

= exp (7 |s'| /2) G5 (\)
A2k (£4) |U% (=5,0)] |UL (,0)|

or

14

\/ﬁ% /2 /22J0 (k (z — ")) up (2) up () dada’/ (/

ui (x,0) da:) ~
—t
__(¢/d)exp(m|s'[ /2)
= (e’TS/Qﬂ/Q-i-e“’/QCO)
The final identity can be verified numerically, where G4 is the previous form of the random plane wave
projection

Gs (M)

exp (7 |s'] /2) Gs (V)

I * —ms'/4 ¢ 2792 —1/4 2 -
= / [e / (1—a?/d*) cos { (N4 =) a/l —pi ()} da/l
0 0

, 2
_|_€7rs’/4/d (xQ/dQ_1)_1/4005{(/\/4_C2)x/€+77/4_p2($)}dx/€ d¢

This is shown as the green and dashed red curves in Figure 61.

Note that the lack of a projection of the random plane wave representation on the pth scar, especially
for large |s|, indicates that these two parts of the eigenfunction u are largely orthogonal. In other words
the contributions of the pth scar are separate in functional form from the random plane wave part. This is
caused by wave interference associated with the p; and ps phase functions (and the exponential behavior
between the two regions). We will not obtain acceleration of convergence from subtracting the random
plane wave projections. We must therefore regard the pth contributions as a finite asymptotic series.

Thus we can write
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Figure 61. Comparison of random plane wave projections from original approach and from correlation

function approach.
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<\/H(P—PT)>zZl<\/Epp> 2;;/ / Jo (k (& = &) {uy (@) wy (2')) dads’/ ( VEL B )

) (¢/d)exp (x 5,1 /2
~7 Zp: (G4 (Sp) -Gy O\p)] (eﬂsp/zﬂ_/Q I e—wsp/ZCO)

where again the subscript p is added to s and to A to denote that its definition is associated with the given
term, and from the preceding subsubsection

Ljd) __exp(xlsl/2) AT
(VHLR) ~ (A)E”S/Qﬂsﬂe“/QCOGl(S)NAIUL(s,o)U’ (520 1n (£20) (7w ertiic)

To construct this average we note that the average without the scar modes using the random plane
wave hypothesis gives

(P,) = 2/A
We take here the average of vk for the eigenvalues by means of the Weyl asymptotic spacing
Ak? = kAk ~ 167 /A to give Ak/Am ~ 167/ (kA) and thus over the 4 GHz to 16 GHz range we find

ko ko 4 k5/2 . k5/2
<\/E>: i \/_ dk/ : %dk /k k3/2dk/ : kdk:gﬁzlﬁm m~ /2

We can write the random plane wave term, expected to describe the plateau level, as

(VTR = (V)

3.8.2 comparison of histograms

~112.3 m—2

BN

Figure 62 shows the pth term of the sum for <\/ kL (P — PT)>. Notice that the effect of the scar is larger

in the stadium than in the bow tie cavity result, which is also included (to put it on the same scale as the
stadium result we multiply it by the ratio of bow tie to cavity areas). Figure 63 shows numerical histogram
results for the difference of the integral of the field squared and the random plane wave representation along
the horizontal orbit in the stadium cavity.

Figure 64 shows the integral of the field squared along the horizontal orbit in the stadium cavity.
Notice that the ”plateau” level 100 is near, but slightly smaller than, the random plane wave level derived
in the preceding subsubsection. This fact accounts for the negative values in the preceding figure when the
random plane wave level is removed. The reason for this slight discrepancy is not clear however the large
frequency range covered and the required choice of an ”average” vk in the random plane wave result may
be questioned (unlike in the bow tie cavity where the frequency range was limited). The theory also seems
to overestimate the variation of the peak near p = 0, perhaps by as much as a factor of two (similar to the
bow tie cavity).
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Figure 62. Integral of the square of the eigenfunction pth component minus the random plane wave projection

for the stadium cavity. Also shown are the bow tie cavtiy results discussed previously scaled by the ratio of
bow tie to stadium cavity areas (to put it on the same scale as the stadium results).
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Figure 63. Numerical histogram results for the integral of the square of the field along the horizontal orbit

minus the random plane wave integral in the stadium cavity.
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Figure 64. Numerical histogram results for the integral of the square of the field along the horizontal orbit

in the stadium cavity.
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3.9 Point Value Statistics

This section considers the point statistics at various locations in the stadium cavity, including near the
focal point. We only consider the scar components and not the random plane wave part of the eigenfunction.

’U,NE’U,p
p

where in Region 1

2 _
Uy ~ Y V2d (d? — z?) Y4 cos [kpz + p1 (x)] , Region 1
@)U (=5,0)| A (£4)

and in Region 2

2 —
Uy ~ Y V2d (2 — d?) Y4 cos [kpx — m/4 + pa (z)] , Region 2

(29 U7 (,0)] A (£4)

with

In Region 3 near the focus

uy = (-1)" (2! %Re (U4 (5.6 V) + U (5.6 /)]

Re [e_i”/4U+ (—5',@\/%) + e“r/46i<p°Ujkr (—s’,@\/ﬂ)}
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e V2 U0 UL
~ =D Aln(%)ImQJ[FUL(S’,O)} Re[U+( 5\/%) UJ;P(S’,O)UJr( aﬁ\/ﬂﬂ

UL (=5',0)

where

V2u U] (s',0)]
(27)1/4 Im [U’ (s',0)] {/Aln (“d)

CcC =

On the z axis this becomes

p (2,0) ~ (—1)" Y2 ! re[ur (v.6v) - 0 (4.

Aln (€+d> Im [e~im/4U/ (—s',0)]

¢ ~+\/2(d.—x)/d

n V2v 1 —im/4 s',0) * ’
B0~ ) = (Hd)lm[vuseonm[e o Crevm) - g (om)

=2z —d.)/d

where

de =d+9
and we have used

U-/i- (*S/, 0) _ eﬂs'/27i37r/4Uj_/ (S/, 0)
or

Im [U. (s,0)] _Im [e=™/4U7 (—5,0)]
UL (50— UL (=5,0)]

along with the Wronskian

ULUr —UYUy =i

3.9.1 value at focus

Suppose we examine the value of the pth component of the field at the focus in Region 3
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V2 _ (71)nv|1“(i3’/2+1/4)F(—is’/2+1/4)|

Up (d6’ O) ~ (71)n
U2 (=5/,0) UL (+/,0)] [ AIn (£24) m /A (£4)

where we have used

efﬂ(5’+i3/2)/4\/7__r
2= 2-1/AT (—is' /2 4+ 1/4)

U_/A'_ (SI,O) — 677‘-(5/+i3/2)/4U/ (7718/,0) —

Thus we can write

T (is/2 + 1/4)T (—is/2 + 1/4)?

m21In (fﬁf—g)

<Au12, (de, 0)> ~

For large values of s

T (is/2 + 1/4))* = |T (—is/2 4+ 1/4)]> ~ e~ 1220 /2] |s] , |s| >> 1
The value at s =0 is

21 (1/4)
Au? (d,0)) ~ =——A 1

(Au, (de,0)) 72 (Ay)
Notice that this result is independent of k (as the bow tie extrapolation above was, although the rigorous
coefficient is much larger here).

~ 28.13

3.9.2 value for eigenvalue equal to scar frequency

Suppose we have k = &, and thus s = 0. Then we can use the identity

Uy (0,7) = /T MK (—ir/4) = €373 ar o), (72/4)

to give
n V2 1
up (2,0) ~ (—1) K U’
m ( %) sin (37 /8) [=U" (0,0)]
e V3 {1 k0 ) 5 9|
n_ V2 !
Up (z,0) ~ (=1) i /
m (ﬁi—g) sin (37/8) [-U’ (0, 0)]
Ro | 5/rv/BTe — doje /157 (), (1o o) = i3, (6 (o = )}
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o (1/4)

AW (£9)

—1OT !/ 7’L7\' 2/\/_
U’ (0,0) = e~ 37/30U7 (0,0) = 3/8 )

Up (:L',O) ~ (_1)n

where we have used

Noting that

J1/4 (2) cos (m/4) — J—1/4 (2)

Y1/4( ) Sln(ﬂ'/4) - J1/4 \/_J—1/4
this becomes
n vl (1/4
up (2,0) ~ (—1) (7/2(1 (2k |do — )/ T_1 /4 (K |de — )
AW (£4)
and
or2 (1/4
(Aug (x,0)) ~ ﬁ (2kp |de — )" T2, 4 (kp |de — )
where

kde =k, (d+360) =(n+1/8)w
If we take the limit k, |d. — 2| — 0 this becomes

(Au? (x,0)) ~ %

the same as the preceding result. Figure 65 shows a plot of the function

In (Ay) (Aud (2,0)) / [202 (1/4)] ~ V22J2, 4 (

(klde — | /2)"* {114 (k|de = 2]) = Yi/a (k|de — 2])}

Setting the derivative equal to zero gives —2v/2z.J5,4 (2) J_1/4 (2) = 0, Wthh vanishes for z = 0. Figure

shows this function.

3.9.3 value at fixed point

Because numerical simulations were done with fixed points along the orbit we calculate the solution at

a fixed point xy near the focal point. The averages are thus

[\)

1

<Au (w0, )> ~ o (IH-d) Tm2 [efz‘vr/lejr (—3/70)]

[ ( 5\/—>7225 zs’/2+1/4)) —isn/Age (Slvgl\/ﬂ):|

(—is’/2+1/4
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Figure 65. Plot of the scaled amplitude near the focal point for £ = k.
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Figure 66. Scar component p statistics as a function of s at fixed location zg = 0.103 m along the horizontal

orbit of the stadium. The focal point shifts according to the phase matching formulas, taking the first
solution greater than or equal to d.

¢ ~ 2, —0) /d

2 1

Au? (o, ~
(Aug (20,0)) In (%) Im® (U, (s/,0)]

Re? {e”/‘l {U+ (—s’,@\/ﬁ) - 27"Slweﬂ'3”/4U_Tr (—s’,cm) H

T (is'/2 + 1/4)

Cr/2(xg—de)/d

where the shifted focal point d. is found from

kde =k(d+0)=—s'In(2\/7) +argl (1/4+1is'/2) + (n+1/8) 7
or approximately

1 {+d

kpd. =~ 58/111 m) (d/f) —s'In (2\/@) +argD (1/4+14s'/2) + (n+1/8)w

and n is taken to determine the first solution greater than or equal to d.
Figure 66 shows the resulting point value statistics at the location zy = 0.103 m along the horizontal

orbit of the stadium cavity as a function of s. Notice that the shift has reduced the peak level from the
preceding value of 28.13 (without focal shifts).
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Short Quarter Stadium
Point Value (0.103,0.00)

k0= 745 values 86.05 -418.87
25 bins
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Figure 67. Numerical histogram of point value statistics along the horizontal orbit in the stadium cavity at

location zg = 0.103 m.

Figure 67 shows the numerical histogram from the boundary element simulation of the stadium cavity.
The location is again xg = 0.103 m along the horizontal orbit. Although the peak level is slightly less than
the preceding prediction the behavior is very similar. The following subsubsection gives many histograms
from the numerical simulations for locations about the stadium cavity.

3.9.4 histograms in stadium from numerical simulations

This section presents point statistics of <Au2 (:E,y)> as a function of s for various locations in the
stadium cavity. The first set, consisting of Figures 68, 69, and 70, shows the behavior off the symmetry
axes at x = y for three values. These figures illustrate mean behavior near unity as expected.

The second set, consisting of Figures 71, 72, 73, 74 and 75, shows the behavior on the y symmetry axis
for five values of y across the cavity. These figures illustrate mean behavior near two as expected.
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Figure 68. Histogram for point value of field for x = y = 0.05 m.
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Figure 69. Histogram for point value of field for x = y = 0.10 m.
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Figure 70. Histogram for point value of field for x = y = 0.15 m.
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Figure 71. Histogram for point value at x = 0 and y = 0.245 m.
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Figure 72. Histogram for point value at z = 0 and y = 0.20 m.
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Figure 73. Histogram for point value at z = 0 and y = 0.15 m.
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Figure 74. Histogram for point value at z = 0 and y = 0.10 m.

190



Short Quarter Stadium
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Figure 75. Histogram for point value at z = 0 and y = 0.05 m.

Figure 76 shows the behavior at the center of the cavity (on both symmetry axes x and y). The mean
behavior of four is expected however there is definitely more variation with s on the horizontal scar orbit.
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Short Quarter Stadium
Point Value (0.0,0.0)
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Figure 76. Histogram for point value at the center z =y = 0.

The next set, consisting of Figures 71 through 75 shows the behavior on the z symmetry axis (the
scarred bouncing ball orbit) for twenty four values of  across the cavity. These figures illustrate focal point
increases in level, which diminish in intensity near the wall and are largest near s = 0. Another interesting
thing about the behavior is the existence of a discontinuous enhancement for positive and negative s. For
example, up to 0.09 m the field is more enhanced for positive s. However this character then changes with
negative s more enhanced until 0.105 m is reached, at which point positive s values are more enhanced
again. It is interesting that the range of observation points between changes in behavior O (0.015 m) is
in the range of the difference between focal point positions from the phase matching, discussed in section
on focal point shift above (for the illustrated midrange value p = 18, noting that 8 < p < 36 in these
simulations).
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Point Value (0.05,0.00)
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Figure 77. Histogram for point value on scar orbit at x = 0.05 m and y = 0.
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Figure 78. Histogram for point value on scar orbit at x = 0.08 m and y = 0.
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Figure 79. Histogram for point value on scar orbit at x = 0.0833 m (just to the right of the geometrical focal

point) and y = 0.
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Figure 80. Histogram for point value on scar orbit at z = 0.085 m and y = 0.
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Figure 81. Histogram for point value on scar orbit at = 0.090 m and y = 0.
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Figure 82. Histogram for point value on scar orbit at = 0.095 m and y = 0.
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Figure 83. Histogram for point value on scar orbit at = 0.096 m and y = 0.
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Figure 84. Histogram for point value on scar orbit at = 0.097 m and y = 0.
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Figure 85. Histogram for point value on scar orbit at x = 0.098 m and y = 0.
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Figure 86. Histogram for point value on scar orbit at x = 0.099 m and y = 0.
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Figure 87. Histogram for point value on scar orbit at x = 0.100 m and y = 0.
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Figure 88. Histogram for point value on scar orbit at x = 0.101 m and y = 0.
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Point Value (0.102,0.00)
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Figure 89. Histogram for point value on scar orbit at x = 0.102 m and y = 0.
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Figure 90. Histogram for point value on scar orbit at £ = 0.103 m and y = 0.

199



Short Quarter Stadium
Point Value (0.104,0.00)

k0= 745 values 86.05 -418.87
25 bins
10
s |
ol —
. . .
1 0 1 2 3 4 5
s

Figure 91. Histogram for point value on scar orbit at £ = 0.104 m and y = 0.
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Figure 92. Histogram for point value on scar orbit at x = 0.105 m and y = 0.
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Figure 93. Histogram for point value on scar orbit at x = 0.106 m and y = 0.
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Figure 94. Histogram for point value on scar orbit at x = 0.107 m and y = 0.
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Figure 95. Histogram for point value on scar orbit at x = 0.108 m and y = 0.
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Figure 96. Histogram for point value on scar orbit at £ = 0.110 m and y = 0.
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Figure 97. Histogram for point value on scar orbit at x = 0.15 m and y = 0.
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Figure 98. Histogram for point value on scar orbit at x = 0.20 m and y = 0.
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Figure 99. Histogram for point value on scar orbit at x = 0.25 m and y = 0.
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Figure 100. Histogram for point value on scar orbit at x = 0.27 m and y = 0.
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4 CONCLUSIONS

Steady state fields in cavities, operating at high frequencies, exhibit chaotic behavior, where the modal
fields can usually be described as a superposition of plane waves, generating Gaussian statistics for the field
amplitude. However deviations resulting from periodic trajectories exist. Stable orbits (where perturbations
of the ray remain in the vicinity of the periodic orbit) lead to concentrated cavity modes (the familiar laser
cavity is an example) isolated from the remainder of the volume. Unstable orbits also lead to enhancements,
which have been named scars. Recently a technique has been discussed for treating these time harmonic
scars in two-dimensional cavities with nearly flat convex walls. This report carefully examines this method
in two-dimensional geometries with both convex and concave walls.

The method is first summarized for the convex bow tie cavity. Then using ray techniques, which
have been applied in the past to stable geometries, the method is generalized to elliptical paths along the
periodic orbit. We focus on ”bouncing-ball” modes in this report. This allows us to examine the accuracy
of previous results and to see how the exact form of the stability exponents enter the theory. The random
phase (from the outer regions of the cavity) boundary condition, which was introduced in this method,
allows the ray construction to take into account the interaction with the remainder of the cavity in this
unstable case. The normalization of the scarred eigenfunctions, introduced previously through circuit
concepts, is put in the form of the electromagnetic energy theorem. Various quantities are examined in
the bow tie cavity, including: projections of the field along the scarred orbit, integrals of the square of the
field along the orbit, and values of the square of the field both on and off the orbit. Exhaustive boundary
element simulations of the two-dimensional cavity are carried out to compare to the scar theory for both
spatial distributions of the field along the orbit and statistical quantities. Scar deviations from the random
plane wave background are most pronounced for the projections, considerably smaller for the integrals of
the square, and smaller still for the point statistics. The larger the stability exponents along the orbit, the
smaller these deviations become.

The case where the field is odd, both along and perpendicular to the orbit, is also addressed. The
statistics of the scars for odd parity along the orbit are the same as the even case, but the spectra are
interlaced. The statistics for scars which are odd with respect to the perpendicular of the orbit are different.
The inclusion of the odd parity cases allows us to treat the asymmetric bow tie cavity (an example of which
is discussed).

The canonical problem with concave walls can be taken as the stadium cavity. The stadium cavity
contains interior foci, the treatment of which prompted the introduction of the elliptical analysis. We
partitioned the horizontal orbit into three regions: between foci, outside the foci, and local to the foci.
The ray analysis is applied to each region and asymptotic matching is done as the focus is approached.
To accomplish this matching, a small shift needed to be introduced in the focal point location. Boundary
element simulations were performed on many scarred modes and compared to the spatial distribution of
the ray construction, including the focal region (with the focal shift applied). These comparisons confirm
the form of these three region distributions. Normalization, using the electromagnetic energy theorem,
in this case leads to an absolute value interpretation of the integration involved at the focus. The same
statistical quantities were examined (projections, integrals of the square, and point values) and compared
to results from the numerical simulations. Scar deviations from the chaotic background are larger in this
geometry than in the bow tie geometry, even though we maintained the same stability exponents along the
orbit. Both the projections and the point statistics near the foci show major deviations from the chaotic
background.
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Appendix A. APPENDICES FOR BOW TIE CAVITY

These are the appendices for the bow tie cavity.

A.1 Bow Tie Cavity Area

The area of a bow tie cavity is now given. Referring to Figure A-1, the area of the red right triangle is

1
A = 9 (LI/Q + Rm’) (Ly/2 + Ry)
The vertex of the green triangle must now be located. Letting

= (Ly/2+ RI)Q + (Ly/2+ Ry)2
and using the law of cosines

Riﬂ*RZ*CQ

. ™
SRR, —cosx—sm(gfx)

or

L3/4+4 R.L, + L /4+ R,L, ) T
= sin (X — —)
2R, R, 2

Next the law of sines gives

sina  sinf8  siny

R, R, c
The area of the green triangle is

1 1 1
Ay = §CRJ; sina = §cRy sin 3 = §RJ;Ry sin x

The area of the R, circle included in the red triangle is

1, . (L./24+ R,
Ay = §Ry arcsin (f) — B]
The area of the R, circle included in the red triangle is

1 L,/24+R
Ay = §Ri [arcsin <M) - a}
c
One quarter area of the bow tie cavity is then

Ad=A, —-A;, - A, — A,
As an example if we take L, = L, = 2, R, = 1.5, and R, = 10 then A, = 55/4, ¢ = 11.28051,
sin (x —7/2) = 5/6, sinx = 0.5527708, A, = 4.145781, o = 0.5121158, A, = 0.9396044, 8 = 0.07356975,
Ay =7.495343, A = 4.677086.
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Figure A-1. Geometry of bow tie cavity and circular walls used in the calculation of the interior area.
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A.2 Peak Of Scar Curve

The scaled scar function is

20—1)7Y% 1 _

G1 (M, A) = (—)2 =—(A=1)"Y2exp[rA /2] 22 T (1/4 — iy /2)|?
vLowoff T

Expanding near the peak [31]

D (174~ iX0/2) ~ T (1/4) 149 (1/4) (<iX/2) + 502 (1/4) (=i /2 + 5 (1/4) (<id/2) + -

and

T (1/4 = id/2)] ~ T2 (1/4) {1 =9 (1/4) (M/2)* + - -

where the digamma function [31] ¢ (z) has value

P (1/4) = —4.227454
and derivative

¢ (1/4) = 17.197329155
From the Taylor expansion

exp{ﬂ)\l/Z} N1+7T(/\1/2) + 7T;(/\1/2)24‘ %3 ()\1/2)3+ ce
we find
G1 (A, A) ~ Gy (0,4) [1 +x + {% N ;12/4)}% + {% N 532/4)}%’]
where

X1 =7TA1/2
The peak value is then the solution of the quadratic

2/ {0 (1/4) + 72} — Bt — 20/ (1/4) + 72

= ~ 0.2669043
lek) 6'(// (1/4) _ 7_[_2

Apk ~ 0.16991658
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U (Mpi, 0)] 7 ~ 3.39784
Gl (Alpk; A) ~ 11484329G1 (O,A)

~ 6.795680 (A —1) /2
where

G (0,A) = L (A — 1)"1/291/212 (1 /)

™

' (1/4) ~ 3.6256099082
The peak of the projection is then

<\/kva2> = L2Gy (Mpr, A) /A ~ 5.1675842

A.3 Calculation of Random Plane Wave Projection

We use the representation

1 U
c, (Ap)_\/%/o (1u)cos(/\pu/27r/4)%

= 4\/2/01 (1 —u?) cos (\pu?/2 — m/4) du

Integration by parts gives

1

1
/ sin (Apu®/2 — 7 /4) duzusin(/\pu2/2—ﬂ'/4)|(1]—/\p/ u? cos (A\pu?/2 — 7/4) du
0 0

1
=sin (\,/2 — 7/4) — )\p/ u? cos (Apu®/2 — 7/4) du
Noting that ’

Gs(N\p) = 4\/%/0 (1 —u?) cos (|Ap| u®/2 — sgn (A,) m/4) du

thus gives

Gs (\p) = 4\/2/01 cos (A\pu®/2 — 7/4) du — 4\/2 /01 u? cos (Apu®/2 — m/4) du

= 4\/2/01 cos (Apu®/2 — m/4) du — )\ip\/g{sin(/\p/Q —7/4) — /01 sin (Apu®/2 — 7/4) du}
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4

NG { /O 1 cos (Apu?/2) du + /O 1 sin (Apu®/2) du}

{sin()\p/2) —cos (\p/2) — /0 1sin (Apu?/2) du + /0 1 cos (Apu?/2) du}

4

NG {/01 cos (|Ap| u?/2) du + sgn (A,) /01 sin (|Ap| u?/2) du}

1 1
i — cos — sgn sin u? U
o s /) = eos (4,/2) < s () [ sin (g2t [

(R T manman (4) [T o)

4 .
WY {sin (A\p/2) — cos (A, /2)}

cos (|Ap| u?/2) du}

- {(1=5) € (Vimlrm) s (15 ) 8 (Vi /m) b= 1702 finn/2) - cos 0,72}
where the Fresnel integrals are [31]

C(z) = /OZ cos (mt?/2) dt

1 sy 11 2 du
5—/2 Cos(ﬂ't/2)dt—§—§\/;/7r

22/2 \/a
z 1 i 1 1 /2 [ du
= in (7t%/2) dt = = — i 1t22dt:———\/j i —
S(z) /0 sin (7% /2) 5 /Z sin (7% /2) 5 "5\ /m?/z sin (u) N
Note that for small arguments we can approximate this as

Gs (M) = % /0 (1 —u?) [cos (Apu?/2) + sin (\pu?/2)] du

Y N T NRRIE P
4

[0 oD

i (3-5) 502 (3-5)]

The asymptotic form for large A, is facilitated by first substituting [31]

C(z) = % + f (2)sin (72%/2) — g (2) cos (72°/2)
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1

S(z) = 5~ f(2)cos (2 /2) — g (2)sin (72%/2)

ApV/T

Thus

GO ~ (1= 5 ) [sin 00l /20 = 7 cos vl /2)]

s () (13- ) [oos 120+ gyl /2)] |

e { (15 o) (1450 ) } - s i O/2) - con (/2

Suppose A, >0

Suppose A, <0

G. ) ~ SR (1 57 ) [sin (a1 /2) = g os 13 2)

(1= 57) |eos (0l /2) + s (4,12
(-5 i

2 . .
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4 8VT
Mol V2l Al

{sin (|Ap] /2) = cos ([Ap] /2)}

where

Apl /2= 2k = kp[ £ = 2]kl — 7 (p —1/2)]

A.3.1 contributions to summation of p components

Here we list some results involved in the summation of the random plane wave projections. Note
that the increments in p result in oscillating signs in the preceding trigonometric functions and thus the
summation of these terms is small. Therefore, dealing only with the leading terms, we can write

D DRIV N RO A T A
AL T Al DRy AT i P AT P2 AV

Note that

o [ee] 1 0
| Gond== [ o =1 [ c.ona,
0 0 ™

—00

’ — /2 1 —u? 0cos u?/2 -7 u
/_RGS(/\p)dAp_zx\/;/O (1 )/_R (\p2/2 — 7 /4) d)yd
1
_8\/2/0 (1/u® — 1) [sin (Ru®/2 + 7/4) — sin (7/4)] du

= % /01 (1/u2 —1) [{cos (Ru2/2) — 1} +sin (Ru2/2)] du

8 . 8 ! : 2 2
= 7 [{cos (R/2) — 1} +sin (R/2)] + ﬁR/O [—sin (Ru®/2) + cos (Ru?/2)] du
—% 01 [cos (Ru®/2) — 1 + sin (Ru®/2)] du
8 ) 8 VR/x y 2 8 VAT . 2
= 7 [{cos (R/2) — 2} + sin (R/Q)}—ﬁ (R+1) /0 sin (7u®/2) du—&—ﬁ (R— 1)/0 cos (mu’/2) du
= 2 [{eos (R/2) 2} +sin (B/2)] — —= (R + 1) S (VEJ7) + —= (R~ 1) O (/E/r)
VT VR VR

- % (cos (R/2) + sin (R/2)]

5=
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0
16
/ Gs (Ap) dAp = —= =~ 9.027 (checked with integration)

—00 \/E
A ~on
/G dp = e 0.718
—/ L) dp = 5 _ ~0.307
b= Ay T
G(O)—i~15045
STy
2 16
—Gy =——=0.64
=G+ (0) YN 0.64335

2
ZGI ()\1p, A) ~ 2.6
Now it is better to only compute the remainder. Thus

Ao g < dA
/4 _ P _
/ Gs (\p) dA, ~4/ NE 3/2_4/ —/\3/2—8/\/—/\1;
—A,

Oo‘p|

If we consider the case where A\, = 0 we see that A\,;; = —47. We might take A, = —27 as an approximation

to the summation. This then yields

/AP Gy (\p) dAy ~ 8/v27

—0o0

and

~ 0.254

R 1
/P C?s()\p)clz7~7r\/ﬂ__/2

9 [ 2
2 G () dp ~ ——— ~0.1086
A/p Co)dp~

Actually the summation is

iG()\) i 4 _ Z B 2)N 1 ZP:LjL/OO dp
p=1 s \Ap »=1 (4mp) 3/2 o 27r3/2 3/2 - 2773/2 973/2 . 72 1) 32
- 2.6124
27r3/2 lZ 57z + 2/ P+1/2 W ~ 0.2346
_¢B/2)
A Z (47p) 3/2 = A 0.1003

At the lower end of the summation how many terms of G (\,) are required?

o
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2 o 2 o~ 4 4 1
— Gs (A — =— —
DILNEEE D ST o
The coefficient is 0.4825. Thus w1th P = 3 this Sum is 1.102. With 2 as the starting value we need P =5
to get 1.0768.

A.4 Ray Reflection and Stability

In two dimensions let us take a ray to be directed by the two dimensional velocity vector

The position along the ray is taken as

S
S = S2€y T Syey = ( sx )
Y

The inward normal from a boundary is taken as

n
ﬂ=nm§x+ny§y=< ’ )
Ny

A reflection from a boundary takes the form

v, =1 —2(n-y)n
This can be written as the dyadic operation

v, = (u—2nn) -y,
where u = e e, + €€, is the unit dyadic. The position between the nth and (n + 1)th reflections is

where t is the time.

Suppose we have a periodic trajectory around the cavity. Then we can say

N N
s=s5+ Z& :s—l-ZU At,,
n=1

where s is any point on the trajectory and w ere As,, are the straight sides of the orbit. Thus we have

i Zv At, =0

Now let us consider an orbit, say along the Y axis, between 0 <y < L and near z = 0. Let us choose the
origin at the reflection point of the closed orbit on one boundary y = 0 near the origin of the x axis. Points
on the orbit at the lower reflection point (with convex mirror) are taken as
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y=va?—z2—a=a(cosf—1),z=asind

Then we have normal direction to the mirror

n =sinfe, +cosbe, = (z/a)e, +1/1— (m/a)2gy

Consider near the axis a reflection between walls that are actually parabolic in profile rather than circular
(but with the proper radius of curvature R = a)

y=—a*/(2R)
n=(z/R)e, + {1 - % (x/R)Q}Qy

which are the approximation of the preceding equations for small x. The side length is

As, = Le
25 Ly
Let us start near the middle of the orbit and take a small perturbation from the center of the orbit §

Sp = Oe, +gyL/2
with velocity (v =1)

vy =¢e, —V1-ee, ~ee, — (1-€*/2)¢,

The position of impact on the bottom mirror is found from the simultaneous solution of

| =8+ Ut =de, +e,L/2+ {ee, — (1 - £%/2) e} (to+7)

|en

~ e, + (L/2+T)ee, + (°L/4—T)e
where tg = (L/2) /v = L/2 and 7 is small

Y

x=0+e(L/2+T)

y=e’L/4—T
(eliminating the parameter 7)

wx=0+e(L/2+°L/d—y) ~d+e(L/2~y)

and the mirror position

y =12/ (2R)
or as expected
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r~d+eLl/2
and

y=—(64+¢cL/2)°/(2R)

T =e2L/4+ (5 +eL/2)* | (2R)
Hitting the bottom mirror we have

n=((0+¢L/2)/R)e, + {1 - % ((6+eL/2) /R)Q}gy

and

v; = (u—2nn) - v, ~ ee, — (1 —52/2)gy

9 [((5 +eL/2) /R)e, + {1 - % (5 +2L)2) /R)Q}gy] [(55 L E2L/2) /R~ {1 _ 2y % (6 +<L/2) /R)QH

~ee, — (1—€°/2) ¢,

w2 (G4 eL/2) /R ey + 41— L@ vers2y r? Ve, | |1 - 22— L6 ers2) /R - (5 +22L)2) /R
2 Y 2 (

~[e+2(6+2L/2) /Rle, + [1 —e2/2 - 2((6 +2L/2) JR)® — 2¢ (6 + £L/2) /R}
and thus

Vip~e+2(d+eL/2)/R

vig~1—€2/2—-2((0+¢eL/2) /R)® —2e (6 +¢L/2) /R
Thus back up at the middle at time t; —tg — 7~ L/2+ 71 =L/2+ 7,

S10~0+eL/24+v1e (L/2+71) ~6+eL/2+ {e+2(0+¢eL/2) /R} (L/2 4 T1)
sy~ — (8 +¢L/2)* ) (2R) + v1y (L/2 + T1)
~L/2—(0+eL/2)*/(2R) + {71 —e2/2-2((6+¢L/2) /R)* — 2 (6 +¢L/2) /R} L/2

Let us determine 71 to make s1,, = L/2, the center
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(6+2L/2)° ) (2R) + {2/24+2((0 +L/2) /R)’ + 2 (6 +L/2) /R} L/2 = 71 L/2
Thus 71 is a quadratic quantity. Then we find

vig ~e+2(0+¢eL/2) /R

S1p ~ 8+ L2+ v1,L)2
or

Vg ™~ (2/R> S0z + (1 + L/R) Vo

In matrix form we can write the transformation over half the orbit as

An—i—l = CAn
where the row vector of displacement and velocity is

Ung
=)

C:< 1+L/R 2/R )

and where the transformation matrix is

L(1+L/(2R)) 14+ L/R
Then over the full orbit we have a transformation matrix

o2 1+ L/R 2/R 1+L/R 2/R
= ( L(+L/(2R) 1+LJ/R ) ( L(+L/(2R) 1+L/R )

2(1+L/R)*—1 2(1+L/R) (2/R)
2(1+L/R){(1+L/R)2—1}(R/2) 2(1+L/R)? 1
The eigenvalues are found from

det (C—MN)=(1+L/R—X°*—(L/R)(2+L/R)=0

NM-X21+L/R)+1=0

or

A+ =14+ L/R++/(1+L/R)?*-1
The eigenvalues of C? are then the stability exponents
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Ay =X =|2(L/R)2+L/R)+1+2(1+L/R)\/(L/R)(2+ L/R)
Note that

]. = >\+)\7 = A+A7

A.5 Higher Order Bow Tie Cavity

Starting from the exact form of the Helmholtz equation with the substitution

W (57 <—) ei’ysinﬁ LW (_574-) e—i'ysinf
gives
oPwW L o*w
SRS
and using sinh® ¢ ~ ¢* 4 ¢*/3, we have

ow
— +2iycosE—— ('yQ sinh? ¢ — ivy sing) W =0

9¢

o*Pw  9*wW ow
+ + 2iry cos 22 41 42¢Y /3 —iysiné) W
o2 T T $oe T (v?¢ +77¢7 /3 — iysing)
Transforming to the variable
T =+/27C
gives
2 2 1
aaTVQI/+2 %VZ + 2iycosé OV; ( %+ 74/31751115) ~0
Letting
W = #\I!
Veosé
gives

02w ov 1, 1 [0%0 ov 1 3 1
82+10055—£+— \PN_[BQ“ +tan§—— 5 (1+§tan £>\P+ET\I}:|

Now taking the expansion in the large parameter ~

o0
=" (2y) "0,
n=0

gives

02w
320 £—§+—2\110z0

and
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(’)2\111

0%y, 8\110 1 (
— + 1w, ~ + ta
or? f § L= 352 N §
Next taking
0_5 =sec
or
¢ d
2/ § arcsinh (tan¢)
o COS
yields
Py OV 1,
— i Uy ~
' 072 +1 9o + 4:7' 0 0
With
sinho = tan ¢
cosho =secé
we also find
0*v ov 1
8721 +1 8_1 + 472\111 ~ — |cosh? &
Letting
Vo (0,7) = e T (5,7)
gives
0, 72
aTQ + (Z+5)w0—0
Then
0%, ov; 1,
— + -7 =
or? i oo + 47 !
1 2 20 —20 - 1 20 —20 1 3 20
- _ZS Yo (6 +2+e )—2351% (e —e )+ §+1_6€

Thus we take

Uy = ¢1,0€_i80 +1y j€

)

—iso 4 w1,26(2—is)0 + w1,72e

1
\I/()-‘r—T\IJ

3
1+ -t
+ —tan?¢ 5

2

oo

1

3
= (1 +3 sinh? o—)

1
5 \I/()-‘r—T\I/

12

43
16°

—20 1 —1is0
2 >¢O+ET4'¢JO] e is

—(2+is)o

|
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wlefisa + w1’2€(27is)0 + ¢17_267(2+is)a
where

0% 72 1 1
3730 + (Z + 5) P10= 3 (‘32 + Z) Y (8,7)

9?4 72 1
37_;1 + <I + 5> Y1 = —5747% (s,7)

92 2 1 1 3
af;? + (TZ +i2+ s) Y12 =5 (_532 S _> Yo7

8
82w1 —92 7'2 . 1 1 . 3
a2 T\7T _12‘1‘5) P12 = 3 —532 t+is+ g) Yo (s,7)
These are forms of the equation of the parabolic cylinder functions. Notice that if we set

Vigo = i% (‘%82 Fis+ g) Yo (s, 7) = [Z + % (—132 + §>} Yo (s,7)

2 8
7/’T,+2 = 7/)1,—2
dpy 4o
—ar =0

w172€(27is)0 +w1,_267(2+is)0 — [,(/JLQeQU +w17_2€720] e 50 — I:,(/J172€20' +w>{,26720] e~ 150

=2 [Re (11 5) cosh (20) + i Im (1, 5 ) sinh (20)] e7**7
The solution that is outgoing in 7 is [30]

Ui (s,7) = e m(sHi/2) /4 (—is,Te*i”/‘l)
Yo (5,7) = coRe [Ug (s,7) + €U (s,7)]

= 5¢ [(14+e ) Uy (s,7) + (1 + € ) Us (s,7)]

Thus since we must solve these equations for right hand sides which consist of the function plus its conjugate
we can write

1 2
Uiz =+

222



o? 1 1 3
c‘;ﬁz +<4 +z2+s> f%:—i (—582—i8+§)CU+

Puy (7 1/ 01 3
52 T <4 +12+3> (2) —5 (552is+§> Uy

1 2
P10 = g)—z + 1/’57)—2

82¢gl) 2 72 1
= . n __Z2
972 + ( 1 12+ 5> 1,22 = 5

PP, (2 2 L/ 1 - N
55+ (Z—z2+s) ®), = -3 (—582+zs+§)c Us
We thus see by comparison that

1 2)*
W) =%
2 1)*
) =i,

Therefore

w1’2€(2—is)o+w1’726—(2+is)a' — ( g}% _i_wf%) 6(2 is) T4 (w@)* +wgg*) e—(2+is)a — ¢ 6(2 zs)a_~_,¢ —(2+is)o

and

(wl 26(2 is)o + ,(/} 2-}-13)0) iy sin & + (wl,Qe—(Z—is)o’ + w1’72€(2+is)o’> e—iwsiné

— (1/}172620 + 1/1*{726720) ei'ysinﬁfiso' + (1/)1726720 +1/1>{72620) efi'ysinﬁJrisa'

20 6720) (ei'ysinffisa o efi'ysing%»isa)

= Re {1/}172} (62 6720) (ei’ysingfiscr + efi’ysin§+isa)+i Im {11[}172} (6

=4Re {1); 5} cosh (20) cos (ysin — so) —4Im {3, » } sinh (207) sin (ysin € — so)

s — —

= sty (s,7) cosh (20) cos (ysin€ — so) + % 2 3) Yo (s,7)sinh (20) sin (ysin & — so)

Note that these obey the evenness condition. There are also homogeneous solutions to these equations, but
these in general do not satisfy the evenness condition at the same value of s

Note that
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62 7'2 8U+
{a 2*(4 +8>]W__U+

can be used to easily solve for that part of ¥, except the 7* term on the right hand side

0? 2 1
;ﬁ;’o + (TZ + s> (A -3 <—s + ) Yo (8,7)

1 1\ 0
Y10= B} (‘52 + Z) alﬂo (s,7)

or we can also take (because 1), satisfies the homogeneous operator)

10 1
P10 = 39 (52 + Z) Yo (8,7)

The method of variation of parameters can be used to solve the remaining equation for the 7# term

9?1 72 1
37.;1 + <_ + 5> P1q = — 1",

4
But we can also guess the form

82 7_2
ot ()] o=
d [ 92 72 02 72 dwo
i lomt (T )| w= g+ (o)) B v ar=o
[P (T (o (7 Ay | diy 3
W{W*(Z“)WO—[W+<Z+S)] T gt =0

_ 3%
wl,l =T dr

2 2 2
(5o = [f (5)](52) b £

If we take n =3

d d 0
1/’1,1 = 7—3—6,26_0 'I/J() + Br 2’1,]10 + C ad)()
0 2 d
aqf_;l+<4 )1/111 ;[}072(272+63)w0A(72+2$)¢0+B<2w0+4f%)Cwo

Setting A = —6s, B = —3/2, and C' = 125> — 3
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dy 3 oY
_ 2 APy 9 o 2 1\ 9%
241/}1’1 =T (7’ 65) = 27’ Vo + 3 (45 1) 95
321/11,1Jr 7'_2+ " 77i4¢
o2 4 )T T o
Note that
T (72 di 1
Y1 =10+ Y11= 1 <F - 5> d_TO - ETQ%[JO
Because
dy s dy
L) =-37220) =0

we see that this correction already satisfies the evenness condition. Indeed all the preceding terms satisfy
the evenness condition.

A.5.1 boundary conditions

Now let us examine the boundary conditions for this higher order solution. First it must vanish at the
wall. We assemble the solution as

u=W ()M ME LW (=€, (e e

- /—15 [0 (€,0) e + W (=€, () e ¢]

1
Vecosé

~

[T (£,¢) €58 4+ Wy (—€,¢) e 58] 4 L1

57 Jagst 1 (6T W (€. ]

~

\/ci_sf cos (ysin& — so) {wo (s,7) + %wl (s, T):|

1 1
+_
2y y/cos &

mee% + 1/’1,723720} el SImETIsT 4 {7/’1,23720 + ¢1,7262”} e~ Sing*“"}

~

\/(320_85 coS (’7 sin§ - SO’) {1/)0 (Sa 7_) + %1/11 (Sa T>:|

1 1
+Z Vcos&

[(’(/J172620 +¢>1k’26—20) ez”ysinf—isa + (w1,26_20 +¢T,2620) e—i'ysin£+isa]

~

\/Ci—sg cos (ysin& — so) {wo (s,7) + %wl (s, T):|
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+% \/ci—sg [4Re {5 (s,7)} cosh (20) cos (ysin €& — so) — 4Im {4, 5 (s,7)} sinh (20) sin (ysin € — s0)]

2 1 ) p .
~ mcob‘ (ysin€ — so) [wo (s,7)+ > {% (% —s> % _ E72¢0}]

—1—%% s1g (8, 7) cosh (20) cos (ysin€ — so) + % <52 - %) ¥ (s,7) sinh (20) sin (ysin € — SJ)]
The second term sin (ysin€ — so) does not obey the wall boundary condition at the same frequency as the
cosine part. Now we assume there is a small shift in the value of k, and k, still maintaining the value of
s to satisfy the zero normal derivative (evenness) condition at 7 = 0. This redefinition of k, allows the
cos (ysin&, — sog) factor in the zero order solution to be slightly different than zero at the wall, so that it
can be made to cancel the term involving sin (ysin&, — sog) at the wall. This also means that the first
order correction leads to a first order correction in the eigenvalue k to maintain the same value of s. The
new value of k is found by setting

=

yeot (ysing, — sog) ~

<52%> sinh () cosh (o)

with

sin §; = tanh oy

1 d+¢
00 =5 In (d—i_ﬁ) = Arcsinh (\/K/R)
It will be a small perturbation k£ — k [1 + 0 (1 / 'yQ)]. Note that the definition of the reflection phase ®q

must be consistent with the pth component of the eigenfunction, now with both zero and first order (etc.)
variations included; the construction of u in this section is really w,,.

A.6 Asymptotic Orthogonality In The Bow Tie

Let us consider the orthogonality properties along the scarred orbit if we take the line integral along
the orbit

Ouy %o 18up Uy
/ and€ /0 uph ac ——hedé = / upa dé

where the metric coefficients in this elliptic cyhnder system are

he = he = dy/sinh® ¢ + cos? ¢
This form is important in the normalization condition where integrals of the form

t 92y
Y owon

arise. We might also have defined the projection operator in this manner

dl
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and thus also required

‘ 2
0° Uy
= ! —dl =
/_e (u ;Cprup> Jwdn 0

Thus we investigate the orthogonality of the integral

o 8up,
U d¢ =
/O 4 84— 5

o
P (sp, ¢V de) Z—Ié} (sp/, ¢V 2kd) / cos [kdsin& — spArcsinh (tan €)] cos [kd sin € — s,y Arcsinh (tan )] d¢/ cos ¢
0

8w Arcsinh (tan§,)
=1 (sp, ¢V 2kd) a (sp/, ¢V 2kd> / cos (kdtanh v — s,u) cos (kd tanh u — sy u) du
0

L (scvamD) 2 (o cvama) [T

cos [(sp — sp) ul du

1 b Arcsinh( Z/R)
—|—§w (sp, QY 2kd) 8_15 (spr, QY 2kd) /0 cos [2kd tanh u — (s, + spr) u] du

where
u = Arcsinh (tan§)

tan & = sinhu

sec? & = cosh?u

cos & = sech (u)

Z—Z = digArcsinh (tang) = \/ﬁ sec” § = sec§

dilﬁ siné = cosé&

and
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kdsin§, — sparcsinh (tan &) = k¢ — spArcsinh (VZ/R) =p-1/2)nr=k!,p=1,2,3,..

arcsinh (tan¢,) = %ln (%) = Arcsinh (\/E/R) =In (\/E/R—i— 1 —|—€/R)

kdsin&, = kf
Noting that

(sp — spr) Arcsinh (\/K/_R> =@ -pr

the first integral can be written as

/Arcsinh (V/R)

0

cos[(sp — spr) u] du = %Arcsinh (\/E/_R> /07T cos [(p) — p)v] dv

= 0pp Arcsinh (\/é/—R)

Noting that

(sp + sp) Arcsinh (\/K/R) =2k —(p+p — )7
the second integral can be written as

cos [2kd tanhu — (s, + spr) u] du

/Arcsinh (V/R)

0

= Arcsinh (\/E/_R> /1 cos [Qk:d tanh {uArcsinh (\/K/_R) } —u2kl+ (p+p —1) ﬂ'u] du
0

Now because of the large values of kd at high frequencies we expect this to be well approximated by the
method of stationary phase. Setting the derivative of the cosine argument to zero

2kdsech? {uArcsinh (\/E/_R) } Arcsinh (\/E/_R) —2kl+(p+p —1)7m=0

= 2kdsech® {uArcsinh (\/E/—R) } Arcsinh (\/€/—R> — 2kl + (kp +kp)l=0

Taking k,, k,y and k to all be near one another, we see that this equation becomes

2kdsech? {uArcsinh (\/E/_R) } Arcsinh (\/K/_R> ~ 0

Because sech(z) is monotonically decreasing we can write

o (VIR VT ITR) < 2t {uhacsins (VITR) v (VT
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< 2kdIn (\/E/_R+ 1+ Z/R)

Thus because kd and k¢ are presumed to be large, we do not expect a stationary point to be in 1 > u > 0.
Thus the asymptotic evaluation of this second integral arises from the end points of the interval. However
because the argument ranges from 0 to (p+p’ — 1) 7, an integration by parts evaluation [36] leads to a
contribution only at the second term, or

/1 cos [2kdtanh {uArcsinh (\/E/_R)} —u2kl+(p+p —1) ﬂ'u] du=0 (y7?)
0

Alternatively if we consider the line integral along the orbit

§0 EO 50
/ Up Uy dl = /0 UpUp hedE = d/o Upty \/sinh? ¢ + cos? dE ~ d/o Uply cos EdE

C
where the final form is near the axis. This form arises in the integral of the square of the eigenfunction
as well as in the projection operator

and in

¢
/ (ur - Z C;Tup> uydl =0
—
P

This form amounts to keeping the metric coefficient in the integral so that
o
d/ Uplyy cos EAE =
0

o
dvp (sp, QY 2kd> P (sp/, vV de) /0 cos [kdsin & — s,Arcsinh (tan )] cos [kdsin  — s,/ Arcsinh (tan )] d§

cos (kd tanhu — s,u) cos (kd tanh u — s, u) sech (u) du

i (o) o (s cvmma) [T
0

- %li/J (Sp, 4\/@) (0 (S;ﬂ{\/%) /OAI'CSiHh(\/W_R> cos {(sp — spr) u} sech (u) du

cos (2kdtanh u — s,u — sy u) sech (u) du

+C_217/1 (Spa C@) 7/1 (Sp’7 C\/%) /OATCSiHh(\/e/_R)
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Because, for large radius the upper limit is less than unity, the hyperbolic function coshu does not vary
much from unity. Thus orthogonality almost holds again to second order.

A.7 Comparison of Source and Boundary Forms Of Energy Theorem And
Normalization

The normalization of the function, or the choice of ¢, is now considered. We wish to compare a source
free form of the energy theorem with the source form discussed previously.

A.7.1source free form of energy theorem

The energy theorem can be written as [33]

OE . . OH [0 (wp) . 0(we) OE 0J
= H E — | = H-H . . L
v B e X&u) Z[ Ow st Ow ow — T Ow
Taking the cavity region to be source free and simple and applying the energy theorem to the upper half of

the symmetric cavity we obtain

7{ 8—Exﬂ*+ﬁ*xa—ﬂ -QdS:/ 8—Exﬂ*+ﬁ*xa—ﬂ ~ﬂdS:i/(uﬁ-ﬂ*+5E~E*)dV
S 6 aw Sscar 8 c%J v

oy (oY)

where Ss.q- is the surface of the scarred orbit and n in the divergence theorem points out of the upper
region. Noting from iwpH = V x E that pH - H* = (V x E) - (V x E*)¢/k*. In two dimensions,
taking E = uge,, we find that VX E = V x (ue,) = Vu xe,, e, X (Vuxe,) = Vu, eE - E* = 5\u|2,
pH - H* = |Vu|® e/k? so that

ou (1 _ B L0 (1 —i - ,
/s [% (ZV“) Y e (qu)] ﬂdS—WQ/V(k ul? + [Vul )dv

Now using

|Vul> = Vu - Vu* = V- (u'Vau) — u*Viu = V - (u*Vu) + k2 [u]?
and the divergence theorem gives

ou (1 N o, 1 B k2 ) 1 .
/5 {% (ZV“ > Y ow (;V“ﬂ ‘ndS = QF/VM v + E]{S(u Vu) - ndS

ou_ e Ou ou* . 0%u k2 2
o Nasv =g s [ 55 -] 45 =2 [ v

Specializing the integral to an area and applying this just above the scarred orbit, taking the wavefunction
to be normalized to unity over the entire symmetrical cavity

or

/ luf? dA = 1/2
A

gives
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ou ou* . 0%u k2
— U dl=—
Cvar LOW O Owdn w

Now if u is constructed as a real function

k? 5 0 (Ou 0u
Pl /C e (%/ “) dt = - /C Yo

To obtain the final form, we are assuming that the normal derivative, without the frequency derivative
applied, vanishes on the symmetry axis at the eigenvalue.

A.7.2 source free symmetric bow tie trigonometric series
The source free energy theorem along the horizontal orbit thus gives

£ 92y
i
_¢ OwOy
If we substitute the Fourier series expansion for the eigenfunction

dx = wpyeon

u(z,0) = Zup (z,0)

and invoke orthogonality, we find

L 2
0%uy
> [ .00 5 (@.0) o =

A.7.3 source form with entire eigenfunction current

Alternatively if we use the energy theorem with the current source over the entire cavity

/ (@J;+u*ajz)dszizgo/ lul® dS
A aw 5‘w A

Now in this symmetric case, if we take the current source to be

i2 Ou
= oy @),y
and the integral over the entire area of the cavity to be unity, we find

¢ 0%u
u(z,0) ——— (2,0) dz = wpye
/—Z ( ) )aw6y< ’ ) Ho€o
the same as the preceding result. This seems to confirm that the source should include the entire
eigenfunction expansion.

A.7.4source form with single component

Next we instead take the source to be a single Fourier component
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i2 Ouy
2 5 (y) Sy, y =0
Wit ay (y) 0,Y

where the strength Sy will be discussed in a moment. Inserting this gives

J, =

L 2
0%uy
[ 00) 5 (0.0)do = i

Inserting the Fourier expansion and using orthogonality gives

¢ 2
9 up _
So /—/z up (,0) Dwdy (2,0) dz = wpgeo

Now comparing this with the preceding results

—¢
This seems to imply that the normalization of the eigenfunction is connected with source strength Sy in the
energy theorem.

14 2 ¢ 2
0°u 0*u
/ Up (x,O)SoawaI; (z,0)dx = E /Zup (z,0) awaz (z,0) dx
)

A.7.5 comments on source current strength

The frequency derivatives in the energy theorem, in preceding sections of the report, were estimated
by using the Weyl asymptotic eigenvalue spacing for Ak? and a phase shift of the pth component alone
of A®y ~ 2. This average ratio was then multiplied by the square of a Gaussian random variable (with
unit variance). If more than one p component is simultaneously present, it is not clear how to define the
phase shift from eigenfunction to eigenfunction. Yet, evidently this approach applied separately to each
term (with Sy lumped into the frequency derivative and providing the full phase shift), seems to yield the
correct normalization term by term.

Perhaps a physical view of the justification can be conjectured. Suppose we place in the cavity above
the scarred orbit a filter which is transparent to fields with cos (k,x) variation (or the elliptical pth
variation), but a perfect reflector for all other p variations. We might expect that this filter, being passive
and lossless, and only filtering out other p components in the vicinity of the orbit (which at high frequencies
is a small fraction of the area), will not disturb the general behavior of the eigenmode, and not enter into
the energy theorem. If this is so, then the scar region is simplified to involve only one p component at a
time, and the application of the method in such a fashion, seems reasonable.
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Appendix B. APPENDICES FOR STADIUM CAVITY

These are the appendices for the stadium cavity.

B.1 Higher Order Stadium

Suppose now we consider the higher order case. The approach used in the bow tie cavity above is
sketched here for the stadium case.

B.1.1 region one

From the bow tie we have for Region 1

2

+C’1%ﬁ s1q (8, 7) cosh (20) cos (ysin € — so) + % <52 - %) g (8, 7) sinh (20) sin (ysin & — 30)]

¥ (s,7) = cRe [67”/4U+ (s,7)+ e”/4ei%U_T_ (3,7)]

ot
O’—/O ; = arcsinh (tan &)

(o))

=25

Next let us examine the behavior as the focal region is approached ¢’ = m/2 — ¢ — 0
siné =cos&’ ~1—¢€%/2+¢6%/24
cosé =siné ~ ¢ (1 — 5/2/6)
o = arcsinh (cot 5’) =1In (cot & +csc 5/) ~In (2/5/) — 5'2/12

cos (ysin& — so) ~ cos {’y (1 —5’2/2—1—5/4/24) + sln (5//2) —|—s.§/2/12}

12

~cos{y(1—¢%/2) +sln(¢/2)} - D] (v€%/2+ s)sin {7 (1 — £?/2) + sl (¢'/2)}

1
cosh (20) ~ 5620 ~ 2/€"” ~ sinh (20)
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wn O (14¢7/12)

Ve
{cos {7( 5’2/2)+51n (¢ /2)} £l2 (75'2/24—8) sm{v( —5/2/2)+51n (f'/2)}}

e {5 (5 ) v lsr) - 50 (5}

1 2

27 \/_ 5/2

+Ch—

51 (8, 7) cos {'y (1 — 5/2/2) + sln (E'/?)} + % (82 - %) Yo (8, 7) sin {’y (1 - 5/2/2) + sln (5'/2)}
If we take 7/ = /27¢' and s’ = —s

22 (L
~ 1
u Cl —T/ + 247

7_/2 1 7_/2 7_/2 . 7_/2 1 7_/2
[COS{W—T——S ln<8’y)}—%( /4—5)5111{7—T—§s ln<8’y)}]

g {5 (5 ) v lsr) - 50 (5}

(27)"/* 2

\/77 /2

12 2 3 /2 /2
/ 7 1 / 7 1 12 1
{ S?/JO(S,T)COS{’Y 25 n( 7)}+2<3 o (s, 7)sin < 25 n 3

B.1.2 region two

+Ch

Second let us look at Region 2 where the substitution
u=e "0 [W ()TN L W (6, —im) e TN ] > &

Y (s, 7)) =cRe[Uy (s, 7) + e_iq’onkr (s',7)]

gives

W OPW

852 4 {2 +2zrybmh§—w—|—(wc%h§+’y cos §) =0

¢
Now taking & = +m/2 —
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o*w L oPwW
8512 8<

Expanding to two terms in &’

ow
——5 + 2¢ysinh(——

ac (i'y cosh ¢ + 2 sin® 5/) W =0

2 21
3851//2[/ + aag + 2iysinh C—VZ + (iycosh ¢ + 727 — 24 3) W =0
Now letting
W = ! v
~ \/sinh
gives
2 2
.1 0] :IQJ . .1 0 \121 B .1 coth(aqj 3 coth? (T — 1 1
V/sinh ¢ 9¢ V/sinh ¢ 8¢ v/sinh ¢ 4 \/si 2 \/mnh

+2iysinh ¢ U =0

v+ (i’y cosh ¢ + 72"

1 o 1 2414 1
\/sinhCG_C - COShc\/sinhC —7¢ /3) v/sinh ¢

v 9% ov 3 1

2g7 + gz + (@iysinh( —coth ) 5= <v2§’2 +Teoth?¢— 5~ 725’4/3) v—
T = /2n€’

0% 72 1 3 1 92

572 —l—zmnhg‘—g—k—\ll—Z {coth( o (Zcoth2<_§_7_/4/12>\1,_8_<2}

¢
o = /OO snﬁ = = Intanh (¢/2)

cosh ¢ = —cotho’
1/sinh ¢ = sinh o’

0%
80./2

82\11 a\If 2 1 v 1
T — |—2sinh o’ cosho’=— — [ Zcosh? o’ — = — 7/4/12 | ¥ — sinh? o’
a2 "' ogr Q’y o 2

Substituting the expansion

gives
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20~
W\Ilo—f—lao_l +ZTI \I/[) 0
and
0% Ov T'? . ov 3 1 . 0%
BT’; + ZT‘} + T\Ill = |—2sinh ¢’ cosh o’ 80? — <Z cosh? o’ — 3 7'4/12> U, — sinh? o 60’20
Taking
Wy = o7,
o2 1
72 %o + <ZT/2 + 3’) Po =0
and

82\111 8\1}1 ’7"2 . . 3 1 . —is'o!
5 TigT + T\Ijl = {zs?smha' cosho’ — Zcosh2 o — 3~ 71/12) + s sinh® o’ | e Yo

_ is' (620/ o 6720"> o i (620' L 24 6720'/) + 1 +7'I4/12+ i (620/ o 2_'_6720/) efis/a'w
2 16 2 4 0
Letting

U, = wle—is'o + w1’2e(2—is')a’ + ’(/J17_26_<2+i5/)a/

02 1 1/1 1
(87_,2+Z7'/2+8/> 1—§<18/2+6T/4)1/}0

o* .1 1/,., 3 2
W :|:’62+1T/2+SI) wl,:l:Q = 5 (:tZS/ — g +7) ’l/JO
From the bow tie work we see that the only difference is that the ¢); terms have reversed sign. Thus

7 (2 N dig 1,
1= (F‘S) i "1 Yo

and
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1 ) .
+— {—3 (s/Q - %) sinh (20") + s’ cosh (20”) | e 7 1) (s, 7')

1
v/sinh ¢

W = v

U= e*iﬂ'/402 [W (5’ C) ei’ycosh( +W (5’ C o i’lT) efi'ycoshq

_ e—z71'/4cv2 Sinhc [\I/ (57 <) Pal cosh ¢ 440 (f»C _ iﬂ) e~ cosh(]
and
2
~ C _—
“ 2«/sinh(
o 1 / 7’2 / d o 1 I, h . 4
1/10(3,7)+g il it W@/;O(s,T)JrZT Yo (s',7") p | cos (ycosh( — s'o" —7/4)
2 1
C il
Ry
B (s'2 - z) sinh (20") sin (ycosh ¢ — s’0” — 7/4) + s’ cosh (20”) cos (ycosh ¢ — 8’0’ — w/4) | ¥, (', 7")

where we have used

o[
o  sinh( oo Sinh ¢

oo = In[tanh (¢o/2)]

sinh (¢ —iw) — —iy/sinh ¢

Now let us examine the limit as the focal region is approached { — 0
sinh ¢ ~ ¢ (14 ¢%/6)
cosh¢ ~ 14 ¢%/2+ (/24

o’ =In[tanh (¢/2)] ~ —In(2/¢) — ¢?/12
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cosh (20") ~ %6_20, ~2/¢* ~ —sinh (20")
cos (yeosh¢ — s'¢" — m/4) ~ cos {7 (1 + ¢*/2+ ¢*/24) — s'In(¢/2) — /4 + s¢*/12}

~cos{v(1+¢*/2) —s'In(¢/2) —m/4} — % (v¢?/2+s)sin {y (1 + ¢*/2) — s'In(¢/2) — 7/4}

7_/2

d
U~ 02% (1-¢*/6) [wo (s',7") + % {—T/ (7 - 5’) %wo (s, 7") + iT/Q’(bO (s, T’)H

|:COS {v(1+¢*/2) —s'In(¢/2) — m/4} — % (v¢?/2+ s)sin{y (1 +¢%/2) — s'In (¢/2) — 7r/4}}

jo, 2 Lt2
24y P

{_% (‘912 - Z) sin {~ (1 + C2/2) —s'In(¢/2) —w/4} + 5" cos {7 (1 + C2/2) —s'In(¢/2) — 77/4}] o (', 7")

Now if we set 7 = /27 and s = —&’

T

n 2 2 1/4 2 / / 1 / 2 !/ d / / 1/ / /
u~ (=1)" Cy (]; <1—m) [%(SJ)Jrg{—T <?—s)F%(S,T)JrZTQ%(S,T)H

{cos {’y +72/4+ %sln <g) - 77/4} — % (7?/4+ s) sin {7 + 724+ %sln (g) - w/4H

229" 1
vTooT?

1 3\ . 1 72 1 T2 ;.
[—5 (82 - Z) sin {’y+72/4+ 58111 (g) —71'/4} — scos {74—7’2/44— §sln (5> - 77/4}] Yo (8, 7)

B.1.3 region three

+(=1)" Cy

Near the focus £ = /2 and ¢ = 0 we might try approximating the Helmholtz equation

2 2
Z_§+g_£;+72 (cosh2C—sin2§)u:O

or
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0?u  0%u 9 9
— +— + sinh? ¢ + cos® &) u =0
as £ = m/2 — £ (we are assuming that ¢* << 1 and that &* << 1)

2 2
g—g—l—g—;—kyz(sinhQ(—i—sinQ{)u:O
or

Pu | Pu 2 (2 | 4 2 4

—+ =+ (C+ B+ -3 u=0

85/2 aCQ

Separating variables

u=X(£)Z(C)

f 85/2
Taking the separation constant to be 2vg we find

*X 2412 2,14
@+(*279+7 7 =777 /3) X =0
°Z 2,2 2 -4
8—8+(2'yg+7 CH+¢3)Z =0
Thus we find parabolic cylinder equations in both directions. Letting
&vay=1

in the first and

CVay=r

in the second, gives

0*X 4+ =g+ l 2 — iT_ﬂl
a2 Iy 27 12
0°Z B 1 74
-z - 7 _
o7+ <g+ 1 > 2y 12

Substituting the expansions

192X 1027
+ 427 - 725/4/3) + <§0—C2 +92C+ 72C4/3) =0
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(oo}
2= 20"
=0

the resulting leading equations can be solved easil}: The leading solutions are

C
u = %XZ = COCRe [U+ (79’7_/) + B/U—T— (7977—/)} Re [U+ (g’ T) + BU'T— (g’ T)}

— CycRe [U+ (—g,g’\/ﬂ) +BU (—g,i/\/ﬂ)}

Re [e’i“/4U+ (g,g\/ﬂ) + e”/‘lBUi (g,(\/ﬁ)}

For purposes of matching we take g = s = —s’ and B = ¢'® and B’ = ¢/®0 = ¢~i%0

u= %cRe [U+ (s',fk/ﬂ) ety (Sl,ﬁ/ﬁﬂ

cRe [ff”/‘lUJr (—s/,(\/%) + et/ AeiPorrx (—3’,§\/ﬂ)}

Now we need to obtain the first order solutions.

82X1 ’ 1 92 7/4
Le)x = g,
oz * <5 3T E e

Xo = cRe [UJr (s',7") + eii%Ui (s, Tlﬂ
ey 1, u
W—i_ (8+ZT )Z1 __EZO

Zo =cRe [e*i”/4U+ (—s',7) + (2i7r/4<3i'1>(’U_*|‘r (-5, 7')]
From the bow tie

2411 =7 (7'2 — 65) % — 272100 +3 (452 — 1) %

321/’1 1 72 Ly
92 <T + 5> Vi1 = 7 Yo

Yo =cRe [Us (s,7) + €U (s,7)]
we see that

dX() 3 2 92 8X0
—=7""Xo+3(4s° -1
dr’ 2T 0 3( 5 ) 0s’

—24X, =1 (7’2 —6s")
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dz, 3 0Z,
2471 =T (7’2 - 65) d—o - 57'2Z0 +3 (432 - 1) 0
T
However it may be convenient to introduce a first order constant to the separation constants

g==s: 58 (48 1) =—s 58 (48 1)
yielding

0%Z 1 4 1

92X 1 4 1
67’21 + <S/ + ZT/2> Xl T—XQ — = (48/2 — 1) XO
From the bow tie we had

0%, 72 1 5 1 1 4
g2t (z“) 1=73 (‘S +z> Yo (s:7) = 357 Yo
and thus

dX 3
—2U4X, =171 (7”2 —6s) dT’O 57"2)(0

dZ, 3
2471 =1 (7'2 — 65) d_o - =727
T
Now the first order solutions obey the symmetry conditions on the scar orbit. The solution is then

1
u~ XoZo + % (XoZ1 4+ X12y)

CO CO 1 2 dZO 3 2 r( 12 / dXO 3 2
~—XoZy+ —— | X| — — —=T"Zy ¢ — Z, = —=77X
PR o+ ¢ 185 { 0{7’ (T 63) e 27 0 09T (’T 63) = 27’ 0

~ CocRe [Uy (s',7) + e Ut (s, )] Re [67iﬂ/4U+ (s,7)+ e”“ei%U_”f_ (s, T)]

1 , d 3 ) . .
+EC’OCRe Uy (8, 7)) + e ®ouUs (s, 7] {T (7? — 6s) e 572} Re [e_Z”/4U+ (5,7) + ei™/Aei®oys (s, T)]

1 —in/4 im /4 _idg 7T d 3
*ECOCRG [e / Uy (s,7) +e /4 ot (5,7)] {T/ (T/2 —65’) S 57’2

dr

Re [Uy (s, 7') + e 0UT (s, 7)]
or
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C
w22y (51, 7) o (5,7)

1 C d 3
+@70¢0 (s',7") {T (7% — 65) i 572} Yo (5,7)
1 C d 3
*E?od)o (s,7) {’T/ (7" — 65") i 57'/2} o (8',7)

In order to approach the other two regions we use the expansions
Ui (s,7) = e m(sHi/2) /4y (—is,Te*i”/‘l)
Uy (577) ~ ei’r2/47(1/27is) InT _ ei72/47_i571/2 T 400
Uy (s,7) = e im/Amit/2 (—s,7) /\/5
¢ = argl' (1/2 —is)

n+1/2—is) 1
I'(1/2 —is) 27nlr2n

Uy (5,7) ~ ei72/47_is—1/2 Z (_Z)n I'(

n=0

~ T A2 1] (1~ i2s) (3 —i2s) / (87%) }
Yo (8,7) ~ 2ccos (®g/2) 772 cos [72/4+ sIn (7) = ®o/2 = 7/4] + 2ccos (Bo/2) m

{—scos {r?/4+ sIn(1) — ®o/2 — w/4} + % (% - 52> sin {72/4 + sln (1) — ®y/2 — 77/4}]

Yo (8',7') ~ 2ccos (B /2) 72 cos [t /4 + ' In (7') + Dy /2]

1/3
+2¢cos (By/2) 752 [—s’ cos {7 /4 + s'In(7') + ®o/2} + 3 (Z — s’2> sin {7?/4+s'In(7') + @0/2}}

B.1.4 matching

If we move the Region 3 solution into Region 1, then 7/ >> 1

u ~ Cy cos (B /2) 7/~ 1/?
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(1—s'/7%) cos {r?/A+ s'In(7') + ®o/2} + ?1,2 <% — 8'2) sin {72/4 + s'In (7') + ®o/2} | 1 (s,7)

1 Cy NN d 1 5
MU ICELRA il i B v AR

1 Cy T [1? N\ d 1,5 ,
—%?%(377) T\ %) g7 T (YoshT)

If we move the Region 3 solution into Region 2, we take 7 >> 1

C
u~ =20 (5, 7) g (5,7)

d 3
—Ej% (s,7) {’T/ (7" - 65') i 57/2} Yo (s, 7)

The focal shift ¢ is introduced in Region 3 by means of the replacement

2
7 = Ak + 72 ~ 7 <1—|— ]j;f)
-

when moving into Region 1 and

T—>?:\/72—4k6~7<1—2]f26)
-

when moving into Region 2.

There are a number of questions here about how we order the terms. For example, are 7/2 terms in the
outer region small? Are 1/7'2 terms in the inner region small? Are terms that are 1/ (77"2) in the outer
region small? Should we have expansions of the coefficient amplitudes

1
Co~ O + —CV + -
0 0 2,Y0

1
Cy~C 4 ch(l) 4o
Is it possible that the 1/ expansions are all associated with the first order solutions to the equations and
all we needed was to keep the 1/7'2 terms from the parabolic cylinder expansions? In other words could
these different order terms be a clue that there is one expansion for the zero order and another for the first

order solutions? Should we also take the expansion

O~ +01+- -
where we regard successive terms as small §; << §p? Then since kdy = O (1) we have that ké; << 1. These
questions are out of scope in this report and we simply leave the higher order construction to future work.
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B.2 Asymptotic Orthogonality In The Stadium

The orthogonality of the scarred components are examined in this section. We first look at the simplified
trigonometric approximation to the functions (which in the bow tie cavity, being Fourier components, were
strictly orthogonal) and then at the scar functions from the elliptical analysis.

B.2.1 trigonometric approximation

Suppose we first examine the trigonometric approximate forms for the scar functions, which exhibit the
proper phase shift through the focal point in the stadium cavity. For the even case we take

ug = ccos (kpx) , d < |z

=ccos (kp|z| —m/4) , d<|z| <(
where

kyt =m(p—1/4)

Consider the inner product

¢ d
/e u?; (z,0) u?;, (z,0) dz = 2c /0 cos (kpz) cos (ky ) dx
¢
+2¢ / cos (kpx — m/4) cos (kyx — m/4) dx
d

d
=c? / [cos (kp — kp) x4 cos (kp + ky ) x] dx
0

¢
+-c? / [cos (kp — kp) x + sin (kp + ky ) x] dz
d

_ 2 [sin (kp + k) d N sin (kp — kp) £ cos (kp + kp) £ 4 co8 (kp + kp) d}
N kp + ky kp — Ky kp + Ky kp + ky

__Cg{Shl{ﬂ(p-kp’—-1/2)d/4} sin{m (p — p')} COS{W(p-Fp’-1/2)}%COS{W(p-%p’—-1/2)d/f}]
T(p+p —1/2)/¢ m(p—p') /¢ T(p+p —1/2) /¢ m(p+p —1/2)/¢

m(p+p —1/2)
where the Kronecker delta d,, is unity for p = p’ and vanishes otherwise. Thus orthogonality holds
asymptotically in the high frequency limit (k, + kp )€ =7 (p+p' — 1/2) — oo to order O [1/ {(kp + k) £}].

_ 2y \/icos{ﬂ(p‘i‘]?l —1/2)d/t —m/4} +6PP’}

Suppose we enforced strict orthogonality by requiring
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cos{m(p+p —1/2)d/l —7/4} =0

Tlp+p —1/2)d/l —n/4=7(n—1/2)

or

n—1/4

djf = ——=1=
ST

A focal shift, discussed in the main body of the report, was required to enforce the continuity at
x =d+ g for s = 0. It is instructive to examine the effect of this shift on the orthogonality. Noting that
the shift for s = 0 is defined by

ky (d+ 8op) = (n+1/8) 7

cos (kpx) = cos (kyx —m/4) , x =d+ dop
we consider the inner product for, say p > p/,

¥/ d+50p/
/ ug (z,0) ug, (z,0) dz = 2¢ / cos (kpx) cos (kyx) dx
—¢ 0

L

d+30p
+2¢2 / cos (ky) cos (kyx — 7/4) dz + 2¢* / cos (kpx — m/4) cos (kpx — w/4) dx
d+30,/ d+5,

d+60p/
=c? / [cos (kp — kp ) @ + cos (kp + ky ) x] dz
0

d+80p
+c? / [cos ((kp — kp ) x +7/4) 4 cos ((kp + kp ) x — w/4)] dx
d+60p/

¢
+c2/d S [cos (kp — kp) x4 cos ((kp + kp ) x — 7m/2)] dx
-+ Op

_ 2 [sin{(/fp — kp) (d+60p)} | sinf(kp +Kp) (d+ 50,3,)}}
=c +
kp — ki kp + Ky

+c2 sin {(kp — kp') (d + dop) + 7/4} _ sin {(kp — kp') (d + dopr) + m/4}
kp — Ky kp — Ky

+Sin{(kp + ky) (d + dop) — m/4} _ sin {(kp + kp) (d + dop) — 77/4}}
kp + kpy kp + kp
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T2 sin (kp — k) € sin {(kp — ky) (d + 0p)}
kp — kp kp — kp

sin {(kp + k) £ — 7/2} _ sin {(kp + kp) (d + dop) — 7/2}
kp + ky kp + Ky

c2

Ty — Ky

[sin (p — p') m + sin {k, (dopy — dop)} — sin {ky (dopr — dop) }

+sin {ky (o — dop) + 7/4} — sin {ky, (dopr — op) + 7/4}]

2
+

sin {(p+ 9 — 1)) + sin {kyr (o7 — d0p) +7/4} — sin {yy (B0, — dop)}
kp + ky

—sin{kp (0op — dop)} + sin{m/4 + kp (dop — dop)}]

2

sin(p—p)w c . [1 1
=c* p—p)m + kp — Ky {2 sin {5 (kp — k) (Bop — 5017)} cos {5 (kp + kp) (Sopr — 501))}

.1 1
~2sin { 5 (= ) Gy — ) cos { 5y +-) Gy = 30) +

62

Fp +

™

1 1
+ [2 sin {5 (kp + kp) (Gopr — Sop) + Z} cos {5 (kp = kp) (Gop — 601))}

~2sin{ 5 By + ) Gy = y) peos { 5y = ) (s — )}

where
kyl = (p—1/4) 7
kil = (p — 1/4) 7
kp (d+dop) = (n+1/8)m
ke (d+ Sop) = (n+1/8) 7

kp (d+ 5017’) =Mn+1/8)7— kyp (5017 - 5010’)



by (A4 805) = (n+ 1/8) 7 — iy (B0 — b0y)

(kp - kp’) (d + 5017) = kp’ (5017’ - 5017)

(kp - kp’) (d + 5019’) = kp (5019’ - 6019)

(kp + kp’) (d+ 6010) =2nm +7/4 — Ky (5017’ - 6010)

(k'p + k}p/) (d + 6Op’) =2nm + 71'/4 + k}p (50p/ — 5Op)

_ (p=p) (n+1/8)) _0 <kp kpkp,d>

o 000 = G 1) (7 1

Now because we expect

1 (kp — kp)? d2
5 (kp = kpr) (dopr — d0p) = O %

we can expand the sinusoids to find

]<<1

14 : !
ul (z,0)ul, (2,0 d$N026w
[ @0 @o) o

1 1
+c* (60pr — dop) [COS {5 (kp + kpr) (Sopr — 501))} — CO8 {5 (kp + kp) (Sopr — dop) + Z}}

2¢2

.1 T (1
T hy [sm {5 (kp + kp) (dopr — dop) + Z} — sin {5 (kp + kp) (Sop — 50p)}]

gy

+

3

si —p
)

. .1
)" +2¢% (80,7 — Sop) sin (g) sin {5 (kp + kp) (bopr — dop) +

4 m 1 ™
+m sin (g) cos {5 (kp + kp) (Oop — Gop) + g}

— [5@, +O{W} +O{(kp+71kp/)€}]

Thus orthogonality approximately holds.

B.2.2 scar functions from elliptical analysis

Suppose we test the orthogonality with the Region 1 and 2 functions. The field on axis, in Region 1
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2 _
Uy (2,0) ~ Y V2d (d* — 2?) Y4 cos [kpz + p1 (z)] , Region 1

(27) 1/4|U’ (s,0) } Aln (“‘d)

—MM (1- :102/d2)_1/4 cos [kpx + p1 ()]
. . “exp (x5 /4)
and in Region 2
2 _
up (2,0) ~ Y V2d (z® — d?) Y4 cos [kpz — /4 + p2 ()] , Region 2

27)1/4 U (=5,0)|y/Aln (”d)

e—TI'S/4

“exp (7 [s] /)
{+d

|Ujr (_87 0)| _ eTrs/Q

U2 (5,0)

(2?/d* — 1)71/4 cos [kpx — /4 + pa (2)]

d=0/1- R/l

kyl=m(p—1/4)

p)=go {n (727) w0 -0 (555}
nw =g {0 (g) @0 -n (5)

We are interested in

L

d
Iy = 2/ up (2,0) up (x,0) de + 2/ up (2,0) upy (z,0) dz
0 d

eﬂ'(sp-‘rsp/)/4

d ,
=20 — / (1- x2/d2)71/2 cos [kpx —&—pgp) (x)} cos [kp/x —|—p5p ) (x)} dx
0

eﬂ'(|sp|+|sp/ |)/4

77r(sp+sp/ ) /4

12028 /z (2*/d* - 1)_1/2 cos [kpx — /4 +py (z)] cos {kp’z —m/4 +pgp/) (@} du

em(Usol+lspr])/4 g

First look at p = p/
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d ¢
Ipp:2/ uf,(:c,())d:r+2/ uf,(x,())cb
0 d

e7rsp/2

d
oo [ (=) o e s ()] de
r 0

¢
~1/2
+203W /d (z®/d* —1) cos? [kpx — m/4 + pa (x)] dx

If we average over the rapidly varying cosines

T8 /2 1 —TSs /2 Z/d
. o2,€7" 2 2,6 77" 2 —1/2
I, ~ C3d767r|sp|/2 /0 (1—= ) 2 da+c 3d——0> T2 / (1) dx

TSp /2 e~ TS p/2

~ cid e7r|s 72 /24 cgd 5 Arccosh (¢/d)

Next look at p’ Zpbut p’ —p <<p

1

d
oy =2 [ .0y 2,002 [y 020)y (220)
0 d

w(sp+sp/)/4 d ’
e -1/ p
B W/ (1= /) ™" os ko + 917 (1) cos [’“ ) (@} ‘“”

—W(sp+sp/)/4 1 _ ,
+2c§e—/ (2?/d* - 1) 2 cos [k m—7r/4—|—pp)( )] cos {k’p/x—ﬂ'/ll—l—pgp)(x)} dx
eﬂ'(‘Sp‘+|Syl|>/4 d

eﬂ'(SerSyl)/éL

d
— 2 1_ 2 d2 71/2
Cse”(sr’ﬂ%’)/‘*/o( /)

Loos [t = k10420 @) =0 )] con 06+ ) 01400 )]

, € 7r<sp+sp/)/4

¥/
2/02 _ 1 —1/2
*“(wwmﬂéw/ )

cos | (ky — kp)z + pgp ) (z) — pgp) (x)] + sin [(kp/ +ky)x —i—pgp ) (x) + pgp) (x)} }da?
The second terms in the integrands are rapidly varying and generate contributions that are
(0] [(kp/ + kp)71/2 571/2} [36]. Because these are in reality nonsingular and continuous, if Region 3 is

included, we expect them to be even smaller. These contributions were also neglected when p = p’ due to
the application of the averaging to the trigonometric functions in the integrand. Noting that
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we can write

m(sp+s,y)/4 1 1
9, € R Vo R P +x L+d
Iy c?’d—eﬂ(lsp|+|8p/|)/4 /0 (1 x ) cos [(p p) wln (1 — x) /1n <—£ — d>] dx
7r(sp+s /)/4 L/d
g€ P 2 —1/2 / z+1 l+d
_ -1 — | In
+c5 g (SR /1 (z )" cos {(p p)mln ( > / (g y dz
In the first integral we let In[(1+ ) /(1 — )] = 2y or « = tanh (y)
! - 1
/ (1—a?) 2 cos {(p’—p)ﬂ'ln( +x)/1 <€+d>] dx
i {+d dy
= 2 — 1
/0 o8 [ @ = p)y/In (4 dﬂ cosh (y)

=2/ cosh [(p’ p) 7/ In (ﬁJrjﬂ

For the parameters here this equals 7/2 ~ 1.570796 , |p—p'| = 0 and 4 x 1077 , [p—p| = 1 (it is
smaller still for |p —p’| > 2); it can thus be neglected unless p = p’. In the second integral we let
In((z+1)/(x—1)) =2y or z = coth (y)

/lw (22— 1) cos [(p' —p)rln (” i 1) /In (fﬁ)] da
B /Olo<—> {2” ¥ ~z)y/ln (ﬁ - 3)] )

_lln (M) /oocos(ﬂ'(p'—p)y) dy
2 t—d) )y sinh [%yln (%)}

717p/7pn€+_d oocs7r/* 4
=3 (=)0 (z—d)/o oo p)y)sinh[%(erl)ln(%)]

For the parameters here this equals Arccosh(¢/d) ~ 1.8685511 , |p’ — p| = 0; —0.075259327 , |p’ — p| = 1;

0.0229565 , |p’ — p| = 2; —0.010795965 , |p’ — p| = 3. It is thus quite small unless p = p’.
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B.2.3 orthogonality with normal derivative

We are also interested in examination of the integration involving the normal derivative of the scar
functions along the orbit

9 1 0up £ 1 0uy
5‘ww3 8 w Oy

This arises in the normalization condltlon. To avoid a pole smgulanty at the focus we must also use the
solution in Region 3. In fact we could define a correction to the orthogonality resulting from Region 3 as

I, =2 (x,0) up (,0) dz + 2 (x,0) up (z,0) dz

d—A ¢ 2
n 9 10u, 0 19y 2 3
Ly —2/0 0w Oy L(x,0)u ,(ac,O)dx+2/d+Aa—w;6—y(ac,0)up, (z,0) dx + N,

where

N3,:2/ o u/il 9up —ul, = 0 1 (9 d¢’
pp V2ho7d P oww \ oC¢ P w w 8(

V2a/d d 1 (du, , 01 [0u?

+2 Uy =—— T Uy — ; d¢
V2ho/d Oww \ 0¢ Ooww \ 0

where Ag << A is introduced to avoid singularities at the focal point. The idea is to let Ay shrink toward

0 and allow A to grow to allow cancellation between the Region 3 and Region 1 and 2 solutions, but still

approximate the functions near the focal point. Approximating near the focal point for small ¢ and small

¢ in Region 1

! 2/9) — so
ﬁCOS{’V(l—E /2) }
1 75/2/2) — 50}

01 (oul 1 —0d, .
—_ ~ /o~ Y —im/4r7!
Ow ( ¢ ) 25V, tm {e Us (8’0)}

1 1 Im[e=/*U" (s,0)]

u,; ~ 2

- \/gc o (3,0)]2 cos {7 (

and in Region 2

o1 (0u; 2 100
—— (8?’7> = —\mﬁc;a—wolm (U (—5,0)] cos {7 (1 +¢*/2) + s0’ — 7/4}

2o 2 U s 0] so -
A SETTEY: s {7 (1+¢%/2) + /4}

In Region 3 we have to introduce the focal shift §. To the left of the focus at d + ¢

Y T——

cRe [UJr (—5,?@) —&-e_i%UJ*r( 5, \/_)} luRe[ /Aoy (s, 0)]
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= % (=" (2’y)3/4 ’U’+ (3,0)| cRe [U+ ( s, & \/7) U*,io))Ui (—S,g\/ﬁ)} 5%
wp = (=1)" (29)"* sec (20/2)
cRe [U+ (—s,?ﬁ) + e_i%Uj (—s,g\/ﬂﬂ Re [e_i’r/‘lUJr (s,0) + e”/‘*eiq’UUj‘r (s, 0)}

:(—1)"(27)1/461%@[@( 5, EV2) - H (sfx/_>]/!U (5,0)]

&x\2(d+o-a)/d

where
x =dcos¢
~/
r=0+dcos&

& =\/20/d+¢>

Re e*iﬂ"/4U+ (S,O) —|—ei7r/4€iq)0U_T_ (S,O):| Im[ 7z7r/4U+ 8 O:| }U+ S, O)‘

To the right of the focus

cl% Re [—ie"®° U (—s,0)] Re [67iﬂ/4U+ (&Zﬁ) + el ey (S’Z\/%)}

w Ow

= el B e (5B o ()

u, = (—1)" (29)"* sec (90/2)

cRe [Uy (—s,0) + e oy (—s,0)] Re [67”/4U+ (S,Z\/ﬂ) + '™/ 4¢i®o Ur (S,Z\/ﬂ)}
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3 > 3 U/ ’0 * > !
= (~1)" (27)"/* cRe [e-”/‘*m (s:Cv27) + e”/%%m (SaC\/%ﬂ /U (~5.0)]
+ I

¢~ 2(x—d—19)/d

where
x = dcosh(

T = 6+dcoshz

(2 —25/d=C

~
r=0~+dcos&

& =/20/d~
Re [Uy (—5,0) + ¢ 7*®U7 (~s,0)] = Im [U/, (—5,0)] / |U} (~s,0)|”

Ui (—s,0)
U0l [ULs0)
Im [UY (—s,0)]  Im [e"i7/4U/ (s,0)]

sec (®p/2) =

This procedure is quite complicated, but can be carried out. We have not written out the fact that u,
may require a shifted focal point location from the normal derivative with order p. Instead, we make the
following qualitative argument. Since the scar functions and their normal derivatives are continuous and
nonsingular when Region 3 is included, we expect that for p = p’ there will be phase coherence along the
orbit and a large integrated value for I;;,, When p # p’ we expect phase incoherence along the orbit and a
smaller value for I},. In this latter case the local region within, say half a wavelength of the focal point,
will contribute to the integral, however this is only a limited contribution compared to the integral along
the entire orbit length when p = p’. Furthermore, when p # p’ these shifted focal points will not align
between the function and derivative, which should decrease the contribution near this point relative to the
p=p term.

B.3 Normalization in Stadium Cavity And Focal Point Contribution

In this section we bring in the focal region into the calculation involved in the energy theorem

) 2 e oul 81@5 Ou,, * L 01 81@5 Ou,,
1260/,4‘u| dS_MO/C[ 8ww<8n on tu Oww \ On on de
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for the normalization of the scar component. This leads to the condition along the orbit

¢ + -
2 10 (Ou, Ou,
2Ho<0 /A ful” ds = /_g [upw Oow ( on on dt

or setting the area integral to unity and specializing to the elliptic cylinder system
2T gu. 1 /Out  Ou- 91 /O0ulr Ou>
60/1’02/ _ﬂ_ p _ p +up__ p _ P dé‘
0 Ow w \ ¢ o¢ Oww \ 0C ¢

© Qu, 1 (Ouf  Ou, o 1 (0uf  Ouy
+/o {%a(as a—a)”%a(ae B as'ﬂ‘“

B.3.1 transition to region three

The principal value in the main body of the report requires some further justification. Suppose we first
transition from Region 1 to Region 3 and back to Region 2 by adding a correction N3 (s) to the energy
theorem result from the main body of the report

Im? —im /4y 0 w/2 /
oty = 16c2«/27,u0508;{)§ - [6 + gs, )] / cos? ('y cos& — 50) d_§/
ok U4 (s,0)] NCINT sin §

d® Im® [U}, (—s,0)] [0 d¢
—16¢2\/2v e —+—/ cos? (ycosh ¢ + so’ — m/4) —
0 ok? U (=s,0)°  J2a7d ( / )smhc

+N3 (S)
where
N B V2A/d g5 1 out  Ou, o
o= [ s (58 - )
V2a/d g q out  Ou, J
+/0 UP%; 85/ - 8§/ C
and

Im? [U, (—s,0)] _ Im? [e~"™/4U7 (s,0)]

U (=5.0)[° U (5.0)[°
The question is how we can simplify these expressions, including the Region 3 term, for high frequency?
First from a trigonometric identity

9B, Im? [e=im/4U7, (5,0)] /2 d¢’
S0t = 8¢ v/ 27020 5 U} (s, O;IQ /\/M [1+ cos (2ycost’ —2s0)] 5

254



d®o Im® [U, (—s,0)] [0 d¢
—8¢*\/2v10E —+—/ 1+ cos (2ycosh ¢ + 250" — 7/2)] =
0<0 Ok2 |U</F (—S, O)|2 ’—2A/d [ ( / )] SlnhC

+N3 (s)
The leading terms lead to the principal value result we had previously because 2A/d << 1

9P, Im? [e= /AU’ (s,0 {+d
cotty = 4c*V/ 2y pog0 [ i (5,0) ( )

V% (5,0 -
) %ImQ I:efiﬂ'/llU_/‘r (S,O)] /71'/2 ;o dé—/
+8¢ \/ﬂﬂoﬁo 2 |U_’F G 0)|2 TNE cos (2’)/ cos§ 230) nf g

Im? [U} (—s,0)] [%o
802\/27%508;{)3L(8’2)]/ sin (2700811(4’280’)&
ok }U-/s— (—S,O)‘ V2A7d sinh ¢

+N3 ()

Expansion of the coordinate transformations near the focal point
z=dcosh(cos¢ ~d(1+¢%/2) (1-&7%/2) ~d(1+¢/2-¢7)2)

y =dsinh(sing ~ d¢¢’ (1+¢?/6) (1 —€7/6) ~dCe' (1+¢7/6 —£7/6)

leads to
~/
E ~\/2(d+d—=x)/d
z =dcos&
T = (5+dcos/£\l
€ =/26/d +¢”
and

(2@ —d—20)/d
x = dcosh(

T = 6+dcosh/g:
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/2 —25/d=C

~
r=0+dcos&

€ =/20/a-¢
where the ?72 coordinates are shifted relative to the £, ¢ coordinates by the focal shift 4.

B.3.2 Cartesian justification of principal value

Because of complications in the calculation associated with the focal point shift, it is much simpler to
perform the calculation in Cartesian coordinates. In Region 1

I —imw /477! B _
Up =2 m [e U (28’0)]c(1—x2/d2) Y4 cos [k:ac—i—lsln (d °
’U’+ (3’0)| 2 d+

)} E=nj2-t

I —im /ALy 0 _
~ o3/ L - (25, ) c(1—az/d)™* cos [kx + %Sln (dex)]
U (5.0

1 <au; - aup>

dww\ dn  on

=4Im [ew‘w/lejr (5,0)} c(1- 1’2/d2)_3/4 l@% /25 cos [k:c n %Sln (d — x)]

w Ow

~95/4Tm [e’”“Uﬁr (3’0)} c(1- 31:/d)73/4 %%é\ﬂ"ycos [kx + %sln (d;dxﬂ

In Region 2

" = 21m (U} (—s,0)]
T UL (=0

2,72 —1/4 . l r—d .
c(a?/d® —1) cos [lm—&— 2sln <x—|—d> 77/4]

yyalm [V (=5,0)]
U (=s.0)[*

c(z/d—1)"Y4cos [kx + %sln (x2 d) - w/4]

91 <8u; 5‘up>

dww \ dn  on
—3/4 1 1 0% 1 Tz —d
= —4Im [UL(*S,O)}C($2/(12*1) E\/Q"}/Z%COS k‘w+§sln z+d 77T/4

_3/4 1 109 1 —
~ —2%/4m (U} (=s,0)] ¢(z/d—1) 3/4 E\/ny;% cos {kz + isln <$2dd) - 7r/4}
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In Region 3 to the left of the focus at d + §
o1 (Ouf Ou,
dww \ On on

_ n 3/4 77 c o Uy (=s0) ., 74 1 0%
=(-1)"2(27) |U+ (Sao)i d_/f\lRe {U+ (—375 \/%) - m(ﬁ. (—8,5 \/ﬂ)} w 0w

up—<1>"<2v>”4cRe{U+( s €V - Ui)) (ssr)}/w (5,0)|

&~\2(d+0—2)/d

o1 8u 5‘u;
0w w c’)n on

== 0" 2 10 (om0l G Re e 0 (1) 0 (V)

To the right of the focus at d + ¢

up = (=1)" (29)"/4 cRe [e”/‘*U (s:Cv/27) + /i g+(( Us (s {\/_)}/|U'+(—S,O)|

Cr2(@—d—20)/d

The normalization integral is

1 ou, 1 (Out  Ou, o1 (Ouf  Ou,
== —— | == e — )| dl
“0fo =75 /C ow w ( on on oy Oww \ dn on
Let us assume that the problem is totally even from left to right so that

B o 1 (0uf _Ouy ”
coblo = /C+ P B w 8n 371

where C is the contour for positive z values. Thus we write this in terms of the Region 1 and 2 solutions
plus a correction from Region 3

491 (ouf  Ou, £ 91 (Ouf  Ouy
EOMO_/OUPB_w;<8n_8n>d€+/dup8_w5(8n 8n)d€
d 1+ 1— v 2+ 2
91 (0u Ou,, 91 (0u ou
_ 1 P 2 P P
_/upﬁcUUJ(@n 8n>d€+/ p@ww(@n 8n>d€

+N3 (S)
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where the Region 3 correction is
d + — 1+ 1—
01 (0u ou 91 (0u ou
Na(s) = R e ) 1 e R N
3(5) /0 [upﬁww<8n 877,) p@ww( on on )1
+/d+5 upﬁl out COuy\ uQil ouZt B ouz~ "
d dww \ On on POww \ On on
N ¢ " 91 out S Ouy\ .2 91 ouzt B ouz~ "
dis Oww \ On on Poww \ On on
Note that there may be a cancellation problem as x — d with the subtracted terms not matching (we

only know that the averaged forms match) and thus not forming a principal value integral. This might
require displacement to d + Ag, where Ag — 0. More will be said about this problem for the case s = 0

below.

B.3.3 region three correction for s equal to zero
Inserting the solutions in this limit

e ST (1 o) cos k) Region 1

0 1 (0u"  Ouy” 5/4 / 5/41(9@0
%;< " o ~ 2°/% cos (w/8) [-U' (0,0)] ¢ (1 — z/d)” \/ 7y cos (kpx)

2 23/4CM (/d — 1)_1/4 cos (kpr — 7/4) , Region 2

o1 [out  Oul” 5/4 , 31 1 09
——< " o ~ —2°%cos (r/8) [-U" (0,0)] ¢ (z/d — 1) EV2 Za—cos( —7/4)

01 (Ouy"  Ou,” 19, 1
ul T T ) 42 cos? 19%01 B
&uw( an o 4c¢” cos (W/S)w—aw d\/2 ~ (1 :L’/d) coS (k:p;n)

8 1 8u12,+ 8u12,_ 9 18(1)0 . ,
3ww ( on  on ~ —4c? cos? (m/8) — o 0w aV 2y (z/d—1)" " cos® (kpz — 7/4)

~ 4c? cos? (71/8)1%%1\/2_(1—33/(1) cos? (kyz — m/4)

where we have used
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) ) 91/4
UL (0.0) = 97507 (0,0) = e L

We note that for s =0

kp(d+00) = (n+1/8) 7
for which

cos (kp, (d + do)) = cos (k, (d+ o) — 7/4)
Thus if we displace the singularity (1 —z/d)”" to (1—2/(d+6))”" in the above outer region solutions,
then the resulting expression is continuous and converges in a principal value sense. Alternatively we can
average the rapidly varying cosines and subtract the result

100 _
2¢? cos? (7 /8) — ~ (%0 d«/27(1 —x/d)"*
from either side. This averaged result gives a principal value with the singularity at x = d. This was the

approach used in the main body of the report. Thus any correction should be defined in the same way by
subtracting the averaged outer region quantity.

In Region 3 to the left of the focus at d + §
o1 (Ouf Ou,
dww \ dn  On

- DIV e () - ()] 15

= (=1)" (29) [-U" (0,0)] [dcos (n/8) [11ys (47 /2) = Vipa (487 2)] %%

= (—1)"2(29) [=U’ (0,0)] \/,dcos (m/8) J_1/a (’Yf /2) %

" (@) VE VTt Re [t (D, (& 2) - i) (17 12)}] /10" 0.0)

= (1" @)/ VE VA becon (n/8) [Jyya (1E°/2) ~ Yosa (1E°12)] /10" 0.0

1) ()2 VJE B cos (x/8) Ty (1€712) / -V (0,0)

€ ~\/2(d+0y—1)/d
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and the right of the focus at d + 9

=~ ()" @) VA U 0,0) e B Re [0/ L), (1 2) — i3 (10 /2) )]

N

— — (—1)" (29) VA [=U" (0,0)] ccos (r/8) =

N

2000 [y (1212) = Yipa (x12)]

=— (-1 —U"(0,0)] ccos (m/8) — 68 0J-1/4 (’722/2)

Vi

= (1" @)y eVaTRgeRe [t L)) (48 2) —in ), (T 12) Y] / -0 0,0)
= (1" ()2 e vmgecos (x/8) [1s (42 12) = ¥is (52 12)] /=07 0,0)

" (22 /Sy 2ceos (x/8) T1ya (1€/2) / -V (0.0)

~

(= \2(x—d—10)/d
and thus

a1 [0 0
Y W ( ;n au )-2 ’7\/___—005 (m/8) J2 Z1/4 (’Yf /2)

—271'7\/_ —%cos (m/8) J2 1/4 (kp (d+ 0 —z))

€ ~2(dt o —w)/d

o1 (Ouf Ou, 109,
Y B w ( o on ) = 2/ oo (/9 7214 (1 2)
2100
= —2#7\/27358—0}0 cos? (m/8) J31/4 (kp (x —d —9))

Cr2(@—d—100)/d

where we have used
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Uy (0,7) = 5775 T2 HE), (7 /4)

Vi (2) = Jija (2) = V2J_1/4 ()
We note that these can be written as

o 1 (ouf Bu
Up Ow w 871 an

2109
= —sgn(x —d — dp) 2777\/27%—8—0 cos? (m/8) J31/4 (kp |z —d — dol)
w Ow
Using the asymptotic form of the Bessel function for large argument

o 1<€9uJr ou,, )

up%; on on

~ —sgn (z — d — 6p) \/2v4c? —aicos 2(r /8);cosz(kp\x—d—6o\—7r/8)
w Ow | d*(50|

1
~ AP 2y _—c% /8 T == cos” (ky |z — d — do| — 7/8)
Noting that

cos? (ky |z — d — 60| — 7/8) = cos? (kpyz — n7) = cos® (kyx) , © < d+ &g

cos? (kp |z — d — 60| — 7/8) = cos? (kpx — nm — 7/4) = cos? (kyx — 7/4) , x> d+ o
shows that the Region 3 solution equals the outer terms for large arguments (this is also true if we average
these quantities in the integration, which allows us to use the limit as the focal point is approached). Thus

the difference can be integrated to infinity and the correction can be defined by

d o1 (Out Ou, L0 1 [ouyt dul”
N3(0)_/ lup%5<8n Bn)_up%; on  on dt

— 00

d+é 91 (Ouf Ouy a1 [ou2t  oui”
- D P 2 Y = p D
* /d [up Oow w < on on ) “roww \ “on on at

+/"O upil <8u;r B 3up) U?g J1 3u,2,+ B 3u12,7 "
dis Oww \ On on Oww \ On on
We find it convenient to write the correction as the limit R — oo of

Rtd 95 1 /8ut  Ous R+d g q
_ g1 P P _ 2 9 1
N?’(O)_/R+dup8ww<8n 8n>d$ /d P 9w w
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Using the averaged outer quantities

21 8(1)0 ) R+d )
N3 (0) = —27rfy\/2’yg—a— cos” (m/8) / sgn (z —d — o) JZ1 4 (kp |2 — d — o) dz
w ow —R+d
R+d
—2¢% cos? (1/8) — 8<I>0\/ / “dx
R+d
or
2 R
Na(0) = <2m/ I S T cos® (n/8) [ sen (@) 72, U o) d
C2 1 8(1)0 R+d+6do —R+d
+27y4/2y———— cos? (1/8 / 7/ J? ky|z —d—dg|) dx
VG St ([ [ )yl - d o)
1 0%
+2¢% cos® 77/8 0 0\/ /
or

N3 (0) =

R+60
2777\/_ =0 cos? (m/8) (/R S / )J 1/4 (kp |2|) dz

C2 1 8@0
A2y 2’Ygza—w cos® (1/8) 250J31/4 (ky |R|) — 0
Thus we have shown that, at least for the peak s = 0, the principle value interpretation is correct.

B.4 Focal Point Correction To Projection Operator

Let us consider a focal point correction to the projection operator. Note that the focal point shift must
be used otherwise there will be a phase discontinuity at infinity. We define the correction as the difference
between Region 3 (no superscript) and the outer Region 1 and Region 2 representations (with superscripts)

, d —1/4
exp (|| /4) AV, ~ 2v/de ™'/ /d_ [u(z,0) —u' (z,0)] (d* — 2?) cos [kpx + p1 ()] dz

d+e
—&-2\/3678,/4/ i [u(z,0) — v (z,0)] (2* — d2)71/4 cos [kpx — /44 p2 (z)] dz

d
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d
~ —ms' /4 | 2 _ 2\ 714 — /l d—o
2/de / [u(2,0) —u' (2,0)] (d* —2*) ' cos [kx s'5In <d+a¢ dx

d—e

d+e

[u(2,0) - u? (z,0)] (2* — d?) " cos {kx sz (i - j) - 71'/4} da

+2\/E€’TS,/4/

d

[ (2,0) — u" (2,0)] (d — ) cos [k:m - s'% In <d2_d“’ﬂ do

d
~2(d/2) e/ /

d—e

d+e

+2(d/2)4 e”l/4/ [u(2,0) — u? (z,0)] (z — d)~* cos {kx - s% In (”“"Qdd> - 77/4} do

d

~2(df2)* e /4 /d [u(z,0) —u' (2,0)] (d — )" cos [kx - s/% In (dwxﬂ dz

— 00

+2(d/2) Mt eme /doo [u(z,0) — a2 (z,0)] (z — d)~* cos [k:m - s% In (””;;l) - 77/4] do

The pth component of the field on axis in Region 1 is (the second expressions are approximated near

the focal point d)

/ - 1 d—
ut ~ coe ™ /2\/2d (d2 —xQ) 14 cos [k:m— s'iln (d+i):| , Region 1

~ —ns' /2 1/4 5 _\—1/4 _ /l d—uw
coe (2d)" (d —x) cos {kx 52111( 5 )]

and in Region 2 is

_ 1 —d
u? ~ coV/2d (a:2 — d2) 14 cos [kx — 3'5 In (i +d> — 7r/4] , Region 2

~ ey (2d)* (z — d) "% cos {kx - s/% In (x;dd) — 7r/4}

where

2v ’
eTs /2

(@)U (=5,0)] /A (£4)

Co =

|U'/’r (S/7O)| — e—TI'S//2
UL =0
(+d
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d=0/1-RJl

byl =7 (p—1/4)
The Region 3 solution on axis is

T (is' /2 + 1/4)]
Tm {2i5'/2¢=i37/5T (is' /2 + 1/4)}

u(z,0) = —(~1)" (v/2)"/*

2 Re {e‘i”/4U+ (—sﬂ@\/ﬂ) — e‘”“% ( s’ C\/_>]

T (is'/2 + 1/4)]
Tm {2i5'/2¢=iB7/5T (is' /2 + 1/4)}

=~ ()" (/)
ol ) o HE R )

(2@ —d-19)/d

T (is'/2 +1/4)|
Im {22’5//2671‘371'/81" (is'/2 + 1/4)}

u(z,0) = — (=1)" (v/2)"/*

e [0 (V) - s (4
T (is'/2 + 1/4)|

B " 1/4
=—(=1)" (v/2) Tm {20 /2=i57/5T (i /2 + 1/4) }

a2 e U (o, 4 2 e R (v, v

¢ ~\/2(d+0—1)/d

If we take the limit as we move away from Region 3
U+ (S,T) ~ 6i-r2/4—(1/2—is) InT _ 6iT2/4TiS_1/2 , T — 400

e—w(s'+i3/2)/4\/7—r

U (s1,0) = e " (i, 0) = — o o s

2

2

@L_W<'m_[v<'ﬂ
U2 (=5,0) o (—s0)]
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Im [V, (s,0)] Im {2"8’/ 2e BT (is! /2 + 1/4)}

cos (/2) = ’U_’,_(S/,O)‘ - T (is’/2 + 1/4)]

and

[T (is'/2 +1/4)|
Im {21’5'/26—1‘377/81“ (is'/2 + 1/4)}

c2 Re [67”/4U+ (—s’,@\/ﬁ) + ety (—s’,{@)}

u(z,0) = —(~1)" (v/2)"/*

T (is'/2 + 1/4)|

n 1/4
~ = ()" (/)M {2552~ 37/5T (is'j2 + 1/4) }

Q\/C;ﬁ {COS{CQ'Y/Q— s'In (C\/ﬂ) - 77/4} + cos {@7/2 —s'In (C@) — /4 — @0}]

~ (-

T (is'/2 +1/4)| 2 ,
Im (2% e 57T (is' )2 + 1/4)] Co c cos (P /2) cos {(27/2 —s'In ((\/ﬂ) —7/4— @0/2}

~ (=) 02\/gcos {(27/2 —s'In ((\/ﬂ) — /4 - @0/2}

~(=1)" ¢y <x+d5>1/4008{k:(x— d—26)—s'In (2 k(z—d— 6)) —7/4— @0/2}

T (is' /2 + 1/4)]
Tm {2i5'/2¢=i37/5T (is' /2 + 1/4)}

u(z,0) = —(~1)" (v/2)"/*

coe” ™2 Re [U+ (s/,fl\/ﬂ) +e Uy (s/,f/\/ﬂ)}

T (is' /2 + 1/4))] 1
Im {Qis’/Qe—i37r/8F (is'/2 + 1/4)} m

coe” ™2 {cos {5'27/2 +s'In (5’\/%)} + cos {5/2’7/2 +5'In (E’\/ﬁ) + (I)OH

~—(=1)" (y/2)"*

n |F (isl/2+ 1/4)| —ms’ 2 / / /
~=(=1) Tm {2572~ B7/3T (is' /2 + 1/4)} c2€ /2\/;(303 (0/2) cos {f *v/2+s'In (5 \/ﬂ) + @0/2}

~ (=1)" 026“//2\/§c05 {5/27/2 +5'In (5'@) + @0/2}
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2d

m)1/4cos{k(d+5—x)+s'ln(2 k(d—l—é—x)) —|—(I>0/2}

-~ (_l)n Cze—ws’/Q <

Thus we have

/ _ d—
uy ~ cae ™% (2d)* (d — 2) 7 cos {kx—s'—ln( x)]

e 24 \M* 1
w~ (—1)" cpe™ ™2 <d—x> cos{k:(d—l—é—x) + §s’ln(4k; (d—x)) —|—<I)0/2}

_ 1 —
us ~ ey (2d)* (z — d) " cos {k’x — s’iln <x2dd> — 7r/4}

/

These pairs match if the phases match

un~ (=1)"ca

VN el W oLy ) —
kx 52111 53 nw=—k(d+06— 1) 251n(4k’(d x)) — $o/2

and

r—d
2d

1 1
kx—s’aln ) —7r/4—n7r:k(ac—d—6)—§slln(4k(aj—d))—7r/4—<1)0/2

which are equivalent to

1
55' In (8kd) = —k (d +6) — ®o/2 + nm

Now we want to evaluate the correction

d
exp (r 5] 4) AV, ~ 2(8/2) = [

— 00

[u (2, 0) — o (2,0)] (d — ) ** cos [k:m - s'% In (d;dxﬂ do

+2(d/2)M* e~ /4 /dM [u(2,0) — u? (2,0)] (x — d)~"* cos [k::r - s% In (“””Q_dd) - 7/4} dz

oo

+2(d/2)"" e/ 4/

" [u(2,0) — u? (2,0)] (z — d)~/* cos {kz - 5'% In (‘T _ d) - 7/4} dz

2d

/ _ 1 d—
ul & cpe™ /2 (2d)* (d — )7 cos [kx - Sliln ( de)]
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u? & ey (2d)* (2 — d) " cos {kx - s/% In (x;dd) — 7r/4}

[T (is'/2 +1/4)|
Im {21’5'/26—1‘377/81“ (is'/2 + 1/4)}

u(z,0) = —(~1)" (v/2)"/*

es Re [e—i”/‘*m (—s', Mh(z—d— 6)) + 2—“’%@ (—s’, M(z—d— 5))}

T (is' /2 + 1/4)]

_ n 1/4
u(@,0)=—(=D"(/2) " — {20572¢=37/5T (is' /2 + 1/4)}

e s D(is'/2+ 1/4)
s’ /2 ’ — is’ jim/4 * ’ —
cae Re {U+ (s,\/4k(d+5 x))—|—2 N T (s Ak (d+o x))

B.4.1 correction for s equal to zero

Suppose we direct attention on the important s’ =0 (g = —7/4, k =k, = (p — 1/4) 7/¢) limit (the
peak region)

u' ~ T (1/4) \/2/mecos (/8) (1 — :C/d)fl/4 cos (kpx) , Region 1

u? ~ T (1/4) \/2/7ccos (7/8) (x/d — 1)_1/4 cos (kpx —m/4) , Region 2
where we have used

) ) 21/4\/E
/ _ ,—i3m/871/ — _ ,—im3/8
UL (0,0)=e U’ (0,0) € T/
and
B V2v B 2 V4 /7
= = cos (1/8)T (1/4)

1/4 )
(2y)"* cos (7/8) [ Aln (ﬁ)
We note that for s =0

by (d+60) = (n+1/8)
for which

cos (ky, (d + do)) = cos (kp (d + dp) — 7/4)
In Region 3

up = (—=1)" T (1/4)y"2ccos (m/8) [(x — d — 8o) /d|"* T_1 4 (ky |2 — d — &)
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where we have used

i3 a1l __
Uy (0,7) = /8 7§H1(/2; (7%/4)

Yiya(2) = Jija (2) = V2J_14(2)
The asymptotic form is

cos (kp |z —d — do| — 7/8)

up ~ (=1)"T'(1/4) ccos (/8) \/2/m "
(17T (14 cos /)27 2l L

Noting that

cos (ky | — d — 60| — 7/8) = cos (kpz — nm) = (—1)" cos (kpx) , © < d + d

cos (kp |z — d — 8| — 7/8) = cos (kpz — nw — 7/4) = (—1)" cos (kpyx — 7/4) , x > d+ d
shows that the Region 3 solution equals the outer terms for large arguments (this is also true if we average
these quantities in the integration).

d

AV, ~2 (al/2)1/4 / [u(z,0) —u' (z,0)] (d— x)71/4 cos (kpz) dz
+2(d/2)V! / O L (2,0) — 2 (2,0)] (& — &) cos (ki — /1) do
d
+2(d/2)M /Oo [ (x,0) — a2 (z,0)] (z — )~ cos (kyz — 7/4) da
d+dp

or

AV, ~ 23241 2 cos (1/8) T (1/4) {

d
/ [(71)" kY2 — d = 80| T 1y (y |2 — d — 8]) — /2] (d — )~ cos (k‘p:r)]

— 00

(d— x)71/4 cos (kpx) dx

d+d¢
+/ [(—1)" kL2 |z —d — 80|t T 14 (ky |z —d — 80]) — V/2/7 (x — d) "M cos (kypa — m/4)
d

(x — d)_1/4 cos (kpx — w/4) dz
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+/ [(71)" kY2 | —d— 8o T4 (kp | — d — o)) — /27 (& — d) " cos (kprw/zl)}
d+d¢

(z — d)"* cos (kyx — 7 /4) da
AV, ~ 284 (d/k,)"? ccos (r/8) T (1/4) {

kpd
[ [0 b= 800 g = By (0 80)) = /27 (k= 2) ™ cos ()]

(kpd — z) " cos (z) da
+ /k A (=1 = Ry (d+ 80)[ " Ty (J2 = ki (d+ 60)]) = V277 (2 — Kyed) /" cos (@ — m/4)]
(z — kpd) * cos (z — 7/4) da
+ /k :MO) (=) = Ry (d+ 80)[ " T_aya (|2 = by (d+ 60)]) = V/2/7 (2 — kyd) ™" cos (@ — m/4)|

(z — kypd) " cos (x — 7 /4) da

or

AV, ~ 2374 (d/k,) " ccos (m/8) T (1/4) {

kpd
[ (1" 2= (0 1/8) 7)Y Ty (2 = (0 +1/8) 7l) = V277 (i — @)~/ cos (a)

(kpd — x)_1/4 cos (z) dz

(n+1/8)7
*/k (1" 2= (04 1/8) 7)Y Tya (2 = (0 +1/8) 7)) = V27 (2 — kyd) ™" cos (z — m/4)
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(x — kpd)_1/4 cos (x —/4)dx

+%m ()" o = (4 1/8) 7/ Ty (o = (n+ 1/8) ) = /2] (2 — hyd) ™/ cos (@ — m/4)]

n—|—1/8)7'r

(x — kpd)_1/4 cos (x —/4)dx

}
Thus
AV, ~ 2%/ (d/k,)"? ccos (m/8) T (1/4) {
/:: (/4714 () — /2T (2 — o)™ cos (2~ 7/8)] (@ — ydo) ™ cos (@ — 7/8) du
+ /Okp% [m1/4J_1/4 () — 2/ |z — kySo] 4 cos (x + w/g)}
| — kpdo| ™ cos (& + 7/8) da
+ /OOO [x1/4J_1/4 () — 2/ (@ + kydo) ™ cos (z — w/s)}
(z 4 kydo) * cos (z — m/8) da
}
where

kpbo =kp (d+ o) —kpd=(n+1/8)7 — (p—1/4) md/¢

B.4.2 subtraction of averaged values

If we redefine the subtraction as the average of the square of the cosine we obtain

AV, ~ 224 (d/k,)"? ccos (r/8) T (1/4) {

/ 5 {w1/4J1/4 (w) cos (x —m/8) — %\/2/77 (z — kpbo) | (@ — kpbo) " da
kpSo
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I I I 1
- subtraction of trig functions
------- subtraction of averaged trig functions

0.5

0.0

Integral correction
o)
(6]

Figure B-1. Integral values of correction from Region 3. The solid curve has the trigonometric functions
subtracted and the dashed curve has the averaged values subtracted.

0 )
+/o {371/{71/4 (z) cos (x + m/8) — 5\/2/77 |z — kp60|_1/4} |z — kpdo|/ da

b [ [ @)oo= /) - 5B o o) (ot k) s

}

This is a more consistent correction with the value of V,, in the main body of the report (since we averaged
the cosines to obtain the value of the projection). Figure B-1 shows the sum of the integrals in braces of the
preceding expressions (solid curve has trigonometric functions subtracted and dashed curve has averaged
values subtracted).

The value of the dashed curve near w/2 (the average of the shift in the main body of the report
k, (d0) = m/2) is —0.85. Therefore

AV, ~ (—0.85) 2vd T (1/4)

(kyd)™/* Aln( )

Noting from the main body of the report that

vd
)/t [ A (£:4)

Vi~ (F+¢)ram

2
N
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we find

d 2 1.7
V, + AV, ~ v [ﬁ (g + go) - W] (1/4)
(k'pd)l/4 Aln (Z+d) P
and
& 17 |
VEL (V, + AV,)? Th¢) - —=| r2(1/4)
< AN = (d/L) 1/2Aln( x4) [V (2 ) Fpd
This correction reduces the peak value from < > ~ 25.5 to approximately (using p = 20 as an average

in the correction term)

(VEL(V, +AV,)*) ~ 205
much closer to the peak value of the histogram in Figure 55.

B.4.3 shifted projection operator

Suppose that the projection operator is defined by taking the limit between the two regions as
d — d + §g for each eigenfunction. Then we can write the correction as

AV, ~ 23/2d 2 cos (1/8) T (1/4) {

d+d¢
/ (1) BY/2 = d = S0l Ty 2 — d = Gol) — /37 (d + 89 — 7)™ cos ()]

— 00

(d+ 8g — z)* cos (kpa) da

+/ [(—1)" kL2 |z —d — 8ol Ty g (ky |z —d — 80) — V/2/7 (x—d—do)_1/4cos(k:px—7r/4)]
d

+do

(x—d— 50)_1/4 cos (kpx —m/4) dx

AV, ~ 232441 2¢ccos (n/8) T (1/4) {

/000 {(1)” J_14 (kpx) — \/2/ (mkpz) cos (ky (x — d — 6p)) | cos (ky (x —d — do)) dx
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. /Ooo [(—1)” J_1/4 (kpx) — \/2/ (wkpx) cos (ky (x + d + 00) — w/4) | cos (ky (x + d + o) — 7/4) dx

}
Using
kp(d+00) = (n+1/8) 7
gives
AV, ~ 2744 2¢ccos (n/8) T (1/4) {
/OOO {J_1/4 (kpx) — 1/2/ (wkpx) cos (kpx — 7r/8)} cos (kpx — m/8) dx
}

AV, ~ 27/ (d/k,) " ccos (m/8) T (1/4) {

/000 [J_1/4 (2) = v/2/ (mz) cos (z — 71'/8)] cos (z — m/8) dz

}

Now using the identities [31]

= (L aresind
J_1/4 () cos (bz) dz = %
oo . l ) b
/ J_1/4 (2)sin (bz) dz = _w
0 —

gives

cos (4 arcsinb + 7/8)

V1—b?

/ J_1/4(2) cos (bz — m/8) dz
0
In addition [37] using

s

/Ooocos(bz)% —/Ooosin(bz)% =\

gives
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—/ 2cos (z — /8) cos (b z7r/8)dz_%/ooozl/2 [cos (1 —b) z+cos((1+b)z—n/4)]dz

:—/ Zcos (1 —b) zdz+—/ % cos 1—|—b)zdz+—/ /2sin (1 + b) zdz

S S
V200 -b) VI+b

Thus we can write

/OOO [J,1/4 (2) = v/2/ (mz) cos (z — 77/8)} cos (bz — /8) dz

L /8 + L arcsinb
= COS | T — arcsin —
V1 — b2 4

1 1
2V1-b  /2(1+0)

11
2V1-b  2(1+b)

1
cos [71'/8 + 1 arcsin (1 — 1+ b)] -

1
V12

1 1

1
\/_cos [77/4—1 2(1_6)] C2/1-b  J2(1+Db)

s T B

- \/2(1_19) <¢11+b_%>+<4 ﬁ) T+

Therefore
1
AV, ~ =244 (2d/k )% ¢ cos (n/8) T (1/4 (1——>
) (2d/kp)""" ccos (w/8) T (1/4) Wi

- —%cm [rdfk, (2v2 1)

B.4.4 subtraction of averaged values from shifted projection

Because we averaged the square of the cosine to obtain the projection operator value in the main body
of the report, to be consistent we should calculate the correction as
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AV, ~ 27/% (d/k,) " ccos (m/8) T (1/4) {

/OOO [J_1/4 (2)cos(z —7/8) — 1/@} dz }

or

AV, ~ 274 (d/k,)"? ccos (/8) T (1/4) {
/000 [J,1/4 (2) — v/2/ (7z) cos (z — 71'/8)] cos (z — w/8) dz

+/Ooo [\/Wcos2 (z —m/8) — 1/\/%} dz }

or

AV, ~ 27/ (d/k,) " ccos (m/8) T (1/4) {

-2

1 ° dz
+\/—2_7r/0 cos(22—7r/4)ﬁ}

or

AV, ~ 284 (d/k,)"? ccos (r/8) T (1/4) {

(55

+1}
Notice that —1 4+ 1/ (2\/5) ~ —0.646 and 1/ (2\/5) ~ 0.354 are the k,dp — 0 limit of the solid and dashed
curves on B-1. Therefore

v

(27)1/4 Aln (%)

AV, ~ 274 (d /) 2T (1/4)

vd ' (1/4)
3/4 V2
(k)" [Aln (£24)
Noting from the main body of the report that

AV, ~
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Vp ~ +C0 (1/4)
k M /Aln
we find
V, + AV, ~ vd [i (f+§0)+L]F(1/4)
(kpd)"/* [ Aln (&4 VA2 V2kd
and (Z d)
(VRL (V; + A,)*) ~ « [% (5+c0)+ ﬁ] 21/

(d/L)* Aln (id)

Co = Arccosh (¢/d) = (Z/d + W)

2
A=7mR*+2R(L—2R) = 4R? <7r/4 + ZR>

B.4.5 including higher order terms in the oscillatory functions of the projection operator

We could ask what happens if we include higher order terms in the oscillatory integrals of the
projections operator for Regions 1 and 2 and then use the original correction above (with the asymptotic
forms for the Region 1 and 2 solutions as the focal point is approached rather than the averaged forms).
Taking the projection operator for the outer two regions with s = 0, and using

U’ (0,0)] " = 21/4[ T (1/4)

gives

V, =2 2vd T (1/4)

(k:d)l/4 TAln (ﬁ—g)

d ¢
l/ (d* — 332)71/ cos? (kpz) dx + / (z° — dz)fl/2 cos? (kpx — m/4) dz
0 d

or using a trigonometric identity

= e rajy

(kd)"/* [rAln (”d)

d 1/2 ¢ 1/2
[/ (dz—x2)_/ dx+/ (332—d2)_/ dx
0 d
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d ¢
—l—/ (d* — x2)71/2 cos (2kpz) dx + / (2® — d2)71/2 sin (2kpz) dx
0 d

_ 2vd T (1/4)

(k;d)l/4 TAln (gf—g)

! —1/2 t/d —1/2
/ (1—22) e 4 / (22— 1) " du
0 1

kd 12 ke 1
—I—/ (K*d® — 2%) cos (2z) dz + / (2 — K*d?) sin (2z) dz
0 kd

Noting that for the focus shifted in the projection, with s = 0 and k = k,,, we have

kd=(n+1/8)n

k= (p—1/4)7m
and

v, = 2ud I (1/4)

(kd)"* [rAIn (%)

(p—1/4)7m

(n+1/8)m —1/2
g+§0+/ {(n+1/8)2712—z2} COS(22:)dZ+/
0

(n+1/8)m

{2'2 — (n+1/8) 7r2}_1/2 sin (22) dz]

- ol 1" T (/) [5 + G,
(kd)/* | Jr A (£4)

. /<n+1/8>w 212 {(n 4 1/8)2m — 2} Y2 cos {2 ((n + 1/8) 7 — 2)} d
0

V2 a4 (n+1/8) 20} Y sin{2((n+ 1/8) 7 + 2)} dz

(p—1/4)7—(n+1/8)7
<,

0

_ 2vd? T (1/4)

(kd)'/* [rdAmn (£4)

. —1/2
B } cos (m/4 — z) 27 12dz
7r

- 1 (n+1/8)7 .
§+<0+1/2(n+1/8)7r/0 { C(n+1/8
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1 (p—n—3/8)m . —-1/2 Lo
+— 1—|——} cos(v—m/4)z" " dz
\/2(n+1/8)_77/o { T 1/8)2r (v—m/d)
For large upper limits the dominant contributions are near zero. Note also that the phases of the
trigonometric functions are such that the leading contributions at the other limits vanish (and thus the
corrections for the other limits are quite small at high frequencies). Thus we can write this as

v, ~ 2ud T (1/4)

(kd)"/* | [rAln (%)

cos (m/4 — z) zl/de]

T V2 >
2 Tt TS 1/8)_77/0

N 2vd T (1/4)

(kd)* [ Aln (%)

™
TRECRE

n+1/8

N 2vd T (1/4)

(kd)'/*\ 7 AIn ($4)

T 1
§+CO+—W‘|

Thus if we include the oscillatory functions in the definition of V,, we also include this additive term. When
added onto the correction of the previous sections this extra term eliminates the negative 2 in the correction
and returns us to the same value as obtained previously by redefining the correction in terms of the average

values. Thus we obtain a small positive correction.

B.5 Random Plane Wave Representations And Treatment Of Integral Near
Focal Point

This section gives integrations near the focal point needed in the evaluation of the random plane wave

projections.

B.5.1 random plane wave projection

The random plane wave projection in the main body of the report involves the function

[e's) d
exp (7]5'] /2) Gs (\) = %/O [6”5//4/0 (1= a2/d?) " cos { (A4 — )/t — py (z)} da/C

tems /4 /Z (z?/d* — 1)71/4 cos{(N4—)a/l+7/4—pa(z)} dx/é] d¢
d
') 1
= % (d/€)2/O {e_”//‘*/ (1- x2)71/4 cos { (A\/4 — (2) z (d/l) — p1 (zd)} dz

0

s [, —1/4 2 i
+e“//1 (z2 —1) cos{()\/4—C)x(d/€)+ﬂ/4—p2($d)}d$] g
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1 (wd) = %3/ {m G fz) —In (ﬁf—j) (a:d/é)}
1

P2 (2d) = {m (i - 1) —In (ﬁf—j) (a:d/é)}

Now for evaluation we need to include contributions near the focus at x/d = 1. Thus we write

1
/17 (1—22) " cos { (A4 — ) 2 (d/0) — p1 (xd)} da

{+d

o [ e e [iva- ) @0 - g n@ w0 - () @i}
+exp{i(/\/4C)(d/€) % {ln(2)1n(1 ) — 1<§+3> (d/ﬁ)}H
N25/4/06 {exp {i(m@) (d/@)fi%s/ {m( ) —In (§+Z> (d/e)}}x“’/“/‘*

+ exp {z (A4 =) (d/o) + %S' {m (2) —In (z — d) (d/f)}} misl/21/4] da

~ 27 [ {(A/4 ¢*) (d/0) -

1
2°
ro{ -y i {mer o (523 winf

~ o L= ) @0 - 3 {mese - (755) @ }}
and

1+€
/1 (a* - 1)_1/4 cos {(\/4—¢*) z (d/0) + /4 — ps (zd) } da
1+e
~ 2—5/4/1 (x — 1)~/ {exp {z (/4= ¢%) (d)0) +im /4 — z%s {m (2)—In(z—1)—1In <§ + 3) (d/é)}}

exp {—i (A\/4— %) (/) —im/4 + z%s’ {ln (2)—In(zr—1)—In (ﬁ i_ Z) (d/f)}}]

~ 95/ /O [exp {z (M4 — ¢?) (d/) + im/d - i%s’ {m 2) = In (ﬁ - j) (d/ﬂ)} } 211271/ g
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exp {—i (A4 —¢?) (d/e) —im/4 + i%s/ {m (2) —In (ﬁ + Z) (d/€)}} 25’/21/4} da

. ~ 271/423/4 oo { (\/4= ) (d)e) +m/4— %s' {m (2/e) —In (ﬁ + Z) (d/é)}}

, 1 —1/4
[ 1) s (3 ) 00) o)}
ws' /4 /1+E 2 —1/4 2
te 1 (m —1) cos{()\/4—C )Z(d/é)—m (xd)}dx
L 9-1/4.3/4 [e_mw; cos { (A4 —¢?) (d/e) - %s/ {m (2/e) —In (ﬁ * ;l) (d/ﬁ)}}

e M cos { (A4 =) (d/0) +m/4— %s’ {ln (2/¢) —In (ﬁ . 2) (d/ﬁ)}}]

B.5.2 another approach to stadium integral of the square

Another representation for the random plane wave projection arose from consideration of the
approximate representation

~ o /
u R~ E Up + Uy E CrpUp
P P

This led to

pory~ S |3 [ i [ [ he e @ @) (%/_i<ui>dw)]

Identification of the second term in the summand with the random plane wave projections gave

4/7]d
A2k (£4) U} (=5,0)] |UL (5,0)]

LQA/ / Jo (k (z — 2")) (up () up, (2')) dzda’ = Gs (A exp (ms| /2)

where
exp (7 ]3] /2) G () ~ % (d/0)*/* {

effrs/Q /Z/d (1'/2 _ 1)—1/4 /E/d ($2 . 1)—1/4
1 1
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and

[cos (A2’ —z| & —7/4— (p2 (2'd) — p2 (zd)) sgn (z' — 2))

Vi — x|

_sin(A(@' +2) §f —7/4— pa (2'd) — pa (wd)) 1 duda’
Vote

¢/d 1
+2/ (2% — 1)‘”4/ (1—a2)"
1 0

[cos (A" —2) & %x’d)—m (zd))) L cos (A (@ +2) %x—/_fw(w’d)—pl (zd))
v [Maeay [y
[C s (M’ ] o;ﬂ/4<f;1/<:a:|>p (vd))sgn (a” — )
Leos (M@ ) —ﬁ/[%m (a'd) ~ p <$d>>]dmx/}
A=Ak — k)€

(o) = (') = 3 {n (55) (@ =@ - (S51 ) 4 (557}
(0 42 'd) = 5 {m () (- (F15) - (555}
(o) 200 =S i () =) -1 (12 s (221
@ 42 ') = -5 i (F5) (- (£55) - (555
(o)1 00 =S i () =) -1 (12 s (122
o+ 00 = 5 i (0 (v a0 - (12 o (122

To treat the region about unity we write (we assume that ¢ << |1 — '|)
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/”5 (% - 1)—1/4 cos { Mo’ —a| & —7/4 — (p2 (¢/d) — ps (d)) sgn (¢' — z)}dx
1

Ve =l
1+e
_ 2 1 —1/4
TG

cos ()\|x’—x|ﬁ—77/4+ (1n (Zii) (' —x) d/ﬁ—ln( ) +1n (i))sgn(as —x)) -
Vi =l

—-1/4

1 1+e
S
21/4 ‘3?'—1| 1

0s ()\x'—1|4%—7r/4+%s' (m (ﬁ*j)( 1)d/t - In <i i) +1n2—1n(m—1)> sgn(x/—l)) do

—-1/4

o JACUN
cos<A(x'—1)4%—sgn(x'—l)w/4+%s’ <m<§fj)( 1)/t —In (i J_r1>+1n2 1n(x—1))>dx

1

T sl 1]
. d 1, {+d ' +1
exp{z(A(m—1)4—£—sgn(x—1)7r/4+§s (111(8 d)( 1)d/¢ —1In ( 1>+ln2))}
/?30—1/4—1‘3//2(15”+ 1
0 95/4 ]z’ — 1|
d 1 (+d '+ 1
. !/ o a /! ! - - I _
exp{ z<)\(x 1) ", sgn (x 1)7r/4—|—2s <ln (ﬂ—d) (' =1)d/f —1n (x’—1>+ln2)>}
€ o 1
—1/4+zs/2d ~ .
d 1, g+d o +1 £3/4—is' /2

exp {—i

+—
25/1 /T’ — 1|
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(A (@ —1) % —sen (2 — 1) 7/A+ %5/ <ln (ﬁ*j) (@ —1)d/l - <z - 1) +1n2>)} %
T 67;4' 1 e {i
<)\(x’ _1) % Csen (s’ — 1) 7/4+ %s <1n (?3) (2 —1)d/t - (; - 1) —Hn(2/s))>} m
/1
e P
<)\(x’ —1) % Csen (sl —1)7/a+ %s <1n (i*j) (2 —1)d/t - (i/ - 1) —Hn(2/s))>} m
3e3/4
T (9/a+ 52) ld — 1]
cos {A (@ — 1) 4% —sgn (&' — 1)/ + %s (m <%> (@ —1)d/t—n (i - 1) +In (2/@)}
25'e3/4
C2U4(9/4+52) /T — 1]
sin{)\(x _1) 4% —sen (2 —1)7/d+ %s/ (m (ﬁ*j) (@ —1)d/fl— (i i D +1n(2/5))}
and
/ PRt (|1;1/ (f/jf ) sn ! )
:/1; (1—a2)

cos{)\|x’ —a|d —n/4+1s

(2

1

1
21/4 /\x’ _ 1| 1—e

(1—z)"

)}

i
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08 )\‘.’E/—1|i—ﬂ'/4+18/ In trd (' —1)d/¢ —1n 1+ +In2—In(1—=x)|sgn(z’ —1);dz
40 2 (—d
1 /E
21/4/1a" = 1] Jo
’ ii r 1, £+d . . 1+l’l . —1/4
cos{/\(:r 1)4€ sgn (z 1)7r/4+2s In a— (' —=1)d/l —1n T +In2—-Inv | po /" *dv
_
25/4, /]a’ — 1|
(-1 - Lo (4 _ H_f”
exp{z()\(x 1)46 sgn (z 1)7r/4+2s In 74 (' —1)d/f —In — +1n2
/E o142 g,
0
L1
25/4, /|’ — 1]
il L Lo (i (224 (0 - (L
exp{ z<)\(x 1)4€ sgn (' 1)7r/4—|—2s In T4 (' =1)d/¢ —1n T4 +1n2
/E ,U—1/4+is'/2dv
0
3e3/4
W0+ o) 7T
4 - Lo (1 (4 NEss
cos{)\(x 1)45 sgn (z 1)7T/4+28 (ln(z y (' —1)d/l — T +1In(2/¢)
23/53/4
21/4(9/4+ 52) /]2’ — 1|
) o4 ;o 1, {+d 1+
sm{/\(x 1) ", sgn (z 1)7r/4+2s (ln(g yi (' —1)d/l — 12 +1n(2/¢)

Thus both are identical

— po (zd)) sgn (' — :E)}

dx

/1+E( 2y cos {A|a’ — @l §f — /4~ (p2 (¢'d)
2
1

Vie=al
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353/4

T ovi(9/at 2 o ]
d 1 {+d 1+
I o a I o - - ! _ I
cos{)\(x 1)4£ sgn (x 1)7r/4+25 (ln<£—d> (' =1)d/f —1In T2 +1n(2/5))}
2s/e%/4
C2UA(9/4+ 52) o' — 1]
1+2a

i e — Lo (m (29 o - I s
sm{/\(:r 1)4£ sgn (x 1)7r/4+2s <1n<€_d (" —=1)d/¢ lnl_

| +mea)}

-~ /1 (1 _ x2)71/4 cos (>‘|17/ -z 4% — /4 — (p1 (2'd) — p1 (zd)) sgn (2' — x)) "
1

—e |z — z|

Next

/1+e ($2 - 1)71/4 sin ()\ (2’ + ) 4% — /4 —p2 (2'd) — p2 (ﬂsd)) de

Vi +x

/1+a (x2 - 1)_1/4 cos [)\ (' +x) 4—(12 —3r/4+ %s’ {ln (%) (' +z)d/¢ —1n (;i—ﬂ) —1In (i—j)H ;
1 7

va'+x
1
214/’ + 1
/ S
Reexp {z ()\ (' +1) 4% —3n/4+ %s' {ln (%) (z' +1)d/l —In (%) - 1n2}>] /0 v /AT 2y
4e3/4
RPN

Re exp [z (A (z' +1) 4% —3m/4+ %s’ {ln (%) (¢’ +1)d/l —1n (%) —In (2/6)}” %

353/4

ToUA(9/4+ 52 Vo 11

am[A@’+1p%-&u4+%su&n(§i%>(xﬂ+1yuz—1n<xh+i)-wn@/a}}

SC/

3/4 (+d

anfp w0 2o fn (220) 4 e (250) )|

2s’e

+
2U/4(9/4+ 52) Val + 1
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3e3/4 1

"o (9/4 + s2) Vo + 1

sin [)\ (@' +1) 4

44 2

—7w/4+ =s

()

1)d/t—1n (”“"—fb —n (Q/s)H

24/3/4 d . (td / oo
~57 OIESENCES! cos [)\ (@' +1) i /4 + 55 {1n (m) (' +1)d/l —In (ac’ — 1) —1In (2/5)”
/1 (- x2)71/4 cos (A (2 + x) — /4 —py (a'd) — p1 (zd)) "
1—e V' +x

() (=)},

d) (2 +2)d/t -

i

/1 (1zQ)_1/4cos()\(x’+x)44‘i£—7r/4+ {1n(
1—¢

v +x

REREVES
Reexp [z (A(a: +1)4%—7r/4+%s’ {m (ﬁf—j)( 4 1)d/e—1n (“_ri)—l 2})}/081,1/4%/2@
~ 17 (9/4:181/:)\/3:/—_’_1cos {A(x’+1)4%—77/4+13’{1n (ﬁ*j)( 1)d/¢ —In (“_ri ) _1n(2/5)}]
s 0wy () @ s vaom (1) - ne |

Now the cross terms

“n ()

/1 (1 B JZ72)*1/4 cos (/\ (z' — ) 4% — (p2 (2'd)
1—e

T —x

_/1 (1z2)_1/4cos()\(x’—x)ﬁ—i—%s’{ln(%) (x’—x)d/ﬁ—ln(
1—¢

L1
2

e TG

1 (o, 4 1
~— )= 4=
21/4\/mReexp [z <)\(x )4€+

ol () -

o fin () @ (2

T —x

1)d/¢ —In (i -

{—d

/E ,U—1/4—z's’/2dv
0
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e [a 0 3 o () @ g (S |

- 21/4(9/4 + 5'2) /o — 1 1
2g'e3/4 , d 1, {+d , 41
_ a1 (+d - - ,
s P g g () @ - v (S5 ) rmea
! / d 1N
/ (1- x2)71/4 cos (A (' 4+ x) & — p2 (2/d) — p1 (zd)) "
1=e VA

cos (A (' +x) ﬁ + %s’ {ln (%) (' +z)d/l —1n (i;ﬂ) —In (}f_ﬂé)}) ;

1
— 17 2_1/4
/1,5( z) v +x v
1 ¢ , d 1, l+d , ' +1 14
-t : A trd (22 ) Cm2 41 d
21/4\/m/0 cos(A(az +1)4£—|—23 {ln(é—d (' +1)d/f —1n o n2+Invy |v v

1 ) , d 1, L+d , 41
~—_— — 4 = — 1 —1 —In2
21/4\/95/—+1R68Xp [z <)\(x +1) 4€—‘r28 {ln <€—d> (' +1)d/l —In g n

154
/ v—1/4+is'/2dv
0

3e3/4 . d 1, (+d ) 2 +1
- N w3 y ~In(=—) -In(2
21/4(9/4 + s'2) x,+1cos {)\(x +1) 4€+ 55 {ln (E—d) (' +1)d/f —In (x’—l) n ( /5)}]
25/£3/4 ) d 1, (+d\ o1
NeES D) T - —In (2
+21/4 (9/4 + 52) x,+lsm {)\(x +1) 7T 58 {ln (€—d> (" +1)d/t —1n <x’—1) n ( /E)H

Finally we need to treat the region about x’

/””/“ cos (A|z' — | & — /4 — (p2 (2'd) — p2 (zd)) sgn (z/ — ) i

—e Vi0z — x|

' +e CoS ()\ o/ — 2| & —m/4+ 15 {ln (%) (' —x)d/l —In (i;ﬂ) +In (i—ﬂ) } sgn (z/ — x)) o

a /xus |2/ —
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dx

/””/“ cos (A" —z| & — /4 — (p1 (2'd) — p1 (zd)) sgn (2 — z))
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