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Abstract 

 
The project objective was to detail better ways to assess and exploit intelligent oil and gas field 
information through improved modeling, sensor technology, and process control to increase 
ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of 
permanent downhole sensors systems (Smart Wells) whose data is fed real-time into 
computational reservoir models that are integrated with optimized production control systems.  
 
The project utilized a three-pronged approach 1) a value of information analysis to address the 
economic advantages, 2) reservoir simulation modeling and control optimization to prove the 
capability, and 3) evaluation of new generation sensor packaging to survive the borehole 
environment for long periods of time. 
 
The Value of Information (VOI) decision tree method was developed and used to assess the 
economic advantage of using the proposed technology; the VOI demonstrated the increased 
subsurface resolution through additional sensor data.  Our findings show that the VOI studies are 
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a practical means of ascertaining the value associated with a technology, in this case application 
of sensors to production.  The procedure acknowledges the uncertainty in predictions but 
nevertheless assigns  monetary value to the predictions.  The best aspect of the procedure is that 
it builds consensus within interdisciplinary teams 
 
The reservoir simulation and modeling aspect of the project was developed to show the 
capability of exploiting sensor information both for reservoir characterization and to optimize 
control of the production system.  Our findings indicate history matching is improved as more 
information is added to the objective function, clearly indicating that sensor information can help 
in reducing the uncertainty associated with reservoir characterization.  Additional findings and 
approaches used are described in detail within the report. 
 
The next generation sensors aspect of the project evaluated sensors and packaging survivability 
issues.  Our findings indicate that packaging represents the most significant technical challenge 
associated with application of sensors in the downhole environment for long periods (5+ years) 
of time.  These issues are described in detail within the report. 
 
The impact of successful reservoir monitoring programs and coincident improved reservoir 
management is measured by the production of additional oil and gas volumes from existing 
reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already 
abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides 
the means to understand how a reservoir process is developing and to provide active reservoir 
management.  At the same time it also provides data for developing high-fidelity simulation 
models.  This work has been a joint effort with Sandia National Laboratories and UT-Austin's 
Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the 
Institute of Computational and Engineering Mathematics.  
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1.0  INTRODUCTION 
 
Sandia National Laboratories and the University of Texas system have many diverse components 
that are involved in energy related research and, in recent years, both have made significant 
advances in the science and engineering of modeling, and have developed new procedures for 
verification and validation of predictions.  A primary objective of this effort was to bring 
together critical components of this existing work to prove the value and feasibility of linked 
reservoir monitoring and modeling, and to encourage the use of future instrumented wells that 
use downhole sensing and flow control to increase production.  Such instrumented wells, known 
as “Smart Wells”, are currently being successfully used in the North Sea and the Middle East in 
high rate wells to identify and isolate sections of wells in advance of water entry (Yeten et al., 
2004).   
 
This technology is used much less frequently in US reservoirs, in part because of the expense, 
but also because the advantages of their use to overall increased production are less clear in 
mature fields. This project provides explicit estimates of the economic value of such technology, 
expanding the modeling and control of a reservoir that incorporates the sensor data into both 
refined reservoir models and improved real-time production control.  We also examine the 
feasibility of long-term (> 5 year) survival of such sensors in the hostile borehole environment. 
 
This LDRD project addressed these issues with  a three-pronged approach:  a value of 
information (VOI) analysis to address the economic advantages, reservoir simulation modeling, 
control and optimization to prove the capability, and evaluation of new generation sensor 
packaging to survive the borehole environment for long periods of time.  The first two parts are 
jointly performed between UT and SNL; the last is entirely conducted at SNL.  
 
The working partnership included Sandia National Laboratories (SNL) and components of The 
University of Texas at Austin (UT), specifically, the Bureau of Economic Geology (BEG), the 
Department of Petroleum and Geosystems Engineering (PGE), the Institute for Computational 
Engineering and Sciences (ICES), and the Institute for Geophysics (UTIG).  A group of industry 
participants was also used for the Value of Information (VOI) analysis.  The work was supported 
through Laboratory Directed Research and Development (LDRD) funds from SNL. 
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2.0 VALUE OF INFORMATION 
 
2.1 Technical Approach 
 
Our hypothesis was that with improved monitoring, rapid interpretation, and appropriate 
intervention, ultimate hydrocarbon recovery from a variety of reservoirs could be increased.  
Quick response to such things as changes in flow rate, pressure, and fluid chemistry will also 
improve the effectiveness of primary and secondary oil recovery.  For oil production, accurately 
locating remaining unswept oil would also aid the design of effective enhanced oil recovery 
(EOR) technologies and successful infill drilling.  Changing the instrumented Smart Well 
measurements into action will require understanding, and/or simulation. 
 
VOI was developed as a tool to direct efforts toward technologies with the maximum potential 
benefit.  As used here, VOI uses a decision tree (DT) that breaks the hydrocarbon recovery 
objective into basic units or components and then assigns the probability of attaining each 
component along with its expected value.   For example as part of first year tasks a joint SNL/UT 
group developed a DT to reflect the components affecting production decisions in a typical 
mature oil reservoir in the Permian Basin of West Texas.  The main objective of this exercise 
was to analyze and compare how different technologies could increase the ability to identify 
missed zones and drill a horizontal well targeted to them. These values were then compared with 
the actual base case technology to determine the potential economic impact of adding sensors.  
This VOI analysis is shown in Figure 1 and described below:  
 
It was considered that the Permian Basin field under analysis was subject to waterflood. Due to 
vertical and spatial heterogeneity some layers or zones are not swept.  If these zones could be 
identified and drilled ultimate oil recovery could be increased.   
 
The first uncertainty considered was the existence of continuous or discontinuous layers in the 
well.  The next uncertainty is the total production rate; it could be high or low depending on the 
pressure and permeability found in the layer. High rates were considered to be 1000 barrels of oil 
per day (bopd), and low rates 200 bopd.  The costs considered in all the cases are: 1) Drilling 
cost : $1,000,000 (horizontal well leg 1000-2000 ft) / (drilling depth 6000 ft ), 2) Oil price: $50 
per barrel ($/bbl; net value, includes operating expenditures deductions) and 3) Water Processing 
cost: 0.50 $/bbl. 
 
In this analysis it was assumed that Smart Wells will improve monitoring allowing the 
measurement of layer by layer flow, pressure, saturation, and chemical properties in real time.  
This would drastically change the amount of information available and allow the building of 
better simulation models.  The simulation models would in turn allow the better detection of by-
pass zones through increased data density. 
 
In the Smart Well Case the chance of hitting a continuous layer is changed to 80% from 70% in 
the Base Case (Figure 1). The use of Smart Wells will change this probability since it will allow 
the detection of by passed zones by measuring flow and chemical components of the production 
fluids.  For analogous reasons the probability of finding high rate layers is also increased. 
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The resulting VOI comparison shows the Base Case expected oil recovery is 24MBls of oil per 
well over a six month period and the expected value of this investment is 189M$ and the 
expected oil recovery in the Smart Well Case is increased to 28MBls of oil per well and the 
resulting expected Value is 354 M$ (given the economic values listed previously; Figure 1).  
 
Base Case 
BASE CASE - EXISTING STATE OF PRACTICE

Total Qo Qw Oil Recovery Value
Probability bpd bpd Mbo M$

60% Oil 20% 2.8% 600 400 108 4364
30% Oil 60% 8.4% 300 700 54 1637
1% Oil 20% 2.8% 10 990 1.8 (999)
60% Oil 60% 33.6% 120 80 21.6 73
30% Oil 20% 11.2% 60 140 10.8 (473)
1% Oil 20% 11.2% 2 198 0.36 (1000)
60% Oil 10% 1.5% 600 400 108 4364
30% Oil 60% 9.0% 300 700 54 1637
1% Oil 30% 4.5% 10 990 1.8 (999)
60% Oil 20% 3.0% 120 80 21.6 73
30% Oil 60% 9.0% 60 140 10.8 (473)
1% Oil 20% 3.0% 2 198 0.36 (1000)

100.0% Expected 24 189

High total production 
rate (1000 bpd) 50%

Low total production 
rate (1000 bpd) 50%

High total production 
rate (1000 bpd) 20%

Low total production 
rate (1000 bpd) 80%

Continuous 
along well bore 70%

Discontinuous 
along well bore 30%

Unswept 
Beds 100%

Event/Probability Event/Probability Event/Probability Event/Probability

 
 
Smart Well Case 
USING DATA FROM "SMART" (INSTRUMENTED) WELLS IN VICINITY

Total Qo Qw Oil Recovery Value
Probability bpd bpd Mbo M$

60% Oil 20% 4.8% 600 400 108 4364
30% Oil 60% 14.4% 300 700 54 1637
1% Oil 20% 4.8% 10 990 1.8 (999)
60% Oil 60% 33.6% 120 80 21.6 73
30% Oil 20% 11.2% 60 140 10.8 (473)
1% Oil 20% 11.2% 2 198 0.36 (1000)
60% Oil 10% 1.2% 600 400 108 4364
30% Oil 60% 7.2% 300 700 54 1637
1% Oil 30% 3.6% 10 990 1.8 (999)
60% Oil 20% 1.6% 120 80 21.6 73
30% Oil 60% 4.8% 60 140 10.8 (473)
1% Oil 20% 1.6% 2 198 0.36 (1000)

100.0% Expected 28 354

Unswept 
Beds 100%

Continuous 
along well bore 80%

Discontinuous 
along well bore 20%

High total production 
rate (1000 bpd) 30%

Low total production 
rate (1000 bpd) 70%

High total production 
rate (1000 bpd) 60%

Low total production 
rate (1000 bpd) 40%

Event/Probability Event/Probability Event/Probability Event/Probability

 
 

 
Figure 1: Example of preliminary VOI decision tree analysis for a Permian Basin mature 

oilfield. 
 
This example shows that the VOI analysis can be a primary tool to evaluate the economic 
advantage of permanently emplaced sensors in wells used to control production  The analysis 
accomplishes several objectives: 
 
1.  Forces decisions to be considered as a combination of small decisions (components) that are 
more understandable (and more discussable) than large decisions.  
  
2.  Allows discussion of the components of a decision by a group of experts so as to build 
consensus. 
 
3.  Incorporates the experience of the analysis participants through assignment of probabilities. 
 
4.  Forces internal consistency on the value assignments across multiple scenarios. 
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5.  Creates the opportunity for group involvement and buy-in. 
 
In the decision process the conceptual use of sensors follows three steps: 
 
Accumulation of data - Capturing and amassing of data at a time rate appropriate to the ability to 
change operations in a reservoir.  This step includes high-density storage options as well as data 
mining considerations. 
 
Interpretation of data - Using the accumulated data in a calculation to develop a model of the 
type of issues being experienced.  At the current stage of understanding, this step involves using 
the data to calibrate or identify alternatives in the input to a numerical model, which is one of the 
reasons for the numerical modeling portion of this report. 
 
Implementation - Using the calibrated model to develop alternatives in operating procedure.  The 
changed operating procedure will result in more hydrocarbon production either through larger 
rates (than before the change), increased ultimate recovery, or both.  Implementation must face 
the challenges of downhole conditions as is discussed in the sensor development portion of this 
report. 
 
The principal tool of the VOI analysis is the decision tree (DT).  Decision trees consist of a 
succession of nodes of different types to diagrammatically illustrate the component decisions and 
possible outcomes.  DT’s have been in use for several decades in many industries.  The ones 
being used here consist of decision and chance nodes.  Experts quantify their knowledge through 
the outputs of the node in three ways; they define the 1) type of outcomes, 2) quantitative value 
of the outcomes, and 3) probability of that outcome occurring.  
  
 

2.2  VOI Analysis 
 
VOI is an attempt to combine the three above steps (accumulation of data, interpretation of data, 
and implementation) in a semi-quantitative fashion.  The procedure does not rely on modeling or 
data, but it does allow all aspects of the steps to be considered to avoid undue emphasis in any 
one area or to avoid technology development in isolation. 
 
UT and SNL personnel conducted a preliminary VOI analysis in the summer of 2005.  During 
the summer of 2006, this analysis was repeated with a broad industry group, using more 
technologies, and a more refined DT.  UT and SNL along with a group of industrial contacts 
provided the analysis.  Some of the companies that participated include ExxonMobil, Chevron, 
British Petroleum, Petrobras, Anadarko, Marathon, Baker Hughes and WesternGeco.  Appendix 
A gives a summary of the industry Workshop. 
 
The following is a description of the preparation for this workshop as developed through several 
UT/SNL meetings. 
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The VOI Scope.  Considering all reservoirs, sensors and technologies is beyond the ability of 
any organized workshop.  Hence some initial work was needed to limit the scope. 
 
Sensors.  The explosion in sensor technology and the presumed benefits of this technology 
motivate this work.  High resolution bottom hole measurement of fluid content (saturation) has 
been possible for several decades as has surface measurement of rates.  Current technology 
allows the near-continuous in time measurement (one measurement per second) of bottom hole 
temperature and pressure with good spatial (about one measurement per meter) and measurement 
resolution (less than 0.1 degree F for temperature or 0.1 psia for pressure).  Bottom hole 
measurements of rate (usually deduced from temperature or pressure change) and chemical 
composition are on the horizon.   Here sensor refers to all of these; we presume a prudent 
operator will chose a sensor that is best for a given application.  See Section 4 of this report for 
more details. 
 
Reservoir/Technologies.  Early on we established a collection of reservoirs and appropriate 
technologies on which to perform the VOI analysis.  The combination of reservoir and 
technology is a scenario.  The scenarios are  
 
S1.  Conventional mature onshore oil reservoirs in which a CO2 enhanced oil recovery (EOR) 
project is being considered. 
 
S2.  Unconventional gas reservoirs to be produced by multilateral or horizontal wells. 
 
S3.  Heavy oil reservoirs for which a Steam Assisted Gravity Drainage (SAGD) thermal EOR 
project is considered. 
 
S4.  Deepwater oil production being considered for waterflooding. 
 
Decision Trees.  The primary tool of the VOI workshop is the decision tree or a succession of 
nodes of different types to diagrammatically illustrate the component decisions and possible 
outcomes.  DTs have been in use for several decades in many industries.  The ones being used 
here consist of decision and chance nodes.  See schematics in Fig. 2 for this discussion. 
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Unconventional
gas production

Produce with
multilateral/horizontal
wells

Produce with
vertical wells

 
 

Employ sensor

Decision tree  with well
production options

Decision tree with well
production options

Yes

No

Expected value,
MCF/day

170

120
 

 
 

Figure 2:  Schematics of decision nodes used in a decision tree. 
 
Nodes.  A decision node is designated by a box with at least two outputs.  The outputs represent 
the possible choices and the input is the decision itself.  For example, for S2 above a decision 
node would be “use horizontal wells” or “fracture vertical wells” (see Figure 2).  We will use 
decision nodes with two outputs in the VOI analysis. 
 
The second type of node is the outcome or chance node represented by a circle in Fig. 3.   
The inputs to the circle (line intersecting the circle from the left) come from a decision node.  
The outputs (lines to the right) of the chance node illustrate the possible outcomes and 
probability of that outcome occurring--100 MCF/day and 0.8 for the upper branch in Fig. 3.   
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Produce with
vertical wells

100 MCF/day

500 MCF/day

0.8

0.2
 

Produce with
vertical wells 100 MCF/day

500 MCF/day

0.8

0.2

100 MCF/day

500 MCF/day

0.6

0.4

Favorable

Unfavorable

0.1

0.9

 
Figure 3:  Schematics of outcome nodes used in a decision tree. 

 
Workshop experts quantify their knowledge through the outputs of the outcome nodes in three 
ways; 
 
1.  Type of outcomes, for example the use of rates in the above figure 
2.  Quantitative value of the outcomes 
3.  Probability of that outcome occurring.   
 
One of the first tasks of the workshop was to agree on the outcome definitions. These items 
express the inevitable uncertainty in the outcome.  Chance nodes with multiple or even 
continuous outputs are possible but we will use only binary outputs.   
 
We make the DTs used here manageable by restricting the number of outcome node levels to 
only two, one that depicts the state of the reservoir and another the effect of the decision in each 
state.  The state of the reservoir (favorable or unfavorable above) is an attempt to quantity 
(through the probabilities) the native heterogeneity of the scenario.  The definition of “favorable” 
will be made before the workshop ( for example, a favorable reservoir might be one with 
continuous pay), but the participants will provide the detailed definition.  
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2.3 Specific Application  
 
Here we discuss how the DT applies to specific hydrocarbon production technologies.  The 
benefit obtained by using sensors fall into three areas: 
 
The sensors.  This category includes the accuracy, precision, reliability and cost of the 
measurements.  Evidently, nearly everything that can be measured with conventional logging 
suites can be measured with sensors (and more):  pressure, temperature, phase saturation, flow 
rate and even some chemical compositions.  These measurements, mainly electrical or optical 
signals, appear to be accurate and precise.  The main technical limits are the rate at which (what 
will ultimately prove to be) large quantities of data can be transmitted, and the range of 
conditions at which sensors can operate.  Given that processes taking place within a reservoir 
occur slowly, data transmission issues are not as limiting as they would be in other applications.  
The range of operating conditions (which is a range on sensor packaging) is more severe; 
currently-available sensors fail at temperatures greater than 175 deg F after a few hours. 
 
Interpretation.  While much can be measured with sensors, little is of direct use to a decision-
maker.  Sensor information must be interpreted with a model, analytical or numerical, that 
translates what a sensor can measure (e.g. temperature) to what is useful (e.g. downhole 
flowrate).  The translation also allows what is essentially a point measurement to be relevant to a 
larger volume in the reservoir.  Furthermore, the consequences of acting on the sensor 
information can only be evaluated through a similar model.   
 
Response.  Sensors have no use unless there is some way to respond to the interpretation 
provided by the model.  For many applications, the response options are limited.  Indeed, for 
some types of production, there are no choices whatsoever, in which case there can be no value 
to the sensor.  Options usually involve any action that redirects flow: shutting in wells, shutting 
in zones within a well, opening up wells and zones, redirecting fractures, limiting heat losses. 
 
Each of the above categories is a subject of stand-alone research.  For the VOI study all of these 
are part of assigning worth. 
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Technologies.  We selected several technologies and reservoirs on which to apply VOI analysis.  
These are summarized in Table 1.   The combinations of reservoir type (first column), 
technology (second), and alternative are intended to cover a range of production encountered in 
the US.  A brief description of each follows. 
 
Reservoir Technology Alternative Basis Cost 

Calculation
Ways to 
Fail 

Applicable 
Sensors 

Mature, 
onshore 
oil 

CO2 flooding Continued 
waterflooding

5-spot 
pattern

Typical 
CO2 
injection 

Bypassing 
Poor 
injectivity 

Flow 
Temperature
Chemical 
Pressure 

Tight gas Hydraulic 
fracture 

Unfractured 
vertical well 

Single 
well 

Hydraulic 
fracture 
cost 

Fracture too 
small 
Fracture out 
of zone 
Poor returns 

Seismic 
Chemical 
Flow 
Pressure 
Temperature
Tiltmeter 

Deepwater 
oil 

Waterflooding Continued 
primary 

10 
Well 
Project

5 
conversions 

Bypassing 
Poor 
injectivity 
Sand 
production 

Flow 
Temperature
Pressure 
Optical 

Heavy oil, 
tar sands 
oil 

SAGD Cyclic steam SAGD 
well 
pair 

Extension 
of two 
horizontal 
wells 

Poor 
injectivity 
Uneven 
breakthrough 
Sand 
production 
Surface 
eruption 

Flow 
Pressure 
Temperature
Optical 
Tiltmeter 
Seismic 

 
Table 1: Reservoir types and production scenarios. 

 
Mature onshore reservoirs.  Particularly in West Texas, there is intense activity in CO2 
injection.  The purpose of this technology, which is usually applied to a reservoir in the late 
stages of a waterflood, is to mobilize residual oil saturation by attaining miscibiltiy between the 
crude and the CO2.  When miscibility (or near miscibility) is obtained, the local recovery of 
crude is close to 100%.  Examples of CO2 floods include the Means San Andres and the 
SACROC Units. 
 
Flow rate and pressure sensors could be useful in identifying well pairs between which CO2 is 
channeling.  Such wells could be shut in if analysis so dictates.  Sensors could also identify a 
zone within a reservoir that is experiencing early CO2 breakthrough.  Chemical sensors could 
distinguish between CO2 and water flow.   With the right equipment within the well, these zones 
could be isolated and plugged. 
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Tight gas.  Such reservoirs are defined as those that have an average permeability less than 0.1 
md.  The hydrocarbon produced from such reservoirs is usually a dry gas.  The permeability 
being so small, these reservoirs require stimulation through massive hydraulic fracturing, the 
creation of an extensive high-permeability conduit radiating from a producer.  Examples of this 
type of production are wells in the Travis Peak and Barnet Shale Formations. 
 
Fracturing is a mature technology.  Nevertheless, fracturing can fail if the fracture moves out of 
its intended zone,  or  moves in a direction that tends to short circuit production.  These effects 
can be detected by temperature, pressure and flow rate sensors.  With suitable calibration, 
surface seismic or deflection sensors can also be useful.  Another way a frac job can fail is 
failure to clean-up, or failure to recover enough of the fracturing fluid.  Such recovery can be 
inferred with chemical sensors. 
 
Deepwater production.  The newest production area in the US is oil production from water 
depths greater than 3,000 ft in the Gulf of Mexico.  Many of these reservoirs are highly 
undersaturated meaning that they can produce oil at high rates without significant gas or water 
production.  Sustaining this production once the average pressure falls can be done only with 
water injection.  Waterflooding is an extremely mature technology in onshore reservoirs; 
however, it is far less common in deep water reservoirs.  Examples of this type of production are 
the Popeye and Green Canyon reservoirs. 
 
As in CO2 injection, sensors can be used to locate zones that are receiving a large amount of 
water or wells that are about to experience water breakthrough.  Remedial action here consists of 
isolating and cementing back such zones. 
 
Steam assisted gravity drainage.  Designed for extremely heavy or tar sands oil (those with 
reservoir viscosities greater than one million cp), SAGD consists of drilling pairs of parallel, 
horizontal wells separated vertically by a few meters.  Steam is injected into the upper well, 
forms a heated zone above it, and oil is produced by gravity drainage into the lower well.  
Examples of SAGD implementation is the production in the Cold Lake  reservoir of northern 
Alberta and the Tiajuana Field in Venezuela.   
 
SAGD production can suffer from short-circuiting between the injector and producer.  This can 
be remedied again by selective operation of zones.  Thermal sensors, maybe even located on the 
surface, can identify regions of significant heat loss.  Finally, pressure sensors can identify the 
propensity for steam eruptions to the surface.  The remedy in many of the circumstances is 
simply to reduce the steam injection rate. 
 
Value of Information Implementation.  We seek a generic way of capturing the response of all 
of the above technologies in typical reservoir settings.  Given the variety of reservoir types, 
crude types and technologies, this is not easy.  And it is certainly true that some of the Table 1 
cases only approximately fit the generic representation. 
 
The generic response is shown in Fig. 4. 
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Figure 4:  Generic production response. 

 
We assume that the hydrocarbon production rate associated with the technology is declining 
exponentially, or the rate versus time curve on a semi-logarithm plot is a straight line.  The slope 
of this line is the pre-technology decline rate (dotted line in Fig. 4).    Upon implementation of 
the technology (second column in Table 1 and indicated in Fig. 4) there is an immediate increase 
in the rate and an immediate resumption of a second decline rate, the post-technology decline 
rate.  The area between the two curves (shaded in Fig. 4) is the incremental cumulative 
hydrocarbon production, which can be calculated using standard formulas.  What determines the 
incremental production are  the rates just before and after implementation of the technology (we 
represent this as a multiplier or the ratio of the rates on either side of the instantaneous jump) and 
the respective decline rates.  The greater the multiplier, the greater the cumulative production.  
Also, the larger the pre-technology decline rate, the greater the cumulative production.  The 
smaller the post-technology decline rate, the greater the cumulative production.   
 
The specific values of the quantities discussed above are how we account for specific production.  
These are values set by expert option.  For example, the rate multiplier on SAGD production is 
likely to be quite large, around 10.  For the deepwater waterflood case, the pre-technology 
decline rate is large, around 40%/year.  The post technology decline rate is smaller, say 
20%/year, leading to significant incremental production even if the multiplier is not much greater 
than one.   
 
Uncertainty is added to the procedure by allowing each of the four quantities described above to 
have two possible values, each with a specified probability of occurrence.  For some quantities, 
such as the pre-technology oil rate in a mature CO2 flood, the uncertainty is small; the 
production rate at the start of the technology is known.  For other quantities, such as the 
multiplier for a fractured well, there may be two values that have essentially equal probability.   
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2.4 Results Summary 
 
Table 2 shows the results of the analysis.  Table 2 is an extension of Table 1 wherein the 
technology decision (column 2) and the value of the sensors over a five year time period (column 
3) has been added. 

 
Reservoir Technology Decision Value of Sensors 
Mature, onshore oil Implement CO2 Flooding $115,506 per pattern 
Tight gas Implement fracturing $66,425 per well 
Deepwater oil Implement Waterflooding $191 Million per 10 

well project 
Heavy oil, tar sands oil Implement SAGD $241,306 per 2 well 

project 
 

Table 2.  VOI results. 
 

See Appendix B for the Economic Premises behind the spreadsheets for all scenarios as well as a 
discussion of the Sensor Probability Tables for each scenario. 
 
Despite the lack of modeling and the subjectivity of the process, Table 2 has interesting results.  
Specifically, 
 
1.  In all cases the new technology (e.g. CO2 flooding as opposed to continued waterflooding) 
was selected.  The VOI is supposed to cause changes of decisions, but this did not happen here.  
This phenomenon is probably the result of the large (but not unrealistic)  hydrocarbon price 
assumed. 
 
2.  Sensors are of most value in considering whether to implement waterfloods in  deepwater 
reservoirs.  The value here is, in fact, many times greater than that in any other scenario.  The 
large value is a direct consequence of the large volumes and rates in theses types of projects.   
 
3.  Sensors are of the least value in tight gas production.  Again, the poor showing here is the 
result of the comparatively small production rates in these projects.   
 
4.  Even though the value of the sensors is modest in the heavy oil and mature reservoir projects, 
their value is still greater than the cost to install the sensors. 
 
The results are consistent with practice.  Sensors seem to have the most value in reservoirs 
having large rates.  This experience is consistent with that in the North Sea wherein permanent 
sensor technology seems to be the most popular.  In other words, operators there recognize the 
value of the sensors without the VOI analysis.  This interest is the motivation between the high 
temperature sensor work discussed in Section 4 of this report. For the same reasons in reverse, 
sensors are rarely used in fracturing of tight gas reservoirs.   
 
In terms of incremental improvements over current practice, it would seem that the SAGD and 
mature CO2 projects offer the greatest promise.  To our knowledge, there has been no sensor 
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implementation in CO2 and the degree of sensor implementation in SAGD projects appears to be 
declining. 
 
2.5 Future VOI Work  
 
Future work for the value of information group could include 1) formalizing the VOI analysis as 
a decision tool for industry, this would include providing the VOI tool in CD form to industry; 
and 2) quantifying and validating the VOI probabilities by developing additional probabilities 
and values for the decision tree analysis through Monte Carlo analyses on calibrated numerical 
models and literature review for typical performance data. 
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3. RESERVOIR SIMULATION MODELING 
 
The reservoir simulation and modeling aspect of the project is intended to show the capability of 
exploiting sensor information both to better characterize a reservoir and to optimize control of 
the production system. This work focused on the first of these tasks by developing the codes and 
methods to exploit initial sets of sensor data and to show that this additional sensor information 
had an impact in our ability to determine reservoir properties. To achieve this goal the following 
tasks were performed:  
 
Create two- and three-dimensional (2D and 3D) data sets of two phase flow in a reservoir - 
Synthetic datasets of observables (pressure, saturation, and velocity) and production data were 
generated based on up-scaled versions of a cross-sectional reservoir model (model 1 of the SPE 
10th Comparative Solution Project). These upscaled models were generated by performing a 
Haar basis wavelet transformation. The original model was modified to allow oil and gas 
compressibility and capillary forces because of the interaction of these two phases. The 
application of wavelets guarantees that the coarser samples preserve some of the macroscopic 
features of the original data field.  A fixed production strategy was adopted with one gas-
injecting well located at the leftmost side of the model and a production well at the opposite 
extreme. This resulted in a realistic datasets to be used in the later optimization studies. 
 
Simulation framework and objective function design - This task consisted of coupling a 
multiphase parallel reservoir simulator (UT-Austin’s IPARS simulator) with two different 
optimization approaches and a collection of objective functions, with the latter being chosen to 
demonstrate the impact of sensor information on dynamic reservoir characterization. Two 
different optimization approaches were carefully chosen for understanding the capabilities of 
both local and global search space capabilities in reservoir parameter estimation. Moreover, this 
study permitted investigating the development of a hybrid approach that exploits the strength of 
both procedures.  
 
Finite difference sensitivity analysis and local optimization - As an initial phase toward 
developing large scale optimization capabilities within IPARS, we implemented a simple 
interface to characterize the behavior of parameter estimation constrained by reservoir simulation 
dynamics. A non-intrusive implementation interface with forward differences was used to 
calculate the objective function gradient and solved an unconstrained optimization problem with 
a sequential quadratic programming method (NPSOL). Our goal was to invert for permeability in 
the entire flow domain by maximizing oil recovery using sparse production observations. 
 
Simultaneous Perturbation Stochastic Approximation - The Simultaneous Perturbation 
Stochastic Approximation (SPSA) algorithm has received considerable attention for global 
optimization problems where it is difficult or impossible, as in this case, to compute first order 
information associated with the problem. This algorithm is a derivative-free (black box) method 
that does not require intrusive changes to the simulator. SPSA performs random simultaneous 
perturbations of all model parameters to generate a descent direction at each iteration. The SPSA 
software for this project was developed at UT-Austin and current enhancements are being 
implemented (Spall 2003).  
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Despite the fact that we have used a coarse up-scaled model for initial implementation of the 
codes during this phase of the project, we can draw some important conclusions and derive 
further directions for our work: 1) The solutions for pressure and concentration in the reservoir 
improve as more information is added to the objective function, clearly indicating that sensor 
information can help to reduce the uncertainty associated with reservoir characterization. 2) 
Velocity measurement appears to be of additional value in parameter estimation for reducing 
uncertainty. 3) In order to improve accuracy in permeability estimates one needs to refine the 
search with local optimization algorithms and sensitivity analysis; this should aid in guiding the 
search process. 4) The SPSA algorithm was implemented and tested in a matter of a few hours. 
This makes the procedure attractive for fast implementations. The procedure quickly converged 
to a minimum but further tuning and enhancements are necessary. 5) Current efforts involve 
exploiting a multilevel approach, with progressively finer spatial gridding, for estimating 
thousands of parameters and surrogates to improve permeability estimation and rate of 
convergence in local search regions. 
 
 

3.1 Reservoir Simulation Publications 
 
Copies of papers presented from this work are provided in Appendix C.  The Abstract and 
Conclusions are reproduced here. 
 
3.1.1 Assessing the Value of Sensor Information in 4-D Seismic History Matching 
 
H. Klie, A. Rodríguez, R. Banchs and M.F. Wheeler, Assessing the Value of Sensor Information in 
4-D Seismic History Matching, 76th SEG International Exposition & Annual Meeting. New 
Orleans, Oct. 1-6, 2006. 
 
Summary 
The main objective of the present work is to numerically determine how sensor information may 
aid in reducing the ill-posedness associated with permeability estimation via 4D seismic history 
matching.  These sensors are assumed to provide timely information of pressures, concentrations 
and fluid velocities at given locations in a reliable fashion.  This information is incorporated into 
an objective function that additionally includes productions and seismic components that are 
mismatched between observed and predicted data.  In order to efficiently perform large scale 
permeability estimation, a coupled multilevel stochastic and learning search method is proposed.  
At a given resolution level, the parameter space is globally explored and sampled by the 
simultaneous perturbation stochastic approximation (SPSA) algorithm.  The estimation and 
sampling performed by SPSA is further enhanced by a neural learning engine that estimates 
sensitivities in the vicinity of the most promising optimal solutions.  Preliminary results shed 
light on future research avenues for optimizing the frequency and localization of 4-D seismic 
surveys when sensor data is available. 
 
Conclusions and Further Remarks 
Despite the fact that we have employed a coarse model for the preliminary phase of the project, 
we can draw some important conclusions: 



 25

1. The history matching is improved as more information is added to the objective function, 
clearly indicating that sensor information can help in reducing the uncertainty associated with 
reservoir characterization. 

2. It is possible to match the production results using only production data in the objective 
function.  However, this does not necessarily yield reliable permeability estimations because 
of the inherent ill-posedness of the inversion process. 

3. Time-lapse 4-D seismic measurements provide global insight into the history matching 
process that neither production data nor localized sensor information on fluid properties is 
able to reproduce. 

4. The combination of SPSA and ANN is very attractive for parameter estimation purposes, 
especially when the problem complexity makes derivative computation unfeasible.  
Moreover, this type of hybrid approach may be convenient when models and data are subject 
to dynamic changes as the understanding of the reservoir increases. 

 
Ongoing efforts are currently directed toward developing a deeper analysis of the value that 
sensor information has in 4-D seismic history matching.  To that end, the research team is 
currently exploiting both multilevel and surrogate model approaches for enhancing the 
estimation when thousands of parameters are involved. 
 
3.1.2 A Learning Computational Engine for History Matching 
 
R. Banchs, H. Klie, A. Rodríguez, A Learning Computational Engine for Seismic History 
Matching, X European Conference on Mathematics of Oil Recovery (ECMOR), EAGE, 
Amsterdam, Netherlands, Sept. 4-7, 2006. 
 
Abstract 
The main objective of the present work is to propose and evaluate a learning computational 
engine for history matching, which is based on a hybrid multilevel search method.  According to 
this method, the parameter space is globally explored and sampled by the simultaneous 
perturbation stochastic approximation (SPSA) algorithm at a given resolution level.  This 
estimation is followed by further analysis by suing a neural learning engine for evaluating the 
sensitiveness of the objective function with respect to variations of each individual model 
parameter in the vicinity of the promising optimal solution explored by the SPSA algorithm. 
 
The proposed method is used to numerically determine how additional sources of information 
may aid in reducing the ill-posedness associated with permeability estimation via conventional 
history matching procedures.  The additional sources of information considered in this work are 
related to pressures, concentrations and fluid velocities are given locations in a reliable fashion, 
which in practical scenarios might be estimated from high resolution seismic surveys, or directly 
obtained as in situ measurements provided by sensors.  This additional information is 
incorporated, along with production data, into a multi objective function that is mismatched 
between the observed and the predicted data.  The preliminary results presented in this work shed 
light on future research avenues for optimizing the use of additional sources of information such 
as seismic or sensor data in history matching procedures. 
 
Conclusions 
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According to the preliminary results presented in this work, the proposed method promises to 
provide a very attractive framework for parameter estimation via history matching, especially 
when the problem complexity makes derivative computation unfeasible and when computational 
times strongly limit the search performance.  As already discussed, ANN models aid at better 
understanding the search space in the vicinity of a promising solution by means of a sensitivity 
analysis.  This kind of analysis provides valuable information about the relative contributions of 
each model parameter and multi objective function component to the overall history matching 
process. 
 
Despite the fact that we have employed a coarse model for this preliminary phase of the project, 
we can draw some important conclusions: 
 
1.  The history matching can be improved as more information is added to the objective   

function.  It was shown how additional information components can actually help in reducing 
the uncertainty associated with reservoir characterization. 

2.  It is possible to match the production results using only production data in the objective 
function.  However, this does not necessarily yield reliable permeability estimations because 
of the inherent ill-posedness of the inversion process. 

3.  The combination of SPSA and ANN is very attractive for parameter estimation and analysis 
purposes, especially when the problem complexity makes derivative computation unfeasible.  
Moreover, this type of hybrid approach may be convenient when models and data are subject 
to dynamic changes as the understanding of the reservoir increases. 

 
Ongoing efforts are currently focused on a deeper analysis of the value that sensor information 
and high resolution seismic data have in history matching.  To that end, the research team will 
continue evaluating the proposed framework by incorporating both travel-time and amplitude 
related seismic information, as well as sensor data. 
 
3.1.3 A Multiscale and Metamodel Simulation-Based Method for History Matching 
 

A. Rodriguez, H. Klie, S.G. Thomas,  M.F. Wheeler, A Multiscale and Metamodel Simulation-
Based Method for History Matching, X European Conference on Mathematics of Oil Recovery 
(ECMOR), EAGE, Amsterdam, Netherlands, Sept. 4-7, 2006. 
 

Abstract 
This paper presents a novel framework for history matching based on the concept of simulation 
based optimization with SVD parameterization, guided stochastic search sampling, Multiscale 
resolution wavelet and incremental Metamodel (surrogate model) generation.  Hence, the 
primary focus of this work is to mitigate the computational burden of large-scale history 
matching.  Numerical experiments show that viability of the method for addressing realistic 
problems. 
 

Conclusions 
We can draw the following conclusions from the present work: 
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1.  The SVD and wavelet transform parameterization of spatial coefficients into eigenimages of 
different level resolution show important potentials to reduce the over parameterization (ill-
posedness) and cost associated with the history matching problem. 

 
2.  The eigenimages basis can accommodate different levels of resolutions for which we                 

can associate different degrees of geological knowledge or uncertainty.  Thus, the parameter 
estimation can be incrementally conducted in respond to this degree of knowledge. 

 
3.  We realized that the SPSA algorithm is efficient and provides high flexibility in implementing 

different parameterizations and functional transformations to the original parameter space 
without modifications to the original simulation model. 

 
Ongoing efforts are currently focused on generating a family of different eigenimages basis (via 
statistical realizations) to both incorporate uncertainty and a wider range of possible estimations.  
This will allow us for obtaining a better reservoir characterization in the absence or event of poor 
a priori models. 
 
3.2 Future Reservoir Simulation Work  
  
Future Work for the reservoir simulation team could include: 
 
1) Reservoir and well control/management: The majority of this work would be devoted to 
developing a control strategy for well management in an attempt to maximize recovery.  We 
would first implement direct sensitivities capabilities for a control problem for single phase flow 
in 3D.   Furthermore, a control strategy for a multiphase simulation will be developed.  A range 
of control variable types will be evaluated, including velocities and completion intervals.  For the 
large number of variables, we will make use of the adjoint approach for calculating sensitivities 
to address the computational efficiency issues. 
 
2) Parameter Estimation:  The parameter estimation work would be completed using the 
multilevel SPSA and surrogate technique by incorporating additional information such as fluid 
flow details, petrophysical information and seismic data.  As we demonstrated in the initial 
parameter estimation phase, additional information would significantly improve the solution of 
the parameter estimation problem.   The value of the information would be quantified for each 
source of additional information in terms of levels of quality of the final solution.  In addition to 
the SPSA method, we would investigate other solution techniques. 
 
3) Evaluation of models for VOI: The value of information (VOI) would be quantified 
numerically by varying the amount of sensor information for the control problem.  We wouldl 
conduct numerical studies for a range of different reservoir datasets and investigate the use of 
data.  
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4.0 NEXT-GENERATION SENSORS 
 
The next generation sensors section of the project involved the determination of whether sensors 
can survive long-term (5+ years) in hostile borehole environment.  These new sensors can be 
adapted to an already existing well monitoring system designed using electronic components and 
assembly practices developed at Sandia and Honeywell for aircraft engine monitoring.  
Unfortunately, existing aircraft engine sensors are specific to aircraft functions and most will not 
satisfy well monitoring requirements.  Work is needed to determine 1) what are the 
environmental parameters seen by the sensor, 2) what sensors are currently available or will 
require development and 3) can the sensors be packaged to survive.  Assessment of the 
packaging capabilities has begun by bounding the range of environments that might be 
encountered in production wells, including temperature, pressure, and corrosion, and developing 
concepts for device interfaces (both electrical and optical) for down hole sensing of flow, 
pressure, temperature, tilt, and vibration.  This environmental range includes; pressures, 2000 -
12,000 psi; temperatures up to 200o -250o C; flow rates - Crude oil, 10 barrels per day (stripper 
well) to 1,000 barrels per day; natural gas, 1 - 100 Mcf/d ; viscosities, 5 – 2 cp and densities 
(fluid), 790-973 kg/m3 . This effort includes identifying the failure modes of these packaged 
interfaces and sensor devices in these environments and providing design guidelines and 
desirable design approaches to overcome or eliminate these failures.   
 
Fortunately, Sandia has a long history of eliminating failure modes found in most electronic 
packaging applications needed for extreme environments.  Sandia has pre-existing solutions for 
metal migration, intermetallic growth, pressure seals, hydrogen effects and chloride stress 
cracking.  This is a short list of some of the oil industries’ largest reliability issues resulting in 
well monitoring equipment failures.  For sensors, there is a second level of reliability concerns 
dealing with sensor measurement drift.   Obviously, well monitoring sensors will require long-
term stability or at least a low cost means of in-situ recalibration. 
 
Customized high temperature micro electro mechanical systems (MEMS) such as pressure 
sensors, accelerometers, seismometers, and flow sensors, could be extremely valuable in 
monitoring reservoirs over extended periods of time.  In the  Microelectronics Development 
Laboratories (MDL) at SNL there is a strong and mature surface micromachined polysilicon 
based technology to fabricate such tailored devices.  One of the devices designed in the 
polysilicon surface micromachining based technology under previous funding is a pressure 
sensor that will be discussed later.   Released parts from this project are being used to develop 
and characterize a high-temperature, high-pressure packaging solution.    
 
Pressure sensing is perhaps the most common wellbore measurement.  Pressure or changes in 
pressure can tell us a lot about what’s happening in the reservoir.  For example: falling bottom 
hole pressure during production tell us something about the reservoirs porosity.  This information 
could result in a needed change in production rates.   However, to be valuable, the pressure 
sensor must remain accurate.   Conventional MEMS pressure sensors use a silicon diaphragm 
and Wheatstone bridge.  Here extreme care in the design must be achieved in order to match 
CTEs and diaphragm bonding points or the device will drift with time & temperature as the 
materials age.  Even at 125C, these aging processes are significant in existing commercial grade 
MEMS pressure sensors. 
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Other MEMS-like accelerometers use a moving mass, normally of dense metal.  The moving 
mass can be detected with extreme accuracy by monitoring changes in capacitance between the 
metal mass and a stationary conductor.  However, the springs used to return the mass to a normal 
position will weaken or droop over time.  Work on new materials, as highly doped SiC, is 
currently ongoing to reduce or eliminate this problem.      

 
4.1  Advances in Sensor Applications 

The development and application of advanced technology is vital to the modern industry task of 
finding and developing oil and gas resources with a goal of improving ultimate hydrocarbon 
recovery. Reservoirs are covered with thousands of feet of rock that makes it difficult to 
"observe and monitor" the production. But the development of three-dimensional (3D) seismic 
imaging, coupled with significant increases in computational power allow the industry to 
develop fairly accurate models of the subsurface.  Some of these types of models were discussed 
and used in Section 3.  New and better technology has made it possible to economically develop 
large oil and gas deposits offshore. Drilling oil and gas wells in thousands of feet of water adds 
significantly to the complexity, cost, and potential risks. However, technological innovations 
have enabled the industry to overcome the added challenges. Wells are routinely drilled in 5,000 
feet (1,525 m) of water and, after penetrating the sea floor, these well bores extend thousands of 
feet below the ocean floor. 

Innovations in technology are expanding the depth for exploration. Subsurface temperatures and 
pressures increase with depth, so that a depth is eventually reached that is beyond the capabilities 
of conventional equipment. But industry has worked diligently to develop equipment made from 
innovative structural titanium alloys that can withstand the high temperatures and high pressure 
(HT/HP) in very deep wells. The electronics and sensors needed to guide and monitor drilling 
and other operations providing feedback on what is encountered down hole have been insulated 
to withstand HT/HP.  As a result of these innovations, the industry now can develop fields with 
temperatures of 400° F (204° C) and pressures of 16,000 psi (11,000 N/cm2). 

The VOI analysis suggests that electronics and sensor technology will allow more oil or gas to be 
extracted from each type of reservoir as the sensor systems are designed and fabricated to 
withstand HT/HP environments. Newer sensors among other advances such as stimulation 
technologies, treatment fluids and enhanced recovery techniques, enable more efficient 
production of oil and gas.   

One particular area of technological innovation is MEMS sensors tailored to HT/HP 
environments.  A pressure sensor designed in the polysilicon surface micromachining based 
technology is shown in Figure 5.  The preliminary design, fabrication and characterization of 
these devices were done on an externally funded project.  We are able to leverage this project as 
these devices and concepts would be useful for reservoir characterization technologies. 
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Figure 5: AutoCAD layout of the piezoresistive polysilicon based integrated pressure sensor 

fabricated in SwIFT (Surface micromachined with integrated fluidics technology)-lite 
technology 

 
The design uses a Wheatstone bridge with two reference and 2 active resistors.  As the 

silicon nitride membrane is deflected with applied pressure, resistance of the polysilicon resistors 
changes.  The bridge configuration with reference resistors built into the same substrate allows 
temperature compensation and increased signal level over a single resistor measurement.  
Simulation for the pressure sensitivity for the designs was performed before design layout to 
predict the output over the required pressure range.  A sample output from the simulation, with 
the (exaggerated) deflection and stress levels is shown in Figure 6.  

 
Figure 6: Modeling of the polysilicon piezoresistive (Wheatstone bridge) pressure sensor. 

 
The device was fabricated using both the MDL and CSRL facilities.  The backside etch 

for fluid inlet was done in CSRL while the front side processing was done in the MDL.  The film 
stack associated with the front side are thermal oxide, low stress silicon nitride, and doped 
polysilicon which are all deposited, patterned and etched on a 6” single crystal Silicon substrate 
using standard microelectronics based processes.  The fabricated device has no metal on bond 
pads to reduce fabrication steps and to get Si die for down stream unit processes optimization.  A 
cross section of the final unit is shown in a schematic in Figure 7. 
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Figure 7:  Schematic cross section of the packaged pressure sensor unit. 

 
Figure 8 shows an optical micrograph of the fabricated device along with the pressure 

versus voltage output.  These devices were designed to operate in 0-25 psi range.  
 

 
Figure 8:  Measured bridge output voltage vs. applied pressure.   

 
Released parts from this project are being used to develop and characterize a HT/HP 

packaging solution under this LDRD focusing on reservoir environment requirements.  Figure 9 
shows the basic ceramic package being used to package the pressure sensors.  The package has a 
recessed area of 8.13 × 4.44mm.  The pressure sensor die size is 6.75 × 3mm so there should be 
space around the edges for centering or fill without causing the wires from the die to the package 
to be too long.   A laser drilled hole in the package allows for fluid attachment to the back of the 
sensor.  The hole is designed to be 1.77mm in diameter allowing access to four sensors.  Using a 
high temperature epoxy will allow tubing attachment to the back side DRIE (Bosch etched fluid 
access hole) of the silicon die in the package for testing.  Further, to have HT compatible unit, a 
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HT epoxy has been identified to place the silicon die in this HT package.  Initial samples during 
process optimization of the desired high temperature packaging process will require wire 
bonding to polysilicon which is a known challenge.  Once the majority of the packaging 
processes are optimized for high temperature stability then fabricated metallized silicon die will 
be used in the prototype packages. 

 
 

Figure 9:  Basic ceramic package 
 

 
4.2   Problems Associated With Logging: Packaging and Sensors 
  
In this study we focused on the problems associated with oil well logging in production wells.  
We were concerned with the reliability and packaging of continual use sensors.  We investigated 
possible environments and sensor types in an attempt to determine the most difficult aspects of 
packaging sensors for long term use in production wells. Our goal was to provide the project 
with sufficient packaging-related information to allow future research efforts to be focused 
properly to the issues.  Consequently, the primary output of this work is a comprehensive set of 
issues associated with packaging failures in these deep well scenarios and ideas for how to drive 
future work. 
 
4.2.1  Packaging Overview 
  
We believe that packaging may represent the most significant technical challenge associated with 
the application of state-of-the-art sensor technology in down-hole environments under the 
stringent requirements associated with maintaining sensor operation for extended periods.  This 
real-time monitoring concept nullifies existing strategies for making such measurements which 
invokes the potentially risky assumption that survival for short periods – just long enough to 
insert the probe, gather the data and extract – is probably acceptable.  Neglecting the almost 
certain impacts to sensor and package reliability this operational mode implies, representing an 
entirely different research activity, the real-time usage concept now must address much more 
basic survival and operational threats.  Certainly, any future effort to develop intrinsic, real-time 
monitoring capability for deep well environments must accommodate packaging and 

Custom Drilled hole 
(centered) 
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interconnects as primary and equal activities in the investment and technical tasking aspects.  
Success will depend on a fully holistic approach to the sensor design that includes packaging and 
the power/signal transmission aspects – the so called interconnect technology – as equal parts to 
any efforts expended towards the sensors themselves.   
 
 Obviously, there are multiple environmental issues that threaten the integrity of the 
package and the interconnect technology for sensors in these applications.  Our study has 
indicated that we must focus on the following items to the first order: 

1. excessive absolute temperatures 
2. thermal cycling, even over moderate changes in temperature, 
3. presence of corrosive and/or highly permeable fluids (liquid and gas). 

 
Second order issues are: 

1. excessive exposure pressure on the package and interconnect boundary and 
2. unanticipated materials interactions in hostile environments. 

 
The reasoning behind these statements will be explored below.  The bounding of the 
environmental factors is crucial to this activity.  There are many types of wells that exhibit a 
wide variety of package-threatening environments.  Depths, soil and rock properties and types of 
extracted media all play a role in determining the specific challenges that a long-term down-hole 
sensor system will experience.   
 
4.2.2  Well Types Considered 
  
Wells are in many different geologic setting in areas all over the world.  We were asked to focus 
on three primary well types.  Wells in tight gas sands, wells drilled in the Gulf of Mexico, and 
wells drilled in the Permian Basin.  Each well location has distinct characteristics and unique 
environmental concerns but there are also many similarities that impact the reliability of long 
term sensors. 
 
The Permian Basin is an area of about 250 by 300 miles in West Texas and southeastern New 
Mexico.  The first shallow oil wells in the area were drilled in the early 1920’s.  Some deep 
modern wells can be 16,000 feet deep but wells are typically in the range of 3,000-9,000ft deep.  
The bottom hole temperatures of the deeper wells can reach 390�F (200�C).  The bottom hole 
pressure can range between 1,300-7,000psi depending on depth.  Hydrogen sulfide can be 
present in these wells and will corrode certain materials. 
 
Gulf of Mexico ultra deep wells (water depths greater than 5000ft; Smith, 2002) can range in 
depth from a couple thousand feet below base mud line (bml) or sea floor to over 20,000ft bml.  
Bottom hole pressures in these deep wells can be over 9,000psi with bottom hole temperatures 
over 390�F (200�C).  These wells can contain hydrogen sulfide.   
 
Tight gas sands are defined as sandstone formations with permeability less than 0.1 millidarcy.  
Thousands of tight gas sand wells are in the San Juan Basin in northwestern New Mexico and 
southwestern Colorado.  These wells vary in depth but are usually less than 6,000ft deep and 
have bottom hole temperatures ranging from 150-300�F (65-150�C).  Bottom hole pressures in 
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these wells (at 6,000ft depth) is approximately 2,600psi.  Some of these wells will also have 
hydrogen sulfide.   
 
Though each of the three well types has unique characteristics there are some things that are 
challenges for all.  Although hydrogen sulfide may not be present in every well hydrogen is 
present in every well.  Instruments going into each well type will also experience similar 
installation and transportation shocks.  Though the bottom temperatures vary slightly from well 
to well there is a temperature gradient in every well.  These similar environments combine with 
the individual concerns to make each well type a difficult environment for electronic and sensor 
packaging survivability. 
 
4.2.3 Packaging Challenges 
  
Packaging challenges can be grouped into a few categories, most easily explained by failure 
mechanism.  The most challenging environmental elements thought to cause packaging failures 
in the environments of oil wells are extreme temperatures, thermal cycling, and hazardous or 
corrosive gases.  Some failures will also arise from high pressure environments as well as 
materials interaction situations.  Occasionally materials that do not interact under normal 
conditions will react with catastrophic results at elevated temperatures or in certain gaseous or 
humid environments.  These responses are difficult to predict and will require carefully planned 
experimentation, including detailed reliability life-studies, to address.  High physical or electrical 
shocks can also cause failure in electronics although these are often easier to accommodate 
through robust package design practices than some of the other environmental characteristics. 
 
Excessive temperatures have been linked to various packaging failures in the IC industry, 
particularly as chip temperatures rise due to size reductions.  At high temperatures, above 
150�C, the main concern is excessive thermally-induced stresses in the packaged sensor.   
Typical packaging strategies involve the use of adhesives, frequently polymer-based, to bond the 
sensor device to a package substrate.  The resulting sandwich of three materials, in the simplest 
case, will experience stresses as the temperature is increased (or decreased) away from the bond 
formation temperature.  These stresses can be described and ameliorated through knowledge of 
the coefficient of thermal expansion (CTE) of the various materials in the stack.  CTE 
mismatches between sensor, die attach adhesive, and substrate are responsible for a large portion 
of package-related failures in the IC industry.  These failures, which can happen at relatively 
modest temperature excursions, imply that the challenges for the significant temperature changes 
of a down-hole monitoring sensor suite represent are great.  Failure to develop die attach 
adhesive technology that is not directly tested at in-situ conditions would create an unacceptable 
level of risk.  Some materials are very weak (i.e., significantly reduced yield strength) at high 
temperatures and can deform or crack under thermal stresses that would not cause failure at room 
temperatures.  Metal bonding, such as solder or eutectic methods, often cause problems at high 
temperatures due to formation of intermetallic alloys that reduce the yield strength of the bond.  
Additionally, the rate of corrosion-induced degradation increases with temperature and the 
reliability effects of these environments have not been well studied. 
 
Thermal cycling accelerates failure mechanisms that are observed at high temperatures.  Even 
slight thermal cycling, such as a 50 degree change, can have drastic effects on the fatigue life of 
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components relative to what would occur under a steady-state high temperature load.  Many 
polymers are notorious for sensitivity to thermal cycling but the effect is also observed in metal 
bonds as well.  These problems can be compounded when a metal contacts a plastic package.  
Solder joints can fail from simple expansion and contraction caused by thermal cycling.  Also, 
existing combinations of solder materials and their associated underfill epoxies have not been 
characterized in these thermal environments.  CTE mismatches at elevated temperatures with 
modest to even low cycling amplitudes will almost certainly have adverse reliability effects.  
CTE-induced stresses at high temperature will be amplified if thermal cycles around that 
temperature are experienced. 
 
Hazardous or corrosive gases or liquids can compound other problems.  Hermeticity against 
these fluids at the package boundary will be critical.  Hermeticity is a difficult concept at 
ambient pressures; the issues associated with developing hermetic packages at the extreme 
pressures a down-hole sensor suite will experience have not even been formulated.  The time 
frame for failure based on a loss of hermeticity (either as a slow chronic problem or as a single 
event, such as a crack) is not well understood at the conditions of interest.  Corrosive fluids, 
injected into the package at high pressure (assuming the package environment is close to 
ambient) could possibly cause nearly instantaneous failure. 
 
A particularly prevalent gas in the oil industry is hydrogen.  Hydrogen diffusion rates are 
significant and it has been shown to cause failures in packaging materials in several different 
modes.  Hydrogen embrittlement of metals is one strong failure mechanism that would affect not 
only the components but also any metallic packaging materials used, such as solder bonds and 
interconnect wires. This effect essentially reduces the fatigue life of the metals substantially and 
will lead to low reliability.   Hydrogen’s ability to rapidly diffuse through otherwise hermetic 
boundaries presents a significant challenge to packaging designers particularly under elevated 
pressure environments.  In addition, should the interconnect designs include optical signal and 
power transmission components, such as fiber optics, then the degrading effects of hydrogen on 
these materials must also be considered.  Hydrogen gas is known to not only reduce the fatigue 
life of fiber materials but also causes gradual variations in the attenuation coefficient prior to 
failure.  This attenuation creep will have adverse effects on the operation of the down-hole 
sensors and may be difficult to diagnose from information collected on the surface.  Temperature 
gradients along the length of the interconnect; from well-top to well-bottom will only exacerbate 
the hydrogen diffusion problem. 

 
Hydrogen sulfide, while not as common, is frequently present in oil and gas wells.  The primary 
failure issue for this gas is related to stress cracking of steels caused by the corrosion of the 
sulfur compound.  As with the other corrosive materials, high temperatures increase the rate of 
attack on the packaging materials and the interconnects.  Problems with hydrogen sulfide are 
also more serious for deep wells due to the increased stress levels associated with sensors in 
these environments; deeper wells create large gravity loads on the down-hole sensors. 
 
Oil and gas wells are often high pressure environments.  Common well pressures are between 
13,800 and 39,000 kPa (2,000-10,000 PSI).  Some wells reach pressures as high 83,000 kPa 
(12,000 PSI).  It is believed that excessive pressure can also decrease the time to failure for many 
packaging and potential interconnect materials, although these effects have not been well 
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studied.  Hermeticity strategies for a 12,000 psi environment will require a significant 
development effort to formulate.  Packaging designers will need to investigate the trade-offs 
associated with pressure equalization within the package (i.e., seal the package at high pressure 
to equalize with the anticipated environment) with the current standard practice of permitting 
pressure gradients, although at a substantially reduced magnitude.  An additional significant 
constraint is the probable requirement to allow portions of the fluid surrounding the sensor 
package to infiltrate the package boundary.  For advanced sensors, compositional analysis will 
be required to increase the efficiency of the exploration and extraction process.  The packaging 
challenges associated with this concept have not been addressed.  Active pressure regulation by 
the package might be required to accomplish this task. 
 
A second order concern for package designs for these applications is shock survivability.  It is 
believed that, other than significant seismic events, most shock experienced by well-logging 
tools occurs during transportation of the tool rather than while it is inserted into the well.  
Consequently, package designs for typical transportation-induced shock events are well 
understood and do not present any significant challenges.  However, for long-term down-hole 
monitoring, seismic events can create shock loads on sensors.  Current tool usage patterns – 
insert, measure, extract – eliminate the need to have the sensors shock hardened.  It will be 
necessary to understand the seismic activity in the region of the wells and design packages 
accordingly.  There is literature regarding shock effects on package that we believe is directly 
applicable to this problem and so do not believe this issue merits the investment or attention as 
those mentioned previously. 
 
4.2.4 Example Sensors 
  
There are many sensors available for well logging tools.  Some sensors are currently available 
for purchase and some are still being developed.  These include, pressure sensors, temperature 
sensors, seismic sensors, and combination sensors. 
 
There are many different sensor technologies available for each type of sensor, the interfaces 
available also vary.  Although most of the sensors have electrical interfaces, there are also many 
sensors with optical fiber interfaces.  Many of these interfaces are similar for all sensors.  Most 
of the sensors are packaged in stainless steel.  Most of the packages are similar in size and 
package construction.  Many of the packages also fail at 200-250�C.  Reliability testing shows 
that many of the sensors have similar failure mechanisms.  This information would imply that the 
packages are mostly constructed with the same technology. 
 
4.2.5 Technology Development 
  
We would propose a development activity to address the issues noted in this section in the 
following specific manner: 
 

1. Design and fabricate a robust environmental test chamber to allow down-hole 
conditions to be created in a laboratory.  The chamber should accommodate excessive 
pressures and temperatures and allow the introduction of multiple fluids (gas and 
liquids) to simulate the conditions of the deep wells. 
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2. Formulate and execute an experimental program using accepted design-of-
experiments (DOE) concepts coupled with standard reliability testing strategies (i.e., 
via acceleration mechanisms) to address the effects of the primary environmental 
factors noted above on the packaging, interconnect and sensor designs.   

3. Develop sophisticated finite element analyses of the package designs and validate 
them against the data gathered in the chamber.  These models can be empirical in 
nature to accelerate the formulation of design tools.  However, the quality of this 
modeling work will then rely on the ability to achieve deep-well conditions within the 
chamber to avoid the need to extrapolate the models.  

4. Utilize the models to develop a set of design rules that are generally applicable under 
a variety of well conditions.  From these rules, package and interconnect designers 
can then approach the problems in a manner that is similar to existing methods. 

 
4.3 Next Generation Sensors Future Work   
Future work for the next generation sensor team could include identifying gaps in available 
sensor platform technology to survive the downhole environment and providing preliminary 
design of individual sensors and robust sensor systems.  This could be accomplished through 
application of an advanced finite element modeling (FEM) capability. FEM models of proposed 
packaging designs would be developed and studied parametrically to guide engineering efforts 
for long-term sensor operation down-hole.  Solid modeling CAD software would be used to 
evaluate the designs of the sensor package platform, optical and electrical interconnect cable 
protection system and the mechanical linkage between the interconnect and the platform. 
Deliverables for this effort would include: 1) a white paper detailing the platform design strategy 
and parameter variations to be included in the models (materials, dimensions, shape, etc.), 2) 
results of parametric FEM study described in deliverable 1, 3) conceptual design of the 
interconnect protection structure (IPS), 4) FEM model of IPS response to environmental 
variables, 5) conceptual design of method to link IPS to the sensor platform package, 6) FEM 
model of the structure response of the IPS/platform linkage region. 
 
An opportunity also exists to validate the FEM modeling developed in using the results of high-
temperature accelerated life testing experiments in the Geothermal Research Department (6211).  
In addition, packaging failures observed in those experiments will be analyzed and discussed 
from the perspective of future long-term monitoring requirements.  Deliverables in this effort 
would include: 1) FEM model (structural and thermal) of packaging designs used in SNL’s 
Geothermal Department work (both at sensor level and for optical interconnection), 2) detailed 
explanation of the observed packaging failures, and 3) reliability assessment of packaging 
strategy based on experimental data. 
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5.0 CONCLUSIONS 
 
The project objective was to detail better ways to assess and exploit intelligent oil and gas field 
information through improved modeling, sensor technology, and process control to increase 
ultimate recovery of domestic hydrocarbons.  The model utilized permanent downhole sensor 
systems (Smart Wells), whose data are fed real-time into computational reservoir models that are 
integrated with optimized production control systems and.   
 
To meet this objective the project utilized a three-pronged approach 1) a value of information 
analysis to address the economic advantages, 2) reservoir simulation modeling and control 
optimization to prove the capability, and 3) evaluation of new generation sensor packaging to 
survive the borehole environment for long periods of time.  A summary of the work is provided 
below: 
 
The Value of Information decision tree method was developed and used to assess the economic 
advantage of using the proposed technology. 
 
Value of Information findings and conclusions: 

• The procedure developed for VOI studies appears to be a practical means of ascertaining 
the value associated with a technology, in this case application of sensors to production.  
The procedure acknowledges the uncertainty in predictions but nevertheless assigns and 
monetary value to the predictions.  The best aspect of the procedure is it builds consensus 
within interdisciplinary teams.  Another important aspect is that the value of the sensors 
is only useful in regard to a specific decision.   

 
• Sensors have the most benefit by far when applied to the decision to waterflood 

deepwater reservoirs.  This is because the associated production rates are so very large 
that small improvements have a large net value.  On a percentage basis, the improvement 
is not as large but it is still the largest net value among the technologies considered.   

 
• Sensors would have the least impact on the decision to use horizontal wells versus 

hydraulic fracturing. 
 

• All of the technologies considered appear to benefit from application of sensors at current 
hydrocarbon prices.  Recovery technologies tend to become uneconomic (and would be 
shut down) prior to sensors losing value. 

 
The reservoir simulation and modeling aspect of the project was developed to show the 
capability of exploiting sensor information both for reservoir characterization and to optimize 
control of the production system.   
 
Reservoir Simulation and Modeling findings and conclusions:  

• History matching is improved as more information is added to the objective function, 
clearly indicating that sensor information can help in reducing the uncertainty associated 
with reservoir characterization.  However, production data alone is insufficient to yield 
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reliable permeability fields.  Seismic data, particularly so-called 4D seismic data, 
substantially improves the process.  The combination of SPSA and ANN is very 
attractive for parameter estimation, especially when the problem complexity makes 
derivative computation unfeasible.  Moreover, this type of hybrid approach may be 
convenient when models and data are subject to dynamic changes as the understanding of 
the reservoir increases. 

 
• The SVD and wavelet transform parameterization of spatial coefficients into eigenimages 

of different levels of resolution and show important potentials to reduce the over 
parameterization (ill-posedness) and cost associated with the history matching problem.  
The eigenimages basis can associate different degrees of geological knowledge or 
uncertainty.  Thus, the parameter estimation can be incrementally conducted in response 
to this degree of knowledge. 

 
 
The next generation sensors aspect of the project evaluated sensors and packaging survivability 
issues.  Our findings indicate that packaging represents the most significant technical challenge 
associated with application of sensors in the downhole environment for long periods (5+ years) 
of time.   
 
Next Generation Sensor and Packaging Development 

• The greatest challenges for sensor design include extreme temperatures, temperature 
fluctuations, and hazardous and/or corrosive gases and fluids. 

 
• Our findings indicate that packaging represents the most significant technical challenge 

associated with application of sensors in the downhole environment for long periods (5+ 
years) of time.  These issues can be addressed through development of technologies such 
as: 

 
o Design and fabricate a robust environmental test chamber to allow down-hole 

conditions to be created in a laboratory.   
o Develop sophisticated finite element analyses of the package designs and validate 

them against the data gathered in the chamber.   
o Utilize the models to develop a set of design rules that are generally applicable 

under a variety of well conditions. 
 
This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of 
Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of 
Computational and Engineering Mathematics.  
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APPENDIX A:  WORKSHOP  

Valuing Real-Time Sensor Technology Workshop 
June 12-13, 2006 

The University of Texas 
Brons Conference Room 

Chemical and Petroleum Engineering Building 
 
AGENDA 
 
June 12, 2006 
 0830 Welcome and introductions Larry W. Lake (LWL) 
 0900 The SNL/UT collaboration Scott Cooper 
 0930 Objectives of workshop LWL 
 1000 VOI and hydrocarbon production LWL 
 1100 The VOI process Bob Gilbert 
 1200 Lunch - presentation by 
  Dr. David J. Goggin, Chevron 
 1330 Technology 1 discussion All 
  Technology description review 
  Economics of technology 
  Spreadsheet 
 1630 Adjourn 
 
 
June 13, 2006 
 08300 Discussion of previous day LWL 
 0900 Technology 2 discussion All 
  Technology description review 
  Economics of technology 
  Spreadsheet 
 1200 Lunch 
 1330 Technology 3 discussion All 
  Technology description review 
  Economics of technology 
  Spreadsheet 
 1500 Technology 4 discussion All 
  Technology description review 
  Economics of technology 
  Spreadsheet 
 1630 Final comments LWL 
 
 
 
 
 



 44

ATTENDEES 
 

Name Affiliation 
  
Allen, Jesse Kerr-McGee 
Cooper, Scott Sandia 
Elbring, Greg Sandia 
Gilbert, Bob UT-Civil Engineering 

Goggin, David Chevron 

Hite, Roger Consultant 
Jennings, Jim UT-BEG 
Lake, Larry W. UT-PGE 
Lorenz, John Sandia 
MacDonald, 
Robert Platt Sparks 
Normann, 
Randy Sandia 
Nunez, Emilio UT-CPARM 
Pizarro, Jorge Petrobras 
Waggoner, John Schlumberger 
Webb, Tom Shell 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 45

APPENDIX B: VOI SPREADSHEET DETAILS 
 
B 1.0 Economic Premises 
 
General 
 
 All analysis is done on a Before Federal Income Tax (BFIT) basis. 

 
 The BFIT cash flow is simplified as follows: 

 CFBFIT = Sales Revenue – Royalty – Production/Severance Taxes – Direct Variable 
Production Costs – Direct Fixed Costs – G&A. 

 
 
 Discounting 

 We recognize that cash flows are spaced throughout the 5-year horizon of analysis. To 
keep the model simple, and to avoid biasing the valuation to users with high or low 
discount rates, we did not discount the flows (i.e. discount rate = 0%). The main impact 
of this approach is that the value of sensor figures that we compute are actually maximum 
values.  

 
 
Mature CO2 Case 
 

• Commodity Price 
 

o The net selling price is determined by taking the market price and subtracting 
25% to reflect Royalty, production taxes, and G&A. The spreadsheet has been 
modified to reflect this in two places as noted in the spreadsheet. See Economics 
Tab, Row 1. Other costs are then subtracted.  Other possible scenarios are 100, 
70, 40, 10 $/bbl market price. 

 
• FIXED COST and OPEX 

 
o Fixed Cost: The fixed costs derive from the Experts’ assessment that fixed costs 

will increase with increasing oil price (inflation). We agreed on a formula which 
yields the economic limit in barrels for different prices (see cell EconomicsB10). 
This is then used to compute fixed costs using the current market price 
(EconomicsG1). 

 
o Variable Cost: CO2 cost per MCF comes from /Experts and does not vary with oil 

price.  
 
Finally, for both of these costs, the Experts said there would be efficiencies to be gained if 
sensors were installed.  So, for the sensor case, we assume 10% savings in fixed cost and 10% 
less CO2 consumption. The CO2 unit is cost is held constant, we alter the volume.
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Deepwater Waterflood 
 
In this scenario, we employ the same structure as other scenarios regarding the effects of the 
technology—that we observe an increase in rate, a decrease in decline rate, or both. In the case of 
deepwater waterflooding however, the objective is typically to extend the plateau of oil 
production. So our approach of rate/decline analysis serves as a proxy for this underlying 
objective. In the spreadsheet, we have computed a variable called “Number of Years of Extended 
Plateau” to provide a reality check on the impact of the technology. This computation is entered 
in the Basic Decision Tree to the far right, and is made as follows: 
 
Years Extended Plateau = (WF incremental oil, bbls) / (Initial Rate, bbls/yr)  
 

• Commodity Price 
 

o The net selling price is determined by taking the market price and subtracting 
18% to reflect Royalty and G&A costs. The spreadsheet has been modified to 
reflect this in two places as noted in the spreadsheet. Other costs are then 
subtracted. 

o Suggest scenarios be run for: 100, 70, 40, 10 $/bbl market price. 
 

• FIXED COST and OPEX 
 
o Fixed Cost: The incremental fixed cost for the waterflood is based on the number 

of new injectors that are drilled plus the installation of new waterflood facilities 
on the topsides. It was decided at the workshop to take this approach for the fixed 
costs, that is, we do not give up significant detail by aggregating all of the 
incremental fixed costs in this fashion.  

 
o Variable Cost: The variable cost is computed based on a $/bbl lifting cost for 

oil+water; the default value is $8/bbl. The water-to-oil ratio is specified by the 
user. The spreadsheet reflects a default value of 2, but this variable could be the 
basis of a sensitivity analysis. 

 
All of these costs are the same whether sensors are installed or not. Unlike the CO2 case, 
there was no consensus that fixed or variable costs would be less in the presence of 
sensors. 
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Tight Gas 
 

• Commodity Price 
 

o The net selling price is determined by taking the market price and subtracting 
25% to reflect Royalty, production taxes, and G&A. The spreadsheet has been 
modified to reflect this in two places as noted in the spreadsheet. Other costs are 
then subtracted. 

o Suggest scenarios be run for: 12, 10, 8, 6 $/mcf market price. 
 

• FIXED COST and OPEX 
 
o Fixed Cost: The fixed costs derive from setting the economic limit in terms of 

production volumes. Similar to the Mature CO2 case, the Experts’ assessment is 
that fixed costs will increase with increasing gas price (inflation). Unlike the 
Mature CO2 case, the economic limit volume is constant across all prices. This is 
then used to compute fixed costs using the current market price.  

 
The other component of fixed cost is the cost of the fracture job, which is entered 
by the user. 

 
o Variable Cost: There are no variable costs in this case. 

 
All of these costs are the same whether sensors are installed or not. Unlike the CO2 case, 
there was no consensus that fixed costs would be less in the presence of sensors. 
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SAGD 
 

• Commodity Price 
 

o The net selling price is determined by taking the market price and subtracting 
25% to reflect Royalty, production taxes, and G&A. There is also a discount 
factor for oil quality set by the user. The spreadsheet has been modified to reflect 
this in two places as noted in the spreadsheet. Other costs are then subtracted. 

o Suggest scenarios be run for: 100, 70, 40, 10 $/bbl market price. 
 

• FIXED COST and OPEX 
 
o Fixed Cost: The fixed costs derive from setting the economic limit in terms of 

production volumes. Similar to the Mature CO2 case, the Experts’ assessment is 
that fixed costs will increase with increasing oil price (inflation). Unlike the 
Mature CO2 case, the economic limit volume is constant across all prices. This is 
then used to compute fixed costs using the current market price. I changed cells in 
Basic Decision Tree to reflect referencing the market price. 
 
The other component of fixed cost is the cost of the new horizontal wells for 
SAGD. These well depths and $/m costs are entered by the user. 

 
o Variable Cost: The variable cost is computed based on the technical inputs for the 

steamflood and using a long term gas contract price of $5/mcf.  
 

All of these costs are the same whether sensors are installed or not. Unlike the CO2 case, 
there was no consensus that fixed or variable costs would be less in the presence of 
sensors. 
 

 
B 2.0 Discussion of Sensor Probability Tables 

 
B 2.1 Mature Reservoir with Waterflood or CO2 Injection 

This scenario considers a typical Permian Basin mature oil reservoir currently under waterflood. 
The reservoir management choice is to continue the waterflood or to initiate CO2 injection. In 
addition to this basic reservoir management choice, we also considered the choice of installing 
an array of sensors in every injector and producer to measure a vertical profile of injection or 
production rate, pressure, temperature, and in the case of production wells, water cut and CO2 
content. This information should help reservoir surveillance engineers determine which intervals 
are taking the most water, which intervals are producing the most fluid, and which producing 
intervals have the highest water cut. With this additional information reservoir engineers might 
be able to shut off intervals that have been swept by waterflood or CO2 and divert injection to 
previously unswept intervals, improving oil production rate and/or arresting the rate of oil 
production decline. 
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The sensor probability tables provide approximate quantification of the potential improvement in 
the oil production rate or reduction of the decline rate that improved reservoir management might 
be able to achieve due to additional information provided by the sensors. There are two sensor 
probability tables, one for the waterflood option (Table B-1), the second for the CO2 injection 
option (Table B-2). 

 

Continuation of waterflood With sensors 

 25 25 5 5 

 

Initial production 
rate 

(bbl/day/pattern) 

Decline rate over 
next 5 years 

(%/year) 5 15 5 15 

25 5 1 0 0 0 
25 15 0.1 0.9 0 0 
5 5 0.04 0.16 0.8 0 

Without 
sensors 

5 15 0.02 0.04 0.1 0.84 
Table B-1. Sensor probability table for a typical mature Permian basin reservoir under 

continued waterflood. 
 

Implement CO2 injection With sensors 

 15.6 15.6 5.2 5.2 

 

Initial production rate 
(bbl/day/pattern) 

Decline rate over 
next 5 years (%/year) 5 15 5 15 

15.6 5 1 0 0 0 

15.6 15 0.2 0.8 0 0 

5.2 5 0.2 0.2 0.6 0 
Without 
sensors 

5.2 15 0.1 0.2 0.2 0.5 

Table B-2. Sensor probability table for a typical mature Permian basin reservoir with a new 
CO2 injection program. 

Each table is a four-by-four array of estimated probabilities that the additional information 
provided by sensors would lead to a change between the four possible combinations of two 
initial production rates and two decline rates. Considering only two states for rate and decline 
rate, a favorable and unfavorable state for each, is of course a very crude discretisation of the 
broad spectrum that each might attain for any given reservoir, but this simplification was 
nevertheless chosen to keep the table of probabilities at a manageable size. The two initial rates 
for the CO2 option represent factors of three and one times the expected value for the waterflood 
initial rate. The decline rates for the waterflood and CO2 options are equal. 

The tables are organized so that entries on the diagonal quantify the probability that neither the 
initial rate nor the decline rate changes because of sensor information. The lower-left triangle of 
each table generally contain cases where a favorable change occurs in the oil rate, the decline 
rate, or both. The upper-right triangle generally contains cases where unfavorable changes occur. 
The single case with a favorable initial rate change but an unfavorable decline rate change is in 
the lower triangle (third row, second column) and the single case with the reverse outcome, an 
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unfavorable initial rate change but a favorable decline rate change is in the upper triangle 
(second row, third column). The probabilities along each row of the table sum to one. 

The panel of Experts decided that the information provided by the sensors would not lead to a 
worsening of the initial oil rate or the decline rate in either the waterflood or CO2 options (except 
for the case of an initial rate improvement coupled with an unfavorable decline rate change, 
discussed below). Thus, the upper-right triangle of both tables are filled with zeros. The upper-
left corner entry of each table is one, indicating that if the initial rate and decline are already 
optimal before the installation of sensors, then the new sensor information will neither improve 
nor worsen the reservoir performance. 

For the waterflood option (Table B-1) the Experts decided that targeted injection or production 
profile modifications indicated by the new sensor information might lead to improved sweep of 
previously bypassed oil between wells, which in turn might lead to a long-lasting oil rate 
increase. However, the probability of this occurring seems small because of the infrequent 
vertical compartmentalization in typical Permian Basin reservoirs, so the two table entries 
representing an oil rate improvement with no decline rate change were assigned a small but non-
zero probability of 4%. It seems even less likely that both the oil rate and decline rate would 
improve, so the lower left corner of the table was assigned a probability of 2%. 

The Experts considered it more likely that targeted injection and production profile modification 
could reduce water production, leading to an improvement in the decline rates. Thus the panel 
assigned somewhat larger probabilities (10%) to the two cases of decline rate improvement 
without a change in initial oil rate. However, they decided that the most likely improvement 
(16% probability) would be a temporary oil rate increase, followed by a steep decline, due to 
improved sweep of bypassed oil in small areas near each injector and producer. The remaining 
entries on the diagonal of the table were set to obtain a sum of one on each row. 

Similar arguments were applied to estimate the CO2 sensor probabilities (Table B-2), except 
somewhat larger probabilities of reservoir performance improvement were assigned because 
sensor-inspired injection and production profile modifications might improve sweep in 
previously water-flooded intervals in addition to the improvements that might occur in a 
waterflood only. 

 
B 2.2 Deep-Water Reservoir with Primary Production or Waterflood 

This scenario considers a typical Gulf of Mexico deep-water sandstone oil reservoir produced 
from offshore facilities with a small number of relatively expensive wells. The reservoir 
management choice is to continue with primary production or to install a waterflood for pressure 
maintenance. A wide variety of sensors and controls were considered, but the panel decided that 
the most likely benefit in this reservoir setting would be to extend plateau production by 
detecting zones of early water-breakthrough and shutting them off, and by identifying previously 
undrained areas of the reservoir for targeted recompletions or sidetracks. These reservoir 
performance improvement mechanisms could work for both primary production, with water 
encroachment from an aquifer, and for waterflood with water encroachment from injection wells. 
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Although the potential reservoir-performance improvement the panel considered was an 
extended time of plateau production, not a rate increase, it was nevertheless decided to 
approximate the total oil-volume benefit with rate increases and decline rate improvements to 
maintain consistency with the other three reservoir scenarios. The two sensor probability tables 
for primary production and the waterflood are shown in Tables B-3 and B-4 respectively. The 
decline rates are the same for each table. The waterflood initial oil rates were set to four times 
and two times the expected value of the primary production initial oil rates. 

 

Continuation of primary production With sensors 

 5000 5000 2000 2000 

 

Initial production rate 
(bbl/day/well) 

Decline rate over 
next 5 years (%/year) 15 35 15 35 

5000 15 0.97 0.01 0.01 0.01 

5000 35 0.2 0.78 0.01 0.01 

2000 15 0.05 0.1 0.84 0.01 
Without 
sensors 

2000 35 0.02 0.05 0.2 0.73 

Table B-3. Sensor probability table for a typical deep-water Gulf of Mexico reservoir under 
continued primary production. 

 

Implement waterflood With sensors 

 17600 17600 8800 8800 

 

Initial production rate 
(bbl/day/well) 

Decline rate over 
next 5 years (%/year) 15 35 15 35 

17600 15 0.97 0.01 0.01 0.01 

17600 35 0.3 0.68 0.01 0.01 

8800 15 0.05 0.1 0.84 0.01 
Without 
sensors 

8800 35 0.02 0.05 0.3 0.63 

Table B-4. Sensor probability table for a typical deep-water Gulf of Mexico reservoir with a 
new water injection program. 

Both sensor probability tables are organized like those of the previous Permian Basin scenario 
with reservoir performance improvement generally represented in the lower-left triangle, 
performance decreases in the upper-right, and unchanged performance on the diagonal. Unlike 
the Permian Basin scenario, the panel decided that there is a small probability (1%) that the 
installation of sensors and controls in a well might cause damage that is too expensive to fix, 
leading to a permanent loss of production. Thus both tables have non-zero entries in the upper 
triangle. 

For the primary-production option (Table B-3) the Experts decided that the most likely 
performance improvement (with an estimated 20% probability) would be a reduced decline (row 
two, column 1, and row four, column three) and extended plateau because of sensor-inspired 
water-production shut off and recompletions or sidetracks to produce undrained portions of the 
reservoir. The other forms of performance improvement were assigned smaller probabilities. The 
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waterflood sensor table (Table B-4) is the same as for primary production, except the probability 
of arresting the decline without increasing the initial rate was increased from 20% to 30% 
because during a waterflood there are opportunities for control in injectors in addition to the 
opportunities for control in producers. 

 
B 2.3 Tight Gas Well with Hydraulic Fracturing 

In this scenario we are considering a vertical well in a typical North-American tight gas 
formation. For consistency with the other three scenarios the panel included a reservoir 
management choice of doing nothing or stimulating the well with a hydraulic fracture, even 
though the preferred alternative will always be to stimulate the well with or without sensors. The 
sensor suite would include pressure, temperature, flow profiles, geophones, tilt meters, and 
possibly “smart propants” that create small explosions for detection by the geophones. The panel 
decided that the primary benefit of these sensors would be to provide more detailed information 
on the effectiveness of the hydraulic fracture, not to improve the performance of the current well, 
but to allow better planning of fracturing in subsequent wells. 

 

Unfractured vertical well With sensors 

 500 500 30 30 

 

Initial production rate 
(MCF/day/well) 

Decline rate over 
next 5 years (%/year) 20 40 20 40 

500 20 1 0 0 0 

500 40 0 1 0 0 

30 20 0 0 1 0 
Without 
sensors 

30 40 0 0 0 1 

Table B-5. Sensor probability table for a typical unfractured vertical well in a tight gas 
reservoir. 

 

Vertical well with hydraulic fracture With sensors 

 2602.5 2602.5 69.4 69.4 

 

Initial production rate 
(MCF /day/well) 

Decline rate over 
next 5 years (%/year) 40 60 20 40 

2602.5 40 0.9 0.05 0.025 0.025 

2602.5 60 0.15 0.75 0.05 0.05 

69.4 20 0.1 0.15 0.7 0.05 
Without 
sensors 

69.4 40 0.1 0.15 0.2 0.55 

Table B-6. Sensor probability table for a typical hydraulically fractured vertical well in a 
tight gas reservoir. 

The two sensor probability arrays are shown in Tables B-5 and B-6. The initial production rates 
for the hydraulic fracturing option were set to 75 and 2 times the expected value for the 
unstimulated initial rates. Two of the decline rates were increased for the fractured-well table 
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because fracturing can accelerate the production with larger initial production rates followed by 
more rapid declines, but not increase the reservoir volume. 

The purpose of the sensors is to provide information on hydraulic fractures. Thus, they can have 
no effect on the performance of an unfractured well and Table B-5 has only ones on the diagonal 
and zeros elsewhere. Table 6 includes small probabilities in the upper triangle to account for the 
possibility that information from the sensors might lead to over-confidence in the design of 
subsequent hydraulic fractures, fracturing too close to water zones, in turn leading to water 
production and lost gas productivity. Larger probabilities were assigned to the lower triangle to 
account for better hydraulic fractures and improved well performance, but the largest 
probabilities were assigned to the diagonal to represent no change. 

 
B 2.4 Heavy-Oil Reservoir with Cyclic Steam or Steam-Assisted Gravity Drainage 

In this scenario we are considering a typical North-American heavy-oil reservoir currently under 
cyclic steam injection in vertical wells. The reservoir management choice is to continue the 
cyclic steam process or to initiate a steam-assisted gravity drainage (SAGD) program in injector-
producer pairs of new horizontal wells. The panel decided that the most useful downhole sensors 
for this scenario would be temperature profiles to map formation heating near each well. 
However, more useful measurements might include surface time-lapse seismic to map heating 
throughout the reservoir and surface temperature arrays to map heat losses through the 
overburden. With knowledge of reservoir heating and heat losses from the sensors it might be 
possible to optimize steam injection for more even heating, less heat loss, and more efficient oil 
recovery. 

The two sensor probability tables for cyclic steam injection and SAGD are shown in Tables B-7 
and B-8 respectively. The decline rates are the same for each table. The SAGD initial oil rates 
were set to 3 times and 1.5 times the expected value of the cyclic steam initial oil rates. 

The panel decided that the information provided by the sensors could not lead to worsening of 
reservoir performance, so the upper-right triangle of each table was filled with zeros. For the 
cyclic-steam option it was decided that because no new wells are drilled an initial-rate increase 
was not possible. However, sensor-inspired optimization of steam injection might arrest the 
decline. Thus probabilities of 20% were assigned to the two table entries corresponding to a 
decline-rate reduction. All other entries in the lower-left triangle were set to zero. 

 

Continuation of cyclic steam process With sensors 

 150 150 30 30 

 

Initial production rate 
(bbl/day/project) 

Decline rate over 
next 5 years (%/year) 10 20 10 20 

150 10 1 0 0 0 

150 20 0.2 0.8 0 0 

30 10 0 0 1 0 
Without 
sensors 

30 20 0 0 0.2 0.8 
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Table B-7. Sensor probability table for a typical heavy-oil reservoir under continued 
cyclic steam injection. 

 

Implement steam-assisted gravity drainage With sensors 

 93.6 93.6 46.8 46.8 

 

Initial production rate 
(bbl/day/project) 

Decline rate over 
next 5 years (%/year) 10 20 10 20 

93.6 10 1 0 0 0 

93.6 20 0.4 0.6 0 0 

46.8 10 0.2 0.2 0.6 0 
Without 
sensors 

46.8 20 0 0.2 0.4 0.4 

Table B-8. Sensor probability table for a typical heavy-oil reservoir with a new steam-
assisted gravity drainage program. 

Similar arguments were applied to the SAGD sensor probability table, except (1) the 
probabilities of a decline-rate decrease were doubled because the additional wells in SAGD 
might provide more opportunities to optimize reservoir heating, and (2) 20% probabilities were 
assigned to three entries with initial rate increases because the additional wells provide a rate-
increase opportunity. The probability of both a rate increase and a drop in decline rate was set to 
zero. 
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APPENDIX C:  PUBLISHED PAPERS 
 

Copies of papers published and presented by the Reservoir Simulation work are provided in this 
Appendix. 
 
C 1.0 Assessing the Value of Sensor Information in 4-D Seismic 
History Matching 
 
H. Klie, A. Rodríguez, R. Banchs and M.F. Wheeler, Assessing the Value of Sensor Information in 
4-D Seismic History Matching, 76th SEG International Exposition & Annual Meeting. New 
Orleans, Oct. 1-6, 2006. 
 
Assessing the Value of Sensor Information in 4-D Seismic History Matching 
 
H. Klie*, A. Rodriguez, S.G. Thomas, M.F. Wheeler, Center for Subsurface Modeling, The 
University of Texas at Austin, Texas;  R. Banchs,  Dept. of  Signal Theory and Communications, 
Polytechnic University of Catalonia, Barcelona, Spain. 
 
Summary 
The main objective of the present work is to numerically determine how sensor information may 
aid in reducing the ill-posedness associated with permeability estimation via 4-D seismic history 
matching. These sensors are assumed to provide timely information of pressures, concentrations 
and fluid velocities at given locations in a reliable fashion. This information is incorporated into 
an objective function that additionally   includes production and seismic components that are 
mismatched between observed and predicted data. In order to efficiently perform large-scale 
permeability estimation, a coupled multilevel, stochastic and learning search methodology is 
proposed. At a given resolution level, the parameter space is globally explored and sampled by 
the simultaneous perturbation stochastic approximation (SPSA) algorithm. The estimation and 
sampling performed by SPSA is further enhanced by a neural learning engine that estimates 
sensitivities in the vicinity of the most promising optimal solutions.  Preliminary results shed 
light on future research avenues for optimizing the frequency and localization of 4-D seismic 
surveys when sensor data is available.  
 
Introduction 
The continuous growth of computing power, sensor and communication technology is bridging 
gaps in understanding several fields in the geosciences. Specialized sensors are capable of 
measuring at a high local resolution, fluid and rock properties (see e.g., Lumley, 2001, Versteeg 
et al., 2004, Hornby et al., 2005, and references therein). These advances, in conjunction with 4-
D time-lapse seismic studies, are revealing enormous potentials to reduce the uncertainty in both 
reservoir characterization and production scenarios. Meanwhile, new stochastic optimization and 
statistical learning methods are arising as promising tools to find nontrivial correlations between 
data measurements and responses and to develop optimal reservoir exploitation plans (van der 
Baan and Jutten, 2000,  Nikravesh, 2004,  Klie et al., 2004,  Spall, 2004,  Keane and  Nair, 
2005).  
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The main objective of the present work is to numerically assess the value of sensor information 
in 4-D seismic history matching. To that end, we will assume that reliable sensor information 
may be available at any time and at any reservoir location. Despite the fact that this analysis may 
explore far beyond customary industrial practice, our main motivation is to evaluate, from a 
numerical standpoint, the potentials that sensor technology may have in reservoir 
characterization. This work involves a comparative analysis of different sensor-based objective 
functions and the introduction of a new methodology to eventually tackle large-scale parameter 
estimation problems. The set of objective functions evaluates the impact that the addition of 
sensors for pressure, concentration and fluid flow velocity has in the quality of the permeability 
estimation. This allows us to relate detailed changes in fluid flow and seismic traveltimes to 
permeability field distribution.  
 
The proposed 4-D seismic history matching methodology consists of the use of a multilevel 
approach to gradually perform parameter estimation from low to high resolution levels. The 
combination of global stochastic searches with local estimations via artificial neural networks 
(ANNs) provides means to perform sensitivity analysis and further refinements to the parameter 
estimation process. The whole methodology comprises the integration of multiphase flow 
simulation, petrophysics (via Biot-Gassmann's theory) and traveltime seismic modeling in the 
evaluation of the objective function. An important component of the whole methodology is 
illustrated on a coarse but realistic 2-D data-set. Preliminary results reveal that sensor-based 
reservoir characterization may provide important guidelines as to how time-lapse 4-D seismic 
studies should be effectively performed.  
   
A Sensor-based Seismic History Matching Methodology   
The proposed methodology consists of the use of a multilevel approach to gradually perform 
parameter estimation from low- to high-resolution levels. We restrict our attention to 
permeability although the proposed framework could also be employed for other reservoir 
parameters of interest, such as porosity, PVT data, stress and fracture distribution. An initial 
upscaling process is carried out via wavelet transformations, and the downscaling propagates the 
best permeability estimation from coarser to finer simulation grids. As the resolution is 
increased, the amount of computation is systematically decreased in order to achieve further 
efficiency. This is illustrated in Figure 1.  
 

Succesive upscaling of 
the initial permeability 

field via wavelet 
transforms

Downscaling of 
permeability estimations 
and refinement at each 

level

Coarsest Estimated 
Permeability

Finest Initial 
Permeability

Finest Estimated 
Permeability

Coarsest Initial 
Permeability

Parameter estimation and sensitivity 
via SPSA and ANN

Succesive upscaling of 
the initial permeability 

field via wavelet 
transforms

Downscaling of 
permeability estimations 
and refinement at each 

level

Coarsest Estimated 
Permeability

Finest Initial 
Permeability

Finest Estimated 
Permeability

Coarsest Initial 
Permeability

Parameter estimation and sensitivity 
via SPSA and ANN  

Figure 1. Multilevel approach for permeability estimation. 
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Starting from the coarsest grid, the parameter estimation is first carried out with the simultaneous 
perturbation stochastic approximation (SPSA) algorithm (Spall, 2003) with different initial 
guesses. This not only augmented the chances for finding a global optimal solution, it also allows 
for a rich sampling of the parameter space. Moreover, the search performed by the SPSA 
algorithm guides the sampling toward promising regions containing a global solution (“hot 
spots”). We provide more details on the SPSA algorithm below. Due to the size of the coarse 
grid, thousands of computations are affordable in a few hours.  Based on the mapping between 
parameters and the objective function, we generate an artificial neural network (ANN) that 
allows us to perform sensitivity analysis and further refine the solution of the optimization. 
Therefore, points evaluated by the ANN are validated against the simulator. If these evaluations 
lead to a better optimizer, then the final estimation is used as an initial guess for the next finer 
resolution permeability grid. In this way, the ANN acts as a surrogate model or metamodel for 
the simulation model.  Figure 2 illustrates this process for a given permeability resolution level.  
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Figure 2. Permeability estimation at each resolution level. 
 
The simulation model consists of the integrated functionality of independent multiphase flow, 
petrophysics and seismic models. The flow component is provided by the Integrated Parallel 
Accurate Reservoir Simulation  (IPARS) framework (Wheeler, 1998). The petrophysics model 
follows the Biot-Gassman theory, which describes seismic velocity changes resulting from 
changes in pore-fluid saturations and pressures.  Given the resulting seismic velocities, it is 
possible to perform wave propagation modeling through the porous media.  In the first stage of 
the present effort, we are momentarily disregarding amplitude effects and, instead, reporting on 
traveltime measurements generated by a raytracer algorithm.  Therefore, the simulation model 
allows us to evaluate a collection of objective functions of the form:  
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where p, c and u denote pressure, concentration and velocity vectors at discrete times, 
respectively. Here, q represents data at production wells, i.e. bottom hole pressure, gas/oil ratio 
and cumulative production. The variable τ stands for the traveltime vector.  Superscript d 
indicates measured data. The weight operators, wx, include scaling factors and allow for the 
flexible selection of sensor, production and seismic measurements. Note that the above 
formulation may include measurements at selected locations and at discrete times throughout the 
simulation interval [0,T]. 
 
Simultaneous Perturbation Stochastic Approximation 
The simultaneous perturbation stochastic approximation (SPSA) algorithm has received 
considerable attention for global optimization problems where it is difficult or impossible to 
compute first order information associated with the problem. SPSA performs random 
simultaneous perturbations of all model parameters to generate a descent direction at each 
iteration. Despite the random character of the procedure, the expected value of the computed 
direction is the deterministically steepest descent direction. One of the most attractive features of 
the SPSA algorithm is its simplicity, flexibility and low computational cost. This algorithm only 
requires one or, at most, two function evaluations per iteration independently of the parameter 
space size in order to generate a stochastic descent direction. This means that the method does 
not require further modifications to the simulation model (i.e., a black-box approach). This is 
very convenient due to the size of the parameter space and the complexity of the current 
simulation model. Promising SPSA results have already  been reported in several engineering 
and scientific scenarios (Spall, 2003).    
 
The Neural Learning Engine  
The ANN implementation of the present work considers a multilayer perceptron architecture 
under the supervised learning framework. Supervised learning implies the existence of a 
"teacher" or "adviser" entity, which is responsible for quantifying the network performance. In 
many practical applications, this reduces to the availability  of a set of input data for which the 
expected output data is known. This input data, along with its corresponding output data, 
constitutes the training data set for the multilayer perceptron. Such a training set should be split 
into three sets: training, test and cross-validation; which should be used in both experimentation 
phases: the first one regarding the ANN parameter calibration, and the second one regarding the 
final training of the ANN for the application under consideration. The training of the multilayer 
perceptron considered here is implemented by using the classical back-propagation algorithm, 
which is based on the error-correcting learning rule derived from the optimal filtering theory.  In 
the application developed here, the ANN engine is used with a double objective in mind. The 
first one has to do with capturing the intrinsic complexities of the mismatch objective function 
with respect to variations of the permeability field values in a given neighborhood of suboptimal 
reservoir parameters. This will enable performance of fast sensitivity analyses of each individual 
model parameter with respect to the overall system response, which will provide useful 
information about the specific locations where multiple scale refinements are required. The 
second objective regards the ability to provide an efficient and smooth estimator of the mismatch 
objective function in a given neighborhood of suboptimal reservoir parameters, which will lead 
to more robust and faster parameter estimation. 
 

Numerical Examples 
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Computational experiments were performed on a coarse grid representation of model 1 of the 
SPE 10th Comparative Solution Project (Christie and Blunt, 2001).  The main objective of this 
preliminary set of experiments was to evaluate the implications that sensor technology may have 
in complementing 4-D seismic history matching in a rather exhaustive fashion. The original 
permeability field is shown in Figure 3 and consists of a cross-sectional reservoir model with 
1x100x20=2000 gridblocks. The size of each grid block is 25x25x2.5 ft3.  The reference coarse 
permeability field, consisting of 1x10x2=20 gridblocks, is obtained by successive upscaling 
using the Haar wavelet (Daubechies, 1992). The original reservoir model was slightly modified 
to allow for oil and gas compressibility and capillary forces due to the interaction of these two 
phases. A fixed production strategy was adopted with one gas injecting well located at the 
leftmost side of the model and a production well at the opposite side. Sensor measurements were 
assumed to be a) inactive, b) active along the wellbore, c) active midway between the two wells 
and along the wellbore and, d) active at every grid cell.  Sensors were able to provide timely (i.e., 
at each simulation step) measurements of pressures, concentrations and flow velocities. A cross-
well raytracing modeling was performed every 90 days for this well configuration. An initial 
guess for the parameter estimation was generated by means of the singular value decomposition 
(SVD) that considered only the first three resolution components (out of 2000) from the fine grid 
reference data. In this way, some of the features of the original permeability field were somewhat 
captured. Each iteration of the SPSA algorithm involved two function evaluations, where each of 
them implied the execution of  a  coupled flow, petrophysics and seismic simulation model for 
T= 1000 days (~3 years)  on  a different  permeability field configuration. The SPSA algorithm 
was able to converge to the desired tolerance (1.e-5) in less than 1000 iterations. 
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Figure 3. Original  high resolution permeability field. 
 

 

Figure 4. Permeability estimation as sensor observations are added into the inversion process. 
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Figure 5. Permeability estimation as sensor observations are added with seismic observations 
into the inversion process. 

 

In all cases considered, well production data (oil production rates, GOR and cumulative oil 
production) were matched reasonably well (not shown here).  Only a slight mismatch error was 
noticeable when the inversion was performed solely on production measurements. Figure 4 
shows the permeability estimation using different degrees of sensor information without the use 
of seismic information.  Clearly, the more sensors are added the higher the quality of the 
permeability estimation. However, in spite of considering the hypothetical situation of having 
sensors everywhere, the reference permeability is never recovered. In general, the estimation 
presents more difficulties in adjacent cells showing higher contrasts.  
 
Figure 5 presents the permeability estimation with the inclusion of seismic measurements.  The 
estimations display a similar global trend as in Figure 4. Nevertheless, the inclusion of seismic 
measurements introduces some important estimation enhancements as panels from both figures 
are compared one by one. We can see that the permeability estimation based on both production 
and seismic data is comparable to using both production and sensor data from the wellbore. As 
more sensors are added, we can observe how the quality of the estimation improves in the 
locality of the sensor. This shows that sensor data have a local resolution effect in contrast to the 
global effect that seismic and production data have in the estimation process.  A comparison was 
also made for pressures, concentrations and flow velocities at different gridblocks, showing a 
similar trend. We note that concentrations were harder to obtain than pressures and flow 
velocities harder to obtain than concentrations in the estimation process.  
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Figure 6. Sensitivity results using the ANN. 

 
Figure 6 depicts the sensitivity results obtained from the ANN in the case that the estimation 
relies only on production and seismic data (no sensor information). Each panel (numbered in a 
row-wise fashion) corresponds to a computational gridcell. We can see that cells 2, 7, 8 and 9 in 
each horizontal layer are the most sensitive ones. This implies that further refinement of the 
estimated solution in those cells can be obtained by means of a local optimization procedure 
(e.g., Newton or quasi-Newton method).  Moreover, the degree of sensitivity may suggest that 
additional information in those cells would be of value for further constraining the search space 
and, thereby enhancing the quality of the estimation. In fact, the more sensors that are added into 
the estimation the less steep the sensitivity curves are. This illustrates how additional information 
tends to smooth out the search space.  
  
Conclusions and Further Remarks 
Despite the fact that we have employed a coarse model for this preliminary phase of the project, 
we can draw some important conclusions: 
1. The history matching is improved as more information is added to the objective function, 

clearly indicating that sensor information can help in reducing the uncertainty associated with 
reservoir characterization. 

2. It is possible to match the production results using only production data in the objective 
function. However, this does not necessarily yield reliable permeability estimations due to the 
inherent ill-posedness of the inversion process.   

3. Time-lapse 4-D seismic measurements provide global insight into the history matching process 
that neither production data nor localized sensor information on fluid properties is able to 
reproduce.   

4. The combination of SPSA and ANN is very attractive for parameter estimation purposes, 
especially when the problem complexity makes derivative computation unfeasible. Moreover, 
this type of hybrid approach may be convenient when models and data are subject to dynamic 
changes as the understanding of the reservoir increases.   

Ongoing efforts are currently focused on a deeper analysis of the value that sensor information 
has in 4-D seismic history matching. To that end, the research team is currently exploiting both 
multilevel and surrogate model approaches for enhancing the estimation when thousands of 
parameters are involved.  
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1. Introduction 
Learning technologies have helped oil industry exploration and production in finding nontrivial 
correlations between data measurements and responses (see e.g., van der Baan and Jutten, 2000; 
Nikravesh, 2004). Nevertheless, these efforts have been primarily incorporated in an isolated 
fashion within the oil industry practice. On the other hand, the continuous growth of computing 
power, sensor and communication technology is bridging the gap between several fields in 
geosciences for the common goal of reducing uncertainty for achieving better subsurface 
understanding and producing more reliable decisions (see e.g., Lumley, 2001; Versteeg et al., 
2004; Hornby et al., 2005, and references therein). Time-lapse seismic for history matching is 
also a relevant example of how this technology is making possible to further constrain the 
parameter search space and produce better reservoir characterizations.  
 
The present work is concerned about jointly learning from production observations and other 
additional sources of information, and being able to relate detailed changes in the observed data 
into valuable permeability distributions. Furthermore, the present research aims at determining 
the value these additional sources of information have in the overall history matching process. 
More specifically, we investigate how information contained in state variables such as pressure, 
concentration and flow velocities may aid at improving the quality of the overall parameter 
estimation. To that end, we proposed a hybrid methodology based on the coupling of a neural 
network estimation engine (ANN) with the simultaneous perturbation stochastic approximation 
(SPSA) algorithm to be able to perform an efficient minimization of the output error criteria and 
guidance of the self-learning process. The optimization framework includes a multi-scale 
approach to gradually perform the estimation from low to high resolution levels (Rodriguez et 
al., 2006).   
 
The proposed ANN implementation considers a multilayer perceptron architecture under the 
supervised learning framework that is trained by means of the classical back-propagation 
algorithm. Regarding the simulation model, the methodology comprises the full integration of 
multiphase flow simulation into the mismatch history matching function. The concept of using 
ANN with stochastic optimization (via SPSA) for intelligence amplification in history matching 
is illustrated on a realistic 2D data-set. Although the proposed framework could also be 
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employed for other reservoir parameters of interest, such as porosity, PVT data, stress and 
fracture distribution; for simplicity reasons we restrict our attention to permeability. 
 
The structure of the present paper is as follows. First, we provide a brief description of the 
optimization framework, emphasizing the formulation of the multi-objective function, 
parameterization and the integrated flow simulation model. Section 3 presents a brief description 
of the SPSA algorithm. Section 4 describes the ANN approach and its role for performing 
sensitivity analysis of the multi-objective mismatch function. Section 5 shows the numerical 
experiments and section 6 presents the conclusions and further research avenues of this work. 

2. Optimization Framework 

2.1 Fundamentals  
The current methodology is based on a multi-scale treatment of the parameter space (Rodriguez 
et al., 2006). This is achieved by decomposing the log of the original permeability (or porosity) 
field in a summation of different eigenimages that are obtained by the singular value 
decomposition (SVD). Each of these eigenimages represents a resolution level of the original 
parameter space whose relevance (or energy content) is controlled by the associated singular 
value. Thus, the problem is parameterized in terms of singular values and the determination of 
each one of them provides a level of resolution in the parameter space.  
 
The second step is to generate further resolution levels with the successive application of wavelet 
transforms on each eigenimage. Due to the linear character of wavelet transforms, the value of 
the parameters to estimate can be preserved at different scales. This allows for obtaining good 
estimations for higher parameter values (those associated with low-resolution levels) in an 
inexpensive computationally manner. In this way, the number of estimated variables increases as 
finer resolution levels are progressively included. 
 
At each resolution level, we use the simultaneous perturbation stochastic approximation (SPSA) 
method to perform a broad search for the optimal solution. The SPSA algorithm produces a 
systematic sampling on the parameter space which is richer in a neighborhood of the optimal 
solution. This sampling can be used to construct a metamodel (i.e., surrogate model) based on 
the response surface. In our particular case, the sampled points are training points for an artificial 
neural network (ANN). Despite that there are other methods for constructing metamodels (Keane 
and Nair, 2005), the ANN can capture complex and nonlinear multivariate relations in the 
presence of noise. Figure 1 illustrates how the SPSA and ANN are coordinated to enhance the 
parameter estimation process.  
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Figure 1. Parameter estimation at each resolution level. 
 

2.2 Integrated Multiphase Flow 
The forward model comprises a multi-scale flow reservoir simulator. The flow component is 
given by the IPARS (Integrated Parallel Accurate Reservoir Simulator) framework. An attractive 
feature of IPARS is that it allows for the coupling of different models in different subdomains 
and supports message passing for parallel computations on structured multi-block meshes in two 
and three space dimensions (M.F. Wheeler and M. Peszynska, 2002).  
 

2.3 Objective Function  
The complete objective function accommodates several components that account for mismatch 
values of simulated production, and the three state variables of pressure, concentration and flow 
velocities, with respect to field measurements:  
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where ,   and  p c u denote the pressure, concentration and flow vectors at discrete times, 
respectively. Here, q  represents data at production wells, i.e. bottom hole pressure, gas/oil ratio 
and cumulative production. Superscript d indicates measured data. The last term represents the 
constraint given by the model parameters θ  based on some a priori information. Recall that 
these model parameters are singular values and result from the parameterization of the original 
reservoir parameters. The weight operators, *W , include scaling factors and allow for the flexible 

selection of each different measurements at specific experimental setting. These operators 
integrate the definition of covariance operators. The above formulation includes measurements at 
selected locations and at discrete times throughout the simulation interval [0,t]. 
 

3. Global Optimization via SPSA 
The SPSA algorithm has received considerable attention for global optimization problems where 
it is unfeasible to compute function gradients. SPSA performs random simultaneous 
perturbations of all model parameters to generate a descent direction at each iteration. Despite 
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the random character of the procedure, the expected value of the computed direction is the 
deterministically steepest descent direction. The SPSA for equation (1) is defined by the 
following recursion: 

                                                          ( )1 ,θ θ θ+ = −k k k k ka g                                                         (2) 

where ak is a positive scalar that monotonically decreases with respect to k, and ( )θk kg  is a 

stochastic approximation to the gradient given by a simultaneous perturbation of all elements of 
θk , that is, 

                                      ( ) ( ) ( ) 11
,

2
θ θ θ −= Φ + Δ −Φ − Δ Δ⎡ ⎤⎣ ⎦k k k k k k k k kg c c                                        (3) 

where ck is also a positive scalar that monotonically decreases with respect to k, Δk  is a vector 

consisting of {–1,1} values randomly generated with a Bernoulli distribution and 1−Δk stands for 

the component-wise reciprocal of each of the entries of Δk . The parameters ak and ck form a 

monotonically decreasing sequences with respect to k that are chosen to ensure asymptotic 
convergence of the algorithm; for more details and pointers on SPSA see (Spall, 2003). 
 
One of the most attractive features of the SPSA algorithm is its simplicity, flexibility and low 
computational cost. As can be seen from (3), the algorithm only requires one or, at most, two 
function evaluations per iteration independently of the parameter space size in order to generate a 
stochastic descent direction for (2). This means that the method does not require further 
modifications to the simulation model (i.e., a black-box approach). This is very convenient due 
to the size of the parameter space and the complexity of the current simulation model.  

4. The Learning Neural Network Engine 

4.1 Fundamentals 
The ANN implementation used in this work considers a multi-layer perceptron architecture 
under the supervised learning framework (Haykin, 1994). Supervised learning implies the 
existence of a "teacher" entity responsible for quantifying the network performance. In many 
practical applications, this reduces to the availability of a set of input data for which the expected 
output data is known. In the case under consideration, this data is numerically generated by the 
SPSA while exploring a specific region of the objective function close to a promising optimal 
solution.  
 
These parameter space samples, along with their corresponding objective function values, 
constitute the training data set for the ANN model. Such a training set should be split into three 
sets: training, test and cross-validation, in order to calibrate the multi-layer perceptron 
parameters, as well as for the final training of the ANN model. The training of the ANN is 
implemented by using the classical back-propagation algorithm, which is based on the error-
correcting learning rule derived from the optimal filtering theory (Haykin, 1991). 
 
In the application developed here, the ANN engine is used for constructing an efficient and 
smooth estimator of the mismatch objective function in the given neighborhood of optimal 
reservoir parameters, which will allow for capturing the intrinsic complexities of the mismatch 
objective function with respect to variations of the model parameter values in a more robust and 
faster manner.  
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4.2 Sensitivity analysis 
According to the proposed methodology, the ANN engine allows for capturing the mismatch 
objective function variations with respect to model parameter values in the given neighborhood 
of the promising optimal solution already explored by the SPSA. This will enable the 
performance of a fast sensitivity analysis of each individual component of the multi-objective 
function defined in (1) with respect to variations of each individual model parameter. Figure 2 
illustrates the overall process of SPSA space exploration and the subsequent multi-objective 
function sensitivity analysis. 
 

 
 

Figure 2. SPSA space exploration and multi-objective function sensitivity analysis. 

 
The performance of this type of sensitivity analysis provides very useful information about the 
relative impact that each specific information component of the objective function has on the 
overall history matching process. In a similar way, it also provides valuable information for 
performing further resolution refinements to the parameter model in a more efficient and 
appropriate manner.  
 
Two important considerations must be taken into account. First, special attention should be paid 
to the sampling process performed by SPSA in order to ensure collected samples to provide a 
good representation of the parameter space and then guarantee an appropriate ANN model 
training. Hence, several runs of SPSA within the same neighborhood might be necessary to 
ensure a good parameter space representation. Second, special care must be taken when 
performing the sensitivity analysis since the ANN representation is only valid inside the core 
region explored by the SPSA. According to this, the sensitivity analysis should be restricted to 
model parameter variations within the valid area of representation. 
 

6. Experimental Results 
Computational experiments were performed on a coarse grid representation of a cross-sectional 
reservoir model consisting of 20x100 grid-blocks. The size of each grid-block was 25x25x2.5 ft3. 
A reference coarse permeability field, consisting of 5x25 = 125 grid-blocks, was obtained by 
successive upscaling using the Haar wavelet. Figure 3 shows the fine and resulting coarse 
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permeability field. The main objective of this preliminary set of experiments was to evaluate the 
implications that additional information provided by state variables such as pressure, 
concentration and flow velocities have in complementing production data history matching.  
 

 

 

Figure 3. Original permeability field (top) and upscaled version (bottom). 
 
The original reservoir model was slightly modified to allow for oil and gas compressibility and 
capillary forces due to the interaction of these two phases. A fixed production strategy was 
adopted with one gas injecting well located at the leftmost side of the model and a production 
well at the opposite side. In the experimental setting considered here, state variable 
measurements were assumed to be available midway between the two wells and along the 
wellbore. Timely (i.e., at each simulation step) measurements of pressures, concentrations and 
flow velocities were considered. An initial guess for the parameter estimation was generated by 
means of the singular value decomposition (SVD) that considered only the first three resolution 
components (out of 20) from the fine grid reference data. In this way, some of the features of the 
original permeability field were somewhat captured.  
 
Each iteration of the SPSA algorithm involved two function evaluations, where each of them 
implied the execution of the flow simulation model for t = 1000 days on a different permeability 
field configuration. The SPSA algorithm was able to converge to the desired tolerance (1.e-5) in 
674 iterations. Once convergence was achieved, the ANN model was trained by using the sample 
points generated by the SPSA algorithm. An ANN architecture of two hidden layer with 8 and 4 
processing units, respectively, was empirically selected. Afterwards, ANN-based models were 
trained for each multi-objective function component individually: production, pressure, 
concentration and flow velocity. An additional ANN-based model was trained for the combined 
contribution of the three non-production information components.  
 
A sensitivity analysis was performed for each multi-objective function component and the 
combined non-production component with respect to the individual variations of each of the four 
resolution model parameters. Table 1 presents the resulting percentage variations for each 
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objective function component when perturbing each of the model parameters from –0.5% to 
+0.5% of its final SPSA convergence value. Each percentage variation reported in table 1 
actually corresponds to the mean value of 30 independent ANN model simulations, for which a 
confidence interval is also provided by means of the corresponding standard deviations. 
 
Table 1: Percentage variations of objective function components with respect to model parameter 

variations of 1%. 
 
Information Component Parameter 1 Parameter 2 Parameter 3 Parameter 4 
Production Production 56.76 + 8.45 17.70 + 1.69 0.54 + 0.11 2.32 + 0.31 

Pressure 80.47 + 1.97 0.95 + 0.09 0.39 + 0.02 0.22 + 0.02 
Concentration 37.29 + 2.75 16.47 + 0.92 0.67 + 0.06 2.23 + 0.15 
Fluxes 23.49 + 2.01 10.95 + 0.49 0.49 + 0.03 1.09 + 0.10 

Non-
production 

Combined 45.27 + 3.05 11.29 + 0.61 0.34 + 0.05 1.47 + 0.12 
 
Some interesting observations can be drawn from table 1. First of all, notice that all objective 
function components are sensitive the most to variations of the first low-resolution parameter, 
and much less sensitive to variations of the higher-resolution parameters. It is also very 
interesting the fact that all evaluated function components seem to be totally insensitive to model 
parameter 3. This observation has been independently confirmed by (Rodriguez et al., 2006). 
Thus, resolution parameter 3 does not provide any valuable information for the permeability 
model under consideration. 
 
Another important observation has to do with the fact that although the production component of 
the multi-objective function seems to be more sensitive to model parameter variations than the 
combined non-production data component, it is evident from the sensitivity analysis that non-
production data also should be able to provide useful information for model parameter 
optimization. Indeed, notice that confidence intervals are generally smaller for the non-
production related components. This suggests that these information components can help 
reducing the overall uncertainty associated to the history matching process.  
 
Finally, it is of special interest the behavior of the pressure component of the multi-objective 
function, which exhibits the largest sensitiveness with respect to the lowest resolution parameter, 
while being practically insensitive to all other three parameters. This seems to suggest that 
pressure measurements are the most fundamental component for determining basic geological 
structures whereas fluxes and concentrations (or saturations) play a bigger role in capturing 
details of the reservoir.  
 

7. Conclusions 
According to the preliminary results presented in this work, the proposed methodology promises 
to provide a very attractive framework for parameter estimation via history matching, especially 
when the problem complexity makes derivative computation unfeasible and when computational 
times strongly limit the search performance. As already discussed, ANN models aid at better 
understanding the search space in the vicinity of a promising solution by means of a sensitivity 
analysis. This kind of analysis provides valuable information about the relative contributions of 
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each model parameter and multi-objective function component to the overall history matching 
process. 
 
Despite the fact that we have employed a coarse model for this preliminary phase of the project, 
we can draw some important conclusions: 
 
5. The history matching can be improved as more information is added to the objective function. 

It was shown how additional information components can actually help in reducing the 
uncertainty associated with reservoir characterization. 

 
6. It is possible to match the production results using only production data in the objective 

function. However, this does not necessarily yield reliable permeability estimations due to the 
inherent ill-posedness of the inversion process.   

 
7. The combination of SPSA and ANN is very attractive for parameter estimation and analysis 

purposes, especially when the problem complexity makes derivative computation unfeasible. 
Moreover, this type of hybrid approach may be convenient when models and data are subject 
to dynamic changes as the understanding of the reservoir increases.  

 
Ongoing efforts are currently focused on a deeper analysis of the value that sensor information 
and high resolution seismic data have in history matching. To that end, the research team will 
continue evaluating the proposed framework by incorporating both travel-time and amplitude 
related seismic information, as well as sensor data. 
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Abstract 
 
This paper presents a novel framework for history matching based on the concept of simulation 
based optimization with SVD parameterization, guided stochastic search sampling, multiscale 
resolution wavelet and incremental metamodel (surrogate model) generation. Hence, the primary 
focus of this work is to mitigate the computational burden of large-scale history matching. 
Numerical experiments show the viability of the method for addressing realistic problems. 

1. Introduction 

Parameter estimation for reliable reservoir characterization has been and is still one of the most 
consuming and challenging tasks in reservoir engineering (see e.g., Shah et al, 1978; Abacioglu 
et al., 2001; Grimstad et al., 2003; Zhang et al., 2005). The main issue is to be able to estimate a 
large number of reservoir parameters (e.g., permeability, porosity) from a relative small set of 
observations. Besides the severe ill-posedness induced by this fact, the cost of running realistic 
simulations is too high and overwhelming for obtaining opportune and effective  decisions.  
 
 The main objective of the present work is to describe a novel history matching 
methodology that combines multiscale and metamodel approaches in order to achieve fast and 
reliable estimations. The multiscale component is given by a two-fold procedure that 
parameterizes the original parameter estimation problem in terms of a reduced set of coefficients 
(singular values). That is:  (1) generate an eigenimage decomposition of the original parameter 
field by means of the singular value decomposition (SVD) (Horn and Johnson, 1994) followed 
by (2) the application of the wavelet transformation to each eigenimage (Droujinine, 2006). This 
decreases the cost of parameter estimation process since convergence is incrementally achieved 
at the resolution level of interest while preserving the locality of the information contained in 
each eigenimage The metamodel component consists of building a faster and simpler 
multivariate approximation (surrogate model) of the original simulation model (Keane and Nair, 
2005). Given sufficient sampling in a given region or set of parameters of interest, the 
metamodel can be constructed by interpolating the response surface associated to the parameter 
space. In our particular case, metamodeling provides the means to combine global (derivative-
free) optimization and local (derivative-based) optimization methods to reduce the number of 
computation-intensive simulations as well as increasing the accuracy of our estimations. 
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 We consider that the combination of multilevel, metamodeling and an optimization method 
such as the stochastic perturbation stochastic approximation (SPSA) (Spall, 2003) provide 
several potential advantages which include: (1) flexibility, since the present methodology is 
independent of the simulation model considered which may range from a very simple (e.g., 
single-phase or streamline simulator) to a very complex one (e.g., compositional coupled with 
chemical and geomechanics capabilities); (2) robustness, since there are possibilities to explore 
larger portions of the parameter space which may lead to a  global optimal solution; (3) 
efficiency, since the construction of high-fidelity metamodels provide fast ways to perform 
sensitivity analysis, parameter estimation refinement and even uncertainty analysis restricted to 
the domain of interest (Keane and Nair, 2006);  and (4) parallel scalability, several levels of 
granularity can be computational exploited without apparent bottlenecks such as independent 
function evaluations (simulations), stochastic gradient computations and optimization runs with 
different parameter scenarios (realizations).  
 
  The present paper is structured as follows. In the next section, we provide a detailed 
discussion of our optimization approach. In section 3 we show, in particular, numerical results 
illustrating the capabilities of the multiscale approach. Concluding remarks and further research 
directions are highlighted in the last section.      
 

5. Description of the Multiscale and Metamodel Framework 

2.1 Objective Function 

Denoting the model parameters by m , the parameter estimation problem can be stated as the 
minimization of the mismatch between the vector of observed data d  and the vector of predicted 
data by the simulation model ( )f m . This mismatch is quantified by an objective function Φ  

defined in a weighted least squares sense  

                                      ( ) ( )( ) ( )( )1 .
t

dm d f m C d f m−Φ = − −                                    (1) 

 
Here, the observation covariance matrix dC  represents the errors in the data. In our 

particular case, we assume that the model parameters depend on location such as permeability, 
porosity, rock compressibility, initial or boundary conditions. The vector of measurements d  
may be obtained at different locations and time intervals.  

  

2.2 Eigenimage Decomposition  
Let us assume that the vector of model parameters m  is given by a 2-D permeability 
field nh nvK ×∈� . Moreover, to avoid high-local variations of permeability we define log( )Y K= .  
We remark that the methodology to be described is also applicable to the 3-D case without major 
inconveniences. The initial stage of the framework consists of a multiscale treatment of 
Y through the singular value decomposition (SVD) (Horn and Johnson, 1994) followed by a 
wavelet transformation of each of the components resulting from this decomposition. Thus, Y  is 
decomposed in the following way:  
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with ,nh nhU ×∈� the columns of which are composed by the horizontal covariance matrix  tYY ,  

,nv nvV ×∈�  the columns of which are composed by the vertical covariance matrix  tY Y , and  

,nh nv×Σ∈�  is a rectangular matrix with diagonal entries 1 2 0,rσ σ σ≥ ≥ ≥ >L  where 

( )min ,r nh nv=  and iσ  is the thi  singular value of  .Y   

 
The thi  eigenimage of  Y  is given by iY  and forms an orthogonal basis. Clearly, the 

contribution of the thi eigenimage to the construction of Y  depends on the magnitude of  iσ . 

The error that results from the partial reconstruction can be shown to be equal to the summation 
of the discarded singular values, thus, providing an indicator of the number of eigenimages 
required to reconstruct the original field within a prescribed threshold error.  

 

2.3 The Wavelet Transform and Generation of  Multiple Scales 
Since its emergence, wavelet transforms have been used in many reservoir engineering 
applications showing important potentials for multiscale parameter estimation (Lu and Horne, 
2000; Sahimi et al., 2005).   The linear property of the wavelet transform preserves the singular 
values when applied to each eigenimage, that is, if 2W  is the 2-D wavelet transform then  

                                                   { } { }2 2
1

.
r

i i
i

W Y W Yσ
=

=∑                                               (3) 

Moreover, since each eigenimage is expressed as the outer product of left and right 
singular vectors we can expressed the 2-D wavelet transformation in terms of the 1-D wavelet 
transform 1W , 

                                          { } { }( ) { }( )2 1 1
1

.
r

t

i i i
i

W Y W u W vσ
=

=∑                                      (4) 

 
This fact is not only computational convenient for the application of the wavelet 

transform itself. The possibility of leaving the singular values unaffected allows for performing 
estimations at different resolution levels when successively wavelet transforms are applied in 
each resulting eigenimage. This means that the coarser the eigenimage the higher the features 
that we may be able to resolve from the original permeability image. In other words, the 
parameter space generally shrinks towards higher singular values as we perform further 
upscaling. We will see that this has important implications not only on the reduction of floating 
point operations but also on the way that the optimization should be conducted to further refine 
the estimation.  

  
2.4. Parameterization 
The parameterization consist of solving (1) in terms of the singular values .is That is, we 

construct the matrix operator ( )nh nv rR ´Î g¡  that depends on the (upscaled)  singular vectors 
 and  i iu v   such that 

                                                         ( )expm Rm=
)

,                                                    (5) 
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 where ( )1 2, , ,
t

rm s s s=
)

K   and  m  has the permeability field ordered in vector form. It is worth 

to add, that the number of singular values to estimate is generally smaller than .r   
 
2.5. Stochastic Optimization and Sampling 
The SPSA algorithm is a viable global optimization approach when it is unfeasible to compute 
function gradients (Spall, 2003). SPSA performs random simultaneous perturbations of all model 
parameters to generate a descent direction. The SPSA for equation (5) is defined by the 
following recursion for the parameter vector  m

)
 

                                            ( )1 ,k k k k km m a g m+ = −) ) )
                                                    (6) 

where ak is a positive scalar that monotonically decreases with respect to k, and ( )k kg m
)

 is a 

stochastic approximation to the gradient given by a simultaneous perturbation of all elements of 

km
)

, that is, 

                      ( ) ( ) ( ) 11
,

2k k k k k k k k kg m m c m c −= Φ + Δ −Φ − Δ Δ⎡ ⎤⎣ ⎦
) ) )

                                 (7) 

where ck is also a positive scalar that monotonically decreases with respect to k, Δk  is a vector 

consisting of {–1,1} values randomly generated with a Bernoulli distribution and 1−Δk stands for 

the component-wise reciprocal of each of the entries of Δk . The parameters ak and ck form a 

monotonically decreasing sequences with respect to k that are chosen to ensure asymptotic 
convergence of the algorithm (for more details and pointers on SPSA see Spall, 2003). 
 
2.6 Metamodeling and Incremental Refinement of the Parameter Estimation 
Construction of the metamodel involves a judicious experimental design (i.e., a fairly 
representative sampling strategy), a parameter space reduction and a rigorous validation 
procedure to assess its accuracy. Their construction is usually done through multidimensional 
regression analysis, radial basis functions (e.g., krigging) or neural networks (Keane and Nair, 
2005). Metamodeling allows us for mitigating and focusing the simulation effort in those regions 
of the parameter space that better define the physical behavior of the reservoir. We have already 
reported on the use of artificial neural networks (ANN) to increase the accuracy of the estimation 
provided by the SPSA algorithm (Banchs et al., 2006; Klie et al., 2006)  
 

The metamodel is initially built by means of the points densely sampled by the SPSA 
algorithm on a given region (“hot spot”) of the parameter space. The quality of the metamodel is 
gradually improved by increasing the sampling points as the metamodel estimations are 
compared against those produced by the simulator. The analytical structure of the metamodel 
allows to perform these estimations with a local optimization method (such as Newton or 
nonlinear conjugate gradient iteration) that efficiently finds an optimum solution in a few 
number of steps. The sampling is stopped when the metamodel is capable to reproduce the 
reservoir simulator response within a predefined tolerance.  

 
The optimal solution computed at a given resolution level is used as an initial point for 

the next higher resolution level after applying the inverse wavelet transform. The procedure is 
repeated with a decreasing number of function evaluations as the grid resolution level is 
increased.  
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3. Numerical Results 
 
The permeability field used for the simulations is shown in Figure 1. It consists of a cross-
sectional reservoir model with 1x100x20=2000 gridblocks. The size of each grid block is 
25x25x2.5 ft3. We considered an oil-water model system with a water injection well located at 
the leftmost side of the model and a production well at the opposite side. To perform the 
permeability estimation, the production life of the reservoir is analyzed on a span of  1000 days.  

 

Figure 1. Permeability field used in the simulations. 
 
 In order to obtain an initial representation of the reservoir, we perturbed different scales 
(eigenimages) of the original reservoir model by a 10% of Gaussian noise. In Figure 2 we show 
the first four eigenimages resulting from the decomposing the log of the permeability field with 
SVD (the remaining 16 are not shown). From this figure it is possible to observe the relevant 
features captured by the different terms in the expansion. Notice for example that the first 
eigenimage at the top left corner represents the broader features of the permeability field; the 
next images capture details that correspond to finer scales. We found that only 8 eigenimages 
where sufficient to reproduce the most  relevant scales of the perturbed permeability field. 
 
 Once the basis of eigenimages has been computed, the problem reduces to determine the 
optimal set of weights iσ  that minimize the objective function. To that end, we chose an initial 

guess for the weights that yield the image shown in figure 3. Despite the fact that the weights do 
not seem to be very far form the actual values, the image produced is very different from the 
image corresponding to the real permeability field. Next, we use the SPSA algorithm to compute 
the optimal weights. We compare two different procedures that we distinguish below as case 1 
and case 2. 
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Figure 2. First four eigenimages (ordered from top left to right bottom) corresponding to the log 
of the permeability field shown in Figure 1. 
 

 

 
Figure 3. Initial guess permeability (top) and solution for case 1 (bottom). 

 
 Case 1. In this case the estimation is performed starting with one term in the expansion to 
obtain an estimate for 1σ  along a fixed number of 10 SPSA iterations after which a second term 

is added in a way that the value for 1σ  continues to be improved and 2σ  is estimated. The 

procedure is repeated until the desired number of terms in the expansion has been added and the 
corresponding weights are satisfactorily estimated within a given tolerance. Figure 4 shows the 
evolution of the objective function throughout the whole process, the corresponding first seven 
σ  values in the expansion are shown in table 1. From Figure 4 we can obtain an idea of the 
relative sensitivity of the objective function to the different weights in the expansion. The 
procedure described took a total of 140 function evaluations (simulations) corresponding to 
approximately 35 hours of CPU time. 
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 Case 2. With the objective to reduce the CPU time involved in the estimation procedure, 
we introduce a multiscale algorithm based on the coarsening of the SVD expansion using a 
wavelet transformation as it has been discussed above to obtain a 1x25x5 upscaled system. We 
then start with an initial guess at the coarse level that included only two terms with 1 100σ = and 

2 10σ = .  

 
 After 100 SPSA iterations at this coarse level we obtained optimal values of 1 232σ =  and 

2 40σ = . These values are used as an initial guess of the permeability field at the fine level. We 

start with a three-term expansion to adjust 1σ and 2σ  and get an estimation for 3σ  and, as before, 

we added a new term every 10 SPSA iterations. 

 
Figure 4. Behavior of the objective function as the parameter estimation proceeds. 

 

 
Figure 5. Permeability field obtained after the procedure described in case 2. 

  
 The behavior of the objective function is shown in Figure 4 where it is clear the 
improvement with respect to case 1. Figure 5 shows the resulting estimated permeability field. It 
clearly shows a better agreement with the reference permeability field than that obtained with 
case 1. Table 1 shows the eigenimage weights along with the number of function evaluations and 
CPU time. We can additionally conclude that case 2 did not only lead to a better estimation than 
case 1, but also in a more efficient fashion. The time of 25h does not include about 1h of CPU 
time involving approximately 200 fast function evaluations in the coarse space.  
 

Table 1. Parameter estimation based on the cases 1 and 2 described in the text. 
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σ 1 2 3 4 5 6 7 
Best 235 35 14 10 6.2 4.4 3.8 Eval. CPU 

Case 1 243 20.7 14.2 11.8 5.62 6.38 5.09 140 35 h 

Case 2 242 44 16.3 11.75 5.44 6.24 5.03 100 25 h 

 

6. Conclusions 

       We can draw the following conclusions from the present work: 

 
8. The SVD and wavelet transform parameterization of spatial coefficients into eigenimages of 

different level resolution show important potentials to reduce the over-parameterization (ill-
posedness) and cost  associated with the history matching problem.  

 
9.  The eigenimage basis can accommodate different levels of resolutions for which we can 

associate different degrees of geological knowledge or uncertainty. Thus, the parameter 
estimation can be incrementally conducted in respond to this degree of knowledge.  

 
10.  We realized that the SPSA algorithm is efficient and provides high flexibility in 

implementing different parameterizations and functional transformations to the original 
parameter space without modifications to the original simulation model.   

 
  Ongoing efforts are currently focused on generating a family of different eigeimages 
basis (via statistical realizations) to both incorporate uncertainty and a wider range of possible 
estimations. This will allow us for obtaining a better reservoir characterization in the absence or 
event of poor a priori models.  
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