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Abstract

Enterprise level logistics and prognostics and health management (PHM) modeling efforts use
reliability focused failure distributions to characterize the probability of failure over the lifetime
of a component. This research characterized the Sandia National Laboratories’ developed
combined lifecycle (CMBL) distribution and explored methods for updating this distribution as
systems age and new failure data becomes available. The initial results obtained in applying a
Bayesian sequential updating methodology to the CMBL distribution shows promise. This
research also resulted in the development of a closed-form full life cycle (CFLC) distribution
similar to the CMBL distribution but with slightly different, yet commonly recognized, input
parameters. Further research is warranted to provide additional theoretical validation of the
distributions, complete the updating methods for the CMBL distribution, evaluate a Bayesian
updating methodology for the CFLC distribution, and determine which updating methods would
be most appropriate for enterprise level logistics and PHM modeling.
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1. INTRODUCTION

One of the primary purposes of current enterprise level modeling efforts is to use
component/system reliability estimates along with inventory levels, maintenance and inspection
schedules, and operational requirements to optimize supply/repair chain processes. In addition,
prognostic and health management (PHM) modeling uses component/system reliability estimates
as a baseline from which the data from sensors and maintenance events along with data fusion
techniques can determine component health trends. These component health trends may help
predict failure far enough in advance to be able to modify operations and maintenance schedules
for the purposes of maximizing system availability or minimizing maintenance and spares costs.
In either case, once a component’s lifecycle in terms of failure probability is characterized, a
methodology for how to update that characterization based on the availability of new data is
required.

Reliability models depend on failure distributions to characterize the probability of failure over
the lifetime of a component. Many types of components typically will have a bathtub-shaped
failure rate life distribution. This distribution is commonly characterized by a decreasing failure
rate during the early portion of a component’s life, a constant failure rate during the useful
portion of its life, and an increasing failure rate during the wear-out portion of its life, as shown
in Figure 1. During the early portion of its life, failures are typically caused by manufacturing
defects. During the useful portion of its life, component failures are usually caused by chance,
perhaps as a result of overstress or a shock to the system. The wear-out portion of its life is
characterized by wear or accumulated damage that exceeds allowable limits for normal operation
[1]. In many supply/repair models, the failure rate distributions for components model only the
useful life period, typically with a constant failure rate that does not take into account the aging
process and the wear out problems that will occur [2]. However, when modeling at the unit or
enterprise level, being able to use the failure characteristics across a component’s lifetime
provides greater accuracy and usefulness of logistics models.

Bathtub Curve
A
Failure .
Rate
nfan ! Random . Wear-out
Mortality (Useful Life) ' (End of Life)

Figure 1. The Bathtub Curve [3].

Knowing how the failure rate will change over time is also important to being able to predict a
failure of an individual component early enough to be able to modify operations and
maintenance scheduled in order to maximize availability. This capability is commonly termed



PHM. The prognostic capability relies on knowing how an individual component’s failure rate
deviates from the “average” or expected component’s failure rate distribution. The change can
be analyzed to determine or predict the component’s remaining useful life. This prognostic
capability relies on sensors operating in real-time and/or inspections to detect changes in a
component’s health, and data fusion algorithms that use that information to predict the change in
time-to-failure (TTF) or remaining useful life. Whether to optimize the supply and repair chain
process or to implement an effective PHM program, the accurate portrayal of a component’s
failure distribution across its entire lifecycle is critical to maximizing a system’s availability
while minimizing parts and maintenance costs.

The goal of this Laboratory Directed Research and Development (LDRD) effort was to better
understand how to correctly update TTF distributions, based initially on sparse data, data from
similar components, and expert opinion, with new observations and sensor data. The remainder
of this paper will discuss updating bathtub shaped TTF distributions. More specifically,
Section 2 will describe the Sandia developed combined lifecycle (CMBL) distribution used for
enterprise level logistics and PHM component reliability representation. Section 3 will describe
the Bayesian sequential updating approach that treated each section of the CMBL distribution
separately. Section 4 presents the development of a closed form solution to a slight variation of
the CMBL distribution. Finally, Section 5 summarizes the results and suggests areas for further
exploration.
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2. COMBINED LIFECYCLE (CMBL) DISTRIBUTION

2.1. Background

Early in a system’s life cycle, reliability data may not be abundant, as opposed to later in the
system’s lifecycle, where operational failure data becomes available. Where data is not
abundant, expert opinion is solicited. Sometimes data from similar components can be used but
must be updated with expert opinion. The expert opinion may come from engineers/technicians
who are typically not statisticians or reliability experts so it helps immensely to be able to elicit
the necessary information using more common terms and concepts, i.e., how long is the burn-in
phase, what percent of total component failures are a result of burn-in, what is the mean life
expectancy of the component given it makes it to its wear-out phase, etc. Trying to use common
failure distributions, such as combinations of the Gamma and/or Weibull distributions, may be
quite involved since converting expert opinion to a parameter value would most likely require
several iterative steps [4]. Despite considerable published works in bathtub shaped failure
distributions, few practical models are available [5].

2.2. Howltls Used Today

The CMBL distribution, developed by Dr. James E. Campbell, Sandia National Laboratories and
Dr. Dennis Longsine, Intera Corporation, is used in two key simulations, the System of Systems
Analysis Toolset (SOSAT) and the Real Time Consequence Engine (RTCE). Both simulations
are in continuing development at Sandia National Laboratories and use the CMBL distribution as
one of six different distributions that can be used to model component TTF. Other logistics
simulations such as the Support Enterprise Model (SEM), a multi-echelon supply and repair
chain optimization model currently being used to support multimillion dollar business case
decisions for the Joint Strike Fighter, may use the CMBL distribution in the future. Hence, there
is a need to evaluate the CMBL distribution’s mathematical properties and methodologies to
update the distribution as new data becomes available.

2.2.1. System of Systems Analysis Toolset (SOSAT)

The primary focus of SoSAT is to support system of systems (SoS) analyses for the U. S.
Army’s Future Combat System (FCS) sustainability requirements, which include maximizing
available warfighting capabilities while reducing logistics footprint and maintenance personnel
[6]. SoSAT has a multi-system time simulation capability that uses State Model Objects (SMO)
to enable a system, its elements, and its functionality to be encapsulated for use in the simulation
(Figure 2). Every system in the simulation is represented by a SMO which models the system’s
functionality. Controlling simulation software provides needed information on environmental
conditions, terrain, use conditions, supply network information, etc. A scenario model describes
the detailed scenarios that the systems will follow during the simulation. A combat damage
model provides a mechanism to simulate the effects of combat damage to the individual system
primary elements or damage that completely disables the system. A supplies and services model
provides a means for spare parts and consumables to move from system to system in the
simulation and makes maintenance services available to systems requiring repairs [7].

11
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Figure 2. Multi-system Simulation Concept [7].
2.2.2. Real Time Consequence Engine

The purpose of the Real Time Consequence Engine (RTCE) is to conduct consequence analysis
based on updated component failure information made available by prognostic data fusion
schemes. More specifically, the RTCE will predict in real-time the effect that operational
strategies, as well as repair/replace/inspect/wait strategies, will have on the modeled system if
that action is taken at the time changes in the reliability of the system are detected. This
consequence analysis part of the prognostic problem must be performed in such a way that the
expected benefit from performing each alternative operational/maintenance strategy can be
calculated. Then, given a set of alternatives each with an expected cost/benefit, the alternative
(or subset of alternatives) can be chosen that provides the optimal benefit, such as maximizing
system availability while minimizing cost.

The RTCE is a forward looking simulation that can help analyze the consequences of various
operational and maintenance strategies once a change in a component’s remaining useful life or
time-to-failure has been detected (Figure 3). The RTCE takes the system health predictions from
prognostic analysis methods and develops operational projections into the future, i.e., what will
be the overall impact on the system if a certain impending failure mitigation action is taken.
Simulation is used to model the long-term impact of possible maintenance/inspection strategies
for each failure mode on overall system performance and cost.

The simulation mimics the reliability behavior of equipment in terms of simulated equipment
failures, repairs, scheduled maintenance, and inspections. The simulation is based on user-
definable maintenance and inspection schedules and a reliability model with time-to-failure and
time-to-repair distributions for all failure modes. A spares model is included since the
availability of spares may be a major factor in decision-making when a pending failure is
identified. By running repeated simulations, the RTCE can be used to analyze possible
scenarios accounting for projected TTF, parts availability, planned equipment use schedule, and

12



mission profiles. Performance metrics such as mean time between failures (MTBF), mean time
to repair (MTTR), availability, maintenance cost, downtime cost, etc., are calculated. Thus, by
running the simulation with different operational settings and maintenance schedules, it can be
used to examine the consequences of alternative equipment use and maintenance scenarios [8].

Updated Time-to-Failure (TTF)
Distribution

] Operational | N
Maintenance
Seonarios

fit)
g . s
Consequence "9
Analysis |

Currani 2000 A Qptimal
Time — Ops | Maintenance
Tima to Fallure (hours) ' Recommandations

HE JEREE) R !

Figure 3. Real-Time Consequence Engine.

2.3. Mathematical Formulation

The CMBL distribution is a sectional model that assumes a linearly declining failure rate during
infant mortality, a constant failure rate during the random failure section or useful life, and a
normally distributed TTF during wear-out in the end of life phase (Figure 4). The distribution is
characterized by five parameters that are:

The mean of the normally distributed portion of the TTF distribution.

The standard deviation of the normally distributed portion of the TTF distribution.
The probability that the component will fail during burn-in.

The duration of the burn-in portion of the distribution.

The probability that failure will occur randomly after burn-in.

L T N R ]
P H H i

This distribution as formulated must include the random and normal wear-out TTF portions, but
can exclude the infant mortality portion [9].

13
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Figure 4. CMBL PDF and Time Dependent Failure Rate Distribution

The explicit form of the distribution is:
Ae 0<t<t, A,=(mt+b

f(x)= Ae t, St<t, 1)
. A —er?(t—u)2

e <t <
o2

where
u = mean of the normally distributed portion of the TTF distribution.
o = standard deviation of the normally distributed portion of the TTF distribution.
Aq= The failure rate for the linearly decreasing failure rate portion
Ac = The failure rate for the constant failure rate portion.
t©i= burn-in duration.
1, = transition from constant failure rate to the normal TTF portion.
A = area multiplier for the truncated normal portion.
F| = fraction of the distribution area for the infant mortality portion.
F, = fraction of the distribution area for the constant failure rate portion.

The unknowns in the above parameters are A, A, Ag, and f,. Since this is a pdf, the total area
under the distribution must be 1 such that:
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1-F@t,)=1-K-F, = F@)=F+F @)

However, since A, and ¢, are not known, F{(¢,) is also not known. A factor 4 is applied to allow a
difference between each side of Equation (1) such that:

1-F, -F,

A1-F(t,))=1-F,-F, = A=1_F%)

€))

where F(#,) is the area under the normal from o to #,. The area under the constant failure rate
portion of the TTF is F, such that:

5]
F, = j}tce‘ﬂ”’dt =M _egTh" 4)
4
Solving Equation (3) for , results in
_ ~Ah
‘= ln(e ) F2) 5)

(4

Ensuring that the TTF be continuous as it transitions from the constant failure rate portion to the
normally distributed portion requires:

A _(T 2 _;1)2 AT
20 —_ “hel2
e =Ae 6
ov2rx ‘
An iteration scheme is set up that increments the A, and adjusts 4 and ¢, appropriately. The
scheme uses the current value of A in Equation (5) to get 2, then #, is substituted into Equation

(3) to get A. The new values of 4, t, and A, are inserted into Equation (6) and this process
continues until Equation (6) is essentially true while ensuring that f{¢) integrates to 1.

The infant mortality portion of the PDF is characterized by a linearly decreasing failure rate. In
general, the failure rate from time 0 to ¢ is:

2,(t)=mt+b 7)

and modeling the infant mortality portion of the CMBL distribution as an exponential
distribution implies:

f@)=2e™ or  f(t)=(mt+bye ™" @®)

Ensuring that the TTF is continuous as it transitions from the linearly decreasing failure rate
portion to the constant failure rate portion requires:

A,(t)=mt +b=12, 9)
Also,
—Tl (mt+b)dr - ﬂﬁ#)tl
F(tl)=1—eﬂI =1—e(2 ] (10)
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Equation (9) is used to solve for » and substitute into (10) to get m. At t = f, the linearly
declining failure rate must equal the constant failure rate A..

b=A4,-mt, (11)

Also at ¢, the failure probability must be F(¢;). From Equation (11), this gives
‘[%‘2*'(% —mt; Y J

F(t)=1-e (12)

and
2

ln(l—f,)=%—lct (13)
and

- _ 2ln(1- j:1)+ At (14)

4

Once the CMBL distribution is characterized using scarce data, data from similar components,
and expert opinion, the next step is to update it as new data from the components becomes
available. As the system being modeled undergoes extensive testing and is used under normal
operations, data on the number of failures, mean time to failure (MTTF), mean time between
failures (MTBF), mean time to repair (MTTR), etc., becomes available. It is appropriate
throughout the modeling process to update the parameters of the original CMBL distribution in
some fashion to improve its accuracy. Updating the distribution should occur throughout a
component’s lifecycle since improvements in the component and changes in its use may alter its
inherent reliability.

In addition, the resulting updated failure distribution must be in a usable format for the
supply/repair chain or PHM model for which it resides since the resulting distribution will be fed
back into the supply/repair chain or PHM model. An empirical distribution is possible, but it
would be better to have the updated distribution be the same as the originating distribution.
However, in some models it may not make much difference as long as the resulting distribution
can be easily updated as new data becomes available. Being able to transition the CMBL
distribution to a more common form such as a single commonly used distribution would most
likely not work. Transition from the CMBL distribution to a bathtub distribution modeled by
two or more distributions such as three Weibull distributions (one for each section) would
present even greater challenges. One approach to updating the CMBL distribution with the
intent to obtain the parameters of the original distribution is presented in Section 3.

To help in the evaluation of the CMBL distribution, a CMBL-Distribution Grapher written in
Visual Basic.NET (VB.NET) model was created. This model provided the capability to view the
resultant distribution based on the user provided five input parameters as described above. The
CMBL-Distribution Grapher also provided data streams from the distribution for checking
convergence when evaluating the Bayesian updating by section method. Finally, the CMBL-
Distribution Grapher provided an automated way to evaluate the limits of the distribution.
Additional details of the CMBL-Distribution Grapher can be found in Appendix A.
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3. BAYESIAN UPDATING BY SECTION APPROACH

3.1. Introduction

The approach to updating the CMBL distribution, described in the following paragraphs,
assumed that each section of this piecewise continuous distribution, infant mortality, random,
and wear-out sections, could be updated independently of the other. This approach assumed an
appropriate conjugate prior depending upon where the new data occurred, i.e., 0 to t;, t; to to, and
t2 to infinity, where the new data has the same underlying distribution as the section it occurred
in, and used a Bayesian updating methodology to determine the posterior distribution. This
posterior distribution, or an estimate of the posterior distribution, was used as the subsequent
prior as new failures occur in each section. For example, a Gamma (a.,3) was used as the prior
distribution in the random (constant failure rate) section of the CMBL distribution and the new
data was assumed to follow an Exponential distribution with a constant failure rate. To
determine the resulting posterior distribution, a modified iterative scheme determined the new
constant failure rate A, and subsequently the new parameters of the CMBL distribution, which
are then used as the next prior distribution in the sequential updating scheme.

3.2. Approach

This method determined if the CMBL distribution could converge to the distribution of the data
through a section by section Bayesian updating methodology. As mentioned earlier, each new
data point was assumed to have the same underlying failure distribution as the section of the
CMBL distribution where it occurred. Several additional simplifying assumptions were also
made. Only the random and wear-out portions of the bathtub curve were evaluated specifically,
although the infant mortality portion was evaluated briefly in the process to determine if there
would be any unusual behavior in the transition region around #. It was assumed that with a
Bayesian updating methodology, the CMBL distribution would be updated one data point at a
time, thus the reference to sequential updating. Since the new data created from different input
parameters (or actual failure occurrences in the field) can be quite extreme, especially with
regard to the Exponential distribution, a weighting scheme was introduced to “smooth” the
convergence process. Finally, the standard deviation for the data distribution in the wear-out
portion of the distribution was assumed to be known and held constant. The validation of this
approach is broken down into several steps as outlined in the following paragraphs.

3.2.1. Step 1

The first step was to evaluate the process for updating the CMBL distribution with data falling
within the wear-out section of the distribution. This was a relatively straightforward process. In
a Bayesian updating methodology, the conjugate prior is a Normal (¥, o). Using a
Normal (#cmpL, ocmat) for the prior and a Normal (1, ) for the single new data point results in
a Normal (%, 1) where
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O o
y =ML (15)
)

This posterior Normal (u;, 1) distribution becomes the next prior distribution, and this updating
process is repeated for each new data point. As expected, this process results in the
Normal (ucmpL, ScmsL) converging to the Normal (g4, 6) reasonably well.

3.2.2. Step 2

The second step was to evaluate the Bayesian updating process for the data points that fall within
the random failure section of the bathtub distribution. The only user input available for this
section is >, the fraction of failures occurring in the random failure portion, but the resulting A,
the failure rate for the constant failure rate portion, is determined within the iterative process of
the CMBL distribution. Since the data occurring in the random section is being modeled by an
Exponential (o) where A is considered a random variable, a typical conjugate prior used in many
reliability applications is the Gamma (o, $). Since the initial CMBL estimate and subsequent
priors are being taken as a single instance of failure, the Bayesian prior is the Gamma (1, B),
which is essentially an Exponential (§) as given by:

1
gdla,p)= A (16)
Ha)p
wherea =1 => g(l:l,ﬂ):%e‘“” 17
so A ~ Expon(f). This results in a posterior distribution that is:
1 la_le—l/ﬂle_h
I'(a)B”
gltap)=—2F (18)
J- @l AP g N
I(a)B®
which becomes:
giit,a,p)= ! 7 AgHE e IB - g < <0 . (19)
with an expected value of:
B ta, py=LCD o 20)

Pt+1

In this case, assuming successive single data point Bayesian updating, the result is a
Gamma (2, Bo/fot1t1). The resulting E (41,2, B) is the new estimate for A, which is used

in the CMBL iterative process to calculate a new F,. This change in F3 is then used with the

Gamma
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other unchanged parameters to the CMBL distribution, which now becomes the prior distribution
for the next data update. Using this estimate alone did not provide accurate results when using
the successive single data point updating methodology. This shortfall became apparent when the
data represented the original distribution and the sequential updating process resulted in a mean
that was not reasonably close to the expected mean. However, when Equation (20) was
multiplied by a factor of approximately 0.63 and data represented the original distribution
derived from the input parameters, the deviation from the expected mean essentially disappeared.
Further evaluation of the 0.63 factor is presented in a subsequent section.

3.2.3. Step 3

The third step examined updating both the random and wear-out section of the CMBL
distribution simultaneously. The primary goal was to determine if the resulting Bayesian
updating scheme for both sections simultaneously resulted in a convergence to the distribution of
the data. Particular attention was paid to the transition region around #, since this requires an
iterative scheme to ensure the failure distribution of the two sections remain essentially
continuous.

3.3. Wearout Section Updating

Several evaluation runs (using only the random and wear-out portions of the CMBL distribution)
were made to determine the characteristics of convergence to the distribution of the data. As an
example, the Baseline (u = 200), u = 250, and p = 150 CMBL distribution sets of parameters are
shown in Table 1. The baseline distribution provides the starting or initial prior distribution.
Using data from the p = 250 set of parameters, which changes p only, focuses the convergence
on updating the normal portion of the CMBL distribution although the random section has to
adjust as well. Using data generated from the p = 150 set of parameters, which again changes p
only, focuses the convergence on updating the random portion of the CMBL distribution
although the normal section has to adjust appropriately.

Table 1. Baseline, p = 250, and u = 150 Input Parameters

Baseline | p =250 p=150
200 250 150
20 20 20
F 0 0 0
F, 2 2 2
t 0 0 0

3.3.1. Baseline Input Parameters

To give an initial validation of the updating approach, the Baseline input parameters for the
CMBL distribution were used as prior information and sequentially updated with data that
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represented the same Baseline distribution. The results of each update were used as the prior
information for the next update. As mentioned earlier, a weighting scheme, that essentially
provided a user defined fraction of the change between the old mean and the new data point, was
used to moderate extreme new data values. Convergence to the distribution of the data generated
from the Baseline input parameters was consistent for the entire 1000 iterations as shown in
Figure 5. In converging from a mean of 200 to the data mean of 200 (actually the mean
converged to 200.4 if the last 500 iterations are averaged), the 1> also converged to the value of
155, very close to the expected value of 154 (based on an average of the last 500 iterations. A
moving average of the data, averaged over six data points, shows the variability in the data
representing the two sections of the bathtub distribution, random and wear-out.

Mean=200, StDev=20, Fy=0, t;=0, F;=.2 |

250

1 |
|
200 Mﬂ&waw\wwmwmw*ﬂm |

150 [ITNR A TNy AR LA et Pt s prti T e e s )
5
=
100
|
% |
: el |
: 501 1001

teration

[—Mean — T2  Mwg Aw ()| I

Figure 5. Convergence to Baseline Data
3.3.2. u= 250 Input Parameters

Starting with the baseline input parameters for the CMBL distribution, successive CMBL
distributions with their updated parameters were created using the new data (failure times) from
a CMBL distribution with the p = 250 input parameters. Convergence to the distribution of the
data generated from the p = 250 input parameters was relatively consistent and quick. In
converging from a mean of 200 to a mean of 250, the , also converged to the anticipated value
of 202, from the starting value of 154. Convergence appears to occur within about 200
iterations, as shown in Figure 6. A moving average of the data, averaged over six data points,
shows the variability in the data representing the two sections of the bathtub distribution, random
and wear-out.
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Mean=250, StDev=20, F=0, t,=0, F;=.2

1 501 1001
Reration

|—Mean — T2 Mwng Awe (6) |

Figure 6. Convergence to u = 250 CMBL Data
3.3.3. u =150 Input Parameters

Convergence to the distribution of the data generated from the p = 150 input parameters was
relatively consistent but not as quick as with the p = 250 input parameters. It took about 250
iterations to reach near the new mean of 150, as shown in Figure 7. The ; converged to the
anticipated value of 107. Again, a moving average of the data, averaged over six data points,
shows the variability in the data representing the two sections of the bathtub distribution, random
and wear-out.
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Mean=150, StDev=20, Fy=0, =0, F;=2

1 501 1001
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Figure 7. Convergence to u =150 CMBL Data

A comparison of the results of the Baseline, n = 250, and p = 150 parameters is shown in Figure
8. The comparison shows an appropriate shift in the mean of the distribution while an
appropriate shift in A. occurs in response to the shift in the mean. For example, when the mean
of the distribution of the data causes a shift from 200 to 150, the failure rate A. of the random
section of the CMBL distribution increases to ensure /> remains at constant at 0.2. The opposite
occurs when the mean of the distribution of the data shifts from 200 to 250, as expected. It is
important to note that this approach works in this application only because of the iteration
scheme calculations that increment the . and adjusts A and ; appropriately to both ensure
virtual continuity and guarantee that the probability distribution integrates to one.

CMEL Distribution Comparisons

ouotd =
0012 §

|—200 1m—ma;i

Figure 8. Baseline, p = 250, and u = 150 Comparisons

3.3. Random Section Updating

22



The next step in the evaluation of this approach was to hold the mean constant and vary F3, the
fraction of failures occurring in the random failure section. This step also helped determine the
underlying need for the .63 factor discussed earlier. In this step, attempts were made to update
the Baseline CMBL distribution with data that had a change only in F>, the fraction of failures
due to random failure. Unfortunately, this step was never completed successfully, either the
updating scheme results caused the calculation of the CMBL distribution to “blow up” or the
posterior distribution never converged to the distribution of the data, where either F>=.1, or F5=.3
as shown in Table 2.

Table 2. Baseline, F,=.1, and F,=.3 Input Parameters

Baseline Fo=.1 F,=.3

u 200 | 200 200
20 20 20
Fi| 0 0 0
Fol 2 1 3
t; 0 0 0

The primary reason for the problem in this area stemmed from the fact that the data being
updated in the random section of the CMBL distribution was in effect being applied to a
truncated Exponential distribution with limits 0 < ¢ < 1, versus a full Exponential distribution
with limits 0 <7 < 0. More specifically, the A= .00145 in this example represented a MTBF of
about 690 with respect to the full Exponential distribution. Since the mean of the data for this
example was 200, with a standard deviation of 20, the mean of the random portion was well
outside virtually all occurrences of failure. In addition, the updating scheme allowed only the
data occurring within the random portion of the distribution (any data values < £,) to be updated
using the random updating process described earlier. Any data occurring in the wear-out section
of the distribution would be greater in magnitude than that in the random section. As a result,
only the smaller TTFs would be updated in the random section. Since the updating scheme in
the random section used Equation (20), which is essentially an average of the previous failure
rate and the inverse of the new data, the resultant A, would relatively quickly be driven so high
that the CMBL distribution calculation limitations would be exceeded, i.e., F> would become too
large. The approximate 0.63 factor in this example served to keep the A in a range that allowed
the updating procedure to run through to convergence and somewhat beyond.

Several unsuccessful approaches to remedy this problem were attempted. First, the data
occurring in the random section of the CMBL distribution during the updating process was
transformed from the truncated Exponential distribution with the new data value and the old #,
back to a full Exponential distribution with a range of 0 < ¢ <oo. The resultant transformed new
data point then was more appropriately exponentially distributed with a A= 690 (in this example)
as opposed to being less than #,= ~ 154. However, the probability distribution of the random
section is relatively flat and as a result, the resultant transformed data was skewed to the right as
one would expect, but this still caused the resultant CMBL distribution calculation limitations to
be exceeded.
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Realizing that the probability distribution in the random section was relatively flat, a second
attempt took the proportion of the new data point ¢ to the range from 0 < ¢ < t,, and applied that
proportion to the old A, with a range 0 < ¢ < o. More specifically, this approach assumed the
data falling into the random section of the distribution was uniformly distributed over the range 0
<t < t, and based on the mean of that interval, transformed the data to a uniformly distributed
interval with a mean equal to the inverse of A.. This transformation appeared to work better than
previous attempts although a measure of skewness still occurred. Typically a larger data set
could be evaluated before the limits of the CMBL distribution calculations were exceeded. Even
with the larger amount of data that could be updated, convergence to the distribution of the data
could not be confirmed.

3.4. Summary

Additional work is needed on this approach that uses a Bayesian updating methodology while
treating each section of the CMBL distribution separately. The iterative process inherent in the
CMBL distribution calculations allow updating of the wear-out section of the distribution while
keeping F, constant. In this case, convergence to the distribution of the data was shown to be
quick; quick enough for use in supporting enterprise level modeling where field data is used to
update the original CMBL parameter estimates.

However, the results of trying to update the random section of the CMBL distribution while
keeping the mean of the wear-out section constant were not as successful. The transformation
process which assumes the data occurring in the random section of the distribution is uniformly
distributed showed promise but additional research is needed. An extension of this approach
may be to reverse this transformation process, determine the truncated A, update the truncated A
with the data, then once again reverse the transformation back to a full Exponential distribution
with a range of 0 < ¢ < oo, then determine F in preparation for the next updating event. In this
case, determining the input parameters may require considerable reverse engineering of the
iteration procedure.
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4. CLOSED-FORM FULL LIFE-CYCLE SOLUTION
4.1. Background & Motivation

Upon review of the piecewise-defined CMBL distribution, it was immediately apparent that this
distribution had the right qualities to model the probability of failure throughout the three phases
of a part’s life cycle, namely, infant mortality, random failure, and wear-out. However, the
piecewise distribution has a few drawbacks that perhaps limit its utility. First, several of the five
parameters required may not be readily available or directly estimable. For example, the CMBL
distribution uses F3, the fraction of failures due to random failure. Instead of using F3, A, may be
more readily identifiable and available since most logistic/supply systems and experts use this
constant failure rate for component lifetime estimations, even though this rate may inadvertently
include portions of the infant mortality and wear-out failures. Second, the CMBL distribution
allows no overlapping of the three sections of the lifecycle of the component, which theoretically
is not correct although for the enterprise level models and PHM calculations, this may not be
important. Third, the computation of internal parameters to model the probability distribution
(PDF) requires numerical solving and is somewhat computationally intense. Fourth, the
piecewise distribution is not theoretically continuous, although it can be considered
approximately continuous for computational purposes. Finally, and most importantly, updating
the parameters of the piecewise distribution through Bayesian methods raises difficult questions
over how to proceed correctly, as demonstrated in the previous section.

4.2. Mathematical Formulation
4.2.1. Introduction

The Closed-form Full Life-Cycle (CFLC) probability density function is a function which
represents failure probability density throughout the lifetime of a part. As the name indicates,
the CFLC has a “closed-form” or “analytic” solution; it can be written in terms of known
functions and constants. The CFLC combines the same three sections of the CMBL distribution,
but has a slight change in its parameterization. The five intuitive and directly estimable input
parameters are shown in Table 3. It is differentiable everywhere on the interval [0,0), and
integrates to unity on the same interval. The following sections provide the mathematical
derivation of the CDF and PDF and describe the approach taken for parameter estimation.

Table 3. CFLC Distribution Parameter Summary

Parameter Meaning Valid Range
u* The mean of the wear-out portion of the distribution (0,00)
o The standard deviation of the wear-out portion (0,00)
A The failure rate due to random failures (0,0)
A The failure rate due to manufacturing or installation defects; (0,0)

a positive real

o The proportion of items that have a manufacturing or [0,1]
installation defect that would eventually result in a failure if
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l | not precluded by another type of failure event. | |
* ushould be at least 3 o, or the normal distribution is a poor representation of wear-out. In

that case, a lognormal distribution may be more appropriate.

4.2.2. Mathematical Derivation

The derivation of the CFLC closed form PDF begins with several assumptions about the subject
entity conveniently called a “part”.

1. A known proportion of parts o will have one or more defect(s) that subject them to infant
mortality related failures which may occur at any time, with a known constant failure rate
A. In this case, o is equivalent to F; from the CMBL distribution.

2. Parts can fail randomly at any time, also with a known constant failure rate A. In this
case, A is equivalent to A, in the CMBL distribution which is currently not an input
parameter.

3. Parts can fail due to wear-out with a normally distributed lifetime with parameters p and
G. These are the same input parameters as in the CMBL distribution.

4. All parts must eventually fail in exactly one of the three ways listed above.

5. The above failure modes are independent.

These assumptions warrant further discussion. The first assumption is believed to be valid,
because no artificial constraint is put on the period of time in which an infant mortality failure
might occur. Setting the failure rate high has the effect of decreasing the average time at which
infant mortality occurs. Infant mortality is likely to occur early, but like a baby born with a heart
valve problem that never is discovered until much later in life, the consequence of an inherent
defect may be indefinitely delayed. The second assumption is relatively straightforward. Some
failures are unpredictable, and memoryless with regard to time. They may be caused by
interactions with other components or the external environment such as shocks to the system.
The third assumption reflects the idea that most parts wear out eventually, even if no defect is
present and no random failure ever occurs. Because a part can wear out in many ways, the
central limit theorem would suggest that a normal distribution would be appropriate, although
depending upon the system, a lognormal distribution may be appropriate. A good example of
this is brake pads. Each application of the brake wears away a little bit of brake pad material,
until in summation, these losses of material result in the complete elimination of the brake pad.
The fourth assumption clarifies that only one of the three underlying failure events can occur.
This is because the occurrence of one type of failure on a given part precludes the occurrence of
any other type. The fifth assumption is the most important. For purposes of the derivation, the
three types of failure are treated as independent events rather than as three possible outcomes of
a single event. One way to think of this is that there are three different “clocks” running to keep
track of the time at which a failure would occur if not precluded by a different type of failure.

For each type of failure event, we will define its probability distribution assuming independence
from the other failure modes. Starting with the random failures, the PDF will be an exponential
distribution, and the CDF is found by integration as shown below:

[ =2e™ 21
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F(6)=f f;()dv=1-¢ (22)

Next are the PDF and CDF for the normal distribution. “Erf” is the well known error function
for which numerical implementations are widely available.

~(t-p)?

= 1 e’
A= G‘Jﬂe (23)
Fy(0) = fy (v = [ &]+Er Ia]] (24)

Lastly, we present the PDF and CDF of the infant mortality distribution. The PDF here is
exponential, as in the case of random failure, but the additional parameter « has been multiplied
with the usual exponential PDF. Note that in this case, the CDF tends to a as r —» . This is as
expected, since if infant mortality were the only failure mode, only the percentage of parts that
begin life in a defective state would ever fail.

fi=ahe™ (25)

F=[fi(vdv=a(l-e™*) (26)

Now that we've defined the three underlying distributions that will go into the full life-cycle
distribution, we will combine them using the addition law of probability. The addition law of
probability tells us that

P(AUB)= P(A4)+ P(B)-P(AN B) 27
or with three variables,
P(AUBUC)=P(A)+P(B)+ P(C)-P(ANB)=P(ANC)-P(BNC)+ P(An BN C) (28)

Below is a representation of the associated Venn diagram:

Figure 9. Venn Diagram

Now we will use “F™" to represent the CDF of the desired distribution, and “f” to represent the
associated PDF. F(t) should represent the probability that any type of failure will occur in the
time interval (0,f). Thus F(r) should be the probability of an F\, F; or F; type failure. Applying
the addition law of probability and using the assumption of independence yields:

F)=F )+ K@)+ FE@0)-FEOF @) - EOF@O-FKOE@O+EOFOF@) (29)
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For a function to meet the definition of a CDF, it must monotonically increase from 0 to 1 as the
independent variable, ¢, goes from 0 to infinity. Equivalently, the resulting PDF must be non-
negative everywhere and integrate to unity on the interval from 0 to infinity. It is of interest here
that defining the CDF in this way (using the addition law of probability and independence)
-guarantees that the resulting CDF and PDF will represent a valid distribution.

F(e0) = Fy(0) + Fy(e0) + Fy(0) — Fi(®0) F;(0) — F}(0) F;(0) = F,(0) F;(20) + F} (0) F (20) F;(0)
F(o)=14+1+a-1-1-1-a-1-a+1-1-a

F(o)=1+1+a-1-a-a+a

F(0)=1 30)

As a matter of fact, it can be shown that any number of PDFs could be combined in this manner
and if at least one of them integrates to unity, so will the resulting PDF.

To show that F'is a monotonically increasing function on the interval 0 to infinity, we need only
show that f'is non-negative. For any arbitrary set {fi, £, f3,} of PDFs and their associated set of
CDFs, {F1, F», F3}, f(t) expands to:

fO=/LO+ L0+ L0 - [OFR0-FOLO-AOFO-FO0)
=~ LOFEO-EOLO+ LOFOFO+FEOLOF@O+FEOF@O)0)

By factoring out the f{, 5, and f3, terms, we can see that f(¢)is the sum of three non-negative
terms, and is therefore non-negative.

fO={1-Fo)X- KO0 +{1- FOX - FO)L0+
- FON-F,0)40

Therefore, we can state that any f(¢) derived in this manner will be a valid PDF, so long as the
inputs are non-negative, and at least one of them integrates to unity.

€2))

(32)

Substitution of the functions { F, F», F3} chosen for our application and simplification yields the
CDF

_ 1 Geny(m, _ -y U j
F()=1+e (" (-1+a) a{Erfc( ﬁaj+E;fc( ﬁaj (33)

Note that “Erfc” is the complementary error function.

Differentiation yields the CFLC PDF
fO)=F(1) (34

—(-p)

e7\/—?7;(— e*-1+a)+ a)

f@)= %e—t(zm) o ' (35)
(erA(-1+a)l—a(l+A)( 2+Erf(\/_cr)+Erf(\/_0D

The above equations for the PDF and CDF have been extensively simplified using Mathematica.
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4.2.3. Example Plots

A plot of the PDF of the resulting distribution with some arbitrarily chosen numerical parameters
is shown in Figure 10. The term nf{t) refers to an instance of f(t) with numerically defined input
parameters. Notice that the plot has the same features found in the CMBL distribution.

nf (1) = f(O (e =10,6 =1,4 =1/10,A = 10,a =1/20) (36)

é 4 é é 10 1.2 14
Figure 10. Example CFLC PDF

The plot of the CFLC CDF is shown in Figure 11.

N 1 [

Figure 11. Example CFLC CDF

The hazard function defined by A(f) = —l—f% is shown in Figure 12 and yields a shape similar

to the familiar “bathtub” curve.
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Figure 12. Example CFLC Hazard Function

It is apparent from the above plots that the CFLC distribution has the same important qualities
observed in the CMBL distribution — namely that the three failure intervals known to occur in
real data are easily observed. It is also apparent that the CFLC distribution has a hazard function
similar to the “bathtub” curve, which s often modeled as a piecewise set of functions as shown
below.

Cu—C1t+/\, OStSO[]/C]_

y(t) = < A afo <t <t
CQ(t — tg) + A, tn <t (37)

One obvious advantage of the distribution presented here over the piecewise methods such as the
bathtub curve or the CMBL distribution is that if the three input PDFs are differentiable
everywhere, the resulting distribution will be differentiable everywhere also, as a consequence of
Equation (32).

4.2.4. Parameter Estimation

Typically, one needs to know, given the five input parameters, what is the mean and standard
deviation for a distribution. This knowledge allows side by side comparison of different
distributions. The mean of the closed-form full life-cycle distribution is given by:

mean = E[T] = ft §10% (38)

where T is the random variable of time to failure. After much algebraic manipulation, this
reduces to:

2 _ 2
2( A+A - aA)+ e%l(—ZﬂMaz)(_ 1+ aX 1+ A) Erfc( - ﬂ\/‘%ﬂa J _ e}é(A+A)(-2p+(A+A)aZ)(a Z,) Erfc[M—]
o

20

(39)

mean= 24+ A)

The standard deviation can be computed as follows:
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std.dev. = E[(T — E[T))*] = [ (1~ mean)’ £ ()t (40)

Unfortunately, the problem of producing a closed form solution for the standard deviation seems
to be an intractable problem. However, when the values of the input parameters are known, the
standard deviation is easily calculated using numerical integration. In addition, the mean and
standard deviation for this type of distribution may not have any real-world relevance since the
distribution is multimodal.

Symbolically deriving estimators for the parameters has also proven to be very difficult and has
not been accomplished at the time of publishing. However, using the method of Maximum
Likelihood Estimation with numerical optimization has been demonstrated to yield very suitable
parameter estimates. Results were obtained by using Equation (35) to generate a randomly
drawn list of 100 data points. The method of maximum likelihood estimation was implemented
using numerical optimization yielding the parameter estimates shown in Table 4. A graphical
comparison of the Original PDF (shown in green) and the Estimated PDF (shown in blue) using
100 Monte Carlo generated data points is presented in Figure 13.

Table 4. Parameter Estimation Using 100 Monte Carlo Generated Data Points

Parameter | True Value | Estimated Value % Error
u 10.00 9.77 -2.3%

a 1.00 1.35 35%

A 0.1000 0778 -22%

A 10.00 8.32 -17%

o 050 147 190%

J.28

Original PDF
S Estimated PDF

2 4 ] B8 10 12

Figure 13. Comparison of 100 Data Points
When the number of Monte Carlo generated data points is increased to 1000, the error in the

estimates is reduced considerably. Results were again obtained by using Equation (35) to
generate a randomly drawn list of 1000 data points. The method of maximum likelihood
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estimation was implemented using numerical optimization yielding the parameter estimates
shown in Table 5. A graphical comparison of the Original PDF (shown in green) and the
Estimated PDF (shown in blue) using 1000 Monte Carlo generated data points is presented in
Figure 14. The parameters for the infant mortality prove to be the most difficult to estimate
because a small portion of the generated data falls into that domain. The fact that a large number
of data points are needed in order to establish a good approximation for the distribution,
combined with the reality that such extensive failure data is seldom available, makes a strong
argument that a Bayesian approach is needed for estimating the parameters of the distribution.

Table 5. Parameter Estimation Using 1000 Monte Carlo Generated Data Points

Parameter | True Value | Estimated Value % Error
A 10.00 9.90 -1%

o 1.00 1.06 6%

A 0.1000 05 5%

A 10.00 14.9] 49%

o 050 054 8%

J:25

Original PDF
0.2 Estimated PDF

J.0s5

z 4 L] B 10 12

Figure 14. Comparison of 1000 Data Pts

4.3. CFLC Distribution Summary

The Closed-form Full Life Cycle distribution was developed using three distributions treated as
modeling independent events. The CFLC CDF, Equation (33), of the resulting distribution was
derived using the addition law of probability on the original CDFs. The resulting CFLC PDF
distribution, Equation (35), has the properties needed to model the full life cycle of a typical part,
and has advantages over piecewise methods that attempt to do the same. Because the
distribution has a closed form solution, it can take advantage of several different methods for
updating it’s parameters based on new data from either field failures or sensors. However,
additional theoretical validation of the CFLC distribution is warranted prior to implementation,
since this was an initial attempt at a closed-form solution.
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5. CONCLUSIONS

The CMBL distribution provides an application friendly method for characterizing a
component’s failure or lifecycle distribution. This paper characterized the distribution and
explored methods for updating the CMBL distribution as new data become available. The initial
results obtained in applying the Bayesian sequential updating methodology to the CMBL
distribution shows some promise. However, additional research is needed for the updating
process involved with the random portion of the curve.

The development of the CFLC distribution shows great promise. Being a closed-form solution,
updating methods other than that attempted with the CMBL distribution may provide a more
computer efficient result. Further research is warranted to both provide theoretical validation

and determine which updating method would be more appropriate for enterprise level logistics
and PHM modeling.

These two Sandia National Laboratories’ methods developed in this effort for updating the
CMBL distribution and other TTF distributions, should be valuable in enhancing maintenance
planning and real-time situational awareness processes. Following additional exploration and
validation, these methods, used in enterprise level and prognostics and health management PHM
modeling, should more accurately help provide timely feedback on the current status of
equipment; provide tactical assessment of the readiness of equipment for the next campaign;
identify parts, services, etc. that are likely to be required during the next campaign; provide a
realistic basis for scheduling and optimizing equipment maintenance schedules; and help ensure
that the useful life of expensive components is maximized while reducing the incidence of
unplanned maintenance.
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A.1. Overview

The CMBL-Distribution Grapher displays a graph based on the input parameters for a CMBL
distribution and allows the user to explore the valid range in three dimensions of the CMBL
distribution. The following subsections provide a detailed look at the input, output, and
capabilities of the CMBL-Distribution Grapher.

A.2. Plotting a graph
A21. Step1

The first step in plotting a graph is to enter the five parameters for the CMBL distribution:

1. Mean
2. Standard Deviation
3. Burn in Fraction
4. Burn in Duration
5. Random Fraction
= CMAL Distribution Grapher
Grtem  Qplons  Heb
Bate
oo | o0 R
5td Dev 10 [T 0
Bumn in Frac 2 Lambsdy 1}
Bum m Dusabion ] Shope L]
Fandom Fiac 4 T2 1] Fired Flange
[T i
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(-1}
L m o & =0 [.:] m L) (1] Il'.l 1] (¥ (= ] 5] 15 ey m 201]

Figure 15. Completed Parameter Input
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A.2.2. Step2

After all parameters have been entered, clicking the Plot button will display the CMBL
distribution in the graph window as shown in Figure 16. In the event of an illegal parameter, the
graph window is cleared and an error message is displayed.

LW T3 Distribution Grapher
Base
Mean | 100 AssaMNom | 04189751
SdDev | 10 Inbevcept | OLMBATEE
Buen in Frac 2 Lambda = QLODF3S3ETS i Bz
B in Dusation 8 Skpe | 00051TMT
Flareicen Frac 1 12 B3.07648 Fird Hange
[T r] [
T
[ ¥a)
(¥ ey
oo
o Fo ] 0 o [ ] L] ] .N 1] L] mo LF- 1] =] £ o

Figure 16. Plotted CMBL distribution
A23 Step3

There are three options to control the speed and resolution of the graph (all times are specific to a
3Ghz Pentium) as shown in Table 6 and Figure 17.

Table 6. Graph Resolution

Plot Samples Time (seconds)
Fast 1.000 <1
Normal 100,000 ]
Fine 250,000 2
Very Fine 1,000,000 3
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Normal (default)
Fine
Very Fine (Very Slow)

Figure 17. Options Menu
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Figure 19. Normal Option
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Figure 20. Fine Option
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Figure 21. Very Fine Option
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A.3. Viewing and Exporting the Bins
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Figure 22. View Bins

The “View Bins” button will be enabled after successfully plotting a CMBL distribution.
Clicking the *View Bins” button from the main form will display the data bins used to generate
the plot. Data on the View Bins form is read-only. Clicking the “Export” button creates a
comma separated file formatted for importing into and Excel spreadsheet. Rows | and 2 contain
information relating directly to the distribution as shown in Table 7.

Table 7. Distribution Information

Column Value
Mean

Area Norm
Intercept
[Lambda
Slope

T2
Samples

=1 ||l | D | =

Rows 3 and higher contain bin and raw data as shown in Table 8.

Table 8. Bin and Raw Data Information
[ Column ] Value ]
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Bin

Raw Total

Value

Raw Index
Raw Value

v [ ] B

=

A.4. Validating Ranges

= Hange Grid

RF
_ Mean SidDev  BuminFiac | BumeinDur Random Frac | Meszage |
1 100, 10 o 3 06 The tachon of random fadess meust be less than
2 100 10 1 4 06 The hacton of random fales must be lees than
3 100 10 1 5 06 The hacton of random falses must be less than
== 100 10 0 3 05 Unable 1o find & sulsble ke rate for the ran
5 100 10 LA [ 06 The haction of iandom falses must be less than
B 100 10 01 7 05 Unable to find & slable fase rale for the ran
7 100 0 m 7 06 The haction of random falless must be less than
8 100 10 a1 g 06 The haction of random falues must be ks than
3 100 10 0z 3 05 The haction of random fakues must be less than
10 100 10 0z 4 06 The haction of random falues must be less than
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13 100 10 a2 7 05 The haction of random felues must be kees than
14 100 10 o2 8 OB The haction of tandom lahaes must be ket than
15 100 10 03 3 06 The fiaction of tandom fabuss must ba less than ¥

Figure 23. Range Form

The purpose of the Range form is to find the boundaries of the CMBL-Distribution by modifying
the input range and plotting the values that trigger an error in the distribution. The errors will be
plotted in the xyz chart and will be identified in the grid. All five of the input ranges may be
used for a run but only three may be plotted at any one time. The ranges to plot are selected by
adding a checkmark after the range and identifying which axis to use for that range.

Inputs:
1. Mean
2. Standard Deviation
3. Burn-In Fraction
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4. Burn-In Duration
5. Random Fraction

Values:
1. Range Min — Minimum value for this range
2. Range Max — Maximum value for this range
3. Step — Increment value for this range. The range will not increment above the
maximum value for the range.

Outputs:

Mean

Standard Deviation
Burn-In Fraction
Burn-In Duration
Random Fraction
Message

A

44



A.5. Requirements

A.5.1. Minimum

Windows XP Home or later
Pentium Class 1 GHz processor
128 MB RAM

15 MB free hard drive space (40 MB if installing DotNet 2.0 Framework)
DotNet Framework 2.0

A.5.2. Suggested
Windows XP Pro or later

Pentium Class 3 GHz processor
256 MB RAM

15 MB free hard drive space (40 MB if installing DotNet 2.0 Framework)
DotNet Framework 2.0
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