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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit
provides a flexible and extensible interface between simulation codes and iterative analysis
methods. DAKOTA contains algorithms for optimization with gradient and nongradient-
based methods; uncertainty quantification with sampling, reliability, and stochastic finite
element methods; parameter estimation with nonlinear least squares methods; and sensi-
tivity /variance analysis with design of experiments and parameter study methods. These
capabilities may be used on their own or as components within advanced strategies such
as surrogate-based optimization, mixed integer nonlinear programming, or optimization
under uncertainty. By employing object-oriented design to implement abstractions of the
key components required for iterative systems analyses, the DAKOTA toolkit provides a
flexible and extensible problem-solving environment for design and performance analysis of
computational models on high performance computers.

This report serves as a user’s manual for the DAKOTA software and provides capability
overviews and procedures for software execution, as well as a variety of example studies.
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Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994
internal research and development activity at Sandia National Laboratories in Albuquerque, New Mexic
original goal of this effort was to provide a common set of optimization tools for a group of engineers whc
solving structural analysis and design problems. Prior to the start of the DAKOTA project, there was not a f
effort to archive the optimization methods for reuse on other projects. Thus, for each new project the er
found themselves custom building new interfaces between the engineering analysis software and the opti
software. This was a particular burden when attempts were made to use parallel computing resource
each project required the development of a unique master program that coordinated concurrent simulati
network of workstations or a parallel computer. The initial DAKOTA toolkit provided the engineering and an
community at Sandia Labs with access to a variety of different optimization methods and algorithms, witt
of the complexity of the optimization software interfaces hidden from the user. Thus, the engineers weri
able to switch between optimization software packages simply by changing a few lines in the DAKOTA inp
In addition to applications in structural analysis, DAKOTA has been applied to applications in computation:i
dynamics, nonlinear dynamics, shock physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods. In adc
to having many state-of-the-art optimization methods, DAKOTA now includes methods for global sens
and variance analysis, parameter estimation, and uncertainty quantification, as well as meta-level strat
surrogate-based optimization, mixed-integer nonlinear programming, hybrid optimization, and optimizati
der uncertainty. Underlying all of these algorithms is support for parallel computation; ranging from the le
a desktop multiprocessor computer up to massively parallel computers found at national laboratories an
computer centers.

This document corresponds to DAKOTA Version 4.0. Release notes for this release, past releases, and ct
velopmental releases are available frottp://www.cs.sandia.gov/DAKOTA/licensing/release_

notes.html . Starting with Version 3.0, DAKOTA has been publicly released as open source under a GNU
eral Public License and is available for free download world-wide.Hipe//www.gnu.org/licenses/

gpl.html  for more information on the GPL software use agreement. The objective of this public rele
to facilitate research and software collaborations among the developers of DAKOTA at Sandia Nation;
oratories and other institutions, including academic, governmental, and corporate entities. For more il
tion on the objectives of the open source release and how to contribute, refer to the DAKOTA R&Q: at
/lIwww.cs.sandia.gov/DAKOTA/faqg.html

The DAKOTA leadership team consists of Mike Eldred (principal investigator), Tony Giunta (product man
Shane Brown (support manager), and Scott Mitchell (department manager). DAKOTA development tear
bers include Brian Adams, Danny Dunlavy, John Eddy, David Gay, Bill Hart, Laura Swiler, and Pam Wiilliar
addition, contributors to the COLINY, PICO, OPT++, DDACE, APPS, FSUDace, Surfpack, and DAKOT/
libraries used by DAKOTA include Josh Griffin, Patty Hough, Tammy Kolda, Monica Martinez-Canales
Jean-Paul Watson from Sandia; as well as John Burkardt from Florida State University, Prof. Jonathan [
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from Rutgers University; Prof. Roger Ghanem from Johns Hopkins University; Mark Richards from the |
sity of lllinois, Prof. Virginia Torczon from the College of William and Mary, and Prof. Steve Wojtkiewicz
the University of Minnesota.

Contact Information:

Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories

P.O. Box 5800, Mail Stop 0370

Albuquerque, NM 87185-0370

email: dakota-developers@development.sandia.gov
web: http://www.cs.sandia.gov/DAKOTA/software.html
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Chapter 1

Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating complex phys
tems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural m
shock physics, and many others. These simulators can be an enormous aid to engineers who want
an understanding and/or predictive capability for the complex behaviors that are often observed in the
physical systems. Often, these simulators are employed as virtual prototypes, where a set of predefin
parameters, such as size or location dimensions and material properties, are adjusted to improve or of
performance of a particular system, as defined by one or more system performance objectives. Optim
the virtual prototype then requires execution of the simulator, evaluation of the performance objective
adjustment of the system parameters in an iterative and directed way, such that an improved or optime
is obtained for the simulation as measured by the performance objective(s). System performance obje
be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, «
tion response; or to maximize performance, reliability, throughput, agility, or design robustness. In addit
would often like to design computer experiments, run parameter studies, or perform uncertainty quani
These methods allow one to understand how the system performance changes as a design variable or ¢
input changes. Sampling strategies are often used in uncertainty quantification to calculate a distributic
tem performance measures, and to understand which uncertain inputs are the biggest contributors to tt
of the outputs.

One of the primary motivations for the development of DAKOTA (Design Analysis Kit for Optimizatiol
Terascale Applications) has been to provide engineers with a systematic and rapid means of obtaining irr
optimal designs using their simulator-based models. Making this capability available to engineers gener
to better designs and improved system performance at earlier stages of the design phase, and elimina
the dependence on real prototypes and testing, thereby shortening the design cycle and reducing over
development costs. In addition to providing this environment for answering systems performance q
the DAKOTA toolkit also provides an extensible platform for the research and rapid prototyping of cust
methods and strategie2d].
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1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and a variel
erative methods and strategies. While DAKOTA was originally conceived as an easy-to-use interface
simulation codes and optimization algorithms, recent versions have been expanded to interface with of
of iterative analysis methods such as uncertainty quantification with nondeterministic propagation mett
rameter estimation with nonlinear least squares solution methods, and sensitivity/variance analysis witt
purpose design of experiments and parameter study capabilities. These capabilities may be used on tF
as building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based opti
mixed integer nonlinear programming, or optimization under uncertainty.

Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad range of
capabilities can be obtained through a single, relatively simple interface between DAKOTA and your sil
Should you want to try a different type of iterative method or strategy with your simulator, it is only neces
change a few commands in the DAKOTA input and start a new analysis. The need to learn a completely
style of command syntax and the need to construct a new interface each time you want to use a new alg
eliminated.

1.3 How Does DAKOTA Work?

Figurel.1depicts the loosely-coupled, or “black-box,” relationship between DAKOTA and the simulation ct
This loose coupling is the simplest approach and is the one that most DAKOTA users will employ.
exchanged between DAKOTA and the simulation code by reading and writing short data files, and DAKO
not require access to the source code of the user’s simulation software. DAKOTA is executed using cc
that the user supplies in an input file (not shown in Figu®@ which specify the type of analysis to be perforr
(e.g., parameter study, optimization, uncertainty estimation, etc.), along with the file names associatec
user’s simulation code. During its operation, DAKOTA automatically executes the user’'s simulation ¢
creating a separate process that is external to DAKOTA.

The solid lines in Figurel.1 denote file input/output (1/0O) operations that are part of DAKOTA or the u
simulation code. The dotted lines indicate the passing of information that must be handled by the t
DAKOTA is running, it writes out a parameters file that contains the values of the current variables. D/
then starts the user’s simulation code (or, often, a short driver script), and when the simulation has cc
DAKOTA reads in the response data from a results file. This process is repeated until all of the simulat
runs required by the iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’'s simulat
This close coupling is an advanced feature of DAKOTA and is accomplished through either a direct inter
SAND (simultaneous analysis and design) interface. For the directinterface, the user’s simulation code is
to behave as a function or subroutine under DAKOTA. This interface can be considered to be “semi-ir
in that it requires relatively minor modifications to the simulation code. Its major advantage is the elin
of the overhead resulting from file I/O and process creation. It can also be a useful tool for parallel pro
by encapsulating everything within a single executable. A SAND interface approach is “fully intrusive”
it requires further modifications to the simulation code so that an optimizer has access to the internal
vector and Jacobian matrices computed by the simulation code. In a SAND approach, both the opti
method and a nonlinear simulation code are converged simultaneously. While this approach can grea
the computational expense of optimization, considerable software development effort must be expended
this intrusive coupling between SAND optimization methods and the simulation code.

DAKOTA Version 4.0 User’'s Manual generated on October 13, 200
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i DAKOTA [=

DAKOTA DAKOTA
Parameters File Results File

| Data Data
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¥ :
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[nput File User’s Output File
| .| Simulation
Code

Figure 1.1: The loosely-coupled or “black-box” interface between DAKOTA and a user-supplied simulatic

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization, nonlinear least
sensitivity analysis, design of experiments, and uncertainty quantification problems. The primary goal of
tion is to introduce terms relating to these topics, and is not intended to be a description of theory or n
algorithms. There are numerous sources of information on these toficeH{], [55], [56], [75], [100) and the
interested reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

minimize: f(x)
x € R"
subjectto: g < g(x) < gv
h(x) = hy (1.1)
ar <Aix<ay
A.x = ay;

X <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulatien,|x;, zo, ..., z,] IS an n:
dimensional vector of real-valuetbsign variable®r design parametersThe n-dimensional vectorgy, andxy,
are the lower and upper bounds, respectively, on the design parameters. These bounds define the allow
for the elements ok, and the set of all allowable values is termed design spacer theparameter spaceA
design poinbr asample points a set of values for that fall within the parameter space.

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



16 CHAPTER 1. INTRODUCTION

The optimization goal is to minimize thebjective function f(x), while satisfying the constraints. Constra
can be categorized as either linear or nonlinear and as either inequality or equalitpofllrear inequalit
constraints g(x), are “2-sided,” in that they have both lower and upper bougidsandg, respectively. Th
nonlinear equality constraintd(x), have target values specified hy. The linear inequality constraints cre
a linear system\;x, whereA, is the coefficient matrix for the linear system. These constraints are also -
as they have and as lower and upper bounds, respectively. The linear equality constraints create a line
A _.x, whereA. is the coefficient matrix for the linear system and are the target values. The constraints |
the parameter space into feasible and infeasible regions. A design point is saifetmsiteif and only if it
satisfies all of the constraints. Correspondingly, a design point is saidinddasibleif it violates one or more ¢
the constraints.

Many different methods exist to solve the optimization problem given by Equatibrall of which iterate ol
x in some manner. That is, an initial value for each parameter i chosen, theesponse guantitiesf (x),
g(x), h(x), are computed, and some algorithm is applied to generate & tieat will either reduce the objecti
function, reduce the amount of infeasibility, or both. To facilitate a general presentation of these metho
criteria will be used in the following discussion to differentiate them: optimization problem $gaech goalanc
search methad

The optimization problem typean be characterized both by the types of constraints present in the problerr
the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hier.
complexity exists for optimization algorithms, ranging from simple bound constraints, through linear con:
to full nonlinear constraints. By the nature of this increasing complexity, optimization problem categori
are inclusive of all constraint types up to a particular level of complexity. That isin@onstrained proble
has no constraints, lBound-constrained probletmas only lower and upper bounds on the design parame
linearly-constrained problerhas both linear and bound constraints, amibalinearly-constrained problemmay
contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear constr:
equality constraints, then this is referred to asgnality-constrained problenand if all of the linear and no
linear constraints are inequality constraints, then this is referred to iag@uality-constrained problenturthe!
categorizations can be made based on the linearity of the objective and constraint functions. A problem
objective function and all constraints are linear is callédear programming (LP) probleniThese types of prol
lems commonly arise in scheduling, logistics, and resource allocation applications. Likewise, a proble
at least some of the objective and constraint functions are nonlinear is calledlinear programming (NLF
problem These NLP problems predominate in engineering applications and are the primary focus of DA

The search goakfers to the ultimate objective of the optimization algorithm, i.e., either global or local opti
tion. In global optimizationthe goal is to find the design point that gives the lowest feasible objective fu
value over the entire parameter space. In contrasocal optimization the goal is to find a design point tha
lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will |
computationally expensive than local optimization. Thus, the user must choose an optimization algorithn
appropriate search scope that best fits the problem goals and the computational budget.

The search methorkfers to the approach taken in the optimization algorithm to locate a new design po
has a lower objective function or is more feasible than the current design point. The search method ca
sified as eithegradient-basedr nongradient-basedIn a gradient-based algorithm, gradients of the resg
functions are computed to find the direction of improvement. Gradient-based optimization is the searct
that underlies many efficient local optimization methods. However, a drawback to this approach is thi
ents can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongrad
search methods may be useful. There are numerous approaches to nongradient-based optimization. £
more well known of these include pattern search methods (nongradient-based local techniques) and ge
rithms (nongradient-based global techniques). Because of the computational cost of running simulatior
surrogate-based optimization (SBO) methods are often used to reduce the number of actual simulatiol
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1.4. BACKGROUND AND MATHEMATICAL FORMULATIONS 17

SBO, a surrogate or approximate model is constructed based on a limited number of simulation runs.
mization is then performed on the surrogate model. DAKOTA has an extensive framework for managing .
of global and local surrogates for use in optimization.

The overview of optimization methods presented above underscores that there is no single optimizatio
or algorithm that works best for all types of optimization problems. Chaliegrovides some guidelines
choosing which DAKOTA optimization algorithm is best matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objectivi
for problems of the form:

minimize:  f(x) =Y [Ti(x)]?

x € R"
subjectto: g <g(x) <gu
h(x) = hy (1.2)
ar <Ax<ay
Ax=a;

X <x <Xy

where f(x) is the objective function to be minimized affti(x) is the i* least squares term. The bound, lin
and nonlinear constraints are the same as described previouslyfpr§pecialized least squares algorithms
generally based on the Gauss-Newton approximation. When differentjgtiydwice, terms ofl; (x)7’ (x) anc
[T!(x)]? result. By assuming that the former term tends toward zero near the solutiorfs{xgetends towar:
zero, then the Hessian matrix of second derivativeg(af) can be approximated using only first derivative
T;(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution °
cases when the Hessian approximation is accurate, i.e. the residuals tend towards zero at the solution
exploiting the structure of the problem, the second order convergence characteristics of a full Newton &
can be obtained using only first order information from the least squares terms.

A common example foff;(x) might be the difference between experimental data and model prediction
response quantity at a particular location and/or time step, i.e.:

Ti(x) = Ri(x) - R; (1.3)

whereR;(x) is the response quantity predicted by the model Bpés the corresponding experimental data
this casex would have the meaning of model parameters which are not precisely known and are being c
to match available data. This class of problem is known by the terms parameter estimation, system iden
model calibration, test/analysis reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study methods at
identifying which of the design parameters have the most influence on the response quantities. This infor
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helpful prior to an optimization study as it can be used to remove design parameters that do not strongly
the responses. In addition, these techniques can provide assessments as to the behavior of the respon
(smooth or nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for optim
uncertainty quantification, and related methods. In a post-optimization role, sensitivity information is u
determining whether or not the response functions are robust with respect to small changes in the optimt
point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of
derivatives at a point. These derivatives are then used in a simple analysis to make design decisions.
supports this type of study through numerical finite-differencing or retrieval of analytic gradients compute:
the analysis code. The desired gradient data is specified in the responses section of the DAKOTA inpt
the collection of this data at a single point is accomplished through a parameter study method with 1
This approach to sensitivity analysis should be distinguished from the activity of augmenting analysis
internally compute derivatives using techniques such as direct or adjoint differentiation, automatic differe
(e.g., ADIFOR), or complex step modifications. These sensitivity augmentation activities are complete
rate from DAKOTA and are outside the scope of this manual. However, once completed, DAKOTA car
these analytic gradients to perform optimization, uncertainty quantification, and related studies more rel|
efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the invest
variability in the response functions. DAKOTA supports this type of study through computation of respor
sets (typically function values only, but all data sets are supported) at a series of points in the parame
The series of points is defined using either a vector, list, centered, or multidimensional parameter study
For example, a set of closely-spaced points in a vector parameter study could be used to assess the sm
the response functions in order to select a finite difference step size, and a set of more widely-spaced ¢
centered or multidimensional parameter study could be used to determine whether the response functiol
is likely to be unimodal or multimodal. See Chapéefior additional information on these methods. These r
global approaches to sensitivity analysis can be used to obtain trend data even in situations when gra
unavailable or unreliable, and they are conceptually similar to the design of experiments methods and
approaches to uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of comput
ments (DACE) methods are both techniques which seek to extract as much trend data from a paramete
possible using a limited number of sample points. Classical DoE techniques arose from technical discip
assumed some randomness and nonrepeatability in field experiments (e.g., agricultural yield, experimer
istry). DOE approaches such as central composite design, Box-Behnken design, and full and fractiona
design generally put sample points at the extremes of the parameter space, since these designs offer m
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE methot
the nonrepeatability component can be omitted since computer simulations are involved. In these cas
filling designs such as orthogonal array sampling and latin hypercube sampling are more commonly em
order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are const
fill the unit hypercube with good uniformity of coverage can also be used for DACE.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds are
selecting the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases
general probabilistic sampling for uncertainty quantification (see following section), in which the DoE,
parameters are treated as having uniform probability distributions. The DoE/DACE techniques are cc
used for investigation of global response trends, identification of significant parameters (e.g., main effe
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as data generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysis in that the common goal is to gain an und
ing of how variations in the parameters affect the response functions of the engineering design problem.
for uncertainty quantification, some or all of the components of the parameter wecaoe, considered to be L
certain and not precisely known. The uncertain parameter values are specified by a probability distribut
normal/Gaussian) rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parameters is often estime
a sampling-based approach such as Monte Carlo sampling or one of its variants (latin hypercube, qu:
Carlo, Markov-chain Monte Carlo, etc.). In these sampling approaches, a random number generator i
select different values of the parameters with probability specified by their probability distributions. Thi
point that distinguishes UQ sampling from DoE/DACE sampling, in that the former supports general prob
descriptions of the parameter set and the latter generally supports only a bounded parameter space ¢
A particular set of parameter values is often calleshenple pointor simply asample With Latin Hypercub:
sampling, the user may specify correlations amongst the input sample points. After a user-selected r
sample points has been generated, the response functions for each sample are evaluated. Then, a statis!
is performed on the response function values to yield information on their characteristics. While this apy
straightforward, and readily amenable to parallel computing, it can be computationally expensive depe
the accuracy requirements of the statistical information (which links directly to the number of sample poi

When sampling methods are too expensive to apply, various analytic and quasi-analytic reliability metl
be applied to UQ problems. These include Mean Value (MV), Advanced Mean Value (AMV), iterated Ad
Mean Value (AMV+), and two-point adaptive nonlinearity approximation (TANA) algorithms, along witl
ditional first-order and second-order reliability methods (FORM and SOR]) [These techniques all sol
internal optimization problems in order to locate the most probable point (MPP) of failure. The MPP is th
as the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are also av
characterizing the response of systems whose governing equations involve stochastic coefficients. The
analytic reliability, and SFE approaches are described in more detail in Clgapter

1.5 Using this Manual

The previous sections in this chapter have provided a brief overview of the capabilities in DAKOTA, ar
introduced some of the common terms that are used in the fields of optimization, parameter estimation, <
analysis, design of experiments, and uncertainty quantification. The DAKOTA user that is new to these te
is advised to consult the references cited earlier in this chapter to obtain more detailed descriptions of
and algorithms in these disciplines.

Chapter2 provides information on how to obtain, install, and use DAKOTA. In addition, example probler
presented in this chapter to demonstrate some of DAKOTA's capabilities for parameter studies, optimiza
UQ. Chapter3 provides a brief overview of all of the different software packages and capabilities in DAk
Chapter4 through ChapteB provide details on the iterative algorithms supported in DAKOTA, and Ch&
describes DAKOTA's advanced optimization strategies. Chakehrough Chaptef3 provide information o
model components which are involved in parameter to response mappings and Chéptetd 5 describe th
inputs to and outputs from DAKOTA. Chapt®6 provides information on interfacing DAKOTA with engineer
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20 CHAPTER 1. INTRODUCTION

simulation codes, Chapté7 covers DAKOTA’s parallel computing capabilities, and Chat@provides som
usage guidelines for selecting DAKOTA algorithms. Finally, Chagi@through ChapteRl describe resta
utilities, failure capturing facilities, and additional test problems, respectively.
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Chapter 2

Getting Started with DAKOTA

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run Unix and Linux operating syste
computers and operating systems actively supported by the DAKOTA project include:

Sun Solaris 2.10

SGIIRIX 6.5

Compag/DEC OSF 5.1
e IBMAIX5.2

Intel/AMD Redhat Enterprise Linux 4 Update 2 (RHEL4U2)

In addition, partial support is provided for PC Windows (via Cygwin), Mac OSX, and HP HPUX. Addi
details are provided in the fill®akota/README in the distribution (see the following section for downl
instructions).

For answers to common questions and solutions to common problems in downloading, building, installing
ning DAKOTA, refer tohttp://www.cs.sandia.gov/DAKOTA/faqg.html for additional information.

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and source code
available through the download link available from the following web site:

http://www.cs.sandia.gov/DAKOTA/software.html

To receive the binary or source code files, you are asked to fill out a short online registration form. This infc
will be used by the DAKOTA development team to collect software usage metrics and, if desired, to regi
for update announcements.

If you are a new DAKOTA user and are using one of the supported platforms, we suggest that you d
one of the binary executable distributions rather than the source code distribution. The compilation pr¢



22 CHAPTER 2. GETTING STARTED WITH DAKOTA

be somewhat involved, and it will be easier for you to first gain an understanding of DAKOTA by running the
example problems that are provided with one of the binary distributions. For more experienced users, DAKOT/
can be customized with additional packages and ported to additional computer platforms when building from th
source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files have been compiled and distributed to the ESHPC LAN and common com-
pute servers at Sandia, Los Alamos, and Lawrence Livermore. Common locations for the executable includ
lusr/local/bin/dakota and/projects/dakota/bin/<system>/dakota , where <system> "

isosf , irix , or other. To see if DAKOTA is available on your computer system and accessible in your Unix
environment path settings, type the commardch dakota at the Unix prompt. If the DAKOTA executable

file is in your path, its location will be echoed to the terminal. If the DAKOTA executable file is available on your
system but not in your path, then you will need to locate it and add its directory to your path (theskbrisis

andfind commands can be useful for locating the executable).

If DAKOTA is not available on your system, the current preferred options are to either get an account on one of the
common compute servers where DAKOTA is maintained, or if this is not practical, contact one of the DAKOTA

team members so that we can provide you with DAKOTA executable files that are as complete as possible (i.€
that include Sandia-specific and site-licensed software that is not yet publicly available). Alternatively, you car
follow the instructions given in the previous section to obtain the public version of the DAKOTA binary and/or

source codes files. In the future, a download facility on Sandia’s internal restricted network may be added ti
simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a Unix tar file that
has a name similar tbakota _4 x.OSversion.tar.gz

Use the Unix utilitygunzip to uncompress the tar file and the Untiae  utility to extract the files from the
archive by executing the following commands:

gunzip Dakota_4_x.OSversion.tar.gz
tar -xvf Dakota_4_ x.OSversion.tar

The tar utility will create a subdirectory nam#édakota in which the DAKOTA executables and example files
will be stored. The executables arddakota/bin  , and the example problems arédlirakota/GettingStarted/
Examples and in /Dakota/test.

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files can be more involved than the installation process fo
the binary files. When possible, we recommend installing the binary files instead of compiling the source files
However, following the download, uncompression, and extraction of th®#lkota _4 _x.src.tar.gz, the

basic steps follow the standard GNU distribution process of:

configure
make
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2.1. INSTALLATION GUIDE 23

to construct Makefiles and build the system, respectively. Additionally, one can

make check
make install

to exercise regression and unit tests using the new executable and install the executable in a desire
respectively. Detailed instructions for building DAKOTA are given in theAdakota/INSTALL

2.1.5 Running DAKOTA

The DAKOTA executable file is named dakota. If this command is entered at the Unix prompt withc
arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print DAKOTA version number)
-check (Perform input checks)
-input <$val> (REQUIRED DAKOTA input file $val)
-output <$val> (Redirect DAKOTA standard output to file $val)
-error <$val> (Redirect DAKOTA standard error to file $val)
-read_restart <$val> (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart <$val> (Write a new DAKOTA restart file $val)

Of these available command line inputs, only thmput ” option is required; all others are optional. 1
“-help " option prints the usage message above. Tiwersion " option prints the version number of t
executable. The-theck ” option invokes a dry-run mode in which the input file is processed and check
errors, but the study is not performed. Thmput " option provides the name of the DAKOTA input file. T
“-output " and “-error " options provide file names for redirection of the DAKOTA standard output (sti
and standard error (stderr), respectively. Theedd _restart ” and “-write _restart " command line
inputs provide the names of restart databases to read from and write to, respectivelystdpe ‘restart ”
command line input limits the number of function evaluations read from the restart database (the defe
the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart m¢
is an important technique for retaining data from expensive engineering applications. This is an advan
that is discussed in detail in Chapte8. Note that these command line inputs can be abbreviated so Ic
the abbreviation is unique (the current set of command line options do not have any possibility for abbi
ambiguity). Thatis,*h”, “-v ", “-i ", “-0”, “-e”, “-r ", “-s ", and “-w” are commonly used in place of t
longer forms of the command line inputs.

To run DAKOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redir
and stderr to separate files, ttee and-e command line options may be used:

dakota -i dakota.in -0 dakota.out -e dakota.err

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects ¢
another file:
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24 CHAPTER 2. GETTING STARTED WITH DAKOTA

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite =" is used in place of *”. To redirect stderr as well as stdout, &"
is appended with no embedded space, B&™or “ >>&” is used. To override the noclobber environment vari
(if set) in order to allow overwriting of an existing output file or appending of a file that does not yet exist
is appended with no embedded space, B “>&! ", “>>1 7 or “>>&! " is used.

To run the dakota process in the background, append an ampersand symbol (&) to the command with an
space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to B] for more information on Unix redirection and background commands.

2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock fundifhmihich has the form:

f(x1,22) = 100(zy — 22)% + (1 — x1)? (2.1)

A three-dimensional plot of this function is shown in Fig@ré(a), where both:; andzs range in value from -
to 2. Figure2.1(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosent
function is formulated as follows:

minimize f(z1,x2)
x € R?
subject to —2<x; <2 (2.2)
—2<x9<2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained opti
problem. The unique solution to this problem lies at the pgint z2) = (1, 1) where the function value is zer

The two-variable version of the “textbook” example problem provides a nonlinearly constrained optimiza
case. Itis formulated as:

minimize f=(x; =D+ (22— 1)*
subject to g1 = a2 — % <0
g2 =3~ 5 <0 2.3)
0.5<21 <58
—29<1,<29

Contours of this example problem are illustrated in Figu@¢a), with a close-up view of the feasible region gi
in Figure2.2(b).

For the textbook example problem, the unconstrained minimum occyrs at2) = (1,1). However, the inclu
sion of the constraints moves the minimum(1q, x2) = (0.5, 0.5).
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Figure 2.1: Rosenbrock’s function: (a) 3-D plot and (b) contours witlon the bottom axis.

(b)

Figure 2.2: Contours of the textbook problem (a) on [th8, 4] x [—3, 4] domain and (b) zoomed into an area
containing the constrained optimum point , z2) = (0.5,0.5). The feasible region lies at the intersection of the
two constraintgy; (solid) andg- (dashed).
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26 CHAPTER 2. GETTING STARTED WITH DAKOTA

Several other example problems are available. See Chzipter a description of these example problems as well
as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in the distribution tar
files within the directoryDakota/GettingStarted/Examples . A simple DAKOTA input file for a two-
dimensional parameter study on Rosenbrock’s function is shown in R2gdififlename:dakota _rosenbrock _2d.in ).
This input file will be used to describe the basic format and syntax used in all DAKOTA input files.

strategy, \
single_method \
tabular_graphics_data
method, \
multidim_parameter_study \
partitons = 8 8 \
model, \
single
variables, \
continuous_design = 2 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \
interface, \
fork asynch \
# direct \
analysis_driver = ’'rosenbrock’ \
responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.3: Rosenbrock 2-D parameter study example: the DAKOTA input file.

There are six specification blocks that may appear in DAKOTA input files. These are identified in the input
file using the following keywords: variables, interface, responses, model, method, and strategy. These keyworc
blocks can appear in any order in a DAKOTA input file. At least sagables interface responsesandmethod
specification must appear, and no more thansirategyspecification should appear. In Figu3, one of each

of the keyword blocks is used. Additional syntax features include the use of the backslash symbeiscape

the newline character in order to split a keyword onto multiple lines for readability, use of the # symbol to indicate
a comment, use of single quotes for string inputs (e.g., ‘x1’), the use of commas and/or white space for separatiot
of specifications, and the use of “=" symbols to optionally enhance the association of supplied data. See the
DAKOTA Reference Manualq9] for additional details on this input file syntax.
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The variablessection of the input file specifies the characteristics of the parameters that will be used in the
problem formulation. The variables can be continuous or discrete, and can be classified as design variable:
uncertain variables, or state variables. See Chdgdtéor more information on the types of variables supported

by DAKOTA. Thevariablessection shown in Figur2.3 specifies that there are two continuous design variables.
The sub-specifications for continuous design variables use the abbreviation cdv in the input file and include the
descriptors “x1” and “x2” as well as lower and upper bounds for these variables. The information about the
variables is organized in column format for readability. So, both variablesdz, have a lower bound of -2.0

and an upper bound of 2.0.

Theinterfacesection of the input file specifies what approach will be used to map variables into responses as well
as details on how DAKOTA will pass data to and from a simulation code. In this example, a test function internal
to DAKOTA is used, but the data may also be obtained from a simulation code that is external to DAKOTA.
The keyworddirect indicates the use of a function linked directly into DAKOTA. Tamalysis _driver

keyword indicates the name of the test function. This is all that is needed since files will not be used to pass dat:
between DAKOTA and the simulation code.

Theresponsesection of the input file specifies the types of data that the interface will return to DAKOTA. For the
example shown in Figur 3, there is only one objective function, as indicated by the keyward objective  _
functions= 1. Since there are no constraints associated with Rosenbrock’s function, the keywords associated
with con-straint specifications are omitted. The keywardsgradients _ andno hessians indicate that gradient
and Hessian data are not needed.

Themethodsection of the input file specifies the iterative technique that DAKOTA will employ, such as a parame-
ter study, optimization method, data sampling technique, etc. In Figure 2.3, the keywitidim _parameter _study
specifies a multidimensional parameter study, while the keyword partitions denotes the number of intervals pel
variable. In this case, there will be eight intervals (nine data points) evaluated between the lower and uppel
bounds of both variables (bounds provided previously infir@ablessection), for a total of 81 response function
evaluations.

Themodelsection of the input file specifies the model that DAKOTA will use. A model refers to a collection of
responses, variables, and an interface. A model provides the logical unit for determining how a set of variables
is mapped into a set of responses in support of an iterative method. The model allows one to specify a single
interface, or to manage multiple interfaces through surrogates and model hierarchies or nested iteration. In man
cases, one might want to use an approximate model for optimization or uncertainty quantification, due to the
lower computational cost. Thmodel keyword allows one to specify if the iterator will be operating on a data

fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate (which uses the correctt
results of a lower fidelity simulation model as an approximation to a higher fidelity simulation), or a nested model.
See Chapter 10 for more details on global and local approximations and model specification details. If one is using
a model with no approximations or nesting, then it is not necessary to specifydatiel keyword: the default
behavior is that DAKOTA constructs a model with the last set of responses, variables, and interface specified. Ir
Figure 2.3, the keywordingle specifies that a single model will be used in this parameter study.

The final section of the input file shown in Figure 2.3 is siiategysection. This keyword section is used to spec-

ify some of DAKOTA's advanced meta-procedures such as multi-level optimization, surrogate-based optimization,
multi-start optimization, and Pareto optimization. See Chapter 9 for more information on these meta-procedures
The strategysection also contains the settings for DAKOTA's graphical output (viggthphics  flag) and the
tabular data output (via thabular _graphics _data keyword).
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2.4 Example Problems

2.4.1 Two-Dimensional Parameter Study

The 2-D parameter study example problem listed in Fig@r8is executed by DAKOTA using the followin
command:

dakota -i dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file nantout . For comparison, afile named.out.sav
is included in théDakota/GettingStarted/Examples directory. As for many of the examples, DAKO
provides a report on the best design point located during the study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Rigutdote that thegraphics flag
in the strategysection of the input file has been commented out since, for this example, the iteration histo
created by DAKOTA are not particularly instructive. More interesting visualizations can be created by im,
DAKOTA's tabular data into an external graphics/plotting package. Common graphics and plotting pz
include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and many others (Sandia National Laboil
and the DAKOTA developers do not endorse any of these commercial products).

ile [ . ] . [] . . ]

Figure 2.4: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluate

2.4.2 Vector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter study,
parameter study between any two design points in-dimensional parameter space.

An input file for the vector parameter study is shown in Fig@.&. The primary differences between this inj
file and the previous input file are found in thariablesand methodsections. In the variables section, 1
keywords for the bounds are removed and replaced with the keywawdinitial _point that specifies th
starting point for the parameter study. In the method sectionjgbtr _parameter _study keyword is used
Thefinal _point keyword indicates the stopping point for the parameter studynantdsteps specifies the
number of steps taken between the initial and final points in the parameter study.
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strategy, \
single_method \
tabular_graphics_data
method, \
vector_parameter_study \
final_point = 1.1 1.3 \
num_steps = 10 \
model, \
single
variables, \
continuous_design = 2 \
cdv_initial_point  -0.3 0.2 \
cdv_descriptors 'x1’ 'x2' \
interface, \
fork asynch \
# direct \
analysis_driver = ’rosenbrock’ \
responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.5: Rosenbrock vector parameter study example: the DAKOTA input file.

The vector parameter study example problem is executed using the command

dakota -i dakota rosenbrock_vector.in > vector.out

Figure2.6(a) shows the graphics output created by DAKOTA. For this study, the simple DAKOTA graph
more useful for visualizing the results. Fig@ré(b) shows the locations of the 11 sample points generated i
study. It is evident from these figures that the parameter study starts within the banana-shaped valley
up the side of the hill, and then returns to the valley. The outputvéigtor.out.sav is provided in ths
/Dakota/GettingStarted/Examples directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and centerec
eter study methods. Refer to Chaptdor additional information.

2.4.3 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in Figufe The
format of the input file is similar to that used for the parameter studies, but there are some new key
the responses and method sections. First, in the responses section of the input file, the keyword bl
ing with numerical _gradients  specifies that a finite difference method will be used to compute gra
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Figure 2.6: Rosenbrock vector parameter study example: (a) screen capture of the DAKOTA graphics and (b)
location of the design points (dots) evaluated.
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strategy, \
single_method \
tabular_graphics_data
method, \
conmin_frcg \
max_iterations = 100 \
convergence_tolerance = le-4 \
model, \
single
variables, \
continuous_design = 2 \
cdv_initial_point  -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors X1’ X2’ \
interface, \
fork asynch \
# direct \
analysis_driver = 'rosenbrock’ \
responses, \
num_objective_functions = 1 \
numerical_gradients \
method_source dakota \
interval_type forward \
fd_gradient_step_size = l.e-5 \
no_hessians

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the DAKOTA input fil

for the optimization algorithm. Note that the Rosenbrock function evaluation code inside DAKOTA
capability to give analytical gradient values. To switch from finite difference gradient estimates to analy
dients, uncomment thanalytic  _gradients  keyword and comment out the four lines associated witl
numerical _gradients  specification. Next, in the method section of the input file, several new key
have been added. In this section, the keywaydmin _frcg indicates the use of the Fletcher-Reeves conjt
gradient algorithm in the CONMIN optimization software packa@@ for bound-constrained optimization. T
keyword max_iterations is used to indicate the computational budget for this optimization (in this ci
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps
line search steps). The keywardnvergence _tolerance s used to specify one of CONMIN’s convergel
criteria (here, CONMIN terminates if the objective function value differs by less than the absolute valu
convergence tolerance for three successive iterations). And, finallguthbat verbosity is set tqyuiet

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_grad_opt.in > grad_opt.out
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The sample filgrad _opt.out.sav is included in/fDakota/GettingStarted/Examples for compar-
ison. When this example problem is executed, DAKOTA creates some iteration history graphics similai
screen capture shown in Figur2.8@). These plots show how the objective function and design param
change in value during the optimization steps. The scaling of the horizontal and vertical axes can be chs
moving the scroll knobs on each plot. Also, the “Options” button allows the user to plot the vertical axes
logarithmic scale. Note that log-scaling is only allowed if the valoeshe vertical axis are strictly greater th:
zero.
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Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the C
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the
(z1,22) = (—1.2,1.0) as given in the DAKOTA input file. Subsequent iterations follow the banana-sh
valley that curves around toward the minimum poin{at, z2) = (1.0, 1.0). Note that the function evaluation
associated with the line search phase of each CONMIN iteration are not shown on the plot. At the enc
DAKOTA run, information is written to the output file to provide data on the optimal design point. This
includes the optimum design point parameter values, the optimum objective and constraint function values
plus the number of function evaluations that occurred and the amount of time that elapsed during the optir
study.
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2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly constrai
lem. The “textbook” example problem (see Section 2.2) is used for this purpose and the DAKOTA in
for this example problem is shown in Figure 2.9. This input file is similar to the input file for the uncons
gradient-based optimization example problem involving the Rosenbrock function. Note the addition of col
in the responses section of the input file that identify the number and type of constraints, along with tt
bounds on these constraints. The commaticdsct andanalysis _driver = 'text _book’ specify tha
DAKOTA will execute its internal version of the textbook problem.

strategy, \
single_method

method, \
dot_mmfd, \
max_iterations = 50, \

convergence_tolerance = le-4

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 11 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor x1’ 'x2'
interface, \
fork \
analysis_driver = ‘text_book’ \
responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = l.e-4 \

no_hessians

Figure 2.9: Textbook gradient-based constrained optimization example: the DAKOTA input file.
This example problem is executed by using the following command:

dakota -i dakota_textbook.in > textbook.out

The filetextbook.out.sav is included in/Dakota/GettingStarted/Examples for comparison pui
poses. The results of the optimization example problem are listed at the endtekthaeok.out file. This

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



34 CHAPTER 2. GETTING STARTED WITH DAKOTA

information shows that the optimizer stopped at the p6int z2) = (0.5,0.5), where both constraints are ¢
isfied, and where the objective function valud)i$25. This progress of the optimization algorithm is show
Figure2.1(@) where the dots correspond to the end point of each iteration in the algorithm. The starting
(x1,z2) = (4.0,0.0) where constraing; is violated and constraint is satisfied. The optimizer takes a seque
of steps to minimize the objective function while reducing the infeasibility,0fnd retaining the feasibility «
g2. The optimization graphics are also shown in FigeuE)b).
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Figure 2.10: Textbook gradient-based constrained optimization example: (a) screen capture of the DAKOTA
graphics shows how the objective function was reduced during the search for a feasible design point and (b)
iteration history (iterations marked by solid dots).
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2.4.5 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least squares minimization
(see Sectiorz1l.1and Sectior?1.2. For example, the Rosenbrock problem can be cast as:

minimize  (f1)% + (f2)? (2.4)

where f; = 10(z2 — #%) and f = (1 — z1). When using a least squares approach to minimize a fun
each of the least squares termfis fo, ... is driven to zero. This formulation permits the use of specia
algorithms that can be more efficient than general purpose optimization algorithms. See @Ffapterre detai
on the algorithms used for least squares minimization, as well as a discussion on the types of engineeri
problems (e.g., parameter estimation) that can make use of the least squares approach.

Figure 2.11is a listing of the DAKOTA input filedakota _rosenbrock _s.in . This input file differs
from the input file shown in Figur@.7 in several key areas. The responses section of the input file us
keywordnum.least _squares _terms = 2 instead of themum.objective _functions = 1 . The key:
words in the interface section show that the Unix system call method is used to run the C++ analysis cot
rosenbrock . The method section of the input file shows that the Gauss-Newton algorithm from the OF
brary [73] (optpp _g_newton ) is used in this example. For DAKOTA Version 4.0, the Gauss-Newton, NL2
and NLSSOL SQP algorithms are available for exploiting the special mathematical structure of least squi
imization problems.

The input file listed in Figur@.11is executed using the command:
dakota -i dakota_rosenbrock_ls.in > leastsquares.out

The fileleastsquares.out.sav is included/Dakota/GettingStarted/Examples for comparisol
purposes. The optimization results at the end of this file show that the least squares minimization appi
found the same optimum design poifit;1, 2) = (1.0,1.0), as was found using the conventional gradi
based optimization approach. The iteration history of the least squares minimization is given inZif,
and shows that nearly 30 function evaluations were needed for convergence. In this example the lea
approach required about the same number of function evaluations as did conventional gradient-based op
However, in many cases the least squares algorithm will converge more rapidly in the vicinity of the solu

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of nongradien
algorithms. One particular nongradient-based algorithm for local optimization is known as pattern see
Chapterl for a discussion of local versus global optimization). The DAKOTA input file shown in Figut&
applies a pattern search method to minimize the Rosenbrock function. While this provides for an interest
parison to the previous example problems in this chapter, the Rosenbrock function is not the best test
pattern search method. That is, pattern search methods are better suited to problems where the gradie
expensive to evaluate, inaccurate, or nonexistent; situations common among many engineering optimiza
lems. It also should be noted that nongradient-based algorithms generally are applicable only to uncc
or bound-constrained optimization problems, although the inclusion of general linear and nonlinear cons
nongradient-based algorithms is an active area of research in the optimization community. For most u
wish to use nongradient-based algorithms on constrained optimization problems, the easiest route is t
penalty function, i.e., a composite function that contains the objective function and the constraints, ex
DAKOTA and then optimize on this penalty function. Most optimization textbooks will provide guidan
selecting and using penalty functions.
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strategy, \
single_method \
tabular_graphics_data

method, \

optpp_g_newton \
max_iterations = 100 \
convergence_tolerance = le-4 \

model, \
single

variables, \
continuous_design = 2 \
cdv_initial_point  -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
fork asynch \
# direct \
analysis_driver = 'rosenbrock’ \

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

Figure 2.11: Rosenbrock nonlinear least squares example: the DAKOTA input file.

This DAKOTA input file shown in Figure.13is similar to the input file for the gradient-based optimizat
except it has a different set of keywords in the method section of the input file, and the gradient specifi
the responses section has been changea tgradients . The pattern search optimization algorithm use
part of the COLINY library p7]. See the DAKOTA Reference Manua&lg] for more information on thenethod:
section commands that can be used with COLINY algorithms.

This DAKOTA input file is executed using the following command:
dakota -i dakota_rosenbrock_ps_opt.in > ps_opt.out

The file ps _opt.out.sav is included in theDakota/GettingStarted/Examples directory. For thi:
run, the optimizer was given an initial design point(ef, z2) = (0.0,0.0) and was limited to 2000 functic
evaluations. In this case, the pattern search algorithm stopped short of the optiniumaat = (1.0,1,0),
although it was making progress in that direction when it was terminated (eventually, it would have rea
minimum point).

The iteration history is provided in Figur2.14b) which shows the locations of the function evaluations us
the pattern search algorithm. Figu2el4(c) provides a close-up view of the pattern search function evalu:
used at the start of the algorithm. The coordinate pattern is clearly visible at the start of the iteration his

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



38 CHAPTER 2. GETTING STARTED WITH DAKOTA

A,
W

—_
=

' '
_ =
th 1|:l th
[ 1—+
e
—
HR——— )
—
="

—=

S

] 5 I 1 @ I 30

least sq term 1

i T
; lhﬂfﬂﬂuim

] a 10 15 I oz 30

lptions Nptiohs

Figure 2.12: Rosenbrock nonlinear least squares example: iteration history for least squargs aewirfs.

the decreasing size of the coordinate pattern is evident at the design points move(towasg = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows son
drawbacks to this algorithm. While a pattern search method may make good initial progress towards an
it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s function, a nong
based method will not be as efficient as a gradient-based method. However, there are many engineer
applications where gradient information is inaccurate or unavailable, which renders gradient-based o
ineffective. Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic :
as discussed in the next section) are often good choices in complex engineering applications when the
gradient data is suspect.

2.4.7 Nongradient-based Optimization via Evolutionary Algorithm

In contrast to pattern search algorithms, which are local optimization methods, evolutionary algorithms i
global optimization methods. As was described above for the pattern search algorithm, the Rosenbrocl
is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are be
to optimization problems that have multiple local optima, and where gradients are either too expensive to
or do not exist.

Evolutionary algorithms are based on Darwin’s theory of survival of the fittest. The EA algorithm starts
randomly selected population of design points in the parameter space, where the values of the design
form a “genetic string,” which is analogous to DNA in a biological system, that uniquely represents eact
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strategy, \
single_method \
tabular_graphics_data

method, \

coliny_pattern_search \
max_iterations = 1000 \
max_function_evaluations = 2000 \
solution_accuracy = le-4 \
initial_delta = 0.5 \
threshold_delta = le-4 \
exploratory_moves basic_pattern \
contraction_factor = 0.75 \

model, \
single

variables, \
continuous_design = 2 \
cdv_initial_point 0.0 0.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
fork asynch \
# direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.13: Rosenbrock pattern search optimization example: the DAKOTA input file.

point in the population. The EA then follows a sequence of generations, where the best design poir
population (i.e., those having low objective function values) are considered to be the most “fit” and are
to survive and reproduce. The EA simulates the evolutionary process by employing the mathematica
of processes such as natural selection, breeding, and mutation. Ultimately, the EA identifies a des
(or a family of design points) that minimizes the objective function of the optimization problem. An ext
discussion of EAs is beyond the scope of this text, but may be found in a variety of source$%tpp.[ 149-
158; [B2]). Currently, the EAs available in DAKOTA include a genetic algorithm for problems involving dis
variables and an evolution strategy with self-adaptation for problems with continuous variables. Details
algorithms are given in the DAKOTA Reference Manu28][ The COLINY library, which provides the E
software that has been linked into DAKOTA, is described in Referebide [

Figure2.15shows a DAKOTA input file that uses an EA to minimize the Rosenbrock function. For this ex
the EA has a population size of 50. At the start of the first generation, a random number generator i
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Figure 2.14: Rosenbrock pattern search optimization example: (a) screen capture of the DAKOTA grapt
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coordinat:
used.

select 50 design points that will comprise the initial populati@gnspecific seed value is used in this example
generate repeatable results, although, in general, one should use the default setting which allows the EA t
a random seed.p two-point crossover technique is used to exchange genetic string values between the m
of the population during the EA breeding process. The result of the breeding process is a population co
of the 10 best “parent” design points (elitist strategy) plus 40 new “child” design points. The EA optimi:z
process will be terminated after either 6,000 iterations (generations of the EA) or 10,000 function evalt
The EA software available in DAKOTA provides the user with much flexibility in choosing the settings us
the optimization process. Se2d and [57] for details on these settings.

The input file is executed by DAKOTA using the following command:
dakota -i dakota_rosenbrock_ea opt.in >! ea_opt.out

where the fileea_opt.out.sav has been included ifDakota/GettingStarted/Examples . The
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strategy, \
single_method \
tabular_graphics_data

method, \
coliny_ea \

max_iterations = 100 \
max_function_evaluations = 2000 \
seed = 11011011 \
population_size = 50 \
fithess_type merit_function \
mutation_type offset_normal \
mutation_rate 1.0 \
crossover_type two_point \
crossover_rate 0.0 \
replacement_type chc = 10 \

model, \
single

variables, \
continuous_design = 2 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
fork asynch \
# direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.15: Rosenbrock evolutionary algorithm optimization example: the DAKOTA input file.

EA optimization results printed at the end of this file show that the best design point fountkywas) =
(0.96,0.93). The file ea_tabular.dat.sav provides a listing of the design parameter values and ¢
tive function values for all 10,000 design points evaluated during the running of the EA. FRjlif&a) show:
the population of 50 randomly selected design points that comprise the first generation of the EA, i
ure 2.16b) shows the final population of 50 design points, where most of the 50 points are cluster
(x1,22) = (0.96,0.93).

As described ab@; an EA is not well-suited to an optimization problem involving a smooth, differentiable «
tive such as the Rosenbrock function. Rather, EAs are better suited to optimization problems where cor
gradient-based optimization fails, such as situations where there are multiple local optima and/or gradier
be computed. In such cases, the computational expense of an EA is warranted since other optimizatiol
are not applicable or impractical. In many optimization problems, EAs often quickly identify promising r
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Figure 2.16: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial
final populations selected by the evolutionary algorithm.

of the design space where the global minimum may be located. However, an EA can be slow to cor
the optimum. For this reason, it can be an effective approach to combine the global search capabilitie:
with the efficient local search of a gradient-based algorithm nmudtilevel hybrid optimizatiorstrategy. In thi
approach, the optimization starts by using a few iterations of a EA to provide the initial search for a good r
the parameter space (low objective function and/or feasible constraints), and then it switches to a gradi
algorithm (using the best design point found by the EA as its starting point) to perform an efficient loca
for an optimum design point. More information on this multilevel hybrid approach is provided in Cleapter

In addition to the evolutionary algorithm capabilities in #t@iny _ea method, there is a single-objective
netic algorithm method callesbga . For more information osoga , see Chapter.

2.4.8 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on tr
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible Véttmr Pareto optimze
if there exists no other feasible vect&r which would improve some objective without causing a simultan
worsening in at least one other objective. Thus, if a feasible pingxists that CAN be improved on one
more objectives without worsening of another, it is hot Pareto optimal: it is said to be “dominated” and th
along the Pareto front are said to be “non-dominated”.

Often multi-objective problems are addressed by simply assigning weights to the individual objectives, s
the weighted objectives, and turning the problem into a single-objective one which can be solved with i
of optimization techniques. While this approach provides a useful “first cut” analysis (and is supportet
DAKOTA, see Sectiof7.3), this approach has many limitations. The major limitation is that a linear weighte
objective will not find optimal solutions if the true Pareto front is nonconvex. Also, if one wants to underst
effects of changing weights, this method can be computationally expensive. Since each optimization o
weighted objective will find only one point near or on the Pareto front, many optimizations must be perfo
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get a good parametric understanding of the influence of the weights and to achieve a good sampling of
Pareto frontier.

Starting with version 3.2 of DAKOTA, a capability to perform multi-objective optimization based on a g
algorithm method has been provided. This method is catleda. It is based on the idea that as the popule
evolves in a GA, solutions which are non-dominated are chosen to remain in the population. Until versic
DAKOTA, there was a selectiatype choice of dominatiawount which performed a custom fitness assess
and selection operation together. As of version 4.0 of DAKOTA, that functionality has been broken into s
more generally usable fitness assessment and selection operators called the domination count fitness a
below limit selector respectively. The effect of using these two operators is the same as the previous beha
dominationcount selector. This means of selection works especially well on multi-objective problems
it has been specifically designed to avoid problems with aggregating and scaling objective function va
transforming them into a single objective. Instead, the fithess assessor works by ranking population

such that their resulting fitness is a function of the number of other designs that dominate them. Thintie
selector then chooses designs by considering the fitness of each. If the fitness of a design is above a ce
which in this case corresponds to a design being dominated by more than a specified number of other de:
it is discarded. Otherwise it is kept and selected to go to the next generation. The one catch is that thi
will require that a minimum number of selections take plateinkage _percentage defines the minimui
amount of selections that will take place if enough designs are available. It is interpreted as a percente
population size that must go on to the subsequent generation. To enforce this, thdilndleelector makes a
the selections it would make anyway and if that is not enough, it relaxes its limit and makes selections

remaining designs. It continues to do this until it has made enough selections. The moga method has n
important features. Complete descriptions can be found in the DAKOTA Reference Majual [

Figure2.17 shows an example input file which demonstrates some of the multi-objective capabilities a
with the moga method.

This example has three input variables and two objectives. Note that this method is referring to a different
than the Rosenbrock function because we wanted to demonstrate the capability on a problem with two ¢
objectives. This example is taken from a testbed of multi-objective probl&éBjs The final results from moc
are output to a file callefinaldata.dat in the directory in which you are running. THigaldata.dat

file is simply a list of inputs and outputs. Plotting the output columns against each other allows one tc
Pareto front generated bgoga. Figure2.18shows an example of the Pareto front for this problem. Note
a Pareto front easily shows the tradeoffs between Pareto optimal solutions. For example, look at the
f1 and f2 values equal to (0.9, 0.25). One cannot improve (minimize) the value of objective function f1-
increasing the value of f2: another point on the Pareto front, (0.6, 0.6) represents a better value of object
a worse value of objective 2.

Sectionsr’.2and7.3 provide more information on multiobjective optimization. There are three detailed exe
provided in Sectior21.11

2.4.9 Monte Carlo Sampling

Figure 2.19 shows the DAKOTA input file for an example problem which demonstrates some of the r.
sampling capabilities available in DAKOTA. In this example, the design parameters, x1 and x2, will be
as uncertain parameters that have uniform distributions over the interval [-2, 2]. This is specified in t
ables section of the input file, beginning with the keywardform _uncertain . For comparison, the ke
words from the previous examples are retained, but have been commented out. Another change

put file occurs in the responses section where the keywardresponse _functions is used in place ¢
numobjective  _functions . The final changes to the input file occur in the method section, whe
keywordnond _sampling (nond is an abbreviation for nondeterministic) is used. The other keywords
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strategy, \
single \
graphics tabular_graphics_data
method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type unique_random \
crossover_type shuffle_random \
num_offspring = 2 num_parents = 2 \
crossover_rate = 0.8
mutation_type replace_uniform \
mutation_rate = 0.1 \
fitness_type domination_count \
replacement_type below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type metric_tracker \
percent_change = 0.05 num_generations = 10
variables, \
continuous_design = 3 \
cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor x1’ 'x2' 'x3’ \
interface, \
system \
analysis_driver = 'mogatestl’ \
responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 2.17: Multiple objective genetic algorithm (MOGA) example: the DAKOTA input file.
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MOGA Test Problem 41 - Concave Fareto Frontier
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Figure 2.18: Multiple objective genetic algorithm (MOGA) example: Pareto front showing tradeoffs b
functions f1 and f2.

methods section of the input file specify the number of samples (200), the seed for the random numb
ator (17), the sampling method (random), and the response threshold (100.3eéthepecification allows
user to obtain repeatable results from multiple runs. If a seed value is not specified, then DAKOTAS s
methods are designed to generate nonrepeatable behavior (by initializing the seed using a system clock’
word response _thresholds  allows the user to specify threshold values for which DAKOTA will com)
statistics on the response function output. Note that a unique threshold value can be specified for eact
function.

In this example, DAKOTA will select 200 design points from within the parameter space, evaluate the
Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200
values.

This DAKOTA input file is executed using the following command:

dakota -i dakota rosenbrock_nond.in > nond.out

See the filmond.out.sav  in /Dakota/GettingStarted/Examples for comparison to the results pi
duced by DAKOTA. Note that your results will differ from those in this file if yaeed value differs or if nc
seed is specified.

The statistical data on the 200 Monte Carlo samples is printed at the end of the output file in the section
with “Statistics for each response function....” In this section, DAKOTA outputs the mean, standard de
coefficient of variation, and 95% confidence intervals for each of the response functions, followed by
centages of the response function values that are above and below the response threshold values spe
input file. Figure2.20shows the locations of the 200 sample sites within the parameter space of the Ros

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



46 CHAPTER 2. GETTING STARTED WITH DAKOTA
function.
strategy, \
single_method \
tabular_graphics_data
method, \
nond_sampling \
samples = 200 seed = 17 \
sample_type random \
response_levels = 100.0
model, \
single
variables, \
uniform_uncertain = 2 \
uuv_lower_bounds -2.0 -2.0 \
uuv_upper_bounds 2.0 2.0 \
uuv_descriptor X1 'x2'
interface, \
fork asynch \
# direct \
analysis_driver = ’rosenbrock’ \
responses, \
num_response_functions = 1 \
no_gradients \
no_hessians

Figure 2.19: Monte Carlo sampling example: the DAKOTA input file.

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



2.4. EXAMPLE PROBLEMS 47

Figure 2.20: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo
using a uniform distribution for both;, andz-.

2.4.10 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and tex
functions that are compiled into DAKOTA. In engineering applications, it is much more common to t
system orfork interface approaches within DAKOTA to manage external simulation codes. In both o
cases, the communication between DAKOTA and the external code is conducted through the reading ar
of short text files. For this example, the C++ programsenbrock.C  in /Dakota/test is used as th
simulation code. This file is compiled to create the stand-atosenbrock executable that is referenced
theanalysis _driver in Figure2.21 This stand-alone program performs the same function evaluatic
DAKOTASs internal Rosenbrock test function.

Figure 2.21 shows the text of the DAKOTA input file namedhkota _rosenbrock _syscall.in that is
provided in the directoryDakota/GettingStarted/Examples . The only differences between this in|
file and the one in Figure2.7 occur in theinterfacekeyword section. The keywordystem indicates the
DAKOTA will use system calls to create separate Unix processes for executions of the user-supplied si
code. The name of the simulation code, and the names for DAKOTA's parameters and results file are
using theanalysis _driver , parameters _file ,andresults _file keywords, respectively.

This example problem is executed using the command:
dakota -i dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization example <
system interface method has additional process creation and file I/O overhead, as compared to the inte
munication that occurs when tl@ect  interface method is used. The fidgscall.out.sav is provided ir
the/Dakota/GettingStarted/Examples directory for comparison to the output results produced v
executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing withdy&tem interface approach, add t
keywordsfile _tag andfile _save to the interface specification and re-run DAKOTA. Check the listin
the local directory and you will see many new files with names sugiaeams.in.1 , params.in.2 , etc.,
andresults.out.1 , results.out.2 , etc. There is onparams.in.X file and oneresults.out.X
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file for each of the function evaluations performed by DAKOTA. This is the file listingofmams.in.1
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-1.200000000000000e+00 x1
1.000000000000000e+00 x2

2

1

ONEFENPE

variables

functions

ASV_1
derivative_variables
DVV_1

DVV_2
analysis_components

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the
arrays consist of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis
components (AC). For the variables array, the first line gives the total number of variables (2) and the “variables”

strategy,
single_method
tabular_graphics_data
method,
conmin_frcg
max_iterations = 100
convergence_tolerance = le-4
model,
single
variables,
continuous_design = 2
cdv_initial_point -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptors 'x1’ 'x2'
interface,
fork asynch \
system
analysis_driver = 'rosenbrock’
parameters_file = ’params.in’
results_file = ’results.out’
responses,
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1l.e-5
no_hessians

Figure 2.21: DAKOTA input file for gradient-based optimization using the system call interface to an external

rosenbrock simulator.
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string identifier, and the subsequent two lines provide the array listing for the two variable values (-1.2
and descriptor tags (“x1" and “x2” from the DAKOTA input file). The next array provides the ASV v
defines the data requests for the simulator outputs. The first line of the array gives the total number of
functions (1) and the “functions” string identifier, followed by the listing of the one ASV code and des
tag ("ASV_1"). In this case, the ASV value of 1 indicates that DAKOTA is requesting that the simulatior
return the response function value in the figsults.out.X (ASV values: 1 = value of response funct
value, 2 = response function gradient, 4 = response function Hessian, and any combination up to 7 =
function value, gradient, and Hessian; see Sedibifor more detail). The next array provides the DVV wh
defines the variable identifiers used in computing derivatives. The first line of the array gives the nu
derivative variables (2) and the “derivativariables” string identifier, followed by the listing of the two D\
variable identifiers (the first and second variables) and descriptor tags (‘D\&d “DVV_2"). The final arra
provides the AC which are used to provide additional strings for use by the simulator (e.g., to provide tl
of a particular mesh file). The first line of the array gives the total number of analysis components (0)
“analysiscomponents” string identifier, followed by the listing of the array, which is empty in this case.

The executable program rosenbrock reads inprams.in.X  file and evaluates the objective function at
given values forr; andzs. Then, rosenbrock writes out the objective function data taabalts.out. X file.
Here is the listing for the fileesults.out.1

2.420000000000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optional tag rett
the simulation code. When the system call has completed, DAKOTA reads in the data fraeauhs.in. X

file and processes the results. DAKOTA then continues with additoinal executions of the rosenbrock
until the optimization process is complete.

2.4.11 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and wpiteatres.in. X
file and theresults.out.X file, as described above. Typically, this occurs when the simulation ct
a commercial or proprietary software product that has specific input file and output file formats. In suc
it is common to replace the executable program name in the DAKOTA input file with the name of a Un
script containing a sequence of commands that read and write the necessary files and run the simulatior
example, the executable program namesenbrock listed in Figure2.21could be replaced by a Unix C-sh
script namedimulator  _script , with the script containing a sequence of commands to perform the follc
steps: insert the data from tiparameters.in.X file into the input file of the simulation code, execute
simulation code, post process the files generated by the simulation code to compute response data, ant
response data to DAKOTA in theesults.out. X file. The steps that are typically used in constructing
using a Unix shell script are described in Sectiénl

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including parameter stud
ious types of optimization, and uncertainty quantification sampling. More information on the DAKOTA
file syntax is provided in the remaining chapters in this text and in the DAKOTA Reference M&&Uahfddi-
tional example problems that demonstrate some of DAKOTA's advanced capabilities are provided in 6|
Chapter9, Chaptet 6, and ChapteP1.

Here are a few pointers to sections of this manual that many new users find useful:

DAKOTA Version 4.0 User’'s Manual generated on October 13, 200



2.5. WHERE TO GO FROM HERE 51

e Chapterl5 describes the different DAKOTA output file formats, including commonly encountered
messages.

e Chapterl6 demonstrates how to employ DAKOTA with a user-supplied simulation code.
Most DAKOTA users will follow the approach described in this chapter.

e Chapterl8 provides guidelines on how to choose an appropriate optimization, uncertainty quantif
or parameter study method based on the characteristics of your application.

e Chapterl9describes the file restart and data re-use capabilities of DAKOTA.
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Chapter 3

DAKOTA Capability Overview

3.1 Purpose

This chapter provides a brief, but comprehensive, overview of DAKOTA's capabilities. Additional deta
example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within simulatior
DAKOTA provides four parameter study methods that may be selected by the user.

Multidimensional : Forms a regular lattice or grid in an n-dimensional parameter space, where the user
the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional paramet
where the user specifies the number of steps used in the study.

Centered Given a point in an n-dimensional parameter space, this method evaluates nearby points i
coordinate axes of the parameter space. The user selects the number of steps and the step size.

List: The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate respor
from the simulation code.

Additional information on these methods is provided in Chagter

3.3 Design of Experiments

Design of experiments are often used to explore the parameter space of an engineering design problem
of experiments, especially design of computer experiments, one wants to generate input points that pro
coverage of the input parameter space. There is significant overlap between design of experiments and
We consider design of experiment methods to generate sets of uniform random variables on the[intg)
with the goal of characterizing the behavior of the response functions over the input parameter range:
est. Uncertainty quantification, in contrast, involves characterizing the uncertain input variables with pre
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distributions such as normal, Weibull, triangular, etc., sampling from the input distributions, and propag:
input uncertainties to obtain a cumulative distribution function on the output or system response. We use
Hypercube Sampling software (also developed at Sandia) for generating samples on input distribution
uncertainty quantification. LHS is explained in more detail in the subsequent s&#iofwo software packag:
are available in DAKOTA for design of computer experiments, DDACE (developed at Sandia Labs) an
DACE (developed at Florida State University). Often, both sampling and experimental design technique
used to obtain similar results about the behavior of the response functions and about the relative importa
input variables.

DDACE (Distributed Design and Analysis of Computer Experiments) The DACE package includes bc
stochastic sampling methods and classical design of experiments mehpddfe stochastic methods are Mo
Carlo (random) sampling, Latin Hypercube sampling, orthogonal array sampling, and orthogonal array-
percube sampling. The orthogonal array sampling allows for the calculation of main effects. The DDACE
currently supports variables that have either normal or uniform distributions. However, only the uniform ¢
tion is available in the DAKOTA interface to DDACE. The classical design of experiments methods in C
are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling metho
available. DDACE is available under a GNU Lesser General Public License and is distributed with DAKC

FSUDace (Florida State University Design and Analysis of Computer Experiments)The FSUDace pacl
age provides quasi-Monte Carlo sampling (Halton and Hammersley) and Centroidal Voronio Tesselatic
methods. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Dis
refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequence:
cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy se¢
especially if one is interested in the uniformity of projections of the point sets onto lower dimensional f
the hypercube. CVT does very well volumetrically: it spaces the points fairly equally throughout the sg
that the points cover the region and are isotropically distributed with no directional bias in the point pla
FSUDace is available under a GNU Lesser General Public License and is distributed with DAKOTA.

Additional information on these methods is provided in Chapter

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) involve the «
tion of probabilistic information about response functions based on sets of simulations taken from the :
probability distributions for uncertain input parameters. Put another way, these methods perform a fon
certainty propagation in which probability information for input parameters is mapped to probability infor
for output response functions. The UQ methods in DAKOTA include various sampling-based approact
Monte Carlo and Latin Hypercube sampling), along with analytic reliability methods and stochastic finite «
methods. We recently added the capability to perform epistemic uncertainty quantification in DAKOTA.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and
Hypercube sampling methods, which can be used with probabilistic variables in DAKOTA that have the fc
distributions: normal, lognormal, uniform, loguniform, triangular, beta, gamma, gumbel, frechet, weibt
user-supplied histograms. In addition, LHS accounts for correlations among the var@hlegjch can be use
to accommodate a user-supplied correlation matrix or to minimize correlation when a correlation matr
supplied. The LHS package currently serves two purposes: (1) it can be used for uncertainty quantifit
sampling over uncertain variables characterized by probability distributions, or (2) it can be used in a DAC
in which any design and state variables are treated as having uniform distributions (@ke thariables  flag
in the DAKOTA Reference Manua2P)]). The LHS package comes in two versions: “old” (circa 1980) and “r
(circa 1998), where the latter is preferred when Fortran 90 compilers are available. New LHS is availak
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a separate GNU General Public License and old LHS is provided under the DAKOTA GPL umbrella. E
distributed with DAKOTA.

Reliability Methods: This suite of methods include first- and second-order versions of the Mean Value 1
(MVFOSM and MVSOSM) and a variety of most probable point (MPP) search methods, including the Ac
Mean Value method (AMV and AM%), the iterated Advanced Mean Value method (AMV+ and AMY, the
Two-point Adaptive Nonlinearity Approximation method (TANA-3), and the traditional First Order and S
Order Reliability Methods (FORM and SORM). Reliability mappings may involve computing reliabilit
probability levels for prescribed response levels (forward reliability analysis, commonly known as the re
index approach or RIA) or computing response levels for prescribed reliability and probability levels (
reliability analysis, commonly known as the performance measure approach or PMA). Approximatio
MPP search methods (AMV, AM¥ AMV+, AMV 2+, and TANA) may be applied in either x-space or u-sp
and mappings may involve either cumulative or complementary cumulative distribution functions.

Stochastic Finite Element Methods The objective of these techniques is to characterize the response
tems whose governing equations involve stochastic coefficients. The development of these technique
that of deterministic finite element analysis utilizing the notions of projection, orthogonality, and weak «

gence §4], [45].

Dempster-Shafer Theory of Evidence The objective of Evidence theory is to model the effects of epist
uncertainties. Epistemic uncertainty refers to the situation where one does not know enough to specify
bility distribution on a variable. Sometimes epistemic uncertainty is referred to as subjective, reducible
of knowledge uncertainty. In contrast, aleatory uncertainty refers to the situation where one does hav
information to specify a probability distribution. In Dempster-Shafer theory of evidence, the uncertain ing
ables are modeled as sets of intervals. The user assigns a basic probability assignment (BPA) to eac
indicating how likely it is that the uncertain input falls within the interval. The intervals may be overla
contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a prok
estimate that is consistent with the evidence, and plausibility is the uppder bound on a probability estime
consistent with the evidence.

Additional information on these methods is provided in Chafter

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include freely-availe
ware packages developed by research groups external to Sandia Labs, Sandia-developed software th
released to the public under GNU licenses, and commercially-developed software. These optimization
packages provide the DAKOTA user with access to well-tested, proven methods for use in engineerin
applications, as well as access to some of the newest developments in optimization algorithm research.

COLINY : Methods for nongradient-based local and global optimization which utilize the Common Optim
Library INterface (COLIN). This algorithm library supersedes the SGOPT library. COLINY currently inc
evolutionary algorithms (including several genetic algorithms and Evolutionary Pattern Search), simple
search, Monte Carlo sampling, and the DIRECT and Solis-Wets algorithms. COLINY also include inter
third-party optimizers APP6R] and COBYLAZ2. This software is available to the public under a GNU Le
General Public License (LGPL) through ACRO (A Common Repository for Optimizers) and the source ¢
COLINY is included with DAKOTA (web pagehttp://www.cs.sandia.gov/Acro ).

CONMIN (CONstrained MINimization) : Methods for gradient-based constrained and unconstrained opt
tion [99]. The constrained optimization algorithm is the method of feasible directions (MFD) and the
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strained optimization algorithm is the Fletcher-Reeves conjugate gradient (CG) method. This software
available to the public from NASA, and the CONMIN source code is included with DAKOTA.

DOT (Design Optimization Toolsy Methods for gradient-based optimization for constrained and unconst
optimization problems 1[01]. The algorithms available for constrained optimization are modified-MFD, SQI
sequential linear programming (SLP). The algorithms available for unconstrained optimization are the |
Reeves CG method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT
mercial software product of Vanderplaats Research and Development, Inc. (wethfipg&vww.vrand.
com). Sandia National Laboratories and Los Alamos National Laboratory have limited seats foDENefuser:
may obtain their own copy of DOT and compile it with the DAKOTA source code by following the steps
the file /Dakota/INSTALL.

JEGA: provides SOGA and MOGA (single- and multi-objective genetic algorithms) optimization method
SOGA method provides a basic GA optimization capability that uses many of the same software eleme!
MOGA method. The MOGA package allows for the formulation of multiobjective optimization problems w
the need to specify weights on the various objective function values. The MOGA method directly identifi
dominated design points that lie on the Pareto front through tailoring of its genetic search operators. The ¢
of the MOGA method versus conventional multiobjective optimization with weight factors (see S8djpis
that MOGA finds points along the entire Pareto front whereas the multiobjective optimization method p
only a single point on the Pareto front. The advantage of the MOGA method versus the Pareto-set opt
strategy (see Sectiah8) is that MOGA is better able to find points on the Pareto front when the Paretc
is nonconvex. However, the use of a GA search method in MOGA causes the MOGA method to be mt
computationally expensive than conventional multiobjective optimization using weight factors.

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) : formerly known as rSQP+
MOOCHO provides both general-purpose gradient-based algorithms for nested analysis and design (N/
large-scale gradient-based optimization algorithms for simultaneous analysis and design (SAND). This
is not yet distributed with DAKOTA.

NLPQLP: Methods for gradient-based constrained and unconstrained optimization problems using a
tial quadratic programming (SQP) algorithi@0]. NLPQLP is a commercial software product of Prof. Kl
Schittkowski (web sitehttp://www.uni-bayreuth.de/departments/math/"kschittkowski/

nipglp20.htm ). Users may obtain their own copy of NLPQLP and compile it with the DAKOTA source
by following the steps given in the file /Dakota/INSTALL.

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems using a s
quadratic programming (SQP) algorithd@g]. NPSOL is a commercial software product of Stanford Unive
(web site: www.sbsi-sol-optimize.com). Sandia National Laboratories, Lawrence Livermore National Lab
and Los Alamos National Laboratory all have site licenses for NPSibher users may obtain their own copy
NPSOL and compile it with the DAKOTA source code by following the steps given in the file /Dakota/INS

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained, bound-cor
and nonlinearly constrained optimization problem8]] OPT++ includes a variety of Newton-based metfr
(quasi-Newton, finite-difference Newton, Gauss-Newton, and full-Newton), as well as the Polak-Ribe
method and the parallel direct search (PDS) method. OPT++ now contains a nonlinear interior point algo
handling general constraints. OPT++ is an active research tool and new optimization capabilities are cc
being added to its suite of capabilities. OPT++ is available to the public under the GNU LGPL and the
code is included with DAKOTA (web pagédittp://csmr.ca.sandia.gov/projects/opt++/opt+

+.html ).

PICO (Parallel Integer Combinatorial Optimization) : PICQO'’s branch-and-bound algorithm can be applie
nonlinear optimization problems involving discrete variables or a combination of continuous and discre
ables P5]. The discrete variables must be noncategorical (see Settigh). PICO is available to the publ
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under the GNU LGPL (web pagédattp://www.cs.sandia.gov/PICO ) and the source code is incluc
with DAKOTA as part of the Acro package. Notes: (1) PICO’s linear programming solvers are not includ
DAKQOTA, (2) PICO is being migrated into COLINY and is not operational in DAKOTA 4.0.

SGOPT (Stochastic Global OPTimization) Access to this library within DAKOTA has been deprecated;
methods have been migrated to the COLINY library.

Additional information on these methods is provided in Chapter

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle a wide variety of opti
problems. This includes algorithms for constrained and unconstrained optimization, as well as algori
gradient-based and nongradient-based optimization. Listed below are additional optimization capabilitie
available in DAKOTA.

Multiobjective Optimization : There are three capabilities for multiobjective optimization in DAKOTA. F
there is the MOGA capability described previously in Sect®oh This is a specialized algorithm capabil
The second capability involves the use of response data transformations to recast a multiobjective pro
single-objective problem. Currently, DAKOTA supports the weighting factor approach for this transforr
in which a composite objective function is constructed from a set of individual objective functions using
specified set of weighting factors. This approach is optimization algorithm independent, in that it works v
of the optimization methods listed in Secti8rb. Constraints are not affected by the weighting factor map
therefore, both constrained and unconstrained multiobjective optimization problems can be formulated a
with DAKOTA, assuming selection of an appropriate constrained or unconstrained single-objective optir
algorithm. Future multiobjective response data transformations for goal programming, normal bounde
section, etc. are planned. The third capability is the Pareto-set optimization strategy described in35g
This capability also utilizes the multiobjective response data transformations to allow optimization algor
dependence; however, it builds upon the basic approach by computing sets of optima in order to generat
trade-off surface.

Simultaneous Analysis and Design (SAND)n SAND, one converges the optimization process at the sami
as converging a nonlinear simulation code. In this approach, the solution of the simulation code (often
of ordinary or partial differential equations) is posed as a set of equality constraints in the optimization |
and these equality constraints are only satisfied by the optimizer in the limit. This formulation necessitate
coupling between DAKOTA and the simulation code so that the internal vectors and matrices from the si
code (in particular, the residual vector and its state and design Jacobian matrices) are available to tl
optimizer. This approach has the potential to reduce the cost of optimization significantly since the n
simulation is only converged once, instead of on every function evaluation. The drawback is that this &
requires substantial software modifications to the simulation code; something that can be impractical
cases and impossible in others. A new SAND capability employing the MOOCHO library is under devel
that will intrusively couple DAKOTA with multiphysics simulation frameworks under development at Sanc

User-Specified or Automatic Scaling Some optimization algorithms are sensitive to the relative scaling
inputs and outputs in a problem. With any optimizer or least squares solver, user-specified or automat
may be applied to any of continuous design variables, nonlinear inequality and equality constraints, a
inequality and equality constraints.

Additional information on these capabilities is provided in Chapter

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



58 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

3.7 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a least
objective function (see Sectidn4.2. These problems commonly arise in parameter estimation and test/an:
reconciliation. In practice, least squares solvers will tend to converge more rapidly than general-purpos
mization algorithms when the residual terms in the least squares formulation tend towards zero at the s
Least squares solvers may experience difficulty when the residuals at the solution are significant, althougt
ence has shown that the NL2SOL method can handle some problems that are highly nonlinear and have
residuals at the solution.

NL2SOL: The NL2SOL algorithm 18] uses a secant-based algorithm to solve least-squares problems. In
tice, it is more robust to nonlinear functions and nonzero residuals than conventional Gauss-Newton algot

Gauss-Newton DAKOTA's Gauss-Newton algorithm utilizes the Hessian approximation described in Sécti@
The exact objective function value, exact objective function gradient, and the approximate objective functio
sian are defined from the least squares term values and gradients and are passed to the full-Newton optim
the OPT++ software package. As for all of the Newton-based optimization algorithms in OPT++, unconstt
bound-constrained, and generally-constrained problems are supported. However, for the generally-con
case, a derivative order mismatch exists in that the nonlinear interior point full Newton algorithm will re
second-order information for the nonlinear constraints whereas the Gauss-Newton approximation only r
first order information for the least squares terms.

NLSSOL: The NLSSOL algorithm is a commercial software product of Stanford University (webhgife:
Ilwww.sbsi-sol-optimize.com ) that is bundled with current versions of the NPSOL library. It uses
SQP-based approach to solve generally-constrained nonlinear least squares problems. It periodically
the Gauss-Newton Hessian approximation to accelerate the search. It requires only first-order informa
the least squares terms and nonlinear constraints. Sandia National Laboratories, Lawrence Livermore |
Laboratory, and Los Alamos National Laboratory all have site licenses for NLSS@kr users may obtain their
own copy of NLSSOL and compile it with the DAKOTA source code by following the NPSOL installation
given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chater

3.8 Optimization Strategies

Due to the flexibility of DAKOTA's object-oriented design, it is relatively easy to create algorithms that com
several of DAKOTA's capabilities. These algorithms are referred tstrasegies

Multilevel Hybrid Optimization : This strategy allows the user to specify a sequence of optimization mett
with the results from one method providing the starting point for the next method in the sequence. An e»
which is useful in many engineering design problems involves the use of a nongradient-based global optin
method (e.g., genetic algorithm) to identify a promising region of the parameter space, which feeds its rest
a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum p

Multistart Local Optimization : This strategy uses many local optimization runs (often gradient-based), ea
which is started from a different initial point in the parameter space. This is an attractive strategy in situ
where multiple local optima are known to exist or may potentially exist in the parameter space. This ap|
combines the efficiency of local optimization methods with the parameter space coverage of a global strati
technique.

Pareto-Set Optimization The Pareto-set optimization strategy allows the user to specify different sets of we
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for the individual objective functions in a multiobjective optimization problem. DAKOTA executes each o
weighting sets as a separate optimization problem, serially or in parallel, and then outputs the set of of
signs which define the Pareto set. Pareto set information can be useful in making trade-off decisions in en
design problemgRefer to3.6 for additional information on multiobjective optimization methods.]

Mixed Integer Nonlinear Programming (MINLP) : This strategy uses the branch and bound capabilities
PICO package to perform optimization on problems that have both discrete and continuous design variab
provides a branch and bound engine targeted at mixed integer linear programs (MILP), which when comb
DAKOTA's nonlinear optimization methods, results in a MINLP capability. In addition, the multiple NLPs <
within MINLP provide an opportunity for concurrent execution of multiple optimizations.

Surrogate-Based Optimization (SBO) This strategy combines the design of experiments methods, sur
models, and optimization capabilities of DAKOTA. In SBO, the optimization algorithm operates on a su
model instead of directly operating on the computationally expensive simulation model. The surrogat
can be formed from data fitting methods (local, multipoint, or global), from a lower fidelity version of the
putational model, or from a mathematically-generated reduced-order model (see Sedtidior each of thes
surrogate model types, the SBO algorithm periodically validates the progress using the surrogate mod
the original high-fidelity model. The SBO strategy in DAKOTA can be configured to employ heuristic rule
expensive) or to be provably convergent to the optimum of the original model (more expensive). The deve
of SBO strategies is an area of active research in the DAKOTA project.

These strategies are covered in more detail in Ch&pter

3.9 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient feat
expensive high-fidelity model. They can be used to explore the variations in response quantities over regi
parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantificatir
(see, for example, the surrogate-based optimization strategy in S8)orThe surrogate models supporter
DAKOTA can be categorized into three types: data fits, multifidelity, and reduced-order model surrogate

Data fitting methods involve construction of an approximation or surrogate model using data (respons
gradients, and Hessians) generated from the original truth model. Data fit methods can be further cate(
local, multipoint, and global approximation techniques, based on the number of points used in generating
fit. Local methods involve response data from a single point in parameter space. Available techniques
include:

Taylor Series Expansion This is a local first-order or second-order expansion centered at a single poin
parameter space.

Multipoint approximations involve response data from two or more points in parameter space, often invol
current and previous iterates of a minimization algorithm. Available techniques currently include:

TANA-3: This multipoint approximation uses a two-point exponential approximati®9, [38] built with re-
sponse value and gradient information from the current and previous iterates.

Global methods, often referred to esponse surface methqdavolve many points spread over the param
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and ¢
experiments methods described in SecBah

Polynomial Regression First-order (linear), second-order (quadratic), and third-order (cubic) polynom
sponse surfaces computed using linear least squares regression methods. Note: there is currently
forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial
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Kriging Interpolation : An implementation of spatial interpolation using kriging methods and Gaussian
lation functions $1]. The algorithm used in the kriging process generat€€-aontinuous surface that exac
interpolates the data values.

Gaussian Process (GP)Closely related to kriging, this technique is a spatial interpolation method that as
the outputs of the simulation model follow a multivariate normal distribution. The implementation of a G
process currently in DAKOTA assumes a constant mean function. The hyperparameters governing the ¢
matrix are obtained through Maximum Likelihood Estimation (MLE). We also use a jitter term to better co
the covariance matrix, so the Gaussian process may not exactly interpolate the data values.

Artificial Neural Networks : An implementation of the stochastic layered perceptron neural network dev:
by Prof. D. C. Zimmerman of the University of Houstdtl[J. This neural network method is intended to ha
lower training (fitting) cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS) Software developed by Prof. J. H. Friedman of Stan
University [42]. The MARS method creates@?-continuous patchwork of splines in the parameter space.

Hermite: This technique involves the use of Hermite polynomials that are defined as functions of standar:
Gaussian random variables. This data fit is currently used exclusively for polynomial chaos expansions.

In addition to data fit surrogates, DAKOTA also supports multifidelity and reduced-order model approxin

Multifidelity Surrogates: Multifidelity modeling involves the use of a low-fidelity physics-based model
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarsher mesh,
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own
does not require data from the high-fidelity model for construction. Rather, the primary need for high
evaluations is for defining correction functions that are applied to the low-fidelity results.

Reduced Order Models A reduced-order model (ROM) is mathematically derived from a high-fidelity n
using the technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left
vectors) that capture the principal dynamics of a system, the original high-order system can be projected
smaller system, of the size of the number of retained basis functions.

Additional information on these surrogate methods is provided in Secti®8s1through10.3.3

3.10 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of e\
uation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level

and computes a set of sub-level responses which are passed back up to the outer level. The nested |
structs admit a wide variety of multi-iterator, multi-model solution approaches. For example, optimizatior
optimization (for hierarchical multidisciplinary optimization), uncertainty quantification within uncertainty
tification (for second-order probability), uncertainty quantification within optimization (for optimization

uncertainty), and optimization within uncertainty quantification (for uncertainty of optima) are all supporte
and without surrogate model indirection. Two important examples are highlighted: second-order probal
optimization under uncertainty.

Second-Order Probability: Second-order probability approaches employ nested models to embed one
tainty quantification (UQ) within another. The outer level UQ is commonly linked to epistemic uncertaintie
known as reducible uncertainties) resulting from a lack of knowledge, and the inner UQ is commonly li
aleatory uncertainties (also known as irreducible uncertainties) that are inherent in nature. The outer ley
ates sets of realizations, typically from sampling within interval distributions. These realizations define ve
distribution parameters used in a probabilistic analysis for the inner level UQ. The term “second-order”
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from this use of distributions on distributions and the generation of statistics on statistics.

Optimization Under Uncertainty (OUU) : Many real-world engineering design problems contain stochasti
tures and must be treated using OUU methods such as robust design and reliability-based design. For
uncertainty quantification methods of DAKOTA are combined with optimization algorithms. This allows tt
to formulate problems where one or more of the objective and constraints are stochastic. Due to the
tional expense of both optimization and UQ, the simple nesting of these methods in OUU can be com
ally prohibitive for real-world design problems. For this reason, surrogate-based optimization under un
(SBOUU) and reliability-based design optimization (RBDO) methods have been developed which can re
overall expense by orders of magnitude. OUU methods are an active research area.

Additional information on these nested approaches is provided in Sedio#40.5

3.11 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources such as th
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing
This parallel computing capability is a critical technology for rendering real-world engineering design pr
computationally tractable. DAKOTA employs the conceptuidltilevel parallelism which takes simultaneo
advantage of opportunities for parallel execution from multiple sources:

Parallel Simulation Codes DAKOTA works equally well with both serial and parallel simulation codes.

Concurrent Execution of Analyses within a Function Evaluation Some engineering design applications
for the use of multiple simulation code executions (different disciplinary codes, the same code for differ
cases or environments, etc.) in order to evaluate a single response data set (e.g., abjective function:
straints) for a single set of parameters. If these simulation code executions are independent (or if cc
enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator: With very few exceptions, the iterati
algorithms described in Secti@2through Sectior3.7 all provide opportunities for the concurrent evaluatio
response data sets for different parameter sets. Whenever there exists a set of design point evaluatic
independent, DAKOTA can perform them in parallel.

Concurrent Execution of Iterators within a Strategy: Some of the DAKOTA strategies described in Sec8®8
generate a sequence of iterator subproblems. For example, the MINLP, Pareto-set, and multi-start strate;
ate sets of optimization subproblems, and the optimization under uncertainty strategy generates sets of L
quantification subproblems. Whenever these subproblems are independent, DAKOTA can perform then
lel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can sche
manage concurrent iterators, each of which may manage concurrent function evaluations, each of w
manage concurrent analyses, each of which may execute on multiple processors. Additional inforrr
parallel computing with DAKOTA is provided in Chapt&7.

3.12 Summary

DAKOTA is both a production tool for engineering design and analysis activities and a research tool for th
opment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the e
object-oriented design of DAKOTA, it is relatively easy to add new iterative algorithms, strategies, simule
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terfacing approaches, surface fitting methods, etc. In addition, DAKOTA can serve as a rapid prototyping
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel con
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembl
which leverage the previous software investments. For additional discussion on framework extensibility
the DAKOTA Developers ManuaBQ].

The capabilities of DAKOTA have been used to solve engineering design and optimization problems a
Labs, at other Department of Energy labs, and by our industrial and academic collaborators. Often, this
experience has provided motivation for research into new areas of optimization. The DAKOTA developm:
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of r¢
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Chapter 4

Parameter Study Capabilities

4.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a
of points in the parameter space. These response data sets are not linked to any specific interpretati
may consist of any allowable specification from the responses keyword block, i.e., objective and constr:
tions, least squares terms and constraints, or generic response functions. This allows the use of param
in direct coordination with optimization, least squares, and uncertainty quantification studies without si
modification to the input file. In addition, response data sets are not restricted to function values only; ¢
and Hessians of the response functions can also be catalogued by the parameter study. This allows
different approaches to “sensitivity analysis”: (1) the variation of function values over parameter ranges
a global assessment as to the sensitivity of the functions to the parameters, (2) derivative information ca
puted numerically, provided analytically by the simulator, or both (mixed gradients) in directly determinir
sensitivity information at a point in parameter space, and (3) the global and local assessments can be cc
investigate the variation of derivative quantities through the parameter space by computing sensitivity infi
at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmot
simulation response variations (so that models can be refined or finite difference step sizes can be st
computing numerical gradients), interrogating problem areas in the parameter space, or performing s
code verification (verifying simulation robustness) through parameter ranges of interest. A parameter ¢
also be used in coordination with minimization methods as either a pre-processor (to identify a gooc
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combinatiogaftinuousdesign, uncertain, and state variables
any set of responses (any function, gradient, and Hessian definition). Parameter studies draw no ¢
between the different types of continuous variables (design, uncertain, or state) and the different types o
functions. They simply pass all of the variables defined in the variables specification into the interface, fro
they expect to retrieve all of the responses defined in the responses specification. As described i1%8g
when gradient and/or Hessian information is being catalogued in the parameter study, it is assumed that
components will be computed with respect to all of deatinuousvariables (continuous design, uncertain,
continuous state variables) specified. Parameter studies over discrete variables will be supported in 1
although response derivatives with respect to these variables are not defined.

DAKOTA currently supports four types of parameter studies. Vector parameter studies compute respt
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sets at selected intervals along afdimensional vector in parameter space. List parameter studies cc
response data sets at a list of points in parameter space, defined by the user. A centered parameter stuc
multiple coordinate-based parameter studies, one per parameter, centered about the initial parameter
multidimensional parameter study computes response data sets:ediarensional hypergrid of points. Ma
detail on these parameter studies is found in Secdaathrough4.5below.

4.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables frarighkes  keyword
block as the starting point and the central point of the parameter studies, respectively. In the case

variables, thenitial _point is used. In the case of state variables, itiigal _state is used. In th
case of uncertain variables, initial values for variables with normal, lognormal, uniform, loguniform, tria
beta, gamma, gumbel, frechet, and weibull probability distributions are the means of the distributions,
the histogram and interval distribution, are the bin/point/interval lower bounds. These parameter study
values for design, uncertain, and state variables are referenced in the following sections using the identifi
Values.”

4.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables froarihigles  keyword block tc
define the range of parameter values to study. In the case of design and state varialdegrthébounds and
upper _bounds specifications are used. In the case of uncertain variables, bounds for variables with noi
lognormal distributions are the optional distribution bounds (user-specified or default), for uniform, logu
triangular, and beta distributions, are the required distribution bounds (user-specified), and for the h
and interval distributions, are the bin/point/interval lower and upper bounds. For the remaining distri
parameter study bounds are inferred uging: + 3¢] for gamma, frechet, and weibull, afyd — 3o, 1 + 30] for
gumbel.

4.2 \Vector Parameter Study

The vector parameter study computes response data sets at selected intervals aloligemsional vector i
parameter space. This capability encompasses both single-coordinate parameter studies (to study th
a single variable on a response set) as well as multiple coordinate vector studies (to investigate the
variations along some arbitrary vector; e.g., to investigate a search direction failure). In addition to the
this capability is used recursively within the implementation of the multidimensional parameter study.

DAKOTA's vector parameter study includes three possible specification formulations which are used in ¢
tion with the Initial Values (see Sectighl.]) to define the vector and steps of the parameter study:

final_point (vector of reals) and step_length (real)
final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In each of these three cases, the Initial Values are used as the parameter study starting point and the sj
selected from the three above defines the orientation and length of the vector as well as the increme
evaluated along the vector. Several examples starting from Initial Valuépf1.0, 1.0 are includes
below:
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final _point = 1.0, 2.0, 1.0 andstep _length = 4

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.0000000000e+00 d1
1.4000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 3:
1.0000000000e+00 d1
1.8000000000e+00 d2
1.0000000000e+00 d3

final _point = 2.0, 2.0, 2.0 andstep _length = .4  (note thatstep _length defines Cartesian
distance of the step and the steps continue up to but not paftdhe _point ):

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2309401077e+00 d1
1.2309401077e+00 d2
1.2309401077e+00 d3

Parameters for function evaluation 3:
1.4618802154e+00 d1
1.4618802154e+00 d2
1.4618802154e+00 d3

Parameters for function evaluation 4:
1.6928203230e+00 d1
1.6928203230e+00 d2
1.6928203230e+00 d3

Parameters for function evaluation 5:
1.9237604307e+00 d1
1.9237604307e+00 d2
1.9237604307e+00 d3

final _point = 2.0, 2.0, 2.0 andnumsteps = 4

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2500000000e+00 d1
1.2500000000e+00 d2
1.2500000000e+00 d3

Parameters for function evaluation 3:
1.5000000000e+00 d1
1.5000000000e+00 d2
1.5000000000e+00 d3
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Parameters for function evaluation 4:
1.7500000000e+00 d1
1.7500000000e+00 d2
1.7500000000e+00 d3

Parameters for function evaluation 5:
2.0000000000e+00 d1
2.0000000000e+00 d2
2.0000000000e+00 d3

step _vector = .1, .1, .1 andnumsteps = 4 :

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.1000000000e+00 d1
1.1000000000e+00 d2
1.1000000000e+00 d3

Parameters for function evaluation 3:
1.2000000000e+00 di1
1.2000000000e+00 d2
1.2000000000e+00 d3

Parameters for function evaluation 4:
1.3000000000e+00 d1
1.3000000000e+00 d2
1.3000000000e+00 d3

Parameters for function evaluation 5:
1.4000000000e+00 d1
1.4000000000e+00 d2
1.4000000000e+00 d3

4.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. Thes
explicitly specified by the user and are not confined to lie on any line or surface. Thus, this paramet
provides a general facility that supports the case where the desired set of points to evaluate does |
prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists oflst _of _points  specification which lists the requested parameter sets in sl
sion. The list parameter study simply performs a simulation for the first parameter set (thedfistes in th
list), followed by a simulation for the next parameter set (the neaatries), and so on, until the list of points |
been exhausted. Since the Initial Values will not be used, they need not be specified.

An example specification which would result in the same parameter sets as in the first example in%&2
would be:

list_of points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0
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4.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per paramel
about the specified Initial Values. This is useful for investigation of function contours in the vicinity of a s
point. For example, after computing an optimum design, this capability could be used for post-optimality
in verifying that the computed solution is actually at a minimum or constraint boundary and in investiga
shape of this minimum or constraint boundary.

This method requiregercent _delta (real) anddeltas _per _variable (integer) specifications, where
former specifies the size of the increments in percent and the latter specifies the number of increments pi
in each of the plus and minus directions.

For example, with Initial Values df.0, 1.0 ,apercent _delta of10.0 ,and adeltas _per _variable
of 2, the center point is evaluated followed by four function evaluations (two minus deltas and two plus
per variable:

Parameters for function evaluation 1:
1.0000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 2:
8.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 3:
9.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 4:
1.1000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 5:
1.2000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 6:
1.0000000000e+00 cdv_1
8.0000000000e-01 cdv_2

Parameters for function evaluation 7:
1.0000000000e+00 cdv_1
9.0000000000e-01 cdv_2

Parameters for function evaluation 8:
1.0000000000e+00 cdv_1
1.1000000000e+00 cdv_2

Parameters for function evaluation 9:
1.0000000000e+00 cdv_1
1.2000000000e+00 cdv_2

This set of points in parameter space is depicted in Figute

If the Initial Values for the centered parameter study are very small or equal to zero, the study will sub
default step size. This is necessary due to the relative nature péthent _delta specification.
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d2

0 i = dl

Figure 4.1: Example centered parameter study.

4.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets+fetisr@nsional hypergrid of point
Each continuous variable is partitioned into equally spaced intervals between its upper and lower bot
Sectior4.1.2), and each combination of the values defined by these partitions is evaluated. The number of
evaluations performed in the study is:

n

[[(partitions ~; +1) (4.1)

i=1

The partitions information is specified using thertitions specification, which provides an integer list of
number of partitions for each continuous variable (partitions i). Since the Initial Values will not be use
they need not be specified.

In a two variable example problem withl € [0,2] andd2 € [0,3] (as defined by the upper and lov
bounds from the variables specification) and vg#ititions = 2,3 , the interval0,2] s divided into twc
equal-sized partitions and the intery@/3] is divided into three equal-sized partitions. This two-dimensi
grid, shown in Figuret.2, would result in the following twelve function evaluations:

Parameters for function evaluation 1:
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 di1
0.0000000000e+00 d2

Parameters for function evaluation 3:
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d2

3 partitions

0® ¢ 3 > d1

2 partitions

Figure 4.2: Example multidimensional parameter study
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2.0000000000e+00 di1
0.0000000000e+00 d2
Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2
Parameters for function evaluation 5:
1.0000000000e+00 di1
1.0000000000e+00 d2
Parameters for function evaluation 6:
2.0000000000e+00 di1
1.0000000000e+00 d2
Parameters for function evaluation 7:
0.0000000000e+00 d1
2.0000000000e+00 d2
Parameters for function evaluation 8:
1.0000000000e+00 di1
2.0000000000e+00 d2
Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2
Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2
Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2
Parameters for function evaluation 12:
2.0000000000e+00 d1
3.0000000000e+00 d2
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Chapter 5

Design of Experiments Capabilities

5.1 Overview

DAKOTA contains three software packages that can be used for sampling and design of experiments: LI
hypercube sampling), DDACE (distributed design and analysis for computer experiments), and FSUDac!
State University's Design and Analysis of Computer Experiments package). 2518 [a general-purpose sa
pling package developed at Sandia that has been used by the DOE national labs for several decades. [
more recent package for computer experiments that is under development by staff at Sandeg|Ldh3ACE
provides the capability for generating orthogonal arrays, Box-Behnken designs, Central Composite des
random designs. The FSUDace package provides the following sampling techniques: quasi-Monte C
pling based on Halton or Hammersley sequences, and Centroidal Voronoi Tessellation.

This chapter focuses on DDACE and FSUDace, with the primary goal of designing computer experimer
Hypercube Sampling, used in uncertainty quantification, is discussed in Sécioiihe differences betwe
sampling used in design of experiments and sampling used in uncertainty quantification is discussed in
tail in the following paragraphs. In brief, we consider design of experiment methods to generate sets of
random variables on the intervil 1]. These sets are mapped to the lower/upper bounds of the problem v:
and then the response functions are evaluated at the sample input points with the goal of characterizi
havior of the response functions over the input parameter ranges of interest. Uncertainty quantification
sampling, in contrast, involves characterizing the uncertain input variables with probability distributions
normal, Weibull, triangular, etc., sampling from the input distributions, and propagating the input unce
to obtain a cumulative distribution function on the output. There is significant overlap between desig
periments and sampling. Often, both techniques can be used to obtain similar results about the beha
response functions and about the relative importance of the input variables.

5.2 Design of Computer Experiments

Computer experiments are often different from physical experiments, such as those performed in ac
manufacturing, or biology. In physical experiments, one often applies the saatmentor factor levelin ar
experiment several times to get an understanding of the variability of the output when that treatment i<
For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a low level of fertilize
same number of fields may be subject to a high level of fertilizer to see if the amount of fertilizer has a si
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effect on crop output. In addition, one is often interested in the variability of the output within a treatment
is the variability of the crop yields in the low fertilizer group much higher than that in the high fertilizer gra
not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment
in different outcomes. By contrast, in computer experiments, often we have a deterministic code. If we
code with a particular set of input parameters, the code will always produce the same output. There
are stochastic codes, but the main focus of computer experimentation has been on deterministic codes
computer experiments we often do not have the need to do replicates (running the code with the exact s
parameters several times to see differences in outputs). Instead, a major concern in computer experir
create an experimental design which can sample a high-dimensional space in a representative way with a
number of samples. The number of factors or parameters that we wish to explore in computer exper
usually much higher than physical experiments. In physical experiments, one may be interesting in vary
parameters, usually five or less, while in computer experiments we often have dozens of parameters c
Choosing the levels of these parameters so that the samples adequately explore the input space is a «
problem. There are many experimental designs and sampling methods which address the issue of ad
representative sample selection. Classical experimental designs which are often used in physical ex
include Central Composite designs and Box-Behnken designs.

There are many goals of running a computer experiment: one may want to explore the input domain or tl
space and get a better understanding of the range in the outputs for a particular domain. Another obje
determine which inputs have the most influence on the output, or how changes in the inputs change tt
This is usually calledsensitivity analysis Another goal is to compare the relative importance of model |
uncertainties on the uncertainty in the model outpurgertainty analysisYet another goal is to use the samg
inputs points and their corresponding output to createsponse surface approximatiéor the computer cod
The response surface approximation (e.g., a polynomial regression model, a kriging model, a neural net
be used to emulate the computer code. Constructing a response surface approximation is particularly
for applications where running a computational model is extremely expensive: the computer model ma
or 20 hours to run on a high performance machine, whereas the response surface model may only t
seconds. Thus, one often optimizes the response surface model or uses it within a framework such as
based optimization. Response surface models are also valuable in cases where the gradient (first derival
Hessian (second derivative) information required by optimization techniques are either not available, e
to compute, or inaccurate because the derivatives are poorly approximated or the function evaluatiol
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Und
circumstances, a good design of computer experiment framework coupled with response surface apprc
can offer great advantages.

In addition to the sensitivity analysis, uncertainty analysis, and response surface modeling mentioned ¢
also may want to daincertainty quantificatioron a computer model. Uncertainty quantification (UQ) re
to taking a particular set of distributions on the inputs, and propagating them through the model to
distribution on the outputs. For example, if input parameter A follows a normal with mean 5 and varianc
computer produces a random draw from that distribution. If input parameter B follows a weibull distributic
alpha = 0.5 and beta = 1, the computer produces a random draw from that distribution. When all of the 1
variables have samples drawn from their input distributions, we run the model with the sampled values ¢
We do this repeatedly to build up a distribution of outputs. We can then use the cumulative distribution -
of the output to ask questions such as: what is the probability that the output is greater than 10? What i
percentile of the output?

Note that sampling-based uncertainty quantification and design of computer experiments are veryTdieri
is significant overlapn the purpose and methods used for UQ and for DACE. We have attempted to delin
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differences within DAKOTA as follows: we use the two methods, DDACE and FSUDACE, primarily for ¢
of experiments, where we are interested in understanding the main effects of parameters and where v
sample over an input domain to obtain values for constructing a response surface. We use the nondet
sampling methodénond _sampling) for uncertainty quantification, where we are propagating specific
distributions and interested in obtaining (for example) a cumulative distribution function on the output.
have a problem where you have no distributional information, we recommend starting with a design of
ments approach. Note that DDACE and FSUDACE currentipotsupport distributional information: they ta
an upper and lower bound for each uncertain input variable and sample within that. The uncertainty quar
methods imnond _sampling (primarily Latin Hypercube sampling) offer the capability to sample from n
distributional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches c
yield insight about important parameters and both can determine sample points for response surface a
tions.

5.3 DDACE Background

The DACE package includes both classical design of experiments me#t)dmfl stochastic sampling metho
The classical design of experiments methods in DDACE are central composite design (CCD) and Box-
(BB) sampling. A grid-based sampling method also is available. The stochastic methods are orthogo
sampling p6], Monte Carlo (random) sampling, and Latin hypercube sampling. Note that the DDACE \
available through the DAKOTA interface only supports uniform distributions. DDACE does not currently <
enforcement of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example,
sampling can be used with both the surrogate-based optimization strategy and the optimization under u
strategy. See FigurE0.5for an example of how the DDACE settings are used in DAKOTA.

More information on DDACE is available on the web dittp://csmr.ca.sandia.gov/projects/
ddace

The following sections provide more detail about the sampling methods available for design of experir
DDACE.

5.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains
bedded factorial or fractional factorial design with center points that is augmented with a group of 'star
that allow estimation of curvature. If the distance from the center of the design space to a factorial fdi
unit for each factor, the distance from the center of the design space to a star poinwigh | « |> 1. The
precise value of depends on certain properties desired for the design and on the number of factors inveo
CCD design is specified in DAKOTA with the method commaldhce central _composite

As an example, with a two input variables or factors, each having two levels, the factorial design is shown
9.1.

With a CCD, the design above would be augmented with the following pointszifl.3:
These points define a circle around the original factorial design.

Note that the number of samples points specified in a G&Mples , is a function of the number of variables
the problem:

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



74 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

Table 5.1: Simple Factorial Design

Input 1 | Input 2

-1 -1
-1 +1
+1 -1
+1 +1

Table 5.2: Additional Points to make the factorial design a CCD

Input 1 [ Input 2

0 +1.3
0 -1.3
1.3 0
-1.3 0

0 0

Samples =14+2%x NumVar + 2Num,Var

5.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken
design is a quadratic design in that it does not contain an embedded factorial or fractional factorial design. In this
design the treatment combinations are at the midpoints of edges of the process space and at the center, as compared
with CCD designs where the extra points are placed at 'star points’ on a circle outside of the process space. Box-
Behken designs are rotatable (or near rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite designs. Box-Behnken requires fewer runs
than CCD for 3 factors, but this advantage goes away as the number of factors increases. The Box-Behnken design
is specified in DAKOTA with the method commaddace box _behnken .

Note that the number of samples points specified in a Box-Behnken dsaigples , is a function of the number
of variables in the problem:

samples = 1+ 4+ NumVar + (NumVar —1)/2

5.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling was independently considered by Owen and Tang. An orthogonal array sample
can be described as an 4-tugjte, n, s, ), wherem is the number of sample points,is the number of input
variables s is the number of symbols, ands the strength of the orthogonal array. The number of sample points,

m, must be a multiple of the number of symbais, The number of symbols refers to the number of levels per
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input variable. The strength refers to the number of columns where we are guaranteed to see all the pc
an equal number of times.

For example, Table 9.3 shows an orthogonal array of strengths2 foB, with 7 variables:

Table 5.3: Orthogonal Array for Seven Variables

Input 1 [ Input2 | Input3 | Input4 [ Input5 [ Input6 | Input 7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

If one picks any two columns, say the first and the third, note that each of the four possible rows we
there,00,01,10,11, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat tl
levels as one fixed value (0 or 1 in the above example). Instead, once a level for a variable is determir
array, DDACE samples a random variable from within that level. The orthogonal array design is spe
DAKOTA with the method commanddace oas .

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects
fied with the commandhain _effects . Main effects is a sensitivity analysis method which identifies the |
variables that have the most influence on the output. In main effects, the idea is to look at the mean of the
function when variable A (for example) is at level 1 vs. when variable A is at level 2 or level 3. If these
responses of the output are statistically significantly different at different levels of variable A, this is an inc
that variable A has a significant effect on the response. The orthogonality of the columns is critical in pet
main effects analysis, since the column orthogonality means that the effects of the other variables 'ca
when looking at the overall effect from one variable at its different levels. There are ways of developing
onal arrays to calculate higher order interactions, such as two-way interactions (what is the influence of
A * Variable B on the output?), but this is not available in DDACE currently. At present, one way intere
are supported in the calculation of orthogonal array main effects within DDACE. The main effects are pi
as a series of ANOVA tables. For each objective function and constraint, the decomposition of varianc
objective or constraint is presented as a function of the input variables. The p-value in the ANOVA table
to indicate if the input factor is significant. The p-value is the probability that you would have obtained <
more extreme than you did if the input factor has no effect on the response. For example, if you set ¢
significance at 0.05 for your p-value, and the actual p-value is 0.03, then the input factor has a significe
on the response.

5.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dime
parameter study where the samples are taken over a set of partitions on each variable (sed&.Seciitw
main difference is that in grid sampling, a small random perturbation is added to each sample value st
grid points are not on a perfect grid. This is done to help capture certain features in the output such as
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functions. A purely structured grid, with the samples exactly on the grid points, has the disadvantage of t
able to capture important features such as periodic functions with relatively high frequency (due to a
Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends expone
the input dimensions. In grid sampling, the number of samples is the number of symbols (grid partition:
to the number of variables. For example, if there are 2 variables, each with 5 partitions, the number of
would be52. In this case, doubling the number of variables squares the sample size. The grid design is
in DAKOTA with the method commanddace grid

5.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions betw
lower and upper bounds on each of the input variables. Monte Carlo designs, specdigatky random , are
a way to generate a set of random samples over an input domain.

5.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hyg
sampling, see Sectidh2 Note that the version of LHS in DDACE generates uniform samples (uniform be
the variable bounds). The version of LHS offered with nondeterministic sampling can generate LHS
according to a number of distribution types, including normal, lognormal, weibull, beta, etc. To spe«
DDACE version of LHS, use the method commatdhce lhs

5.3.7 OA-LHS Design

DDACE offers a hybrid design which is combination of an orthogonal array and a Latin Hypercube ¢
This design is specified with the method commatate oa _lhs . This design has the advantages of |
orthogonality of the inputs as well as stratification of the samples.

5.4 FSUDace Background

The FSUDace package includes quasi-Monte Carlo sampling methods (Halton and Hammersley seque
Centroidal Voronoi Tesselation sampling. All three methods generate sets of uniform random variable
interval [0, 1]. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepanc
crepancy refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy se
tend to cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low disc
sequences, especially if one is interested in the uniformity of projections of the point sets onto lower dim
faces of the hypercube (usually 1-D: how well do the marginal distributions approximate a uniform?) C\
very well volumetrically: it spaces the points fairly equally throughout the space, so that the points cove
gion and are isotropically distributed with no directional bias in the point placement. There are various n
of volumetric uniformity which take into account the distances between pairs of points, regularity meast
Note that CVT does not produce low-discrepancy sequences in lower dimensions, however: the lower-d
(such as 1-D) projections of CVT can have high discrepancy.
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The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined b
prime bases. A Halton design is specified in DAKOTA with the method comnfeindquasi _-mc halton
and the Hammersley design is specified with the comnfand.quasi -mc hammersley . For more details
about the input specification, see the Reference Manual. CVT points tend to arrange themselves in a p
cells that are roughly the same shape. To produce CVT points, an almost arbitrary set of initial points is «
and then an internal set of iterations is carried out. These iterations repeatedly replace the current set @
points by an estimate of the centroids of the corresponding Voronoi subre@@n#[CVT design is specified
in DAKOTA with the method commanfsu _cvt .

The methods in FSUDace are useful for design of experiments because they provide good coverage of
space, thus allowing global sensitivity analysis.

5.5 Sensitivity Analysis

Like parameter studies (see Chapterthe DACE techniques are useful for characterizing the behavior of
response functions of interest through the parameter ranges of interest. In addition to direct interrogat
visualization of the sampling results, a number of techniques have been developed for assessing the p:¢
which are most influential in the observed variability in the response functions. One example of this
well-known technique of scatter plots, in which the set of samples is projected down and plotted agail
parameter dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points il
parameters with little influence on the results, whereas scatter plots with a defined shape to the cloud
parameters which are more significant. Related techniques include analysis of variance (AN@\%)d main
effects analysis, in which the parameters which have the greatest influence on the results are identifi
sampling results. Scatter plots and ANOVA may be accessed through import of DAKOTA tabular resul
Sectionl15.3 into external statistical analysis programs such as S-plus, Minitab, etc.

Running any of the design of experiments or sampling methods allows the user to save the results in ¢
data file, which then can be read into a spreadsheet or statistical package for further analysis. In addition,
provided some functions to help determine the most important variables.

We take the definition of uncertainty analysis fro&8] “The study of how uncertainty in the output of a mod
can be apportioned to different sources of uncertainty in the model input.”

As a default, DAKOTA provides correlation analyses when running LHS. Correlation tables are printed w
simple, partial, and rank correlations between inputs and outputs. These can be useful to get a quick sens
correlated the inputs are to each other, and how correlated various outputs are to inputs. The correlation
are explained further in Chaptér2

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD). \
based decomposition is a way of using sets of samples to understand how the variance of the output behe
respect to each input variable. A larger value of the sensitivity indeXSi in the DAKOTA output), means
that the uncertainty in the input variabldnas a larger effect on the variance of the output. More details or
calculations and interpretation of the sensitivity indices can be foun88n VBD can be specified for any o
the sampling methods using the commamadance _based _.decomposition . Note that VBD is extremely
computationally intensive since replicated sets of sample values are evaluated. If the user specified a ni
samples,V, and a number of nondeterministic variabld$, variance-based decomposition requires the evi
ation of N(M + 2) samples. To obtain sensitivity indices that are reasonably accurate, we recommeNd 1
the number of samples, be at least one hundred and preferably several hundred or thousands. Becal
computational cost, Variance-based decomposition is turned off as a default.

Finally, we have the capability to calculate a set of quality metrics for a particular input sample. These !
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metrics measure various aspects relating to the volumetric spacing of the samples: are the points equally spaced,
do they cover the region, are they isotropically distributed, do they have directional bias, etc.? The quality metrics
are explained in more detail in the Reference Manual.
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Chapter 6

Uncertainty Quantification Capabillities

6.1 Overview

DAKOTA contains the DAKOTA/UQ software package for performing nondeterministic analysis. The DAKO1
package is tightly-woven into the core DAKOTA software and is not available separately. The metho
DAKOTA/UQ have been developed by a group of researchers at Sandia Labs, in conjunction with collabo
in academia44, 45, 27].

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) in the DAKOT.
system involve the computation of probabilistic information about response functions based on sets of simu
taken from the specified probability distributions for uncertain parameters. That is, these methods pert
forward uncertainty propagation in which probability information for input parameters is mapped to probal
information for output response functions. Tihefunctions in the DAKOTA response data set are interpreted
m general response functions by the DAKOTA/UQ methods (with no specific interpretation of the functiot
for optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the parameter
bility distributions (see Sectiofi1.3. The distribution types include: normal (Gaussian), lognormal, unifor
loguniform, triangular, beta, gamma, gumbel, frechet, weibull, histogram, and interval. All uncertain vari
are treated as continuous variables in DAKOTA. When gradient and/or Hessian information is used in an
tainty assessment, derivative components are normally computed with respect to the active continuous va
or in this case, thancertain variables

6.2 Sampling Methods

Sampling techniques are selected usingrtbed _sampling method selection. This method generates sets
samples according to the probability distributions of the uncertain variables and maps them into correspondi
of response functions, where the number of samples is specified Isptigles integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the re
functions. Probabilities and reliabilities may be computedésponse _levels specifications, and response
levels may be computed for eithprobability _levels or reliability _levels  specifications (refer
to the Method Commands chapter in the DAKOTA Reference Mar@hffor additional information).
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Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by DAKOT
are chosen by specifyirample _type asrandom orlhs . In Monte Carlo sampling, the samples are sele
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratifi
pling technique for which the range of each uncertain variable is dividedNpteegments of equal probabili
whereN; is the number of samples requested. The relative lengths of the segments are determined by
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small s
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selecte
from each of these equal probability segments. Th€sealues for each of the individual parameters are
combined in a shuffling operation to create a seiNgfparameter vectors with a specified correlation struc
A feature of the resulting sample set is tlesery row and column in the hypercube of partitions has exactl
sample Since the total number of samples is exactly equal to the number of partitions used for each t
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible a
in which the total number of samples is a product or exponential function of the number of intervals f
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their indef
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large
of function evaluations needed to generate converged statistics, which can render such an analysis comp
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general,
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prot
expensive. For further information on the method and its relationship to other sampling techniques, one i
to the works by McKay, et al.72], Iman and Shortencarier6§], and Helton and Davis5g]. Note that unde
certain monotonicity conditions associated with the function to be sampled, Latin hypercube sampling pi
more accurate estimate of the mean value than does random sampling. That is, given an equal number ¢
the LHS estimate of the mean will have less variance than the mean value obtained through random sar

Figure6.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the rang
parametersg; andzxs, is [0,1]. Also, for this example both:; andx, have uniform statistical distributior
For Latin hypercube sampling, the range of each parameter is divideg ifitims” of equal probability. Fa
parameters with uniform distributions, this corresponds to partitions of equal sizen @esign parametel
this partitioning yields a total o™ bins in the parameter space. Nextsamples are randomly selected in
parameter space, with the following restrictions: (a) each sample is randomly placed inside a bin, and (
one-dimensional projections of thesamples and bins, there will be one and only one sample in each bit
two-dimensional example such as that shown in Figuiethese LHS rules guarantee that only one bin cg
selected in each row and column. FoE= 4, there are four partitions in botly, andz,. This gives a total ¢
16 bins, of which four will be chosen according to the criteria described above. Note that there is more
possible arrangement of bins that meet the LHS criteria. The dots in Fégurepresent the four sample site:
this example, where each sample is randomly located in its bin. There is no restriction on the number ¢
the range of each parameter, however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the de
given above. For example, the Latin hypercube sampling method implemented in the LH®Gja@égs intc
account a user-specified correlation structure when selecting the sample sites. For more details on the |
tation of the LHS algorithm, see Referen@&]|

6.2.1 Uncertainty Quantification Example using Sampling Methods

The two-variable Textbook example problem (see Equai@will be used to demonstrate the applicatior
sampling methods for uncertainty quantification where it is assumed ttaaitdz» are uniform uncertain variabl
on the interval0, 1]. The DAKOTA input file for this problem is shown in Figufe2 The number of samples
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Figure 6.1: An example of Latin hypercube sampling with four bins in design parametarslxz,. The dots ar
the sample sites.

perform is controlled with theamples specification, the type of sampling algorithm to use is controlled
thesample _type specification, the levels used for computing statistics on the response functions is s
with theresponse _levels input, and theseed specification controls the sequence of the pseudo-ra
numbers generated by the sampling algorithms. The input samples generated are shown thFHigutiee cas:
wheresamples =5 andsamples = 10 for bothrandom (o) andlhs (+4) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a prob
Monte Carlo sampling when the number of samples is small. In the cassngiles = 5 , poor stratificatiol
is evident inxz; as four out of the five Monte Carlo samples are clustered in the rdB§e< x; < 0.55, anc
the regionsr; < 0.3 and0.6 < x; < 0.9 are completely missed. For the case wheamples = 10 , some
clustering in the Monte Carlo samples is again evident wigamples in the rangé5 < z; < 0.55. In both
cases, the stratification with LHS is superior. The response function statistics returned by DAKOTA ar
in Figure6.4. The first two blocks of output specify the response sample means and sample standard d
and confidence intervals for these statistics, as well as coefficients of variation. The last section of tt
defines CDF pairgdjstribution cumulative was specified) for the response functions by presentin
probability levels corresponding to the specified response lexedpgnse _levels were set and the defa
compute probabilities was used). Alternatively, DAKOTA could have provided CCDF pairings, reli
ity levels corresponding to prescribed response levels, or response levels corresponding to prescribed |
or reliability levels.

In addition to obtaining statistical summary information of the type shown in Figutethe results of LH:
sampling also include correlations. Four types of correlations are returned in the output: simple and part
correlations, and simple and partial “rank” correlations. The raw correlations refer to correlations pe
on the actual input and output data. Rank correlations refer to correlations performed on the ranks of
Ranks are obtained by replacing the actual data by the ranked values, which are obtained by orderini
in ascending order. For example, the smallest value in a set of input samples would be given a rank 1
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method, \
nond_sampling, \
samples = 10 seed = 98765 \
response_levels = 0.1 0.2 0.6 \
0.1 0.2 0.6 \
0.1 0.2 0.6 \
sample_type |hs \

distribution cumulative

variables, \
uniform_uncertain = 2 \
uuv_lower_bounds = 0. 0. \
uuv_upper_bounds = 1. 1. \
uuv_descriptor = 'x1' 'x2’
interface, \
system asynch evaluation_concurrency = 5 \

analysis_driver = ’text_book’

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 6.2: DAKOTA input file for UQ example using LHS sampling.
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Figure 6.3: Distribution of input sample points for randoshdnd lhs ¢) sampling forsamples=5 and10.
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Statistics based on 10 samples:

Moments for each response function:

response_fn_1: Mean = 3.83840e-01 Std. Dev. = 4.02815e-01
Coeff. of Variation = 1.04944e+00

response_fn_2: Mean = 7.47987e-02 Std. Dev. = 3.46861e-01
Coeff. of Variation = 4.63726e+00

response_fn_3: Mean = 7.09462e-02 Std. Dev. = 3.41532e-01
Coeff. of Variation = 4.81397e+00

95% confidence intervals for each response function:
response_fn_1: Mean = 9.56831e-02, 6.71997e-01 ),

(
Std Dev = ( 2.77071e-01, 7.35384e-01 )
response_fn_2: Mean = ( -1.73331e-01, 3.22928e-01 ),
Std Dev = ( 2.38583e-01, 6.33233e-01 )
response_fn_3: Mean = ( -1.73371e-01, 3.15264e-01 ),

Std Dev = ( 2.34918e-01, 6.23505e-01 )

Probabilities for each response function:

Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index

1.0000000000e-01  3.0000000000e-01

2.0000000000e-01  5.0000000000e-01

6.0000000000e-01  7.0000000000e-01
Cumulative Distribution Function (CDF) for response_fn_2:
Response Level Probability Level Reliability Index

1.0000000000e-01  5.0000000000e-01

2.0000000000e-01  7.0000000000e-01

6.0000000000e-01  9.0000000000e-01
Cumulative Distribution Function (CDF) for response_fn_3:
Response Level Probability Level Reliability Index

1.0000000000e-01  6.0000000000e-01
2.0000000000e-01  6.0000000000e-01
6.0000000000e-01  9.0000000000e-01

Figure 6.4: DAKOTA response function statistics from UQ sampling example.

DAKOTA Version 4.0 User’s Manual generated on October 13, 2006




84 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

Simple Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
X2 -7.22482e-02 1.00000e+00
response_fn_1 -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn_2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn_3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3
x1 -9.65994e-01 9.74285e-01 -9.49997e-01
X2 -9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
X2 -6.66667e-02 1.00000e+00
response_fn_1 -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn_2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn_3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -8.20657e-01 9.74896e-01 -9.41760e-01

X2 -7.62704e-01 -9.50799e-01 9.65145e-01

Figure 6.5: Correlation results using LHS Sampling.

smallest value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ (
magnitude: then it is easier to compare if the smallest ranked input sample is correlated with the smalle
output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation ¢
between two input variables, between an input and an output variable (probably the most useful), or bet
output variables. The simple correlation coefficients presented in the output tables are Pearson'’s correle

ficient, which is defined for two variablesandy as: Corr(z, y) = 2@ D)Wy

V2 =22 3 ()2
coefficients are similar to simple correlations, but a partial correlation coefficient between two variables n
their correlation while adjusting for the effects of the other variables. For example, say one has a prob
two inputs and one output; and the two inputs are highly correlated. Then the correlation of the second |
the output may be very low after accounting for the effect of the first input. The rank correlations in DAKC
obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson correlation
except that it is calculated on the rank data.

. Partial correlatio

Figure 6.5 shows an example of the correlation output provided by DAKOTA for the input file in FigLi
Note that these correlations are presently only available when one specifies lhs as the sampling metl
nondsampling. Also note that the simple and partial correlations should be similar in most cases (in 1
values of correlation coefficients). This is because we use a default “restricted pairing” method in the LH¢
which forces near-zero correlation amongst uncorrelated inputs.

Finally, note that the LHS package can be used in design of experiments mode by includilhg thariables
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flag in the method specification section of the DAKOTA input file. Then, instead of iterating on only the un
variables, the LHS package will sample on all of the continuous variables, where continuous design an
uous state variables are treated as having uniform probability distributions within their upper and lowetr
and any uncertain variables are sampled within their specified probability distributions.

6.3 Reliability Methods

Reliability methods provide an alternative approach to uncertainty quantification which can be less c
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are b
probabilistic approaches that compute approximate response function distribution statistics based on sp
certain variable distributions. These response statistics include response mean, response standard de
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often |
ficient at computing statistics in the tails of the response distributions (events with low probability) than si
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variableasd a scale
response functiory, what is the probability that the response function is below or above a certaind@Vdihe
former can be written aB[g(X) < z] = Fy(z) whereF,(z) is the cumulative distribution function (CDF) of t
uncertain responsg X) over a set of response levels. The latter can be writteR[a6X) > z] and defines th
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of il
D, whereg(X) < z as displayed in Figuré.6for the case of two variables. The reliability methods all involve
transformation of the user-specified uncertain varial¥eswith probability density functionp(z1, z3), which
can be non-normal and correlated, to a space of independent Gaussian random varjglassessing a me
value of zero and unit variance (i.e., standard normal variables). The region of inl@reéstalso mapped |
the transformed space to yiel®,, , whereg(U) < z as shown in Figuré.7. The Nataf transformatior2fl],
which is identical to the Rosenblatt transformati@&][in the case of independent random variables, is us
DAKOTA to accomplish this mapping. This transformation is performed to make the probability calculatio
tractable. In the transformed space, probability contours are circular in nature as shown in6Eigurieke in
the original uncertain variable space, Fig6ré. Also, the multi-dimensional integrals can be approximate
simple functions of a single parametgr,called the reliability indexs is the minimum Euclidean distance fr¢
the origin in the transformed space to the response surface. This point is also known as the most prob
(MPP) of failure. Note, however, the methodology is equally applicable for generic functions, not simpl
corresponding to failure criteria; this nomenclature is due to the origin of these methods within the discij
structural safety and reliability.

6.3.1 Mean Value

The Mean Value method (MV, also known as MVFOSM#4it]) is the simplest, least-expensive reliability met|
because it estimates the response means, response standard deviations, and all CDF/CCDF response:
reliability levels from a single evaluation of response functions and their gradients at the uncertain variabl
This approximation can have acceptable accuracy when the response functions are nearly linear and t
butions are approximately Gaussian, but can have poor accuracy in other situations. The expressions fi
imate response mear),, approximate response standard deviatignresponse target to approximate probse
ity/reliability level mapping £ — p, 3), and probability/reliability target to approximate response level maj

(p,B — 2) are
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. ]
gix) = =z /
3 2N
.-"’Ir ;
a'll
1 {
A D
0 — i
|
0 1 2

X

Plg(X)<z] = ijixl.xz}dx = Pl(xe D)|
x=D

Figure 6.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain variable
space.

u2

| ut P(Xe D) = P(Ue D) = £(B)

Figure 6.7: Graphical depiction of integration for the calculation of cumulative distribution function in the trans-
formed uncertain variable space.
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g = 9(px) (6.1)
d d

oy = D> Covlind) g () o (1x) (6.2)
i g ¢ J

By = B gg;'z (6.3)

Beedf = il (6.4)

Ty
2 = Hg— O’g?cdf (65)
z = N’g"’o'gﬂccdf (6.6)

respectively, where are the uncertain values in the space of the original uncertain variables (“x-space’
is the limit state function (the response function for which probability-response level pairs are needetl)y
andg..qs are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates a second-order mean

1 d?
to = 90e) + 5323 Conti ) g 1 (10) 6.7)

This is commonly combined with a first-order variance (Equata®), since second-order variance invol
higher order distribution moments (skewness, kurto&i€)\which are often unavailable.

The first-order CDF probability(g < z), first-order CCDF probability(g > z), Seqr, andSecqr are related t
one another through

pg<z) = ®(—Bear) (6.8)
plg>2) = @(—Lecr) (6.9)
Beag = —0 (plg < 2)) (6.10)
Becar = —® M (plg > 2)) (6.11)
Bear = —Becdr (6.12)
plg<z) = 1-p(g>=2) (6.13)

where®() is the standard normal cumulative distribution function. A common convention in the literatui
defineg in such a way that the CDF probability for a response levafizero (i.e.p(g < 0)) is the response met
of interest. DAKOTA is not restricted to this convention and is designed to support CDF or CCDF mapp
general response, probability, and reliability level sequences.

6.3.2 MPP Search Methods

All other reliability methods solve an equality-constrained nonlinear optimization problem to compute
probable point (MPP) and then integrate about this point to compute probabilities. The MPP search is p
in uncorrelated standard normal space (“u-space”) since it simplifies the probability integration: the dis
the MPP from the origin has the meaning of the number of input standard deviations separating the mear

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



88 CHAPTER 6. UNCERTAINTY QUANTIFICATION CAPABILITIES

from a particular response threshold. The transformation from correlated non-normal distributions (x-s
uncorrelated standard normal distributions (u-space) is denoted-as7’'(x) with the reverse transformati
denoted ax = 7 !(u). These transformations are nonlinear in general, and possible approaches inc
Rosenblatt 87], Nataf [21], and Box-Cox 9] transformations. The nonlinear transformations may also b
earized, and common approaches for this include the Rackwitz-Fie83J&nvp-parameter equivalent normal ¢
the Chen-Lind 14] and Wu-Wirsching 106 three-parameter equivalent normals. DAKOTA employs the I
nonlinear transformation which occurs in the following two steps. To transform between the original co
x-space variables and correlated standard normals (“z-space”), the CDF matching condition is used:

D(zi) = F(xi) (6.14)

where F() is the cumulative distribution function of the original probability distribution. Then, to trans
between correlated z-space variables and uncorrelated u-space variables, the Cholesky daetanodifiec
correlation matrix is used:

z = Lu (6.15)

where the original correlation matrix for non-normals in x-space has been modified to represent the corre
correlation in z-spacefl].

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability levels for spe:
response levels is called the reliability index approach (RIA), and the inverse reliability analysis algor
computing response levels for specified CDF/CCDF probability/reliability levels is called the performant
sure approach (PMA)9/]. The differences between the RIA and PMA formulations appear in the obj
function and equality constraint formulations used in the MPP searches. For RIA, the MPP search for ¢
the specified response leveis formulated as computing the minimum distance in u-space from the origin
z contour of the limit state response function:

minimize uTu

subject to G(u) =z (6.16)

and for PMA, the MPP search for achieving the specified reliability/probability l@yglis formulated as con
puting the minimum/maximum response function value corresponding to a prescribed distance from the
u-space:

minimize  +G(u)

subject to u’u = (2 (6.17)

whereu is a vector centered at the origin in u-space gfkl) = G(u) by definition. In the RIA case, tt
optimal MPP solutiora* defines the reliability index fron¥ = +|ju*||2, which in turn defines the CDF/CCI
probabilities (using Equatior&8-6.9in the case of first-order integration). The signgok defined by

G(u*) > G(0) : Bear <0, Becar >0 (6.18)
G(u*) < G(0) : Beap > 0, Becar <0 (6.19)

whereG(0) is the median limit state response computed at the origin in u-space (Whgre B..qs = 0 anc
first-orderp(g < z) = p(g > z) = 0.5). In the PMA case, the sign appliedd@gu) (equivalent to minimizing ¢
maximizingG (u)) is similarly defined bys
Bcdf <0, Bccdf > 0 : maximize G(u) (6.20)
Bcdf > 0, Bccdf < 0 : minimize G(u) (6.21)

and the limit state at the MPR7(u*)) defines the desired response level result.
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Limit state approximations

There are a variety of algorithmic variations that are available for use within RIA/PMA reliability analyses
one may select among several different limit state approximations that can be used to reduce compute
pense during the MPP searches. Local, multipoint, and global approximations of the limit state are p@§%
investigated local first-order limit state approximations, a2 [nvestigated local second-order and multipr
approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space centered at the uncertain
means. The first-order approach is commonly known as the Advanced Mean Value (AMV) method

9(x) = g(px) + Vag(px) " (x = fix) (6.22)

and the second-order approach has been named?AMV
1
9(%) = g(1x) + Vg (1) (5 = i) + 5 (¢ = 1) Vg (1) (¢ = o) (6.23)

2. same as AMV/AMV?, except that the Taylor series is expanded in u-space. The first-order option h
termed the u-space AMV method:

G(u) = G(pua) + VuG(Uu)T(u — Hu) (6.24)

wherep,, = T(ux) and is nonzero in general, and the second-order option has been named the
AMV 2 method:

G(W) = Gljna) + VuGlp) (0 = ) + 30— i) V2G(0) =) (629

3. an initial Taylor series approximation in x-space at the uncertain variable means, with iterative ex
updates at each MPP estimaté Y until the MPP converges. The first-order option is commonly knov
AMV+:

g(x) = g(x*) + Vag(x")" (x —x") (6.26)

and the second-order option has been named AMV
1
900) = g(x") + Vg ()" (x = x7) + 5 (x = x7) T Vg (x") (x = x7) (6.27)

4. same as AMV+/AM\VZ+, except that the expansions are performed in u-space. The first-order opt
been termed the u-space AMV+ method.
G(u) = G(u*) + V,G(u") T (u—u*) (6.28)
and the second-order option has been named the u-spacé-AMegthod:

Glu) = G(u*) + VoG (u — u*) + %(u — W) TV2G () (u — u?) (6.29)

5. a multipoint approximation in x-space. This approach involves a Taylor series approximation in int
ate variables where the powers used for the intermediate variables are selected to match informa
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current and previous expansion points. Based on the two-point exponential approximation concep
[38)]), the two-point adaptive nonlinearity approximation (TANA-20F]) approximates the limit state a

n 1—p; n

0 x; , 1 , .

900 = gxa) + 3 5 (o) = (! = ally) ) Yol — aly)’ (6.30)
i=1 " ¢ i=1

wheren is the number of uncertain variables and:

Jg < )
pi = 1+l 6;1'( ) /ln {‘“} (6.31)

5 (x2) Z4,2

H
€(x) = n 3 7 n n 3 (6.32)
Zi:l(l‘? - xf,1)2 + Z¢:1<x€ - x£2)2
n 89 x;§p7

H = 2 g(xlwg(xQ)f;axi(xQ) - (xi’,a:c?,a)] (6.33)

andx, andx; are the current and previous MPP estimates in x-space, respectively. Prior to the ave
of two MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

n 1—p; n
~ oG Ui2 i i 1 i i \2
Glw) = G(ua) + 3 5 () o (ul” =)+ gew) 3_(ul” — ) (6.34)
where:
oG (ul) i1
pi = 14n|2w / In [ z } (6.35)
gg(ug)l U2
H
= v v - . . 6.36
W= ST W L Wl - ) (63
n 1-p;
oG Uy, i i
H = 2 [G(m) — G(ug) — g ou, (us) pi‘ (uy — uiy) (6.37)

anduy andu; are the current and previous MPP estimates in u-space, respectively. Prior to the av:
of two MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations. Combi
option with first-order and second-order integration approaches (see next section) results in the ti
first-order and second-order reliability methods (FORM and SORM).

The Hessian matrices in AMVand AMV2+ may be available analytically, estimated numerically, or app
mated through quasi-Newton updates. The selection between x-space or u-space for performing apprc
depends on where the approximation will be more accurate, since this will result in more accurate V
mates (AMV, AMV?) or faster convergence (AMV+, AM¥, TANA). Since this relative accuracy depends
the forms of the limit statg(x) and the transformatio’(«) and is therefore application dependent in gen
DAKOTA supports both options. A concern with approximation-based iterative search methods (i.e.,
AMV 2+ and TANA) is the robustness of their convergence to the MPP. It is possible for the MPP iterate
cillate or even diverge. However, to date, this occurrence has been relatively rare, and DAKOTA contain
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that monitor for this behavior. Another concern with TANA is numerical safeguarding (e.g., the possit
raising negativer; or u; values to nonintegral; exponents in Equatior 30 6.326.34 and6.36:6.37). Safe:
guarding involves offseting negatiwg or u; and, for potential numerical difficulties with the logarithm ratio
Equations5.31and6.35 reverting to either the lineap( = 1) or reciprocal p; = —1) approximation based ¢
which approximation has lower error %(xl) or g—g(ul).

Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at the MPI
can be selected to be first-order (Equatiér&6.9) or second-order integration. Second-order integration invi
applying a curvature correctiod(, 60, 61]. Breitung applies a correction based on asymptotic analgsis [

n—1

1
=o(-p3 I
p ( p) };[1 T+ 0r +ﬁp"€i

wheres,; are the principal curvatures of the limit state function (the eigenvalues of an orthonormal transfo
of V2@, taken positive for a convex limit state) afig > 0 (a CDF or CCDF probability correction is selecter
obtain the correct sign fg#,). An alternate correction ir6Q)] is consistent in the asymptotic regimé,(— oo)
but does not collapse to first-order integration fgr= 0:

(6.38)

n—1

1
() [ 6.39
=20 1 e (639

wherey() = g—(()) ande() is the standard normal density functiof1] applies further corrections to Equatiér8s
based on point concentration methods. At this time, all three approaches are available within the cod
Breitung correction is used by default (switching the correction is not currently supported in the input spec
and requires minor source modification and recompile).

6.3.3 Uncertainty Quantification Example using Reliability Analysis

In summary, the user can choose to perform either forward (RIA) or inverse (PMA) mappings when per
a reliability analysis. With either approach, there are a variety of methods from which to choose in terms
state approximations (MVFOSM, MVSOSM, x-/u-space AMV, x-/u-space A\¥//u-space AMV+, x-/u-spac
AMV 2+, x-/u-space TANA, and FORM/SORM), probability integrations (first-order or second-order), limi
Hessian selection (analytic, finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP
selections.

All reliability methods output approximate values of the CDF/CCDF response-probability-reliability lev
prescribed response levels (RIA) or prescribed probability or reliability levels (PMA). In addition, the MV
ods additionally output estimates of the mean and standard deviation of the response functions along w
tance factors for each of the uncertain variables in the case of independent random variables.

This example quantifies the uncertainty in the “log ratio” response function:

xr
glar,m2) = — (6.40)
T2
by computing approximate response statistics using reliability analysis to determine the response ci
distribution function:

P[g($1, 372) < Z] (641)
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strategy, \
single_method graphics

method, \
nond_reliability \
mpp_search no_approx
response_levels = .4 5 55 6 .65 .7
.75 .8 .85 .9 1. 1.05 1.15 1.2 1.25 1.3
135 14 15 155 1.6 1.65 1.7 1.75

— - - —

variables, \
lognormal_uncertain = 2 \
Inuv_means = 1. 1
Inuv_std_deviations = 5 05
Inuv_descriptor = 'TFlln® 'TF2In
1 03
031

— - - -

uncertain_correlation_matrix =

interface, \
system asynch \
analysis_driver = ’log_ratio’

responses, \
num_response_functions = 1 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = l.e-4 \
no_hessians

Figure 6.8: DAKOTA input file for Reliability UQ example using FORM.

whereX; and X, are identically distributed lognormal random variables with mearis efandard deviations
0.5 , and correlation coefficient @f.3 .

A DAKOTA input file showing RIA using FORM (option 7 in limit state approximations combined with -
order integration) is listed in Figu&8 The user first specifies thrend _reliability method, followed b
the MPP search approach and integration order. In this example, we spgapfgearch no _approx and
utilize the default first-order integration to select FORM. Finally, the user specifies response levels or
ity/reliability levels to determine if the problem will be solved using an RIA approach or a PMA approach.
example figure 06.8, we use RIA by specifying a range mdsponse _levels for the problem. The resultir
output for this input is shown in Figui& 9, with probability and reliability levels listed for each response I
Figure6.10 shows that FORM compares favorably to an analytic solution for this problem (note: the re
levels differ from those shown in Figue9).

If the user specifieaond _reliability as a method with no additional specification on how to do the
search, then no MPP search is done: the Mean Value method is used. The MV results are shown thHi
and consist of approximate mean and standard deviation of the response, the importance factors for eacl
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Response Level

Probability Level

4.0000000000e-01
5.0000000000e-01
5.5000000000e-01
6.0000000000e-01
6.5000000000e-01
7.0000000000e-01
7.5000000000e-01
8.0000000000e-01
8.5000000000e-01
9.0000000000e-01
1.0000000000e+00
1.0500000000e+00
1.1500000000e+00
1.2000000000e+00
1.2500000000e+00
1.3000000000e+00
1.3500000000e+00
1.4000000000e+00
1.5000000000e+00
1.5500000000e+00
1.6000000000e+00
1.6500000000e+00
1.7000000000e+00
1.7500000000e+00

4.7624085962e-02
1.0346525475e-01
1.3818404972e-01
1.7616275822e-01
2.1641741368e-01
2.5803428381e-01
3.0020938124e-01
3.4226491013e-01
3.8365052982e-01
4.2393548232e-01
5.0000000000e-01
5.3539344228e-01
6.0043460094e-01
6.3004131827e-01
6.5773508987e-01
6.8356844630e-01
7.0761025532e-01
7.2994058691e-01
7.6981945355e-01
7.8755158269e-01
8.0393505584e-01
8.1906005158e-01
8.3301386860e-01
8.4588021938e-01

Cumulative Distribution Function (CDF) for response_fn_1:
Reliability Index

1.6683404020e+00
1.2620507942e+00
1.0885143628e+00
9.3008801339e-01
7.8434989943e-01
6.4941748143e-01
5.2379840558e-01
4.0628960782e-01
2.9590705956e-01
1.9183562480e-01
6.8682233460e-12
-8.8834907167e-02
-2.5447217462e-01
-3.3196278078e-01
-4.0628960782e-01
-4.7770089473e-01
-5.4641676380e-01
-6.1263331274e-01
-7.3825238860e-01
-7.9795460350e-01
-8.5576118635e-01
-9.1178881995e-01
-9.6614373461e-01
-1.0189229206e+00

Figure 6.9: Output from Reliability UQ example using FORM.

Bllg(x,. x,)] < z)

Z1

T2

Figure 6.10: Comparison of the cumulative distribution function (CDF) computed by FORM (+ marks) and the
exact CDF forg(z1, x2)
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MV Statistics for response_fn_1:
Approximate Mean Response = 1.0000000000e+00
Approximate Standard Deviation of Response = 5.9160798127e-01

Importance Factors not available.
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level

Probability Level

4.0000000000e-01
5.0000000000e-01
5.5000000000e-01
6.0000000000e-01
6.5000000000e-01
7.0000000000e-01
7.5000000000e-01
8.0000000000e-01
8.5000000000e-01
9.0000000000e-01
1.0000000000e+00
1.0500000000e+00
1.1500000000e+00
1.2000000000e+00
1.2500000000e+00
1.3000000000e+00
1.3500000000e+00
1.4000000000e+00
1.5000000000e+00
1.5500000000e+00
1.6000000000e+00
1.6500000000e+00
1.7000000000e+00
1.7500000000e+00

1.5524721837e-01
1.9901236093e-01
2.2343641149e-01
2.4948115037e-01
2.7705656603e-01
3.0604494093e-01
3.3630190949e-01
3.6765834596e-01
3.9992305332e-01
4.3288618783e-01
5.0000000000e-01
5.3367668035e-01
6.0007694668e-01
6.3234165404e-01
6.6369809051e-01
6.9395505907e-01
7.2294343397e-01
7.5051884963e-01
8.0098763907e-01
8.2372893005e-01
8.4475278163e-01
8.6405064339%e-01
8.8163821351e-01
8.9755305196e-01

Reliability Index

1.0141851006e+00
8.4515425050e-01
7.6063882545e-01
6.7612340040e-01
5.9160797535e-01
5.0709255030e-01
4.2257712525e-01
3.3806170020e-01
2.5354627515e-01
1.6903085010e-01
0.0000000000e+00
-8.4515425050e-02
-2.5354627515e-01
-3.3806170020e-01
-4.2257712525e-01
-5.0709255030e-01
-5.9160797535e-01
-6.7612340040e-01
-8.4515425050e-01
-9.2966967555e-01
-1.0141851006e+00
-1.0987005257e+00
-1.1832159507e+00
-1.2677313758e+00

Figure 6.11: Output from Reliability UQ example using MV.

variable, and approximate probability/reliability levels for the prescribed response levels that have beer
from the approximate mean and standard deviation (using Equa&tiBmasd6.9). It is evident that the statisti
are considerably different from the fully converged FORM results; however, these rough approximations
much less expensive to calculate. The importance factors are a measure of the sensitivity of the respc
tion(s) to the uncertain input variables, but in this case, are not separable due to the presence of input ¢
coefficients. The importance factors can be viewed as an extension of linear sensitivity analysis comb
terministic gradient information with input uncertainty informatide, input variable standard deviations. 7
accuracy of the importance factors is contingent of the validity of the linear approximation used to appr
the true response functions.

Additional reliability analysis and design results are provided in Secfars21.10

DAKOTA Version 4.0 User’'s Manual generated on October 13, 200



6.4. POLYNOMIAL CHAOS METHODS 95

6.4 Polynomial Chaos Methods

The objective of these techniques is to characterize the response of systems whose governing equatic
stochastic coefficients. The development of these techniques mirrors that of deterministic finite elemen
through the utilization of the concepts of projection, orthogonality, and weak convergence. The polynomi
expansion is based on a multidimensional Hermite approximation in standard normal random variables.

The coefficients for the terms in the polynomial chaos expansion are determined either from a coupl
equations solved externally from the analysis package or from a set of statistical estimators known to co
the Fourier coefficients, albeit at a rate that is unknown a priori. In DAKOTA, the latter approach is imple
where both direct Monte Carlo sampling and Latin hypercube sampling are available to serve as the esti
the Fourier coefficients. A distinguishing feature of the methodology is that the solution series expansior
pressed as random processes, and not merely as statistics as is the case for many nondeterministic met
This makes the technique particularly attractive for use in multi-physics applications which link different &
packages. A more detailed explanation of the procedure can be found in Ghaneni4t 5.

6.4.1 Uncertainty Quantification Example using Polynomial Chaos

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expar
is shown in Figures.12 The analysis involves the use okarrogate  model (defined in theUQM model
specification) in order to manage the construction of a Hermite polynomial global approximation built us
LHS samples of the truth modklg _ratio (defined in the ‘DACE’ method and? ’ interface specifications)

After the Hermite polynomial surrogate model has been constructeaotid_polynomial _chaos methoc
performs a UQ analysis using 1000 LHS samples on the surrogate to compute estimates of the mean
deviation, coefficient of variation, and 95% confidence interval for the response function and the probe
exceeding theesponse _levels value. As shown in Figuré.13 the method outputs these quantitie:
addition to the approximate coefficients in the polynomial chaos expansion for the response function. It <
noted that only standard normal random variables are supportethih_polynomial _chaos at this time.

6.5 Epistemic Nondeterministic Methods

Uncertainty quantification is often used as part of the risk assessment of performance, reliability, and
engineered systems. Increasingly, uncertainty is separated into two categories for analysis purposes
and epistemic uncertainty/§]. Aleatory uncertainty is also referred to as variability, irreducible or inh¢
uncertainty, or uncertainty due to chance. Examples of aleatory uncertainty include the height of inc
in a population, or the temperature in a processing environment. Aleatory uncertainty is usually mode
probability distributions, and sampling methods such as Latin Hypercube sampling in DAKOTA can be
model aleatory uncertainty. In contrast, epistemic uncertainty refers to lack of knowledge or lack of info
about a particular aspect of the simulation model, including the system and environment being mode
increase in knowledge or information relating to epistemic uncertainty will lead to a reduction in the pr
uncertainty of the system response or performance. For epistemic uncertain variables, typically one
know enough to specify a probability distribution on a variable. Epistemic uncertainty is referred to as su
reducible, or lack of knowledge uncertainty. Examples of epistemic uncertainty include little or no expet
data for a fixed but unknown physical parameter, incomplete understanding of complex physical phe
uncertainty about the correct model form to use, etc.

There are many approaches which have been developed to model epistemic uncertainty, including fuz:
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strategy,

method,

model,

variables,

method,

model,

interface,

responses, \

single_method #graphics \
method_pointer = 'UQ’

id_method = 'UQ’ \

model_pointer = 'UQ_M’

nond_polynomial_chaos \
expansion_order = 2 \
samples = 1000 seed = 12347 \
sample_type |hs \
response_levels = 0.5

id_model = 'UQ_M’ \

surrogate global \
dace_method_pointer = 'DACE’ \
hermite

normal_uncertain = 2

nuv_means = 0 0 \
nuv_std deviations = 1 1

nuv_descriptor = 'nl' 'n2 \

1
[N
—

num_response_functions
no_gradients \
no_hessians

id_method = 'DACFE’ \

model_pointer = 'DACE_M’ \

nond_sampling \
samples = 250 seed = 1158 \
sample_type l|hs

id_model = 'DACE_M’ \
single \
interface_pointer = ’I1’

id_interface = 'I1’ \
system asynchronous evaluation_concurrency = 5 \
analysis_driver = ’log_ratio’

Figure 6.12: DAKOTA input file for performing UQ using polynomial chaos expansions.
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Statistics based on 1000 samples:

Moments for each response function:
response_fn_1: Mean = -2.77897e+00 Std. Dev. = 4.92057e+00
Coeff. of Variation = -1.77064e+00

95% confidence intervals for each response function:
response_fn_1: Mean = ( -3.08432e+00, -2.47363e+00 ),
Std Dev = ( 4.71397e+00, 5.14626e+00 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index

5.0000000000e-01  8.2500000000e-01

Simple Correlation Matrix between input and output:
nl n2 response_fn_1
nl 1.00000e+00
n2 -8.13091e-04 1.00000e+00
response_fn_1 -7.67484e-01 -1.32775e-02 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1
nl -7.67563e-01
n2 -2.16849e-02

Simple Rank Correlation Matrix between input and output:
nl n2 response_fn_1
nl 1.00000e+00
n2 -2.88815e-03 1.00000e+00
response_fn_1 -8.15435e-01 -1.82354e-02 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1
nl -8.15626e-01
n2 -3.55716e-02

Polynomial Chaos coefficients vector output
response_fnl

-2.7767149288e+00
-3.7452283448e+00
-6.5491681571e-03
-1.6293723416e+00
9.2459412004e-01
1.3637965300e+00

OO WN PR

Figure 6.13: Output from UQ analysis using polynomial chaos expansions.
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ory, possibility theory, and evidence theory. We have chosen to pursue evidence theory at Sandia for
epistemic uncertainty, in part because evidence theory is a generalization of probability theory. Evident
is also referred to as Dempster-Shafer theory or the theory of randony6&gt[evidence theory, there are t
complementary measures of uncertainty: belief and plausibility. Together, belief and plausibility can be
of as defining lower and upper bounds, respectively, on probabilities. Belief and plausibility define the lo
upper limits or intervals on probability values. In evidence theory, it is not possible to specify one pro
value. Instead, there is a range of values that is consistent with the evidence. The range of values is (
belief and plausibility. Note that no statement or claim is made about one value within an interval being
less likely than any other value.

In Dempster-Shafer evidence theory, the uncertain input variables are modeled as sets of intervals.

assigns a basic probability assignment (BPA) to each interval, indicating how likely it is that the uncel
put falls within the interval. The BPAs for a particular uncertain input variable must sum to one. 1
tervals may be overlapping, contiguous, or have gaps. In DAKOTA, an interval uncertain variable i
fied asinterval  _uncertain . When one defines an interval type variable in DAKOTA, it is also ne
sary to specify the number of intervals defined for each variable with_num.intervals as well the ba
sic probability assignments per intervaly _interval  _probs , and the associated bounds per each inte
iuv _interval  _bounds . Figure6.14shows the input specification for interval uncertain variables. Th
ample shown in Figuré.14has two epistemic uncertain interval variables. The first uncertain variable ha
intervals and the second has two. The basic probability assignments for the first variable are 0.5, 0.1
while the BPAs for the second variable are 0.7 and 0.3. Note that it is possible (and often the case)

an interval uncertain variable with only ONE interval. This means that you only know that the possible \
that variable falls within the interval, and the BPA for that interval would be 1.0. In the case we have shc
interval bounds on the first interval for the first variable are 0.6 and 0.9, and the bounds for the second in
the first variable are 0.1 to 0.5, etc.

Once the intervals, the BPAs, and the interval bounds are defined, the user can run an epistemic a
specifying the method asond _evidence in the DAKOTA input file. The intervals and their associated B
are then propagated through the simulation to obtain cumulative distribution functions on belief and pla
As mentioned above, belief is the lower bound on a probability estimate that is consistent with the evide
plausibility is the upper bound on a probability estimate that is consistent with the evidence. &:iusbows
the results obtained by running the example in Fighuel In this example, there are 6 output intervals (
result of the 2 interval input variables with 3 and 2 intervals, respectively). The first output interval has
probability assignment of 0.35, and a lower and upper bound of 0.0637 and 0.2619. The output inte
ordered to obtain cumulative bound functions for both belief and plausibility. The complementary cun
function is presented for both belief (CCBF) and plausibility (CCPF). The CCBF value is the cumulative
corresponding to a certain output value. For example, the belief that the output value is greater than O
0.07, and the belief that the output is greater than 0.0019478 is one in this example. Similarly, the ple
that the output is greater than 0.8013 is 0.07, while the plausibility that the output is greater than 0.0
1.0. The CCBF and CCPF may be plotted on a graph and interpreted as bounding the complementary ¢
distribution function (CCDF), which is the probability that the output is greater than a certain value. The
bounds on probability values show the value of epistemic uncertainty analysis: the intervals are usua
larger than expected, giving one a truer picture of the total output uncertainty caused by lack of know
information about the epistemic input quantities.

6.6 Future Nondeterministic Methods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA framework inclu
tensions to the reliability techniques and sampling capabilities supported. Advanced “smart sampling” te
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strategy,

single_method

99

graphics

nond_evidence
samples = 1000
seed = 59334

interval_uncertain = 2
iuv_num_intervals
iuv_interval_probs =
iuv_interval_bounds

= 3

2
0.5 0.1 04 0.7 0.3

interface,

system

responses,

no_gradients
no_hessians

analysis_driver

num_response_functions

5
=06 09 0.1 050510030506 0.8

= ’text_book’

=1

\
\
\
\
\
\
\
\
\
\
\
\

Figure 6.14: DAKOTA input file for UQ example using Evidence Theory.
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INPUT INTERVAL COMBINATION BASIC PROBABILITY ASSIGNMENTS

AND MINIMUM/MAXIMUM VALUES

COMBINATION BPA

3.5000E-01
7.0000E-02
2.8000E-01
1.5000E-01
3.0000E-02
1.2000E-01

OO0 WNER

MIN
6.3737E-02
1.4112E-01
6.2609E-02
1.9478E-03
8.0597E-02
1.9478E-03

MAX

2.6187E-01
8.0129E-01
2.9830E-01
4.9229E-02
6.2174E-01
8.3814E-02

COMPLEMENTARY CUMULATIVE BELIEF VALUES

COomMB VALUE
1.4112E-01
8.0597E-02
6.3737E-02
6.2609E-02
1.9478E-03
1.9478E-03

O~ WEFELODN

COMPLEMENTARY CUMULATIVE PLAUSIBILITY VALUES
COMB VALUE

8.0129E-01
6.2174E-01
2.9830E-01
2.6187E-01
8.3814E-02
4.9229E-02

AOPFPWON

CCBF

7.0000E-02
1.0000E-01
4.5000E-01
7.3000E-01
8.8000E-01
1.0000E+00

CCPF

7.0000E-02
1.0000E-01
3.8000E-01
7.3000E-01
8.5000E-01
1.0000E+00

Figure 6.15: Results of an Epistemic Uncertainty Quantification using Evidence Theory.
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such as bootstrap sampling (BS), importance sampling (IS), quasi-Monte Carlo simulation (qMC), and Markov
chain Monte Carlo simulation (McMC) are being investigated. Efforts have been initiated to allow for the possibil-
ity of non-traditional representations of uncertainty. We have implemented Dempster-Shafer theory of evidence,
but may also pursue possibility theory or fuzzy sets, and combinations of epistemic and aleatory uncertainty
methods. Finally, the tractability and efficacy of the more intrusive variant of stochastic finite element/polynomial
chaos expansion methods, previously mentioned, is being assessed for possible implementation in DAKOTA.
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Chapter 7

Optimization Capabilities

7.1 Overview

DAKOTA's optimization capabilities include a variety of gradient-based and nongradient-based optin
methods. Numerous packages are available, some of which are commercial packages, some of whi
veloped internally to Sandia, and some of which are free software packages from the open source cc
The downloaded version of DAKOTA excludes the commercially developed packages but includes C
CONMIN, JEGA, OPT++, and PICO. Interfaces to DOT, NPSOL, and NLPQL are provided with DAKOT
to use these commercial optimizers, the user must obtain a software license and the source code for thes
separately. The commercial software can then be compiled into DAKOTA by following DAKOTA's insta
procedures (see notes/Dakota/INSTALL ).

DAKOTA's input commands permit the user to specify two-sided nonlinear inequality constraints of tr
gr, < 9i(x) < gu,, as well as nonlinear equality constraints of the fdrpix) = %, (see also Sectioh.4.1).
Some optimizers (e.g., NPSOL, OPT++, JEGA) can handle these constraint forms directly, whereas o
mizers (e.g., DOT, CONMIN) require DAKOTA to perform an internal conversion of all constraints to one
inequality constraints of the form(x) < 0. In the latter case, the two-sided inequality constraints are ti
asgi(x) —gu, < 0andgr, — gi(x) < 0 and the equality constraints are treatedhafx) — h;; < 0 anc
h¢; — hj(x) < 0. The situation is similar for linear constraints: NPSOL, OPT++, and JEGA support th
rectly, whereas DOT and CONMIN do not. For linear inequalities of the fapn < aiTx < ay, and linea
equalities of the fornal x = a¢;, the nonlinear constraint arrays in DOT and CONMIN are further augmer
includea’x — ay, < 0anday, — al'x < 0 in the inequality case anaf x — a;; < 0anda,, —ajx < 0in
the equality case. Awareness of these constraint augmentation procedures can be important for unders
diagnostic data returned from the DOT and CONMIN algorithms. Other optimizers fall somewhere in b
NLPQL supports nonlinear equality constraintgx) = 0 and nonlinear one-sided inequalitiggx) > 0, but
does not natively support linear constraints. Constraint mappings are used with NLPQL for both lir
nonlinear cases. Most COLINY methods now support two-sided nonlinear inequality constraints and r
constraints with targets, but do not natively support linear constraints. Constraint augmentation is not
used with COLINY, since linear constraints will soon be supported natively.

When gradient and Hessian information is used in the optimization, derivative components are most ci
computed with respect to the active continuous variables, which in this case a@nthmious design variable
This differs from parameter study methods (for which all continuous variables are active) and from n
ministic analysis methods (for which the uncertain variables are active). Refer to Sg8ti®bfor additiona
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information on derivative components and active continuous variables.

7.2 Optimization Software Packages

7.2.1 COLINY Library

The COLINY library [57] supersedes the SGOPT library and contains a variety of nongradient-based optir
algorithms. The suite of COLINY optimizers available in DAKOTA currently include the following:

¢ Global Optimization Methods

— Several evolutionary algorithms, including genetic algorithowdifly _ea)
— DIRECT [8Q] (coliny _direct )

e Local Optimization Methods

— Solis-Wets ¢oliny _solis _wets)
— Pattern Searckc6liny _pattern _search )

e Interfaces to Third-Party Local Optimization Methods

— Asynchronous Parallel Pattern Search (APRS) f (coliny _apps)
— COBYLAZ2 (coliny _cobyla )

For expensive optimization problems, COLINY’s global optimizers are best suited for identifying pro
regions in the global design space. In multimodal design spaces, the combination of global identificati
COLINY) with efficient local convergence (from CONMIN, DOT, NLPQL, NPSOL, or OPT++) can be h
effective. None of the COLINY methods are gradient-based, which makes them appropriate for prob
which gradient information is unavailable or is of questionable accuracy due to numerical noise. The
methods support bound constraints and nonlinear constraints, but not linear constraints. The nonlinear ¢
in COLINY are currently satisfied using penalty function formulatio®.[ Support for methods which mane
constraints internally is currently being developed and will be incorporated into future versions of DAKOTe
that one observed drawbackd¢oliny _solis _wets is that it does a poor job solving problems with nonlin
constraints Refer to Table 17.1 for additional method classification information.

An example specification for a simplex-based pattern search algorithm from COLINY is:

method, \
coliny_pattern_search \
max_function_evaluations = 2000 \
solution_accuracy = 1.0e-4 \
initial_delta = 0.05 \
threshold_delta = 1.0e-8 \
pattern_basis simplex \
exploratory_moves best_all \

contraction_factor = 0.75

The DAKOTA Reference ManuakP] contains additional information on the COLINY options and settings.

Lhttp://software.sandia.gov/appspack/
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7.2.2 Constrained Minimization (CONMIN) Library

The CONMIN library P9 contains two methods for gradient-based nonlinear optimization. For constrained o
mization, the Method of Feasible Directions (DAKOTAsnmin _-mfd method selection) is available, while for
unconstrained optimization, the Fletcher-Reeves conjugate gradient method (DAK©OMmABN _frcg method
selection) is available. Both of these methods are most efficient at finding a local minimum in the vicinity of
starting point. The methods in CONMIN can be applied to global optimization problems, but there is no guare
that they will find the globally optimal design point.

One observed drawback to CONMIN’s Method of Feasible Directions is that it does a poor job handling equi
constraints This is the case even if the equality constraint is formulated as two inequality constraints. 1
problem is what motivates the modifications to MFD that are present in DOT’'s MMFD algorithm. For proble
with equality constraints, it is better to use the OPT++ nonlinear interior point methods, NPSOL, NLPQL, or
of DOT's constrained optimization methods (see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:

method, \
conmin_mfd \
convergence_tolerance = 1.0e-4 \
max_iterations = 100 \

output quiet

Refer to the DAKOTA Reference Manud@9) for more information on the settings that can be used with CONMIM
methods.

7.2.3 Design Optimization Tools (DOT) Library

The DOT library LO]] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-Goldfal
Shanno (DAKOTAsdot _bfgs method selection) and Fletcher-Reeves conjugate gradient (DAK@dA'sfrcg
method selection) methods for unconstrained optimization, and the modified method of feasible directions (D.
dot _mmfd method selection), sequential linear programming (DAKOT$ _slp method selection), and se-
guential quadratic programming (DAKOTAdDt _sqp method selection) methods for constrained optimization

All DOT methods are local gradient-based optimizers which are best suited for efficient navigation to a |
minimum in the vicinity of the initial point. Global optima in nonconvex design spaces may be missed. Of
gradient based optimizers for constrained optimization include the NPSOL, NLPQL, CONMIN, and OP1
libraries.

Through theoptimization _type specification, DOT can be used to solve either minimization or maximize
tion problems. For all other optimizer libraries, it is up to the user to reformulate a maximization problem :
minimization problem by negating the objective function (i.e., maxinfige) is equivalent to minimize- f (z)).

An example specification for DOT’s BFGS quasi-Newton algorithm is:

method, \
dot_bfgs \
optimization_type maximize \
convergence_tolerance = 1.0e-4 \
max_iterations = 100 \

output quiet

See the DAKOTA Reference Manuaq] for additional detail on the DOT commands. More information on DOT
can be obtained by contacting Vanderplaats Research and Developr#pt/atww.vrand.com
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7.2.4 JEGA

The JEGA (John Eddy’s Genetic Algorithms) library contains two global optimization methods. The fir:
a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimization. The second is a Sin
objective Genetic Algorithm (SOGA) which performs optimization on a single objective function. These funct
are accessed aspga andsoga ) within DAKOTA.

The moga algorithm directly creates a population of Pareto optimal solutions. Over time, the selection opet
of a genetic algorithm act to efficiently select non-dominated solutions along the Pareto front. Because
involves a population of solutions, many points along the Pareto front can be computed in a single study.
although GAs are computationally expensive when compared to gradient-based methods, the advantag
multiobjective setting is that one can obtain an entire Pareto set at the end of one genetic algorithm r
compared with having to run the “weighted sum” single objective problem multiple times with different weig

The DAKOTA Reference ManuaPP] contains additional information on the JEGA options and settings. St
tion 7.3discusses additional multiobjective optimization capabilities, and there are MOGA examples in Chap
and21.

7.2.5 MOOCHO Library

The MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) library, formerly known
rSQP++, is a new addition to DAKOTA that is not yet publicly available. It provides both general-purpose sec
tial quadratic programming (SQP) algorithms for nested analysis and design (NAND) as well as reduced:
SQP algorithms for simultaneous analysis and design (SAND). Additional information on SAND is provide
Section7.3.2 MOOCHO algorithm capabilities are available using teéuced _sqp method selection.

7.2.6 NLPQL Library

The NLPQL library contains a sequential quadratic programming (SQP) implementation (DAK@J&s _sqp
method selection). The particular implementation used is NLPQJP g variant with distributed and non-
monotone line search. SQP is a nonlinear programming approach for constrained minimization which sc
series of quadratic programming (QP) subproblems, where each QP minimizes a quadratic approximatior
Lagrangian subject to linearized constraints. It uses an augmented Lagrangian merit function and a BFt
proximation to the Hessian of the Lagrangian. It is an infeasible method in that constraints will be satisfied
final solution, but not necessarily during the solution process. The non-monotone line search used in NL
is designed to be more robust in the presence of inaccurate or noisy gradients common in many engir
applications.

NLPQL's gradient-based approach is best suited for efficient navigation to a local minimum in the vicinit
the initial point. Global optima in honconvex design spaces may be missed. Other gradient based optimiz
constrained optimization include the DOT, CONMIN, NPSOL, and OPT++ libraries.

See the DAKOTA Reference Manudq) for additional detail on the NLPQL commands. More information o
NLPQL can be obtained from Prof. Klaus SchittkowskKntp://www.uni-bayreuth.de/departments/
math/"kschittkowski/nlpglp20.htm
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7.2.7 NPSOL Library

The NPSOL library46] contains a sequential quadratic programming (SQP) implementation (DAK@pas _sqp
method selection). Like NLPQL, it solves a series of QP subproblems, uses an augmented Lagrangian merit
tion and a BFGS approximation to the Hessian of the Lagrangian, and will not necessarily satisfy the constri
until the final solution. It uses a sufficient-decrease line search approach, which is a gradient-based line s
for analytic, mixed, or DAKOTA-supplied numerical gradients and is a value-based line search in the ven
numerical case.

NPSOL's gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity of-
initial point. Global optima in nonconvex design spaces may be missed. Other gradient based optimizer:
constrained optimization include the DOT, CONMIN, NLPQL, and OPT++ libraries.. For least squares methi
based on NPSOL, refer to Sectiér2.2

An example of an NPSOL specification is:

method, \
npsol_sgp \
convergence_tolerance = 1.0e-6 \
max_iterations = 100 \

output quiet

See the DAKOTA Reference Manud&9] for additional detail on the NPSOL commands. More information on
NPSOL can be obtained by contacting Stanford Business Softwhtgdtwww.sbsi-sol-optimize.
com.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output stream. Tt
diagnostics are written to the default FORTRAN device 9 file (éig09 orfort.9 , depending on the archi-
tecture) in the working directory.

7.2.8 OPT++ Library

The OPT++ library 73] contains primarily nonlinear programming optimizers for unconstrained, bound cor
strained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (DAK@Jifp _cg
method selection), quasi-Newton (DAKOTAptpp _g_newton method selection), finite difference Newton
(DAKOTAs optpp _fd _-newton method selection), and full Newton (DAKOTASptpp _newton method
selection). The library also contains the parallel direct search nongradient-based nkfh¢spgcified as
DAKOTA's optpp _pds method selection).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity
the initial point. Global optima in nonconvex design spaces may be missed. OPT++'s PDS method does no
gradients and has some limited global identification abilities; it is best suited for problems for which gradi
information is unavailable or is of questionable accuracy due to numerical noise. Some OPT++ methods
strictly unconstrainedoptpp _cg) and some support bound constraindptpp _pds), whereas the Newton-
based method®ptpp _g_newton , optpp _fd _newton , andoptpp _newton ) all support general linear and
nonlinear constraints (refer to Tall8&.1). Other gradient-based optimizers include the DOT, CONMIN, NLPQL,
and NPSOL libraries. For least squares methods based on OPT++, refer to 8ettlon

An example specification for the OPT++ quasi-Newton algorithm is:

method, \
optpp_g_newton \
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max_iterations = 50 \
convergence_tolerance = le-4 \
output debug

See the DAKOTA Reference Manu&d] for additional detail on the OPT++ commands.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output strearr
diagnostics are written to the fil@PT.DEFAULT.out in the working directory.

7.2.9 Parallel Integer Combinatorial Optimization (PICO)

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete and mixe
tinuous/discrete constrained nonlinear optimization problems. This capability is implemented in DAKO
strategy and is discussed further in Sectoh

7.2.10 SGOPT

The SGOPT library has been deprecated, and all methods have been migrated to the COLINY library.

7.3 Additional Optimization Capabilities

DAKOTA provides several capabilities which extend the services provided by the optimization software p
described in Sectioi.2 First, any of the optimization algorithms can be used for multiobjective optimiz
problems through the use of multiobjective transformation techniques (e.g., weighted sums). Second, lz
optimization algorithms (e.g., MOOCHO) can be used for simultaneous analysis and design through the
fully-intrusive interface to internal simulation residual vectors and Jacobian matrices. Finally, with any of
(or least squares solver described in SecBd?), user-specified (or in some cases automatic) scaling m
applied to any of continuous design variables, functions (or least squares terms), and constraints.

7.3.1 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on tF
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible Véttmr Pareto optimz
if there exists no other feasible vect&r which would improve some objective without causing a simultan
worsening in at least one other objective. Thus, if a feasible poimxists that CAN be improved on one or m
objectives simultaneously, it is not Pareto optimal: it is said to be “dominated” and the points along the
front are said to be “non-dominated.”

There are three capabilities for multiobjective optimization in DAKOTA. First, there is the MOGA capabili
scribed previously in Section2.4 This is a specialized algorithm capability. The second capability involve
use of response data transformations to recast a multiobjective problem as a single-objective problem.

DAKOTA supports the simple weighted sum approach for this transformation, in which a composite o
function is constructed from a set of individual objective functions using a user-specified set of weighting
This approach is optimization algorithm independent, in that it works with any of the optimization methoc
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previously in this chapter. The third capability is the Pareto-set optimization strategy described in Sektion

This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Paret
trade-off surface.

In the multiobjective transformation approach in which multiple objectives are combined into one, an appropriate
single-objective optimization technique is used to solve the problem. The advantage of this approach is that one
can use any number of optimization methods that are especially suited for the particular problem class. One
disadvantage of the weighted sum transformation approach is that a linear weighted sum objective cannot locate
all optimal solutions in the Pareto set if the Pareto front is nonconvex. Also, if one wants to understand the effects
of changing weights, this method can become computationally expensive. Since each optimization of a single
weighted objective will find only one point near or on the Pareto front, many optimizations need to be performed
to get a good parametric understanding of the influence of the weights.

The selection of a multiobjective optimization problem is made through the specification of multiple objective
functions in the responses keyword block (i.e., then objective  _functions  specification is greater than

1). The weighting factors on these objective functions can be optionally specified usinglthe _objective  _weights
keyword (the default is equal weightings). The composite objective function for this optimization prabjem,

is formed using these weights as follows: = ZkRzl wg fr, Where thefy, terms are the individual objective
function values, thev;, terms are the weights, and is the number of objective functions. The weighting fac-

tors stipulate the relative importance of the design concerns represented by the individual objective functions; the
higher the weighting factor, the more dominant a particular objective function will be in the optimization pro-
cess. Constraints are not affected by the weighting factor mapping; therefore, both constrained and unconstraine
multiobjective optimization problems can be formulated and solved with DAKOTA, assuming selection of an ap-
propriate constrained or unconstrained single-objective optimization algorithm. Future multiobjective response
data transformations for goal programming, normal boundary intersection, etc. are planned.

Figure7.1 shows a DAKOTA input file for a multiobjective optimization problem based on the “textbook” test
problem. This input file is namediakota _multiobjl.in in the/Dakota/test directory. In the standard
textbook formulation, there is one objective function and two constraints. In the multiobjective textbook formula-
tion, all three of these functions are treated as objective functimms pbjective  _functions = 3 ), with
weights given by thenulti _objective  _weights keyword. Note that it is not required that the weights sum

to a value of one. The multiobjective optimization capability also allows any number of constraints, although
none are included in this example.

Figure 7.2 shows an excerpt of the results for this multiobjective optimization problem. The data for function
evaluation 9 show that the simulator is returning the values and gradients of the three objective functions and thai
this data is being combined by DAKOTA into the value and gradient of the composite objective function, as iden-
tified by the headerMultiobjective transformation: ”. This combination of value and gradient data

from the individual objective functions employs the user-specified weightings of2 , and.1 . Convergence

to the optimum of the multiobjective problem is indicated in this case by the gradient of the composite objective
function going to zero (no constraints are active).

By performing multiple optimizations for different sets of weights, a family of optimal solutions can be generated
which define the trade-offs that result when managing competing design concerns. This set of solutions is referrec
to as the Pareto set. Sectidr describes a solution strategy used for directly generating the Pareto set in order to
investigate the trade-offs in multiobjective optimization problems.
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strategy,
single_method
tabular_graphics_data
method,
npsol_sqgp
convergence_tolerance = 1.e-8
variables,
continuous_design = 2
cdv_initial_point 0.9 1.1
cdv_upper_bounds 5.8 2.9
cdv_lower_bounds 0.5 -2.9
cdv_descriptor x1’ 'x2'
interface,
system asynchronous
analysis_driver=  'text_book’
responses,

num_objective_functions = 3
multi_objective_weights = .7
analytic_gradients
no_hessians

2.1

Figure 7.1: Example DAKOTA input file for multiobjective optimization.
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Begin Function Evaluation 9

Parameters for function evaluation 9:
5.9388064484e-01 x1
7.4158741199e-01 x2

(text_book /var/tmp/qaagjayaZ /var/tmp/raahjayaZ)

Active response data for function evaluation 9:
Active set vector = { 3 3 3}
3.1662048104e-02 obj_fnl
-1.8099485679e-02 obj_fn2
2.5301156720e-01 obj_fn3
[ -2.6792982174e-01 -6.9024137409e-02 ] obj_fnl gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj_fn2 gradient
[ -5.0000000000e-01 1.4831748240e+00 ] obj_fn3 gradient

Multiobjective transformation:
4.3844693257e-02 obj_fn
[ 1.3827220000e-06 5.8621370000e-07 ] obj_fn gradient
7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2TTT
Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 7.2: DAKOTA results for the multiobjective optimization example.
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7.3.2 Simultaneous Analysis and Design (SAND) Optimization

DAKOTA was originally developed as a “black box” optimization tool that employs non-intrusive inte
with simulation codes. While this approach is useful for many engineering design applications, it can
prohibitively expensive when there is a large design space (1€.0? — 10°) design parameters) and wt
the computational simulation is highly nonlinear. Current research and development activities are inve
simultaneous analysis and design (SAND) methods, and these algorithms may be supported in DAKOTA
releases. These “all at once” approaches are considerably more intrusive to a simulation code than a
interfacing capability in DAKOTA. But in some large-scale applications, the SAND method may be th
viable alternative for optimization.

The basic idea behind SAND is to converge a nonlinear simulation code at the same time that the o
conditions are being converged. This amounts to applying the nonlinear simulation residual equations
ity constraints in the optimization problem and then using an infeasible optimization method (e.g., se
quadratic programming) which only satisfies these equality constraints in the limit (i.e., at the final optim
tion). This can result in a significant computational savings over black-box optimization approaches whicl
a nonlinear simulation to be fully-converged on every function evaluation.

To implement a SAND technique, modifications to the simulation package are necessary so that the opt
software may have access to the internal residual vector and state Jacobian matrix used by the simulat
The SAND techniques can then leverage the internal linear algebra of the simulation package as appt
performing the search direction calculations. A SAND-type optimization does make certain assumptio
the simulation package, such as there is access to the state Jacobian matrix (although matrix free me
be interfaced as well), exact values are used in the state Jacobian, an implicit numerical solution schern
there are no discontinuities in the system, and steady state solutions are to be obtained (although SANL
solution capabilities are under development). Many single physics, PDE-based simulation codes fall in 1
gory. SAND approaches can be applied to more complex simulation codes, such as multi-physics pacl
substantial modifications are often needed to make SAND feasible in these cases.

Details on SAND-type optimization approaches may be found,@][ Additional details on the SAND impl¢
mentation in DAKOTA will appear in future releases of this Users Manual.

7.3.3 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly ¢
scales may be solved more efficiently if these quantities are adjusted to a common scale (typically on th
unity). With any optimizer (or least squares solver described in Se8tB)nuser-specified or automatic scal
may be applied to any of continuous design variables, nonlinear inequality and equality constraints, a
inequality and equality constraints. User-specified scaling may be applied to objective functions or leas
terms. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and least squares minimizers by inclustiagjribe
keyword in the relevantnethod specification in the DAKOTA input deck. When scaling is enabled, varia
functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in scaled varia
whereas evaluations of the computational model as specified in the interface are performed on the origine
scale. Therefore using scaling does not require rewriting the interface to the simulation code.

Scaling factors are specified through the keywords listed in TAllleand are ignored if thecaling  keyword
is omitted from themethod specification. Each _scales keyword specifies no, one, or a vector of s
values to be applied to the corresponding variables or responses. If a single value is specified usir
these keywords it will apply to each component of the relevant vector,celg.scales = 3.0  will apply a
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Table 7.1: Keywords for specifying scaling factors.

keyword input spec section default behavior

cdv _scales variables automatic

objective  _function _scales responses off (automatic not allowed
least _squares _term _scales responses off (automatic not allowed
nonlinear _inequality = _scales responses automatic

nonlinear _equality _scales responses automatic

linear _inequality  _scales method automatic

linear _equality _scales method automatic

characteristic scaling value 8f0 to each continuous design variable. Valid entries iscales vectors include
positive characteristic values (user-specified scale factbf$)to exempt a component from scaling,@0 for
automatic scaling, if available for that component. Negative scale values are not currently permitted.

When scaling is enabled, the following progression will be used to determine the type of scaling used on each
component of a variables or response vector:

1. When a strictly positive characteristic value is specified, the quantity will be scaled by it.

2. If a zero or no characteristic value is specified, automatic scaling will be attempted according to the follow-
ing scheme:

(a) two-sided bounds scaled into the interi@l1];

(b) one-sided bound or targets scaled by the absolute value of the characteristic value, moving the bound
or targetto -1 or +1.

(c) no bounds or targets: no automatic scaling possible, therefore no scaling for this component

Automatic scaling is not available for objective functions or least squares terms since they do not have bound con-
straints.Caution: The scaling hierarchy is followed for all problem variables and constraints whestdtiag

keyword is specified, so one must note the default scaling behavior for each component and manually exempt
components with a scale valuehD , if necessary.

Scaling for linear constraints specified throdigiear _inequality =~ _scales orlinear _equality _scales
is appliedafter any (user-specified or automatic) continuous variable scaling. For example, for scaling mapping
unscaled continuous design variablet® scaled variables:
j J
5 ! —xy

3

Ty
we have the following matrix system for linear inequality constraints

ar, < Ajx < ay
ar, < A; (diag(xn)T + o) < av
ar, — Ajzo < Adiag(z )z < ay — Aizo
ar < AiE < v,
and user-specified or automatically computed scaling multipliers are applied to this final transformed system,

which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by characteristic values only, but not affinely into the inferval
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strategy, \
single_method

method, \
dot_mmfd, \
max_iterations = 50, \
convergence_tolerance = le-4

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_scales 4.0 0.0 \
cdv_descriptor x1’ 'x2'

interface, \
fork \
analysis_driver = ’text_book’ \

responses, \

num_objective_functions = 1 \
objective_function_scales 50.0 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_constraint_scales 15.0 1.0 \
numerical_gradients \

method_source dakota \

interval_type central \

fd_gradient_step_size = l.e-4 \
no_hessians

Figure 7.3: Sample usage of scaling keywords in DAKOTA input specification.

Figure7.3demonstrates the use of several scaling keywords for the textbook optimization problem. The
ous design variablgl is scaled by a characteristic valueh0 , whereas2 is scaled automatically intf), 1]
based on its bounds. The objective function will be scaled by a facte®.6f , the first nonlinear constraint by
factor of 15.0 , and the second nonlinear constraint is not scaled.
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Nonlinear Least Squares Capabilities

8.1 Overview

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a sum of
squares objective functiod7]. These problems commonly arise in parameter estimation, system identificatior
and test/analysis reconciliation. In order to exploit the problem structure, more granularity is needed in

response data than that required for a typical optimization problem. That is, rather than using the sum-of-squ
objective function and its gradient, least squares iterators require each term used in the sum-of-squares formul
along with its gradient. This means that theunctions in the DAKOTA response data set consist of the individual
least squares terms along with any nonlinear inequality and equality constraints. These individual terms are ¢
calledresidualsin cases where they denote errors of observed quantities from desired quantities.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation o
approximate Hessian matrix. In Gauss-Newton-based methods for example, the true Hessian matrix is app
mated by neglecting terms in which the residual function values appear, under the assumption that the resic
tend towards zero at the solution. As a result, residual function value and gradient information (first-order
formation) is sufficient to define the value, gradient, and approximate Hessian of the sum-of-squares objec
function (second-order information). See Sectlof.2for additional details on this approximation.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose optimizat
algorithms when the Hessian approximation is a good one, e.g., when the residuals tend towards zero a
solution. Specifically, they can exhibit the quadratic convergence rates of full Newton methods, even though ¢
first-order information is used. Gauss-Newton-based least squares solvers may experience difficulty wher
residuals at the solution are significant.

In order to specify a least-squares problem, the responses section of the DAKOTA input should be configurec
ingnum.least _squares _terms (asopposedtoumobjective _functions inthe case of optimization).
Any linear or nonlinear constraints are handled in an identical way to that of optimization (see Settioote

that neither Gauss-Newton nor NLSSOL require any constraint augmentation and NL2SOL supports neither lir
nor nonlinear constraints). Gradients of the least squares terms and nonlinear constraints are required and s
be specified using eitheumerical _gradients ,analytic _gradients , ormixed _gradients . Since
second derivatives of the least squares terms are not needed by nature of the Hessian approximatohsstians
specification should be used. DAKOTA's scaling options, described in SettBBcan be used on least squares
problems, using thkeast _squares _term _scales keyword to scale least squares residuals, if desired.
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8.2 Solution Techniques

Nonlinear least squares problems can be solved using the Gauss-Newton algorithm, which leverage
Newton method from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the NL
algorithm, which uses a secant-based algorithm. Details for each are provided below.

8.2.1 Gauss-Newton

DAKOTAs Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton |
approximation (see Sectidn4.2 with full Newton optimization algorithms from the OPT++ packagd&][(see
Section7.2.8. This approach can be selected usingdbgpp _g_newton method specification. An examj
specification follows:

method, \

optpp_g_newton \
max_iterations = 50 \
convergence_tolerance = le-4 \

output debug

Refer to the DAKOTA Reference Manu&t9] for more detail on the input commands for the Gauss-Ne
algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local leas
solution in the vicinity of the initial point. Global optima in multimodal design spaces may be missed.

Newton supports bound, linear, and nonlinear constraints. For the nonlinearly-constrained case, const
sians (required for full-Newton nonlinear interior point optimization algorithms) are approximated using
Newton secant updates. Thus, both the objective and constraint Hessians are approximated using
information.

8.2.2 NLSSOL

The NLSSOL algorithm is a commercial software product of Stanford University that is bundled with
versions of the NPSOL library (see Sectit2.7). It uses an SQP-based approach to solve generally-const
nonlinear least squares problems. It periodically employs the Gauss-Newton Hessian approximation to
the search. Like the Gauss-Newton algorithm of Sec8i@], its derivative order is balanced in that it requ
only first-order information for the least squares terms and nonlinear constraints. This approach can b
using thenlssol _sqp method specification. An example specification follows:

method, \
nissol_sqgp \
convergence_tolerance = le-8

Refer to the DAKOTA Reference Manud&9] for more detail on the input commands for NLSSOL.

8.2.3 NL2SOL

The NL2SOL algorithm 18] is a secant-based least-squares algorithm thasigperlinearly convergent. It da
not rely solely on the Gauss-Newton Hessian approximation and is appropriate for “large residual” proble
least squares problems for which the residuals do not tend towards zero at the solution.
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Active response data for function evaluation 1:
Active set vector = { 3 3 }
6.0000000000e-01 least_sqg_terml
2.0000000000e-01 least_sq_term2
[ -1.6000000000e+01 1.0000000000e+01 ] least_sq_terml gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

4.0000000000e-01

nlf2_evaluator_gn results: objective fn. gradient
[ -1.9600000000e+01 1.2000000000e+01 ]

nlf2_evaluator_gn results: objective fn. Hessian
[[ 5.1400000000e+02 -3.2000000000e+02

-3.2000000000e+02  2.0000000000e+02 1]]

Figure 8.1: Example of the Gauss-Newton approximation.

8.2.4 Future plans

The least squares branch in DAKOTA is an area of continuing enhancements, particularly through the
of new least squares algorithms. One potential future addition is the orthogonal distance regression (Ol
rithms which estimate values for both independent and dependent parameters.

8.3 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least squares
Refer to ChapteR1 for more information on these formulations. Fig@.d shows an excerpt from the texthc
example which demonstrates use of the Gauss-Newton approximation in computing the objective functi
gradient, and Hessian from values and gradients of the least squares terms.
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Chapter 9

Advanced Optimization Strategies

9.1 Overview

DAKOTA' strategy capabilities were developed in order to provide a control layer for managing multiple it
and models. It was driven by the observed need for “meta-optimization” and other high level systems
procedures in real-world engineering design problems. This capability allows the use of existing iterat
rithm and computational model software components as building blocks to accomplish more sophisticate
such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or Pa
mization. Other strategy-like capabilities are enabled by the model recursion capabilities described inXT
When these model recursion specifications are sufficient to completely describe a multi-iterator, mul
solution approach, then a separate strategy specification is not used (see Be&tionexamples).

9.2 Multilevel Hybrid Optimization

In the multilevel hybrid optimization strategy (keywonthulti _level ), a sequence of optimization methods
applied to find an optimal design point. The goal of this strategy is to exploit the strengths of different optir
algorithms through different stages of the optimization process. Global/local hybrids (e.g., genetic ali
combined with nonlinear programming) are a common example in which the desire for a global opti
balanced with the need for efficient navigation to a local optimum. An important related feature is
sequence of optimization algorithms can employ models of varying fidelity. In the global/local case, for e
it would often be advantageous to use a low-fidelity model in the global search phase, followed by use ¢
refined model in the local search phase.

The specification for multilevel optimization involves a list of method identifier strings, and each of the
sponding method specifications has the responsibility for identifying the model specification (which ma
identify variables, interface, and responses specifications) that each method will use (see the DAKOTAF
Manual R9] and the example discussed below). Currently, only the uncoupled multilevel approach is a
Thecoupled anduncoupled adaptive approaches are not fully functional at this time.

Intheuncoupled multilevel optimization approach, a sequence of optimization methods is invoked in th
specified in the DAKOTA input file. The best solution from each method is used as the starting point
following method. Method switching is governed by the separate convergence controls of each metl
is, each method is allowed to run to its own internal definition of completion without interferdndevidua
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method completion may be determined by convergence criteria¢erguergence _tolerance ) or iteration
limits (e.g.,max_iterations ). Theuncoupled adaptive approach is similar, with the difference that th
progress of each method is monitored and method switching is enforced according to externally-defined |
progress metrics. Finally, theoupled approach is restricted to special tightly-coupled hybrid algorithms
which local searches are used periodically to accelerate a global search. These hybrids do not contain a
method switch, but rather repeatedly apply a local algorithm within the context of the global algorithm.

Figure9.1 shows a DAKOTA input file that specifies an uncoupled multilevel optimization strategy to solve
“textbook” optimization test problem. This input file is nanaakota _multilevel.in in the/Dakota/test
directory. The three optimization methods are identified usingrththod _list  specification in the strategy
section of the input file. The identifier strings listed in the specification @ for genetic algorithm, PS
for pattern search, andNLP for nonlinear programming. Following the strategy keyword block are the th
corresponding method keyword blocks. Note that each method has a tag followiity tinethod keyword
that corresponds to one of the method names listed in the strategy keyword block. By following the ide
tags frommethod to model and frommodel to variables | interface , andresponses , itis easy to
see the specification linkages for this problem. The GA optimizer runs first and uses Mddehich includes
variables V1', interface 11 ’, and responsesR1’. Once the GA is complete, the PS optimizer starts from tl
best GA result and again uses moddll’. Since both GA and PS are nongradient-based optimization methu
there is no need for gradient or Hessian information in BE fesponse keyword block. The NLP optimizer run
last, using the best result from the PS method as its starting point. It uses mt®elHich includes the same
‘V1' and ‘11 ’ keyword blocks, but uses the responses keyword bl&&X since the full Newton optimizer used
in this example@ptpp _newton ) needs analytic gradient and Hessian data to perform its search.

9.3 Multistart Local Optimization

A simple, heuristic, global optimization technique is to use many local optimization runs, each of which is s
from a different initial point in the parameter space. This is known as multistart local optimization. Th
an attractive strategy in situations where multiple local optima are known or expected to exist in the par:
space. However, there is no theoretical guarantee that the global optimum will be found. This approacl
bines the efficiency of local optimization methods with a user-specified global stratification (using a spe
starting  _points list, a number of specifiechndom _starts , or both; see the DAKOTA Reference Man
ual [29] for additional specification details). Since solutions for different starting points are independent, pe
computing may be used to concurrently run the local optimizations.

An example input file for multistart local optimization on the “quasie” test function (seguasi _sine _fcn.C

in /Dakota/test ) is shown in Figure®.2 The strategy keyword block in the input file contains the keywa
multi _start , along with the set of starting points (3 random and 5 listed) that will be used for the optimiz:
runs. The other keyword blocks in the input file are similar to what would be used in a single optimization r

Thequasi _sine test function has multiple local minima, but there is an overall trend in the function that t¢
toward the global minimum &trl, 22) = (0.177,0.177). See bQ] for more information on this test function.
Figure9.3shows the results summary for the eight local optimizations performed. From the five specified st
points and the 3 random starting points (as identified byihex2 headers), the eight local optima (as identifie
by thex1* , x2* headers) are all different and only one of the local optimizations finds the global minimum
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strategy, \
graphics \
multi_level uncoupled \
method_list = 'GA’ 'PS’ 'NLP’

method, \
id_method = 'GA’ \
model_pointer = ‘M1’ \
coliny_ea \
seed = 1234 \
population_size = 10 \

verbose output

method, \
id_method = 'PS’ \
model_pointer = 'M1’ \
coliny_pattern search stochastic \
seed = 1234 \
initial_delta = 0.1 \
threshold_delta = 1.e-4 \
solution_accuracy = 1.e-10 \
exploratory_moves basic_pattern \

verbose output

method, \
id_method = 'NLP’ \
model_pointer = ‘M2’ \
optpp_newton \
gradient_tolerance = 1.e-12 \
convergence_tolerance = 1l.e-15 \

verbose output

model, \
id_model = ‘M1’ \
single \
variables_pointer = 'V1' \
interface_pointer = 'I1’ \
responses_pointer = 'R1’ \

model, \
id_model = 'M2’ \
single \
variables_pointer = 'V1' \
interface_pointer = 'I1’ \
responses_pointer = 'R2' \

variables, \
id_variables = 'V1’ \
continuous_design =
cdv_initial_point 0.6 0.7 \
cdv_upper_bounds 5.8 29 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor X1 'x2'

N

interface, \
id_interface = 'I1’ \
direct \
analysis_driver= 'text_book’

responses, \
id_responses = 'R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = 'R2’ \
num_objective_functions = 1 \
analytic_gradients \

analytic_hessians

Figure 9.1: DAKOTA input file for the multilevel optimization strategy.
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strategy, \
multi_start graphics \
method_pointer = 'NLP’ \
random_starts = 3 seed = 123 \
starting_points = -.8

-.8
-8 .8
8 -8 \
.8 .8
0. 0

method, \
id_method = 'NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \
cdv_lower_bounds -1.0 -1.0 \
cdv_upper_bounds 1.0 1.0 \
cdv_descriptor 'x1’ 'x2'

interface, \
system #asynchronous \
analysis_driver = ’'quasi_sine_fcn’

responses, \
num_objective_functions = 1 \
analytic_gradients
no_hessians

Figure 9.2: DAKOTA input file for the multistart local optimization strategy.

<<<<< Results summary:

set_id x1 x2 x1* X2* obj_fn
1 -0.8 -0.8 -0.8543728666 -0.8543728666  0.5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0.291406596
3 0.8 -0.8 0.177092822 -0.9998398719 0.291406596
4 0.8 0.8 0.1770928217 0.1770928217 0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239
6 -0.7767971993 0.01810943539 -0.7024118387 0.03572951143  0.3165522387
7 -0.3291571008 -0.7697378755 0.3167607374 -0.4009188363 0.2471403213
8 0.8704730469  0.7720679005 0.177092899  0.3167611757 0.08256082751

Figure 9.3: DAKOTA results summary for the multistart local optimization strategy.
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9.4 Pareto Optimization

The Pareto optimization strategy (keywopdireto _set ) is one of three multiobjective optimization capabilities
discussed in Section3.1 In the Pareto optimization strategy, multiple sets of multiobjective weightings are eval-
uated. The user can specify these weighting sets in the strategy keyword block nmilig aobjective  _weight _sets
list, a number ofandom _weight _sets , or both (see the DAKOTA Reference Manu29[ for additional speci-
fication details). Figur8.4shows the input commands from the filekota _pareto.in  inthe/Dakota/test

directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective weights. The col-
lection of computed optimal solutions form a Pareto set, which can be useful in making trade-off decisions in
engineering design. Since solutions for different multiobjective weights are independent, parallel computing may
be used to concurrently execute the multiobjective optimization problems.

Figure9.5shows the results summary for the Pareto-set optimization strategy. For the four multiobjective weight-
ing sets (as identified by thel, w2, w3 headers), the local optima (as identified by #ie x2 headers) are all
different and correspond to individual objective function valuesfef {>, f3) = (0.0,0.5,0.5), (13.1,-1.2,8.16),
(532.,33.6,-2.9), and (0.125,0.0,0.0) (note: the composite objective function is tabulated undéj thre

header). The first three solutions reflect exclusive optimization of each of the individual objective functions
in turn, whereas the final solution reflects a balanced weighting and the lowest sum of the three objectives. Plot-
ting these fi, f2, f3) triplets on a 3-dimensional plot results in a Pareto surface (not shown), which is useful for
visualizing the trade-offs in the competing objectives.

9.5 Mixed Integer Nonlinear Programming (MINLP)

For DAKOTA 4.0, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incor-
poration into COLINY. This will be supported again in future releases.

Many nonlinear optimization problems involve a combination of discrete and continuous variables. These are
known as mixed integer nonlinear programming (MINLP) problems. A typical MINLP optimization problem is
formulated as follows:

minimize:  f(x,d)

subjectto: gy < g(x,d) < gy
h(x,d) = h, (9.1)
X <x <Xy
de{-2-1,0,1,2}

whered is a vector whose elements are integer values. In situations where the discrete variables can be tem-
porarily relaxed (i.e., noncategorical discrete variables, see Seti@r, the branch-and-bound algorithm can

be applied. Categorical variables (e.g., true/false variables, feature counts, etc.) that are not relaxable cannot b
used with the branch and bound strategy. During the branch and bound process, the discrete variables are treate
as continuous variables and the integrality conditions on these variables are incrementally enforced through a se
quence of optimization subproblems. By the end of this process, an optimal solution that is feasible with respect
to the integrality conditions is computed.

DAKOTA's branch and bound strategy (keywolastanch _and _bound ) can solve optimization problems having
either discrete or mixed continuous/discrete variables. This strategy uses the parallel branch-and-bound algorithn
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strategy,
pareto_set graphics
opt_method_pointer = 'NLP’
multi_objective_weight_sets =
1. 0. O
0. 1. o
0. O 1.
.333 .333 .333
method,
id_method = 'NLP’
dot_bfgs
variables,
continuous_design = 2
cdv_initial_point 0.9 1.1
cdv_upper_bounds 5.8 2.9
cdv_lower_bounds 05 -29
cdv_descriptor 'x1’ X2’
interface,
system #asynchronous
analysis_driver = 'text_book’
responses,

num_objective_functions = 3
analytic_gradients
no_hessians

Figure 9.4: DAKOTA input file for the Pareto optimization strategy.

<<<<< Results summary:

set_id

A WNBE

wil w2 w3
0

1
0 0
0 1

or o

0.333 0.333 0.333

x1 X2 obj_fn
0.9996554048 0.997046351 7.612301561e-11
0.5 29 -1.2
5.8 1.12747589e-11 -2.9
0.5  0.5000000041 0.041625

Figure 9.5: DAKOTA results summary for the Pareto-set optimization strategy.
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from the PICO software package4, 25 to generate a series of optimization subproblems (“branches”). -
subproblems are solved as continuous variable problems using any of DAKOTA's nonlinear optimizatic
rithms (e.g., DOT, NPSOL). When a solution to a branch is feasible with respect to the integrality con
it provides an upper bound on the optimal objective function, which can be used to prune branches wi
objective functions that are not yet feasible. Since solutions for different branches are independent, par:
puting may be used to concurrently execute the optimization subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and through c
with DAKOTA's nonlinear optimizers, is extended to solution of MINLP problems. In the case of MILP prot
the upper bound obtained with a feasible solution is an exact bound and the branch and bound process i
convergent to the global minimum. For nonlinear problems which may exhibit nonconvexity or multime
the process is heuristic in general, since there may be good solutions that are missed during the sol
particular branch. However, the process still computes a series of locally optimal solutions, and is the
natural extension of the results from local optimization techniques for continuous domains. Only with r
global optimization of each branch can a global minimum be guaranteed when performing branch and |
nonlinear problems of unknown structure.

In cases where there are only a few discrete variables and when the discrete values are drawn from a
then it may be reasonable to perform a separate optimization problem for all of the possible combinatio
discrete variables. However, this brute force approach becomes computationally intractable if these ¢
are not met. The branch-and-bound algorithm will generally require solution of fewer subproblems t
brute force method, although it will still be significantly more expensive than solving a purely continuous
problem.

9.5.1 Example MINLP Problem

As an example, consider the following MINLP proble8T:

6

minimize:  f(x) =Y (x; —1.4)*

=1
T2
glth%*?SO
X
gp=a3— 5 <0 (9.2)

-10 < T1,T2,T3,T4 < 10
T5,Te € {07172a334}

This problem is a variant of the textbook test problem described in Se2tidn In addition to the introductic
of two integer variables, a modified valuelof is used inside the quartic sum to render the continuous solu
non-integral solution.

Figure9.6 shows the sequence of branches generated for this problem. The first optimization subproblet
the integrality constraint on parametetsandzg, so that) < x5 < 4 and0 < x4 < 4. The values for; andzg
at the solution to this first subproblem are = x4 = 1.4. Sincex; andxzg must be integers, the next step in
solution process “branches” on parametgito create two new optimization subproblems; one Witk z5 < 1
and the other witl2 < x5 < 4. Note that, at this first branching, the boundsagnare still0 < zg < 4.
Next, the two new optimization subproblems are solved. Since they are independent, they can be per
parallel. The branch-and-bound process continues, operating onpattdxs , until a optimization subproble
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Bounds: 0 € x5=4

NLPI|  0cues | @

Soln.: xs=xs=1.4 No iterator concurrency
F=0.6513 on first NLP (idle servers)
Bounds: 0 £ x5 = 1 Bounds: 2<x5<4 | wlf—y
U=xs=4 U=xs=4 | Can prune
Soln.: x5=1, x5=1.4 Soln.: x5=2, x4=1.4 | if NLP4
1=0.6769 S=0.7809 complete
Bounds: 0=xs= 1| |Bounds: 0 x5 || [ Bounds: 2<x5<4| |Bounds: 2<x5=4
DZxg< 1 2<xs<4 0<xs<1 pESIEY.
Soln.: xs=xys=1 Soln.: x5=1, x5=2 Soln.: x5=2, x4=1 Soln.: x5=xg=2
f=10.7025 f=0.8065 /= 0.8065 f=09105

Optimal solution

Figure 9.6: Branching history for example MINLP optimization problem.

is solved wherers andzg are integer-valued. At the solution to this problem, the optimal valuesf@andxg
arexs = xg = 1.

In this example problem, the branch-and-bound algorithm executes as few as five and no more than s
mization subproblems to reach the solution. For comparison, the brute force approach would require 25
tion problems to be solved (i.e., five possible values for eaaly @ndzg ).

In the example given above, the discrete variables are integer-valued. In some cases, the discrete var
be real-valued, such ase {0.0,0.5,1.0,1.5,2.0}. The branch-and-bound algorithm is restricted to work
integer values. Therefore, it is up to the user to perform a transformation between the discrete integer va
DAKOTA and the discrete real values that are passed to the simulation code (see SE@idnWhen integrality
is not being relaxed, a common mapping is to use the integer value from DAKOTA as the index into a v
discrete real values. However, when integrality is relaxed, additional logic for interpolating between the
real values is needed.

9.6 Surrogate-Based Optimization (SBO)

In the surrogate-based optimization strategy (keywastdrogate _based _opt ) the optimization algorithr
operates on a surrogate model instead of directly operating on the computationally expensive simulatic
The surrogate model can be based on data fits, multifidelity models, or reduced-order models, as de
Section10.3 Since the surrogate will generally have a limited range of accuracy, the SBO algorithm peric
checks the accuracy of the surrogate model against the original simulation model and adaptively mau
extent of the approximate optimization cycles using a trust region approach.
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Table 9.1: SBO approximate subproblem formulations.
Original Objective Lagrangian
No constraints TRAL
Linearized constraints SQP-like
Original constraints [EBICTE&SVg{elof11] IPTRSAO

A generally-constrained nonlinear programming problem takes the form

minimize f(x)
subject to g < g(x) < g,
h(x) = h,
X < x < Xy (9.3)

wherex € R” is the vector of design variables, aifidg, andh are the objective function, nonlinear inequa
constraints, and nonlinear equality constraints, respectiveéhdividual nonlinear inequality and equality cc
straints are enumerated usingndy, respectively (e.gg; andh;). The corresponding surrogate-based optin
tion (SBO) algorithm may be formulated in several ways. In all cases, SBO solves a sequéraggodximat
optimization subproblems subject to a trust region constrafipthowever, many different forms of the surrog
objectives and constraints in the approximate subproblem can be explored. In particular, the subproblem
may be a surrogate of the original objective or a surrogate of a merit function (most commonly, the Lagra
augmented Lagrangian), and the subproblem constraints may be surrogates of the original constraints,
approximations of the surrogate constraints, or may be omitted entirely. Each of these combinations
in Table9.1, where black indicates an inappropriate combination, gray indicates an acceptable combina
blue indicates a common combination.

Initial approaches to nonlinearly-constrained SBO optimized an approximate merit function which incor
the nonlinear constraint8§, 1]:

minimize Pk (x)
subject to || x —x¥ || < AF 9.4)

where the surrogate merit function is denote@és), x. is the center point of the trust region, and the trust re
is truncated at the global variable bounds as needed. The merit function to approximate was typically ¢
be a standard implementatiohdQ 75, 47] of the augmented Lagrangian merit function (see Eg$3-9.14),
where the surrogate augmented Lagrangian is constructed from individual surrogate models of the obje
constraints (approximate and assemble, rather than assemble and approximate). $hiJahie corresponc
to row 1, column 3, and is known as the trust-region augmented Lagrangian (TRAL) approach. WI
approach was provably convergent, convergence rates to constrained minima have been observed to be
the required updating of Lagrange multipliers and penalty paramé@tsHrior to converging these paramet:
SBO iterates did not strictly respect constraint boundaries and were often infeasible. A subsequent
(IPTRSAO [79)) that sought to directly address this shortcoming added explicit surrogate constraints
column 3 in Table.1):

minimize Pk (x)

subject to g < gF(x) < g,

| x—xk|_ <AF. (9.5)

LAny linear constraints are not approximated and may be added without modification to all formulations
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While this approach does address infeasible iterates, it still shares the feature that the surrogate meri
may reflect inaccurate relative weightings of the objective and constraints prior to convergence of the 1
multipliers and penalty parameters. That is, one may benefit from more feasible intermediate iterates
process may still be slow to converge to optimality. The concept of this approach is similar to that of S
SBO approached] which use linearized constraints:

minimize F(x)
subject to g < gF(xF) + Vgh(xh)T(x — xF) < g,
b (xf) +th( )" (x—xg) =hy
[x—xf ||, <A (9.6)

in that the primary concern is minimizing a composite merit function of the objective and constraints, bt
the restriction that the original problem constraints may not be wildly violated prior to convergence of Le
multiplier estimates. Here, the merit function selection of the Lagrangian function (row 2, column 2 ir@Th
see also Eg9.12) is most closely related to SQP, which includes the use of first-order Lagrange multipl
dates (Eq9.18 that should converge more rapidly near a constrained minimizer than the zeroth-order
(Egs.9.159.16) used for the augmented Lagrangian.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem
and constraints as a function of the original objective and constraint surrogates. A more direct approact
a formulation of:

minimize *(x)
subject to g < gF(x) < gu
h*(x) = by
| x—xF| <AF (9.7)

This approach has been termed the direct surrogate approach since it optimizes surrogates of the origine
and constraints (row 3, column 1 in Talfel) without any recasting. It is attractive both from its simpli
and potential for improved performance, and is the default approach supported in DAKOTA version 4.(
DAKOTA defaults for 4.0 include the use of a filter method for iterate acceptance,an augmented Lagrang
function,Lagrangian hard convergence assessment,and no constraint relaxation(se® $ebtion

While the formulation of Eq9.4 (and others from row 1 in Tabl®.1) can suffer from infeasible intermedi:
iterates and slow convergence to constrained minima, each of the approximate subproblem formulat
explicit constraints (Eq9.5-9.7, and others from rows 2-3 in Tabf1) can suffer from the lack of a feasit
solution within the current trust region. Techniques for dealing with this latter challenge involve some
constraint relaxation. Homotopy approachgs, [78] or composite step approaches such as Byrd-OmojoKdn
Celis-Dennis-Tapial?], or MAESTRO [1] may be used for this purpose (see Secdhl).

After each of thek iterations in the SBO strategy, the predicted step is validated by compfitiy, g(x”
andh(x"). One approach forms the trust region ratfowhich measures the ratio of the actual improveme
the improvement predicted by optimization on the surrogate model. When optimizing on an approxime
function (Eqs9.4-9.6), the following ratio is natural to compute

D(xt) — b(xk)
The formulation in Eq9.7 may also form a merit function for computing the trust region ratio; however, the
sion of this merit function from explicit use in the approximate optimization cycles can lead to synchror
problems with the optimizer.
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Table 9.2: Sample trust region ratio logic.

Ratio Value Surrogate Accuracy Iterate Acceptance Trust Region Sizing
pF <0 poor reject step shrink
0 < pk <0.25 marginal accept step shrink
0.25 < p*F < 0.75 or p* > 1.25 moderate accept step retain
0.75 < p* < 1.25 good accept step expand

Once computed, the value fpf can be used to define the step acceptance and the next trust regidxsiz
using logic similar to that shown in Tab®2 Typical factors for shrinking and expanding are 0.5 and
respectively, but these as well as the threshold ratio values are tunable parameters in the algorithm
strategy controls in the DAKOTA Reference ManuaB]). In addition, the use of discrete thresholds is
required, and continuous relationships using adaptive logic can also be ex{dloretl(Qg. Iterate acceptance
rejection completes an SBO cycle, and the cycles are continued until either soft or hard convergence cr
Section9.6.]) are satisfied.

9.6.1 Constraint Management in SBO
Iterate acceptance logic

When a surrogate optimization is completed and the approximate solution
has been validated, then the decision must be made to either accept or reject
the step. The traditional approach is to base this decision on the value of the
trust region ratio, as outlined previously in TaBl2 An alternate approach L
is to utilize a filter method40Q], which does not require penalty parameters

or Lagrange multiplier estimates. The basic idea in a filter method is to ag
ply the concept of Pareto optimality to the objective function and constrain}
violations and only accept an iterate if it is not dominated by any previou':E
iterate. Mathematically, a new iterate is not dominated if at least one of thg
following:

either f < f@ or ¢<c@ (9.9 /|
consiraint vielation

is true for alli in the filter, wherec is a selected norm of the constraint vi-
olation. This basic description can be augmented with mild requirements to
prevent point accumulation and assure convergence, known as a slantingidilire 9.7: Depiction of filte
ter [40]. Figure9.7 illustrates the filter concept, where objective values ameethod.

plotted against constraint violation for accepted iterates (blue circles) to define the dominated region (de
the gray lines). A filter method relaxes the common enforcement of monotonicity in constraint violation re
and, by allowing more flexibility in acceptable step generation, often allows the algorithm to be more effi

The use of a filter method is compatible with any of the SBO formulations in¥€4<9.7.

Merit functions

The merit function®(x) used in Eqs9.49.69.8 may be selected to be a penalty function, an adaptive pe
function, a Lagrangian function, or an augmented Lagrangian function. In each of these cases, the moi
inequality and equality constraint formulations with two-sided bounds and targetsqB&s59.7), have bee

2Exception: retain if* in trust region interior for design of experiments-based surrogates (global data fits, S-ROM, global E-RC
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converted to a standard form gfx) < 0 andh(x) = 0 (in Egs.9.109.129.18. The active set of inequali
constraints is denoted gs .

The penalty function employed in this paper uses a quadratic penalty with the penalty schedule linkec
iteration number
o(x,1) = [f(x)+7ret(x)7g" (%) +rh(x) h(x) (9.10)
r, = e (ktoffset) /10 (9.11)
The adaptive penalty function is identical in form to Eg10, but adapts-, using monotonic increases in i
iteration offset value in order to accept any iterate that reduces the constraint violation.

The Lagrangian merit function is
D(x, Mg, An) = f(x) + Al gt (x) + Af h(x) (9.12)

for which the Lagrange multiplier estimation is discussed in Se@i6riL Away from the optimum, it is possib
for the least squares estimates of the Lagrange multipliers for active constraints to be zero, which e
omitting the contribution of an active constraint from the merit function. This is undesirable for trackin
progress, so usage of the Lagrangian merit function is normally restricted to approximate subproblems
convergence assessments.

The augmented Lagrangian employed in this paper follows the sign conventions descriti@d in [

(%, Ay, Ansmp) = (%) + ALP(x) + 13 (%) b(x) + Ay h(x) + rph(x) h(x) (9.13)
v = max {g,;, - ;;f } (9.14)

where(x) is derived from the elimination of slack variables for the inequality constraints. In this case,
zeroth-order Lagrange multiplier updates may be used:

A';}H = A+ 29 (x) (9.15)
At = AF 421 h(x) (9.16)

The updating of multipliers and penalties is carefully orchestréitéld$ drive reduction in constraint violation
the iterates. The penalty updates can be more conservative thandrilE@ften using an infrequent applicati
of a constant multiplier rather than a fixed exponential progression.

Convergence assessment

To terminate the SBO process, hard and soft convergence metrics are monitored. It is preferable for SB
to satisfy hard convergence metrics, but this is not always practical (e.g., when gradients are unavailal
reliable). Therefore, simple soft convergence criteria are also employed which monitor for diminishing
(relative improvement in the merit function less than a tolerance for some number of consecutive iteratic

To assess hard convergence, one calculates the norm of the projected gradient of a merit function whe
feasibility tolerance is satisfied. The best merit function for this purpose is the Lagrangian merit functit
Eq.9.12 This requires a least squares estimation for the Lagrange multipliers that best minimize the
gradient:

Vo ®(x, Ag, M) = Vo f (x) + A) Vag ™ (x) + A Voh(x) (9.17)
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where gradient portions directed into active global variable bounds have been removed. This can be
linear least squares problem for the multipliers:

AX=-V,f (9.18)

whereA is the matrix of active constraint gradienss, is constrained to be non-negative, axglis unrestricte:
in sign. To estimate the multipliers using non-negative and bound-constrained linear least squares, the I
BVLS routines p9] from NETLIB are used, respectively.

Constraint relaxation

The goal of constraint relaxation is to achieve efficiency through the balance of feasibility and optimalit
the trust region restrictions prevent the location of feasible solutions to constrained approximate sub
(Egs.9.59.7, and other formulations from rows 2-3 in Tal¥el). The SBO algorithm starting from infeasil
points will commonly generate iterates which seek to satisfy feasibility conditions without regard to ol
reduction [8].

One approach for achieving this balance is to ned@xed constraintsvhen iterates are infeasible with respec
the surrogate constraints. We follow Perez, Renaud, and Wal€hrahd use alobal homotopymapping thi
relaxed constraints and the surrogate constraints. For formulations i®Bgsnd9.7 (and others from row 3 i
Table9.1), the relaxed constraints are defined from

gh(x,7) = g"(x)+(1—1)b, (9.19)

g
h*(x) + (1 - 7)by, (9.20)

For Eq.9.6 (and others from row 2 in Table. 1), the original surrogate constrairgé( ) andﬁf(x) in Eqs.9.19
9.20are replaced with their linearized formg(x*) + Vg* (x5)T (x — x¥) andh* (x¥) + Vh* (x5)T (x — x*),
respectively). The approximate subproblem is then reposed using the relaxed constraints as

minimize  f*(x) or ®F(x)
subject to g < gF(x,7%) < g,
h*(x,7%) = h,
| x—xk | <AF (9.21)

in place of the corresponding subproblems in B35:9.7. Alternatively, since the relaxation terms are const
for the k™" iteration, it may be more convenient for the implementation to consg&is) andh*(x) (or their
linearized forms) subject to relaxed bounds and targgtsg®, hf). The parameter is the homotopy paramet
controlling the extent of the relaxation: when= 0, the constraints are fully relaxed, and when= 1, the
surrogate constraints are recovered. The vedigrb,, are chosen so that the starting poit, is feasible witt
respect to the fully relaxed constraints:

0) < (9.22)

g ( )
o(x°, ):ht (9.23)

= I/\

At the start of the SBO algorithm,? = 0 if x° is infeasible with respect to the unrelaxed surrogate constr
otherwiser® = 1 (i.e., no constraint relaxation is used). At the start oftHeSBO iteration where*~1 < 1, 7%
is determined by solving the subproblem

maximize T
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subject to g < gF(x,7F) < g,

flk(x77—k) = ht
I —xg |, < A"
k>0 (9.24)

starting at(x*—1, 7%=1), and then adjusted as follows:
™ =min {1,7% ' +a (k- T} (9.25)

The adjustment parametér < a < 1 is chosen so that that the feasible region with respect to the re
constraints has positive volume within the trust region. Determining the optimal value femains an ope
question and will be explored in future work.

After 7% is determined using this procedure, the problem in®E2Lis solved forx”. If the step is accepted, th
the value ofr* is updated using the current iterate and the validated constrainggx*) andh(x*):

* = min {1, min; 7, min; 7; } (9.26)
i i(x*)—g1. ,gu, —gi (X
where 1, = 14 2in{o:Ge) T 9:(x)} (9.27)
(xFY—hy .
Tj -1— s G ) =ha; | (9.28)

bh;

Figure 9.8 illustrates the SBO algorithm on a two-dimensional prob-

lem with one inequality constraint starting from an infeasible poifit, v
The minimizer of the problem is denotedss Iterates generated using 1t 1 %
the surrogate constraints are shown in red, where feasibility is achieve’{i"1l ",, 5
first, and then progress is made toward the optimal point. The iterates v %~ .
generated using the relaxed constraints are shown in blue, where abal* "~ 3% e _ ~~ ===+
ance of satisfying feasibility and optimality has been achieved, leading ™= =~ :
to fewer overall SBO iterations. = =

The behavior illustrated in Fid.8is an example where using the re-

laxed constraints over the surrogate constraints may improve the ovéiglire 9.8: lllustration of SBO iterat
performance of the SBO algorithm by reducing the number of itetsing surrogate (red) and relaxed (bl
tions performed. This improvement comes at the cost of solving gunstraints.

minimization subproblem in E®.24 which can be significant in some

cases (i.e., when the cost of evaluatiifgx) andh*(x) is not negligi-

ble, such as with multifidelity or ROM surrogates). As shown in the numerical experiments involving the
problem presented at the end of this paper, the directions toward constraint violation reduction and objec
tion reduction may be in opposing directions. In such cases, the use of the relaxed constraints may re
increasein the overall number of SBO iterations since feasibility must ultimately take precedence.

9.6.2 SBO with Data Fits

When performing SBO with local, multipoint, and global data fit surrogates, it is necessary to regen
update the data fit for each new trust region. In the global data fit case, this can mean performing a ne
of experiments on the original high-fidelity model for each trust region, which can effectively limit the ap
to use on problems with, at most, tens of variables. Fi@u@alisplays this case. However, an important be
of the global sampling is that the global data fits can tame poorly-behaved, nonsmooth, discontinuous
variations within the original model into smooth, differentiable, easily navigated surrogates. This allov
with global data fits to extract the relevant global design trends from noisy simulation data.
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When enforcing local consistency between a global data fit surrogate and a
high-fidelity model at a point, care must be taken to balance this local coh}-,‘-.. !
sistency requirement with the global accuracy of the surrogate. In particular," '
performing a correction on an existing global data fit in order to enforce lo
cal consistency can skew the data fit and destroy its global accuracy. On
approach for achieving this balance is to include the consistency requiremeh
within the data fit process by constraining the global data fit calculation (e.g!;_
using constrained linear least squares). This allows the data fit to satisfy t
consistency requirement while still addressing global accuracy with its r
maining degrees of freedom. Embedding the consistency within the data fi
also reduces the sampling requirements. For example, a quadratic polyng
mial normally requires at leas$t + 1)(n + 2)/2 samples fom variables to

perform the fit. However, with embedded first-order consistency constraints,

the minimum number of samples is reducedby 1 to (n? 2. Flgur(_a 9.9. SBO iteratipn pr
P (n*+n)/ gression for global data fits.

In the local and multipoint data fit cases, the iteration progression will appear

as in Fig.9.11 Both cases involve a single new evaluation of the original

high-fidelity model per trust region, with the distinction that multipoint approximations reuse informatiol
previous SBO iterates. Like model hierarchy surrogates, these techniques scale to larger numbers of d
ables. Unlike model hierarchy surrogates, they generally do not require surrogate corrections, since the
conditions are embedded in the surrogate form (as discussed for the global Taylor series approach ak
primary disadvantage to these surrogates is that the region of accuracy tends to be smaller than for g
fits and multifidelity surrogates, requiring more SBO cycles with smaller trust regions. More information
design of experiments methods is available in Chaytand the data fit surrogates are described in Se&fod 1

Figure9.10shows a DAKOTA input file that implements surrogate-based optimization on Rosenbrock’s fu
This input file is namedlakota _sbo _rosen.in  in the /Dakota/test directory. The strategy keywo
block contains the SBO strategy keywauairogate _based _opt , plus the commands for specifying the tt
region size and scaling factors. The optimization portion of SBO is specified in the following keyword blc
method , model , variables , andresponses , where the model used by the optimization method spe
that a global surrogate will be used to map variables into responseasténtace specification is used t
the surrogate model). The global surrogate is constructed using a DACE method which is identified
‘SAMPLING’ identifier. This data sampling portion of SBO is specified in the final set of keyword
for method , model , interface  , andresponses (the earliervariables  specification is reused). Tt
example problem uses the Latin hypercube sampling method in the LHS software to select 10 design
each trust region. A single surrogate model is constructed for the objective function using a quadratic pol
The initial trust region is centered at the design péint z2) = (—1.2,1.0), and extend<:0.4 (10% of the globe
bounds) from this point in the; andx, coordinate directions.

If this input file is executed in DAKOTA, it will converge to the optimal design poin{at,z2) = (1,1) in
approximately 1000 function evaluations. While this solution is correct, it is obtained at a much higher c
a traditional gradient-based optimizer (e.g., see the results obtainedditkata _rosenbrock.in ). This
demonstrates that the SBO strategy with global data fits is not really intended for use with smooth co
optimization problems; direct gradient-based optimization can be more efficient for such applications.
SBO with global data fits is best-suited for the types of problems that occur in engineering design w
response quantities may be discontinuous, nonsmooth, or may have multiple local @@inia fhese types ¢
engineering design problems, traditional gradient-based optimizers often are ineffective, whereas globe
can extract the global trends of interest despite the presence of local nonsmoothness (for an example pr¢
multiple local optima, look infDakota/test for the filedakota _sbo _sine _fcn.in  [50]).
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strategy,

surrogate_based_opt

tabular_graphics_data

max_iterations = 10000

opt_method_pointer = 'NLP’

trust_region
initial_size = 0.10
minimum_size = 1.0e-6
contract_threshold = 0.25
expand_threshold = 0.75
contraction_factor = 0.50
expansion_factor = 150

method,
id_method = 'NLP’
model_pointer = 'SURROGATE’
conmin_frcg,
max_jterations = 50,
convergence_tolerance = 1e-8

model,
id_model = 'SURROGATE’
surrogate global
responses_pointer = 'SURROGATE_RESP’
dace_method_pointer = 'SAMPLING’
correction additive zeroth_order
polynomial quadratic

variables,
continuous_design = 2
cdv_initial_point  -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptor x1' X2

responses,
id_responses = 'SURROGATE_RESP’
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1l.e-6
no_hessians

method,
id_method = 'SAMPLING’
model_pointer = '"TRUTH'
nond_sampling
samples = 10
seed = 531
sample_type lhs
all_variables

model,
id_model = 'TRUTH’
single
interface_pointer = 'TRUE_FN’
responses_pointer = 'TRUE_RESP’

interface,
direct
id_interface = 'TRUE_FN’
analysis_driver = 'rosenbrock’

responses,
id_responses = 'TRUE_RESP’
num_objective_functions = 1
no_gradients
no_hessians

Figure 9.10: DAKOTA input file for the surrogate-based optimization example.
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9.6.3 SBO with Multifidelity Models

When performing SBO with model hierarchies, the low-fidelity model is nor-
mally fixed, requiring only a single high-fidelity evaluation to compute a new
correction for each new trust region. Figuell displays this case. This .
renders the multifidelity SBO technique more scalable to larger numbers of
design variables since the number of high-fidelity evaluations per iteration’ I‘ :
(assuming no finite differencing for derivatives) is independent of the scal L%
of the design problem. However, the ability to smooth poorly-behaved re
sponse variations in the high-fidelity model is lost, and the technique be-!
comes dependent on having a well-behaved low-fidelity nfodieladdition,
the parameterizations for the low and high-fidelity models may differ, requir
ing the use of a mapping between these parameterizations. Space mappin e r
corrected space mapping, POD mapping, and hybrid POD space mapping are -, 0 1
being explored for this purposé4, 85).

When applying corrections to the low-fidelity model, there is no concern fagure 9.11: SBO iteration pr
balancing global accuracy with the local consistency requirements. Howeygfssion for model hierarchies.
with only a single high-fidelity model evaluation at the center of each trust

region, it is critical to use the best correction possible on the low-fidelity

model in order to achieve rapid convergence rates to the optimum of the high-fidelity raa@del [

A multifidelity test problem namedakota _sbo _hierarchical.in is available in/Dakota/test to
demonstrate this SBO approach. This test problem uses the Rosenbrock function as the high fidelity n
a function named “Ilfrosenbrock” as the low fidelity model. Here,rtfsenbrock is a variant of the Rosenbr
function (see¢/Dakota/test/If _rosenbrock.C  for formulation) with the minimum point atry,z2) =
(0.80,0.44), whereas the minimum of the original Rosenbrock functiofris z2) = (1,1). Multifidelity SBO
locates the high-fidelity minimum in 11 high fidelity evaluations for additive second-order corrections
208 high fidelity evaluations for additive first-order corrections, but fails for zeroth-order additive correct
converging to the low-fidelity minimum.

9.6.4 SBO with Reduced Order Models

When performing SBO with reduced-order models (ROMs), the ROM is mathematically generated from t
fidelity model. A critical issue in this ROM generation is the ability to capture the effect of parametric cl
within the ROM. Two approaches to parametric ROM are extended ROM (E-ROM) and spanning ROM (¢
techniques104). Closely related techniques include tensor singular value decomposition (SVD) meigh
In the single-point and multipoint E-ROM cases, the SBO iteration can appear as io. Eigwhereas in th
S-ROM, global E-ROM, and tensor SVD cases, the SBO iteration will appear as i8.Bign addition to the
high-fidelity model analysis requirements, procedures for updating the system matrices and basis vecto
required.

Relative to data fits and multifidelity models, ROMs have some attractive advantages. Compared to dat:
as regression-based polynomial models, they are more physics-based and would be expected to be mor:
(e.g., in extrapolating away from the immediate data). Compared to multifidelity models, ROMS may
practical in that they do not require multiple computational models or meshes which are not always availe
primary disadvantage is potential invasiveness to the simulation code for projecting the system using thi
basis.

31t is also possible to use a hybrid data fit/multifidelity approach in which a smooth data fit of a noisy low fidelity model is
combination with a high fidelity model
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Chapter 10

Models

10.1 Overview

Chaptergl through8 have presented the different “iterators” available in DAKOTA. An iterator iterates on a
in order to map a set of variables into a set of responses. This model may involve a simple mapping in
single interface, or it may involve recursions using sub-iterator and sub-models. These recursion capabil
developed in order to provide mechanisms for “nesting” and “layering” of software components, whict
the use of these components as building blocks to accomplish more sophisticated studies, such as surrc
optimization or optimization under uncertainty. In a nested relationship, a sub-iterator is executed usiny
model for every evaluation of the nested model. In a layered relationship, on the other hand, sub-iter
sub-models are used only for periodic updates and verifications. In both cases, the sub-model is of arbit
such that model recursions can be chained together in as long of a sequence as needed (e.g., layerec
nested contained layered containing single in Sedtb.9. Figurel0.1displays the model class hierarchy fr
the DAKOTA Developers ManuaB[], with derived classes for single models, nested models, and three t\
surrogate models: data fit, hierarchical/multifidelity, and reduced-order models (ROM; not yet available i

Section10.2describes single models; Sectib@.3 describes surrogate models of the data fit, multifidelity,
ROM type; and Sectiori0.4 describes nested models. Finally, Sectidh5 presents a number of advan
examples demonstrating model recursion.

| Madel |

NestedlMcdeI | | SingleModel | | Surmogatellodel ]

|
‘ DataFitSurriviodel ‘ |Hie1mth5urr1‘v‘[odel|

Figure 10.1: The DAKOTA model class hierarchy.
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10.2 Single Models

The single model is the simplest model type. It uses a single interface instance (see CHaptarap variable
(see Chaptet 1) into responses (see Chapid). There is no recursion in this case. Refer to the Models ch
in the DAKOTA Reference ManuaPkpP] for additional information on the single model specification.

10.3 Surrogate Models

Surrogate models provide an approximation to an original, high fidelity “truth” model. A number of sul
model selections are possible, which are categorized as data fits, multifidelity models, and reduced-orde

Each of the surrogate model types supports the use of correction factors that improve the local accur:
surrogate models. The correction factors force the surrogate models to match the true function values an
true function derivatives at the center point of each trust region. Currently, DAKOTA supports either zerott
or second-order accurate correction methods, each of which can be applied using either an additive, mult
or combined correction function. For each of these correction approaches, the correction is applied to the
model and the corrected model is then interfaced with whatever algorithm is being employed. The default
is that no correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the
and original models at a single point in parameter space through use of a simple scalar offset or scalin
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also k
beta correction13]) and the first-order additive correctio(] also enforce consistency in the gradients
provide a much more substantial correction capability that is sufficient for ensuring provable convergenci
algorithms (see Sectidh6). SBO convergence rates can be further accelerated through the use of seco
corrections which also enforce consistency in the HessBiljsWhere the second-order information may invc
analytic, finite-difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

Frio (%) = fio(%) + a(x) (10.1)
where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take
Fhis (%) = fio(¥)B(x) (10.2)

where, for local correctionsy(x) and 3(x) are first or second-order Taylor series approximations to the
correction functions:

a(x) = A(xe) + VA(xe)T (x — x¢) + %(x — %) TV A (%) (x — X¢) (10.3)
B(x) = B(xc)+ VB(xe)'(x —x¢) + %(x — %) T V2B(x¢)(x — Xc) (10.4)

where the exact correction functions are

Ax) = fri(x) = fio(x) (10.5)
fni(x)
B(x) e (10.6)

Refer to B1] for additional details on the derivations.
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A combination of additive and multiplicative corrections can provide for additional flexibility in minimizin
impact of the correction away from the trust region center. In other words, both additive and multip
corrections can satisfy local consistency, but through the combination, global accuracy can be addresse
This involves a convex combination of the additive and multiplicative corrections:

Fri (%) = Y frio (%) + (1 =) friy (%) (10.7)

wherev is calculated to satisfy an additional matching condition, such as matching values at the previou
iterate.

10.3.1 Data Fit Surrogate Models

A surrogate of thedata fit type is a non-physics-based approximation typically involving interpolation ¢
gression of a set of data generated from the original model. Data fit surrogates can be further charact
the number of data points used in the fit, where a local approximation (e.g., first or second-order Taylc
uses data from a single point, a multipoint approximation (e.g., two-point exponential approximations (T
two-point adaptive nonlinearity approximations (TANA)) uses a small nhumber of data points often drav
the previous iterates of a particular algorithm, and a global approximation (e.g., polynomial response
kriging, neural networks, radial basis functions, splines) uses a set of data points distributed over the d
interest, often generated using a design of computer experiments.

DAKOTA contains several types of surface fitting methods that can be used with optimization and unc
quantification methods and strategies such as surrogate-based optimization and optimization under u
These are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expansion, krigin
interpolation, artificial neural networks, and multivariate adaptive regression splines. All of these surfac
methods can be applied to problems having an arbitrary number of design parameters. However, surfi
methods usually are practical only for problems where there are a small number of parameters (e.g., a |
of somewhere in the range of 30-50 design parameters). The mathematical models created by surfi
methods have a variety of names in the engineering community. These include surrogate models, met
approximation models, and response surfaces. For this manual, the terms surface fit model and surrog
are used.

The data fitting methods in DAKOTA include software developed by Sandia researchers and by val
searchers in the academic community.

Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation «
response quantities (e.g., from a user-supplied simulation code) at these design points, and (3) using th
data to solve for the unknown coefficients (e.g., polynomial coefficients, neural network weights, kriging
tion factors) in the surface fit model. In cases where there is more than one response quantity (e.g., ar
function plus one or more constraints), then a separate surface is built for each response quantity. Cur
surface fit models are built using only"@order information (function values only), although extensions to
higher-order information (gradients and Hessians) are possible. Each surface fitting method employs ¢
numerical method for computing its internal coefficients. For example, the polynomial surface uses a leas
approach that employs a singular value decomposition to compute the polynomial coefficients, whereas
ing surface uses Maximum Likelihood Estimation to compute its correlation coefficients. More informa
the numerical methods used in the surface fitting codes is provided in the DAKOTA Developers Mghual |

The set of design points that is used to construct a surface fit model is generated using either the DDACE
package 96] or the LHS software packagé3]. These packages provide a variety of sampling methods incli
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Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array sampling, central composii
sampling, and Box-Behnken sampling. More information on these software packages is provided in &he

Taylor Series

The Taylor series model is purely a local approximation method. That is, it provides local trends in the vic
a single point in parameter space. The first-order Taylor series expansion is:

F(x) & f(x0) + Vi f(x0)” (x — x0) (10.8)

and the second-order expansion is:

F) = Fx0) + Vi 30)" (36— x0) + 5 (x = x0) "V (3x0) (x — x0) (109)

wherex, is the expansion point in-dimensional parameter space af(tg), Vx.f(xo), andV2 f(x) are the
computed response value, gradient, and Hessian at the expansion point, respectively. As dictated by the
specification used in building the local surrogate, the gradient may be analytic or numerical and the Hes
be analytic, numerical, or based on quasi-Newton secant updates.

In general, the Taylor series model is accurate only in the region of parameter space that isxgjasé/tole the
accuracy is limited, the first-order Taylor series model reproduces the correct value and gradient at thg
and the second-order Taylor series model reproduces the correct value, gradient, and Hessian. This cor
useful in provably-convergent surrogate-based optimization. The other surface fitting methods do not ust
information directly in their models, and these methods rely on an external correction procedure in order:
the consistency requirements of provably-convergent SBO.

Two Point Adaptive Nonlinearity Approximation

The TANA-3 method 109 is a multipoint approximation method based on the two point exponential apprc
tion [38]. This approach involves a Taylor series approximation in intermediate variables where the pow
for the intermediate variables are selected to match information at the current and previous expansion p
form of the TANA model is:

: L I L (DA ‘
F0) % floe2) + 3 - (xa) = (o — ) + 5e() (e —aty) (10.10,

i=1 i=1

wheren is the number of variables and:

of < ,
pi = 1+1In ‘;?( ) /ln Vl] (10.11,
T%(Xg) xi,Q
H
= n ; - 7 . . 10.12
€x) 21:1(3551 - xffl)2 + 21:1(371;1 - x%)2 (
n 1-p;
af Ly, i i \
H =2 [f(xl)—f(xQ)—Z 5, X2 =5 —(aly —aly) (1013,
i=1 1 T

andxs andx; are the current and previous expansion points. Prior to the availability of two expansion p
first-order Taylor series is used.
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Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in DAKOTA. The form of the linear poly:
model is

fx) e+ e (10.14)

the form of the quadratic polynomial model is:
Fx) ~co+ Z i + Z Z Cij T (10.15)
=1 j2>1
and the form of the cubic polynomial model is:

A A co + chxz + Z ZC”:B rj+ ZZZ CijkTi T Tk, (10.16;

i=1 j>1i i=1 j>i k>j

In all of the polynomial modelsf (x) is the response of the polynomial mode!; thex;, x;, terms are the con
ponents of the:-dimensional design parameter values;dhec; , ¢;; , ¢;;, terms are the polynomial coefficier
andn is the number of design parameters. The number of coefficieptsglepends on the order of polynorr
model and the number of design parameters. For the linear polynomial:

Netimear = T+ 1 (10.17;

for the quadratic polynomial:

(n+1)(n+2)

ncquad = 2

(10.18
and for the cubic polynomial:

3+6n2+1In+6
Neewvic = (n +on g_ ne ) (1019:

There must be at least. data samples in order to form a fully determined linear system and solve for the
nomial coefficients. In DAKOTA, a least-squares approach involving a singular value decomposition nt
method is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter
low-order polynomial model is often an accurate approximation to the true data trends, and (2) the leas
procedure provides a surface fit that smooths out noise in the data. For this reason, the surrogate-b
mization strategy often is successful when using polynomial models, particularly quadratic models. Ho
polynomial surface fit may not be the best choice for modeling data trends over the entire parameter spa
it is known a priori that the true data trends are close to linear, quadratic, or cubic/4pém [more informatior
on polynomial models.
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Kriging Spatial Interpolation Models

The kriging method uses techniques developed in the geostatistics and spatial statistics commuwitiggs])|
to produce smooth;2-continuous surface fit models of the response values from a set of data points. T!
of the kriging model is

f(x) =B+ TR - Be) (10.20

wherex is the current point im-dimensional parameter space; is the estimate of the mean responser
is the correlation vector of terms betweerand the data point®R is the correlation matrix for all of the de
points,f is the vector of response values, anid a vector with all values set to one. The terms in the correl
vector and matrix are computed using a Gaussian correlation function and are dependentdimansiona
vector of correlation paramete®,= {6,,...,6,}. In DAKOTA, a Maximum Likelihood Estimation procedt
is performed to compute the correlation parameters for the kriging model. More detail on this kriging a|
may be found in$1].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging surface
assume that there is an underlying trend in the response data. This is in contrast to the quadratic polynon
and the linear Taylor series model. Since the kriging model is nonparametric, it can be used to model
with slope discontinuities along with multiple local minima and maxima. Kriging interpolation is useful fo
SBO and OUU, as well as for studying the global response value trends in the parameter space. Th
fitting method can be constructed using a minimumgf _ . design points, but it is recommended to use at

inear

Ne,..0 d€SIGN points when possible (refer to Sectidn3.1for n. definitions).

The kriging model is guaranteed to pass through all of the response data values that are used to col
model. Generally, this is a desirable feature. However, if there is considerable numerical noise in the
data, then a surface fitting method that provides some data smoothing (e.qg., quadratic polynomial, MARS
a better choice for SBO and OUU applications. Another feature of the kriging model is that the predicted 1
values,f(x), decay to the mean valug, whenx is far from any of the data points from which the kriging mc
was constructed (i.e., when the model is used for extrapolation). This is neither a positive nor a negatr
of kriging, but rather a different behavior than is exhibited by the other surface fitting methods. One di
to the kriging model is that data points in close proximity lead to ill-conditioning in the numerical prot
and the kriging software will terminate if such a situation occurs. For this reason, the user is advised
sample reuseéuse _samples = region andreuse _samples = all specifications) when performii
surrogate-based optimization.

Artificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP) artificial
network based on the direct training approach of Zimmermag][ The SLP ANN method is designed to h:
a lower training cost than traditional ANNs. This is a useful feature for SBO and OUU where new AN
constructed many times during the optimization process (i.e., one ANN for each response function,

ANNSs for each optimization iteration). The form of the SLP ANN model is

f(x) ~ tanh(tanh((xAg + 00) A1 + 01)) (10.21,

wherex is the current point im-dimensional parameter space, and the teApsdy, A1, 0, are the matrices at
vectors that correspond to the neuron weights and offset values in the ANN model. These terms are «
during the ANN training process, and are analogous to the polynomial coefficients in a quadratic surfa
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singular value decomposition method is used in the numerical methods that are employed to solve for th
and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can k
to model data trends that have slope discontinuities as well as multiple maxima and minima. Howeve
kriging, the ANN surface is not guaranteed to exactly match the response values of the data points frc
it was constructed. This ANN can be used with SBO and OUU strategies. As with kriging, this ANN
constructed from fewer than,. , , data points, however, it is a good rule of thumb to use at legst, date
points when possible.

Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 padaige
veloped at Stanford University. Currently, access to the MARS software is provided through the DDAC

age Pé|.

The form of the MARS model is based on the following expression:

M
fx) =" amBm(x) (10.22;
m=1

where thea,, are the coefficients of the truncated power basis functiBps and M is the number of bas
functions. The MARS software partitions the parameter space into subregions, and then applies fon
backward regression methods to create a local surface model in each subregion. The result is that eact
contains its own basis functions and coefficients, and the subregions are joined together to produce .
C?-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. Tt
sion component of MARS generates a surface model that is not guaranteed to pass through all of the
data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data. The M,
erence material does not indicate the minimum number of data points that are needed to create a MAF
model. However, in practice it has been found that at legst, ,, and sometimes as many as 2 to 4 timgs, ,,
data points are needed to keep the MARS software from terminating. Provided that sufficient data sar
be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in the prec

global trends throughout the parameter space.

10.3.2 Multifidelity Surrogate Models

A second type of surrogate is theodel hierarchytype (also called multifidelity, variable fidelity, variable cc
plexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discre
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in [
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretizatic
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

10.3.3 Reduced Order Models

A third type of surrogate model involvesduced-order modelingchniques such as proper orthogonal decol
sition (POD) in computational fluid dynamics (also known as principal components analysis or Karhune
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in other fields) or spectral decomposition (also known as modal analysis) in structural dynamics. These
models are generated directly from a high-fidelity model through the use of a reduced basis (e.g., eigeni
modal analysis or left singular vectors for POD) and projection of the original high-dimensional system dc
small number of generalized coordinates. These surrogates are still physics-based (and may therefore
predictive qualities than data fits), but do not require multiple system models of varying fidelity (as requ
model hierarchy surrogates).

10.4 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of eve
ation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level anal
computes a set of sub-level responses which are passed back up to the outer level. As described in t
chapter of the Reference Manu&B], mappings are employed for both the variable inputs to the sub-mod
the response outputs from the sub-model.

In the former variable mapping case, primary and secondary variable mapping specifications are use
from the top-level variables into the sub-model variables. These mappings support three possibilitie
combination: (1) insertion of an active top-level variable value into an identified sub-model distribution pa
for an identified active sub-model variable, (2) insertion of an active top-level variable value into an id
active sub-model variable value, and (3) addition of an active top-level variable value as an inactive st
variable, augmenting the active sub-model variables.

In the latter response mapping case, primary and secondary response mapping specifications are used t
the sub-model responses back to the top-level responses. These specifications provide real-valued mull
are applied to the sub-iterator response results to define the outer level response set. These nested data
be combined with non-nested data through use of the “optional interface” component within nested mod

Several examples of nested model usage are provided in the following section.

10.5 Advanced Examples

The surrogate and nested model constructs admit a wide variety of multi-iterator, multi-model solu
proaches. For example, optimization within optimization (for hierarchical multidisciplinary optimization),
tainty quantification within uncertainty quantification (for second-order probability), uncertainty quantif
within optimization (for optimization under uncertainty), and optimization within uncertainty quantificatic
uncertainty of optima) are all supported, with and without surrogate model indirection. Two important e»
are highlighted: second-order probability and optimization under uncertainty.

10.5.1 Second-order probability

Second-order probability approaches employ nested models to embed one uncertainty quantification (U
another. The outer level UQ is commonly linked to epistemic uncertainties (also known as reducible unce
resulting from a lack of knowledge, and the inner UQ is commonly linked to aleatory uncertainties (alsc
as irreducible uncertainties) that are inherent in nature. The outer level generates sets of realizations
from sampling within interval distributions. These realizations define values for distribution parameters
a probabilistic analysis for the inner level UQ. The term “second-order” derives from this use of distribut
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distributions and the generation of statistics on statistics. These approaches can be considered to be a ¢
of imprecise probability theory.

A sample input file is shown in FigurE0.2 in which the outer epistemic level samples uniformly to select ir
for X andY that are employed in an inner level reliability analysis of the cantilever problem (see S2tidh
Figure 10.3shows excerpts from the resulting statistics on statistics, in particular the mean, standard d
and cumulative distribution function for the stress and displacement reliability indices. It is important
that these outer level statistics are only meaningful to the extent that the outer level probabilities are me
(which would not be the case for sampling from epistemic intervals, since the actual probabilities wouli
known to be uniform).

10.5.2 Optimization Under Uncertainty (OUU)

Optimization under uncertainty (OUU) approaches incorporate an uncertainty quantification method w
optimization process. This is often needed in engineering design problems when one must include the
input parameter uncertainties on the response functions of interest. A typical engineering example of Ol
minimize the probability of failure of a structure for a set of applied loads, where there is uncertainty in tr
and/or material properties of the structural components.

In OUU, a nondeterministic method is used to evaluate the effect of uncertain variable distributions on |
functions of interest (refer to Chaptérfor additional information on nondeterministic analysis). Statistic
these response functions are then included in the objective and constraint functions of an optimization p
the UQ method is sampling based, then three approaches are currently supported: nested OUU, surro
OUU, and trust-region surrogate-based OUU. Additional details and computational results are provi@gd

Another class of OUU algorithms is called reliability-based design optimization (RBDO). RBDO methc
used to perform design optimization accounting for reliability metrics. The reliability analysis capabilit
scribed in Sectio®.3 provide a rich foundation for exploring a variety of RBDO formulatiors?] investigater
bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing underlying firs
reliability assessments2§] investigated fully-analytic bi-level and second-order sequential RBDO apprc
employing underlying second-order reliability assessments.

Each of these sampling-based and reliability-based OUU methods are overviewed in the following secti

Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize a nondet
quantity (e.g., minimize probability of failure). The uncertainty quantification (UQ) inner loop evaluat
nondeterministic quantity (e.g., computes the probability of failure) for each optimization function eval
Figure 10.4 depicts the nested OUU iteration wheteare the design variables, are the uncertain variabl
characterized by probability distributions,(d, u) are the response functions from the simulation, si{dl) are
the statistics generated from the uncertainty quantification on these response functions.

Figure10.5shows a DAKOTA input file for a nested OUU example problem that is based on the textbc
problem. This input file is namedakota _ouul _th.in in the/Dakota/test directory. In this exampls
the objective function contains two probability of failure estimates, and an inequality constraint contains
probability of failure estimate. For this example, failure is defined to occur when one of the textbook rt
functions exceeds its threshold value. The strategy keyword block at the top of the input file identi
as an OUU problem. The strategy keyword block is followed by the optimization specification, consis
the optimization method, the continuous design variables, and the response quantities that will be us
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strategy, \
single_method \
method_pointer = 'EPISTEMIC’

method, \
id_method = 'EPISTEMIC’ \
model_pointer = 'EPIST_M' \
nond_sampling \
samples = 50 seed = 12347 \
response_levels = 9.52 3.0 3.0
model, \
id_model = 'EPIST_M' \
nested \
variables_pointer = 'EPIST_V' \
sub_method_pointer = 'ALEATORY’ \
responses_pointer = 'EPIST_R’ \
primary_variable_mapping =X Y \
secondary_variable_mapping = 'mean’ 'mean’ \
primary_response_mapping =1.0.0.0. 0.0 0.0 \
. 0.0.0.1.0 0.0\
0.0.0. 0.0 1.
variables, \
id_variables = 'EPIST_V' \
uniform_uncertain = 2 \
uuv_lower_bounds 400.  800. \
uuv_upper_bounds 600. 1200. \
uuv_descriptor 'X_mean’ 'Y_mean’
responses, \
id_responses = 'EPIST_R’ \
num_response_functions = 3 \
response_descriptors = 'mean_wt' ’ccdf_beta_s’' 'ccdf_beta_d’ \
no_gradients \
no_hessians
method, \
id_method = 'ALEATORY’ \
model_pointer = 'ALEAT_M' \
nond_reliability \
mpp_search no_approx \
num_response_levels = 0 1 1 \
response_levels = 0.0 0.0 \
compute reliabilities \

complementary distribution

model, \
id_model = 'ALEAT_M' \
single \
variables_pointer = 'ALEAT_V' \
interface_pointer = 'ALEAT_I' \
responses_pointer = 'ALEAT_R’

variables, \

id_variables = 'ALEAT_V’ \

continuous_design = 2 \
cdv_initial_point 2.4522 3.8826 \
cdv_descriptor 'beam_width’ 'beam_thickness’ \

normal_uncertain = 4 \
nuv_means = 40000. 29.E+6 500. 1000. \
nuv_std_deviations = 2000. 1.45E+6 100. 100. \
nuv_descriptor = 'R E XY

interface, \
id_interface = 'ALEAT_I' \
direct \
analysis_driver = ’'cantilever’ \
deactivate evaluation_cache restart_file

responses, \
id_responses = 'ALEAT_R’ \
num_response_functions = 3 \
response_descriptors = ‘weight' 'stress’ 'displ’ \
analytic_gradients \
no_hessians

Figure 10.2: DAKOTA input file for the second-order probability example.
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Statistics based on 50 samples:

Moments for each response function:

ccdf_beta_s: Mean = 2.99662e+00 Std. Dev. = 6.73852e-01
Coeff. of Variation = 2.24871e-01

ccdf_beta_d: Mean = 2.99634e+00 Std. Dev. = 5.54339e-01
Coeff. of Variation = 1.85005e-01

95% confidence intervals for each response function:
ccdf_beta_s: Mean = ( 2.80511e+00, 3.18812e+00 ),

Std Dev = ( 5.62892e-01, 8.39710e-01 )
ccdf_beta_d: Mean = ( 2.83880e+00, 3.15388e+00 ),
Std Dev = ( 4.63058e-01, 6.90780e-01 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for ccdf_beta_s:
Response Level Probability Level Reliability Index

3.0000000000e+00  4.6000000000e-01
Cumulative Distribution Function (CDF) for ccdf_beta_d:
Response Level Probability Level Reliability Index

3.0000000000e+00  4.2000000000e-01

Figure 10.3: Second-order statistics on reliability indices for cantilever problem.

Opt | <—

I r,
Sim

Figure 10.4: Formulation 1: Nested OUU.
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optimizer. The mapping matrices used for incorporating UQ statistics into the optimization response
described in the DAKOTA Reference ManuaB[. The uncertainty quantification specification includes the
method, the uncertain variable probability distributions, the interface to the simulation code, and the UQ |
attributes. As with other complex DAKOTA input files, the identification tags given in each keyword blo
be used to follow the relationships among the different keyword blocks.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each evaluatit
response functions by the optimizer entails 50 Latin hypercube samples. In general, nested OUU st
easily generate several thousand function evaluations and gradient-based optimizers may not perforn
to noisy or insensitive statistics resulting from under-resolved sampling. These observations motivate t
surrogate-based approaches to OUU.

Other nested OUU examples in tH2akota/test directory includedakota _ouul _tbch.in , which add:
an additional interface for including deterministic data in the textbook OUU problem, and

dakota _ouul _cantilever.in , which solves the cantilever OUU problem (see Sec#iard with a neste:
approach. For each of these files, tié identifies formulation 1, which is short-hand for the nested approa

Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the expense of C
ies. Possible formulations include use of a surrogate model at the optimization level, at the uncertainty q
tion level, or at both levels. These surrogate models encompass both data fit surrogates (at the optimiza
level) and model hierarchy surrogates (at the UQ level only). Fig0rédepicts the different surrogate-based
mulations wherd,, ands, are approximate response functions and approximate response statistics, resy
generated from the surrogate models.

SBOUU examples in thibakota/test directory includedakota _sbouu2 _tbch.in

dakota _sbouu3 _tbch.in , anddakota _sbouu4 _tbch.in , which solve the textbook OUU problem, ¢
dakota _sbouu2 _cantilever.in , dakota _sbouu3 _cantilever.in , and

dakota _sbouu4 _cantilever.in , which solve the cantilever OUU problem (see Secdn9). For eacl
of these files, the2,” “3,” and “4” identify formulations 2, 3, and 4, which are short-hand for the “lay:
containing nested,” “nested containing layered,” and “layered containing nested containing layered” st
based formulations, respectively. In general, the use of surrogates greatly reduces the computational ¢
these OUU study. However, without restricting and verifying the steps in the approximate optimization
weaknesses in the data fits can be exploited and poor solutions may be obtained. The need to maintail
of results leads to the use of trust-region surrogate-based approaches.

Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see S&&itmSBOUU. Trust
region verifications are applicable when surrogates are used at the optimization level, i.e., formulations
As a result of periodic verifications and surrogate rebuilds, these techniques are more expensive than
however they are more reliable in that they maintain the accuracy of results. Relative to nested OUU (for
1), TR-SBOUU tends to be less expensive and less sensitive to initial seed and starting point.

TR-SBOUU examples in théDakota/test directory includedakota _trsbouu2 _tbch.in and

dakota _trsbouu4 _tbch.in , which solve the textbook OUU problem, and

dakota _trsbouu2 _cantilever.in anddakota _trsbouud4 _cantilever.in , which solve the cat
tilever OUU problem (see Sectid@1.9.

Computational results for several example problems are availatd&]in [
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strategy, \
single_method \
method_pointer = 'OPTIM’

method, \
id_method = 'OPTIM’ \
model_pointer = 'OPTIM_M’ \
npsol_sqp \
convergence_tolerance = 1.e-8

model, \
id_model = 'OPTIM_M' \
nested \
variables_pointer = 'OPTIM_V' \
sub_method_pointer = 'UQ’ \
responses_pointer = 'OPTIM_R’ \
primary_response_mapping =
secondary_response_mapping =

variables, \
id_variables = 'OPTIM_V' \
continuous_design = 2 \
cdv_initial_point 1.8 1.0 \
cdv_upper_bounds 2.164 4.0 \
cdv_lower_bounds 15 0.0 \
cdv_descriptor d1 o d2

responses, \

id_responses = 'OPTIM_R’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
nonlinear_inequality_upper_bounds = .1 \
numerical_gradients \

method_source dakota \

interval_type central \

fd_gradient_step_size = l.e-1 \
no_hessians

method, \
id_method = 'UQ" \
model_pointer = 'UQ_M' \
nond_sampling, \
samples = 50 seed = 1 sample_type lhs \
response_levels = 3.6e+11 1.2e+05 3.5e+05 \
complementary distribution

model, \
id_model = 'UQ_M' \
single \
variables_pointer = 'UQ_V’ \
interface_pointer = 'UQ_I' \
responses_pointer = 'UQ_R’

variables, \

id_variables = 'UQ_V’ \

continuous_design = 2 \
cdv_descriptor 1 d2 \

normal_uncertain = 2 \
nuv_means = 248.89, 593.33 \
nuv_std_deviations = 124, 297 \
nuv_descriptor = 'nuvl  ’'nuv2’ \

uniform_uncertain = 2 \
uuv_lower_bounds 199.3, 474.63 \
uuv_upper_bounds 298.5, 712. \
uuv_descriptor = uuvl’ ‘uuv2’ \

weibull_uncertain = 2 \
wuv_alphas 12., 30. \
wuv_betas 250., 590. \
wuv_descriptor = ‘wuvl' ‘'wuv2'

interface, \
id_interface = 'UQ_I' \
system asynch evaluation_concurrency = 5 \
analysis_driver= "text_book_ouu’

responses, \
id_responses = 'UQ_R’ \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 10.5: DAKOTA input file for the nested OUU example.
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[Opt ] ~—

u

Formulation 2: layered Formulation 3: nested Formulation 4: lavered containing
containing nested containing layered nested eontaining lavered

Figure 10.6: Formulations 2, 3, and 4 for Surrogate-based OUU.

Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability analysis is
performed for every optimization function evaluation. This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both thelevel and thep/3 level, one can use either the RIA
or the PMA formulation for the UQ portion and then constrain the result in the design optimization portion. In
particular, RIA reliability analysis mapsto p/3, so RIA RBDO constraing/(:

minimize f
subject to > f3
or p<p (10.23)

And PMA reliability analysis mapg/3 to z, so PMA RBDO constrains:

minimize

f
subject to z >z (10.24)

wherez > Z is used as the RBDO constraint for a cumulative failure probability (failure defined €sz)

but z < z would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined ag > 2). It is worth noting that DAKOTA is not limited to these types of inequality-constrained RBDO
formulations; rather, they are convenient examples. DAKOTA supports general optimization under uncertainty
mappings 82 which allow flexible use of statistics within multiple objectives, inequality constraints, and equality
constraints.

In /Dakota/test , thedakota _rbdo _cantilever.in ,dakota _rbdo _short _column.in ,anddakota _rbdo _
steel _column mapvars.in input files solve the cantilever (see Section 21.9), short column (see Section 21.8),

and steel column (see Section 21.10) OUU problems using a bi-level RBDO approach employing numerical design
gradients.

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analytically
compute the design gradients of probability, reliability, and response levels. When design variables are separate
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from the uncertain variables (i.e., they are not distribution parameters), then the following first-order exp
may be usedq9, 64, 2]:

Vaz = Vayg (10.25,
1 Al

Vafear mvdg (10.26,
Vavear = —¢(—PBedr)Vabedr (10.27,

where it is evident from Eq$.126.13that Vafecqr = —VaBeqr aNd Vapecar = —Vapeas. In the case ¢
second-order integrations, Eif).27must be expanded to include the curvature correction. For Breitung'’s c
tion (Eqg.6.38),

n—1 s n—1 1 n—1 1
Vapear = |®(= i . | V4B (1028
dPcdf ( ﬁp) Zzzl 2(1 +ﬁplﬁii)5 H m (b( ﬁp) E \/m dﬁ df (

J

whereV qx; has been neglected afigl > 0 (see SectioB.3.2). Other approaches assume the curvature corre
is nearly independent of the design variabl&d,[which is equivalent to neglecting the first term in H.28

To capture second-order probability estimates within an RIA RBDO formulation using well-bel¥aged-
straints, a generalized reliability index can be introduced where, similar t6.Eq.

Biar = = (Pear) (10.29'

for second-ordep.q4. This reliability index is no longer equivalent to the magnitudexpbut rather is a cot
venience metric for capturing the effect of more accurate probability estimates. The corresponding ge
reliability index sensitivity, similar to EL0.27, is

1 \
VabBry = — = VaPeds (10.30
¢(7 cdf)
whereV gp.qr is defined from Eq10.28 Even wherV q¢ is estimated numerically, Eq$0.2510.30can be use
to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain var\agleis expanded with the cha
rule and Eqs10.25and10.26become

Vaz = devxg (10.31:
1
i = ——VaxVy 10.32)
VaBedr AE HVdX g (

where the design Jacobian of the transformatiggx) may be obtained analytically for uncorrelateedr semi-
analytically for correlateck (V4L is evaluated numerically) by differentiating E@s14 and6.15 with respec
to the distribution parameters. Edd).2710.30remain the same as before. For this design variable ca:
required information for the sensitivities is available from the MPP search.

Since Eqs10.2510.32are derived using the Karush-Kuhn-Tucker optimality conditions for a converged
they are appropriate for RBDO using AMV+, AM¥, TANA, FORM, and SORM, but not for RBDO usi
MVFOSM, MVSOSM, AMV, or AMV?2.

In /Dakota/test , thedakota _rbdo _cantilever  _analytic.in and
dakota _rbdo _short _column _analytic.in input files solve the cantilever and short column OUU p
lems using a bi-level RBDO approach with analytic design gradients and first-order limit state approxir
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Thedakota _rbdo _cantilever  _analytic2.in ,

dakota _rbdo _short _column _analytic2.in ,anddakota _rbdo _steel _column _analytic2.in in-
put files also employ analytic design gradients, but are extended to employ second-order limit state approxi
and integrations.

Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through
ing the nested relationship of the MPP and design searches. The general concept is to iterate between opt
and uncertainty quantification, updating the optimization goals based on the most recent probabilistic ass
results. This update may be based on safety facidr§ pr other approximations2f3].

A particularly effective approach for updating the optimization goals is to usg gz sensitivity analysis of
Egs.10.2510.32in combination with local surrogate modelslfi]. In [27] and 28], first-order and second-orde
Taylor series approximations were employed within a trust-region model management fram&@yankdrder
to adaptively manage the extent of the approximations and ensure convergence of the RBDO process. ¢
models were used for both the objective function and the constraints, although the use of constraint su
alone is sufficient to remove the nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate modélsmnd p/3 within a trust
regionA* centered adl... For first-order surrogates:

minimize f(de) +Vaf(d)T(d —d.)
subject to  B(d.) + V43(d.)T ( d.) > p
or p(dc) + vdp(dc) ( ) S ]5
[d—d. |, <AF (10.33)

and for second-order surrogates:

minimize  f(d.) + Vaf(d )T(d do) + (d - d.)TV3(do)(d - d)

subject to B(d.) + Vaf(de)"(d - d.) + 5(d — d.)"V3a(d.)(d — de) > 3

or  p(de) + Vap(de)T(d - de) + 3(d — d)" V3p(de)(d — d.) <5
|d—d, |, <Ak (10.34)

For PMA trust-region surrogate-based RBDO, surrogate modglsintiz are employed within a trust regiak®
centered atl.. For first-order surrogates:

minimize  f(d.) + Vaf(de)? ( —d.)
subject to  z(d.) + Vgz(d.)T(d —d.) > z
[d-d. |, <AF (10.35)

and for second-order surrogates:

minimize  f(d.) + Vaf(d:)?(d —d.) + (d d.)"V3f(de)(d —d.)
subject to  z(d.) + Vaz(d.)?(d — d.) + 2(d dc)TVd (do)(d—-d.) >z
[d—d. |, <AF (10.36)

where the sense of theconstraint may vary as described previously. The second-order information ih(Eg4.
and10.36will typically be approximated with quasi-Newton updates.
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In /Dakota/test , thedakota _rbdo _cantilever  _trsh.in  and

dakota _rbdo _short _column _trsh.in input files solve the cantilever and short column OUU problems
using a first-order sequential RBDO approach with analytic design gradients and first-order limit state approx-
imations. Thedakota _rbdo _cantilever  _trsb2.in , dakota _rbdo _short _column _trsb2.in , and

dakota _rbdo _steel _column _trsb2.in  input files utilize second-order sequential RBDO approaches that
employ second-order limit state approximations and integrations (from analytic limit state Hessians with respect
to the uncertain variables) and quasi-Newton approximations to the reliability metric Hessians with respect to

design variables.
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Chapter 11

Variables

11.1 Overview

Thevariables  specification in a DAKOTA input file specifies the parameter set to be iterated by a pa
method. In the case of an optimization study, these variables are adjusted in order to locate an optim
in the case of parameter studies/sensitivity analysis/design of experiments, these parameters are p
explore the parameter space; and in the case of uncertainty analysis, the variables are associated with p
characterizations which are used to quantify the uncertainty in response functions. To accommodate
other types of studies, DAKOTA supports design, uncertain, and state variable types for continuous an
variable domains.

This chapter will present a brief overview of the types of variables and their uses, as well as cover st
issues relating to integer/discrete conversions, file formats, and the active set vector. For a detailed d
of variables section syntax and example specifications, refer to the Variables Commands chapter in the
Reference Manuabp).

11.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an optimal desit
variables may be continuous (real-valued) or discrete (integer-valued).

11.2.1 Continuous Design Variables
The most common type of design variables encountered in engineering applications are of the contint

These variables may assume any real value (£2034 , -1.735e+07 ) within their bounds. All but a handf
of the optimization algorithms in DAKOTA support continuous design variables exclusively.

11.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature counts, s
selections, etc. These variables may assume only a fixed number of values within their bounds. While tf
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discrete variable case would allow this fixed set of values to include real numbersc(ecgn only assume ti
values4.2 , 6.4 , and8.5 ), DAKOTA assumes that the discrete variables can be specified as a sequ
integers (e.g.z1 can bel, 2, or 3) and that a mapping from the integer sequence to the discrete values
applied if necessary within the user’s interface. A common mapping is to use the integer value from DAk
the index into a vector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables. In thi
noncategorical case, the integrality condition can be relaxed during the solution process since the mode
compute meaningful response functions for non-integer values. For example, a discrete variable repres
thickness of a structure is generally a noncategorical variable since it can assume a continuous range
during the algorithm iterations, even if it is desired to have a stock gauge thickness in the end. Int
categorical case, the integrality cannot be relaxed since the model cannot obtain a solution for a non-inte
For example, feature counts are generally categorical variables, since most computational models will nc
a non-integer value for the number of instances of some feature (e.g., number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete variables. For
with noncategorical variables, branch and bound techniques can be used to relax the integrality condi
apply gradient-based methods to a series of generated subproblems. For problems with categorical
nongradient-based methods (eapliny _ea) are commonly used. Branch and bound techniques are disc
in Section9.5and nongradient-based methods are further described in Chapter

In addition to engineering applications, many non-engineering applications in the fields of scheduling, |
and resource allocation contain discrete design parameters. Within the Department of Energy, solution t
for these problems impact programs in stockpile evaluation and management, production planning, no
ation, transportation (routing, packing, logistics), infrastructure analysis and design, energy production,
mental remediation, and tools for massively parallel computing such as domain decomposition and mes

11.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the input var
all situations. In many cases, the exact value of a model parameter is not precisely known. An example ¢
input variable is the thickness of a heat treatment coating on a structural steel I-beam used in building con
Due to variabilities and tolerances in the coating process, the thickness of the layer is known to follow ¢
distribution with a certain mean and standard deviation as determined from experimental data. The inc
the uncertainty in the coating thickness is essential to accurately represent the resulting uncertainty in the
of the building.

Currently, uncertain variables in DAKOTA are modeled as continuous random variables, or in the cas
togram, with an empirical histogram representation. If a problem contains discrete random variables, tt
variables can be modeled using the point-based histogram representation. The following types of unce
ables are available:

e Normal: a probability distribution characterized by a mean and standard deviation. Also referre
Gaussian. Bounded normal is also supported by some methods with an additional specification
and upper bounds.

e Lognormal: a probability distribution characterized by a mean and either a standard deviation or
factor. The natural logarithm of a lognormal variable has a normal distribution. Bounded lognorma
supported by some methods with an additional specification of lower and upper bounds.
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e Uniform: a probability distribution characterized by a lower bound and an upper bound. Probal
constant between the bounds.

e Loguniform: a probability distribution characterized by a lower bound and an upper bound. The
logarithm of a loguniform variable has a uniform distribution.

e Triangular: a probability distribution characterized by a mode, a lower bound, and an upper bound

e Beta: a flexible probability distribution characterized by a lower bound and an upper bound and al
beta parameters.

e Gamma: a flexible probability distribution characterized by alpha and beta parameters. The exf
distribution is a special case.

e Gumbel: the Type | Largest Extreme Value probability distribution. Characterized by alpha and t
rameters.

e Frechet: the Type Il Largest Extreme Value probability distribution. Characterized by alpha and t
rameters.

e Weibull: the Type Ill Smallest Extreme Value probability distribution. Characterized by alpha an
parameters.

e Histogram: an empirically-based probability distribution characterized by a det 9§ pairs that eithe
map out histogram bins (a continuous interval with associated bin count) or histogram points (a
point value with associated count).

¢ Interval: an interval-based specification characterized by sets of lower and upper bounds and Ba
ability Assignments (BPAs) associated with each interval. This is not a probability distribution,
exact structure of the probabilities within each interval is not known. It is commonly used with epi
uncertainty methods.

DAKOTA also supports a user-supplied correlation matrix to provide correlations among the uncerta
variables. By default, the correlation matrix is set to the identity matrix, i.e., no correlation among the u
variables.

For additional information on random variable probability distributions, refer5&) &nd [95]. Refer to the
DAKOTA Reference Manualq9] for more detail on the uncertain variable specifications and to Chégtera
description of methods available to quantify the uncertainty in the response.

11.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation interface, in
are not to be used for design and they are not modeled as being uncertain. State variables provide
nient mechanism for parameterizing additional model inputs which, in the case of a numerical simulatc
include solver convergence tolerances, time step controls, or mesh fidelity parameters. For additional r
rameterizations involving strings (e.g., “meshl.exo”), refer to the analysis components specification des
SectionSimilar to the design variables discussed in Sedtlop state variables can be continuous (real-val
or discrete (integer-valued). For discrete variables which are not a sequence of integers, a mapping can
between the integer and discrete values in the user’s interface.
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State variables, as with other types of variables, are viewed differently depending on the method in us
these variables are neither design nor uncertain variables, algorithms for optimization, least squares, ¢
tainty quantification do not iterate on these variables; i.e., they are not active and are hidden from the a
However, DAKOTA still maps these variables through the user’s interface where they affect the compt
model in use. This allows optimization, least squares, and uncertainty quantification studies to be execu
different simulation conditions (which will result, in general, in different results). Parameter studies and d
experiments methods, on the other hand, are general-purpose iterative techniques which do not draw a
between variable types. They include state variables in the set of variables to be iterated, which allg
studies to explore the effect of state variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least squares, or ur
quantification algorithm. For example, state variables could be used to enact model adaptivity through t
a coarse mesh or loose solver tolerances in the initial stages of an optimization with continuous model re
as the algorithm nears the optimal solution.

11.5 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the variables
active in the iteration. The general case of having a mixture of various different types of variables is st
within all of the DAKOTA methods even though certain methods will only modify certain types of variable:
optimizers and least squares methods only modify design variables, and uncertainty quantification met|
utilize uncertain variables). This implies that variables which are not under the direct control of a particulai
will be mapped through the interface in an unmodified state. This allows for a variety of parameterization
the model in addition to those which are being used by a particular iterator, which can provide the con
of consolidating the control over various modeling parameters in a single file (the DAKOTA input file
important related point is that the variable set that is active with a particular iterator is the same variabl
which derivatives are typically computed (see Secfi8r8).

11.6 DAKOTA Parameters File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes mus
nicate with the simulation code through the file system. This is accomplished through the reading and v
parameters and results files. DAKOTA uses a particular format for this data input/output. Depending on't
interface specification, DAKOTA will write the parameters file in either standard or APREPRO format

XML formats are planned). The former option uses a simplgife tag " format, whereas the latter opti
uses a { tag = value }” format for compatibility with the APREPRO utility92] (as well as DPrePr
BPREPRO, and JPrePost variants).

11.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current paramete
and a set of function requests. The standard format for this parameters file is shown inlRidure

where <int> ” denotes an integer valuestiouble> ” denotes a double precision valuestring> " denote:
a string value, and.’. " indicates omitted lines for brevity. Each of the colored blocks (black for varig
blue for active set vector, red for derivative variables vector, and green for analysis components) denote
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<int>

<int>
<int>
<int>

<int>
<int>

<int>

<int>

variables

<double> <var_tag_cdv = ;>

<double> <var_tag_cdv = ,>
<int> <var_tag_ddv 1>

<int> <var_tag_ddv n>
<double> <var_tag uv = ;>

<double> <var_tag_uv >
<double> <var_tag_csv 1>

<double> <var_tag_csv n>
<int> <var_tag_dsv 1>

<var_tag_dsv n>

functions
ASV 1

ASV_m

derivative_variables

DVV_1

DVV_p

Figure 11.1: Parameters file data format - standard option.
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which begins with an array length and a descriptive tag. These array lengths are useful for dynamic
allocation within a simulator or filter program.

The first array for variables begins with the total number of varialigsvith its identifier string Variables .
The nextn lines specify the current values and descriptors of all of the variables within the paramete
the following order continuous design, discrete design, uncertain, continuous state, and discrete state
where the uncertain variables break out using the following order: normal uncertain, lognormal uncertain,
uncertain, loguniform uncertain, triangular uncertain, beta uncertain, gamma uncertain, gumbel uncertai
uncertain, weibull uncertain, histogram uncertain (bin histograms followed by point histograms), and
uncertain. This ordering is consistent with the specification order in dakota.input.spec. The lengths
vectors add to a total of (that isynnm; + Nnuwv T Nuww + Nivuw + Ntwo + Nbuw + Ngauv + Nguuv + N fuv + Nwuw +
Nhuv T Nive = Ny ANANegy + Nadw + Nuw + Neso + Nasy = ). If @any of the variable types are not present in
problem, then its block is omitted entirely from the parameters file. The tags are the variable descriptors
in the user's DAKOTA input file, or if no descriptors have been specified, default descriptors are used.

The second array for the active set vector (ASV) begins with the total number of funatipasd its identifie
string “functions " The nextmlines specify the request vector for each of théunctions in the respon:
data set followed by the tag&\SV.i .” These integer codes indicate what data is required on the current fu
evaluation and are described further in Secfiary.

The third array for the derivative variables vector (DVV) begins with the number of derivative variablaad
its identifier string Herivative  _variables .” The nextp lines specify integer variable identifiers follow
by the tags DVV.i .” These integer identifiers are used to identify the subset of variables that are active
calculation of derivatives (gradient vectors and Hessian matrices), and correspond to the list of variabl
first array (e.g., an identifier of 2 indicates that the second variable in the list is active for derivatives).

The final array for the analysis components (AC) begins with the number of analysis compary)ests! (ts
identifier string ‘analysis _components .” The nextq lines provide additional strings for use in specializ
a simulation interface followed by the tag8C.i .” These strings are specified in a user’s input file for a s
analysis _drivers  using theanalysis _components specification. The subset of the analysis con
nents used for a particular analysis driver is the set passed in a particular parameters file.

Several standard-format parameters file examples are shown in SE2iton

11.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the
format. The only difference is that values are associated with their tags withtag = value  }” construct:
as shown in Figuré1.2 An APREPRO-format parameters file example is shown in Se&2of

The use of the APREPRO format option allows direct usage of these parameters files by the APREF
ity, which is a file pre-processor that can significantly simplify model parameterization. Similar pre-pro
include DPrePro, BPREPRO, and JPreP{idbte: APREPRO is a Sandia-developed pre-processor that i
currently distributed with DAKOTA. DPrePro is a Perl script distributed with DAKOTA that performs many
same functions as APREPRO, and is optimized for use with DAKOTA parameters files in either format. Bl
and JPrePost are additional Perl and JAVA tools, respectively, in use at other sitdseh a parameters file
APREPRO format is included within a template file (using an include directive), the APREPRO utility
nizes these constructs as variable definitions which can then be used to populate targets throughout th
file [92]. DPrePro, conversely, does not require the use of includes since it processes the DAKOTA pa
file and template simulation file separately to create a simulation input file populated with the variables d
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DAKOTA_VARS = <int> }
<var_tag_cdv ;> = <double> }

<var_tag_cdv ,> = <double> }
<var_tag_ddv ;> = <int> }

<var_tag_ddv ,> = <int> }
<var_tag_uv ;> = <double> }

<var_tag_uv ,> = <double> }
<var_tag_csv 1> = <double> }

<var_tag_csv ,> = <double> }
<var_tag_dsv ;> = <int> }

<var_tag_dsv ,> = <int> }
DAKOTA_FNS = <int> }
ASV_1 = <int> }

ASV_m = <int> }
DAKOTA_DER_VARS = <int> }
DVV_1 = <int> }

T e N R e e T e L T e L R T e L N S N P SN

DVV_p = <int> }

Figure 11.2: Parameters file data format - APREPRO option.
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Table 11.1: Active set vector integer codes.

Integer Code| Binary representation Meaning
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function is inactive

11.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe the data need
on a particular execution of an interface. Integer values of 0 through 7 denote a 3-bit binary representation of all
possible combinations of value, gradient, and Hessian requests for a particular function, with the most significant
bit denoting the Hessian, the middle bit denoting the gradient, and the least significant bit denoting the value. The
specific translations are shown in Talle 1

The active set vector in DAKOTA gets its name from managing the active set, i.e., the set of functions that are
active on a particular function evaluation. However, it also manages the type of data that is needed for functions
that are active, and in that sense, has an extended meaning beyond that typically used in the optimization literature

11.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by removing
the need to check the content of the active set vector on each evaluation. The Interface Commands chapter in tt
DAKOTA Reference Manual]9] provides additional information on this optiodeactivate active _set _vector ).
Of course, this option trades some efficiency for simplicity and is most appropriate for those cases in which only
a relatively small penalty occurs when computing and returning more data than may be needed on a particula
function evaluation.
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Interfaces

12.1 Overview

The interface specification in a DAKOTA input file specifies how function evaluations will be perfort
The mechanisms currently in place for performing function evaluations involve interfacing with one o
computational simulation codes, computing algebraic mappings, or a combination of the two.

This chapter will describe algebraic mappings in Secti?r?, followed by discussion of a variety of mechanis
for simulation code invocation in Sectid2.3 It also provides an overview of simulation interface compone
covers issues relating to file management and presents a number of example data mappings.

For a detailed description of interface specification syntax, refer to the interface commands chapter in the |
Reference Manuabkp).

12.2 Algebraic Mappings

If desired, one can define algebraic input-output mappings using the AMPL dapar[d save these mappin
in 3files:stub.nl | stub.col , andstub.row ,wherestub is a particular root name describing a partict
problem. These files names can be communicated to DAKOTA usirgiglebraic _mappings input.

DAKOTA will employ stub.col  andstub.row to extract the input and output identifier strings, respecti
and employs the AMPL solver libraryif] to process a directed acyclic graph (DAG) specificatiostirb.nl

As a simple example (frorDakota/test/ampl/fma ), consider simple algebraic mappings based on P
ton’s law F' = ma. The following file is the AMPL model file showing the variable declarations and output n
definitions:

var mass;
var a;

var v;

minimize force: mass*a;

minimize energy: 0.5 * mass * v'2;

option auxfiles rc; # generate stub.row and stub.col




164 CHAPTER 12. INTERFACES

When processed by an AMPL executable, three files are created (as requested by the auxfiles command). The first
is thefma.nl file containing the expression graphs (which is not particularly human readable):

g3010 # problem fma

30200 # vars, constraints, objectives, ranges, eqns
02 # nonlinear constraints, objectives

00 # network constraints: nonlinear, linear

0 3 0 # nonlinear vars in constraints, objectives, both
0001 # linear network variables; functions; arith, flags
00O0O0O # discrete variables: binary, integer, nonlinear (b,c,0)
0 4 # nonzeros in Jacobian, gradients

6 4 # max name lengths: constraints, variables
00O0O0O # common exprs: b,c,0,c1,0l

o0 0

02

vO

vl

010

02

02

n0.5

vO

o5

v2

n2

b

3

3

3

k2

0

0

GO 2

00

10

Gl 2

00

20

Next, thefma.col file contains the set of variable descriptor strings:

mass

and thefma.row file contains the set of response descriptor strings:

force
energy
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The variable and objective function names declared within AMPL should be a subset of the variable
tors and response descriptors used by DAKOTA (see the DAKOTA Reference Ma@idbf information
on DAKQOTA variable and response descriptors). Ordering of the inputs and outputs within the AMF
laration is not important, as DAKOTA will reorder data as needed. The following listing shows an ¢
from Dakota/test/dakota _ampl.in , which demonstrates a combined algebraic/simulation-based
ping in which algebraic mappings from tlima definition are overlaid with simulation-based mappings f
text _book:

variables, \
continuous_design = 5 \
cdv_descriptor 'x1' 'mass’ 'a’ x4’ 'V’ \
cdv_initial_point 0.0 2.0 1.0 0.0 3.0 \
cdv_lower_bounds -3.0 0.0 -5.0 -3.0 -5.0 \

cdv_upper_bounds 3.0 100 50 3.0 5.0

interface, \
algebraic_mappings = 'ampl/fma.nl’ \
system \
analysis_driver = ’text_book’ \
parameters_file = 'th.in’ \
results_file = 'tb.out’ \
file_tag
responses, \
response_descriptors = ‘force’ 'ineql’ 'energy’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
num_nonlinear_equality_constraints = 1 \
nonlinear_equality_targets = 20.0
analytic_gradients \
no_hessians

Note that the algebraic inputs and outputs are a subset of the total inputs and outputs and that DAKOTA"
the algebraic contributions to the total response set using the order of the descriptor strings. In the ce
both the algebraic and simulation-based components contribute to the same function, they are overla
simple summation.

To solvetext _book algebraically (refer to Sectia®.2 for definition), the following AMPL model file could k
used
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# Problem : Textbook problem used in DAKOTA testing
# Constrained quartic, 2 continuous variables
#  Solution: x=(0.5, 0.5), obj = .125, ¢c1 =0, c2 =0

#

# continuous variables

var x1 >= 0.5 <= 5.8
var x2 >= -2.9 <= 2.9 :

0.9;
1.1;

# objective function
minimize obj: (x1 - 1)4 + (x2 - 1)4;

# constraints (current required syntax for DAKOTA/AMPL interface)
minimize cl: x1°2 - 0.5*x2;
minimize c2: x2°2 - 0.5*x1;

# required for output of *.row and *.col files
option nl_comments 2, auxfiles rc;

Note that the nonlinear constraints should not currently be declared as constraints within AMPL. S
DAKOTA variable bounds and constraint bounds/targets currently take precedence over any AMPL s
tion, the current approach is to declare all AMPL outputs as objective functions and then map them
appropriate response function type (objectives, least squares terms, nonlinear inequality/equality cons
generic response functions) within the DAKOTA input specification.

12.3 Simulation Interfaces

The invocation of a simulation code is performed using either system calls, forks, or direct function invo
In the system call and fork cases, a separate process is created for the simulation and communicatio
DAKOTA and the simulation occurs through parameter and response files. For system call and fork in
then, the interface section must also specify the details of this data transfer. In the direct function case,
process is not created and communication occurs directly through the function parameter list. B28tii
through Sectiori2.3.4provide information on the simulation interfacing approaches.

12.3.1 The Direct Function Simulation Interface

The direct function interface capability may be used to invoke simulations which are linked into the D/
executable. This interface eliminates overhead from process creation and file 1/O and can simplify oper
massively parallel computers. These advantages are balanced with the practicality of converting an exi
ulation code into a link library with a subroutine interface. Sandia codes for structural dynamics (Salina
putational fluid dynamics (Sage), and circuit simulation (Xyce) and external codes such as Phoenix Inte
ModelCenter framework have been linked in this way, and a direct interface to Sandia’s SIERRA multi
framework is under development. In the latter case, the additional effort is particularly justified since £
unifies an entire suite of physics codeblofe: the “sandwich implementation” of combining a direct interf
plug-in with DAKOTA’s library mode is discussed in the DAKOTA Developers Ma@#]. [

In addition to direct linking with simulation codes, the direct interface also provides access to internal
mial test functions that are used for algorithm performance and regression testing. The following test f
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are availablecantilever ,cyl _head,log _ratio ,rosenbrock ,short _column ,andtext _book (in-
cludingtext _bookl, text _book2, text _book3, andtext _book _ouu). While these functions are al
available as external programs in thizakota/test directory, maintaining internally linked versions allc
more rapid testing. See Chap®&rfor additional information on several of these test problems. An example
specification for a direct interface follows:

interface, \
direct \
analysis_driver = ’'rosenbrock’

Additional specification examples are provided in Secceh additional information on asynchronous usag
the direct function interface is provided in Sectibh2.1 and the details of adding a simulation code to the d
interface are provided in Sectid6.2

12.3.2 The System Call Simulation Interface

The system call approach invokes a simulation code or simulation driver by usirgygtean function from
the standard C libraryeb]. In this approach, the system call creates a new process which communicat
DAKOTA through parameter and response files. The system call approach allows the simulation to be
via its standard invocation procedure (as a “black box”) and then coordinated with any variety of tools for |
post-processing. This approach has been widely used in previous st4i86,[26]. The system call approa
involves more process creation and file I/O overhead than the direct function approach; however, this

often of very little significance relative to the expense of the simulations. An example of a system call il
specification follows:

interface, \
system \
analysis_driver = 'text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’text_book.out’ \

file_tag file_save

More detailed examples of using the system call interface are provided in S2eti@fand in Sectiorl 6.1, anc
information on asynchronous usage of the system call interface is provided in SECtoh

12.3.3 The Fork Simulation Interface

The fork simulation interface uses tfmk , exec, andwait families of functions to manage simulation co
or simulation drivers. Calls tfork or vfork create a copy of the DAKOTA processxecvp replaces thi
copy with the simulation code or driver process, and then DAKOTA usesdlite or waitpid functions to wai
for completion of the new process. Transfer of variables and response data between DAKOTA and the :
code or driver occurs through the file system in exactly the same manner as for the system call inter
example of a fork interface specification follows:

interface, \
fork \
input_filter = 'test_3pc_if’ \
output_filter = ’test 3pc_of \
analysis_driver = 'test_3pc_ac’ \
parameters_file = 'tb.in’ \
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results_file = ’tb.out’ \
file_tag

Information on asynchronous usage of the fork interface is provided in Sdcti@ri

12.3.4 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call simulation interfaces is that, in the fork
terface, thdork /exec functions return a UNIX process identifier which can be utilized bythé /waitpid
functions to detect the completion of a simulation for either synchronous or asynchronous operations. The sy
call simulation interface, on the other hand, must use a response file detection scheme for this purpose in the
chronous case. Thus, an important advantage of the fork interface over the system call interface is that it a\
the potential of a file race condition when employing asynchronous local parallelism (refer to Siataf.
This condition can occur when the responses file has been created but the writing of the response data set 1
file has not been completed (see Sectl@2.). While significant care has been taken to manage this file race
condition in the system call case, the fork interface still has the potential to be more robust when perform
function evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a function e
uation involves multiple analyses. As shown in Tablel, the fork interface supports asynchronous local and
hybrid parallelism modes for managing concurrent analyses within function evaluations, whereas the systen
interface does not. These additional capabilities again stem from the ability to track child processes by their Ul
process identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface idthiat theec /wait
functions are not part of the standard C library, whereasyiséeem function is. As a result, support for imple-
mentations of théork /exec /wait functions can vary from platform to platform. At one time, these commands
were not available on some of Sandia’s massively parallel computers. However, in the more mainstream U
environments, availability diork /exec /wait should not be an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and proven. |
ever, the fork interface supports additional capabilities and is recommended when managing asynchronous
ulation code executions. Having both interfaces available has proven to be useful on a number of occasion:
they will both continue to be supported for the foreseeable future.

12.4 Simulation Interface Components

Figure12.1is an extension of Figurg.1 which adds the detail of the components that make up each of the sinr
ulation interfaces (system call, fork, and direct). These components includewn filter (“IFilter”), one

or moreanalysis _drivers  (“Analysis Code/Driver”), and aoutput _filter (“OFilter”). The input and

output filters provide optional facilities for managing simulation pre- and post-processing, respectively. Mc
specifically, the input filter can be used to insert the DAKOTA parameters into the input files required by the si
ulator program, and the output filter can be used to recover the raw data from the simulation results and comr
the desired response data set. If there is a single analysis code, it is often convenient to combine these pre
post-processing functions into a single simulation driver script, and the separate input and output filter facili
are rarely used in this case. If there are multiple analysis drivers, however, the input and output filter facilit
provide a convenient means for managnugrepeategbortions of the pre- and post-processing for multiple anal-
yses. That is, pre- and post-processing tasks that must be performed for each analysis can be performed \
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Figure 12.1: Components of the simulation interface

the individual analysis drivers, and shared pre- and post-processing tasks that are only performed once
of analyses can be performed within the input and output filters.

When spawning function evaluations using system calls or forks, DAKOTA must communicate param
response data with the analysis drivers and filters through use of the file system. This is accomplished k
the names of the parameters and results files on the command line when executing an analysis driver or
input filter or analysis driver read data from the parameters file and the output filter or analysis driver v
appropriate data to the responses file. While not essential when the file names are fixed, the file name
retrieved from the command line when DAKOTA is changing the file names from one function evaluatiol
next (i.e., using UNIX temporary files or root names tagged with numerical identifiers). In the case ofa U
shell script, the two command line arguments are retrieved $simgy[1] and$argv[2] (see B]). Similarly,
Bourne shell scripts retrieve the two command line arguments $dirand$2, and Perl scripts retrieve the t
command line arguments usi@ARGV[0]and @ARGV[1] In the case of a C or C++ program, command
arguments are retrieved usiaggc (argument count) andrgv (argument vector)g5], and for Fortran 77, th
iargc  function returns the argument count and ¢fetarg  subroutine returns command line arguments.

12.4.1 Single analysis driver without filters

If a singleanalysis _driver is selected in the interface specification and filters are not needed (as in
by omission of thenput _filter andoutput filter specifications), then only one process will appe:i
the execution syntax of the simulation interface. An example of this syntax in the system call case is:

(driver params.in results.out)

where ‘driver " is the user-specified analysis driver amqghfams.in " and “results.out " are the name
of the parameters and results files, respectively, passed on the command line. In this case, the use
retrieve the command line arguments since the same file names will be employed each time.

For the same mapping, the fork simulation interface echoes the following syntax:
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blocking fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.
Executing the same mapping with the direct simulation interface results in an echo of the following synte

Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA's direct interface (see S&6t®nNote
that no files are involved for communication of parameter and response data, since this data is passe
through the function parameter lists.

Both the system call and fork interfaces support asynchronous operations. The asynchronous system «
tion syntax involves executing the system call in the background:
(driver params.in.1 results.out.1) &

and the asynchronous fork execution syntax involves use of a nonblocking fork:

nonblocking fork: driver params.in.1 results.out.1

where file tagging (see Sectid2.5.9 has been user-specified in both cases to prevent conflicts betwee
current analysis drivers. In these cases, the user must retrieve the command line arguments since the
change on each evaluation. Execution of the direct interface must currently be performed synchronot
multithreading is not yet supported (see Secti@rR.]).

12.4.2 Single analysis driver with filters
When filters are used, the syntax of the system call that DAKOTA performs is:

(ifilter params.in results.out; driver params.in results.out;
ofilter params.in results.out)

in which the input filter (ffilter "), analysis driver (driver "), and output filter (bfilter ") processes al
combined into a single system call through the use of semi-colons and parenthes8&}.(s&ethree portions
are passed the names of the parameters and results files on the command line.

For the same mapping, the fork simulation interface echoes the following syntax:
blocking fork: ifilter params.in results.out;
driver params.in results.out; ofilter params.in results.out

where a series of three blocking forks is used to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following synte
Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA's direct interface.
asynchronous operations are not yet supported, execution simply involves invocation of each of the thr
functions in succession. Again, no files are involved since parameter and response data are passed direc
the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:
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(ifilter params.in.1 results.out.l; driver params.in.l results.out.1;
ofilter params.in.1 results.out.1) &

and, for the fork interface, as:

nonblocking fork: ifilter params.in.1 results.out.1;
driver params.in.1l results.out.1; ofilter params.in.1l results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call simule
interface, use of parentheses and semi-colons to bind the three processes into a single system call simp
asynchronous process management compared to an approach using separate system calls. The fork simu
interface, on the other hand, does not rely on parentheses and accomplishes asynchronous operations b
forking an intermediate process. This intermediate process is then reforked for the execution of the input filt
analysis driver, and output filter. The intermediate process can be blocking or nonblocking (nonblocking in tt
case), and the second level of forks can be blocking or nonblocking (blocking in this case). The fact that fol
can be reforked multiple times using either blocking or nonblocking approaches provides the enhanced flexibi
to support a variety of local parallelism approaches (see Chapter

12.4.3 Multiple analysis drivers without filters

Ifalistof analysis _drivers is specified and filters are not needed (as indicated by omissioniofthie _filter
andoutput filter specifications), then the system call syntax would appear as:

(driverl params.in results.out.l; driver2 params.in results.out.2;
driver3 params.in results.out.3)

where ‘driverl ", “driver2 ", and “driver3 " are the user-specified analysis drivers apdrams.in
and ‘results.out " are the user-selected names of the parameters and results files. Note that the results f
for the different analysis drivers have been automatically tagged to prevent overwriting. This automatic tagginc
analysegsee Sectiol2.5.9 is a separate operation from user-selected taggirgalfiationgsee Sectiod2.5.9.

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: driverl params.in results.out.1;
driver2 params.in results.out.2; driver3 params.in results.out.3

for which a series of three blocking forks is needed (no reforking of an intermediate process is required).
Executing the same mapping with the direct simulation interface results in an echo of the following syntax:

Direct function: invoking { driverl driver2 driver3 }

where, again, each of these components must be linked within DAKOTA's direct interface and no files are involv
for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The asynchronous sy:
call execution syntax would be reported as

(driverl params.in.1l results.out.1.1; driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3) &
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and the nonblocking fork execution syntax would be reported as

nonblocking fork: driverl params.in.1 results.out.1.1;
driver2 params.in.1l results.out.1.2; driver3 params.in.1 results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts between «
analysis drivers and file tagging of the results files for multiple analyses is automatically used. In the fork i
case, an intermediate process is forked to allow a non-blocking function evaluation, and this intermediat
is then reforked for the execution of each of the analysis drivers.

12.4.4 Multiple analysis drivers with filters

Finally, when combining filters with multiplenalysis _drivers , the syntax of the system call that DAKO'
performs is:

(ifilter params.in.1 results.out.l1;
driverl params.in.1 results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1)

in which all processes have again been combined into a single system call through the use of semi-c
parentheses. Note that the secondary file tagging for the results files is only used for the analysis dr
not for the filters. This is consistent with the filters’ defined purpose of managing the non-repeated po
analysis pre- and post-processing (e.g., overlay of response results from individual analyses; se@¢ 58a!
for additional information).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in.1l results.out.1;
driverl params.in.1 results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1 results.out.1

for which a series of five blocking forks is used (no reforking of an intermediate process is required).
Executing the same mapping with the direct simulation interface results in an echo of the following synte

Direct function: invoking { ffilter driverl driver2 driver3 ofilter }

where each of these components must be linked as a function within DAKOTA's direct interface. Sinc
chronous operations are not supported, execution simply involves invocation of each of the five linked f
in succession. Again, no files are involved for parameter and response data transfer since this data
directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1;
driverl params.in.1l results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1l results.out.1) &
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and for the fork interface:

nonblocking fork: ifilter params.in.1 results.out.1;
driverl params.in.1l results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1 results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of anal
the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation,
intermediate process is then reforked for the execution of the input filter, each of the analysis drivers,
output filter.

12.5 Simulation File Management

This section describes some of the file management features that are employed during an execution of
when file transfer of data is used for the communication between DAKOTA and the simulation code (i.e., v
system call or fork interfaces are used). These features can be used for generating unique filenames whe
DAKOTAS parallel execution capabilities and for debugging purposes when troubleshooting the interface
DAKOTA and the simulation code.

12.5.1 File Saving

Thefile _save option in the interface specification allows the user to control whether parameters anc
files are retained or removed from the working directory. DAKOTA's default behavior is to remove files on
use is complete in order to reduce clutter. If the method output setting is verbose, a file remove notifice
follow the function evaluation echo, e.g.:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

However, by specifyindile _save in the interface specification, these files will not be removed. This
behavior is often useful for debugging communication between DAKOTA and simulator programs. An €
of afile _save specification is shown in the file tagging example below.

12.5.2 File Tagging for Evaluations

When a user providegarameters _file andresults _file specifications, théile _tag option in the
interface specification allows the user to render the names of these parameters and results files unique |
ing the function evaluation number to the root file names. Default behavior is to not tag these files, wl
the advantage of allowing the user to ignore command line argument passing and always read to and v
the same file names. However, it has the disadvantage that files may be overwritten from one function €
to the next. By specifyindile _tag in the interface specification, the file names become unique throu
appended evaluation number. This uniqueness makes it necessary for the user’s interface to retrieve th
these files from the command line. The file tagging feature is most often used when concurrent simule
running in a common disk space, since it can prevent conflicts between the simulations. An example spe
of file _tag andfile _save is shown below:
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interface, \
system \
analysis_driver = 'text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’text_book.out’ \

file_tag file_save

Special caseWhen a user specifies names for the parameters and results filikeandsave is used withou
file _tag , untagged files are used in the function evaluation but are then moved to tagged files after the
evaluation is complete in order to prevent overwriting files for whiddea _save request has been given.
the output control is set to verbose, then a notification similar to the following will follow the function eval
echo:

(driver params.in results.out)

Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1

Moving results.out to results.out.1

12.5.3 UNIX Temporary Files

If parameters _file andresults _file are not specified by the user, then the default mechanisms f
communication are UNIX temporary files. For example, a system call to a single analysis driver would ay

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)
and a system call to an analysis driver with filter programs would appear as:

(ifilter /usritmp/aaaa22490 usr/tmp/baaa22490;
driver /usritmp/aaaa22490 usr/tmp/baaa22490;
ofilter /usr/tmp/aaaa22490 /usr/tmp/baaa22490)

These files have unique names as created bynthbaam utility from the C standard librarygb]. This uniquenes
makes it a requirement for the user’s interface to retrieve the names of these files from the command
tagging with evaluation number is unnecessary with UNIX temporary files (since they are already uniqu
file _tag requestswill be ignored. Ale _save request will be honored, but it should be used with care
the temporary file directory could easily become cluttered without the user noticing.

12.5.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the system
fork simulation interface, a secondary file taggingigomaticallyused in order to distinguish the results f
used for the individual analyses. This applies to both the case of user-specified names for the paran
results files and the default UNIX temporary file case. Examples for the former case were shown prev
Section12.4.3and Sectionl2.4.4 The following examples demonstrate the latter UNIX temporary file «
Even though Unix temporary files have unique names for a particular function evaluation, a tagging is stil
to manage the individual contributions of the different analysis drivers to the response results, since the ¢
results filename is used for each component. For the system call interface, the syntax would be simi
following:

(ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
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driverl /var/ftmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ)

and, for the fork interface, similar to:

blocking fork:
ifilter /var/tmp/aaawkaOKZ /vartmp/baaxkaOKZ;
driverl /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/ftmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

The tagging of the results files with an analysis identifier is needed since each of the analysis drivers is
sponsible for contributing a user-defined subset of the total response results for the evaluation. If an ou
filter is not supplied, then DAKOTA will combine these portions through a simple overlaying of the individ-
ual contributions (i.e., summing the resultshar/tmp/baaxkaOKZ.1 , Ivar/tmp/baaxkaOKZ.2 , and
Ivar/tmp/baaxkaOKZ.3 ). If this simple approach is inadequate, then an output filter should be supplied t
perform the combination. This is the reason why the results file for the output filter does not use analysis taggin
is responsible for the results combination (i.e., combiag/tmp/baaxkaOKZ.1 , Ivaritmp/baaxkaOKZ.2 ,
and/var/tmp/baaxkaOKZ.3 into /var/tmp/baaxkaOKZ ). In this case, DAKOTA will read only the re-
sults file from the output filter (i.e/yvar/tmp/baaxkaOKZ ) and interpret it as the total response set for the
evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that DAKOTA does
attempt to subdivide the requests in the active set vector for different analysis portions. Rather, the total active
vector is passed to each analysis driver and the appropriate subdivision aofnwstlbe defined by the usdis
allows the division of labor to be very flexible. In some cases, this division might occur across response functic
with different analysis drivers managing the data requests for different response functions. And in other cases
subdivision might occur within response functions, with different analysis drivers contributing portions to each
the response functions. The only restriction is that each of the analysis drivers must follow the response for
dictated by the total active set vector. For response data for which an analysis driver has no contribution, 0’s n
be used as placeholders.

12.6 Parameter to Response Mappings

In this section, interface mapping examples are presented through the discussion of several parameters file
their corresponding results files. A typical input file for 2 variabbes={ 2) and 3 functions:: = 3) using the
standard parameters file format (see Sectib6.]) is as follows:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1

RPN R R R
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2 DVV 2
0 analysis_components

where numerical values are associated with their tags withalu& tag " constructs. The number of desi
variables @) and the string Variables " are followed by the values of the design variables and their tag
number of functions:) and the string functions ", the active set vector (ASV) and its tags, the numbe
derivative variables and the strindérivative  _variables ", the derivative variables vector (DVV) and
tags, the number of analysis components and the stanglysis _components ”, and the analysis comp
nents array and its tags. The descriptive tags for the variables are always present and they are either the
specified in the user’s variables specification or are default descriptors if none were provided. The leng
active set vector is equal to the number of functian$.(In the case of an optimization data set with an obje:
function and two nonlinear constraints (three response functions total), the first ASV value is associatec
objective function and the remaining two are associated with the constraints (in whatever consistent ¢
order has been defined by the user). The DVV defines a subset of the variables used for computing d
Its identifiers are 1-based and correspond to the full set of variables listed in the first array. Finally, the
components pass additional strings from the useralysis _components specification in a DAKOTA inpt
file through to the simulator. They allow the development of simulation drivers that are more flexible, by a
them to be passed additional specifics at run time, e.g., the names of model files such as a particular me

For the APREPRO format option (see Sectidn6.2, the same set of data appears as follows:

{ DAKOTA_VARS = 2}
{ cdv_1 1.500000000000000e+00 }

{ cdv 2 1.500000000000000e+00 }

{ DAKOTA_FNS = 3}
{ ASV_1 }

{ ASV 2 }

{ ASV_3 }

{ DAKOTA DER_VARS = 2}
{ DW_1 = 1}
{ DW 2 = 2}
{ DAKOTA_AN_COMPS = 0

nouon
e

}

where the numerical values are associated with their tags withitay = value  }” constructs.

The user-supplied simulation interface, comprised of a simulator program or driver and (optionally) fil
grams, is responsible for reading the parameters file and creating a results file that contains the resy
requested in the ASV. This response data is written in the format described in SER@o&ince the ASV cor
tains all ones in this case, the response file corresponding to the above input file would contain values for
functions:

1.250000000000000e-01 f
1.500000000000000e+00 c1
1.500000000000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1.250000000000000e-01
1.500000000000000e+00
1.500000000000000e+00

For the same parameters with different ASV components,
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2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
analysis_components

ONEFENWWW

the following response data is required:

1.250000000000000e-01 f

1.500000000000000e+00 c1

1.500000000000000e+00 c2

[ 5.000000000000000e-01 5.000000000000000e-01 ]
[ 3.000000000000000e+00 -5.000000000000000e-01 ]
[ -5.000000000000000e-01 3.000000000000000e+00 ]

Here, we need not only the function values, but also each of their gradients. The derivatives are computed with
respect tocdv _1 andcdv _2 as indicated by the DVV values. Another modification to the ASV components
yields the following parameters file,

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
analysis_components

ONEFEFNNONDN

for which the following results file is needed:

[ 5.000000000000000e-01 5.000000000000000e-01 ]
[ -5.000000000000000e-01 3.000000000000000e+00 ]

Here, we need gradients for functiohs@ndc2, but not forc1, presumably since this constraint is inactive.

A full Newton optimizer might make the following request:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

1 functions
ASV_1
derivative_variables
DVV_1
DVV_2
analysis_components

ONPFE NN
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for which the following results file,

1.250000000000000e-01 f

[ 5.000000000000000e-01 5.000000000000000e-01 ]

[[ 3.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 3.000000000000000e+00 ]]

containing the objective function, its gradient vector, and its Hessian matrix, is needed. Again, the de
(gradient vector and Hessian matrix) are computed with respextvtal andcdv _2 as indicated by the DV'
values.

Lastly, a more advanced example could have multiple types of variables present; in this example, 2 cc
and 3 discrete design, 2 normal uncertain, and 3 continuous and 2 discrete state variables. When
of variable types is present, the content of the DVV (and therefore the required length of gradient vec
Hessian matrices) depends upon the type of study being performed (see 38c3ortor a reliability analysi
problem, the uncertain variables are the active continuous variables and the following parameters file '
typical:

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddv_1

2 ddv_2

2 ddv_3
5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3
dsv_1
dsv_2
functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
analysis_components
meshl.exo AC_1

dbl.xml AC_2

N~NONWWWWDRAS

Gradients are requested with respect to variable entries 6 and 7, which correspond to normal uncertair
nuv _1 andnuv _2. The following response data would be appropriate:

7.943125000000000e+02 f

1.500000000000000e+00 c1

1.500000000000000e+00 c2

[ 2.560000000000000e+02 2.560000000000000e+02 ]
[ 0.000000000000000e+00 0.000000000000000e+00 ]
[ 0.000000000000000e+00 0.000000000000000e+00 ]

In a parameter study, however, no distinction is drawn between different types of continuous variables, ar
tives would be needed with respect to all continuous variablgs, (= 7 for the continuous design variab
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cdv _1 andcdv _2, the normal uncertain variablesiv _1 andnuv _2, and the continuous state variabtesy _1,
csv _2 andcsv _3). The parameters file would appear as

12 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

2 ddv_1

2 ddv_2

2 ddv_3
5.000000000000000e+00 nuv_1
5.000000000000000e+00 nuv_2
3.500000000000000e+00 csv_1
3.500000000000000e+00 csv_2
3.500000000000000e+00 csv_3
dsv_1
dsv_2
functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
DVV_3
DVV_4
DVV_5
DVV_6
DVV_7
analysis_components
meshl.exo AC 1

dbl.xml AC_2

=
NOOWONONRFENWWWWDMLAN

and the corresponding results would appear as

7.943125000000000e+02 f

1.500000000000000e+00 c1

1.500000000000000e+00 c2

[ 5.000000000000000e-01 5.000000000000000e-01 2.560000000000000e+02
2.560000000000000e+02  6.250000000000000e+01  6.250000000000000e+01
6.250000000000000e+01 ]

[ 3.000000000000000e+00 -5.000000000000000e-01 0.000000000000000e+00
0.000000000000000e+00  0.000000000000000e+00  0.000000000000000e+00
0.000000000000000e+00 ]

[ -5.000000000000000e-01  3.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00  0.000000000000000e+00  0.000000000000000e+00
0.000000000000000e+00 ]
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Chapter 13

Responses

13.1 Overview

Theresponses specification in a DAKOTA input file specifies the types of data that can be returned fri
interface during DAKOTA's execution. The specification includes the number and type of response fL
(objective functions, nonlinear constraints, least squares terms, etc.) as well as availability of first anc
derivatives (gradient vectors and Hessian matrices) for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as cover ¢
issues relating to file formats and derivative vector and matrix sizing. For a detailed description of re
section syntax and example specifications, refer to the responses commands chapter in the DAKOTA F
Manual R9].

13.1.1 Response function types

The types of response functions specified in the responses specification depend on the iterative techniqu
in the method specification:

e an optimization data set comprisedrafm objective  _functions
numnonlinear _inequality ~ _constraints  ,andnum.nonlinear _equality _constraints
This data set is appropriate for use with optimization methods (e.g., the methods in Seftion

e aleast squares data set comprisedwh least _squares _terms ,
numnonlinear _inequality  _constraints  ,andnum.nonlinear _equality _constraints
This data set is appropriate for use with nonlinear least squares algorithms (e.g., the methods i3 S«

e a generic data set comprisedrafmresponse _functions . This data set is appropriate for use w
uncertainty quantification methods (e.g., the methods in Se8t#n

Certain general-purpose iterative techniques, such as parameter studies and design of experiments me
be used with any of these data sets.
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13.1.2 Gradient availability

Gradient availability for these response functions may be described by:

e no_gradients : gradient data is not needed.
e numerical _gradients : gradient data is needed and will be computed by finite differences.

e analytic _gradients : gradient datais needed and is available directly from the simulation code
differencing is not required).

e mixed _gradients : some gradient information is available directly from the simulation whereas tt
will have to be finite differenced.

The gradient specification also links back to the iterative method being employed. Gradient data is cc
needed when the iterative study involves gradient-based optimization, reliability analysis for uncertainty
cation, or local sensitivity analysis.

13.1.3 Hessian availability

Hessian availability for the response functions is similar to the gradient availability specifications, with tt
tion of support for quasi-Hessians:

e no_hessians : Hessian data is not needed.

e numerical _gradients : Hessian data is needed and will be computed by finite differences.
finite differences may be involve first-order differences of gradients (if analytic gradients are avail:
the response function of interest) or second-order differences of values (in all other cases).

e quasi _hessians : Hessian data is heeded and will be accumulated using secant updates (BFGS
from a series of gradient evaluations.

e analytic _hessians : Hessian data is needed and is available directly from the simulation code.

e mixed _hessians : Hessian data is needed and will be obtained from a mix of numerical, analyti
guasi sources.

The Hessian specification also links back to the iterative method in use, and use of Hessian data would ¢
appear for gradient-based optimization using full Newton methods or for reliability analysis with secon
limit state approximations or second-order probability integrations.

13.2 DAKOTA Results File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes n
municate with the simulation through the file system. This is accomplished through the reading and w
parameters and results files. DAKOTA uses its own format for this data input/output. For the results fi
one format is supported (as compared to the two parameters file formats described in Beétio@drdering o
response functions is as listed in Sectidl.1(e.qg., objective functions or least squares terms are first, foll
by nonlinear inequality constraints, followed by nonlinear equality constraints).
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<double> <fn_tag >
<double> <fn_tag o>

<double> <fn_tag ,,>
[ <double> <double> .. <double> ]
[ <double> <double> .. <double> ]

[ <double> <double> .. <double> ]
[[ <double> <double> .. <double> 1]]
[[ <double> <double> .. <double> 1]]

[[ <double> <double> .. <double> ]]

Figure 13.1: Results file data format.

After completion of a simulation, DAKOTA expects to read a file containing response data for the currel
parameters and corresponding to the current set of function requests in the active set vector. This resj
must be in the following format:

The first block of data (shown in black) is the function values that have been requested, followed by
of requested gradient data (shown in blue), followed by a block of requested Hessian data (shown in
the amount of data in the file does not match the function request vector, DAKOTA will abort with a re
recovery format error message.

Function data have no bracket delimiters and one character tag per function optidelly supplied. Thes
tags are not used by DAKOTA and are only included as an optional field for consistency with the par
file format and for backwards compatibility. The tags are rendered optional through DAKOTA's use of
expression pattern matching to detect whether an upcoming field is numerical data or a tag. If characte
used, then they must be separated from data by either white space or new line characters and there mus
white space embedded within a character tag (e.g.,wegablel " or “variable _1,” but not “variable
1.

Function gradient vectors are delimited with single bracketsif;,,-vector of doubles...]. Tags are not u
and must not be present. White space separating the brackets from the data is optional.

Function Hessian matrices are delimited with double bracketsi},,. x n4,, matrix of doubles...]]. Data
listed by rows and can either be run together or broken onto multiple lines for readability. Tags are not
must not be present. White space separating the brackets from the data is optional, although white spac
appear between the double brackets.

The format of the numeric fields may be floating point or scientific notation. In the latter case, acceptable ¢
characters areE” or “e. ” A common problem when dealing with Fortran programs is that a C++ re
a numeric field usingD’ or “d” as the exponent (i.e., a double precision value from Fortran) may fail
truncated. In this case, th®" exponent characters must be replaced either through modifications to the |
source or compiler flags or through a separate post-processing step (e.g., using theedNIity).
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13.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several different
variables are usedor which variables are response function derivatives needé&tat is, how isng,, deter
mined? The short answer is that the derivative variables vector (DVV) specifies the set of variables to be
computing derivatives, and,,,, is the length of this vector. The long answer is that, in most cases, the C
defined directly from the set of active continuous variables for the iterative method in use.

Since methods determine what subset, or view, of the variables data is active in the iteration, it is this
of variables for which derivatives are most commonly computed (see also Séd&tn Derivatives are newv:
needed with respect to any discrete variables (since these derivatives do not exist) and the active ¢
variables depend on the type of study being performed. For optimization and least squares problems,
continuous variables are tleentinuous design variablé®,, = n.q4,) since this is the information used by
minimizer in computing a search direction. Similarly, for nondeterministic analysis methods which use (
and/or Hessian information, the active continuous variables amgitertain variablegn ., = n.,). And lastly,
parameter study methods which are cataloguing gradient and/or Hessian information do not draw a d
among continuous variables; therefore, the active continuous variables are definedl tominuous variable
that are specified;,, = Negy + Nuw + Nesw)-

In a few cases, derivatives are needed with respect tantetive continuous variables. For example, wi
performing reliability analysis within reliability-based design optimization, derivatives of the generic re
function data set may be needed with respect to the design variables, which are inactive continuous
within the uncertainty quantification. These instances are the reason for the creation and inclusion of
guidance for derivative estimation.

In all cases, if the DVV is honored, then the correct derivative components are returned. In simple cas
as optimization and least squares studies that only specify design variables and for nondeterministic an:
only specify uncertain variables, then derivative component subsets are not an issue and the exact con
DVV may be safely ignored.
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Inputs to DAKOTA

14.1 Overview of Inputs

The DAKOTA executable supports a number of command line inputs, as described in QettioAmong thes
are specifications for the DAKOTA input file and, optionally, a restart file. The syntax of the DAKOTA ing
is described in detail in the DAKOTA Reference Manu2d][ and the restart file is described in Chaptér

The DAKOTA input file may be prepared manually (e.g., using a text editor sugbraacs or vi ), or it may
be defined graphically using the JAGUAR graphical user interface, as described in Secfidrelow. Onc
prepared, the DAKOTA input file may identify additional files for data import as described in Sdetid@n

14.2 JAGUAR

A short description of the steps for downloading, installing, and executing JAGUAR is provided belo
DAKOTA 4.0, JAGUAR is in a beta release state, so not all features are fully operational at this time.

e Download the JAGUAR installer. As for the DAKOTA download process described in Secfdh], the
JAGUAR distribution is accessed by clicking on the download link available from:

http://www.cs.sandia.gov/DAKOTA/software.html
and filling out the short online registration form.
¢ Install supporting JAVA software (if needed). If not already installed on your machine, you will nee

“Java 2 Platform, Standard Edition (J2SE)” in version 1.4.2 or newer (note that Sun has recently re
1.x.x versioning and the recently released 5.0 is the same as 1.5.0 in the old numbering scheme).

http://java.sun.com/j2se/1.5.0/download.jsp [click on “Download JRE 5.0 ..."]
http://www.java.com/en/ [click on download]

e Run the installer (either double-click the icon or execute “java -jar Jaguarinstatsiondatejar”). Fig-
urel4.1shows a screen capture of the installer.

e Execute the installed GUI(either double-click the new icon or execute “jaguar.sh” in the install direc
Figurel4.2shows the splash screen for the JAGUAR GUI.
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Installation of DAKOTA JAGUAR

L Weltome (o e invlallation of DAKOTA JAGUAR L9 diets 041020061

. Thee Bomepage iv at B, endnsandin goy ) [ARDTA/

PEde Wl IrPack - BIEE] fawwirTosge com )
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Figure 14.1: The JAGUAR installer.
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Figure 14.2: The initial JAGUAR splash screen.
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Figure 14.3: JAGUAR navigation.

e Select File— New. Click the “File” pull-down and select “New.” Observe the navigation aids on th
of the window, as shown in Figurst.3

¢ Visit specifications At a minimum, select Variables, Interfaces, Responses, and Method on the left
tion. For each, select a set id (or use the default) and click OK. Select your desired settings for a
run. Figuresl4.4-14.6 show sample selections for Variables, Interfaces, and Responses. Now v

model components specified, an iterative method is selected, as shown inFHgure

e Perform Analysis. Visit the “Perform Analysis” view on the left navigation and review the input selec
generated by JAGUAR, as shown in Figuré.8 “Run DAKOTA’ (within the Perform Analysis view
and “Problem Visualization” are not yet active, so click the File pull-down, select “Save as...,” a
DAKOTA separately for now. If the DAKOTA and JAGUAR versions are not synchronized, some
editing of this input file may be required.

14.3 Data Imports

The DAKOTA input file may identify additional files used to import data into DAKOTA.

14.3.1 AMPL algebraic mappings: stub.nl, stub.row, and stub.col

As described in Sectioh2.2 an AMPL specification of algebraic input-to-output relationships may be img

into DAKOTA and used to define or augment the mappings of a particular interface.
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Figure 14.4: An example of JAGUAR variables inputs.

14.3.2 Genetic algorithm population import

Genetic algorithms (GAs) from the JEGA and COLINY packages support a population import featur
the keywordsnitialization type flat _file =  STRING. This is useful for warm starting GAs fra

available data or previous runs. Refer to the Method Specification chapter in the DAKOTA Reference 28}
for additional information on this specification.

14.3.3 Surrogate construction from data files

Global data fit surrogates may be constructed from a variety of data sources. One of these sources is ar
data file, as specified by the keywordsuse _samples samples _file = STRING. Refer to the Mode
Specification chapter in the DAKOTA Reference Man2d][for additional information on this specification.
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Figure 14.5: An example of JAGUAR interface inputs.
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Figure 14.7: An example of JAGUAR method inputs.
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Figure 14.8: Review of the input file generated by JAGUAR.
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Chapter 15

Output from DAKOTA

15.1 Overview of Output Formats

Given an emphasis on complex humerical simulation codes that run on massively parallel supercomputers, L
output has been designed to provide a succinct, text-based reporting of the progress of the iterations and fi
evaluations performed by an algorithm. In addition, DAKOTA provides a tabular output format that is usefu
data visualization with external tools and a basic graphical output capability that is useful as a monitoring
The JAGUAR graphical user interface described in Sectibis also an emerging capability that will provide
more advanced visualization facilities in time.

15.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function evaluation, consis
of an evaluation number, parameter values, execution syntax, the active set vector, and the response date
describe the standard output of DAKOTA, optimization of the “container” problem (see Cledpier problem
formulation) is used as an example. The input file for this example is shown in Figute In this example,
there is one equality constraint, and DAKOTAs finite difference algorithm is used to provide central differe
numerical gradients to the NPSOL optimizer.
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strategy,

method,

variables,

interface,

responses,

single_method \
graphics \
tabular_graphics_data
\
npsol_sqgp
\
continuous_design = 2 \
cdv_descriptor 'H 'D’ \
cdv_initial_point 4.5 4.5 \
cdv_lower_bounds 0.0 0.0
\
system \
analysis_driver = ’container’ \
parameters_file = ’'container.in’ \
results_file = ’container.out’ \
file_tag
\
num_objective_functions = 1 \
num_nonlinear_equality_constraints = 1 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = 0.001 \
no_hessians

Figure 15.1: DAKOTA input file for the “container” example problem.
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A partial listing of the output for the container optimization example follows:

Running MPI executable in serial mode.

DAKOTA version 4.0 released 05/12/2006.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

methodName = npsol_sqgp

gradientType = numerical

Numerical gradients using central differences

to be calculated by the dakota finite difference routine.
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running npsol_sgp iterator.

NPSOL --- Version 5.0-2 Sept 1995

Begin Dakota derivative estimation routine

>>>>> |nitial map for analytic portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
4.5000000000e+00 H
4.5000000000e+00 D

(container container.in.1 container.out.1)
Active response data for function evaluation 1:
Active set vector = {1 1}

1.0713145108e+02 obj_fn
8.0444076396e+00 nin_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
4.5045000000e+00 H
4.5000000000e+00 D

(container container.in.2 container.out.2)
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Active response data for function evaluation 2:

Active set vector = { 1 1}
1.0719761302e+02 obj_fn
8.1159770472e+00 nin_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
4.4955000000e+00 H
4.5000000000e+00 D

(container container.in.3 container.out.3)
Active response data for function evaluation 3:
Active set vector = {1 1}

1.0706528914e+02 obj_fn
7.9728382320e+00 nin_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
4.5000000000e+00 H
4.5045000000e+00 D

(container container.in.4 container.out.4)
Active response data for function evaluation 4:
Active set vector = { 1 1}

1.0727959301e+02 obj_fn
8.1876180243e+00 nin_eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
4.5000000000e+00 H
4.4955000000e+00 D

(container container.in.5 container.out.5)

Active response data for function evaluation 5:
Active set vector = {1 1}
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1.0698339109e+02 obj_fn
7.9013403937e+00 nin_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3}
1.0713145108e+02 obj_fn
8.0444076396e+00 nin_eq_con_1

[ 1.4702653619e+01 3.2911324639e+01 ] obj_fn gradient
[ 1.5904312809e+01 3.1808625618e+01 ] nin_eq_con_1 gradient

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 1.6E+00 8.0E+00 1 0.0E+00 F FF

...<snip>...

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
4.,9873894231e+00 H
4.0230575428e+00 D

(container container.in.40 container.out.40)

Active response data for function evaluation 40:

Active set vector = {1 1}
9.8301287596e+01 obj_fn
-1.2698647501e-01 nin_eq_con_1

>>>>> Total response returned to iterator:

Active set vector = { 3 3}
9.8432498116e+01 obj_fn
-9.6301439045e-12 nin_eqg_con_1

[ 1.3157517860e+01 3.2590159623e+01 ] obj_fn gradient

[ 1.2737124497e+01 3.1548877601e+01 ] nin_eq_con_1 gradient

7 1 1.0E+00 8 9.84324981E+01 4.6E-11 9.6E-12 1 17E+02 T TT
Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see "Interpretation of output” section in NPSOL manual)
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NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 40 total (40 new, O duplicate)
<<<<< Best parameters =
4.9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9.8432498116e+01
<<<<< Best constraint values =
-9.6301439045e-12
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.07 [parent = 0.07, child =1.38778e-17]
Total wall clock = 0.348798

The first block of lines provide a report on the DAKOTA configuration and settings. The lines that follow, ¢
to the line ‘Exit NPSOL - Optimal solution found ", contain information about the function eval
uations that have been requested by NPSOL and performed by DAKOTA. Evaluations 6 through 39 hav
omitted from the listing for brevity.

Following the line ‘Begin Function Evaluation 1 ", the initial values of the design variables, the synte
of the function evaluation, and the resulting objective and constraint function values are listed. The values
design variables are labeled with the tafjand D, respectively, according to the descriptors to these variak
given in the input file, Figurd5.1 The values of the objective function and volume constraint are labeled \
the tagsobj _fn andnin _eq_con _1, respectively. Note that the initial design parameters are infeasible s
the equality constraint is violated4(0). However, by the end of the run, the optimizer finds a design tha
both feasible and optimal for this example. Between the design variables and response values, the co
the system call to the simulator is displayed éhtainer container.in.1 container.out.1)
with container  being the name of the simulator acohtainer.in.1 andcontainer.out.1 being the
names of the parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is thébtiee' set vector =
{1 1}". The active set vector indicates the types of data that are required from the simulator for the objecti
constraint functions, and values df*indicate that the simulator must return values for these functions (grad

and Hessian data are not required). For more information on the active set vector, seelSeétion

Since finite difference gradients have been specified, DAKOTA computes their values by making additiona
tion evaluation requests to the simulator at perturbed parameter values. Examples of the gradient-relate
tion evaluations have been included in the sample output, beginning with the line that »eads" Dakota
finite difference evaluation for x[1] + h: ”. The resulting finite difference gradients are listi
after function evaluation 5 beginning with the lines>>> Total response returned to iterator: "
Here, another active set vector is displayed in the DAKOTA output file. The Wutive set vector =

{ 3 3 }"indicates that the total response resulting from the finite differencing contains function value:
gradients.

The final lines of the DAKOTA output, beginning with the ling<<<< Iterator npsol _sgp completed 7,
summarize the results of the optimization study. The best values of the optimization parameters, objectiv
tion, and volume constraint are presented along with the function evaluation number where they occurre
function evaluation counts, and a timing summary. In the end, the objective function has been minimized ¢
equality constraint has been satisfied (driven to zero within the constraint tolerance).
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%eval_id H obj_fn nin_eq_con_1
1 4.5 4.5 107.1314511 8.04440764
2 5.801246882 3.596476363 94.33737399 -4.59103645
3 5.197920019 3.923577479 97.7797214 -0.6780884711
4 4.932877133 4.044776216 98.28930566 -0.1410680284
5 4.989328733 4.026133158 98.4270019 -0.005324671422
6 4.987494493 4.027041977 98.43249058 -7.307058462e-06
7 4.987391669 4.02708372 98.43249809 -2.032539782e-08
8 4.987389423 4.027084627 98.43249812 -9.630143905e-12

Figure 15.2: DAKOTA' tabular output file showing the iteration history of the “container” optimization pro

The DAKOTA results are intermixed with iteration information from the NPSOL library. The lines wit
heading Majr Minr Step Fun Merit function Norm gZ Violth nZ Penalty Conv " come
from Fortran write statements within NPSOL. The output is mixed since both DAKOTA and NPSOL are-
to the same standard output stream. The relative locations of these output contributions can vary depenc
specifics of output buffering and flushing on a particular platform and depending on whether or not the
output is being redirected to a file. In some cases, output from the optimization library may appear
iteration (as in this example), and in other cases, it may appear at the end of the DAKOTA output. Finally
detailed summary of the NPSOL iterations is written to the Fortran device 9 filef@atgd, orftn09 ).

15.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to a file. The keyword

tabular _graphics _data needs to be included in the strategy specification (see Fiuf. The primary
intent of this capability is to facilitate the transfer of DAKOTA' iteration history data to an external mather
analysis and/or graphics plotting package (e.g., MATLAB, TECplot, Excel, S-plus, Minitab). Any evalt
from DAKOTA's internal finite differencing are suppressed, which leads to better data visualizations. Tl
pression of lower level data is consistent with the data that is sent to the graphics windows, as des
Sectionl15.4 If this data suppression is undesirable, Secfi®rR.3describes an approach where every func
evaluation, even the ones from finite differencing, can be saved to a file in tabular format.

The default file name for the tabular output datadaKota _tabular.dat " and the output from the “col
tainer” optimization problem is shown in Figul.2 This file contains the complete history of data reqt
from NPSOL (8 requests map into a total of 40 function evaluations when including the central finite dif
ing). The first column is the data request number, the second and third columns are the design parame
(labeled in the example asf* and “D"), the fourth column is the objective function (labeleabj _fn "), and the
fifth column is the nonlinear equality constraint (labeleth* _eq_con _17).

15.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics option i<
by adding thegraphics flag in the strategy specification of the DAKOTA input file (see Figligel). The
graphics display the values of each response function (e.g., objective and constraint functions) and each
for the function evaluations in the study. As for the tabular output described in Sddi@ninternal finite
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Figure 15.3: DAKOTA 2D graphics for “container” problem showing history of an objective function, an ec
constraint, and two variables.

¥ Options P

Figure 15.4: Options for DAKOTA 2D graphics.

difference evaluations are suppressed in order to omit this clutter from the graphics. FigBhows th
optimization iteration history for the container example.

If DAKOTA is executed on a remote machine, the DISPLAY variable in the user's UNIX environm&hiray
need to be set to the local machine in order to display the graphics window.

The scroll bars which are located on each graph below and to the right of each plot may be operated by
on the bars or pressing the arrows, both of which result in expansion/contraction of the axis scale. Clickii
“Options” button results in the window shown in FigutB.4, which allows the user to include min/max mark
on the vertical axis, vertical and horizontal axis labels, and a plot legend within the corresponding grapt
In addition, the values of either or both axes may be plotted using a logarithmic scale (so long as all plt
are greater than zero) and an encapsulated postscript (EPS) file, daketd _graphic _i .eps wherei is
the plot window number, can be created using the “Print” button.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can be g
when using data fit surrogate models (see SedtdA.]) in combination with the graphics keyword. This feal
is currently available only if there are two parameters in the problem (a mechanism for selecting a two p
subset of am-dimensional problem is not currently available). When DAKOTA is executed, a 3-D surfac
is automatically spawned (Figutes.5 shows an example from optimization of the Rosenbrock problem).
creation of the 3-D surface plot pauses the advance of the iterative algorithm. To continue progress, click
mouse button or hit return while the mouse cursor is in the 3D graphics window.
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Figure 15.5: An example of the 3-D surface plotting that is available for surrogate-based optimization with two
design parameters.
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The 3D graphics from the PLplot library have a dependency on external font files. If the 3D graphics fail with a
message similar to:

Cannot open library file: plstnd5.fnt
lib dir="<...some_path...>"

*** PLPLOT ERROR ***

Unable to open font file

Program aborted

then the solution is to locate the font files that came with your DAKOTA installation and s&PiheLOT.LIB
environment variable to point to them, e.g.:

setenv PLPLOT_LIB /home/<user_name>/Dakota/VendorPackages/plplot/data

15.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the input specification.
Some of the more common input errors, and the associated error messages, are described below. See also the
Common Specification Mistakes section in the DAKOTA Reference Manighl [

One common mistake is the omission of the continuation sym@goWhen continuing the specifications in a
keyword block across multiple lines. When a continuation symbol is omitted, the keyword block is truncated at
the point of the omission (by the newline that is not escaped). If this truncation causes loss of a required input,
then an error message similar to the following will result:

Error: Expected required identifier for keyword ‘responses’.

If the truncation is caused by white space following the continuation line, then the error message will suggest that
this may be the case:

Parser detected syntax error: improperly escaped newline.
Please check your input file for any characters following a newline escape.

If the truncation results in omission of inputs that are optional, then the parser will still detect a syntax error in
the trailing specification that has been disconnected from its keyword block. This error will result in a message
similar to the following:

Parser detected syntax error: early keyword termination.
Please check your input file for missing newline escapes.

Incorrectly spelled specifications, such‘ammericl  _gradients” , will result in error messages of the
form:

Parser detected syntax error: unrecognized identifier 'numericl_gradients’
within responses keyword.
Please refer to the dakota.input.spec distributed with this executable.

The input parser catches syntax errors, but not logic errors. The fact that certain input combinations are erroneous
must be detected after parsing, at object construction time. For exampleo ijaadients  specification for

a response data set is combined with selection of a gradient-based optimization method, then this error must be
detected during set-up of the optimizer (see last line of listing):

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



15.5. ERROR MESSAGES OUTPUT 203

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = npsol_sqgp

gradientType = none
hessianType = none

Error: gradient-based optimizers require a gradient specification.

Another common mistake involves a mismatch between the amount of data expected on a function evalt
the data returned by the user’s simulation code or driver. The available response data is specified in the
keyword block, and the subset of this data needed for a particular evaluation is managed by the active ¢
For example, if DAKOTA expects function values and gradients to be returned (as indicated by an active ¢
containing 3's), but the user’s simulation code only returns function values, then the following error me

generated:
At EOF: insufficient data for functionGradient 1

Unfortunately, descriptive error messages are not available for all possible failure modes of DAKOTA. If
counter core dumps, segmentation faults, or other failures, please report the problem to
dakota-developers@development.sandia.gov.
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Advanced Simulation Code Interfaces

16.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box interfaces (system ci
or fork), pre- and post-processing functionality typically needs to be supplied (or developed) in order to transf
the parameters from DAKOTA to the simulator input file and to extract the response values of interest from tt
simulator’s output file for return to DAKOTA (see Figurésl and12.1). This is often managed through the use
of scripting languages, such as C-sh8]l Bourne shell 8], Perl [102, or Python [f1]. While these are common
and convenient choices for simulation drivers/filters, it is important to recognize that any executable file can |
used. If the user prefers, the desired pre- and post-processing functionality may also be compiled or interpre
from any number of programming languages (C, C++, F77, F95, JAVA, Basic, etc.).

Under the/Dakota/GettingStarted/RosenSimulator directory, a simple example uses the Rosen-
brock test function as a mock engineering simulation code. Several scripts have been included to demonst
ways to accomplish the pre- and post-processing needs. Actual simulation codes will, of course, have differ
pre- and post-processing requirements, and as such, this example serves only to demonstrate the issues assc
with interfacing a simulator. Modifications will almost surely be required for new applications.

16.1.1 Review of RosenSimulator Files

The RosenSimulator directory contains four important fildskota _rosenbrock.in (the DAKOTA input
file), simulator  _script  (the simulation driver scriptfiprepro (a pre-processing utility), and
templatedir/ros.template (a template simulation input file).

Thedakota _rosenbrock.in file specifies the study that DAKOTA will perform and, in the interface section,
describes the components to be used in performing function evaluations. In particular, it ideintifiegor ~ _script
as itsanalysis  _driver, as shown in Figure 16.1.

Thesimulator  _script listed in Figurel6.2is a short C-shell driver script that DAKOTA executes to perform
each function evaluation. The names of the parameters and results files are passed to the script on its comn
line so that they can be referenced internal to the script by the varibdigg[1l] and$argv[2], respectively.
Thesimulator  _script is divided into five parts: set up, pre-processing, analysis, post-processing, and cles
up.

The set up portion strips the function evaluation number féamgv[1]and assigns it to the shell variable$num,
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# DAKOTA INPUT FILE - dakota_rosenbrock.in
# This sample Dakota input file optimizes the Rosenbrock function.
# See p. 95 in Practical Optimization by Gill, Murray, and Wright.

method, \
npsol_sqgp
variables, \
continuous_design = 2 \
cdv_initial_point -1.0 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor x1’ 'x2'
interface, \
system \
# asynchronous \
analysis_driver = ’'simulator_script’ \
parameters_file = ’params.in’ \
results_file = ’results.out’ \

file_tag file_save aprepro

responses, \
num_objective_functions = 1 \
numerical_gradients \
fd_gradient_step_size = .000001 \
no_hessians

Figure 16.1: Thelakota _rosenbrock.in input file.
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#!/bin/csh -f
# Sample simulator to Dakota system call script
# See Advanced Simulation Code Interfaces chapter in Users Manual

# $argv[l] is params.in.(fn_eval_num) FROM Dakota
# $argv[2] is results.out.(fn_eval_num) returned to Dakota

set num = ‘echo $argv[l] | cut -c 11-

cp -r templatedir workdir.$num
cd workdir.$num

# Use the following line if SNL's APREPRO utility is used instead of DPrePro.
# ../aprepro -c ¥ -q --nowarning ros.template ros.in

./dprepro ../$argv[1] ros.template ros.in

grep 'Function value’ ros.out | cut -c 18- >! $argv[2]

# NOTE: moving $argv[2] at the end of the script avoids any problems with
# read race conditions.

mv $argv([2] ...

cd ..
#\rm -rf workdir.$num

Figure 16.2: Thesimulator  _script  sample driver script.

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



208 CHAPTER 16. ADVANCED SIMULATION CODE INTERFACES

which is then used to create a tagged working directory for a particular evaluation. For example, on the first
ation, “1” is stripped from ‘params.in.1 " in order to createWworkdir.1  ”. The primary reason for creating
separate working directories is so that the files associated with one simulation do not conflict with those for a
simulation. This is particularly important when executing concurrent simulations in parallel (to actually ex
function evaluations concurrently, uncommentdsgnchronous line in dakota _rosenbrock.in ).

In the pre-processing portion, teanmulator ~ _script  utilizesdprepro , which is a parsing utility used to ex-
tract the current variable values from a parameters$igggv[1] ) and then insert them into the simulator ten
plate input file fos.template ) to create a new input fileds.in ) for the simulator. Internal to Sandia, the
APREPRO utility is often used for this purpose. For external sites where APREPRO is not available, the DI
utility mentioned above is an alternative with many of the capabilities of APREPRO that is specifically tailore
use with DAKOTA and is distributed with it (ifDakota/GettingStarted/RosenSimulator/dprepro ).
Additionally, the BPREPRO utility is another alternative to APREPRO (86§], and at Lockheed Martin sites,
the JPrePost utility is available as a JAVA pre- and post-proce8Shr The dprepro  script partially listed in
Figure16.3will be used here for simplicity of discussion. It can use either DAKOBjisepro parameters file
format (see Sectioh1.6.2 or DAKOTA's standard format (see Sectidi.6.]), so either option may be selecte(
in the interface section of the DAKOTA input file. Thes.template file listed in Figurel6.4is a template
simulation input file which contains targets for the incoming variable values, identified by the stfiigs‘and
“{x2}". These identifiers match the variable descriptors specifiedkota _rosenbrock.in . The template
input file is contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics a finite
ment code in order to demonstrate the simulator template processlpfdgo script will search the simulator
template input file for fields marked with the curly brackets and then create a newolen( ) by replacing
these targets with the corresponding numerical values for the variables. As noted in the usage informai
dprepro and shown irsimulator _script , the names for the DAKOTA parameters fittafgv[1l] ), tem-
plate file fos.template ), and generated input filegs.in ) must be specified in théprepro command
line arguments.

The third part of the script executes ttesenbrock _bb simulator. The input and output file namess.in
andros.out |, respectively, are hard-coded into the FORTRAN 77 prograsenbrock _bb.f . When the
rosenbrock _bb simulator is executed, the values it andx2 are read in fromros.in , the Rosenbrock
function is evaluated, and the function value is written oubout

The fourth part performs the post-processing and returns the response results to DAKOTA. Using the
“grep " utility, the particular response values of interest are extracted from the raw simulator output and sa
$argv[2] , which in the case of the first evaluation i®8ults.out.1 ", This results file is moved up one
level, out of the working directory, so that DAKOTA may retrieve it. Note that moving the completed result:
up a level at the end of the evaluation avoids any problems with read race conditions (see5e2tiipn

Finally, in the clean up phase, the working directory is removed to reduce the amount of disk storage reqL
execute the study. If data from each simulation needs to be saved, this step can be commented out by in:
“#" character before\rm -rf ”

As an example of the data flow on a particular function evaluation, consider evaluation 60. The paramet
for this evaluationfgarams.in.60 ) consists of:

{ DAKOTA_VARS = 2}
{ x1 = 1.638248083045767e-01 }

{ x2 = 2.197300525769129e-02 }

{ DAKOTA_FNS = 1}
{ ASV_1 = 1
{ DAKOTA_DER_VARS =

{ DW_1
{ DW 2

}

e N e

1
2
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#!/usr/bin/perl

DPREPRO: A Perl pre-processor for manipulating input files with DAKOTA.

Copyright (c) 2001, Sandia National Laboratories.
This software is distributed with DAKOTA under the GNU GPL.
For more information, see the README file in the top Dakota directory.

Usage: dprepro parameters_file template_input_file new_input_file

Reads the variable tags and values from the parameters_file and then
replaces each appearance of "{tag}" in the template_input_file with

its associated value in order to create the new_input_file. The
parameters_file written by DAKOTA may either be in standard format
(using "value tag" constructs) or in "aprepro” format (using

"{ tag = value }" constructs), and the variable tags used inside
template_input_file must match the variable descriptors specified in

the DAKOTA input file. Supports assignments and numerical expressions
in the template file, and the parameters file takes precedence in

the case of duplicate assignments (so that template file assignments
can be treated as defaults to be overridden).

HHEHFHFFHFFHIFTHFRHEHFHEHEHFHTHFHHHHR

# Check for correct number of command line arguments and store the filenames.
ifl @ARGV = 3 ) {
print STDERR "Usage: dprepro parameters_file template_input_file ",
"new_input_file\n";

exit(-1);
}
$params_file = $ARGV[0]; # DAKOTA parameters file (aprepro or standard format)
$template_file = $ARGV[1]; # template simulation input file
$new_file = $ARGV[2]; # new simulation input file with insertions

# Regular expressions for numeric fields

$e = "-2(2\d+H\.2Nd*\.\\d+)[eEdD](?:\\+[-)\\d+"; # exponential notation

$f = "2A\d+HW\dH-2\\d+ # floating point

$i = "2A\d+" # integer

$ui = "\d+", # unsigned integer
$n = "$e|Sf$i" # numeric field

HH B R R
# Process DAKOTA parameters file
HHEHHHHH A R

# Open parameters file for input.
open (DAKOTA_PARAMS, "<$params_file") || die "Can't open $params_file: $!";

Figure 16.3: Partial listing of théprepro script.
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Title of Model:

Rosenbrock black box

*

*
*
*
*
*
*
*
*
*

Input:

* *

Description:

x1 and x2
Output: objective function value

*

This

*kk * *kk * *kk * *kkk *kkkkk

is an input file to the Rosenbrock black box
Fortran simulator. This simulator is structured so
as to resemble the input/output from an engineering
simulation code, even though Rosenbrock’s function
is a simple analytic function. The node, element,
and material blocks are dummy inputs.

node
node
node
node
node
node
node
node

NOoO O~ WNBRE

8

element
element
element
element
material
material
variable
variable

end

location
location
location
location
location
location
location
location

0.0
0.0
1.0
1.0
2.0
2.0
3.0
3.0

1 nodes 1
nodes 3
nodes 5

elements
elements

1 {x1}
2 {x2}

2
3
4 nodes 7
1
2

* * * *

0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0

DN

3
5
7
9
1
3

AP OOO BN

Figure 16.4: Listing of theos.template file
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{ DAKOTA_AN_COMPS = 0}

The first portion of the file indicates that there are two variables, followed by new values for varidbles
andx2, and one response function (an objective function), followed by an active set vector (ASV) value of
1. The ASV indicates the need to return the value of the objective function for these parameters (see Sec
tion 11.7). Thedprepro script reads the variable values from this file, nante§38248083045767e-01
and2.197300525769129e-02  for x1 andx2 respectively, and substitutes them in {xé& } and{x2 } fields

of theros.template file. The final three lines of the resulting input file§.in ) then appear as follows:

variable 1 1.638248083045767e-01
variable 2 2.197300525769129e-02
end

where all other lines are identical to the template file. Tdé®enbrock _bb simulator acceptsos.in  as its
input file and generates the following output to the fids.out

Beginning execution of model: Rosenbrock black box
Set up complete.

Reading nodes.

Reading elements.

Reading materials.

Checking connectivity...OK

0.1638248083045767E+00
0.2197300525769129E-01

Input value for x1
Input value for x2

Computing solution...Done

Function value = 0.7015563211077899E+00

Next, the appropriate data is extracted from the raw simulator output and returned in the results file. This
post-processing is relatively trivial in this case, and $imaulator  _script  uses thegrep andcut utili-

ties to extract the value from the last line of thas.out  output file and save it t@argv[2] , which is the
results.out.60 file for this evaluation. This single value provides the objective function value requested by
the ASV.

After 132 of these function evaluations, the following DAKOTA output shows the final solution usimggeebrock _bb
simulator:

Exit NPSOL - Optimal solution found.
Final nonlinear objective value = 0.1165708E-06

NPSOL exits with INFORM code = 0
(see "Interpretation of output" section in NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 132 total (132 new, O duplicate)
<<<<< Best parameters =
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9.9965861615e-01 x1
9.9931682096e-01 x2
<<<<< Best objective function =
1.1657079879e-07
<<<<< Best data captured at function evaluation 130
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.37 [parent = 0.37, child = 0]
Total wall clock = 17.2393

16.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create a template simulation input file by identifying the fields in an existing input file that corresy.
the variables of interest and then replacing them Withdentifiers (e.g{cdv _1}, {cdv _2}, etc.) whict
match the DAKOTA variable descriptors. Copy this template input file to a templatedir that will be t
create working directories for the simulation.

2. Modify the dprepro arguments irsimulator ~ _script  to reflect names of the DAKOTA paramet
file (previously ‘$argv[1] "), template file name (previouslyrds.template ") and generated inp
file (previously ‘ros.in  ”). Alternatively, use APREPRO, BPREPRO, or JPrePost to perform this
(and adapt the syntax accordingly).

3. Modify the analysis section efimulator  _script  to replace theosenbrock _bb function call with
the new simulator name and command line syntax (typically including the input and output file nan

4. Change the post-processing sectiosimulator  _script  to reflect the revised extraction process. .
minimum, this would involve changing tiigep command to reflect the name of the output file, the s
to search for, and the characters to cut out of the captured output line. For more involved post-pr
tasks, invocation of additional tools may have to be added to the script.

5. Modify the dakota _rosenbrock.in input file to reflect, at a minimum, updated variables anc
sponses specifications.

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes. While
custom for each new application, typical interface development time is on the order of an hour or two. T
approach is scalable when dealing with many different application codes. Weaknesses of this approac
the potential for loss of data precision (if care is not taken to preserve precision in pre- and post-proce
1/0), a lack of robustness in post-processing (if the data capture is too simplistic), and scripting overhe
noticeable if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of simulation cod
interest, then more sophisticated interfaces may be warranted. For example, the economy of scale affc
common simulation framework justifies additional effort in the development of a high quality DAKOTA inte
In these cases, more sophisticated interfacing approaches could involve a more thoroughly developed
interface with robust support of a variety of inputs and outputs, or it might involve intrusive interfaces suc
direct simulation interface discussed below in Secfi6r2or the SAND interface described in Sectidr.2
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16.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in the
/Dakota/Applications directory in the source code distribution.

16.2 Developing a Direct Simulation Interface

If a more efficient interface to a simulation is desired (e.g., to eliminate process creation and file I/0O overf
if a targeted computer architecture cannot accommodate separate optimization and simulation processes
to lightweight operating systems on compute nodes of large parallel computers), then linking a simulatic
directly with DAKOTA may be desirable. This is an advanced capability of DAKOTA, and it requires a u¢
have access to (and knowledge of) the DAKOTA source code, as well as the source code of the simulatic

Three approaches are outlined below for developing direct linking between DAKOTA and a simulation: ext
derivation, and sandwich. For additional information, refer to “Interfacing with DAKOTA as a Library” in
DAKOTA Developers Manual3Q].

Once performed, DAKOTA can bind with the new direct simulation interface usinditbet interface speci-
fication in combination with amnalysis _driver ,input filter oroutput filter specification that
corresponds to the name of the new subroutine.

16.2.1 Extension

The first approach to using the direct function capability with a new simulation (or new internal test fur
involvesextensiorof the existingDirectFnApplicinterface class to include new simulation member functiol
In this case, the following steps are performed:

1. The functions to be invoked (analysis programs, input and output filters, internal testers) must ha
main programs changed into callable functions/subroutines.

2. The resulting callable function can then be added directly to the private member funct@insdti-nAp-
plicinterface if this function will directly access the DAKOTA data structures (variables, active set,
response attributes of the class). It is more common to add a wrapper funciivretoFnApplicinter-
facewhich manages the DAKOTA data structures, but allows the simulator subroutine to retain a I
independence from DAKOTA (see Salinas, ModelCenter, and MATLAB wrappers as examples).

3. The if-else blocks in thelerived_map_if(), derived_map_ac(), andderived_map_of() member functions
of the DirectFnApplicinterface class must be extended to include the new function names as optiol
the new functions are class member functions, then DAKOTA data access may be performed thrc
existing class member attributes and data objects do not need to be passed through the function
list. In this case, the following function prototype is appropriate:

int function_name();
If, however, the new function names are not members ofirectFnApplicinterface class, then ar
extern declaration may additionally be needed and the function prototype should include pas:

the Variables, ActiveSet, and Response data members:

int function_name(const Dakota::Variables& vars,
const Dakota::ActiveSet& set, Dakota::Response& response);
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4. The DAKOTA system must be recompiled and linked with the new function object files or libraries.

Various header files may have to be included, particularly withirtinectFnApplicinterface class, in order t
recognize new external functions and compile successfully. Refer to the DAKOTA Developers Mz0jdal
additional information on th®irectFnApplicinterface class and the DAKOTA data types.

16.2.2 Derivation

As described in “Interfacing with DAKOTA as a Library” in the DAKOTA Developers Manwgfl][ a derivatior
approach can be employed to further increase the level of independence between DAKOTA and the hos
tion. In this case, rather thaddinga new function to the existinBirectFnApplicinterface class, a new inte
face class is derived fromirectFnApplicinterface which redefineshe derived_map_if(), derived_map_ac(),
andderived_map_of() virtual functions.

In the approach of Sectiat6.2.3below, the class derivation approach avoids the need to recompile the DA
library when the simulation or its direct interface class is modified.

16.2.3 Sandwich

In a “sandwich” implementation, a simulator provides both the “front end” and “back end” with DAKOTA
wiched in the middle. To accomplish this approach, the simulation code is responsible for interacting with
(the front end), links DAKOTA in as a library (refer to “Interfacing with DAKOTA as a Library” in the DAKC
Developers Manual30]), and plugs in a derived direct interface class to provide a closely-coupled mecl
for performing function evaluations (the back end). This approach makes DAKOTA services available
codes and frameworks and is currently used by Sandia codes such as Xyce (electrical simulation), Sa
and SIERRA (multiphysics).
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Chapter 17

Parallel Computing

17.1 Overview

This chapter describes the various parallel computing capabilities provided by DAKOTA. The range of cag
is extensive and can be daunting at first; therefore, this chapter takes an incremental approach in first
the simplest single-level parallel computing models (Sectidr?) using asynchronous local, message pas
and hybrid approaches. More advanced uses of DAKOTA can build on this foundation to exploit multipl
of parallelism, as described in SectivA.3

17.1.1 Categorization of parallelism

To understand the parallel computing possibilities, it is instructive to first categorize the opportunities for
ing parallelism into four main area83], consisting of coarse-grained and fine-grained parallelism opportt
within algorithms and their function evaluations:

1. Algorithmic coarse-grained parallelisnThis parallelism involves the concurrent execution of indepel
function evaluations, where a “function evaluation” is defined as a data request from an algorithr
may involve value, gradient, and Hessian data from multiple objective and constraint functions). T
cept can also be extended to the concurrent execution of multiple “iterators” within a “strategy.” Ex
of algorithms containing coarse-grained parallelism include:

e Gradient-based algorithmdinite difference gradient evaluations, speculative optimization, pe
line search.

e Nongradient-based algorithmgenetic algorithms (GAs), pattern search (PS), Monte Carlo sarr

e Approximate methodslesign of computer experiments for building surrogate models.

e Concurrent-iterator strategiesoptimization under uncertainty, branch and bound, multi-start
search, Pareto set optimization, island-model GAs.

2. Algorithmic fine-grained parallelismThis involves computing the basic computational steps of an
mization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of interest in large
optimization problems and simultaneous analysis and design (SAND).
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3. Function evaluation coarse-grained parallelisfihis involves concurrent computation of separable |
of a single function evaluation. This parallelism can be exploited when the evaluation of the respo
set requires multiple independent simulations (e.g. multiple loading cases or operational environn
multiple dependent analyses where the coupling is applied at the optimizer level (e.g., multiple dis
in the individual discipline feasible formulatiod 9]).

4. Function evaluation fine-grained parallelisnThis involves parallelization of the solution steps withi
single analysis code. The DOE laboratories have developed parallel analysis codes in the areas of
mechanics, structural dynamics, heat transfer, computational fluid dynamics, shock physics, a
others.

By definition, coarse-grained parallelism requires very little inter-processor communication and is thereft
barrassingly parallel,” meaning that there is little loss in parallel efficiency due to communication as the
of processors increases. However, it is often the case that there are not enough separable computatic
algorithm cycle to utilize the thousands of processors available on MP machines. For example, a thern
application B4] demonstrated this limitation with a pattern search optimization in which the maximum sy
exploitingonly coarse-grained algorithmic parallelism was shown to be limited by the size of the design
(coordinate pattern search has at nisstndependent evaluations per cycle fodesign variables).

Fine-grained parallelism, on the other hand, involves much more communication among processors and
be taken to avoid the case of inefficient machine utilization in which the communication demands among
sors outstrip the amount of actual computational work to be performed. For example, a chemically-reac
application B3] illustrated this limitation for a simulation of fixed size in which it was shown that, while s
lation run time did monotonically decrease with increasing number of processors, the relative parallel e
E of the computation for fixed model size decreased rapidly (ffony 0.8 at 64 processors t& ~ 0.4 at 512
processors). This was due to the fact that the total amount of computation was approximately fixed, wh
communication demands were increasing rapidly with increasing numbers of processors. Therefore,

practical limit on the number of processors that can be employed for fine-grained parallel simulation of

ular model size, and only for extreme model sizes can thousands of processors be efficiently utilized i
exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the combi
of coarse-grained and fine-grained approaches. This will allow us to execute fine-grained parallel sin
on sets of processors where they are most efficient and then replicate this efficiency with many coars
instances. From a software perspective, coarse-grained parallelism by itself (many instances of a single:
simulation) and fine-grained parallelism by itself (a single instance of a large multiprocessor simulation
considered to cover two ends of a spectrum, and we are interested in also supporting anywhere in bet
number of instances of any size simulation). Single-level parallelism approaches are described in13e2
and multilevel parallelism approaches are discussed in Settién

The available concurrency in function evaluation parallelism is determined by the aspects of a particular
analysis application, and is therefore highly application-dependent. Algorithmic parallelism, on the oth
is largely determined by the selection and configuration of a particular algorithm. These selection pos
within DAKOTA are outlined in the following section.

17.1.2 Parallel DAKOTA algorithms

In DAKOTA Version 4.0, the following parallel algorithms, comprised of iterators and strategies, provide ¢
for coarse-grained algorithmic parallelism.
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Parallel iterators

e Gradient-based optimizers: CONMIN, DOT, NLPQL, NPSOL, and OPT++ can all exploit parallelism
through the use of DAKOTA's native finite differencing routine (selected wigthod _source dakota
in the responses specification), which will perform concurrent evaluations for each of the parameter offse
Forn variables, forward differences result inar- 1 concurrency and central differences result ina- 1
concurrency. In addition, CONMIN, DOT, and OPT++ can use speculative gradient technidlies [
obtain better parallel load balancing. By speculating that the gradient information associated with a give
line search point will be used later and computing the gradient information in parallel at the same time
the function values, the concurrency during the gradient evaluation and line search phases can be balan
NPSOL does not use speculative gradients since this approach is superseded by NPSOL's gradient-bz
line search in user-supplied derivative mode. NLPQL also supports a distributed line search capability f
generating concurrencg()].

e Nongradient-based optimizers: JEGA methods and most COLINY methods support parallelism. Seri
COLINY methods include Solis-Wetgdliny _solis _wets ) and certairexploratory  _moves op-
tions @daptive _pattern andmulti _step ) in pattern searchcpliny _pattern _search ). PDS
within OPT++ QEptpp _pds) is also currently serial due to limitations in the OPT++ interface. Finally,
coliny _pattern _search andcoliny _apps support dynamic job queues managed with nonblock-
ing synchronization.

e Least squares methods: in an identical manner to the gradient-based optimizers, NL2SOL, NLSSOL, &
Gauss-Newton can exploit parallelism through the use of DAKOTA's native finite differencing routine. In
addition, NL2SOL and Gauss-Newton can use speculative gradient techniques to obtain better parallel Ic
balancing. NLSSOL does not use speculative gradients since this approach is superseded by NLSSC
gradient-based line search in user-supplied derivative mode.

e Parameter studies: all parameter study methedst¢r , list , centered , andmultidim ) support
parallelism. These methods avoid internal synchronization points, so all evaluations are available for cc
current execution.

e Design of experiments: allace (grid ,random,oas,lhs ,o0a_lhs ,box _behnken ,andcentral _
composite), fsu quasi mc(halton andhammersley), and fsu cvt methods support parallelism.

¢ Uncertainty quantification: all nondeterministic methodsr(d _sampling , nond _reliability ,
nond _polynomial _chaos , andnond _evidence ) support parallelism. In the caserafnd _reliability ,
gradient-based optimization is involved and parallelism can be exploited through the use of DAKOTA'S ne
tive finite differencing routine.

Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies which can exp
this level of parallelism are:

e Branch and bound: optimization strategy for mixed-integer nonlinear programming with noncategoric:
discrete variables.

e Pareto-set optimization: multiobjective optimization strategy for computing sets of points on the Paret
front of nondominated solutions.

o Multi-start iteration: strategy for executing multiple instances of an iterator from different starting points.
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In the branch and bound case, the available iterator concurrency grows as the tree develops more branch
of the iterator servers may be idle in the initial phases. Pareto-set and multi-start, however, have a fixed ¢
to perform and should exhibit good load balancing. In future releases, techniques employing nested mo
optimization under uncertainty and second-order probability, see Sei@idnhwill support concurrent iterat
parallelism.

17.2 Single-level parallelism

DAKOTA's parallel facilities support a broad range of compu
hardware, from custom massively parallel supercomputers ¢
high end, to clusters and networks of workstations (NOWSs) it
middle range, to desktop multiprocessors on the low end. Give
reduced scale in the middle to low ranges, it is more comm
jobT& JobZa jobl& job4 & exploit only one of the levels of parallelism; however, this can
be quite effective in reducing the time to obtain a solution. T
single-level parallelism models will be discussed, and are def

single-proc.
DAKOTA

{a) asvnchromous local

in Figure17.1:
slave slave slave &lave
e asynchronous locaDAKOTA executes on a single process
jobi jobz  Job3  jobd but launches multiple jobs concurrently using asynchro

job launching techniques.

{b] mecssage-passimg

e message passindAKOTA executes in parallel using me
slave Ji Bt J ptave j{ Beve sage passing to communicate between processors. A
job is launched per processor using synchronous job lal

jobs &  jobs &  jobs &  Jobs & Ing teChmqueS'

i) hivbrwl

e hybrid: a combination of message passing and asynchrc
local. DAKOTA executes in parallel across multiple proc

Figure 17.1: External, internal, and hybrid  sors and launches concurrent jobs on each processor.
job management.

In each of these cases, jobs are executing concurrently and must be collected in some manner for re
algorithm. Blocking and nonblocking approaches are provided for this, where the blocking approach is
most cases:

e blocking synchronizatianall jobs in the queue are completed before exiting the scheduler and ret
the set of results to the algorithm. The job queue fills and then empties completely, which prc
synchronization point for the algorithm.

¢ nonblocking synchronizatiotthe job queue is dynamic, with jobs entering and leaving continuously. -
are no defined synchronization points for the algorithm, which requires specialized algorithm log
currently supported bgoliny _pattern _search andcoliny _apps, which are sometimes referr
to as “fully asynchronous” algorithms).

Given these job management capabilities, it is worth noting that the popular term “asynchronous” can be
ous when used in isolation. In particular, it can be important to qualify whether one is referring to “asyncl
job launch” (synonymous with any of the three concurrent job launch approaches described above)
chronous job recovery” (synonymous with the latter nonblocking job synchronization approach).
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17.2.1 Asynchronous Local Parallelism

This section describes software components which manage simulation invocations local to a processor.
invocations may be either synchronous (i.e., blocking) or asynchronous (i.e., nonblocking). Synchronous
ations proceed one at a time with the evaluation running to completion before control is returned to DAKI(
Asynchronous evaluations are initiated such that control is returned to DAKOTA immediately, prior to evalui
completion, thereby allowing the initiation of additional evaluations which will execute concurrently.

The synchronous local invocation capabilities are used in two contexts: (1) by themselves to provide seri
ecution on a single processor, and (2) in combination with DAKOTA's message-passing schedulers to pi
function evaluations local to each processor. Similarly, the asynchronous local invocation capabilities are
in two contexts: (1) by themselves to launch concurrent jobs from a single processor that rely on external |
(e.g., operating system, job queues) for assignment to other processors, and (2) in combination with DAK
message-passing schedulers to provide a hybrid parallelism (see S&cfdh Thus, DAKOTA supports any of

the four combinations of synchronous or asynchronous local combined with message passing or without.

Asynchronous local schedulers may be used for managing concurrent function evaluations requested by
ator or for managing concurrent analyses within each function evaluation. The former iterator/evaluation
currency supports either blocking (all jobs in the queue must be completed by the scheduler) or nonblc
(dynamic job queue may shrink or expand) synchronization, where blocking synchronization is used by
iterators and nonblocking synchronization is used by fully asynchronous algorithms stmimgs _apps and
coliny _pattern _search . The latter evaluation/analysis concurrency is restricted to blocking synchroni
tion. The “Asynchronous Local” column in Tabl&.1summarizes these capabilities.

DAKOTA supports three local simulation invocation approaches based on the direct function, system cal
fork simulation interfaces. For each of these cases, an input filter, one or more analysis drivers, and an
filter make up the interface, as described in Sectidr.

Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct function :
lation interface involves a standard procedure call to the input filter, if present, followed by calls to one or |
simulations, followed by a call to the output filter, if present (refer to Sectl@n312.4for additional details and
examples). Each of these components must be linked as functions within DAKOTA. Control does not rett
the calling code until the evaluation is completed and the response object has been populated.

Asynchronous operation will be supported in the future and will involve the use of multithreading (e.g., PC
threads) to accomplish multiple simultaneous simulations. When spawning athread (e.gthusiag _create ),
control returns to the calling code after the simulation is initiated. In this way, multiple threads can be cre
simultaneously. An array of responses corresponding to the multiple threads of execution would then be rec
in a synchronize operation (e.g., usipiipread _join ).

System call synchronization

The system call capability may be used synchronously or asynchronously. In both casgstehre utility from

the standard C library is used. Synchronous operation of the system call simulation interface involves spa
the system call (containing the filters and analysis drivers bound together with parentheses and semi-col
the foreground. Control does not return to the calling code until the simulation is completed and the respon
has been written. In this case, the possibility of a race condition (see below) does not exist and any errors
response recovery will cause an immediate abort of the DAKOTA process (note: detection of the string “fe
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not a response recovery error; see Chap@er

Asynchronous operation involves spawning the system call in the background, continuing with other ta:
spawning other system calls), periodically checking for process completion, and finally retrieving the res
array of responses corresponding to the multiple system calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the existent
evaluation’s results file using thstat utility [ 65]. Care must be taken when using asynchronous systen
since they are prone to the race condition in which the results file passes the existence test but the recor
function evaluation results in the file is incomplete. In this case, the read operation performed by DAKC
result in an error due to an incomplete data set. In order to address this problem, DAKOTA contains e
handling which allows for a fixed number of response read failures per asynchronous system call ev
The number of allowed failures must have a limit, so that an actual response format error (unrelated tc
condition) will eventually abort the system. Therefore, to reduce the possibility of exceeding the limit on al
read failuresthe user’s interface should minimize the amount of time an incomplete results file exist:
directory where its status is being testedhis can be accomplished through two approaches: (1) dele
creation of the results file until the simulation computations are complete and all of the response data i<
be written to the results file, or (2) perform the simulation computations in a subdirectory, and as a last st
the completed results file into the main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to maintain inde
of the simulations. In particular, the parameters and results files used to communicate between DAKOT:
simulation, as well as any other files used by this simulation, must be protected from other files of the sa
used by the other concurrent simulations. With respect to the parameters and results files, these files me
unique through the use of tlike _tag option (e.g.params.in.1 , results.out.1 , etc.) or the defau
UNIX temporary file option (e.g/var/tmp/aaaOb2Mfv , etc.). However, if additional simulation files mi
be protected (e.gmodel.i , model.o , model.g , model.e , etc.), then an effective approach is to cree
tagged working subdirectory for each simulation instance. Set8dlprovides an example system call interf
that demonstrates both the use of tagged working directories and the relocation of completed results file
the race condition.

Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that asynchronous for
tions can avoid the results file race condition that may occur with asynchronous system calls (se€l3sx4c
The fork interface invokes the filters and analysis drivers usingdie andexec family of functions, an
completion of these processes is detected usingvétie family of functions. Sincevait is based on a proce
id handle rather than a file existence test, an incomplete results file is not an issue.

Depending on the platform, the fork simulation interface executes eithfarla or afork call. These call
generate a new child process with its own UNIX process identification number, which functions as a coj
parent process (dakota). Th&ecvp function is then called by the child process, causing it to be replac
the analysis driver or filter. For synchronous operation, the parent dakota process then awaits complet
forked child process through a blocking callwaitpid . On most platforms, théork/exec  procedure i
efficient since it operates in a copy-on-write mode, and no copy of the parent is actually created. Ins
parents address space is borrowed untilgtkec function is called.

The fork/exec ~ behavior for asynchronous operation is similar to that for synchronous operation, tf
difference being that dakota invokes multiple simulations througlfiditkdexec  procedure prior to recoveril
response results for these jobs usingwlat function. The combined use &frk/exec  andwait functions
in asynchronous mode allows the scheduling of a specified number of concurrent function evaluatior
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concurrent analyses.

Asynchronous Local Example

The test fileDakota/test/dakota _dace.in computes 49 orthogonal array samples, which may be evalu-
ated concurrently using parallel computing. When executing DAKOTA with this input file on a single processor,
the following execution syntax may be used:

dakota -i dakota_ dace.in
For serial execution (the default), the interface specification widbkota _dace.in  would appear similar to

interface, \
system \
analysis_driver = ’text_book’

which results in function evaluation output similar to the following (@oitput  set toquiet mode):

>>>>> Running dace iterator.

Begin Function Evaluation 1

(text_book /tmp/fileG32LEp /tmp/fileP8uYDC)

Begin Function Evaluation 2

(text_book /tmpffileiqlEEP /tmp/fileBEFIF2)

<snip>

Begin Function Evaluation 49

(text_book /tmpf/filedXyp2p /tmp/filezCohcE)

<<<<< lterator dace completed.

where it is evident that each function evaluation is being performed sequentially.

For parallel execution using asynchronous local approaches, the DAKOTA execution syntax is unchanged as
DAKOTA is still launched on a single processor. However, the interface specification is augmented to include
theasynchronous keyword with optional concurrency limiter to indicate that multiplealysis  _driver

instances will be executed concurrently:

interface, \
system asynchronous evaluation_concurrency = 4 \
analysis_driver = ’text_book’

which results in output excerpts similar to the following:
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>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)

Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: initiating 4 asynchronous jobs
Initiating function evaluation 1

(text_book /tmp/fileG2uzVX /tmplfileSqceY8) &
Initiating function evaluation 2

(text_book /tmpf/filegFLu5j /tmp/fileeycMcv) &
Initiating function evaluation 3

(text_book /tmp/file8EI3kG /tmp/fileuY2ltR) &
Initiating function evaluation 4

(text_book /tmp/fileEZpDC2 /tmpl/fileeMDVLd) &
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs

Function evaluation 1 has completed

Initiating function evaluation 5

(text_book /tmp/file8SWrXo /tmp/filem00Y8z) &
Function evaluation 2 has completed

Initiating function evaluation 6

(text_book /tmp/file6PQ5KL /tmp/filegRydxW) &
Function evaluation 3 has completed

Initiating function evaluation 7

(text_book /tmp/filesjB8J7 /tmpl/fileUprdWi) &
Function evaluation 4 has completed

Initiating function evaluation 8

(text_book /tmp/fileCI6Bbu /tmp/fileWSBaqF) &

<snip>
Function evaluation 49 has completed

<<<<< lterator dace completed.
where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This

synchronization uses a simple scheduler that initiates 4 jobs and then replaces completing jobs with new ones
until all 49 are complete.
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The default job concurrency for asynchronous local parallelism is all that is available from the algorithn
this case), which could be too many for the computational resources or their usage policies. The cor
level specification (4 in this case) instructs the scheduler to keep 4 jobs running concurrently, which v
appropriate for, e.g., a dual-processor dual-core workstation. In this case, it is the operating system’s resy
to assign the concurretext _book jobs to available processors/cores. Specifying greater concurrency th
supported by the hardware will result in additional context switching within a multitasking operating

and will generally degrade performance. Note however that, in this example, there are a total of 5 ¢
running, one for DAKOTA and four for the concurrent function evaluations. Since the DAKOTA process
periodically for job completion and sleeps in between checks, it is relatively lightweight and does not r
dedicated processor.

17.2.2 Message Passing Parallelism

DAKOTA uses a “single program-multiple data” (SPMD) parallel programming model. It uses message-
routines from the Message Passing Interface (MPI) stand@dtd[P3] to communicate data between process
The SPMD designation simply denotes that the same DAKOTA executable is loaded on all processors ¢
parallel invocation. This differs from the MPMD model (“multiple program-multiple data”) which would
the DAKOTA executable on one or more processors communicating directly with simulator executables
processors. The MPMD model has some advantages, but heterogeneous executable loads are not st
all parallel environments. Moreover, the MPMD model requires simulation code intrusion on the sarr
as conversion to a subroutine, so subroutine conversion (see S&6t@rin a direct-linked SPMD model
preferred.

Partitioning

A level of message passing parallelism can use either ¢
---,m..-E e processor partitioning models:
(N cown | [TORAT] RO e Dedicated mastera single processor is dedicatec
ol s s I scheduling operations and the remaining proce:
are split into server partitions.

a) Dehicoted Muster

e Peer partition all processors are allocated to sel
partitions and the loss of a processor to schedulil

1al COMM i
ie.g.MPT. COMH,WORLD) | Sl / \ avoided.

T CORS These models are depicted in Figdra2 The peer partitio

' - is desirable since it utilizes all processors for computa

however, it requires either the use of sophisticated me¢

{b} Peer Martition nisms for distributed scheduling or a problem for which s

scheduling of concurrent work performs well (sseheduling

Figure 17.2: Communicator partitioning modelsPelow). If neither of these characteristics is present, the

of the dedicated master partition supports a dynamic sck
ing which assures that server idleness is minimized.

QoMM |

Scheduling

The following scheduling approaches are available within a level of message passing parallelism:
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e Self-schedulingin the dedicated master model, the master processor manages a single processing que!
and maintains a prescribed number of jobs (usually one) active on each slave. Once a slave server h
completed a job and returned its results, the master assigns the next job to this slave. Thus, the slav
themselves determine the schedule through their job completion speed. This provides a simple dynam
scheduler in that heterogeneous processor speeds and/or job durations are naturally handled, provided th
are sufficient instances scheduled through the servers to balance the variation.

e Static schedulingif scheduling is statically determined at start-up, then no master processor is needed
to direct traffic and a peer partitioning approach is applicable. If the static schedule is a good one (idea
conditions), then this approach will have superior performance. However, heterogeneity, when not know!
a priori, can very quickly degrade performance since there is no mechanism to adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of concurrent optimizations
within the branch and bound strategy:

¢ Distributed schedulingin this approach, a peer partition is used and each peer maintains a separate queue (
pending jobs. When one peer’s queue is smaller than the other queues, it requests work from its peers (pri
to idleness). In this way, it can adapt to heterogeneous conditions, provided there are sufficient instance
to balance the variation. Each partition performs communication between computations, and no processa
are dedicated to scheduling. Furthermore, it distributes scheduling load beyond a single processor, whic
can be important for large numbers of concurrent jobs (whose scheduling might overload a single master) «
for fault tolerance (avoiding a single point of failure). However, it involves relatively complicated logic and
additional communication for queue status and job migration, and its performance is not always superio
since a partition can become work-starved if its peers are locked in computation (Note: this logic can be
somewhat simplified if a separate thread can be created for communication and migration of jobs).

Message passing schedulers may be used for managing concurrent iterator executions within a strategy, concuri
evaluations within an iterator, or concurrent analyses within an evaluation. In each of these cases, the messe
passing scheduler is currently restricted to blocking synchronization, in that all jobs in the queue are complete
before exiting the scheduler and returning the set of results to the algorithm. Nonblocking message-passing sch
ulers are under development for the iterator/evaluation concurrency level in support of fully asynchronous algc
rithms which do not contain synchronization points (eapliny _apps andcoliny _pattern _search ).
Message passing is also used within a fine-grained parallel analysis code, although this does not involve the use
DAKOTA schedulers (DAKOTA may, at most, pass a communicator partition to the simulation). The “Message
Passing” column in Tabl&7.1summarizes these capabilities.

Message Passing Example

Revisiting the test filelakota _dace.in , DAKOTA will now compute the 49 orthogonal array samples using

a message passing approach. In this case, a parallel launch utility is used to execute DAKOTA across multip
processors using syntax similar to the following:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will not be used, the interface specification does not incdsgia¢heonous
keyword and would appear similar to:

interface, \
system \
analysis_driver = 'text_book’
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The relevant excerpts from the DAKOTA output for a dedicated master partition and self-schedule, the default
when the maximum concurrency (49) exceeds the available capacity (5), would appear similar to the following:

Running MPI executable in parallel on 5 processors.

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)

Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 4 jobs among 4 servers
Master assigning function evaluation 1 to server
Master assigning function evaluation 2 to server
Master assigning function evaluation 3 to server
Master assigning function evaluation 4 to server
Second pass: self-scheduling 45 remaining jobs
Waiting on completed jobs

job 1 has returned from slave server 1

Master assigning function evaluation 5 to server 1
job 2 has returned from slave server 2

Master assigning function evaluation 6 to server 2
Waiting on completed jobs

job 3 has returned from slave server 3

Master assigning function evaluation 7 to server 3
job 4 has returned from slave server 4

Master assigning function evaluation 8 to server 4

A WN P
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<snip>
job 49 has returned from slave server 2

<<<<< lterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is perforr
synchronization uses a dynamic scheduler that initiates four jobs by sending a message from the mast
of the four servers and then replaces completing jobs with new ones until all 49 are complete. It is imp
note that job execution local to each of the four servers is synchronous.

17.2.3 Hybrid Parallelism

The asynchronous local approaches described in Setfi@hlcan be considered to rely @axternalscheduling
mechanisms, since itis generally the operating system or some external queue/load sharing software the
jobs to processors. Conversely, the message-passing approaches described inl3&:foaly on internal
scheduling mechanisms to distribute work among processors. These two approaches provide buildil
which can be combined in a variety of ways to manage parallelism at multiple levels. At one extreme, D.
can execute on a single processor and rely completely on external means to map all jobs to processors
asynchronous local approaches). At the other extreme, DAKOTA can execute on many processors and r
levels of parallelism, including the parallel simulations, using completely internal approaches (i.e., using
passing at all levels as in Figui&.4). While all-internal or all-external approaches are common cases,
additional approaches exist between the two extremes in which some parallelism is managed internally
is managed externally.

These combined approaches are referred toyasd parallelism, since the internal distribution of work base:
message-passing is being combined with external allocation using asynchronous local aphr&agtiesl 7.1
depicts the asynchronous local, message-passing, and hybrid approaches for a dedicated-master pa
proaches (b) and (c) both use MPI message-passing to distribute work from the master to the slaves
proaches (a) and (c) both manage asynchronous jobs local to a processor. The hybrid approach (c) can
be a combination of (a) and (b) since jobs are being internally distributed to slave servers through messac
and each slave server is managing multiple concurrent jobs using an asynchronous local approach. F
ferent perspective, one could consider (a) and (b) to be special cases within the range of configurations
by (c). The hybrid approach is useful for supercomputers that maintain a service/compute node distin
for supercomputers or networks of workstations that involve clusters of symmetric multiprocessors (SN
the service/compute node case, concurrent multiprocessor simulations are launched into the compute r
the service node partition. While an asynchronous local approach from a single service node would be ¢
spreading the application load by running DAKOTA in parallel across multiple service nodes results i
performance35]. If the number of concurrent jobs to be managed in the compute partition exceeds the
of available service nodes, then hybrid parallelism is the preferred approach. In the case of a cluster
(or network of multiprocessor workstations), message-passing can be used to communicate between ¢
asynchronous local approaches can be used within an SMP. Hybrid parallelism can again result in impr
formance, since the total number of DAKOTA MPI processes is reduced in comparison to a pure messag
approach over all processors.

Hybrid schedulers may be used for managing concurrent evaluations within an iterator or concurrent

1The term “hybrid parallelism” is often used to describe the combination of MPI message passing and OpenMP shared memory
models. This can be considered to be a special case of the meaning here, as OpenMP is based on threads, which is analagous to
local usage of the direct simulation interface.
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within an evaluation. In both of these cases, the scheduler is currently restricted to blocking synchron
although as for message-passing schedulers described in SEEihH nonblocking schedulers are under ¢
velopment for the iterator/evaluation concurrency level. The “Hybrid” column in TaBlé& summarizes thes
capabilities.

Hybrid Example

Reuvisiting the test filelakota _dace.in , DAKOTA will now compute the 49 orthogonal array samples us
a hybrid approach. As for the message passing case, a parallel launch utility is used to execute DAKOT,
multiple processors:

mpirun -np 5 -machinefile machines dakota -i dakota_dace.in

Since the asynchronous local parallelism will also be used, the interface specification incliassttigonous
keyword and appears similar to

interface, \
system asynchronous evaluation_concurrency = 2 \
analysis_driver = 'text_book’

In the hybrid case, the specification of the desired concurrency level must be included, since the defa
longer all available (as it is for asynchronous local parallelism). Rather the default is to employ message
parallelism, and hybrid parallelism is only available through the specification of asynchronous concurrency
than one.

The relevant excerpts of the DAKOTA output for a dedicated master partition and self schedule, the
when the maximum concurrency (49) exceeds the maximum available capacity (10), would appear simil:
following:

Running MPI executable in parallel on 5 processors.

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 5 peer/static
concurrent evaluations 4 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

>>>>> Running dace iterator.

Begin Function Evaluation 1

(Asynchronous job 1 added to queue)
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Begin Function Evaluation 2

(Asynchronous job 2 added to queue)

<snip>

Begin Function Evaluation 49

(Asynchronous job 49 added to queue)

Blocking synchronize of 49 asynchronous evaluations
First pass: assigning 8 jobs among 4 servers

Master assigning function evaluation 1 to server 1
Master assigning function evaluation 2 to server 2
Master assigning function evaluation 3 to server 3
Master assigning function evaluation 4 to server 4
Master assigning function evaluation 5 to server 1
Master assigning function evaluation 6 to server 2
Master assigning function evaluation 7 to server 3
Master assigning function evaluation 8 to server 4

Second pass: self-scheduling 41 remaining jobs
Waiting on completed jobs

<snip>
job 49 has returned from slave server 4
<<<<< lterator dace completed.

where it is evident that each of the 49 jobs is first queued and then a blocking synchronization is performed. This
synchronization uses a dynamic scheduler that initiates eight jobs by sending two messages to each of the four
servers and then replaces completing jobs with new ones until all 49 are complete. It is important to note that
job execution local to each of the four servers is asynchronous. If the available capacity was increased to meet
or exceed the maximum concurrency (e.g., mpirun on 10 processorewailiation  _concurrency = 5 ),

then a peer partition with static schedule would be selected by default.

17.3 Multilevel parallelism

Parallel computers within the Department of Energy national laboratories have exceeded a hundred trillion floating
point operations per second (100 TeraFLOPS) in Linpack benchmarks and are expected to achieve PetaFLOPS
speeds in the near future. This performance is achieved through the use of massively parallel (MP) processing
usingO[10® —10%] processors. In order to harness the power of these machines for performing design, uncertainty
quantification, and other systems analyses, parallel algorithms are needed which are scalable to thousands of
processors.

DAKOTA supports a total of three tiers of scheduling and four levels of parallelism which, in combination, can
minimize efficiency losses and achieve near linear scaling on MP computers. The four levels are:

1. concurrent iterators within a strategy (scheduling performed by DAKOTA)

2. concurrent function evaluations within each iterator (scheduling performed by DAKOTA)
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e e

(a) Relative speedup. (b) Relative efficiency.

Figure 17.3: Fixed-size scaling results for three levels of parallelism.

3. concurrent analyses within each function evaluation (scheduling performed by DAKOTA)

4. multiprocessor analyses (work distributed by a parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is function evi
coarse-grained parallelism, and the fourth is function evaluation fine-grained parallelism (see $edtidr
Algorithmic fine-grained parallelism is not currently supported, although the development of large-scale
SAND techniques is a current research directign [

A particular application may support one or more of these parallelism types, and DAKOTA provides for
nient selection and combination of each of the supported levels. If multiple types of parallelism can be e
then the question may arise as to how the amount of parallelism at each level should be selected so as tc
the overall parallel efficiency of the study. For performance analysis of multilevel parallelism formulatic
detailed discussion of these issues, refeB&).[In many caseghe user may simply employ DAKOTA's autom
parallelism configuration facilitiesihich implement the recommendations from the aforementioned pape

Figure17.3shows typical fixed-size scaling performance using a modified version of the extextiedbook
problem (see Sectid?l.l). Three levels of parallelism (concurrent evaluations within an iterator, concurren
yses within each evaluation, and multiprocessor analyses) are exercised. Despite the use of a fixed prt
and the presence of some idleness within the scheduling at multiple levels, the efficiency is still reasonat
Greater efficiencies are obtainable for scaled speedup studies (or for larger problems in fixed-size stu
for problems optimized for minimal scheduler idleness (by, e.g., managing all concurrency in as few scl
levels as possible). Note that speedup and efficiency are measured relative to the case of a single instanc
tiprocessor analysis, since it was desired to investigate the effectiveness of the DAKOTA schedulers ind
from the efficiency of the parallel analysis.

2Note that overhead is reduced in these scaling studies by deactivating the evaluation cache and restart file logging.
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17.3.1 Asynchronous Local Parallelism

In most cases, the use of asynchronous local parallelism is the termination point for multilevel paralle
that any level of parallelism lower than an asynchronous local level will be serialized. The exception to-
is reforking of forked processes for concurrent analyses within forked evaluations. In this case, a new
created using fork for one of several concurrent evaluations; however, the new process is not replaced im
using exec. Rather, theew process is reforked to create additional child processes for executing cor
analyses within each concurrent evaluation process. This capability is not supported by system calls ant
one of the key advantages to using fork over system (see Sd&i8r).

17.3.2 Message Passing Parallelism
Partitioning of levels

DAKOTA uses MPI communicators to identify groups of processors. The gldPaCOMMVORLRommuni:
cator provides the total set of processors allocated to the DAKOTA MPL_COMMVORLI2an be partitione
into new intra-communicators which each define a set of processors to be used for a multiprocessor se
of these servers may be further partitioned to nest one level of parallelism within the next. At the lowe:
lelism level, these intra-communicators can be passed into a simulation for use as the simulation’s comj
context, provided that the simulation has been designed, or can be modified, to be modular on a c
cator (i.e., it does not assume ownershipMi?l_ COMMVORLP New intra-communicators are created v
the MPI_Commsplit  routine, and in order to send messages between these intra-communicators, ne
communicators are created with callsMi®I_Intercomm _create . To minimize overhead, DAKOTA creat
new intra- and inter-communicators only when the parent communicator provides insufficient contexi
scheduling at a particular level. In addition, multiple parallel configurations (containing a set of commt
partitions) can be allocated for use in studies with multiple iterators and models (e.g., 16 servers of 6¢
sors each could be used for iteration on a lower fidelity model, followed by two servers of 512 process
for subsequent iteration on a higher fidelity model). Each of the parallel configurations are allocated i
construction time and are reported at the beginning of the DAKOTA output.

Each tier within DAKOTAs nested parallelism hierarchy can use the dedicated master and peer part
proaches described in Sectibn.2.2 To recursively partition the subcommunicators of Figlire2, COMM1/2/3
in the dedicated master or peer partition case would be further subdivided using the appropriate partitioni
for the next lower level of parallelism.

Scheduling within levels

DAKOTA is designed to allow the freedom to configure e
vl 1 Leva parallelism level with either the dedicated master partition/
ST eral o] scheduling combination or the peer partition/static scheduling

bination. In addition, certain external libraries may provide &

tional options (e.g., PICO supports distributed scheduling in
Bla(a
o
O- G

partitions). As an example, Figurk7.4 shows a case in whic
a branch and bound strategy employs peer partition/distril
scheduling at level 1, each optimizer partition employs concu
function evaluations in a dedicated master partition/self-schec
model at level 2, and each function evaluation partition employs
current multiprocessor analyses in a peer partition/static sche:

oa
O[] & F=-
Oog),
A
O0o:
OG-+
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model at level 3. In this casé&/IPI_COMMVORLDs subdividet
into optCOMM1/2/3/.../ 71, eachoptCOMMis further subdi
vided intoeval COMMO (master) anacvalCOMM1/2/3/.../ Ty
(slaves), and each slawevalCOMM is further subdivided int
analCOMM1/2/3/.../ 73. Logic for selection ofr; is discusse

in [35].

17.3.3 Hybrid Parallelism

Hybrid parallelism approaches can take several forms when used in the multilevel parallel context. A
tual boundary can be considered to exist for which all parallelism above the boundary is managed i
using message-passing and all parallelism below the boundary is managed externally using asynchro
approaches. Hybrid parallelism approaches can then be categorized based on whether this boundai
internal and external management occurs within a parallelism lee{eve) or between two parallelism leve
(inter-leve). In the intra-level case, the jobs for the parallelism level containing the boundary are scheduli
a hybrid scheduler, in which a capacity multiplier is used for the number of jobs to assign to each serv
server is then responsible for concurrently executing its capacity of jobs using an asynchronous local apyg
the inter-level case, one level of parallelism manages its parallelism internally using a message-passing
and the next lower level of parallelism manages its parallelism externally using an asynchronous local €
That is, the jobs for the higher level of parallelism are scheduled using a standard message-passing
in which a single job is assigned to each server. However, each of these jobs has multiple components
aged by the next lower level of parallelism, and each server is responsible for executing these sub-co
concurrently using an asynchronous local approach.

For example, consider a multiprocessor DAKOTA run which involves an iterator scheduling a set of cot
function evaluations across a cluster of SMPs. A hybrid parallelism approach will be applied in which m
passing parallelism is used between SMPs and asynchronous local parallelism is used within each SI
hybrid intra-level case, multiple function evaluations would be scheduled to each SMP, as dictated by the
of the SMPs, and each SMP would manage its own set of concurrent function evaluations using an asyr
local approach. Any lower levels of parallelism would be serialized. In the hybrid inter-level case, the f
evaluations would be scheduled one per SMP, and the analysis components within each of these e
would be executed concurrently using asynchronous local approaches within the SMP. Thus, the distin
be viewed as whether the concurrent jobs on each server in Figute reflect the same level of paralleli
as that being scheduled by the master (intra-level) or one level of parallelism below that being scheduls
master (inter-level).

17.4 Capability Summary

Table17.1shows a matrix of the supported job management approaches for each of the parallelism lev
supported simulation interfaces and synchronization approaches shown in parentheses. The concurre
and multiprocessor analysis parallelism levels can only be managed with message-passing approaches
mer case, this is due to the fact that a separate process or thread for an iterator is not currently supported
case reflects a finer point on the definition of external parallelism management. While a multiprocessor
can most certainly be launched (e.g., usimgirun /yod) from one of DAKOTA's analysis drivers, resulting ir
parallel analysis external to DAKOTA (which is consistent with asynchronous local and hybrid approach
parallelism is not visible to DAKOTA and therefore does not qualify as parallelism that DAKOTA manage
therefore is notincluded in TablE7.1). The concurrent evaluation and analysis levels can be managed eith
message-passing, asynchronous local, or hybrid techniques, with the exceptions that the direct interfac
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Table 17.1: Support of job management approaches within parallelism levels. Shown in parentheses are
simulation interfaces and supported synchronization approaches.

Parallelism Level || Asynchronous Local | Message Passing | Hybrid \
concurrent iterators X
within a strategy (blocking only)
concurrent function evaluations X X X
within an iterator (system, fork) (system, fork, direct) (system, fork)
(blocking, nonblocking) (blocking only) (blocking only)
concurrent analyses X X X
within a function evaluation (fork only) (system, fork, direct)  (fork only)
(blocking only) (blocking only) (blocking only)
fine-grained parallel analysis X

support asynchronous operations (asynchronous local or hybrid) at either of these levels and the syste
terface does not support asynchronous operations (asynchronous local or hybrid) at the concurrent ana
The direct interface restrictions are present since multithreading in not yet supported and the system
face restrictions result from the inability to manage concurrent analyses within a nonblocking function ev
system call. Finally, nonblocking synchronization is only currently supported for asynchronous local par
at the concurrent function evaluation level. In time, message passing and hybrid parallelism approache:
support nonblocking synchronization at this level.

17.5 Running a Parallel DAKOTA Job

Section17.2 provides a few examples of serial and parallel execution of DAKOTA using asynchronous
message passing, and hybrid approaches to single-level parallelism. The following sections provide
complete discussion of the parallel execution syntax and available specification controls.

17.5.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local parallelis|
same as for running DAKOTA on a single-processor for a serial study, e.qg.:

dakota -i dakota.in > dakota.out

See Sectior2.1.5for additional information on single-processor command syntax.

17.5.2 Multiprocessor execution

Running a DAKOTA job on multiple processors requires the use of an executable loading facility suginas ,
mpiexec , poe, oryod . On a network of workstations, tlepirun scriptis commonly used to initiate a para
DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out
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where both examples specify the use of 12 processors, the former selecting them from a default system
file and the latter specifying particular machines in a machine file &&ddr details).

On a massively parallel computer such as ASCI Red, similar facilities are available from the Cougar o
system via thegod executable loading facility:

yod -sz 512 dakota -i dakota.in > dakota.out

In each of these cases, MPI command line arguments are used by MPI (extracted first in th&Ballinit )
and DAKOTA command line arguments are used by DAKOTA (extracted second by DAKOTA's comma
handler). An issue that can arise with these command line arguments is that the mpirun script distribt
MPICH has been observed to have problems with certain file path specifications (e.g., a relative patt
“.Isome _file "). These path problems are most easily resolved by using local linkage (all referenced
soft links to these files appear in the same directory).

Finally, when running on computer resources that employ NQS/PBS batch schedulers, the single-
dakota command syntax or the multiprocessuopirun command syntax might be contained within an
ecutable script file which is submitted to the batch queue. For example, on Cplant, the command

gsub -l size=512 run_dakota
could be submitted to the PBS queue for execution. On ASCI Red, the NQS syntax is similar:
gsub -q snl -IP 512 -IT 6:00:00 run_dakota

These commands allocate 512 compute nodes for the study, and exectia tldlekota script on a servic
node. If this script contains a single-procesdakota command, then DAKOTA will execute on a single sen
node from which it can launch parallel simulations into the compute nodes using analysis drivers thatyooh
commands (anyod executions occurring at any level underneathrtire_dakota script are mapped to the 5
compute node allocation). If the script submittedggub contains a multiprocessonpirun command, the
DAKOTA will execute across multiple service nodes so that it can spread the application load in either an
passing or hybrid parallelism approach. Again, analysis drivers contapothgcommands would be responsi
for utilizing the 512 compute nodes. And, finally, if the script submitteggob contains ayod of thedakota
executable, then DAKOTA will execute directly on the compute nodes and manage all of the parallelism ir
(note that ayod of this type without agsub would be mapped to the interactive partition, rather than to the
partition).

Not all supercomputers employ the same model for service/compute partitions or provide the same st
tiling of concurrent multiprocessor simulations within a single NQS/PBS allocation. For this reason, temp
parallel job configuration are being catalogued wittidakota/Applications (in the software distribution:
that are intended to provide guidance for individual machine idiosyncrasies.

17.6 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical wask]ito[automati
cally determine an efficient parallel configuration, consisting of partitioning and scheduling selections f
of the parallelism levels. This logic accounts for problem size, the concurrency supported by particular
algorithms, and any user inputs or overrides. The following points are important components of the a
configuration logic which can be helpful in estimating the total number of processors to allocate and in ¢
configuration overrides:
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o If the capacity of the servers in a peer configuration is sufficient to schedule all jobs in one pass, then
a peer partition and static schedule will be selected. If this capacity is not sufficient, then a dedicated-
master partition and dynamic schedule will be used. These selections can be overridden with self/static
scheduling request specifications for the concurrent iterator, evaluation, and analysis parallelism levels. For
example, if it is known that processor speeds and job durations have little variability, then overriding the
automatic configuration with a static schedule request could eliminate the unnecessary loss of a processor
to scheduling.

e With the exception of the concurrent-iterator parallelism level (iterator executions tend to have high vari-
ability in duration), concurrency is pushed up. That is, available processors will be assigned to concurrency
at the higher parallelism levels first. If more processors are available than needed for concurrency at a level,
then the server size is increased to support concurrency in the next lower level of parallelism. This process
is continued until all available processors have been assigned. These assignments can be overridden with a
servers specification for the concurrent iterator, evaluation, and analysis parallelism levels and with a pro-
cessors per analysis specification for the multiprocessor analysis parallelism level. For example, if it is de-
sired to parallelize concurrent analyses within each function evaluation, theraration  _servers
= 1 override would serialize the concurrent function evaluations level and assure processor availability for
concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification examples for
single and multi-processor DAKOTA executions.

17.6.1 The interface specification

Specifying parallelism within an interface can involve the use odyachronous ,evaluation  _concurrency ,
andanalysis _concurrency keywords to specify concurrency local to a processor (i.e., asynchronous local
parallelism). Thisasynchronous specification has dual uses:

e When running DAKOTA on a single-processor, theynchronous keyword specifies the use of asyn-
chronous invocations local to the processor (these jobs then rely on external means to be allocated to other
processors). The default behavior is to simultaneously launch all function evaluations available from the
iterator as well as all available analyses within each function evaluation. In some cases, the default behavior
can overload a machine or violate a usage policy, resulting in the need to limit the number of concurrent
jobs using theevaluation  _concurrency andanalysis _concurrency  specifications.

e When executing DAKOTA across multiple processors and managing jobs with a message-passing scheduler,
theasynchronous keyword specifies the use of asynchronous invocations local to each server processor,
resulting in a hybrid parallelism approach (see Secfi@r2.3. In this case, the default behavior is one
job per server, which must be overridden witheraluation _concurrency  specification and/or an
analysis _concurrency specification. When a hybrid parallelism approach is specified, the capacity
of the servers (used in the automatic configuration logic) is defined as the number of servers times the
number of asynchronous jobs per server.

In addition,evaluation  _servers ,evaluation _self _scheduling ,andevaluation _static _scheduling
keywords can be used to override the automatic parallelism configuration for concurrent function evaluations;
analysis _servers ,analysis _self _scheduling ,andanalysis _static _scheduling keywords

can be used to override the automatic parallelism configuration for concurrent analyses;andgksors _per _analysis
keyword can be used to override the automatic parallelism configuration for the size of multiprocessor analyses
used in a direct function simulation interface. Each of these keywords appears as part of the interface commands
specification in the DAKOTA Reference Manu&q].
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17.6.2 The strategy specification

To specify concurrency in iterator executions, ftexator  _servers , iterator  _self _scheduling
anditerator ~ _static _scheduling keywords are used to override the automatic parallelism configur
See the strategy commands specification in the DAKOTA Reference M&f}&bf additional information.

17.6.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local approac
Figure17.1a) requires inclusion of thasynchronous keyword in the interface specification. Once the ir
file is defined, single-processor DAKOTA jobs are executed using the command syntax described prev
Section17.5.1

Example 1

For example, the following specification runs an NPSOL optimization which will perform asynchronou
differencing:

method, \
npsol_sgp

variables, \
continuous_design = 5 \
cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds  0.15 0.02 0.05 0.1 0.1 \
cdv_upper_bounds 20 20 20 20 20

interface, \
system, \
asynchronous \
analysis_drivers = ’'text_book’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
interval_type central \
method_source dakota \
fd_gradient_step_size = 1l.e-4 \
no_hessians

Note thatmethod _source dakota selects DAKOTA' internal finite differencing routine so that the con
rency in finite difference offsets can be exploited. In this case, central differencing has been selecte
function evaluations (one at the current point plus two offsets in each of five variables) can be performe
taneously for each NPSOL response request. These 11 evaluations will be launched with system c:
background and presumably assigned to additional processors through the operating system of a mult
compute server or other comparable method. The concurrency specification may be included if it is nec
limit the maximum number of simultaneous evaluations. For example, if a maximum of six compute prc
were available, the command

evaluation_concurrency = 6 \
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could be added to thasynchronous specification within thenterface keyword from the preceding ex-
ample.

Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g., from mul
ple load cases or disciplinary analyses that must be evaluated to compute the response data set), then ar
specification similar to the following could be used:

method, \
npsol_sqgp
variables, \
continuous_design = 5 \
cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \

cdv_upper_bounds 20 20 20 20 20

interface, \
fork \
asynchronous \
evaluation_concurrency = 6 \
analysis_concurrency = 3 \

analysis_drivers = ‘text_bookl’ ‘text_book2' ‘text_book3’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = 1l.e-4 \
no_hessians

In this case, the default concurrency with justaesynchronous  specification would be all 11 function evalua-
tions and all 3 analyses, which can be limited byalialuation ~ _concurrency andanalysis _concurrency
specifications. The input file above limits the function evaluation concurrency, but not the analysis concurrenc
specification of 3 is the default in this case and could be omitted). Changing the imwaltation  _concurrency

= 1 would serialize the function evaluations, and changing the inpartédysis _concurrency = 1 would
serialize the analyses.

17.6.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous (Ei§yting by default and thasynchronous
keyword is only used if a hybrid parallelism approach (Figlrelc) is desired. Multiprocessor DAKOTA jobs
are executed using the command syntax described previously in Sé¢tma
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Example 3

To run Example 1 using a message-passing approaclasthmehronous  keyword would be removed (since
the servers will execute their evaluations synchronously), resulting in the following interface specification:

interface, \
system, \
analysis_drivers = ’text_book’

Running DAKOTA on 4 processors (syntampirun -np 4 dakota -i dakota.in ) would result in the
following parallel configuration report from the DAKOTA output:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 3 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

The dedicated master partition and self-scheduling algorithm are automatically selected for the concurrent eval-
uations parallelism level since the number of function evaluations (11) is greater than the maximum capacity of
the servers (4). Since one of the processors is dedicated to being the master, only 3 processors are available for
computation and the 11 evaluations can be completed in approximately 4 passes through the servers. If it is known
that there is little variability in evaluation duration, then this logic could be overridden to use a static schedule
through use of thevaluation  _static _scheduling specification:

interface, \
system, \
evaluation_static_scheduling \
analysis_drivers = ’'text_book’

Running DAKOTA again on 4 processors (syntampirun -np 4 dakota -i dakota.in ) would now
result in this parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



238 CHAPTER 17. PARALLEL COMPUTING

Now the 11 jobs will be statically distributed among 4 peer servers, since the processor previously dedicated to
scheduling has been converted to a compute server. This could be more efficient if the evaluation durations are
sufficiently similar, but there is no mechanism to adapt to heterogeneity in processor speeds or simulation expense.

As a related example, consider the case where each of the workstations used in the parallel execution has multiple
processors. In this case, a hybrid parallelism approach which combines message-passing parallelism with asyn-
chronous local parallelism (see Figure.1c) would be a good choice. To specify hybrid parallelism, one uses the
sameasynchronous specification as was used for the single-processor examples, e.g.:

interface, \
system \
asynchronous evaluation_concurrency = 3 \
analysis_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a 4 processor DAKOTA execution (syntax:
mpirun -np 4 dakota -i dakota.in ) has increased to 12 evaluations. Since all 11 jobs can now be
scheduled in a single pass, a static schedule is automatically selected (without any override request):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A
Total parallelism levels = 1

Example 4

To run Example 2 using a message-passing approachsymehronous specification is again removed:

interface, \
fork \
analysis_drivers = ‘text_bookl’ ‘text_book2’ ‘text_book3’

Running this example on 6 processors (syntagirun -np 6 dakota -i dakota.in ) would result in
the following parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 6 peer/static
concurrent evaluations 5 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A
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Total parallelism levels = 1

in which all of the processors have been assigned to support evaluation concurrency due to the “push up” automatic
configuration logic. Note that the default configuration could be a poor choice in this case, since 11 jobs scheduled
through 5 servers will likely have significant idleness towards the end of the scheduling. To assign some of the
available processors to the concurrent analysis level, the following input could be used:

interface, \
fork \
analysis_drivers = ‘text_bookl’ ‘text_book2' ‘text_book3’ \
evaluation_static_scheduling \

evaluation_servers = 2

which results in the following 2-level parallel configuration:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 6 peer/static
concurrent evaluations 2 3 peer/static
concurrent analyses 3 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 2

The six processors available have been split into two evaluation servers of three processors each, where the three
processors in each evaluation server manage the three analyses, one per processor.

Next, consider the following 3-level parallel case, in whielxt _bookl , text _book2, andtext _book3
from the previous examples now execute on two processors each. In this cggsectssors _per _analysis
keyword is added and tHerk interface is changed todirect interface since the fine-grained parallelism of
the three simulations is managed internally:

interface, \
direct \
analysis_drivers = ‘text_bookl1’ ‘text_book2’ ‘text_book3’ \
evaluation_static_scheduling \
evaluation_servers = 2 \
processors_per_analysis = 2

This results in the following parallel configuration for a 12 processor DAKOTA run
(syntax:mpirun -np 12 dakota -i dakota.in ):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule

concurrent iterators 1 12 peer/static

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



240 CHAPTER 17. PARALLEL COMPUTING

concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A
Total parallelism levels = 3

An important point to recognize is that, since each of the parallel configuration inputs has been tied to the inter-
face specification up to this point, these parallel configurations can be reallocated for each interface in a multi-
iterator/multi-model strategy. For example, a DAKOTA execution on 40 processors might involve the following
two interface specifications:

interface, \

direct, \

id_interface = 'COARSE’ \
analysis_driver = ’'siml’ \

processors_per_analysis = 5

interface, \

direct, \
id_interface = 'FINE’ \
analysis_driver = ’'sim2’ \

10

processors_per_analysis

for which the coarse model would employ 8 servers of 5 processors each and the fine model would employ 4
servers of 10 processors each.

Next, consider the following 4-level parallel case that employs the Pareto set optimization strategy. In this case,
iterator  _servers anditerator  _static _scheduling requests are included in the strategy specifica-
tion:

strategy, \
pareto_set \
iterator_servers = 2 \
iterator_static_scheduling \
opt_method_pointer = 'NLP’ \

random_weight_sets = 4

Adding this strategy specification to the input file from the previous 12 processor example results in the following
parallel configuration for a 24 processor DAKOTA run
(syntax:mpirun -np 24 dakota -i dakota.in ):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 2 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4
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Example 5

As a final example, consider a multi-start optimization conducted on 384 processors of ASCI Red. A job of this
size must be submitted to the batch queue, using syntax similar to:

gsub -q snl -IP 384 -IT 6:00:00 run_dakota
where therun _dakota script appears as

#!/bin/sh
cd /scratch/<some_workdir>
yod -sz 384 dakota -i dakota.in > dakota.out

and the strategy and interface specifications frondtieta.in  input file appear as

strategy, \
multi_start \
method_pointer = 'CPS’ \
iterator_servers = 8 \
random_starts = 8
interface, \
direct, \
analysis_drivers = ‘'text_bookl1’ 'text_book2' ’'text_book3’ \
evaluation_servers = 8 \
evaluation_static_scheduling \

processors_per_analysis = 2

The resulting parallel configuration is reported as

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 8 48 peer/static
concurrent evaluations 8 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4

Since the concurrency at each of the nested levels has a multiplicative effect on the number of processors that can
be utilized, it is easy to see how large numbers of processors can be put to effective use in reducing the time to
reach a solution, even when, as in this example, the concurrency per level is relatively low.
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Chapter 18

DAKOTA Usage Guidelines

18.1 Problem Exploration

The first objective in an analysis is to characterize the problem so that appropriate algorithms can be c
the case of optimization, typical questions that should be addressed include: Are the design variables ci
discrete, or mixed? Is the problem constrained or unconstrained? How expensive are the response ft
evaluate? Will the response functions behave smoothly as the design variables change or will there be n
ness and/or discontinuities? Are the response functions likely to be multimodal, such that global optimiza
be warranted? Is analytic gradient data available, and if not, can | calculate gradients accurately and che
ditional questions that are pertinent for characterization of uncertainty quantification problems include
accurately model the probabilistic distributions of my uncertain variables? Are the response functions 1
linear? Am | interested in a full random process characterization of the response functions, or just ¢
results?

If there is not sufficient information from the problem description to answer these questions, then additiol
lem characterization activities may be warranted. One particularly useful characterization activity that D
enables is parameter space exploration through the use of parameter studies and design of experimen
The parameter space can be systematically interrogated to create sufficient information to evaluate the
the response functions and to determine if these trends are noisy or smooth, unimodal or multimodal,
linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or more of the pe
do not significantly affect the results and can be removed from the problem formulation. This can yield
tially large savings in computational expense for the subsequent studies. Refer to Chapesgor additiona
information on parameter studies and design of experiments methods.

18.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variables in the problen
uous, discrete, mixed), whether a global search is needed or a local search is sufficient, and the requirec
support (unconstrained, bound constrained, nonlinearly constrained). Less obvious, but equally impor
siderations include the efficiency of convergence to an optimum (i.e., convergence rate) and the robustr
method in the presence of challenging design space features (e.g., nonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the opt
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methods. If analytic gradient and Hessian information can be provided by an application code, a full
method will provide quadratic convergence rates near the solution. More commonly, only gradient infa
is available and a quasi-Newton method is chosen in which the Hessian information is approximated
accumulation of gradient data. In this case, superlinear convergence rates can be obtained. These che
make gradient-based optimization methods the methods of choice when the problem is smooth, unim
well-behaved. However, when the problem exhibits nhonsmooth, discontinuous, or multimodal behavis
methods can also be the least robust since inaccurate gradients will lead to bad search directions,
searches, and early termination and the presence of multiple minima will be missed.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients al
but are often unavailable. For many engineering applications, a finite difference method will be use:
optimization algorithm to estimate gradient values. DAKOTA allows the user to select the step size fi
calculations, as well as choose between forward-difference and central-difference algorithms. The finite ¢
step size should be selected as small as possible, to allow for local accuracy and convergence, but not sc
the steps are “in the noise.” This requires an assessment of the local smoothness of the response funct
for example, a parameter study method. Central differencing, in general, will produce more reliable ¢
than forward differencing, but at roughly twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a r¢
to be much more computationally demanding than gradient-based methods. Nongradient local optimizat
ods, such as pattern search algorithms, often require from several hundred to a thousand or more fun:
uations, depending on the number of variables, and nongradient global optimization methods such &
algorithms may require from thousands to tens-of-thousands of function evaluations. Clearly, for nongra
timization studies, the computational cost of the function evaluation must be relatively small in order to o
optimal solution in a reasonable amount of time. In addition, nonlinear constraint support in nongradient
is an open area of research and, while supported by many nongradient methods in DAKOTA, is not a
as constraint support in gradient-based methods. However, nongradient methods can be more robust
inherently parallel than gradient-based approaches. They can be applied in situations were gradient c¢
are too expensive or unreliable. In addition, some nongradient-based methods can be used for global op
which gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based meth
consideration when the problem may be nonsmooth, multimodal, or poorly behaved.

An approach which attempts to bring the efficiency of gradient-based optimization methods to nonsr
poorly behaved problems is the surrogate-based optimization (SBO) strategy. This technique can smc
or discontinuous response results through use of a data fit surrogate model (e.g., a quadratic polync
then optimize on the smooth surrogate using efficient gradient-based techniques. Séctimvides furthe
information on this approach. In addition, the multilevel hybrid and multistart optimization strategies can
a similar goal of bringing the efficiency of gradient-based optimization methods to global optimization pr«
In the former case, a global optimization method can be used for a few cycles to locate promising reg
then local gradient-based optimization is used to efficiently converge on one or more optima. In the lat
a stratification technique is used to disperse a series of local gradient-based optimization runs through
space. Sectiof.2and Sectior®.3 provide more information on these approaches.

Table18.1provides a convenient reference for choosing an optimization method or strategy to match the
teristics of the user’s problem. With respect to constraint support, it should be understood that the mett
more advanced constraint support are also applicable to the lower constraint support levels; they are list
their highest level of constraint support for brevity.
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Table 18.1: Guidelines for optimization and nonlinear least squares method selection.

~

Variable Function Solution Constraints Applicable Methods
Type Surface Type
continuous smooth local opt unconstrained optpp.cg
bound constrained dot bfgs, dotfrcg, conminfrcg
nonlinearly npsolsgp, nlpglsgp, dotmmfd,
constrained dotslp, dotsqgp, conmiomfd,
optpp.newton, optppg-newton,
optppfd_newton
local least bound constrained ni2sol
squares
local least nonlinearly nlssolsqgp, optppg-newton
squares constrained
local nonlinearly weighted sums (one soln),
multiobjective constrained paretaset strategy (multiple solns
global opt nonlinearly multi_level strategy
constrained multi_start strategy
nonsmooth local opt bound constrained optpppds
nonlinearly coliny_apps, colinypatternsearch,
constrained coliny_solis wets, colinycobyla
local/global opt nonlinearly surrogatebasedopt strategy
constrained
global opt nonlinearly soga, colinyea, colinydirect
constrained
global nonlinearly moga
multiobjective constrained
discrete n/a global opt nonlinearly soga, colinyea
categorical constrained
global nonlinearly moga
multiobjective constrained
discrete n/a local opt nonlinearly branchandbound strategy
noncategorical constrained
mixed nonsmooth global opt nonlinearly soga, colinyea
categorical constrained
global nonlinearly moga
multiobjective constrained
mixed smooth local opt nonlinearly branchandbound strategy
noncategorical constrained
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18.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the quantification of unc
in computational simulations. Sampling-based methods are the most robust uncertainty techniques
are applicable to almost all simulations, and possess rigorous error bounds; consequently, they shoul
whenever the function is relatively inexpensive to compute. However, in the case of terascale comp
simulations, the number of function evaluations required by traditional techniques such as Monte Carlo ¢
hypercube sampling (LHS) quickly becomes prohibitive. One way to alleviate this problem is to emplc
advanced sampling strategies, such as Quasi-Monte Carlo (QMC) sampling, importance sampling (I1S), c
Chain Monte Carlo (MCMC) sampling, and these techniques are currently under investigation.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating
pensive computational simulation. However, if this approach is selected, the user should be aware that
difficult to assess the accuracy of the results obtained. Unlike in the case of SBO (see Sé&tithrere is n
simple pointwise calculation to verify the accuracy of the approximate results. This is due to the function:
of uncertainty quantification, i.e. the accuracy of the surrogate over the entire parameter space needs
sidered, not just around a candidate optimum as in the case of SBO. This issue especially manifests it
trying to estimate low probability events such as the catastrophic failure of a system.

Another class of UQ methods known as reliability methods (e.g., MV, AMV, AVIXMV+, AMV 2+, TANA,
FORM, SORM) are more computationally efficient in general than the sampling methods and are effecti
applied to reasonably well-behaved response functions, such as linear or mildly nonlinear functions. -
be used to provide qualitative sensitivity information concerning which uncertain variables are importa
relatively few function evaluations), or compute full cumulative or complementary cumulative response ft
(with additional computational effort). Since they rely on gradient calculations to compute local optim
probable points of failure), issues with nonsmooth, discontinuous, and multimodal response functions art
concerns. In addition, even if the MPP is calculated successfully, first-order and second-order integrat
fail to accurately capture the shape of the failure domain. Thus these methods should be used with som
their accuracy should be verified whenever possible.

The next class of UQ methods available in DAKOTA are stochastic finite elements techniques using po
chaos expansions, which are general purpose techniques provided that the response functions possess 1
order moments. Further, these methods approximate the full random process/field rather than just appr
statistics such as mean and standard deviation. This class of methods parallels traditional variational n
mechanics; in that vein, efforts are underway to compute rigorous error bounds of the approximations |
by the methods. Another strength of the these methods is their potential use in a multiphysics environt
means to propagate the uncertainty through a series of simulations while retaining as much information a
at each stage of the analysis. On the other hand, these methods currently rely on the use of traditional
techniques in the construction of the approximations; consequently, they can be computationally expens
case of terascale applications.

The final class of UQ methods available in DAKOTA are focused on epistemic uncertainties, or unce
resulting from a lack of knowledge. In these problems, the use of methods based on probability theor
somewhat tenuous. One approach to handling epistemic uncertainties is Dempster-Shafer theory of
(DAKOTA methodnond _evidence ). Another method, which supports a mixture of epistemic and alei
uncertainties, is second-order probability used nested models (see Sexdpnin this method, an outer ep
temic level selects realizations of uncertain variable distribution parameters from intervals. These re¢
define the probability distributions for an inner aleatoric level performing probabilistic analyses. In comb
the study generates a family of CDF/CCDF respresentations which can be represented as a “horse tail”

The recommendations for UQ methods are summarized in Tabhke
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Table 18.2: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics
Sampling response functions are] nondsampling (Monte Carlo or LHS)
relatively inexpensive
Reliability smooth, unimodal nond-reliability (MV, AMV, AMV 2,
response functions | AMV+, AMV 2+, TANA, FORM, SORM)
Stochastic finite| representation of full nondpolynomialchaos
elements random variable/process/
field is desired
Epistemic some uncertainties are] nondevidence, 2nd-order probability
UQ methods poorly characterized using nested models

18.4 Parameter Study/DOE/DACE/Sampling Method Selection

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments
and sampling methods share the purpose of exploring the parameter space. If directed studies with
structure are desired, then parameter study methods (see Chppterrecommended. For example, a q
assessment of the smoothness of a response function is best addressed with a vector or centered para
Also, performing local sensitivity analysis is best addressed with these methods. If, however, a glob:
filling set of samples is desired, then the DOE, DACE, and sampling methods are recommenddh(red).
These techniques are useful for scatter plot and variance analysis as well as surrogate model constru
distinction between DOE and DACE methods is that the former are intended for physical experiments cc
an element of nonrepeatability (and therefore tend to place samples at the extreme parameter vertices
the latter are intended for repeatable computer experiments and are more space-filling in nature. The ¢
between DOE/DACE and sampling is drawn based on the distributions of the parameters. DOE/DACE
typically assume uniform distributions, whereas the sampling approaches in DAKOTA support a broad
probability distributions. To useond _sampling in a design of experiments mode (as opposed to an uncel
quantification mode), thall _variables flag should be included in the method specification of the DAK:!
input file.

These method selection recommendations are summarized inTaBle
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Table 18.3: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method Applications Applicable Methods
Classification
parameter study sensitivity analysis, centeredparameterstudy,
directed parameter spage list_parametesstudy,
investigations multidim_parameterstudy,
vectorparametesstudy
classical design physical experiments dace (boxbehnken,
of experiments (parameters are centralcomposite)
uniformly distributed)
design of computet variance analysis, dace (grid, random, oas, |hs, ies),
experiments space filling designs fsu_quasimc (halton, hammersley),
(parameters are fsu_cvt
uniformly distributed)
sampling space filling designs | nondsampling (Monte Carlo or LHS
(parameters have genergal with all_variables flag
probability distributions)
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Chapter 19

Restart Capabilities and Utilities

19.1 Restart Management

DAKOTA was developed for solving problems that require multiple calls to computationally expensive sin
codes. In some cases you may want to conduct the same optimization, but to a tighter final convergence
This would be costly if the entire optimization analysis had to be repeated. Interruptions imposed by ¢
usage policies, power outages, and system failures could also result in costly delays. However, DAKC
matically records the variable and response data from all function evaluations so that new executions of |
can pick up where previous executions left off.

The DAKOTA restart file (e.g.dakota.rst ) is written in a portable binary format. The portability deri
from use of the XDR standard. As shown in Sectii.5 the primary restart commands for DAKOTA
-read _restart ,-write _restart ,and-stop _restart

To write a restart file using a particular name, theite _restart command line input (may be abbrevia
as-w) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write _restart  specification is used, then DAKOTA will still write a restart file, but using the
fault namedakota.rst instead of a user-specified name. To turn restart recording off, the user ma
deactivate restart file intheinterface specification (refer to the Interface Commands chap:
the DAKOTA Reference ManugR9] for additional information). This can increase execution speed and r
disk storage requirements, but at the expense of a loss in the ability to recover and continue a run that 1
prematurely. Obviously, this option is not recommended when function evaluations are costly or prone ti

To restart DAKOTA from a restart file, theead _restart command line input (may be abbreviatedag is
used:

dakota -i dakota.in -read_restart my_restart_file

If no-read _restart  specification is used, then DAKOTA will not read restart information from any file
the default is no restart processing).

If the -write _restart and-read _restart specifications identify the same file (including the case w
-write  _restart  is not specified andread _restart identifiesdakota.rst ), then new evaluations w
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be appended to the existing restart file. If thgite _restart and-read _restart specifications identif
different files, then the evaluations read from the file identified-d@ad _restart  are first written to th
-write  _restart  file. Any new evaluations are then appended to-thete _restart file. In this way
restart operations can be chained together indefinitely with the assurance that all of the relevant evalu
present in the latest restart file.

To read in only a portion of a restart file, thetop _restart  control (may be abbreviated as ) is used t
specify the number of entries to be read from the database. Note that this integer value corresponds to
record numbers shown with th@int  option (see Sectiod9.2.1below), but may differ from the evaluati
numbers used in the previous run if, for example, any duplicates were detected (since these duplicat
recorded in the restart file). Inthe case e$p _restart  specification, itis usually desirable to specify a1
restart file usingwrite  _restart  so as to remove the records of erroneous or corrupted function evalu
For example, to read in the first 50 evaluations frdakota.rst

dakota -i dakota.in -r dakota.rst -s 50 -w dakota new.rst

Thedakota _new.rst file will contain the 50 processed evaluations frdakota.rst as well as any ne
evaluations. All evaluations following the 80in dakota.rst have been removed from the latest restart re«

DAKOTA's restart algorithm relies on its duplicate detection capabilities. Processing a restart file popul
list of function evaluations that have been performed. Then, when the study is restarted, it is started
beginning (not a “warm” start) and many of the function evaluations requested by the iterator are intt
by the duplicate detection code. This approach has the primary advantage of restoring the complet
the iteration (including the ability to correctly detect subsequent duplicates) for all iterators and multi-
strategies without the need for iterator-specific restart code. However, the possibility exists for numeric:
off error to cause a divergence between the evaluations performed in the previous and restarted studies
been extremely rare to date.

19.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files from DAK
executions. The executable program namedkota restart _utii and it has the following options,
shown by the usage message returned when executing the utility without any options:

Usage: "dakota_restart_util print <restart file>"

"dakota_restart_util to_neutral <restart_file> <neutral_file>"

"dakota_restart_util from_neutral <neutral_file> <restart_file>"

"dakota_restart_util to_pdb <restart_file> <pdb_file>"

"dakota_restart_util to_tabular <restart_file> <text_file>"

"dakota_restart_util remove <double> <old_restart_file>
<new_restart_file>"

"dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file>
<new_restart_file>"

"dakota_restart_util cat <restart file 1> ... <restart file n>
<new_restart_file>"

Several of these functions involve format conversions. In particular, the binary format used for restart
be converted to ASCII text and printed to the screen, converted to and from a neutral file format, conve
PDB format for use at Lawrence Livermore National Laboratory, or converted to a tabular format for im
into 3rd-party graphics programs. In addition, a restart file with corrupted data can be repaired by value ¢
multiple restart files can be combined to create a master database.
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19.2.1 Print

Theprint  option is quite useful for interrogating the contents of a particular restart file, since the binary format
is not convenient for direct inspection. The restart data is printed in full precision, so that exact matching of points
is possible for restarted runs or corrupted data removals. For example, the following command

dakota_restart_util print dakota.rst

results in output similar to the following (from thB®akota/test/dakota _cyl _head.in example prob-
lem):

Restart record 1 (evaluation id 1):

1.8000000000000000e+00 intake_dia
1.0000000000000000e+00 flatness
Active set vector = { 3 3 3 3}
-2.4355973813420619e+00 obj_fn
-4.7428486677140930e-01 nin_ineq_con_1
-4.5000000000000001e-01 nIn_ineq_con_2
1.3971143170299741e-01 nIn_ineq_con_3
[ -4.3644298963447897e-01 1.4999999999999999¢e-01 ] obj_fn gradient
[ 1.3855136437818300e-01 0.0000000000000000e+00 ] nin_ineg_con_1 gradient
[ 0.0000000000000000e+00 1.4999999999999999¢e-01 ] nin_ineq_con_2 gradient
[ 0.0000000000000000e+00 -1.9485571585149869e-01 ] nin_ineq_con_3 gradient

Restart record 2 (evaluation id 2):

2.1640000000000001e+00 intake_dia
1.7169994018008317e+00 flatness
Active set vector = { 3 3 3 3}
-2.4869127192988878e+00 obj_fn
6.9256958799989843e-01 nin_ineqg_con_1
-3.4245008972987528e-01 nIn_ineq_con_2
8.7142207937157910e-03 nin_ineq_con_3
[ -4.3644298963447897e-01 1.4999999999999999¢e-01 ] obj_fn gradient
[ 2.9814239699997572e+01 0.0000000000000000e+00 ] nIn_ineq_con_1 gradient
[ 0.0000000000000000e+00 1.4999999999999999¢e-01 ] nin_ineq_con_2 gradient
[ 0.0000000000000000e+00 -1.6998301774282701e-01 ] nin_ineq_con_3 gradient

...<snip>...

Restart file processing completed: 11 evaluations retrieved.

19.2.2 To/From Neutral File Format
A DAKOTA restart file can be converted to a neutral file format using a command like the following:
dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to the following:
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Writing neutral file dakota.neu
Restart file processing completed: 11 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:
dakota_restart_util from_neutral dakota.neu dakota.rst
which results in a report similar to the following:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 11 evaluations retrieved.

The contents of the generated neutral file are similar to the following (from the first two records/iDakwta/test/
dakota _cyl _head.in example problem):

6 7 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness 0 0 O O

NULL 4 2 1 0 3 3 3 31 2 obj_fn nin_ineq_con_1 nin_ineg_con_2 nin_ineq_con_3
-2.4355973813420619e+00 -4.7428486677140930e-01 -4.5000000000000001e-01
1.3971143170299741e-01 -4.3644298963447897e-01  1.4999999999999999e-01
1.3855136437818300e-01  0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01  0.0000000000000000e+00 -1.9485571585149869¢e-01 1

6 7 2 2.1640000000000001e+00 intake_dia 1.7169994018008317e+00 flatness 0 0 O 0

NULL 4 2 1 0 3 3 3 3 1 2 obj_fn nin_ineq_con_1 nin_ineq_con_2 nin_ineq_con_3
-2.4869127192988878e+00 6.9256958799989843e-01 -3.4245008972987528e-01
8.7142207937157910e-03 -4.3644298963447897e-01 1.4999999999999999e-01
2.9814239699997572e+01  0.0000000000000000e+00 0.0000000000000000e+00
1.4999999999999999e-01  0.0000000000000000e+00 -1.6998301774282701e-01 2

This format is not intended for direct viewing (print should be used for this purpose). Rather, the neutral file
capability has been used in the past for managing portability of restart data across platforms (recent use of

XDR standard for portable binary formats has eliminated this need) or for advanced repair of restart records
cases where the techniqudsSection 19.2.5 were insufficient).

19.2.3 To Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-party pos
processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identicaltaithlar _graphics _data
option in the DAKOTA input file specification (described in Section 15.3), but with two important differences:

1. No function evaluations are suppressed as they aretalithlar _graphics _data (i.e., any internal
finite difference evaluations are included).

2. The conversion can be performed posthumously, i.e., for DAKOTA runs executed previously.
An example command for converting a restart file to tabular format is:
dakota_restart_util to_tabular dakota.rst dakota.m

which results in a report similar to the following:
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Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations tabulated.

The contents of the generated tabular file are similar to the following (from the
/Dakotaltest/dakota _textbook.in example problem). Note that, while evaluations resulting from |
merical derivative offsets would be reported (as described above), derivatives returned as part of the eve
are not reported (since they do not readily fit within a compact tabular format):

%eval_id x1 x2 obj_fn nin_ineq_con_1 nin_ineq_con_2
1 0.9 11 0.0002 0.26 0.76
2 0.6433962264 0.6962264151 0.0246865569 0.06584549662 0.1630331079
3 0.5310576935  0.5388046558 0.09360081618 0.01261994597 0.02478161031
4 0.612538853  0.6529854907 0.03703861037 0.04871110113  0.1201206246
5 0.5209215947 0.5259311717 0.1031862798 0.00839372202 0.01614279999
6 0.5661606434 0.5886684401 0.06405197568 0.02620365411 0.06345021064
7  0.5083873357 0.510239856  0.1159458957 0.003337755086 0.006151042802
8 0.5001577143 0.5001800249 0.1248312163 6.772666885e-05 0.0001012002012
9 0.5000000547 0.5000000598 0.1249999428 2.485652461e-08 3.238746073e-08
10 0.5 0.5 0.125 2.942091015e-15 3.60822483e-15

19.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation databa:
example, when constructing a data fit surrogate model, data from previous studies can be pulled in and r
create a combined data set for the surrogate fit. An example command for concatenating multiple restart

dakota_restart_util cat dakota.rst.1 dakota.rst.2 dakota.rst.3 dakota.rst.all
which results in a report similar to the following:

Writing new restart file dakota.rst.all

dakota.rst.1 processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

The dakota.rst.all database now contains 185 evaluations and can be read in for use in a subs
DAKOTA study using theread _restart  option to thedakota executable (see Sectid®.1).

19.2.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the DAKOTA restart fil:
example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If 0’'s (c
erroneous data) are returned from the usarialysis _driver , then this bad data will get recorded in tr
restart file. If there is a clear demarcation of where corruption initiated (typical in a process with feedbac}
as gradient-based optimization), then use of #tep _restart  option for thedakota executable can be
effective in continuing the study from the point immediately prior to the introduction of bad data. If, how
there are interspersed corruptions throughout the restart database (typical in a process without feedback
sampling), then theemove andremove _ids options ofdakota _restart _util can be useful.

An example of the command syntax for ttemove option is:
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dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations idakota.rst having an active response function value that matéhe£4 within
machine precision are discarded when creatiakpta.rst.repaired

An example of the command syntax for ttemove _ids option is:
dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired
which results in a report similar to the following:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

where evaluation id42, 15, 23, 44, and57 have been discarded when creataakota.rst.repaired

An important detail is that, unlike thestop _restart  option which operates on restart record numbers
Section19.1)), theremove _ids option operates on evaluation ids. Thus, removal is not necessarily basec
order of appearance in the restart file. This distinction is important when removing restart records for a
contained either asynchronous or duplicate evaluations, since the restart insertion order and evaluation i
correspond in these cases (asynchronous evaluations have ids assigned in the order of job creation but :
in the restart file in the order of job completion, and duplicate evaluations are not recorded which introduce
between evaluation id and record number). This can also be important if removing records from a conc
restart file, since the same evaluation id could appear more than once. In this case, all evaluation recorc
matching theemove _ids list will be removed.
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Simulation Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call, fork, anc
simulation interfaces (see Secti@f.3for simulation interface descriptions). Failure capturing consists of
operations: failure detection, failure communication, and failure mitigation.

20.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the user’s
bility to detect failures within theianalysis _driver ,input _filter , oroutput _filter . One popule
example of simulation monitoring is to rely on a simulation’s internal detection of errors. In this case, th
grep utility can be used within a user’s driver/filter script to detect strings in output files which indicate a
failure. For example, the following C shell script excerpt

grep ERROR analysis.out > /dev/null
if ( $status == 0 )

echo "FAIL" > results.out
endif

will pass theif test and communicate simulation failure to DAKOTA if tgeep command finds the strii
ERRORanywhere in thanalysis.out file. The/dev/null device file is called the “bit bucket” and t
grep command output is discarded by redirecting it to this destination. $6tetus  shell variable contair
the exit status of the last command executgld hich is the exit status ofrep in this case (0 if success
in finding the error string, nonzero otherwise). For Bourne shélisthe $? shell variable serves the sa
purpose a$status for C shells. In a related approach, if the return code from a simulation can be used
for failure detection purposes, théstatus or $? could be queried immediately following the simulal
execution using aif test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic information, ther
detection may require monitoring of simulation results for sanity (e.g., is the mesh distorting excessiv
potentially monitoring for continued process existence to detect a simulation segmentation fault or col
While this can get complicated, the flexibility of DAKOTA's interfaces allows for a wide variety of monit
approaches.
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20.2 Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can take the apprpriate correctiv
The form of this communication depends on the type of simulation interface in use.

In the system call and fork simulation interfaces, a detected simulation failure is communicated to D.
through the results file. Instead of returning the standard results file data, the fiing™should appear at tf
beginning of the results file. Any data appearing after the fail string will be ignored. Also, DAKOTAs det
of this string is case insensitive, sBAIL ", “ Fail ", etc., are equally valid.

In the direct simulation interface case, a detected simulation failure is communicated to DAKOTA thro
return code provided by the usedsalysis _driver ,input _filter , oroutput _filter . As shown ir
Sectionl6.2.] the prototype for simulations linked within the direct interface includes an integer return cod
code has the following meanings: 0 (false) indicates that all is normal and nonzero (true) indicates an ¢
(i.e., a simulation failure).

20.3 Failure mitigation

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the failure using
the following four mechanisms, as governed by the interface specification in the user’s input file (see the
Commands chapter in the DAKOTA Reference Man2&) for additional information).

20.3.1 Abort (default)

If the abort option is active (the default), then DAKOTA will terminate upon detecting a failure. Note t
the problem causing the failure can be corrected, DAKOTA' restart capability (see Ch&ptan be used |
continue the study.

20.3.2 Retry

If the retry  option is specified, then DAKOTA will re-invoke the failed simulation up to the specified nu
of retries. If the simulation continues to fail on each of these retries, DAKOTA will terminate. The retry of
appropriate for those cases in which simulation failures may be resulting from transient computing envi
issues, such as shared disk space, software license access, or networking problems.

20.3.3 Recover

If the recover option is specified, then DAKOTA will not attempt the failed simulation again. Rather, i
return a “"dummy” set of function values as the results of the function evaluation. The dummy function v.
be returned are specified by the user. Any gradient or Hessian data requested in the active set vector w
This option is appropriate for those cases in which a failed simulation may indicate a region of the desi
to be avoided and the dummy values can be used to return a large objective function or constraint violati
will discourage an optimizer from further investigating the region.
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20.3.4 Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the failing “target” sin
tion from a nearby “source” simulation through the use of a continuation algorithm. This option is approp!
those cases in which a failed simulation may be caused by an inadequate initial guess. If the “distance’
the source and target can be divided into smaller steps in which information from one step provides an
initial guess for the next step, then the continuation method can step towards the target in increments si
small to allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and tt
target point is halved and the evaluation is retried. This halving is repeated until a successful evaluatio
The algorithm then marches towards the target point using the last interval as a step size. If a failure occ
marching forward, the interval will be halved again. Each invocation of the continuation algorithm is &
a total of ten failures (ten halvings result in up to 1024 evaluations from source to target) prior to abor
DAKOTA process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is respons
managing the initial guess for the simulation program. For example, in a GOMA inpWTilethie user specifie
the files to be used for reading initial guess data and writing solution data. When using the last succes
uation in the continuation algorithm, the translation of initial guess data can be accomplished by simply
the solution data file leftover from the last evaluation to the initial guess file for the current evaluation
fact this is useful for all evaluations, not just continuation). However, a more general approach would
closestsuccessful evaluation (rather than thst successful evaluation) as the source point in the contint
algorithm. This will be especially important for nonlocal methods (e.g., genetic algorithms) in which t
successful evaluation may not necessarily be in the vicinity of the current evaluation. This approach wil
the user to save and manipulate previous solutions (likely tagged with evaluation number) so that the res
a particular simulation (specified by DAKOTA after internal identification of the closest point) can be use:
current simulation’s initial guess. This more general approach is not yet supported in DAKOTA.
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Chapter 21

Additional Examples

21.1 Textbook Example

Equation2.3 presents the 2-dimensional form of the textbook problem. An extended formulation is stated as

minimize f= (& —1)*
i=1

subject to g =12 — % <0 (21.1)

X
glzxg_ilgo

0.5<z; <5.8
—2.9<125<29

wheren is the number of design variables. The objective function is designed to accommodate an arbitr:
number of design variables in order to allow flexible testing of a variety of data sets. Contour plotsriosthe
case have been shown previously in Fighr2

This example problem may also be used to exercise least squares solution methods by modifying the prot
formulation to:

minimize ()% + (91)* + (g2)* (21.2)

This modification is performed by simply changing the responses specification for the three functions frc
numobjective  _functions = 1  andnum.nonlinear _inequality  _constraints = 2 tonumleast _
squares terms= 3. Note that the two problem formulations are not equivalent and have different solutions.

Another way to exercise the least squares methods which would be equivalent to the optimization formt
tion would be to select the residual functions to (ag — 1)2. However, this formulation requires modifica-
tion to text _book.C and will not be presented here. Equation 21.2, on the other hand, can use the existi
text _book.C without modification. Refer to Section 21.2 for an example of minimizing the same objective
function using both optimization and least squares approaches.
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21.1.1 Methods

The dakota _textbook.in file provided in the/Dakota/test directory selects @ot _-mmfd optimizer

to perform constrained minimization using ttext _book simulator. Additional gradient-based methods that
can be used include methods from CONMIN, NPSOL, NLPQL, and OPT++. In addition the unconstrained
least squares formulation of Equatiah.2can be solved using OPT++ Gauss-Newton, NLSSOL, and NL2SOL
methods.

A multilevel hybrid can also be demonstrated ontiid _book problem. Thedakota _multilevel.in file

provided in the same directory starts witba@iny _ea solution which feeds its best pointint@aliny _pattern _search
optimization which feeds its best point inbptpp _newton . While this approach is overkill for such a simple
problem, it is useful for demonstrating the coordination between multiple methods in the multilevel strategy.

In addition,dakota _textbook _3pc.in demonstrates the use of a 3-piece interface to perform the parameter
to response mapping, andkota _textbook _Ihs.in  demonstrates the use of Latin hypercube Monte Carlo
sampling for assessing probability of failure as measured by specified response levels.

21.1.2 Optimization Results

For the optimization problem given in Equati@f.1, the unconstrained solution
(numenonlinear  _inequality ~ _constraints set to zero) for two design variables is:

ry = 1.0

zo = 1.0
with

ff = 00

The solution for the optimization problem constrainedgby
(numnonlinear  _inequality  _constraints setto one) is:

ry = 0.763
o = 1.16
with
o= 0.00388
g7 = 0.0 (active)

The solution for the optimization problem constrainedghyand go
(num.nonlinear  _inequality ~ _constraints set to two) is:

1 = 0.500
2 = 0.500
with
o= 0125
g7 = 0.0 (active)
g5 = 0.0 (active)

Note that as constraints are added, the design freedom is restricted (the additional constraints are active at the
solution) and an increase in the optimal objective function is observed.
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21.1.3 Least Squares Results

The solution for the least squares problem given in Equé&tibgis:

1 = 0.566

9 = 0.566
with the residual functions equal to

f* = 0.0713

g7 = 0.0371

g5 = 0.0371

and a minimal sum of the squarestof0783.

This study requires selectionofimleast _squares _terms = 3 inthe responses specification and selec
of eitheroptpp _g_newton , nissol _sgp, ornl2sol in the method specification.

21.2 Rosenbrock Example

The Rosenbrock functiordf] is a well known benchmark problem for optimization algorithms. Its star
two-dimensional formulation can be stated as

minimize  f = 100(zy — 23)% + (1 — x1)? (21.3)

Two n-dimensional formulations are present in the literature. Fird§] formulates an “extended Rosenbro

as:
n/2

f=Y [alwa — a5 1) + (1 = w2i-1)°] (21.4)
1=1
Second, 89] formulates a “generalized Rosenbrock” as:
n—1
f=>[100(zip1 — 7)* + (1 — ;)?] (21.5)
=1
These formulations are not currently supported in DAKOTA's system/fork/direct interfaces.

Surface and contour plots for this function have been shown previously in FAdLir€his example problem m:
also be used to exercise least squares solution methods by recasting the problem formulation into:

minimize  f = (f1)* + (f2)? (21.6)
where
fir =10(zs — 27) (21.7)
and
fo=1-—m (21.8)

are residual terms. In this case (unlike the least squares modification in S&ttiprthe two problem formule
tions are equivalent and have identical solutions.
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21.2.1 Methods

In the/Dakota/test directory, therosenbrock

executable (compiled fromosenbrock.C ) checks th

number of response functions passed in the parameters file and returns either an objective function
puted from Equatior21.3 for use with optimization methods or two least squares terms (as compute:
Equations21.7-21.8 for use with least squares methods. Both cases support analytic gradients of tt
tion set with respect to the desigariables. Thedakota _rosenbrock.in input file can be used to sol
both problems by toggling settings in the method and responses specifications. To run the optimizat

tion, selecnum.objective  _functions = 1

in the responses specification, and select an optimizer
optpp _g_newton ) in the method specification, e.g.:

method,
optpp_g_newton
convergence_tolerance = 1le-10

variables,
continuous_design = 2
cdv_initial_point -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptor X1 'x2’

interface,
system
analysis_driver = 'rosenbrock’

responses,
num_objective_functions = 1
analytic_gradients
no_hessians

To run the least squares solution, the responses specification is chamged least _squares _terms = 2
and the method specification is changed to a least squares methodop.,.g_newton ):
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method, \
optpp_g_newton \
convergence_tolerance = 1e-10 \
variables, \
continuous_design = 2 \
cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor X1 'x2’ \
interface, \
system \
analysis_driver = ’rosenbrock’ \
responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

21.2.2 Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:

rr = 1.0

To = 1.0
with

£ = 00

In comparing the two approaches, one would expect the Gauss-Newton approach to be more efficient since
it exploits the special-structure of a least squares objective function and, in this problem, the Gauss-Newton
Hessian is a good approximation since the least squares residuals are zero at the solution. From a good initial
guess, this expected behavior is clearly demonstrated. Startingthoninitial _point = 0.8, 0.7 , the

optpp _g_newton method converges in only 3 function and gradient evaluations whilegtgp _gq_newton

method requires 27 function and gradient evaluations to achieve similar accuracy. Starting from a poorer initial
guess (e.ggdv _initial _point = -1.2, 1.0 ), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 4pfpp _q_newton

and 29 foroptpp _g_newton ). However, once the vicinity is located and the Hessian approximation becomes
accurate, convergence is much more rapid with the Gauss-Newton approach.

Shown below is the complete DAKOTA output for tbptpp _g_newton method starting from
cdv _initial _point = 0.8, 0.7 :

Running MPI executable in serial mode.
DAKOTA version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
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methodName = optpp_g_nhewton
gradientType = analytic
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running optpp_g_newton iterator.

Begin Function Evaluation 1

Parameters for function evaluation 1:
8.0000000000e-01 x1

7.0000000000e-01 x2
(rosenbrock /tmp/fileLOma4g /tmp/fileFWIOrs)

Active response data for function evaluation 1:
Active set vector = { 3 3 }
6.0000000000e-01 least_sq_term_1
2.0000000000e-01 least_sq_term_2
[ -1.6000000000e+01 1.0000000000e+01 ] least _sqg_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least _sqg_term_2 gradient

nlf2_evaluator_gn results: objective fn. =

4.0000000000e-01

nlf2_evaluator_gn results: objective fn. gradient
[ -1.9600000000e+01 1.2000000000e+01 ]

nlf2_evaluator_gn results: objective fn. Hessian =
[[ 5.1400000000e+02 -3.2000000000e+02

-3.2000000000e+02  2.0000000000e+02 1]

Begin Function Evaluation 2

Parameters for function evaluation 2:
9.9999528206e-01 x1

9.5999243139%e-01 x2
(rosenbrock /tmp/filebYPXWD /tmp/fileHIm8rP)

Active response data for function evaluation 2:
Active set vector = { 3 3 }
-3.9998132761e-01 least_sq_term_1
4.7179363789e-06 least_sq_term_2
[ -1.9999905641e+01 1.0000000000e+01 ] least _sqg_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

nlf2_evaluator_gn results: objective fn. =

1.5998506246e-01
nlf2_evaluator_gn results: objective fn. gradient =
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[ 1.5999168185e+01 -7.9996265522e+00 ]
nlf2_evaluator_gn results: objective fn. Hessian =

[ 8.0199245132e+02 -3.9999811283e+02
-3.9999811283e+02 2.0000000000e+02 1]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
9.9999904377e-01 x1
9.9999808276e-01 x2

(rosenbrock /tmpf/filejsKoYO /tmpl/filej7aGuc)

Active response data for function evaluation 3:
Active set vector = { 3 3 }
-4.7950734360e-08 least_sq_term_1
9.5622502239e-07 least_sq_term_2
[ -1.9999980875e+01 1.0000000000e+01 ] least _sqg_term_1 gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term_2 gradient

nlf2_evaluator_gn results: objective fn. =

9.1666556636e-13

nlf2_evaluator_gn results: objective fn. gradient
[ 5.5774955704e-09 -9.5901468721e-07 ]

nlf2_evaluator_gn results: objective fn. Hessian
[ 8.0199847004e+02 -3.9999961751e+02

-3.9999961751e+02 2.0000000000e+02 1]

<<<<< lterator optpp_g_newton completed.
<<<<< Function evaluation summary: 3 total (3 new, O duplicate)
<<<<< Best parameters =
9.9999904377e-01 x1
9.9999808276e-01 x2
<<<<< Best residual terms =
-4.7950734360e-08
9.5622502239e-07
<<<<< Best data captured at function evaluation 3
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.01 [parent = 0.01, child =1.73472e-18]
Total wall clock = 0.128705

21.3 Cylinder Head Example

The cylinder head example problem is stated as:

L horsepower warrant
minimize f= —1< P y)

250 100000
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subject to Omaz < 0.50yie1a (21.9)
warranty > 100000
timecycie < 60
1.5 < dintaxe < 2.164
0.0 < flatness < 4.0

This formulation seeks to simultaneously maximize normalized engine horsepower and engine warranty ¢
variables of valve intake diameted;(..x.) in inches and overall head flathesd 4tness) in thousandths of an
inch subject to inequality constraints that the maximum stress cannot exceed half of yield, that warranty nr
be at least 100000 miles, and that manufacturing cycle time must be less than 60 seconds. Since the const
involve different scales, they should be nondimensionalized (note: the nonlinear constraint scaling describe
Section7.3.3can now do this automatically). In addition, they can be converted to the standard 1-sided fo
g(x) <0 as follows:

2 Umax

g1 = 2mx 1<
Oyield
warrant
g2= 1~ 100000y =0 (21.10)
timecycle
— 2rayele 4 <
9 60 <0

The objective function and constraints are related analytically to the design variables according to the follow
simple expressions:

warranty = 100000 + 15000(4 — flatness)
timecycre = 45+4.5(4 — flatness)'®
din ake
horsepower = 250+ 200( - §3§ - 1) (21.11)
750 + !
Ompax — T \o&®
(twall)z5

(dintake - dexhaust)

2

tya1l = Offsetintake — OffSe€texnaust —

where the constants in Equatiah.10and Equatior21.11assume the following valuesy;e1a = 3000, offsetitake =
3.25, of fsetexnaust = 1.34, aNddegnaust = 1.556.

21.3.1 Methods

In the /Dakota/test directory, thedakota _cyl _head.in input file is used to execute a variety of tests
using the cylinder head example. One of these tests is shown below:
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method, \
npsol_sqgp \
convergence_tolerance = 1.e-8
variables, \
continuous_design = 2 \
cdv_initial_point 1.8 1.0 \
cdv_upper_bounds  2.164 4.0 \
cdv_lower_bounds 15 0.0 \
cdv_descriptor ‘intake_dia’ 'flatness’ \
interface, \
fork asynchronous \
analysis_driver = ’cyl_head’ \
responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 3 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = l.e-4 \
no_hessians
The interface keyword specifies use of tty¢ _head executable (compiled froDakota/test/cyl _head.C)

as the simulator. The variables and responses keywords specify the data sets to be used in the iteration by pro-
viding the initial point, descriptors, and upper and lower bounds for two continuous design variables and by
specifying the use of one objective function, three inequality constraints, and numerical gradients in the problem.
The method keyword specifies the use oftiipsol _sgp method to solve this constrained optimization problem.

No strategy keyword is specified, so the defairigle _method strategy is used.

21.3.2 Optimization Results

The solution for the constrained optimization problem is:

intake_dia = 2.122
flatness = 1.769
with
ff = -=2461
gr = 0.0 (active)
g5 = —0.3347 (inactive)
g5 = 0.0 (active)

which corresponds to the following optimal response quantities:

warranty = 133472
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wall

end cap

Figure 21.1: Container wall-to-end-cap seal

cycle_time

wall_thickness
horse_power =

max_stress =

The final report from the DAKOTA output is as follows:

<<<<< lterator npsol_sgp completed.

60
0.0707906
281.579
1500

<<<<< Function evaluation summary: 55 total (55 new, 0 duplicate)

<<<<< Best parameters =

2.1224188322e+00 intake_dia
1.7685568331e+00 flatness

<<<<< Best objective function =
-2.4610312954e+00

<<<<< Best constraint values =
1.8417266410e-13
-3.3471647504e-01
0.0000000000e+00

<<<<< Best data captured at function evaluation 51

<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.11 [parent =
Total wall clock = 0.506244

21.4 Container Example

0.11, child =

0]

For this example, suppose that a high-volume manufacturer of light weight steel containers wants to minimize
the amount of raw sheet material that must be used to manufacture a 1.1 quart cylindrical-shaped can, including
waste material. Material for the container walls and end caps is stamped from stock sheet material of constant
thickness. The seal between the end caps and container wall is manufactured by a press forming operation on the
end caps. The end caps can then be attached to the container wall forming a seal through a crimping operation.

For preliminary design purposes, the extra material that would normally go into the container end cap seals is
approximated by increasing the cut dimensions of the end cap diameters by 12% and the height of the container
wall by 5%, and waste associated with stamping the end caps in a specialized pattern from sheet stock is estimated
as 15% of the cap area. The equation for the area of the container materials including waste is
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end cap end cap . container .
nominal nominal
waste seal wall seal .
A=2x . X . X end cap + . X container
material material material
area wall area
factor factor factor
or
D2
A= 2(1.15)(1.12)7TT + (1.05)7TDH (21.12;

whereD and H are the diameter and height of the finished product in units of inches, respectively. The
of the finished product is specified to be

2

V=mr = (1.1qt)(57.75in®/qt) (21.13

The equation for area is the objective function for this problem; it is to be minimized. The equation for vo
an equality constraint; it must be satisfied at the conclusion of the optimization problem. Any combind&fl
and H that satisfies the volume constraint ifeasiblesolution (although not necessarily the optimal solutior
the area minimization problem, and any combination that does not satisfy the volume constrainféasible
solution. The area that is a minimum subject to the volume constraint @&ptiteal area, and the correspond
values for the parametef3 and H are the optimal parameter values.

It is important that the equations supplied to a numerical optimization code be limited to generating on
ically realizable values, since an optimizer will not have the capability to differentiate between meaning
nonphysical parameter values. It is often up to the engineer to supply these limits, usually in the form o
eter bound constraints. For example, by observing the equations for the area objective function and th
constraint, it can be seen that by allowing the diameferfo become negative, it is algebraically possibl
generate relatively small values for the area that also satisfy the volume constraint. Negative valuasdar
course physically meaningless. Therefore, to ensure that the numerically-solved optimization problem
meaningful, a bound constraint @ < 0 must be included in the optimization problem statement. A po:
value for H is implied since the volume constraint could never be satisfiébhifere negative. However, a bou
constraint ofH < 0 can be added to the optimization problem if desired. The optimization problem can t
stated in a standardized form as

I D?
minimize 2(1.15)(1.12)7TT + (1.05)*7DH
. D*H
subject to m = (1.1qt)(57.75in® /qt) (21.14
D<0,H<0

A graphical view of the container optimization problem appears in Fi@dr2 The 3-D surface defines t
area,A, as a function of diameter and height. The curved line that extends across the surface defines
that satisfy the volume equality constraiht, Graphically, the container optimization problem can be views
one of finding the point along the constraint line with the smallest 3-D surface height in Bgj&eThis point
corresponds to the optimal values for diameter and height of the final product.

The input file for this test problem is namddkota _container.in in the directory/Dakota/test . The
solution to this example problem (#, D) = (4.99, 4.03), with a minimum area of 98.48n? .

The final report from the DAKOTA output is as follows:
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270

Figure 21.2: A graphical representation of the container optimization problem.
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<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 40 total (40 new, O duplicate)
<<<<< Best parameters =
4.9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9.8432498116e+01
<<<<< Best constraint values =
-9.6301439045e-12
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.18 [parent = 0.18, child = 0]
Total wall clock = 0.809126

21.5 Log Ratio Example

This test problem, mentioned previously in Sect®B.3 has a limit state function defined by the ratio of |
lognormally-distributed random variables.
gx) =2 (21.15
T2
The distributions for both; andx, are Lognormal(1, 0.5) with a correlation coefficient between the two vari
of 0.3.

First-order and second-order reliability analysis are performed iddketa _logratio.in and

dakota _logratio  _taylor2.in input files, respectively. For RIA, 24 response levels (.4, .5, .55, .6
.7,.75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.55, 1.6, 1.65, 1.7, and 1.75) are mappe
corresponding cumulative probability levels. For PMA, these 24 probability levels (the fully converged
from RIA FORM) are mapped back into the original response levels. Figilr@overlays the computed CL
values for a number of first-order reliability method variants as well as a Latin Hypercube reference so
10% samples.

21.6 Steel Section Example

This test problem is used extensively Bf]. It involves a W16x31 steel section of A36 steel that must cari
applied deterministic bending moment of 1140 kip-in. For DAKOTA, it has been used as a verification
second-order integrations in reliability methods. The limit state function is defined as:

g(x) = FyZ — 1140 (21.16

whereF), is Lognormal(38., 3.8)7 is Normal(54., 2.7), and the variables are uncorrelated.

Thedakota _steel _section.in input file computes a first-order CDF probabilitygfy < 0.) = 1.297e-0°
and a second-order CDF probability;afy < 0.) = 1.375e-07. This second-order result differs from that rep:
in [56], since DAKOTA uses the Nataf nonlinear transformation to u-space (see Equétich8.15 and p6]
uses a linearized transformation.
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Figure 21.3: Lognormal ratio cumulative distribution function, RIA/PMA methods.

21.7 Portal Frame Example

This test problenis taken from §8, 61]. It involves a plastic collapse mechanism of a simple portal frame. It als
has been used as a verification test for second-order integrations in reliability methods. The limit state functi
defined as:

9(x) = o1 + 222 + 223 + ¥4 — Sa5 — bae (21.17)

wherex; — x4 are Lognormal(120., 12.);5 is Lognormal(50., 15.)4 is Lognormal(40., 12.), and the variables
are uncorrelated.

While the limit state is linear in x-space, the nonlinear transformation of lognormals to u-space induces curva
Thedakota _portal _frame.in  input file computes a first-order CDF probability pfy < 0.) = 9.433e-03
and a second-order CDF probability pfg < 0.) = 1.201e-02. These results agree with the published resuli
from the literature.

21.8 Short Column Example

This test problem involves the plastic analysis and design of a short column with rectangular cross sectidn (wi
and deptth) having uncertain material properties (yield str&gsand subject to uncertain loads (bending moment
M and axial forceP) [67]. The limit state function is defined as:

AM P?
9) =1 = ooy ~ ey (21.18)

The distributions forP, M, andY are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5), respe:
tively, with a correlation coefficient of 0.5 betweéhand M (uncorrelated otherwise). The nominal valuestfor
andh are 5 and 15, respectively.
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Figure 21.4: Short column cumulative distribution function, RIA/PMA methods.

21.8.1 Uncertainty Quantification

First-order and second-order reliability analysis are performed iddketa _short _column.in anddakota _short _column
input files, respectively. For RIA, 43 response levels (-9.0, -8.75, -8.5, -8.0, -7.75, -7.5, -7.25, -7.0, -6.5, -6.0, -5.5,
-5.0,-45,-4.0,-35,-3.0,-25,-2.0,-1.9,-1.8,-1.7,-1.6,-1.5,-1.4,-1.3,-1.2,-1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5,

-0.4, -0.3, -0.2, -0.1, 0.0, 0.05, 0.1, 0.15, 0.2, 0.25) are mapped into the corresponding cumulative probability
levels. For PMA, these 43 probability levels (the fully converged results from RIA FORM) are mapped back

into the original response levels. Figw#.4overlays the computed CDF values for several first-order reliability

method variants as well as a Latin Hypercube reference solutibp’cfamples.

21.8.2 Reliability-Based Design Optimization

The short column example problem is also amenable to RBDO. An objective function of cross-sectional area
and a target reliability index of 2.5 (cumulative failure probabifity < 0) < 0.00621) are used in the design
problem:

min bh
s.t. 6>25
5.0<b5<15.0
15.0 < h <25.0 (21.19)

As is evident from the UQ results shown in Figi®.4 the initial design ofb, k) = (5, 15) is infeasible and the
optimization must add material to obtain the target reliability at the optimal désjgn = (8.68,25.0). Simple
bi-level, fully analytic bi-level, and sequential RBDO methods are explored in

dakota _rbdo _short _column.in ,dakota _rbdo _short _column _analytic.in ,and

dakota _rbdo _short _column _trsh.in , with results as described i@7, 28].
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Figure 21.5: Cantilever beam test problem.

21.9 Cantilever Example

This test problem is adapted from the reliability-based design optimization liter@djrg 105 and involves i
simple uniform cantilever beam as shown in FigRies

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam su
displacement constraint and a stress constraint. Random variables in the problem include the yidtdodtites
beam material, the Young’s moduléisof the material, and the horizontal and vertical loalisandY’, which are
modeled with normal distributions using (40000, 2000), N (2.9E7,1.45E6), N (500, 100), and N (1000, 100),
respectively. Problem constants inclule= 100in and Dy = 2.2535in. The constraints have the followi
analytic form:

stress = @Y + @X <R (21.20;
wt? w?t
displ t AL Yy’ + 20N <D
1 men = _— — -
splaceme o o) w2 s Do
or when scaled:
stress \
gs = - 1<0 (21.21;
P displacement _1<0
Dy

(21.22)

21.9.1 Deterministic Optimization Results

If the random variable&, R, X, andY are fixed at their means, the resulting deterministic design problel
be formulated as

minimize f=wt
subject to gs <0 (21.23;
gp <0
1.0<w<4.0
1.0<t<4.0
and can be solved using tH@akota/test/dakota _cantilever.in file. This input file manages a va

ety of tests, of which a sample is shown below:

DAKOTA Version 4.0 User’'s Manual generated on October 13, 200



21.9. CANTILEVER EXAMPLE 275

method, \
npsol_sqgp \
convergence_tolerance = 1.e-8
variables, \
continuous_design = 2 \
cdv_initial_point 4.0 4.0 \
cdv_upper_bounds 10.0 10.0 \
cdv_lower_bounds 1.0 1.0 \
cdv_descriptor 'beam_width’ 'beam_thickness’ \
continuous_state = 4 \
csv_initial_state  40000. 29.E+6 500. 1000. \
csv_descriptor 'R’ 'E’ X Y’
interface, \
system \
asynchronous evaluation_concurrency = 2 \

analysis_driver = ’cantilever’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type forward \
fd_gradient_step_size = l.e-4 \
no_hessians

The deterministic solution itw, t) = (2.35, 3.33) with an objective function of.82. The final report from the
DAKOTA output is as follows:

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 33 total (33 new, O duplicate)
<<<<< Best parameters =
2.3520341271e+00 beam_width
3.3262784077e+00 beam_thickness
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
1.0000000000e+03 Y
<<<<< Best objective function =
7.8235203313e+00
<<<<< Best constraint values =
-1.6009000260e-02
-3.7081115956e-11
<<<<< Best data captured at function evaluation 31
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.08 [parent = 0.08, child = 0]
Total wall clock = 0.569573
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21.9.2 Stochastic Optimization Results

If the normal distributions for the random variablEs R, X, andY” are included, a stochastic design problem
be formulated as

minimize f=wt
subject to Bp >3 (21.24,
Bs >3
1.0<w <40
1.0<t<4.0

where a 3-sigma reliability level (probability of failure = 0.00135 if responses are normally-distributed) i
sought on the scaled constraints. Optimization under uncertainty solutions to the stochastic problem are
in [32, 27, 28], for which the solution ifw, t) = (2.45, 3.88) with an objective function 09.52. This demon
strates that a more conservative design is needed to satisfy the probabilistic constraints.

21.10 Steel Column Example

This test problem involves the trade-off between cost and reliability for a steel colihinilhe cost is define
as
Cost = bd + 5h (21.25

whereb, d, andh are the means of the flange breadth, flange thickness, and profile height, respectively. Nir
related random variables are used in the problem to define the yield Bfrésgnormal withy /o = 400/35 MPa)
dead weight load’; (normal withu/o = 500000/50000 N), variable load, (gumbel withy /o = 600000/9000
N), variable loadP; (gumbel withu/o = 600000/90000 N), flange breadth(lognormal withy /o = 5/3 mm),
flange thicknes® (lognormal withp/o = df2 mm), profile height? (lognormal withy/o = /5 mm), initial
deflectionFy (normal with /o = 30/20 mm), and youngs modulds (weibull with 1/ = 21000/4200 MPa
The limit state has the following analytic form:

1 F, B,
—F,—-P 21.26)
g=5 <2BD+BDHEb—P) (21.26)
where
P = P +P+Ps (21.27,
72EBDH?
B, = 22U 21.28)

and the column length is 7500 mm.

This design problemdakota _rbdo _steel _column _mapvars.in  in /Dakota/test ) demonstrates d
sign variable insertion into random variable distribution parameters through the design of the mean flange
flange thickness, and profile height. The RBDO formulation maximizes the reliability subject to a cost col

maximize 1]

subjectto Cost < 4000.
200.0 < b <400.0 (21.29
10.0 < d < 30.0

100.0 < h < 500.0
which has the solutiorb(d, i) = (200.0, 17.50, 100.0) with a maximal reliability of 3.132.
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21.11 Multiobjective Examples

There are three examples in the test directory that are taken from a multiobjective evolutionary algorithm |
test suite described by Van Veldhuizen et. al. in][ These three problems are good examples to illustrat
different forms that the Pareto set may take. For each problem, we describe the DAKOTA input and shov
of the Pareto front. These problems are all solved withnlega method. In Van Veldhuizen’s notation, the
of all Pareto optimal design configurations (design variable values only) is derioted. ... and is defined as

Pr={zeQ-32' e f(a) = f(z)}
The Pareto front, which is the set of objective function values associated with the Pareto optimal design
rations, is denote®F* or PF... and is defined as:
PF* = {ua=f=(fi2),.... fu2)) |z € P}
The values calculated for the Pareto set and the Pareto front using the moga method are close to but |

exactly the true values, depending on the number of generations the moga is run, the various settings
the GA, and the complexity of the Pareto set.

21.11.1 Multiobjective Test Problem 1

The first test problem is a case whédtg,,. is connected an# F;..,.. is concave. The problem is to simultaneot
optimize f; and f; given three input variables;, x2, andzs, where the inputs are bounded by < z; < 4:

fU_(z(ﬁ))
fU(Z(ﬁ))

The input file for this example is shown in Figuz&.6 The interface keyword specifies the use ofitiegatestl
executable (compiled frotDakota/test/mogatest1.C ) as the simulator. The Pareto front is show!
Figure21.7.

21.11.2 Multiobjective Test Problem 2

The second test problem is a case where Both andPF..,. are disconnected®F;,,. has four separate Par:
curves. The problem is to simultaneously optimjzeand f> given two input variablesy; andzy, where the
inputs are bounded by < z; < 1, and:

filz) = o
Fa(2) (14 10z2) x [1 - (

191 T

sin(87x1)

The input file for this example is shown in Figu2&.8 It differs from Figure21.6in the variables specification,
the use of thenogatest2 executable (compiled froMDakota/test/mogatest2.C ) as the simulator, ar
inthemaxfunction _evaluations  andcrossover _type MOGA controls. The Pareto front is showr
Figure21.9 Note the discontinous nature of the front in this example.
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strategy, \
single \
graphics tabular_graphics_data
method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type unique_random \
crossover_type shuffle_random \
num_offspring = 2 num_parents = 2 \
crossover_rate = 0.8
mutation_type replace_uniform \
mutation_rate = 0.1 \
fitness_type domination_count \
replacement_type below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type metric_tracker \
percent_change = 0.05 num_generations = 10
variables, \
continuous_design = 3 \
cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor X1’ ‘X2’ X3’ \
interface, \
system \
analysis_driver = 'mogatestl’ \
responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 21.6: DAKOTA input file specifying the use of MOGA on mogatestl
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MOGA Test Problem #1 - Concave Fareto Frontier

0 %
o7 WMQ i

06 b

03 b

o1r

0 IR na 03 0.4 0.5 0g or ng na 1
F1

Figure 21.7: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest1

21.11.3 Multiobjective Test Problem 3

The third test problem is a case whexg,. is disconnected bWRF.,.. iS connected. It is called the Srinivas
problem in the literature (cite). This problem also has two nonlinear constraints. The problem is to simultaneously
optimize f; and f, given two input variablesy; andxs, where the inputs are bounded b0 < z; < 20, and:

fi(z) (r1 —2)* + (22— 1)2 +2
fa(x) = 9z1 — (22— 1)°

The constraints are:

x? + x3 — 225
T 73.%2 + 10

o
INIA

The input file for this example is shown in Figu2é.1Q It differs from Figure21.8in the variables and responses
specifications, in the use of tieogatest3 executable (compiled froDakota/test/mogatest3.C ) as

the simulator, and in thmax function _evaluations  andmutation _type MOGA controls. The Pareto

set is shown in Figur@1.11 Note the discontinous nature of the Pareto set (in the design space) in this example.
The Pareto front is shown in Figugd.12
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strategy, \
single \
graphics tabular_graphics_data
method, \
moga \
output silent \
seed = 10983 \
max_function_evaluations = 3000 \
initialization_type unique_random \
crossover_type \
multi_point_parameterized_binary = 2 \
crossover_rate = 0.8 \
mutation_type replace_uniform \
mutation_rate = 0.1 \
fithess_type domination_count \
replacement_type below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type metric_tracker \
percent_change = 0.05 num_generations = 10
variables, \
continuous_design = 2 \
cdv_initial_point 0.5 0.5 \
cdv_upper_bounds 1 1 \
cdv_lower_bounds 0 0 \
cdv_descriptor 'x1’ 'x2' \
interface, \
system \
analysis_driver = 'mogatest2’ \
responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 21.8: DAKOTA input file specifying the use of MOGA on mogatest2
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MOGA Test Proklem #2 - Discrete Pareto Frontier
1 2 T T T T T T T T

o0& b
06 * b
04r T

02r b

02

\

06 1 | | | | | | 1

F1

Figure 21.9: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest2

DAKOTA Version 4.0 User’'s Manual generated on October 13, 2006



282 CHAPTER 21. ADDITIONAL EXAMPLES

strategy, \
single \
graphics tabular_graphics_data

method, \
moga
output silent \
seed = 10983 \
max_function_evaluations = 2000 \
initialization_type unique_random \
crossover_type \
multi_point_parameterized_binary = 2 \
crossover_rate = 0.8 \
mutation_type offset_normal \
mutation_scale = 0.5 \
fitness_type domination_count \
replacement_type below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type metric_tracker \
percent_change = 0.05 num_generations = 10

variables, \
continuous_design = 2 \
cdv_descriptor x1’ 'x2' \
cdv_initial_point 0 0 \
cdv_upper_bounds 20 20 \
cdv_lower_bounds -20 -20 \
interface, \
system \

analysis_driver = 'mogatest3’

responses, \
num_objective_functions = 2 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_upper_bounds = 0.0 0.0 \
no_gradients \

no_hessians

Figure 21.10: DAKOTA input file specifying the use of MOGA on mogatest3
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MOGA Test Proklem #3 - Fareto Set
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Figure 21.11: Pareto Set of Design Variables corresponding to the Pareto front for mogatest3

MOGA Test Problermn #3 - Linear Fareto Frontier
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Figure 21.12: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest3
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