
SANDIA REPORT
SAND2006-6093
Unlimited Release
Printed October 2006

Presto User’s Guide Version 2.6

J. Richard Koteras, Arne S. Gullerud, Nathan K. Crane, and Jason D. Hales

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2006-6093
Unlimited Release

Printed October 2006

Presto User’s Guide Version 2.6

J. Richard Koteras, Arne S. Gullerud, Nathan K. Crane,

and Jason D. Hales

c©Date: October 10, 2006

Abstract

Presto is a Lagrangian, three-dimensional explicit, transient dynamics code for the analysis
of solids subjected to large, suddenly applied loads. Presto is designed for problems with
large deformations, nonlinear material behavior, and contact. There is a versatile element
library incorporating both continuum and structural elements. The code is designed for
a parallel computing environment. This document describes the input for the code that
gives users access to all of the current functionality in the code. Presto is built in an
environment that allows it to be coupled with other engineering analysis codes. The input
structure for the code, which uses a concept called scope, reflects the fact that Presto can
be used in a coupled environment. This guide describes the scope concept and the input
from the outermost to the innermost input scopes. Within a given scope, the descriptions of
input commands are grouped based on code functionality. For example, all material input
command lines are described in a section of the user’s guide for all of the material models
in the code.

3

Document History

Version Author Description Date
1.0 J. Richard Koteras,

Arne S. Gullerud
Original version of Presto User’s
Guide for release 1.0 of Presto.

October
2001

Stable
1.03

J. Richard Koteras,
Arne S. Gullerud

Updated version of Presto User’s
Guide for stable 1.03 of Presto.

April 2002

Stable
1.04

J. Richard Koteras,
Arne S. Gullerud

Updated version of Presto User’s
Guide for stable 1.04 of Presto.
Corrected errors in stable 1.03.

July 2002

Stable
1.05

J. Richard Koteras,
Arne S. Gullerud

Updated version of Presto User’s
Guide for stable 1.05 of Presto.

February
2003

2.1 J. Richard Koteras,
Arne S. Gullerud

This document is a rough draft
that is being made available to
assist users with the newest
release (2.1) of the code.

October
29, 2004

2.2 J. Richard Koteras,
Arne S. Gullerud

This document is a rough draft
that is being made available to
assist users with the newest
release (2.2) of the code.

March 30,
2005

2.3 J. Richard Koteras,
Arne S. Gullerud,
Nathan K. Crane,
Jason D. Hales

Updated version of Presto User’s
Guide for release 2.3 of Presto.

June 2,
2005

2.3 J. Richard Koteras,
Arne S. Gullerud,
Nathan K. Crane,
Jason D. Hales

Revision of Presto User’s Guide
for release 2.3 of Presto.

July 28,
2005

2.6 J. Richard Koteras,
Arne S. Gullerud,
Nathan K. Crane,
Jason D. Hales

Updated version of Presto User’s
Guide for release 2.6 of Presto.

April 2006
and
September
20, 2006

4

Acknowledgments

The authors would like to thank James V. Cox for providing information about
the Shared Interface MODels (SIMOD) library and editing the SIMOD section in this
document. We also would like to thank Gerald W. Wellman for providing information
about the material models and Jakob T. Ostien for providing references for the BCJ
model. Finally, we would like to thank Rhonda Reinert of Technically Write for
her careful review and extensive editing of this document and her many valuable
suggestions for improving the organization and clarity of this document.

5

Intentionally Left Blank

6

Contents

1 Introduction 23

1.1 Document Overview . 23

1.2 Overall Input Structure . 26

1.3 Conventions for Command Descriptions 30

1.3.1 Key Words . 30

1.3.2 User-Specified Input . 30

1.3.3 Optional Input . 31

1.3.4 Default Values . 31

1.3.5 Multiple Options for Values 32

1.3.6 Set of Command Lines . 32

1.4 Style Guidelines . 34

1.4.1 Comments . 34

1.4.2 Continuation Lines . 34

1.4.3 Case . 34

1.4.4 Commas and Tabs . 35

1.4.5 Blank Spaces . 35

1.4.6 General Format of the Command Lines 36

1.4.7 Delimiters . 36

1.4.8 Order of Commands . 36

1.4.9 Abbreviated END Specifications 37

1.4.10 Indentation . 37

1.5 Naming Conventions Associated with the Exodus II Database 38

1.6 Major Scope Definitions for a Presto Input File 39

7

1.7 References . 40

2 General Commands 41

2.1 Domain Scope . 41

2.1.1 SIERRA Command Block . 41

2.1.2 Title . 42

2.1.3 Restart Control . 42

2.1.3.1 Restart Time . 43

2.1.3.2 Automatic Restart 44

2.1.4 User Subroutine Identification 44

2.1.5 Functions . 44

2.1.6 Axes, Directions, and Points 48

2.1.7 Orientation . 50

2.2 Presto Procedure and Region . 53

2.2.1 Presto Procedure . 53

2.2.2 Time Control . 53

2.2.3 Presto Region . 54

2.3 Use Finite Element Model . 56

2.4 Error Estimation . 57

2.4.1 Error Estimation Controller 57

2.4.1.1 Error Estimator Class 57

2.4.1.2 Distortion Metrics 58

2.4.1.3 Utilities . 58

2.4.2 Use Error Estimation Controller 59

2.5 Activation/Deactivation of Functionality 60

3 Time Step Control in Presto 61

3.1 Procedure Time Control . 62

3.1.1 Command Blocks for Time Control and Time Stepping 63

3.1.2 Initial Time Step . 65

3.1.3 Time Step Scale Factor . 65

8

3.1.4 Time Step Increase Factor . 66

3.1.5 Step Interval . 66

3.1.6 Example . 67

3.2 Other Critical Time Step Methods 69

3.2.1 Lanczos Method . 69

3.2.1.1 Lanczos Method with Constant Time Steps 70

3.2.1.2 Controls for Lanczos Method 73

3.2.1.3 Scale Factor for Lanczos Method 74

3.2.1.4 Lanczos Parameters Command Block 75

3.2.2 Node-Based Method . 77

3.2.2.1 Node-Based Parameters Command Block 78

3.3 Mass Scaling . 79

3.3.1 What is Mass Scaling? . 79

3.3.2 Mass Scaling Command Block 80

3.3.2.1 Node Set Commands 81

3.3.2.2 Mass Scaling Commands 81

3.3.2.3 Additional Command 82

4 Materials 83

4.1 Property Specification . 83

4.1.1 Thermal Strains . 86

4.1.2 Elastic Model . 88

4.1.3 Elastic Fracture Model . 89

4.1.4 Elastic-Plastic Model . 91

4.1.5 Elastic-Plastic Power-Law Hardening Model 93

4.1.6 Elastic-Plastic Power-Law Hardening Model with Failure . . . 95

4.1.7 Multilinear EP Power-Law Hardening Model with Failure . . . 97

4.1.8 BCJ Model . 100

4.1.9 Soil and Crushable Foam Model 102

4.1.10 Foam Plasticity Model . 105

4.1.11 Elastic Three-Dimensional Orthotropic Model 108

9

4.1.12 Orthotropic Crush Model . 110

4.1.13 Orthotropic Rate Model . 113

4.1.14 Mie-Gruneisen Model . 116

4.1.15 Mie-Gruneisen Power-Series Model 118

4.1.16 JWL (Jones-Wilkins-Lee) Model 120

4.1.17 Ideal Gas Model . 122

4.1.18 Elastic Laminate Model . 123

4.2 Applying Temperatures and Thermal Strains 126

4.3 Energy Deposition . 128

4.3.1 Block Set Commands . 128

4.3.2 Function Commands . 129

4.3.3 Input Mesh Command . 130

4.3.4 User Subroutine Commands 130

4.4 References . 131

5 Elements 133

5.1 Finite Element Model . 134

5.1.1 Identification of Mesh File . 137

5.1.2 Descriptors of Element Blocks 138

5.1.2.1 Material Property 140

5.1.2.2 Section . 141

5.1.2.3 Linear and Quadratic Bulk Viscosity 141

5.1.2.4 Hourglass Control 141

5.1.2.5 Effective Moduli Model 143

5.1.2.6 Element Numerical Formulation 143

5.1.2.7 Activation/Deactivation of Element Blocks by Time 145

5.1.2.8 Rigid Body Declaration 145

5.2 Element Sections . 146

5.2.1 Solid Section . 146

5.2.2 Shell Section . 148

5.2.3 Membrane Section . 154

10

5.2.4 Beam Section . 157

5.2.5 Truss Section . 162

5.2.6 Damper Section . 163

5.2.7 Point Mass Section . 164

5.2.8 SPH Section . 166

5.3 Element-like Functionality . 169

5.3.1 Torsional Spring Mechanism 169

5.3.2 Rigid Body . 173

5.4 Mass Property Calculations . 178

5.4.1 Block Set Commands . 178

5.4.2 Structure Command . 179

5.5 Element Death . 180

5.5.1 Block Set Commands . 181

5.5.2 Criteria Commands . 181

5.5.2.1 Nodal Variable Death Criterion 182

5.5.2.2 Element Variable Death Criterion 182

5.5.2.3 Global Death Criterion 183

5.5.2.4 Subroutine Death Criterion 184

5.5.2.5 Material Death Criterion 184

5.5.3 Evaluation Commands . 185

5.5.4 Miscellaneous Option Commands 185

5.5.4.1 Death Steps . 186

5.5.4.2 Degenerate Mesh Repair 186

5.5.5 Example . 187

5.5.6 Element Death Visualization 187

5.6 Mesh Rebalancing . 189

5.6.1 Rebalance . 189

5.6.1.1 Rebalance Command Lines 190

5.6.1.2 Zoltan Command Line 190

5.6.2 Zoltan Parameters . 192

11

5.7 References . 193

6 Boundary Conditions and Initial Conditions 195

6.1 General Mesh-Entity Assignment Commands 196

6.2 Initial Variable Assignment . 199

6.2.1 Mesh-Entity Set Commands 200

6.2.2 Variable Identification Commands 200

6.2.3 Constant Magnitude Command 201

6.2.4 Input Mesh Command . 201

6.2.5 User Subroutine Commands 202

6.2.6 Additional Command . 203

6.3 Kinematic Boundary Conditions . 204

6.3.1 Fixed Displacement Components 204

6.3.1.1 Node Set Commands 204

6.3.1.2 Component Commands 205

6.3.1.3 Additional Command 205

6.3.2 Prescribed Displacement . 206

6.3.2.1 Node Set Commands 207

6.3.2.2 Function Commands 207

6.3.2.3 User Subroutine Commands 208

6.3.2.4 Additional Commands 209

6.3.3 Prescribed Velocity . 210

6.3.3.1 Node Set Commands 210

6.3.3.2 Function Commands 211

6.3.3.3 User Subroutine Commands 212

6.3.3.4 Additional Commands 213

6.3.4 Prescribed Acceleration . 214

6.3.4.1 Node Set Commands 214

6.3.4.2 Function Commands 215

6.3.4.3 User Subroutine Commands 216

6.3.4.4 Additional Commands 216

12

6.3.5 Fixed Rotation . 218

6.3.5.1 Node Set Commands 218

6.3.5.2 Component Commands 219

6.3.5.3 Additional Command 219

6.3.6 Prescribed Rotation . 220

6.3.6.1 Node Set Commands 220

6.3.6.2 Function Commands 221

6.3.6.3 User Subroutine Commands 222

6.3.6.4 Additional Commands 222

6.3.7 Subroutine Usage for Kinematic Boundary Conditions 224

6.4 Initial Velocity Conditions . 226

6.4.1 Node Set Commands . 226

6.4.2 Direction Commands . 227

6.4.3 Angular Velocity Commands 227

6.4.4 User Subroutine Commands 228

6.5 Force Boundary Conditions . 229

6.5.1 Pressure . 229

6.5.1.1 Surface Set Commands 230

6.5.1.2 Function Commands 230

6.5.1.3 User Subroutine Commands 230

6.5.1.4 Additional Commands 232

6.5.2 Traction . 233

6.5.2.1 Surface Set Commands 234

6.5.2.2 Function Commands 234

6.5.2.3 User Subroutine Commands 235

6.5.2.4 Additional Commands 236

6.5.3 Prescribed Force . 237

6.5.3.1 Node Set Commands 237

6.5.3.2 Function Commands 238

6.5.3.3 User Subroutine Commands 239

13

6.5.3.4 Additional Commands 240

6.5.4 Prescribed Moment . 241

6.5.4.1 Node Set Commands 241

6.5.4.2 Function Commands 242

6.5.4.3 User Subroutine Commands 243

6.5.4.4 Additional Commands 244

6.6 Prescribed Temperature . 245

6.6.1 Node Set Commands . 246

6.6.2 Function Commands . 246

6.6.3 User Subroutine Commands 246

6.6.4 Read Variable Commands . 247

6.6.5 Additional Commands . 248

6.7 Specialized Boundary Conditions . 249

6.7.1 Gravity . 249

6.7.2 Cavity Expansion . 251

6.7.3 Silent Boundary . 254

6.7.4 Spot-Weld . 255

6.7.5 Line Weld . 259

6.7.6 Viscous Damping . 262

6.7.6.1 Block Set Commands 262

6.7.6.2 Viscous Damping Coefficient 263

6.8 References . 264

7 Contact 265

7.1 Contact Definition Block . 272

7.2 Descriptions of Contact Surfaces . 278

7.2.1 Contact Surface Command Line 280

7.2.2 Skin All Blocks . 280

7.2.3 Contact Surface Command Block 282

7.2.4 Contact Node Set . 283

7.3 Analytic Contact Surfaces . 285

14

7.3.1 Plane . 285

7.3.2 Cylinder . 285

7.3.3 Sphere . 286

7.4 Update All Surfaces for Element Death 288

7.5 Remove Initial Overlap . 289

7.6 Angle for Multiple Interactions . 291

7.7 Surface Normal Smoothing . 293

7.8 Shell Lofting . 294

7.9 Contact Output Variables . 296

7.10 Friction Models . 298

7.10.1 Frictionless Model . 298

7.10.2 Constant Friction Model . 298

7.10.3 Tied Model . 299

7.10.4 Spring Weld Model . 299

7.10.5 Surface Weld Model . 301

7.10.6 Area Weld Model . 301

7.10.7 Adhesion Model . 302

7.10.8 Cohesive Zone Model . 303

7.10.9 Junction Model . 303

7.10.10Threaded Model . 304

7.10.11PV Dependent Model . 306

7.10.12 SIMOD Friction Models . 307

7.10.13User Subroutine Friction Models 308

7.11 Search Options . 310

7.11.1 Search Algorithms . 311

7.11.2 Search Tolerances . 312

7.11.3 Secondary Decomposition . 314

7.12 Enforcement Options . 315

7.13 Default Values for Interactions . 317

7.13.1 Surface Identification . 318

15

7.13.2 Self-Contact and General Contact 318

7.13.3 Friction Model . 319

7.13.4 Automatic Kinematic Partition 320

7.13.5 Interaction Behavior . 321

7.14 Values for Specific Interactions . 322

7.14.1 Surface Identification . 322

7.14.2 Kinematic Partition . 323

7.14.3 Tolerances . 325

7.14.4 Friction Model . 325

7.14.5 Automatic Kinematic Partition 326

7.14.6 Interaction Behavior . 326

7.15 Examples . 327

7.15.1 Example 1 . 327

7.15.2 Example 2 . 329

7.16 References . 332

8 Output 333

8.1 Results Output . 334

8.1.1 Exodus Results Output File 335

8.1.1.1 Output Nodal Variables 336

8.1.1.2 Output Element Variables 337

8.1.1.3 Output Global Variables 338

8.1.1.4 Set Begin Time for Results Output 339

8.1.1.5 Adjust Interval for Time Steps 339

8.1.1.6 Output Interval Specified by Time Increment 340

8.1.1.7 Additional Times for Output 340

8.1.1.8 Output Interval Specified by Step Increment 340

8.1.1.9 Additional Steps for Output 340

8.1.1.10 Set End Time for Results Output 340

8.1.1.11 Write Results If System Error Encountered 341

8.1.2 User-Defined Output . 341

16

8.1.2.1 Mesh-Entity Set Commands 343

8.1.2.2 Compute Global Result Command 343

8.1.2.3 User Subroutine Commands 345

8.1.2.4 Copy Command . 347

8.1.2.5 Additional Command 347

8.2 History Output . 348

8.2.1 Output Variables . 350

8.2.1.1 Global Output Variables 350

8.2.1.2 Nodal and Element Output Variables 350

8.2.1.3 Nodal Output Variables 351

8.2.2 Outputting History Data on a Node Set 352

8.2.3 Set Begin Time for History Output 353

8.2.4 Adjust Interval for Time Steps 353

8.2.5 Output Interval Specified by Time Increment 353

8.2.6 Additional Times for Output 353

8.2.7 Output Interval Specified by Step Increment 354

8.2.8 Additional Steps for Output 354

8.2.9 Set End Time for History Output 354

8.2.10 Write History If System Error Encountered 354

8.3 Restart Data . 355

8.3.1 Restart Options . 356

8.3.1.1 Automatic Read and Write of Restart Files 357

8.3.1.2 User-Controlled Read and Write of Restart Files . . 361

8.3.1.3 Overwriting Restart Files 364

8.3.1.4 Recovering from a Corrupted Restart 365

8.3.2 Set Begin Time for Restart Writes 365

8.3.3 Adjust Interval for Time Steps 366

8.3.4 Restart Interval Specified by Time Increment 366

8.3.5 Additional Times for Restart 366

8.3.6 Restart Interval Specified by Step Increment 366

17

8.3.7 Additional Steps for Restart 366

8.3.8 Set End Time for Restart Writes 367

8.3.9 Write Restart If System Error Encountered 367

8.4 Registered Variables . 368

8.4.1 Global, Nodal, Element Registered Variables 368

8.4.2 Registered Variables for Material Models 375

8.5 References . 377

9 User Subroutines 378

9.1 User Subroutines: Programming . 382

9.1.1 Subroutine Interface . 383

9.1.2 Query Functions . 385

9.1.2.1 Parameter Query . 385

9.1.2.2 Function Data Query 390

9.1.2.3 Time Query . 390

9.1.2.4 Field Variables . 391

9.1.2.5 Global Variables . 397

9.1.2.6 Topology Extraction 401

9.1.3 Miscellaneous Query Functions 407

9.2 User Subroutines: Command File . 409

9.2.1 Subroutine Identification . 409

9.2.2 User Subroutine Command Lines 409

9.2.2.1 Type . 410

9.2.2.2 Debugging . 410

9.2.2.3 Parameters . 411

9.2.3 Time Step Initialization . 413

9.2.3.1 Mesh-Entity Set Commands 413

9.2.3.2 User Subroutine Commands 414

9.2.3.3 Additional Command 414

9.2.4 User Variables . 415

9.3 User Subroutines: Compilation and Execution 417

18

9.4 User Subroutines: Examples . 419

9.4.1 Pressure as a Function of Space and Time 419

9.4.2 Error Between a Computed and an Analytic Solution 422

9.4.3 Transform Output Stresses to a Cylindrical Coordinate System 427

9.5 User Subroutines: Library . 433

9.5.1 aupst cyl transform . 433

9.5.2 aupst rec transform . 434

10 Shared Interface Models (SIMOD) 436

10.1 Defining a SIMOD Model . 437

10.2 Use of a SIMOD Model with the Traction Boundary Condition 439

10.3 SIMOD Core Models . 441

10.3.1 Composite2d via 1d . 441

10.3.2 Composite3d via 1d . 442

10.3.3 Concrete Exp1d . 442

10.3.4 Elastic IM . 443

10.3.5 Electrostatic ParallelPL . 444

10.3.6 Hamaker ParallelPL . 445

10.3.7 null IM . 445

10.4 Example of Constructing a Composite Model 447

10.5 References . 449

11 Example Problem 450

12 Command Summary 459

19

List of Figures

5.1 Association between command lines and command block. 142

5.2 Location of geometric plane of shell for various lofting factors. 151

5.3 Local rst coordinate system for a shell element. 152

5.4 Rotation of 30 degrees about the 1-axis (X ′-axis). 153

5.5 Integration points for rod and tube. 160

5.6 Integration points for bar and box. 161

5.7 Integration points for I-section. 162

5.8 Schematic for torsional spring. 170

5.9 Positive direction of rotation for torsional spring. 171

6.1 Force-displacement curve for spot-weld. 256

7.1 Two blocks at time step n before contact. 266

7.2 Two blocks at time step n+1, after penetration. 267

7.3 Illustrations of multiple interactions at a node. 291

7.4 Illustration of normal and tangential tolerances. 313

7.5 Illustration of kinematic partition values. 324

7.6 Problem with two blocks coming into contact. 327

7.7 Problem with three blocks coming into contact. 329

9.1 Overview of components required to implement functionality. 381

10.1 Relationships among command blocks 448

11.1 Mesh for example problem. 450

11.2 Mesh with blue and green surfaces removed. 451

20

List of Tables

7.1 Nodal Variables for Output . 296

8.1 Options for Derived Output . 338

8.2 Selection of Component Number . 345

8.3 Variables Registered on Nodes (Variable and Type) 369

8.4 Element Variables Registered for All Elements 370

8.5 Element Variables Registered for Energy-Dependent Elements 370

8.6 Element Variables Registered for Solid Elements 371

8.7 Element Variables Registered for Membranes 371

8.8 Nodal Variables Registered for Shells 371

8.9 Element Variables Registered for Shells 372

8.10 Element Variables Registered for Truss 372

8.11 Element Variables Registered for Beam 373

8.12 Global Registered Variables . 374

8.13 Nodal Variables Registered for Spot Welds 374

8.14 Elastic Plastic State Variables . 376

8.15 Elastic-Plastic Power-Law Hardening State Variables 376

8.16 Foam Plasticity State Variables . 376

9.1 Subroutine Input Parameters . 383

9.2 Subroutine Output Parameters . 384

9.3 aupst get real param Arguments . 387

9.4 aupst get integer param Arguments 388

9.5 aupst get string param Arguments 389

21

9.6 aupst evaluate function Arguments 390

9.7 aupst get time Argument . 390

9.8 aupst check node var Arguments . 392

9.9 aupst check elem var Arguments . 393

9.10 aupst get node var Arguments . 394

9.11 aupst get elem var Arguments . 395

9.12 aupst put node var Arguments . 396

9.13 aupst put elem var Arguments . 397

9.14 aupst check global var Arguments . 399

9.15 aupst get global var Arguments . 399

9.16 aupst put global var Arguments . 400

9.17 aupst local put global var Arguments 401

9.18 Topologies Used by Presto . 402

9.19 aupst get elem topology Arguments 403

9.20 aupst get elem nodes Arguments . 404

9.21 aupst get face topology Arguments 405

9.22 aupst get face nodes Arguments . 406

9.23 aupst get one elem centroid Arguments 407

9.24 aupst get point Arguments . 408

9.25 aupst get proc num Arguments . 408

22

Chapter 1

Introduction

Presto is a three-dimensional transient dynamics code with a versatile element library,
nonlinear material models, large deformation capabilities, and contact. It is built on
the SIERRA Framework [1]. SIERRA provides a data management framework in a
parallel computing environment that allows the addition of capabilities in a modular
fashion. Contact capabilities are parallel and scalable; these capabilities are provided
by ACME [2].

Presto User’s Guide Version 2.6 provides information about the functionality in
Presto and the command structure required to access this functionality in a user
input file. This document is divided into chapters based primarily on functionality.
For example, command structure related to the use of various element types is grouped
in one chapter; descriptions of material models are grouped in another chapter.

One of the key concepts for the command structure in the input file is a concept
referred to as scope. A detailed explanation of scope is provided in Section 1.2. Most
of the command lines in Chapter 2 are related to a certain scope rather than to some
particular functionality.

1.1 Document Overview

This document describes how to create an input file for Presto. Highlights of the
document contents are as follows:

• Chapter 1 presents the overall structure of the input file, including conventions
for the command descriptions, style guidelines for file preparation, and naming
conventions for input files that reference the Exodus II database [3]. The chapter
also gives an example of the general structure of an input file that employs the
concept of scope.

23

• Chapter 2 explains some of the commands that are general to various applica-
tions based on the SIERRA Framework. These commands let you define scopes,
functions, and coordinate systems, and they let you set up some of the main
time control parameters (begin time, end time, time blocks) for your analysis.
(Time control and time step control are discussed in detail in Chapter 3.) Other
capabilities documented in this chapter are available for estimating error and
for activating and deactivating functionality at different times throughout an
analysis.

• Chapter 3 describes how to set the start time, end time, and time blocks for an
analysis. This chapter also discusses various options for controlling the critical
time step in Presto.

• Chapter 4 describes various material models that can be used in conjunction
with the elements in Presto. This chapter also discusses the application of
temperature to a mesh, the computation of thermal strains (isotropic and
anisotropic), and the deposition of energy for the equation-of-state material
models.

• Chapter 5 lists the various elements in Presto and describes how to set up com-
mands to use the various options for the elements. This chapter also includes
descriptions of the commands for mass property calculations, element death,
and mesh rebalancing. Two ”element-like” capabilities are discussed in Chap-
ter 5—torsional springs and rigid bodies. Although torsional springs and rigid
bodies exhibit element-like behavior, they are really implemented as boundary
conditions. From a user viewpoint, it is best to discuss the torsional-spring and
rigid-body capabilities with elements.

• Chapter 6 documents how to use kinematic boundary conditions, force bound-
ary conditions, initial conditions, and some specialized boundary conditions.
Constraints are also discussed in this chapter.

• Chapter 7 discusses how to define interactions of contact surfaces, including the
use of the ACME contact package in Presto.

• Chapter 8 details the various options for obtaining output from Presto.

• Chapter 9 provides an overview of the user subroutine functionality.

• Chapter 10 describes how to access a number of surface physics models using
the Shared Interface MODels (SIMOD) library. SIMOD is a third-party library
that allows for the addition of surface physics modeling to various codes in a
modular manner.

• Chapter 11 provides a sample input file from an analysis of 16 lead spheres
being crushed together inside a steel box.

24

• Chapter 12 gives all of the permissible Presto input lines in their proper scope.

Note that all references cited within the text of Chapters 1 through 12 are listed
at the end of the respective chapters rather than in a separate references chapter.

25

1.2 Overall Input Structure

Presto is only one of the codes built on the SIERRA Framework. The SIERRA
Framework provides the capability to perform multiphysics analyses using a number
of codes built on the SIERRA Framework. Input files may be constructed for analyses
using only Presto, or input files may be constructed for analyses using Presto and
some other analysis code built on the SIERRA Framework. For example, you might
run Adagio [4], the quasti-static structural response code, to compute a stress state,
and then pass the results of this analysis to Presto as initial conditions for the Presto
analysis. For a multiphysics analysis using Presto and Adagio, the time-step control,
the mesh-related definitions, and the boundary conditions for both Presto and Adagio
will all be in the same input file. Therefore, the input for Presto reflects the fact that
a Presto analysis could be part of a multiphysics analysis. (Note that not all codes
built on the SIERRA Framework can be coupled. Consult with the authors of this
document to learn about the codes that can be coupled with Presto.)

To create files defining multiphysics analyses, the input files use a concept called
“scope.” Scope is used to group similar commands; a scope can be nested inside
another scope. The broadest scope in the input file is the domain scope. The domain
scope contains information that can be shared among different physics. Examples
of physics information that can be shared are definitions of functions and materials.
Thus, in our above example of a Presto/Adagio multiphysics analysis, both Adagio
and Presto could reference functions to define such things as time histories for bound-
ary conditions or stress-strain curves. Some of the functions could even be shared by
these two applications. Both Presto and Adagio could also share information about
materials.

Within the domain scope are two other important scopes: the procedure scope
and the region scope. The region is nested inside the procedure, and the procedure is
nested inside the domain. For a multiphysics analysis, the domain scope could contain
several different procedures and several different regions. For Presto, the procedure
scope controls the overall analysis from the start time to the end time. The region
scope controls a single time step.

Inside the procedure scope (but outside of the region scope) are commands that
set the start time and end time for the analysis.

Inside the region scope for Presto are such things as definitions for boundary
conditions and contact. In a multiphysics analysis, there would be more than one
region. In our Presto/Adagio example, there would be both a Presto region and an
Adagio region, each within its respective procedures. The definitions for boundary
conditions and contact and the mesh specification for Presto would appear in the
Presto region; the definitions for boundary conditions and contact and the mesh
specification for Adagio would appear in the Adagio region.

26

The input for Presto consists of command blocks and command lines. The com-
mand blocks define a scope. These command blocks group command lines or other
command blocks that share a similar functionality. A command block will begin with
an input line that has the word “begin”; the command block will end with an in-
put line that has the word “end”. The domain scope, for example, is defined by a
command block that begins with an input line of the form

BEGIN SIERRA my_problem .

Note that the space and the period following my problem are not part of the input
for the above command line. As explained in Section 1.3, command lines and com-
mand blocks, like equations, are punctuated as if they are part of the text in this
document.

The two character strings BEGIN and SIERRA are the key words for this command
block. An input line defining a command block or command line will have one or
more key words. The string my_problem is a user-specified name for this domain
scope. The domain scope is terminated by an input line of the form

END SIERRA my_problem ,

where ENDand SIERRA are the key words to end this command block. The domain
scope can also be terminated simply by using

END .

This abbreviated command line will be discussed in more detail in later chapters.
There are similar input lines used to define the procedure and region scopes. Boundary
conditions are another example where a scope is defined. A particular instance of a
boundary condition for a prescribed displacement boundary condition is defined with
a command block. The command block for the boundary condition begins with an
input line of the form

BEGIN PRESCRIBED DISPLACEMENT

and ends with an input line of the form

END PRESCRIBED DISPLACEMENT

or just simply

END .

Command lines appear within the command blocks. The command lines typically
have the form keyword = value , where value can be a real, an integer, or a string.
In the previous example of the prescribed displacement boundary condition, there
would be command lines inside the command block that are used to set various
values. For example, the boundary condition might apply to all nodes in node set 10,
in which case there would be a command line of the form

NODE SET = nodelist_10 .

27

If the prescribed displacement were to be applied along a given component direc-
tion, there would be a command line of the form

COMPONENT = X,

which would specify that the prescribed displacement would be in the x-direction.
Finally, if the displacement magnitude is described by a time history function with
the name cosine_curve , there would be a command line of the form

FUNCTION = cosine_curve .

The command block for the boundary condition with the appropriate command
lines would appear as follows:

BEGIN PRESCRIBED DISPLACEMENT
NODE SET = nodelist_10
COMPONENT = X
FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

It is possible to have a command line with the same key words appearing in
different scopes. For example, we might have a command line identified by the word
TYPE in two or more different scopes. The command line would perform different
functions based on the scope in which it appeared, and the associated value could be
different in the two locations.

The input lines are read by a parser that searches for recognizable key words.
If the key words in an input line are not in the list of key words used by Presto
to describe command blocks and command lines, the parser will generate an error.
A set of key words defining a command line or command block for Presto that is
not in the correct scope will also cause a parser error. For example, the key words
STEP INTERVAL define a valid command line in the scope of the TIME CONTROL

command block. However, if this command line was to appear in the scope of one of
the boundary conditions, it would not be in the proper scope and the parser would
generate an error. Once the parser has an input line with any recognizable key words
in the proper scope, a method can be called that will handle the input line.

There is an initial parsing phase that checks only the parser syntax. If the parser
encounters a command line it cannot parse within a certain scope, the parser will
indicate it cannot recognize the command line and will list the various command
lines that can appear within that scope. The initial parsing phase will catch errors
such as the one described in the previous paragraph (a command line in the wrong
scope). It will also catch misspelled key words. The initial parsing does not catch
some other types of errors, however. If you have specified a parameter on a command
line that is out of a specified range for that command line, the initial parsing will not
catch this error. If you have some combination of command lines within a command

28

block that is not allowed, the initial partial will not catch this error. These other
errors are caught after the initial parsing phase and are handled one error at a time.

29

1.3 Conventions for Command Descriptions

The conventions below are used to describe the input commands for Presto. NOTE:
In this document, all of the sentences containing input lines are punctuated correctly.
For example, the function command line in a sentence such as this one would appear
as

FUNCTION = <string>function_name .

The space after function_name indicates that the period following this space is not
a part of the command line but is the correct punctuation in the text. The above
command line in the input file would NOT have a period.

A number of the individual command lines discussed in the text appear on several
text lines. In the text of this user’s guide, the continuation symbols that are used
to continue lines in an actual input file (/# and /$, Section 1.4.2) are not used for
those instances where the description of the command line appears on several text
lines. The description of command lines will clearly indicate all of the key words,
delimiters, and values that constitute a complete command line. As an example, the
DEFINE POINT command line (Section 2.1.6) is presented in the text as

DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3 .

If the DEFINE POINT command line were used as a command line in an input file
and spread over two input lines, it would appear, with actual values, as

DEFINE POINT center WITH COORDINATES /#

10.0 144.0 296.0 ,

where the /# symbol implies the first line is continued onto the second line.

1.3.1 Key Words

The key word or key words for a command are shown in uppercase letters. For actual
input, you can use all uppercase letters for the key words, all lowercase letters for the
key words, or some combination of uppercase and lowercase letters for the key words.

1.3.2 User-Specified Input

The input that you supply is typically shown in lowercase letters. (Occasionally,
uppercase letters may be used for user input for purposes of clarity or in examples.)
The user-supplied input may be a real number, an integer, a string, or a string list.
For the command descriptions, a type appears before the user input. The type (real,
integer, string, string list) description is enclosed by angle brackets, <>, and precedes

30

the user-supplied input. For example,

<real>value

indicates that the quantity value is a real number. For the description of an input
command, you would see

FUNCTION = <string>function_name .

Your input would be

FUNCTION = my_name

if you have specified a function name called my_name.

Valid user input consists of the following:

<integer> Integer data is a single integer number.

<real> Real data is a single real number. It may be formatted
with the usual conventions, such as 1234.56

or 1.23456e+03 .

<string> String data is a single string.

<string list > A string list consists of multiple strings separated
by white space, a comma, a tab, or white
space combined with a comma or a tab.

1.3.3 Optional Input

Anything in an input line that is enclosed by square brackets, [], represents optional
input within the line. Note, however, that this convention is not used to identify
optional input lines. Any command line that is optional (in its entirety) will be
described as such within the text.

1.3.4 Default Values

A value enclosed by parentheses, (), appearing after the user input denotes the default
value. For example,

SCALE FACTOR =<real>scale_factor(1.0)

implies the default value for scale_factor is 1.0. Any value you specify will over-
write the default.

For your actual input file, you may simply omit a command line if you want to
use the default value associated with the command line. For example, there is a TIME

31

STEP SCALE FACTORcommand line used to set one of the time control parameters;
the parameter for this command line has a default value of 1.0. If you want to use
the default value of 1.0 for this parameter, you do not have to include the TIME STEP

SCALE FACTORcommand line in the TIME CONTROLcommand block.

1.3.5 Multiple Options for Values

Quantities separated by the | symbol indicate that one and only one of the possible
choices must be selected. For example,

EXPANSION RADIUS =<string >SPHERICAL|CYLINDRICAL

implies that expansion radius must be defined as SPHERICALor CYLINDRICAL. One
of the values must appear. This convention also applies to some of the command
options within a begin/end block. For example,

SURFACE =<string>surface_name |
NODE SET =<string>nodelist_name

in a command block specifies that either a surface or a node set must be specified.

Quantities separated by the / symbol can appear in any combination, but any
one quantity in the sequence can appear only once. For example,

COMPONENTS =<string>X/Y/Z

implies that components can equal any combination of X, Y, and Z. Any value (X or
Y or Z) can appear at most once, and at least one value of X, Y, or Z must appear.
Some examples of valid expressions in this case are

COMPONENTS = Z,

COMPONENTS = Z X,

COMPONENTS = Y X Z,

and

COMPONENTS = Z Y X.

An example of an invalid expression would be

COMPONENTS = Y Y Z.

1.3.6 Set of Command Lines

In some of the command blocks, it may be possible to select from a set of command
lines to activate some functionality within the command block. In the boundary
conditions, for example, a boundary condition may be applied to a group of nodes.

32

This group of nodes can be defined by some collection of command lines that are
Boolean operations to add or delete nodes to the group. The command lines that
are the Boolean operations to define the group of nodes are described in detail in
the introduction to the chapter on boundary conditions, i.e., in Section 6.1. In the
description of the command blocks for the boundary conditions, we denote this set of
command lines by enclosing a name for the set of command lines in curly braces, {}.
Therefore, the description of a command block for a kinematic boundary condition
may have a line of the form

{node set commands }

to indicate that the user can insert some arbitrary combination of command lines
from the set of command lines defined as node set commands .

We will use {} to enclose some named set of command lines or some description
of a set of command lines.

33

1.4 Style Guidelines

This section gives information that will affect the overall organization and appearance
of your input file. It also contains recommendations that will help you construct input
files that are readable and easy to proof.

1.4.1 Comments

A comment is anything between the # symbol or the $ symbol and the end-of-line.
If the first nonblank character in a line is a # or $, the entire line is a comment line.
You can also place a # or $ (preceded by a blank space) after the last character in an
input line used to define a command block or command line.

1.4.2 Continuation Lines

An input line can be continued by placing a \# pair of characters (or \$) at the end
of the line. The following line is then taken to be a continuation of the preceding line
that was terminated by the \# or \$. Note that everything after the line-continuation
pair of characters is discarded, including the end-of-line.

1.4.3 Case

Almost all of the character strings in the input lines are case insensitive. For example,
the BEGIN SIERRAkey words could appear as

BEGIN SIERRA

or

begin sierra

or

Begin Sierra .

You could specify a SIERRA command block with

BEGIN SIERRA BEAM

and terminate the command block with

END SIERRA beam.

Case is important only for file name specifications. If you have defined a restart
file with uppercase and lowercase letters and want to use this file for a restart, the file

34

name you use to request this restart file must exactly match the original definition
you chose.

1.4.4 Commas and Tabs

Commas and tabs in input lines are ignored.

1.4.5 Blank Spaces

We highly recommend that everything be separated by blank spaces. For example, a
command line of the form

node set = nodelist_10

is recommended over

node set= nodelist_10

or

node set =nodelist_10 .

Both of the above two lines are correct, but it is easier to check the first form (the
equal sign surrounded by blank space) in a large input file.

The parser will accept the line

BEGIN SIERRABEAM,

but it is harder to check this line for the correct spelling of the key words and the
intended domain name than the line

BEGIN SIERRA BEAM.

It is possible to introduce hard-to-detect errors because of the way in which the
blank spaces are handled by the command parser. Suppose you type

begin definition for functions my_func

rather than the correct form, which is

begin definition for function my_func .

For the incorrect form of this command line (in which functions is used rather
than function), the parser will generate a string name of

s my_func

for the function name rather than the expected name of

my_func .

35

If you attempt to use a function named my_func , the parser will generate an error
because the list of function names will include s my_func but not my_func .

1.4.6 General Format of the Command Lines

In general, command lines have the form

keyword = value .

This pattern is not always followed, but it describes the vast majority of the command
lines.

1.4.7 Delimiters

We recommend that you use only the = sign when a delimiter is required. For most
command lines, you can actually use =, is , or are interchangeably as a delimiter.
For command lines with a delimiter, you could specify

components = X

or

components is X

or

components are X .

The = sign is strongly recommended as the delimiter of choice. It provides a
strong visual cue for separating key words from values. By relying on the = sign as a
delimiter, it will be much easier to proof your input file. It will also make it easier to
do “cut and paste” operations. If you accidently delete an = sign, it is much easier to
detect than accidently removing part of an is or are delimiter.

1.4.8 Order of Commands

There are no requirements for ordering the commands. Both the input sequence

BEGIN PRESCRIBED DISPLACEMENT
NODE SET = nodelist_10
COMPONENT = X
FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT

and the input sequence

36

BEGIN PRESCRIBED DISPLACEMENT
FUNCTION = cosine_curve
COMPONENT = X
NODE SET = nodelist_10

END PRESCRIBED DISPLACEMENT

are valid, and they produce the same result. Remember, however, that command
lines and command blocks must appear in the proper scope.

1.4.9 Abbreviated END Specifications

It is possible to terminate a command block without including the key word or key
words that identify the block. For example, you could define a specific instance of
the prescribed displacement boundary condition with

BEGIN PRESCRIBED DISPLACEMENT

and terminate it simply with

END

as opposed to

END PRESCRIBED DISPLACEMENT.

Both the short termination (ENDonly) and the long termination (ENDfollowed by
identification, or name, of the command block) are valid. It is recommended that
the long termination be used for any command block that becomes large. For ex-
ample, the RESULTS OUTPUTcommand block described in later chapters can become
fairly lengthy, so this is probably a good place to use the long termination. For most
boundary conditions, the command block will typically consist of five lines. In such
cases, the short termination can be used. Using the long termination for the larger
command blocks will make it easier to proof your input files. If you use the long
termination, the text following the ENDkey word must exactly match the text fol-
lowing the BEGIN key word. You could not, for example, have BEGIN PRESCRIBED

DISPLACEMENTpaired with an END PRESCRIBED DISPLto define the beginning and
ending of a command block.

1.4.10 Indentation

When constructing an input file, it is useful to indent a scope that is nested inside
another scope. Command lines within a command block should also be indented in
relation to the lines defining the command block. This will make it easier to construct
the input file with everything in the correct scope and with all of the command blocks
in the correct structure.

37

1.5 Naming Conventions Associated with the Ex-

odus II Database

When the mesh file has an Exodus II format, there are three basic conventions that
apply to user input for various command lines. First, for a mesh file with the Exodus
II format, the Exodus II side set is referenced as a surface. In SIERRA, a surface
consists of element faces plus all of the nodes and edges associated with these faces.
A surface definition can be used not only to select a group of faces but also to select a
group of edges or a group of nodes that are associated with those faces. In the case of
boundary conditions, a surface definition can be used not only to apply boundary con-
ditions that typically use surface specifications (pressure) but also to apply boundary
conditions for what are referred to as nodal boundary conditions (fixed displacement
components). For nodal boundary conditions that use the surface specification, all
of the nodes associated with the faces on a specific surface will have this boundary
condition applied to them. The specification for a surface identifier in the following
chapters is surface_name . It typically has the form surface_integerid , where
integerid is the integer identifier for the surface. If the side set number is 125, the
value of surface_name would be surface_125 . It is also possible to generate an
alias for the side set and use this for surface_name . If surface_125 is aliased to
outer_skin , then surface_name becomes outer_skin in the actual input line.

Second, for a mesh file with the Exodus II format, the Exodus II node set is still
referenced as a node set. A node set can be used only for cases where a group of
nodes needs to be defined. The specification for a node set identifier in the following
chapters is nodelist_name . It typically has the form nodelist_integerid , where
integerid is the integer identifier for the node set. If the node set number is 225, the
value of nodelist_name would be nodelist_225 . It is also possible to generate an
alias for the node set and use this for nodelist_name . If nodelist_225 is aliased
to inner_skin , then nodelist_name becomes inner_skin in the actual input line.

Third, an element block is referenced as a block. The specification for an element
block identifier in the following chapters is block_name . It typically has the form
block_integerid , where integerid is the integer identifier for the block. If the
element block number is 300, the value of block_name would be block_300 . It
is also possible to generate an alias for the block and use this for block_name . If
block_300 is aliased to big_chunk , then block_name becomes big_chunk in the
actual input line.

A group of elements can also be used to select other mesh entities. In SIERRA,
a block consists of elements plus all of the faces, edges, and nodes associated with
the elements. The block and surface concepts are similar in that both have associ-
ated derived quantities. Chapter 6 and Chapter 7 show how this concept of derived
quantities is used in the input command structure.

38

1.6 Major Scope Definitions for a Presto Input

File

The typical Presto input file will have the structure shown below. The major scopes—
domain, procedure, and region—are delineated with input lines for command blocks.
Comment lines are included that indicate some of the key scopes that will appear
within the major scopes. Note the indentation used for this example.

BEGIN SIERRA <string>some_name
#
All command blocks and command lines in the domain
scope appear here. The PROCEDURE PRESTO command
block is the beginning of the next scope.
#
function definitions
material descriptions
description of mesh file
#
BEGIN PROCEDURE PRESTO <string>procedure_name

#
time step control
#
BEGIN REGION PRESTO <string>region_name

#
All command blocks and command lines in the
region scope appear here
#
specification for output of result
specification for restart
boundary conditions
definition of contact
#

END [REGION PRESTO <string>region_name]
END [PROCEDURE PRESTO <string>procedure_name]

END [SIERRA <string>some_name]

39

1.7 References

1. Edwards, H. C., and J. R. Stewart. “SIERRA: A Software Environment for
Developing Complex Multi-Physics Applications.” In First MIT Conference on
Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 1147–1150.
Amsterdam: Elsevier, 2001.

2. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Hein-
stein, and R. E. Jones. ACME: Algorithms for Contact in a Multiphysics En-
vironment, API Version, 1.0. Albuquerque, NM: Sandia National Laboratories,
October 2001.

3. Schoof, L. A., and V. R. Yarberry. EXODUS II: A Finite Element Data Model,
SAND92-2137. Albuquerque, NM: Sandia National Laboratories, September
1994.

4. Mitchell, J. A., A. S. Gullerud, W. M. Scherzinger, J. R. Koteras, and V. L.
Porter. “ADAGIO: Non-Linear Quasi-Static Structural Response Using the
SIERRA Framework.” In First MIT Conference on Computational Fluid and
Solid Mechanics, edited by K. J. Bathe, 361–364. Amsterdam: Elsevier, 2001.

40

Chapter 2

General Commands

The commands described in this section appear in the domain or procedure scope or
control some general functionality in Presto.

2.1 Domain Scope

These commands are used to set up some of the fundamentals of the Presto input.
The commands are physics independent, or at least can be shared between physics.
The commands lie in the domain scope, not in the procedure or region scope.

2.1.1 SIERRA Command Block

BEGIN SIERRA <string>name
#
All other command blocks and command lines
appear within the domain scope defined by
begin/end sierra.
#

END [SIERRA <string>name]

All input commands for Presto must occur within a SIERRA command block. The
syntax for beginning the command block is

BEGIN SIERRA <string>name

and for terminating the command block is

END [SIERRA <string>name] ,

41

where name is a name for the SIERRA command block. All other commands for the
analysis must be within this command block structure. The name for the SIERRA

command block is often a descriptive name that identifies the analysis. The name is
not currently used anywhere else in the file and is completely arbitrary.

2.1.2 Title

TITLE <string list>title

To permit a fuller description of the analysis, the Presto input has a TITLE com-
mand line for the analysis, where title is a text description of the analysis. The title
is transferred to the results file.

2.1.3 Restart Control

The restart capability in Presto allows a user to run an analysis up to a certain time,
stop the analysis at that time, and then restart the analysis at this stop time. Restart
can be used to break a long-running analysis into several smaller runs so that the user
can examine intermediate results before proceeding with the next step. Restart can
also be used in case of abnormal termination. If a restart file has been written at
various intervals throughout the analysis up to the point where the abrnormal termi-
nation has occurred, you can pick some restart time before the abnormal termination
and restart the problem from there. Thus, users do not have to go back to the begin-
ning of the analysis, but can continue the analysis at some time well into the analysis.
With the restart capability, you will generate a sequence of restart runs. Each run
can have its own set of restart, results, and history files.

When using the restart capability, you can reset a number of the parameters in
the input file. Not all parameters, however, can be reset. Users should exercise
care in resetting parameters in the input file for a restart. You will likely want
to change parameters if you have encountered an abnormal termination. You may
want to change certain parameters, hourglass control for example, to see whether you
can prevent the abnormal termination and continue the analysis past the abnormal
termination time you had previously encountered.

The use of the restart capability involves commands in both the domain scope
and the region scope. One of two restart command lines, RESTARTor RESTART

TIME, appears in the domain scope. A command block in the region scope, the
RESTART DATAcommand block, specifies restart file names and the frequency at
which the restart files will be written. The RESTART DATAcommand block is de-
scribed in Section 8.3. This section gives a brief discussion of the command lines
that appear in the domain scope. For a full discussion of all the command lines used

42

for restart, consult with Chapter 8. The use of some of the command lines in the
RESTART DATAcommand block depends on the command line, either RESTARTor
RESTART TIME, you select in the domain scope.

If you specify a time from a specific restart file for the restart, you will use the
RESTART TIMEcommand line described in Section 2.1.3.1. If you select the automatic
restart option, you will use the RESTARTcommand line described in Section 2.1.3.2.
The command lines for both of these methods are in the domain scope. All other
commands for restart are in the region scope in the RESTART DATAcommand block.

For restarts specified with a restart time from a specific restart file, you will have to
be concerned about overwriting information in existing files. The issue of overwriting
information is discussed in Chapter 8. In general, you will want to have a restart file
(or files in the case of parallel runs) for each run in a sequence of runs you create
with the restart option. You will want to preserve all restart files you have written
prior to any given run in a sequence of restart runs. The easiest way to preserve prior
restart information is with the use of the RESTARTcommand line. How you preserve
previous restart information will be discussed in detail in Chapter 8.

The amount of data written at a restart time is quite large. The restart data
written at a given time is a complete description of the state for the problem at that
time. The restart data includes not only information such as displacement, velocity,
and acceleration, but also information such as element stresses and all of the state
variables for the material model associated with each element.

2.1.3.1 Restart Time

RESTART TIME = <real>restart_time

The RESTART TIMEcommand line is used to specify a time from a specific restart
file for the restart run. This restart option will pick the restart time on the restart
file that is closest to the user-specified time on the RESTART TIMEcommand line. If
the user specifies a restart time greater than the last time written to a restart file,
then the last time written to the restart file is picked as the restart time. Use of
this command line can result in previous restart information being overwritten. To
prevent the overwriting of existing restart files, you can specify both an input restart
file and an output restart file (and rename the results and history files) for the various
restarts. The use of the RESTART TIMEcommand line requires the user to be more
active in the management of the file names to prevent the overwriting of restart,
results, and history files. The automatic restart feature (i.e., the RESTARTcommand
line in Section 2.1.3.2) prevents the overwrite of restart, results, and history files.
Consult with Section 8.3 for a full discussion of implementing the restart capability.

43

2.1.3.2 Automatic Restart

RESTART = AUTOMATIC

The RESTARTcommand line automatically selects for restart the last restart time
written to the last restart file. The automatic restart feature lets the user restart runs
with minimal changes to the input file. The only quantity that must be changed to
move from one restart to another is the termination time. The RESTARTcommand
line manages the restart files so as not to write over any previous restart files. It also
manages the results and history files so as not to write over any previous results or
history files. Consult with Section 8.3 for a full discussion of implementing the restart
capability.

2.1.4 User Subroutine Identification

USER SUBROUTINE FILE = <string>file_name

This command line is a part of a set of commands that are used to implement the
user subroutine functionality. The string file_name identifies the name of the file
that contains the FORTRAN code of one or more user subroutines.

To understand how this command line is used, see Chapter 9.

2.1.5 Functions

BEGIN DEFINITION FOR FUNCTION <string>function_name
TYPE = <string>CONSTANT|PIECEWISE LINEAR|

ANALYTIC
ABSCISSA = <string>abscissa_label
ORDINATE = <string>ordinate_label
BEGIN VALUES

<real>value_1 [<real>value_2
<real>value_3 <real>value_4
... <real>value_n]

END [VALUES]
EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2;...
END [DEFINITION FOR FUNCTION <string>function_name]

A number of Presto features are driven by a user-defined description of the depen-
dence of one variable on another. For instance, the prescribed displacement boundary

44

condition requires the definition of a time-versus-displacement relation, and the ther-
mal strain computations require the definition of a thermal-strain-versus-temperature
relation. SIERRA provides a general method of defining these relations as functions
using the DEFINITION FOR FUNCTIONcommand block, as shown above.

There is no limit to the number of functions that can be defined. All function
definitions must appear within the domain scope.

A description of the various parts of the DEFINITION FOR FUNCTIONcommand
block follows:

- The string function_name is a user-selected name for the function that is
unique to the function definitions within the input file. This name is used to
refer to this function in other locations in the input file.

- The TYPE command line has three options to define the type of function. The
string value can be CONSTANT, PIECEWISE LINEAR, or ANALYTIC.

- The ABSCISSA command line provides a descriptive label for the independent
variable (x-axis) with the string abscissa_label . This command line is op-
tional.

- The ORDINATE commandline provides a descriptive label for the dependent
variable (y-axis) with the string ordinate_label . This command line is op-
tional.

- The VALUES command block consists of the real values value_1 through
value_n , which describe the function. This command block must be used
if the value on the TYPE command line is CONSTANTor PIECEWISE LINEAR.
For a CONSTANTfunction, only one value is needed. For a PIECEWISE LINEAR

function, the values are (x, y) pairs of data that describe the function. The
values are nested inside the VALUEScommand block.

In the case of a PIECEWISE LINEAR function, for any abscissa value passed to
the function that is greater than the last abscissa value in the VALUEScommand
block, the last ordinate value is used for the function value. For example,
suppose we have a piecewise linear function that indicates a function my_func

describes a time history for a pressure load where the pressure increases from 0
to 50,000 psi from time 0.0 sec to time 1.0 × 10−3 sec. The last time specified
in the function is 1.0× 10−3. Now, suppose our final analysis time is 2.0× 10−3

sec. Then, from the time 1.0 × 10−3 to the time 2.0 × 10−3, the value for this
function (my_func) will be 50,000 psi.

- The EVALUATE EXPRESSIONcommand line consists of one or more user-supplied
algebraic expressions. This command line must be used if the value on the TYPE

45

command line is ANALYTIC. See the rules and options for composing algebraic
expressions discussed below.

Importantly, a DEFINITION FOR FUNCTIONcommand block cannot contain both
a VALUEScommand block and an EVALUATE EXPRESSIONcommand line.

Rules and options for composing algebraic expressions. If you choose to
use the EVALUATE EXPRESSIONcommand line, you will need to write the algebraic
expressions. The algebraic expressions are written using a C-like format. Each alge-
braic expression is terminated by a semicolon. The entire set of algebraic expressions,
whether a single expression or several, is enclosed in a single set of double quotes.

An expression is evaluated with x as the independent variable. We first provide
several simple examples and then list the options available in the algebraic expressions.

Example: Return sin(x) as the value of the function.

begin definition for function fred
type is analytic
evaluate expression is ‘‘sin(x);’’

end definition for function fred

Example: In this example, the commented out table is equivalent to the evaluated
expression.

begin definition for function pressure
type is analytic
evaluate expression is ‘‘x <= 0.0 ? 0.0 : (x < 0.5 ? x*200.0

: 100.0);’’
begin values
0.0 0.0
0.5 100.0
1.0 100.0
end values

end definition for function pressure

The following functionality is currently implemented for the expressions:

Operators

+ - * / == != > < >= <= ! & | && || ? :

Parentheses

()

46

Math functions

abs(x), absolute value of x
mod(x, y), modulus of x|y
ipart(x), integer part of x
fpart(x), fractional part of x

Power functions

pow(x, y), x to the y power
pow10(x), x to the 10 power
sqrt(x), square root of x

Trigonometric functions

acos(x), arccosine of x
asin(x), arcsine of x
atan(x), arctangent of x
atan2(y, x), arctangent of y/x, signs of x and y

determine quadrant (see atan2 man page)
cos(x), cosine of x
cosh(x), hyperbolic cosine of x
sin(x), sine of x
sinh(x), hyperbolic sine of x
tan(x), tangent of x
tanh(x), hyperbolic tangent of x

Logarithm functions

log(x), natural logarithm of x
ln(x), natural logarithm of x
log10(x), the base 10 logarithm of x
exp(x), e to the x power

Rounding functions

ceil(x), smallest integral value not less than x
floor(x), largest integral value not greater than x

Random functions

rand(), random number between 0.0 and 1.0, not including 1.0
randomize(), random number between 0.0 and 1.0, not

including 1.0
srand(x), seeds the random number generator

47

Conversion functions

deg(x), converts radians to degrees
rad(x), converts degrees to radians
recttopolr(x, y), magnitude of vector x, y
recttopola(x, y), angle of vector x, y
poltorectx(r, theta), x coordinate of angle theta at

distance r
poltorecty(r, theta), y coordinate of angle theta at

distance r

Constants. There are two predefined constants that may be used in an expres-
sion. These two constants are e and pi .

e = e = 2.7182818284...
pi = π = 3.1415926535...

2.1.6 Axes, Directions, and Points

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR
<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT
<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT
<string>point DIRECTION <string>direction

A number of Presto features require the definition of geometric entities. For
instance, the prescribed displacement boundary condition requires a direction defi-
nition, and the cylindrical velocity initial condition requires an axis definition. Cur-
rently, Presto input permits the definition of points, directions, and axes. Definition
of these geometric entities occurs in the domain scope.

The DEFINE POINT command line is used to define a point:

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3

where

- The string point_name is a name for this point. This name must be unique to
all other points defined in the input file.

48

- The real values value_1 , value_2 , and value_3 are the x, y, and z coordinates
of the point.

The DEFINE DIRECTION command line is used to define a direction:

DEFINE DIRECTION <string>direction_name WITH VECTOR
<real>value_1 <real>value_2 <real>value_3

where

- The string direction_name is a name for this direction. This name must be
unique to all other directions defined in the input file.

- The real values value_1 , value_2 , and value_3 are the x, y, and z magnitudes
of the direction vector.

There are two command lines that can be used to define an axis. The first DEFINE

AXIS command line uses two points:

DEFINE AXIS <string>axis_name WITH POINT
<string>point_1 POINT <string>point_2

where

- The string axis_name is a name for this axis. This name must be unique to
all other axes defined in the input file.

- The strings point_1 and point_2 are the names for two points defined in the
input file via a DEFINE POINT command line.

The second DEFINE AXIS command line uses a point and a direction:

DEFINE AXIS <string>axis_name WITH POINT
<string>point DIRECTION <string>direction

where

- The string axis_name is a name for this axis. This name must be unique to
all other axes defined in the input file.

- The string point is the name of a point defined in the input file via a DEFINE

POINT command line.

- The string direction is the name of a direction defined in the input file via a
DEFINE DIRECTION command line.

49

2.1.7 Orientation

BEGIN ORIENTATION <string>orientation_name
SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)
#
POINT A = <real>global_ax <real>global_ay <real>global_az
POINT B = <real>global_bx <real>global_by <real>global_bz
#
ROTATION ABOUT <integer> 1|2|3(1) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

The ORIENTATION command block is currently used in Presto to define a local
coordinate system for output of shell stresses. In the future, the ORIENTATIONcom-
mand block will be used with other functionality in Presto.

A local coordinate system is defined at the particular location at which it is
required. For example, suppose we want to define a local coordinate system for a
shell element. This local coordinate system will be used for output of stresses in the
element. For shell elements, the centroid of the element is where we want to define
the local coordinates for output of stresses. When we use orientation with a shell
element, the centroid of the shell element becomes the particular location at which
we want to define a local coordinate system. (When we associate an orientation with
a block of shell elements, the orientation will generate a local coordinate system for
each element in the block.)

The SYSTEMcommand line gives you several options for constructing a local coor-
dinate system. The options on this command line are RECTANGULAR, Z RECTANGU-

LAR, CYLINDRICAL, and SPHERICAL. The SYSTEMcommand line is optional. If you
do not include a SYSTEMcommand line in the ORIENTATION command block, the
default system is the RECTANGULARsystem.

The ORIENTATIONcommand actually generates two local coordinate systems. The
first local system constructed at a particular location will always be a Cartesian sys-
tem designated as X ′Y ′Z ′. How this system is constructed depends on the choice for
the SYSTEMoption. Regardless of what system option you choose, the command lines
POINT A and POINT B are required. The details of constructing a local coordinate
system for each of the different SYSTEMoptions is described below:

• RECTANGULAROption: The command line POINT A defines a point a that lies
on the X ′-axis. The command line POINT B defines a point b that lies in the
X ′Y ′-plane. Let the coordinates of a define a vector ~A and the coordinates
of b define a vector ~B. The normalized value of ~A, ~A/ ‖ ~A ‖, defines a unit

vector along the X ′-axis, which we denote as ~X ′. The normalized cross-product

50

of ~A × ~B is a unit vector defining the Z ′-axis, which we denote as ~Z ′. We
can obtain a unit vector along the Y ′-axis, ~Y ′, from a cross-product of ~Z ′ and
~X ′. The three unit vectors ~X ′, ~Y ′, and ~Z ′ give us our local coordinate system
X ′Y ′Z ′.

• Z RECTANGULAROption: The command line POINT A defines a point a that
lies on the Z ′-axis. The command line POINT B defines a point b that lies in
the X ′Z ′-plane. Let the coordinates of a define a vector ~A and the coordinates
of b define a vector ~B. The normalized value of ~A, ~A/ ‖ ~A ‖, defines a unit

vector along the Z ′-axis, which we denote as ~Z ′. The normalized cross-product
of ~A × ~B is a unit vector defining the Y ′-axis, which we denote as ~Y ′. We
can obtain a unit vector along the X ′-axis, ~X ′, from a cross-product of ~Y ′ and
~Z ′. The three unit vectors ~X ′, ~Y ′, and ~Z ′ give us our local coordinate system
X ′Y ′Z ′.

• CYLINDRICAL Option: The point a defined by the command line POINT A and
the point b defined by the command line POINT Bdefine a cylindrical axis. The
local coordinate system always has the Z ′-axis parallel to this cylindrical axis
and in the direction from a to b. The vector ~Z ′ is a unit vector defining the
Z ′-axis. The X ′-axis lies along a line that is normal to the cylindrical axis and
passes through the origin of our local coordinate system. (Example: If we are
defining a local system for shell stress output, the origin of our local system is
the centroid of the element.) The vector ~X ′ is a unit vector defining the X ′-axis.

We can obtain the Y ′-axis from the cross-product of the ~Z ′ and ~X ′ vectors. The
three unit vectors ~X ′, ~Y ′, and ~Z ′ give us our local coordinate system X ′Y ′Z ′.

• SPHERICALOption: The point a, from the POINT A command line, defines the
center of a sphere. The point b, from the POINT Bcommand line, defines a polar
axis for the sphere. The X ′-axis lies along a line passing through the origin of
the sphere, point a, and the origin of our local coordinate system. (Example:
If we are defining a local system for shell stress output, the origin of our local
system is the centroid of the element.) The vector ~X ′ is a unit vector defining

the X ′-axis. A cross product of the polar axis for the sphere and the vector ~X ′

gives the ~Y ′ vector. The vector ~Y ′ is a unit vector defining the Y ′-axis. We can
obtain the Z ′-axis from the cross-product of the ~X ′ and ~Y ′ vectors. The three
unit vectors ~X ′, ~Y ′, and ~Z ′ give us our local coordinate system X ′Y ′Z ′.

The second local coordinate system constructed at a particular location is defined
by use of the ROTATIONcommand line. This second local coordinate system is always
a Cartesian system that is designated as X ′′Y ′′Z ′′. The ROTATIONcommand line has
the form:

ROTATION ABOUT 1|2|3(1) = <real>theta(0.0) .

51

The second local coordinate system, X ′′Y ′′Z ′′, is obtained by specifying some
rotation, the theta parameter, about an axis, which is specified with an integer 1, 2,
or 3. The parameter theta has units of degrees. The manner in which the X ′′Y ′′Z ′′

is generated is as follows:

• Rotation about axis 1: If the ROTATIONcommand line specifies a rotation about
the 1 axis, then the X ′′Y ′′Z ′′ coordinate system is obtained by a transformation
that rotates the X ′Y ′Z ′ coordinate system by theta degrees about the X ′-axis.
The local origin for X ′′Y ′′Z ′′ is the same as that for X ′Y ′Z ′.

• Rotation about axis 2: If the ROTATEcommand line specifies a rotation about
the 2 axis, then the X ′′Y ′′Z ′′ coordinate system is obtained by a transformation
that rotates the X ′Y ′Z ′ coordinate system by theta degrees about the Y ′-axis.
The local origin for X ′′Y ′′Z ′′ is the same as that for X ′Y ′Z ′.

• Rotation about axis 3: If the ROTATEcommand line specifies a rotation about
the 3 axis, then the X ′′Y ′′Z ′′ coordinate system is obtained by a transformation
that rotates the X ′Y ′Z ′ coordinate system by theta degrees about the Z ′-axis.
The local origin for X ′′Y ′′Z ′′ is the same as that for X ′Y ′Z ′.

If no ROTATIONcommand line is used, the X ′′Y ′′Z ′′ coordinate system is generated
with rotation about the 1-axis (X ′) of zero degree (theta set to zero 0.0).

52

2.2 Presto Procedure and Region

The Presto procedure scope is nested within the domain scope, and the Presto region
scope is nested within the procedure scope. (See Section 1.2 for more information
about scope.) To create the scope for the Presto procedure and Presto region, use
the following commands:

BEGIN PRESTO PROCEDURE <string>presto_procedure_name
#
TIME CONTROL command block
#
BEGIN PRESTO REGION <string>presto_region_name

#
command blocks and command lines that appear in the
region scope
#

END [PRESTO REGION <string>presto_region_name]

Currently, only the TIME CONTROLcommand block appears within the PRESTO

PROCEDUREcommand block and outside of the PRESTO REGIONcommand block.
These three command blocks (procedure, time control, and region) are discussed
below.

Many command blocks and command lines fall within the region scope. These
command blocks and command lines are described in other sections of the user’s
guide.

2.2.1 Presto Procedure

The analysis time, from the initial time to the termination time, is controlled within
the procedure scope defined by the PRESTO PROCEDUREcommand block. The com-
mand block begins with

BEGIN PRESTO PROCEDURE<string >presto_procedure_name

and is terminated with

END [PRESTO PROCEDURE<string >presto_procedure_name] .

The string presto_procedure_name is the name for the Presto procedure.

2.2.2 Time Control

Within the procedure scope, there is a TIME CONTROLcommand block. This com-
mand block lets the user set the initial time and the termination time for an analysis.

53

This block also gives the user some control over the time-step size.

Because Presto is an explicit, transient dynamics code, it must run at a time step
that is less than the critical time for the problem at any given instant. Typically,
this global critical time step is based on a critical time step estimate calculated for
each element. With the TIME CONTROLcommand block, the user can set an initial
time step, scale the element-based time step estimate, and control the growth of the
element-based estimate for the critical time step.

In addition to the element-based method for estimating the time step, Presto also
offers a Lanczos-based method and a node-based method for determining a critical
time step estimate. The command blocks for these two methods are in the region
scope. There is also a mass scaling technique that will influence the magnitude of the
critical time step. If you use mass scaling, you must use the node-based method to
obtain a critical time step estimate.

The estimation of the time step is a key part of any Presto analysis. Time step
determination and control is discussed in detail in Chapter 3 of the user’s guide. The
TIME CONTROLcommand block with its associated command lines are described in
detail in Chapter 3. Consult Chapter 3 to determine how to specify command lines
associated with the TIME CONTROLcommand block and how the TIME CONTROL

command block fits into the overall scheme for time step control in Presto. Also
consult with Chapter 3 to learn about the other methods for estimating the critical
time step and the mass scaling technique.

2.2.3 Presto Region

Individual time steps are controlled within the region scope. The region scope is
defined by a PRESTO REGIONcommand block that begins with

BEGIN PRESTO REGION<string >presto_region_name

and is terminated with

END [PRESTO REGION<string >presto_region_name] .

The string presto_region_name is the name for the Presto region.

The region, as indicated previously, determines what happens at each time step.
In the procedure, we set the begin time and end time for the analysis. Time is
incremented in the region. It is in the region where we set information about what
occurs at various time steps. The output of results, for example, is set by command
blocks in the region. If we want results output at certain times or certain steps in
the analysis, this information is set in command blocks in the region. The region also
contains command blocks for the boundary conditions. A boundary condition can
have a time-varying component. The region determines the value of the component

54

for the current time step.

Two of the major types of command blocks, those for results output and boundary
conditions, have already been mentioned. Other major types of commands blocks in
the region are those for restart control and contact. The region is also where the user
selects the analysis model (finite element mesh).

The region makes use of information in the procedure and domain. For example,
the specific element type used for an element block in the analysis model is defined
in the domain. This information about the element type is collected into an analysis
model. The region then references this analysis model. As another example, the
boundary condition command blocks can reference a function. The function will be
defined in the domain.

55

2.3 Use Finite Element Model

USE FINITE ELEMENT MODEL <string>model_name

The model specification occurs within the region scope. To specify the model
(finite element mesh), use this command line. The string model_name must match
a name used in a FINITE ELEMENT MODELcommand block described in Section 5.1.
If one of these command blocks uses the name penetrator in the command-block line
and this is the model we wish to use in the region, then we would enter the command
line as

USE FINITE ELEMENT MODEL penetrator .

56

2.4 Error Estimation

Presto incorporates a number of user-defined error estimators. These error estimators
can be used to help assess the quality of the solution as the mesh evolves through
time. A selected error estimator will calculate the specified error metric on every
supported element of the mesh.

The following sections describe the use of the error estimators in Presto.

2.4.1 Error Estimation Controller

BEGIN ERROR ESTIMATION CONTROLLER <string>err_name
ERROR ESTIMATOR = <string>DISTORTION
COMPUTE METRIC = <string>ASPECT_RATIO/SOLID_ANGLE
COMPUTE STEP INTERVAL = <integer>step_int
COMPUTE AT OUTPUT

END [ERROR ESTIMATION CONTROLLER <string>err_name]

The full definition of an error estimation method is given in an ERROR ESTIMA-

TION CONTROLLERcommand block. This block must be defined in the domain scope,
i.e., at the same level as material models and functions. Note that there can be multi-
ple ERROR ESTIMATION CONTROLLERcommand blocks defined in the domain scope.
The user-defined error estimation methods are available for use within any Presto re-
gion through inclusion of the USE ERROR ESTIMATION CONTROLLERcommand line
in the region scope (see Section 2.4.2).

The command block begins with the input line

BEGIN ERROR ESTIMATION CONTROLLER<string>err_name

and ends with the input line

END [ERROR ESTIMATION CONTROLLER<string>err_name] ,

where name is a user-selected name for the ERROR ESTIMATION CONTROLLERcom-
mand block. The command lines within the block define what type of error metric
to calculate, how to calculate the metric, and when to calculate the metric. The
valid commands within this block are described next in Section 2.4.1.1 through Sec-
tion 2.4.1.3.

2.4.1.1 Error Estimator Class

ERROR ESTIMATOR = <string>DISTORTION

This command line specifies the type of error metric to calculate. Currently, there

57

is only a single class of error estimators available to Presto, the DISTORTION class.
The distortion error metric measures the distortion of mesh elements as they deform
and distort through time. If an element becomes inverted, the analysis will abort.
As an element nears inversion, the solution generally becomes poor. The distortion
error metric measures how close an element is to inversion.

2.4.1.2 Distortion Metrics

COMPUTE METRIC = <string>ASPECT_RATIO/SOLID_ANGLE

There are two formulations for error metrics, or error estimates, available within
the distortion class: aspect ratio and solid angle. Calculation of one or both metrics
may be specified by the COMPUTE METRICcommand line.

ASPECT_RATIOmeasures the aspect ratio of tetrahedral elements. A perfect equi-
lateral tetrahedron has an aspect ratio of 1.0. A degenerate zero-volume tetrahedron
has an aspect ratio of zero. An inverted tetrahedron has a negative aspect ratio. A
very thin element can have very large aspect ratios. The ASPECT RATIOoption will
only work on tetrahedral elements.

SOLID_ANGLEmeasures the minimal or maximal angle between edges of an el-
ement. The optimal solid angle for tetrahedrons and triangles is 60 degrees; for
hexahedrons and quadrilaterals, it is 90 degrees. An element in which all angles are
optimal has an error metric of 1, whereas a degenerate element has an error metric
of 0 and an inverted element has a negative solid angle. Severely distorted or twisted
elements will have poor (near 0) solid angles. The SOLID ANGLEoption operates on
any two-dimensional or three-dimensional element type in Presto.

If you want to examine both the aspect ratio and the solid angle on the same
mesh, you can include both ASPECT_RATIOand SOLID_ANGLEin the command line.
This approach computes two separate metrics at the same time and stores the results
in two separate output variables.

2.4.1.3 Utilities

COMPUTE STEP INTERVAL = <integer>step_int
COMPUTE AT OUTPUT

To control the frequency and output of error metrics, an ERROR ESTIMATION

CONTROLLERcommand block may contain one or both of the command lines above.

The COMPUTE STEP INTERVALcommand line specifies how often the error metrics
are computed. The metric will be computed every step_int time steps.

58

The COMPUTE AT OUTPUTcommand line specifies that error estimators should
only be computed immediately prior to results output.

An ERROR ESTIMATION CONTROLLERblock can include the COMPUTE STEP IN-

TERVAL command line and the COMPUTE AT OUTPUTcommand line. If both are
specified, the error would be computed every n time steps. Additionally, the error
would be computed immediately prior to writing an output file to ensure that output
values are correct for visualization. Specifying both command lines is reasonable in
many analyses. For example, a user may wish to view the correct current error esti-
mate on the mesh when it is output and use the error estimate to compute element
death. The COMPUTE STEP INTERVALcommand line can be used to ensure the error
estimator is updated sufficiently often to steer the calculation, but not so often as to
incur a major computational cost due to error estimation.

2.4.2 Use Error Estimation Controller

USE ERROR ESTIMATION CONTROLLER <string>err_name

The activation of an error estimation controller occurs within the region scope.
To specify the controller, use this command line. The string err_name must match
a name used in an ERROR ESTIMATION CONTROLLERcommand block described in
Section 2.4.1. If, for example, one of these command blocks uses the name estim1 in
the command-block line and this is the controller we wish to use in the region, then
we would enter the command line as

USE ERROR ESTIMATION CONTROLLER estim1.

Each Presto region may use at most one of the defined error estimation methods
via the USE ERROR ESTIMATION CONTROLLERcommand line.

59

2.5 Activation/Deactivation of Functionality

ACTIVE PERIODS = <string list>period_names

The ACTIVE PERIODScommand line can be used to activate or deactivate func-
tionality in the code at various points during an analysis. This functionality can
include such things as boundary conditions, element blocks, and user subroutines. In
the command line, the string list period_names is a list of the time periods defined
in TIME STEPPING BLOCKcommand blocks (see Section 3.1) during which the par-
ticular functionality is considered to be active. Each such period_name must match
a name used in a TIME STEPPING BLOCKcommand block, i.e., time_block_name .
Each defined time period runs from that period’s start time to the next period’s start
time. Note that if the ACTIVE PERIODScommand line is present, the functionality
will be treated as inactive for any time periods that are not listed. If this command
line is absent, then by default, the functionality is active during all time periods.
Various other command blocks in Presto will indicate whether they can be used with
the ACTIVE PERIODScommand line.

60

Chapter 3

Time Step Control in Presto

This chapter discusses time control in Presto. We begin with a broad overview of
time control in Presto and then describe the options that are available to users for
time control.

Time control in Presto begins with the user setting a start time and a termination
time for an analysis. The analysis is typically carried out with a large number of time
steps, each time step being much smaller than the analysis time. Because Presto is
an explicit, transient dynamics code, the time step must be less than some critical
value. Presto has a number of schemes to compute an estimate for the critical time
step. These will be discussed in detail in later sections.

The primary time control utilizes a TIME CONTROLcommand block that appears
in the procedure scope. Use of the TIME CONTROLcommand block gives the user, by
default, access to an element-based method for estimating the critical time step. The
user can access two other methods (node-based and Lanczos-based) for estimating
the critical time step with command blocks in the region scope. These other methods
(node-based and Lanczos-based) tend to give better (larger) estimates for the critical
time step. Selection of the node-based and Lanczos-based methods is made with
command blocks in the region scope.

We begin this chapter with the description of the TIME CONTROLcommand block.
Next, we discuss the node-based and Lanczos-based methods for the critical time step
estimate. You should read the introductory material for the node-based and Lanczos-
based methods and understand it thoroughly before you attempt to use these two
methods. Although the node-based and Lanczos-based methods give larger time step
estimates than the element-based scheme, they may not result in a net reduction of
central processor unit (CPU) time for an analysis unless they are used properly. In
those sections dealing with the Lanczos-based and node-based methods, we discuss
how to use these two methods in a cost-effective manner. (As we gain more experience
with the Lanczos-based method and the node-based method, we may implement

61

an improved time control method that defaults to the node-based or Lanczos-based
method rather than to the element-based method.)

Finally, there is a method for adjusting the time step known as mass scaling. Mass
scaling is a much different approach for adjusting the time step when compared to
the methods (element-, node-, Lanczos-based) we have just been discussing. The last
part of this chapter discusses mass scaling. The command block for mass scaling is
in the region scope.

3.1 Procedure Time Control

As indicated previously, the primary time control in Presto utilizes a TIME CONTROL

command block in the region scope. The user sets the start time and the termination
time for the analysis in this TIME CONTROLcommand block. The analysis time can
be subdivided into a number of time blocks. If the total analysis time is from time
0 to time T and there are three blocks, then the first block is defined from time 0
to time t1, the second block is defined from time t1 to time t2, and the third block
is defined from time t2 to time T . (The times t1 and t2 are set by the user.) If we
sum all of the times for each block, the sum will be T . The different time periods
defined by each block can be referenced so that we can turn certain functionality on
or off throughout an analysis. For example, we may want to have a certain boundary
condition turned off during our first time period and activated for the second time
period. (Most analyses require only one block.) Use the ACTIVE PERIODScommand
line (Section 2.5) to activate and deactivate functionality.

If only the TIME CONTROLcommand block is used in an analysis (and the node-
based and Lanczos-based methods are not invoked in region command blocks), Presto
relies on the element-based critical time step estimate. At every time step, an element-
based calculation is performed to determine a critical time step. You have some
control over the actual time step that is used with either one of two techniques. We
discuss these two techniques in the following paragraphs. The specifics for using these
techniques are described in Section 3.1.1.

First, you can set an initial time step that is smaller than the element-based
critical time step estimate. Presto will start the analysis with your initial time step
value rather than with the element-based critical time step (as long as your value
is less than the element-based critical time step). You can then control the rate at
which the time step increases from your initial value.

• If you set a time step increase factor equal to one, then the initial value you
specified will be used throughout the analysis (provided the initial time step is
never smaller than the element-based critical time step throughout the compu-
tations).

62

• If you set a time step increase factor to some value greater than one, the time
step will grow (from the initial value) at each time step until it reaches the value
of the element-based critical time step estimate. From then on, the element-
based critical time step estimate will essentially control the time step.

Second, you can manipulate the element-based estimate with either a scale factor
or a time step increase factor.

• The element-based estimate for the critical time step is usually smaller than
some maximum theoretical value for your model. It may therefore be possible
to scale the element-based critical time step by some factor greater than one.
(Your scaled value must remain below the theoretical maximum limit, however.
We discuss ways to obtain a critical time step close to the theoretical maximum
in later sections of this chapter.)

• If there are stability problems with a particular problem, it may be necessary
to scale the element-based estimate with a factor less than one.

• You can also control the rate at which the time step can increase for an analysis.
By specifying a time-step increase factor, you can limit the increase in the size
of the time step so that it does not increase too rapidly from one step to the
next. For certain problems, the element-based critical time step estimate may
increase rapidly from one step to the next. You may want to limit the increase
in the time step size for reasons of either stability or accuracy.

Now that we have presented and overview of the functionality in the TIME CON-

TROLcommand block, we will discuss the actual command lines.

3.1.1 Command Blocks for Time Control and Time Stepping

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value
BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

#
Time control parameters specific to PRESTO
are set in this command block.
#
END [PARAMETERS FOR PRESTO REGION <string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]
TERMINATION TIME = <real>termination_time ,

END [TIME CONTROL]

63

Presto time control resides in a TIME CONTROLcommand block. The command
block begins with

BEGIN TIME CONTROL

and terminates with

END [TIME CONTROL] .

Within the TIME CONTROLcommand block, a number of TIME STEPPING BLOCK

command blocks can be defined. Each TIME STEPPING BLOCKcommand block con-
tains the time at which the time stepping starts and a number of parameters that set
time-related values for the analysis. Each TIME STEPPING BLOCKcommand block
terminates at the start time of the following command block. The start times for the
TIME STEPPING BLOCKcommand blocks must be in increasing order. Otherwise, an
error will be generated by Presto. (The example in Section 3.1.6 shows the overall
structure of the TIME CONTROLcommand block.)

In the above input lines, the values are as follows:

- The string time_block_name is a name for the TIME STEPPING BLOCKcom-
mand block. This name must be unique to the other command blocks of this
type. The string time_block_name can be referenced on an ACTIVE PERIODS

command line (Section 2.5) to activate and deactivate functionality.

- The real value start_time_value is the start time for this TIME STEPPING

BLOCKcommand block. Values set by the block apply from the start time for
this block until the next start time or the termination time.

- The string region_name is the name of the Presto region affected by the pa-
rameters (see Section 2.2).

The final termination time for the analysis is given by the command line

TERMINATION TIME = <real>termination_time ,

where termination_time is the time at which the analysis will be stopped. The
TERMINATION TIMEcommand line appears inside the TIME CONTROLscope but out-
side of any TIME STEPPING BLOCKcommand block.

The TERMINATION TIMEcommand line can appear before the first TIME STEP-

PING BLOCKcommand block or after the last TIME STEPPING BLOCKcommand
block. Note that it is permissible to have TIME STEPPING BLOCKcommand blocks
with start times after the termination time; in this case, those command blocks that
have start times after the termination time are not executed. Only one TERMINATION

TIME command line can appear. If more than one of these command lines appears,
Presto gives an error.

64

Nested inside the TIME STEPPING BLOCKcommand block is a PARAMETERS FOR

PRESTO REGIONcommand block containing parameters that control the time step-
ping.

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name
INITIAL TIME STEP = <real>initial_time_step_value
TIME STEP SCALE FACTOR = <real>time_step_scale_factor(1.0)
TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)
STEP INTERVAL = <integer>nsteps(100)

END [PARAMETERS FOR PRESTO REGION <string>region_name]

These parameters are specific to a Presto analysis.

The command block begins with

BEGIN PARAMETERS FOR PRESTO REGION<string >region_name

and is terminated with

END [PARAMETERS FOR PRESTO REGION<string>region_name] .

As noted previously, the string region_name is the name of the Presto region affected
by the parameters. The command lines nested inside the PARAMETERS FOR PRESTO

REGIONcommand block are described next.

3.1.2 Initial Time Step

INITIAL TIME STEP = <real>initial_time_step_value

By default, Presto computes a critical time step for the analysis and uses this
as the initial time step. To directly specify a different initial time step, use the
INITIAL TIME STEP command line, where initial_time_step_value is the size
of the initial time step. This command is only valid if it is in the first TIME STEPPING

BLOCKcommand block in the problem.

The value for the initial time step will overwrite the calculated critical time step.
If you specify an initial time step larger than the critical time step, the time step is
set to the calculated critical time step.

3.1.3 Time Step Scale Factor

TIME STEP SCALE FACTOR = <real>time_step_scale_factor(1.0)

65

During the element computations, Presto computes a minimum time step required
for stability of the computation (the critical time step). Using the TIME STEP SCALE

FACTORcommand line, you can provide a scale factor to modify the critical time step.
Note that a value greater than 1.0 for time_step_scale_factor will cause the time
step to be greater than the computed critical time step, and thus the problem will
likely go unstable. By default, the scale factor is 1.0.

3.1.4 Time Step Increase Factor

TIME STEP INCREASE FACTOR =
<real>time_step_increase_factor(1.1)

During an analysis, the computed critical time step may change as elements de-
form, are killed, etc. By using the TIME STEP INCREASE FACTORcommand line,
you can limit the amount that the time step can increase between two adjacent time
steps. The value time_step_increase_factor is a factor that multiplies the pre-
vious time step. The current time step can be no larger than the product of the
previous time step and the scale factor.

Note that an increase factor less than 1.0 will cause the time step to continuously
decrease. The default value for this factor is 1.1, i.e., a time step cannot be more
than 1.1 times the previous step.

3.1.5 Step Interval

STEP INTERVAL = <integer>nsteps(100)

Presto can output data about the current time step, the current internal and
external energy, and the kinetic energy throughout an analysis. The STEP INTERVAL

command line controls the frequency of this output, where nsteps is the number of
time steps between output. The default value for nsteps is 100.

The output at any given step (read from left to right) is

- step number,

- time,

- time increment,

- kinetic energy,

- internal energy,

66

- external energy (work done on boundary),

- error in energy balance,

- cpu time, and

- wall clock time.

The time is at the current time, step n, and the time increment is the previous time
step increment from step n − 1 to step n.

The error in the energy balance is computed from the relation

energy balance error = (kinetic energy + internal energy
- external energy) / external energy * 100 .

The above expression gives a percent error for the energy balance.

3.1.6 Example

The following is a simple example of a TIME CONTROL commandblock:

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK p1

START TIME = 0.0
BEGIN PARAMETERS FOR PRESTO REGION presto_region

INITIAL TIME STEP = 1.0e-6
STEP INTERVAL = 50

END
END
BEGIN TIME STEPPING BLOCK p2

START TIME = 0.5e-3
BEGIN PARAMETERS FOR PRESTO REGION presto_region

TIME STEP SCALE FACTOR = 0.9
TIME STEP INCREASE FACTOR = 1.5
STEP INTERVAL = 10

END
END
TERMINATION TIME = 1.0e-3

END

The first TIME STEPPING BLOCK, p1, begins at time 0.0, the initial start time,
and terminates at time 0.5×10−3. The second TIME STEPPING BLOCK, p2, begins at

67

time 0.5×10−3 and terminates at time 1.0×10−3, the time listed on the TERMINATION

TIME command line. The TIME STEPPING BLOCKnames p1 and p2 can be refer-
enced by ACTIVE PERIODScommand lines (Section 2.5) to activate and deactivate
functionality.

68

3.2 Other Critical Time Step Methods

At present, there are three methods for calculating a critical time step for Presto.
First, there is the traditional element-based method. We know that, in general,
the element-based time step in Presto can give a fairly conservative estimate for
the time step. Second, there is a node-based method for giving a critical time step
estimate. Depending on the problem, the node-based method may or may not give
an estimate for the critical time step that approaches the theoretical maximum value
for a particular model. Although the node-based method will give a larger critical
time step estimate than the element-based method in most cases, the node-based
estimate may still be significantly lower than the maximum theoretical time step for
a problem. Third, there is the use of the Lanczos method to obtain an estimate for the
critical time step. The Lanczos method can give an accurate estimate of the maximum
eigenvalue for a problem using a very small number of Lanczos vectors compared to
the total number of degrees of freedom in a problem. From the maximum eigenvalue,
it is possible to derive the theoretical maximum critical time step for a problem.

Use of a critical time step from the node-based method or the Lanczos method is
desirable because the larger critical time steps produced by these methods (compared
to the element-based method) reduce CPU time. Both methods, however, are not
cost-effective if they are called every time step to give a critical time step estimate.
The cost of doing one node-based estimate or one Lanczos-based estimate for the
critical time step will not offset the cost benefit of the increase to the critical time
step (compared to the element-based time step estimate) over a single time step.
Hence, there must be some scheme for

• calling these methods only periodically throughout a calculation and

• maintaining a larger estimate (than the element-based estimate) for the critical
time step in between these calls

if we are to gain a net benefit from the increase in the critical time step these methods
can produce.

We begin with a discussion of the Lanczos method and then follow with a discus-
sion of the node-based method.

3.2.1 Lanczos Method

The Lanczos method is a more attractive method for computing the critical time step
in an explicit, transient dynamics code than typical element-based methods in that
the Lanczos method can give a significantly larger time step estimate. However, the
Lanczos method represents a more expensive method for calculating a critical time

69

step than element-based methods. Over one time step, it is not possible to recoup
the cost of the Lanczos calculations with the increase in the time step size. To use
the Lanczos method for estimating the critical time step in an explicit, transient
dynamics code, some methodology must be developed so that the Lanczos method
is used in a cost-effective manner. The following sections outline the development
of a cost-effective approach to using the Lanczos method in an explicit, transient
dynamics code.

3.2.1.1 Lanczos Method with Constant Time Steps

To understand how we can effectively use the Lanczos method in an explicit, transient
dynamics code, we begin with a simple case study. In this case study, we compute
the critical time step using the Lanczos method at some time step and then assume
this critical time step value remains constant for a subsequent number of time steps
nL. We only call the Lanczos method once during the nL time steps. (In reality,
the critical time step in an explicit, transient dynamics code like Presto changes with
each time step. We address this issue of the changing time step when we present the
details for cost-effective use of the Lanczos method.)

As indicated previously, the cost of a Lanczos vector is approximately the cost of
an internal force calculation. Over a given time step, the cost of the internal force
calculation is the major computational cost. (This assumes no contact. The addition
of contact introduces another computationally expensive process into a time step.
We address the issue of contact later on.) For this case study, we will assume that
the computational cost of an element-based estimate for the critical time step is part
of the cost of an internal force calculation. The cost of the element-based time step
estimate is a small part of the overall internal force calculations.

Assume that the Lanczos method computes a global estimate for the critical time
step of ∆tL, which is the value to be used for nL time steps. At the end of the nL

time steps, the analysis time for the code has been incremented by an amount ∆T ,
which is computed simply as

∆T = nL∆tL . (3.1)

If the element-based estimate for the time step is ∆te and the number of time steps
required to increment the analysis time by ∆T is ne, then, for the element-based time
step, we have

∆T = ne∆te . (3.2)

Because the Lanczos estimate for the critical time step is larger than the element-
based estimate, we know that ne > nL. Let us define the ratio r as

70

r = ∆tL/∆te = ne/nL . (3.3)

The ratio r is greater than one.

Now that we have determined the relation between the number of steps required
for a Lanczos-based critical time step estimate versus the element-based critical time
step estimate to achieve the same analysis time increment, let us examine the compu-
tational costs for these two cases in terms of CPU time. Designate the CPU cost for
a time step as ∆tIF . If the number of Lanczos vectors required to obtain the critical
time step estimate is NL, then the total computational cost of the Lanczos method
and the nL time steps is

nL∆tIF + NL∆tIF . (3.4)

The total computational cost, if we use the element-based method, is

ne∆tIF . (3.5)

Recall that we have chosen nL and ne so that we have the same analysis time increment
∆T even though we have different critical time steps. Now determine the the point
at which the computational cost for the Lanczos-based critical time step calculations
is the same as the cost for the element-based critical time step calculations. This is
simply the point at which

ne∆tIF = nL∆tIF + NL∆tIF . (3.6)

If we rearrange the above equation to eliminate ∆tIF and make use of the ratio r,
then we obtain

ne =
NL

1 − 1/r
. (3.7)

Consider the case of r = 1.25 and NL = 20. The above equations show that for
nL = 80 and ne = 100, the calculations with the Lanczos-based critical time step
and the calculations with the element-based time step give the same analysis time
for the same computational expense. If we use the Lanczos-based critical time step
∆tL for more than 80 iterations, then the Lanczos-based approach becomes cost-
effective. Our above equations have established the ”break-even” point at which it
becomes cost-effective to use the Lanczos method to reduce computational costs by
overcoming the initial cost of the Lanczos calculations with the larger critical time
step.

71

We can build on what we have done so far to account for contact. Suppose that
the computational cost of contact over a time step is some multiple m of the com-
putational cost of the internal force calculation ∆tIF . Then the point at which the
computational cost for the Lanczos-based calculations is the same as the computa-
tional cost for the element-based calculations is

(1 + m)nL∆tIF + NL∆tIF = (1 + m)ne∆tIF . (3.8)

For the case with contact,

ne =
NL

(1 + m)(1 − 1/r)
. (3.9)

Again, consider the case of r = 1.25 and NL = 20. Assume the computational
cost of contact calculations is the same as an internal force calculation (m = 1). For
these values, the break-even point is nL = 40 and ne = 50. The added computational
cost of the contact calculations results in reaching break-even with a smaller number
of iterations when compared to the case with no contact.

The above derivations let us calculate a break-even point based on our assumptions
of a constant critical time step. Considering that a typical analysis will run for tens of
thousands of time steps, something on the order of 100 steps represents a reasonable
number of steps to recoup the cost of the Lanczos calculations. Whether or not the
cost of the Lanczos calculations can be recouped in something on the order of 100
calculations depends heavily upon NL. If NL is sufficiently small, we can recoup the
cost of the Lanczos calculations in a reasonable number of steps.

Some computational studies indicate that NL is in an acceptable range for many
problems. The Lanczos method computes a good estimate for the maximum eigen-
value with a small number of Lanczos vectors, NL, compared to the number of degrees
of freedom in a problem. Some component studies show that, for a problem with be-
tween 250,000 and 350,000 degrees of freedom, one can obtain a good estimate for the
maximum eigenvalue with only 20 Lanczos vectors. A large-scale study of a model in-
volving 1.7 million nodes (5.1 million degrees of freedom) showed that only 45 Lanczos
vectors were required to obtain a good estimate of the maximum eigenvalue. These
examples show that the number of Lanczos vectors required for a good maximum
eigenvalue estimate is very small when compared to the number of degrees of freedom
for a problem. When NL is in the range of 20 to 45, Equations 3.6 and 3.9 show that,
with an increase in the time step on the order of 1.2 to 1.25, we can recoup the cost
of the Lanczos method in a reasonable number of time steps.

Now that we have determined we can recoup the cost of the Lanczos calculations
in a reasonable number of time steps, let us look a the issue of reusing a Lanczos-based
estimate in some manner.

72

3.2.1.2 Controls for Lanczos Method

The above discussion indicates, that, if we can perform a Lanczos calculation and
reuse the Lanczos-based estimate for the critical time step in some way over a number
of subsequent time steps, then the Lanczos method can be cost-effective for use in
an explicit, transient dynamics code. This section presents a method for reusing a
Lanczos-based estimate over a number of time steps so that we maintain a critical
time step estimate that is close to the theoretical maximum value in between the calls
to the Lanczos method. The method we discuss here makes use of the element-based
critical time step estimate at each time step.

We start our method with a Lanczos calculation to determine the maximum eigen-
value. The Lanczos method converges to the maximum eigenvalue from below, which
means that the method underestimates the maximum eigenvalue. Because the critical
time step depends on the inverse of the maximum eigenvalue, we overestimate the
critical time step. It is necessary, therefore, to scale back the critical time step esti-
mate from the Lanczos method so that the calculations in the explicit time-stepping
scheme do not become unstable. The method to determine a scaled-back value for
the maximum critical time step makes use of the element-based time step estimate.
Again, let ∆tL be the critical time step estimate from the Lanczos method and ∆te be
the critical time step estimate from the element-based calculations. The scaled-back
estimate for the critical time step, ∆ts, is computed from the equation

∆ts = ∆te + fs(∆tL − ∆te) , (3.10)

where fs is a scale factor. (A reasonable value for fs ranges from 0.9 to 0.95 for
our problems.) This value of fs puts ∆ts close to and slightly less than a theoretical
maximum critical time step.

Once ∆ts is determined, the ratio

tr = ∆ts/∆te (3.11)

is computed. This ratio is then used to scale subsequent element-based estimates for
the critical time step. If ∆te(n) is the nth element-based critical time step after the
time step where the Lanczos calculations are performed, then the nth time step after
the Lanczos calculations, ∆t(n), is simply

∆t(n) = tr∆te(n) . (3.12)

The ratio tr is used until the next call to the Lanczos method. The next call
to the Lanczos method is controlled by one of two mechanisms. First, the user can
set the frequency with which the Lanczos method is called. The user can set a

73

parameter so that the Lanczos method is called only once every n time steps. This
number remains fixed throughout an analysis. Second, the user can control when the
Lanczos method is called based on changes in the element-based critical time step.
For this second method, the change in the element-based critical time step estimate
is tracked. Suppose the element-based critical time step at the time the Lanczos
method was called is ∆te. At the nth step after the call to the Lanczos method, the
element-based critical time step is ∆te(n). If the value

∆tlim =
|∆te(n) − ∆te|

∆te

(3.13)

is greater than some limit set by the user, then the Lanczos method will be called.
If there is a small, monotonic change in the element-based critical time step over a
large number of time steps, this second mechanism will result in the Lanczos method
being called. Or, if there is a large, monotonic change in the element-based critical
time step over a few time steps, the Lanczos method will also be called.

These two mechanisms for calling the Lanczos method can be used together. For
example, suppose the second mechanism, the mechanism based on a change in the
element-based time step, results in a call to the Lanczos method. This resets the
counter for the first mechanism, the mechanism using a set number of time steps
between calls to the Lanczos method.

This method for reusing a Lanczos-based time step estimate has been implemented
in Presto, and it has been used for a number of studies. One of the component
studies, as indicated previously, used the same scale factor for nL = 1700 iterations.
The break-even point for this problem is ne = 45 time steps (not accounting for
contact, which was a part of the component modeling). For this particular problem,
the extended use of the Lanczos estimate reduced the computational cost to 56% of
what it would have been with the element-based time step.

Not all problems will lend themselves to reuse of one Lanczos-based estimate for
thousands of time steps. However, if it is possible to use the Lanczos-based estimate
for two to three times the number of time steps required for break-even, we begin to
see a noticeable reduction in the total number of time steps required for a problem.

3.2.1.3 Scale Factor for Lanczos Method

In addition to understanding how to use the Lanczos method in a cost-effective man-
ner, one must also be aware that the Lanczos method makes use of the action of
the global stiffness matrix K on a Lanczos vector qj. This action of K on qj is the
internal force computation. We do not construct a K matrix, but simply provide
a qj vector for the internal force calculations in Presto. The internal force calcu-
lations give us the desired matrix × vector product. You, the user, do not see the

74

qj vectors. The qj must be scaled so that they represent velocities associated with
small strain. When these scaled vectors are sent to the internal force calculation, the
internal force calculation becomes a matrix × vector product with a constant tangent
stiffness matrix KT .

A number of tests have established a scale factor that works well for a range of
models encountered here at Sandia National Laboratories. There is a default value
for this scale factor, but the default value can be changed by the user. The scale
factor must not be too small, as this will create round off problems and give a bad
estimate for the critical time step. If the scale factor is too large, we violate the above
restriction of a constant tangent stiffness matrix KT .

The user can always determine if a particular scale factor is suitable for a particular
problem. Take a scale factor vsf , plus values on either side of it, say 0.9 × vsf and
1.1 × vsf . If all three of these scale factor values produce very nearly the same
estimate for the critical time step for a particular model, then the value for vsf meets
the criteria for an acceptable scale factor.

Work is under way to develop an automated scheme to determine a good value
for the scale factor vsf .

3.2.1.4 Lanczos Parameters Command Block

BEGIN LANCZOS PARAMETERS <string>lanczos_name
NUMBER EIGENVALUES = <integer>num_eig(20)
STARTING VECTOR = <string>STRETCH_X|STRETCH_Y|STRETCH_Z

(STRETCH_X)
VECTOR SCALE = <real>vec_scale(1.0e-5)
TIME SCALE = <real>time_scale(0.9)
STEP INTERVAL = <integer>step_int(500)
INCREMENT INTERVAL = <integer>incr_int(5)
TIME STEP LIMIT = <real>step_lim(0.10)

END [LANCZOS PARAMETERS <string>lanczos_name]

If you use the Lanczos method to compute a critical time step, there should be
only one LANCZOS PARAMETERScommand block, and it should appear in the region.
If you use the Lanczos method to compute the critical time step, you should set the
time step scale factor to 1.0 and the time step increase factor to a large number
(5.0 is an acceptable value for the time step increase factor). If you have a LANCZOS

PARAMETERScommand block, you may not specify a command control block for the
node-based method.

The NUMBER EIGENVALUEScommand line selects the number of eigenvalues to
be computed by the Lanczos method. We are really only interested in the maximum
eigenvalue computed by the Lanczos method, as this is what is used for the critical

75

time step computation. The more eigenvalues computed, the better the estimate for
the maximum eigenvalue, and, hence, the critical time step. The Lanczos method can
compute an accurate value for the maximum eigenvalue with a very small number
of total eigenvalues computed compared to the number of degrees of freedom in a
problem. There are examples of problems with 250,000 to 350,000 degrees of freedom
where we obtain a good estimate of the critical time step with 20 eigenvalues (the
default value). There is an example of a problem with 5.1 million degrees of freedom
where we obtain a good estimate of the critical time step with 45 eigenvalues.

The Lanczos method requires some type of starting vector. This is determined by
the STARTING VECTORcommand line. The various options will generate a ”displace-
ment” vector that stretches your model in the X, Y, or Z direction. If your model
has its longest dimension in the x-direction, you should use STRETCH_X(the default)
for the starting vector. The Lanczos method appears to be fairly insensitive to the
choice of a starting vector. However, by choosing a starting vector that reflects the
geometry of the model, you may gain a slight amount of accuracy for the critical time
step estimate for a given number of eigenvalues.

The VECTOR SCALEcommand line sets the scale factor vsf discussed in the pre-
ceding section. Please consult with the previous section to determine how this scale
factor is set. The default value is 1.0e-5.

The TIME SCALEcommand line sets the factor fs in Equation (3.10). The value
for fs is set to 0.9. One can probably run with a slightly higher value for fs, 0.95,
for most problems. More experience with the Lanczos method will help us determine
the appropriate value for fs.

The STEP INTERVALcommand line sets the number of step intervals at which
the Lanczos method is called. If step int is set to 1000, the Lanczos method will be
called every 1000 steps to compute an estimate for the critical time step. (The default
is 500.) This control mechanism interacts with the control established by the TIME

STEP LIMIT command line. Suppose we have set step_int to 1000, and we have
computed 800 steps since the last call to the Lanczos method. If ∆tlim has been set
to 0.15 and we exceed this value at step 800, then the change in the element-based
time step will result in the Lanczos method being called. The counter for keeping
track of the number of step intervals since the last Lanczos computation will be reset
to zero. The next call to the Lanczos method will then be in 1000 steps, unless we
again exceed the change in the element-based time step.

The INCREMENT INTERVALcommand line determines how many steps are used
to transition from an element-based critical time step estimate to the Lanczos-based
estimate at the beginning of an analysis. The user may want to increase from the
element-based estimate to the Lanczos-based estimate over a number of time steps
if the difference between these two estimates is large. The INCREMENT INTERVAL

defaults to 5.

76

The TIME STEP LIMIT command line sets the value for ∆tlim in Equation (3.13).
If the change in the element-based critical time step estimate as given by Equa-
tion (3.13) exceeds the value for ∆tlim, then the Lanczos method is called for a new
estimate for the critical time step. The default value for ∆tlim is 0.10.

3.2.2 Node-Based Method

Now that we have developed a scheme to make the Lanczos method a cost-effective
tool for the estimation of the critical time step, let us examine the node-based scheme.

The node-based method in Presto will give an estimate for the critical time step
that is greater than or equal to the element-based estimate. It may or may not give
an estimate for the time step that is close to the maximum value associated with the
maximum eigenvalue for the problem. In general, we assume the node-based method
will give us an estimate larger than the element-based estimate, but not significantly
larger.

If the node-based scheme is used to determine the critical time step for a block
of uniform elements (all the same material), then the estimate from the node-based
method will be the same as that for the element-based estimate. The node-based
estimate begins to diverge from (become larger than) the element-based estimate as
the differences in aspect ratios of the elements attached to a node become larger. We
can assume, therefore, that if the stiffest part of our structure has a relatively uniform
mesh, the node-based method will not give a significantly larger estimate than the
element-based method.

The node-based method costs only a fraction of an internal force calculation. How-
ever, the node-based method makes use of element time step estimates. Therefore, in
order to do the node-based procedure, one must also do the element-based procedure.
The cost of the node-based procedure is in addition to the element-based procedure.
The modest increase in the critical step estimate from the node-based procedure is
unlikely to offset the added cost of the node-based procedure.

To make the node-based method cost-effective, we can use the same procedures
that are employed for the Lanczos method. Let tb be the estimate for the critical time
step from the node-based method. We define the ratio of the node-based estimate to
the element-based estimate as

tr =
∆tb

∆te
. (3.14)

This ratio is then used to scale subsequent element-based estimates for the critical
time step. If ∆te(n) is the nth element-based critical time step after the time step
where the node-based calculations are performed, then the nth time step after the

77

node-based calculations, ∆t(n), is simply

∆t(n) = tr∆te(n) . (3.15)

The ratio tr is used until the next call to the node-based method. The next call
to the node-based method is controlled by one of two mechanisms described in the
Lanczos discussion. The node-based method is called after a set number of times or
a significant change in the element-based estimate for the critical time step.

3.2.2.1 Node-Based Parameters Command Block

BEGIN NODE BASED TIME STEP PARAMETERS <string>nbased_name
INCREMENT INTERVAL = <integer>incr_int(5)
STEP INTERVAL = <integer>step_int(500)
TIME STEP LIMIT = <real>step_lim(0.10)

END [NODE BASED TIME STEP PARAMETERS <string>nbased_name]

If you use the node-based method to compute a critical time step, there should
be only one NODE BASED TIME STEP PARAMETERScommand block, and it should
appear in the region. If you use the node-based method to compute the critical time
step, you should set the time step scale factor to 1.0 and the time step increase factor
to a large number (5.0 is an acceptable value for the time step increase factor). If you
have a NODE BASED TIME STEP PARAMETERScommand block, you may not specify
a command control block for the Lanczos method.

The STEP INTERVALcommand line sets the number of step intervals at which the
node-based method is called. If step_int is set to 1000, the node-based method will
be called every 1000 steps to compute an estimate for the critical time step. (The
default is 500.) This control mechanism interacts with the control established by the
TIME STEP LIMIT command line. Suppose we have set step_int to 1000, and we
have computed 800 steps since the last call to the node-based method. If ∆tlim has
been set to 0.15 and we exceed this value at step 800, then the change in the element-
based time step will result in the node-based method being called. The counter for
keeping track of the number of step intervals since the last node-based computation
will be reset to zero. The next call to the node-based method will then be in 1000
steps, unless we again exceed the change in the element-based time step.

The INCREMENT INTERVALcommand line determines how many steps are used
to transition from an element-based critical time step estimate to the node-based
estimate at the beginning of an analysis. The user may want to increase from the
element-based estimate to the node-based estimate over a number of time steps if the
difference between these two estimates is large. The INCREMENT INTERVALdefaults
to 5.

78

The TIME STEP LIMIT command line sets the value for ∆tlim in Equation (3.13).
If the change in the element-based critical time step estimate as given by Equa-
tion (3.13) exceeds the value for ∆tlim, then the node-based method is called for a
new estimate for the critical time step. The default value for ∆tlim is 0.10.

3.3 Mass Scaling

3.3.1 What is Mass Scaling?

WARNING: USE OF MASS SCALING WILL INTRODUCE ERROR INTO YOUR
ANALYSIS. THE AMOUNT OF ERROR INCURRED IS UNBOUNDED AND CAN
BE UNPREDICTABLE. IT IS ENTIRELY UP TO THE ANALYST TO DECIDE
WHETHER MASS SCALING CAN BE USED IN A WAY THAT DOES NOT DIS-
TORT THE RESULTS OF INTEREST.

Mass scaling allows for arbitrarily increasing the mass of certain nodes in order to
increase the global estimate for the critical time step. The nodes where the mass is
increased must be associated with those elements that have the minimum time step.
By increasing the mass at any node for an element, we have effectively raised the
critical time step estimate for that element.

Note that mass scaling does not adjust the value for the density used in the
element calculations. Mass scaling only adjusts the mass at nodes. The net effect
of the mass scaling makes it appear, however, as if we have modified the density of
selected elements (even though no adjustment has been made to element densities).

Mass scaling can be useful in a number of circumstances, as listed below. However,
in all of these circumstances, error will be introduced into the calculations. The user
must be extremely careful not to introduce excessive error.

• Quasi-static or rigid-body motion: If the model or part of a model is undergoing
what is basically quasi-static or rigid-body motion, then adding mass may have
little effect on the end result.

• Disparate sizes in element geometry: Some models may contain elements for
some portion of the model that are much smaller than the majority of elements
in the rest of the model. For example, a model might include screws or gears
that are modeled in detail. The elements for the screw threads or gear teeth
could be much smaller than elements in other portions of the model. If the
dynamics of these parts modeled with small elements (compared to the rest of
the mesh) are relatively unimportant, adding mass to them might not affect the
quantities of interest.

79

• Increasing time step for “unimportant” sections of the mesh: For some prob-
lems, you may not want part of the mesh to control the time step. Consider a
car-crash problem in which the bumper is the first part to strike an object. The
crumpling of the bumper could greatly reduce the time step in some elements
of the bumper, and these elements would control the time step for the problem.
At a later time in the analysis, the effect of the bumper on the overall crash
dynamics may not be significant. Mass scaling could be applied to ensure that
this now noncritical part (the bumper) is no longer controlling the global time
step.

3.3.2 Mass Scaling Command Block

BEGIN MASS SCALING
{node set commands }
#
#
TARGET TIME STEP = <real>target_time_step
ALLOWABLE MASS INCREASE RATIO = <real>mass_increase_ratio
#
additional command
ACTIVE PERIODS = <string list>periods

END MASS SCALING

The MASS SCALINGcommand block controls mass scaling for a specified set of
nodes. This command block contains one or more command lines to specify the node
set. It also contains two command lines that determine how the actual mass scaling
will be applied to the nodes in the node set. In addition to the command lines in the
two command groups, there is an additional command line: ACTIVE PERIODS. The
ACTIVE PERIODScommand line is used to active or deactivate the mass scaling for
certain time periods.

Multiple MASS SCALINGcommand blocks can exist to apply different criteria to
different portions of the mesh at different times. For any given set of MASS SCALING

command blocks, mass will only be added to a node if doing so will allow increasing
the global time step. The amount of artificial mass added to a node will vary in time
as the mesh deforms and moves. The added mass computation is redone every time
the nodal-based time step estimate is recomputed.

NOTE: Mass scaling must be used in conjunction with the node-based time step
estimation method. Consult with the preceding sections for a description of the
node-based method for estimating the critical time step.

Following are descriptions of the different command groups and the ACTIVE PE-

RIODS command line.

80

3.3.2.1 Node Set Commands

The {node set commands } portion of the MASS SCALINGcommand block specifies
the nodes associated with the boundary condition. This portion of the command
block can include some combination of the following lines:

NODE SET = <string list>nodelist names
SURFACE = <string list>surface names
BLOCK = <string list>block names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list> nodelist names
REMOVE SURFACE = <string list>surface names
REMOVE BLOCK = <string list>block names

These command lines, taken collectively, constitute a set of Boolean operators for
constructing a set of nodes. See Section 6.1 for more information about the use of
these command lines for creating a set of nodes for mass scaling. There must be at
least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKScommand line in
the command block.

3.3.2.2 Mass Scaling Commands

The MASS SCALINGcommand block may contain either a

TARGET TIME STEP = <real>target_time_step

command line or an

ALLOWABLE MASS INCREASE RATIO = <real>mass_increase_ratio

command line, or both of these command lines can appear in the input block.

The TARGET TIME STEPcommand lines sets the maximum time step for a set of
nodes. The parameter target_time_step is the maximum time step for all of the
nodes specified in the command block.

The ALLOWABLE MASS INCREASE RATIOsets an upper limit on the mass scaling
at a node. The mass_increase_ratio limits the ratio of the mass at a node, as set
by mass scaling, to the original mass at the node. (The original mass of the node is
determined only by the element contributions.) This ratio must be a factor greater
than or equal to one. If ms is the scaled mass at a node and m0 is the original mass
at the node due only to element contributions, then the ratio ms÷m0 will not exceed
mass_increase_ratio .

Mass scaling will add mass to nodes until the target time step is reached, the mass
added to some node reaches the allowable mass increase ratio, or the current set of
nodes no longer controls the global analysis time step.

81

The amount of mass added due to mass scaling is stored in the nodal variable
mass_scaling_added_mass . This variable can be output and postprocessed to
determine how much mass is being added at a given time. See Section 8.1.1 regarding
the output of nodal variables to a results file.

3.3.2.3 Additional Command

The ACTIVE PERIODcommand line can appear as an option in the MASS SCALING

command block:

ACTIVE PERIODS = <string list>periods

This command line determines when mass scaling is active. See Section 2.5 for
more information about this command line.

82

Chapter 4

Materials

The chapter summarizes the input for various material models available in Presto. It
also describes the specifications for activating thermal strains and for implementing
energy deposition for energy-dependent materials.

The material models described in the following sections are, in general, applicable
to solid elements. The structural elements (shells, beams, etc.) have a much more
limited set of material models. You should consult with Chapter 5, the chapter on
the element library in Presto, to determine what material models are available for
the various elements. The introduction to Chapter 5 provides a summary of all the
element types in Presto. For each element type, there is a list of available material
models.

When using the nonlinear material models, you may want to output state variables
associated with these models. Reference Section 8.4.2 to learn how to output the state
variables for the various nonlinear material models.

4.1 Property Specification

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
#
Command blocks and command lines for material
models appear in this scope.
#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

PROPERTY SPECIFICATION FOR MATERIALcommand blocks appear in the do-
main scope in the general form shown above. These command blocks are physics
independent in the sense that the information in them can be shared by more than

83

one application. For example, the PROPERTY SPECIFICATION FOR MATERIALcom-
mand blocks contain density information that can be shared among several applica-
tions.

The command block begins with the input line

BEGIN PROPERTY SPECIFICATION FOR MATERIAL<string>mat_name

and is terminated with the input line

END [PROPERTY SPECIFICATION FOR MATERIAL<string>mat_name] ,

where the string mat_name is a user-specified name for the command block.

Within a PROPERTY SPECIFICATION FOR MATERIALcommand block, there will
be other command blocks and command lines that describe particular material mod-
els. These material models are described by a set of material-model command blocks
that follow the naming convention of PARAMETERS FOR MODEL model_name, where
model_name identifies a particular material model, such as elastic, elastic-plastic, or
orthotropic crush. Each such command block contains all of the parameters needed
to describe a particular material model. NOTE: More than one material-model com-
mand block can appear within a PROPERTY SPECIFICATION FOR MATERIALcom-
mand block. Suppose we have a PROPERTY SPECIFICATION FOR MATERIALcom-
mand block called steel. It would be possible to have two material-model command
blocks within this command block. One of the material-model command blocks would
provide an elastic model for steel ; the other material-mode command block would
provide an elastic-plastic model for steel . The general form of a property command
block would be as follows:

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
#
{General material commands }
#
BEGIN PARAMETERS FOR MODEL <string>model_name1

{Parameters for material model model_name1 }
END PARAMETERS FOR MODEL <string>model_name1
#
BEGIN PARAMETERS FOR MODEL <string> model_name2

{Parameters for material model model_name2 }
END PARAMETERS FOR MODEL <string> model_name2
#
{Additional model command blocks if required }
#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

In the above general form for a PROPERTY SPECIFICATION FOR MATERIALcom-
mand block, the string model_name1 could be ELASTIC and the string model_name2

84

could be ORTHOTROPIC CRUSH. Most PROPERTY SPECIFICATION FOR MATERIAL

command blocks will have only one PROPERTY SPECIFICATION FOR MATERIALcom-
mand block.

Both PROPERTY SPECIFICATION FOR MATERIALcommand blocks and PARAM-

ETERS FOR MODELcommand blocks are referenced by the element-block command
block (also known as the FINITE ELEMENT MODELcommand block), which is de-
scribed in Section 5.1. It is up to you, the user, to select the material model that will
be called for a particular material.

The material models that are most useful in Presto are described in Section 4.1.2
through Section 4.1.18. These models do not constitute the entire set of material
models that are implemented in the SIERRA Framework. There are material models
implemented in the SIERRA Framework that are useful for other solid mechanics
codes, but not for Presto.

As indicated in the introductory material, not all of the material models available
are applicable to all of the element types. As one example, there is a one-dimensional
elastic material model that is used for a truss element but is not applicable to solid
elements such as hexahedra or tetrahedra. For this particular example, the specific
material-model usage is hidden from the user. If the user specifies a linear-elastic
material model for a truss, the one-dimensional elastic material model is used. If the
user specifies a linear-elastic material model for a hexahedron, a full three-dimensional
elastic material model is used. As another example, the energy-dependent material
models cannot be used for a one-dimensional element such as a truss. The energy-
dependent material models can only be used for solid elements such as hexahedra
and tetrahedra. (Chapter 5 has information to indicate what material models are
available for which element models.)

For each material model, the parameters needed to describe that model are listed
in the section pertinent to that particular model. Solid models with elastic constants
require only two elastic constants. These two constants are then used to generate
all of the elastic constants for the model. For example, if the user specifies Young’s
modulus and Poisson’s ratio, then the shear modulus, bulk modulus, and lambda are
calculated. If the shear modulus and lambda are specified, then Young’s modulus,
Poisson’s ratio, and the bulk modulus are calculated.

The various nonlinear material models have state variables. Reference Section 8.4.2
to learn how to output the state variables for the nonlinear material models.

Only brief descriptions of the material models are presented in this chapter. For a
detailed description of the various material models, you will need to consult a variety
of references. Specific references are identified in Section 4.1.2 through Section 4.1.18
for most of the material models in Presto.

85

4.1.1 Thermal Strains

THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function

It is possible to specify either an isotropic thermal-strain field using the com-
mand line THERMAL STRAIN FUNCTIONor an orthotropic thermal-strain field us-
ing the command lines THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNC-

TION, and THERMAL STRAIN Z FUNCTION. For any of these command lines, the
user supplies a thermal strain function (via a DEFINITION FOR FUNCTIONcommand
block), which defines the thermal strain as a function of temperature. The computed
thermal strain is then subtracted from the strain passed to the material model.

A thermal strain can be applied to any two-dimensional or three-dimensional
element, regardless of material type. For a three-dimensional element such as a hex-
ahedron or tetrahedron, the thermal strains are applied to the strain in the global
XY Z coordinate system. For the isotropic case, the thermal strains are the same in
the X-direction, Y -direction, and Z-direction. For the anistropic case, the thermal
strains can be different in each of the three global directions—X, Y , and Z. For
a two-dimensional element, shell or membrane, the thermal strain corresponding to
THERMAL STRAIN X FUNCTIONis applied to the strain in the shell (or membrane) r-
direction. (Reference Section 5.2.2 for a discussion of the shell rst coordinate system.)
The thermal strain corresponding to THERMAL STRAIN Y FUNCTIONis applied to the
strain in the shell (or membrane) s-direction. For two-dimensional elements, the cur-
rent implementation of orthotropic thermal strains is limited, for practical purposes,
to special cases—flat sheets of uniform shell elements lying in one of the global planes,
i.e., XY , Y Z, or ZX. The current orthotropic thermal strain capability has limited
use for shells and membranes in the current release of Presto. Tying the orthotropic
thermal strain functionality to the shell orientation functionality (Section 5.2.2) in
the future will provide much more useful orthotropic thermal-strain functionality for
two-dimensional elements.

If an isotropic thermal-strain field is to be applied, the THERMAL STRAIN FUNC-

TION command line is placed in the root material scope in the material model, which
is where the DENSITY command is located in some of the material models. The
isotropic thermal strain is thus a general property of any material, not a property of
any specific material formulation. The THERMAL STRAIN FUNCTIONcommand line
can go either before or after the DENSITY command line. The input value of ther-

86

mal_strain_function is the name of the function that is defined in a DEFINITION

FOR FUNCTIONcommand block containing the thermal strain and temperature val-
ues applicable to the specific model. For more information on how to set Presto to
compute thermal strains and how to apply temperatures, see Section 4.2.

If an orthotropic thermal-strain field is to be applied, all three of the command
lines THERMAL STRAIN X FUNCTION, THERMAL STRAIN Y FUNCTION, and THER-

MAL STRAIN Z FUNCTIONare placed in the root material scope in the material
model, which is where the DENSITY command is located in some of the material
models. The orthotropic thermal strain is thus a general property of any mate-
rial, not a property of any specific material formulation. The THERMAL STRAIN

X FUNCTION, THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTION

command lines can go either before or after the DENSITY command line. The input
values of thermal_strain_x_function , thermal_strain_y_function , ther-

mal_strain_z_function are the names of the functions that are defined in DEFI-

NITION FOR FUNCTIONcommand blocks containing the thermal strain and temper-
ature values applicable to the specific model. For more information on how to set
Presto to compute thermal strains and how to apply temperatures, see Section 4.2.

The THERMAL STRAIN FUNCTIONcommand line and the THERMAL STRAIN X

FUNCTION, THERMAL STRAIN Y FUNCTION, and THERMAL STRAIN Z FUNCTIONcom-
mand lines are not used for the elastic three-dimensional orthotropic model (Sec-
tion 4.1.11) or the elastic laminate model (Section 4.1.18). See Section 4.2 for further
information. Note that specification of a thermal strain is identified in the material
model descriptions using the notation “{thermal strain option }.”

87

4.1.2 Elastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic material model is used to describe simple linear-elastic behavior of
materials. This model is generally valid for small deformations.

For an elastic material, an elastic command block starts with the input line

BEGIN PARAMETERS FOR MODEL ELASTIC

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- Only two of the elastic constants are required.

For information about the elastic model, consult Reference 1.

88

4.1.3 Elastic Fracture Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
MAX STRESS = <real>max_stress
CRITICAL STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic fracture material is a simple failure model based on linear-elastic behav-
ior. The model uses a maximum-principal-stress failure criterion. The stress decays
isotropically based on the component of strain parallel to the maximum principal
stress. The value of the component of strain over which the stress is decayed to zero
is a user-defined parameter for the model. This strain parameter can be adjusted so
that failure is mesh independent.

For an elastic material, an elastic command block starts with the input line

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

89

- The maximum principle stress at which failure occurs is defined with the MAX

STRESS commandline.

- The component of strain over which the stress decays to zero is defined with
the CRITICAL STRAIN command line. This component of strain is aligned with
the maximum principle stress direction at failure.

Only two of the elastic constants are required. For information about the elastic
fracture model, contact William Scherzinger at Sandia National Laboratories (Sandia)
in Albuquerque, NM. His phone number is 505-284-4866, and his email address is
wmscher@sandia.gov.

90

4.1.4 Elastic-Plastic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING MODULUS = <real>hardening_modulus
BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic-plastic linear hardening models are used to model materials, generally
metals, undergoing plastic deformation at finite strains. Linear hardening generally
refers to the shape of a uniaxial stress-strain curve where the stress increases linearly
with the plastic, or permanent, strain. In a three-dimensional framework, hardening
is the law that governs how the yield surface grows in stress space. If the yield surface
grows uniformly in stress space, the hardening is referred to as isotropic hardening.
When BETA is 1.0, we have only isotropic hardening.

Because the linear hardening model is relatively simple to integrate, there is also
the ability to define a yield surface that not only grows, or hardens, but also moves in
stress space. This is known as kinematic hardening. When BETA is 0.0, we have only
kinematic hardening. The elastic-plastic linear hardening model allows for isotropic
hardening, kinematic hardening, or a combination of the two.

For an elastic-plastic material, an elastic-plastic command block starts with the
input line

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

91

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The yield stress is defined with the YIELD STRESScommand line.

- The hardening modulus is defined with the HARDENING MODULUScommand
line.

- The beta parameter is defined with the BETA commandline.

Only two of the elastic constants are required. For information about the elastic-
plastic model, consult Reference 1.

92

4.1.5 Elastic-Plastic Power-Law Hardening Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent
LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

A power-law hardening model for elastic-plastic materials is used for modeling
metal plasticity up to finite strains. The power-law hardening model, as opposed to
the linear hardening model, has a power law fit for the uniaxial stress-strain curve
that has the stress increase as the plastic strain raised to some power. The power-law
hardening model also has the ability to model materials that exhibit Luder’s strains
after yield. Due to the more complicated yield behavior, the power-law hardening
model can only be used with isotropic hardening.

For an elastic-plastic power-law hardening material, an elastic-plastic power-law
hardening command block starts with the input line

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

and terminates with the input line

END [PARAMETERS FOR MODEL EP_POWER_HARD].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

93

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The yield stress is defined with the YIELD STRESScommand line.

- The hardening constant is defined with the HARDENING CONSTANTcommand
line.

- The hardening exponent is defined with the HARDENING EXPONENTcommand
line.

- The Luder’s strain is defined with the LUDERS STRAINcommand line.

Only two of the elastic constants are required. For information about the elastic-
plastic power-law hardening model, consult Reference 1.

94

4.1.6 Elastic-Plastic Power-Law Hardening Model with Fail-

ure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent
LUDERS STRAIN <real>luders_strain
CRITICAL TEARING PARAMETER = <real>crit_tearing
CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is identical to power-law hardening with the addition of a failure
criterion and a postfailure isotropic decay of the stress to zero within the constitutive
model. The point at which failure occurs is defined by a critical tearing parameter.
The critical tearing parameter tp is related to the plastic strain at failure εf by the
evolution integral

tp =

∫ εf

0

〈 2σmax

3 (σmax − σm)
〉
4

dεp . (4.1)

In Equation (4.1), σmax is the maximum principal stress and σm is the mean stress.
The quantity in the angle brackets, the expression

2σmax

3 (σmax − σm)
, (4.2)

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has
a negative value.

The stress decays isotropically based on the component of strain parallel to the
maximum principal stress. The value of the component of strain over which the stress
is decayed to zero is a user-defined parameter for the model. This strain parameter
can be adjusted so that failure is mesh independent.

For an elastic-plastic power-law hardening material with failure, the command
block starts with the input line

95

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

and terminates with the input line

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The yield stress is defined with the YIELD STRESScommand line.

- The hardening constant is defined with the HARDENING CONSTANTcommand
line.

- The hardening exponent is defined with the HARDENING EXPONENTcommand
line.

- The Luder’s strain is defined with the LUDERS STRAINcommand line.

- The critical tearing parameter is defined with the CRITICAL TEARING PARAM-

ETERcommand line.

- The component of strain over which the stress decays to zero is defined with the
CRITICAL CRACK OPENING STRAINcommand line. This component of strain
is aligned with the maximum-principle-stress direction at failure.

Only two of the elastic constants are required. For information about the elastic-
plastic power-law hardening model with failure, consult Reference 1.

96

4.1.7 Multilinear Elastic-Plastic Power-Law Hardening Model

with Failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
BETA = <real>beta_parameter(1.0)
HARDENING FUNCTION = <real>hardening_function_name
YOUNGS MODULUS FUNCTION = <real>ym_function_name
POISSONS RATIO FUNCTION = <real>pr_function_name
YIELD STRESS FUNCTION = <real>yield_stress_function_name
CRITICAL TEARING PARAMETER = <real>crit_tearing
CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL ML_EP_FAIL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This model is similar to the power-law hardening model except the hardening
behavior is described with a piecewise-linear curve as opposed to a power law. This
model incorporates a failure criterion and a postfailure isotropic decay of the stress
to zero within the constitutive model. The point at which failure occurs is defined by
a critical tearing parameter. The critical tearing parameter tp is related to the plastic
strain at failure εf by the evolution integral

tp =

∫ εf

0

〈 2σmax

3 (σmax − σm)
〉
4

dεp . (4.3)

In Equation (4.3), σmax is the maximum principal stress and σm is the mean stress.
The quantity in the angle brackets, the expression

2σmax

3 (σmax − σm)
, (4.4)

is nonzero only if it evaluates to a positive value. This quantity is set to zero if it has
a negative value.

The stress decays isotropically based on the component of strain parallel to the
maximum principal stress. The value of the component of strain over which the stress

97

is decayed to zero is a user-defined parameter for the model. This strain parameter
can be adjusted so that failure is mesh independent.

For a multilinear elastic-plastic hardening material with failure, the command
block starts with the input line

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

and terminates with the input line

END [PARAMETERS FOR MODEL ML_EP_FAIL].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The yield stress is defined with the YIELD STRESScommand line.

- The beta parameter is defined with the BETAcommand line.

- The HARDENING FUNCTIONcommand line references the name of a function de-
fined in a DEFINITION FOR FUNCTIONcommand line in the domain scope that
describes the hardening behavior of the material as a stress versus equivalent
plastic strain.

- The YOUNGS MODULUS FUNCTIONcommand line references the name of a func-
tion defined in a DEFINITION FOR FUNCTIONcommand line in the domain
scope that describes Young’s modulus as a function of temperature.

- The POISSONS RATIO FUNCTIONcommand line references the name of a func-
tion defined in a DEFINITION FOR FUNCTIONcommand line in the domain
scope that describes Poisson’s ratio as a function of temperature.

- The YIELD STRESS FUNCTIONcommand line references the name of a function
defined in a DEFINITION FOR FUNCTIONcommand line in the domain scope
that describes the yield stress as a function of temperature.

98

- The critical tearing parameter is defined with the CRITICAL TEARING PARAM-

ETERcommand line.

- The component of strain over which the stress decays to zero is defined with the
CRITICAL CRACK OPENING STRAINcommand line. This component of strain
is aligned with the maximum principle stress direction at failure.

Only two of the elastic constants are required. For information about the multilin-
ear elastic-plastic power-law hardening model with failure, contact William Scherzinger
at Sandia National Laboratories (Sandia) in Albuquerque, NM. His phone number is
505-284-4866, and his email address is wmscher@sandia.gov.

99

4.1.8 BCJ Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
TWOMU = <real>twomu
C1 = <real>c1
C2 = <real>c2
C3 = <real>c3
C4 = <real>c4
C5 = <real>c5
C6 = <real>c6
C7 = <real>c7
C8 = <real>c8
C9 = <real>c9
C10 = <real>c10
C11 = <real>c11
C12 = <real>c12
C13 = <real>c13
C14 = <real>c14
C15 = <real>c15
C16 = <real>c16
C17 = <real>c17
C18 = <real>c18
C19 = <real>c19
C20 = <real>c20
DAMAGE EXPONENT = <real>damage_exponent
INITIAL ALPHA_XX = <real>alpha_xx
INITIAL ALPHA_YY = <real>alpha_yy
INITIAL ALPHA_ZZ = <real>alpha_zz
INITIAL ALPHA_XY = <real>alpha_xy
INITIAL ALPHA_YZ = <real>alpha_yz
INITIAL ALPHA_XZ = <real>alpha_xz
INITIAL DAMAGE = <real>initial_damage
YOUNGS MODULUS FUNCTION = <string>ym_function_name
POISSONS RATIO FUNCTION = <string>pr_function_name
SPECIFIC HEAT = <real>specific_heat
THETA OPT = <integer>theta_opt
FACTOR = <real>factor

100

RHO = <real>rho
TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The BCJ plasticity model is a state variable model for describing the finite defor-
mation behavior of metals. It uses a multiplicative decomposition of the deformation
gradient into elastic, volumetric plastic, and deviatoric parts. The model considers
the natural configuration defined by this decomposition and its associated thermo-
dynamics. The model incorporates strain rate and temperature sensitivity, as well as
damage, through a yield-surface approach in which state variables follow a hardening-
minus-recovery format.

Because the BCJ model has such an extensive list of parameters, we will not
present the usual synopsis of parameter names with command lines. As with most
other material models in Presto, the {thermal strain option } is used to define
thermal strains. See Section 4.1.1 and Section 4.2 for further information on speci-
fying and applying thermal strains and temperatures. The user should consult Ref-
erences 2, 3, and 4 for a description of the various parameters. The parameters
SPECIFIC HEAT, THETA OPT, FACTOR, RHO, and TEMP0are recent additions to the
parameter set for the BCJ model. These parameters were added to accommodate
changes to the model for heat generation due to plastic dissipation. For coupled
solid/thermal calculations, the plastic dissipation rate is stored as a state variable
and passed to a thermal code as a heat source term. For uncoupled calculations,
temperature is stored as a state variable and temperature increases due to plastic
dissipation are calculated within the material model.

If temperature is provided from an external source, THETA OPTis set to 0. If the
temperature is calculated by the BCJ model, THETA OPTis set to 1.

If you wish to know more about using the BCJ model, contact Michael L. Chiesa
at Sandia in Livermore, CA. His phone number is 925-294-2103, and his email address
is chiesa@sandia.gov.

101

4.1.9 Soil and Crushable Foam Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
A0 = <real>const_coeff_yieldsurf
A1 = <real>lin_coeff_yieldsurf
A2 = <real>quad_coeff_yieldsurf
PRESSURE CUTOFF = <real>pressure_cutoff
PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The soil and crushable foam model is a plasticity model that can be used for
modeling soil or crushable foam. Given the right input, the model is a Drucker-
Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution
about the hydrostat in principal stress space. A planar end cap is assumed for the
yield surface so that the yield surface is closed. The yield stress, σyd, is specified as
a polynomial in pressure, p. The yield stress is given as

σyd = a0 + a1p + a2p , (4.5)

where p is positive in compression. The determination of the yield stress from Equa-
tion (4.5) places severe restrictions on the admissible values of a0, a1, and a2. There
are three valid cases for the yield surface. In the first case, there is an elastic–perfectly
plastic deviatoric response, and the yield surface is a cylinder oriented along the hy-
drostat in principal stress space. In this case, a0 is positive, a1 and a2 are zero. In
the second case, the yield surface is conical. A conical yield surface is obtained by
setting a2 to zero and using appropriate values for a0 and a1. In the third case, the
yield surface has a parabolic shape. For the parabolic yield surface, all three of the
coefficients in Equation (4.5) are nonzero. The coefficients are checked to determine
that a valid negative tensile-failure pressure can be derived based on the specified
coefficients.

For the case of the cylindrical yield surface (e.g., a0 > 0 and a1 = a2 = 0), there
is no tensile-failure pressure. For the other two cases, the computed tensile-failure

102

pressure may be too low. To handle the situations where there is no tensile-failure
pressure or the tensile-failure pressure is too low, a pressure cutoff can be defined. If
a pressure cutoff is defined, the tensile-failure pressure is the larger of the computed
tensile-failure pressure and the defined cutoff pressure.

The plasticity theories for the volumetric and deviatoric parts of the material
response are completely uncoupled. The volumetric response is computed first. The
mean pressure p is assumed to be positive in compression, and a yield function φp is
written for the volumetric response as

φp = p − fp (εV) , (4.6)

where fp (εV) defines the volumetric stress-strain curve for the pressure. The yield
function φp determines the motion of the end cap along the hydrostat.

For a soil and crushable foam material, a soil and crushable foam command block
starts with the input line

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

and terminates with the input line

END [PARAMETERS FOR MODEL SOIL_FOAM].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The constant in the equation for the yield surface is defined with the A0 com-
mand line.

- The coefficient for the linear term in the equation for the yield surface is defined
with the A1 command line.

103

- The coefficient for the quadratic term in the equation for the yield surface is
defined with the A2 command line.

- The user-defined tensile-failure pressure is defined with the PRESSURE CUTOFF

command line.

- The pressure as a function of volumetric strain is defined with the function
named on the PRESSURE FUNCTIONcommand line.

Only two of the elastic constants are required. For information about the soil and
crushable foam model, consult with the Pronto3d document listed as Reference 5. The
soil and crushable foam model in Presto is the same as the soil and crushable foam
model in Pronto3d. The Pronto3d model is based on a material model developed by
Krieg [6]. The Krieg version of the soil and crushable foam model was later modified
by Swenson and Taylor [7]. The soil and crushable foam model developed by Swenson
and Taylor is the model in both Pronto3d and Presto.

104

4.1.10 Foam Plasticity Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
PHI = <real>phi
SHEAR STRENGTH = <real>shear_strength
SHEAR HARDENING = <real>shear_hardening
SHEAR EXPONENT = <real>shear_exponent
HYDRO STRENGTH = <real>hydro_strength
HYDRO HARDENING = <real>hydro_hardening
HYDRO EXPONENT = <real>hydro_exponent
BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The foam plasticity model was developed to describe the response of porous elastic-
plastic materials like closed-cell polyurethane foam to large deformation. Like solid
metals, these foams can exhibit significant plastic deviatoric strains (permanent shape
changes). Unlike metals, these foams can also exhibit significant plastic volume strains
(permanent volume changes). The foam plasticity model is characterized by an initial
yield surface that is an ellipsoid about the hydrostat.

When foams are compressed, they typically exhibit an initial elastic regime fol-
lowed by a plateau regime in which the stress needed to compress the foam remains
nearly constant. At some point in the compression process the densification regime
is reached, and the stress needed to compress the foam further begins to rapidly
increase.

The foam plasticity model can be used to describe the response of metal foams
and many closed-cell, polymeric foams to large deformation (including polyurethane,
polystyrene bead, etc.). This model is not appropriate for flexible foams that return
to their undeformed shape after loads are removed.

For a foam plasticity material, a foam plasticity command block starts with the
input line

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

and terminates with the input line

105

END [PARAMETERS FOR MODEL FOAM_PLASTICITY].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus is defined with the YOUNGS MODULUScommand line.

- Poisson’s ratio is defined with the POISSONS RATIOcommand line.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The initial volume fraction of solid material in the foam, ϕ, is defined with
the PHI command line. For example, solid polyurethane weighs 75 pounds per
cubic foot (pcf); uncompressed 10 pcf polyurethane foam would have a ϕ of
0.133 = 10/75.

- The shear (deviatoric) strength of uncompressed foam is defined with the SHEAR

STRENGTHcommand line.

- The shear hardening modulus for the foam is defined with the SHEAR HARDEN-

ING command line.

- The shear hardening exponent is defined with the SHEAR EXPONENTcommand
line. The deviatoric strength is given by (SHEAR STRENGTH)+ (SHEAR HARD-

ENING) * PHI**(SHEAR EXPONENT).

- The hydrostatic (volumetric) strength of the uncompressed foam is defined with
the HYDRO STRENGTHcommand line.

- The hydrodynamic hardening modulus for the foam is defined with the HYDRO

HARDENINGcommand line.

- The hydrodynamic hardening exponent for the foam is defined with the HY-

DRO EXPONENTcommand line. The hydrostatic strength is given by (HYDRO

STRENGTH)+ (HYDRO HARDENING) * PHI**(HYDRO EXPONENT).

106

- The prescription for nonassociated flow, β, is defined with the BETA command
line. When β = 0.0, the flow direction is given by the normal to the yield
surface (associated flow). When β = 1.0, the flow direction is given by the
stress tensor. Values of between 0.0 and 0.95 are recommended.

Only two of the elastic constants are required. For information about the foam
plasticity model, contact William Scherzinger at Sandia National Laboratories (San-
dia) in Albuquerque, NM. His phone number is 505-284-4866, and his email address
is wmscher@sandia.gov.

107

4.1.11 Elastic Three-Dimensional Orthotropic Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

YOUNGS MODULUS AA = <real>Eaa_value
YOUNGS MODULUS BB = <real>Ebb_value
YOUNGS MODULUS CC = <real>Ecc_value
POISSONS RATIO AB = <real>NUab_value
POISSONS RATIO BC = <real>NUbc_value
POISSONS RATIO CA = <real>NUca_value
SHEAR MODULUS AB = <real>Gab_value
SHEAR MODULUS BC = <real>Gbc_value
SHEAR MODULUS CA = <real>Gca_value
COORDINATE SYSTEM = <string>coordinate_system_name
DIRECTION FOR ROTATION = <real>1|2|3
ALPHA = <real>alpha_in_degrees
SECOND DIRECTION FOR ROTATION = <real>1|2|3
SECOND ALPHA = <real>second_alpha_in_degrees
THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name
THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name
THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic three-dimensional orthotropic model describes the linear elastic re-
sponse of an orthotropic material where the orientation of the principal material
directions can be arbitrary. These principal axes are here denoted as A, B, and C.
Thermal strains are also given along the principal material axes. The specification
of these material axes is accomplished by selecting a user-defined coordinate system
that can then be rotated twice about one of its current axes to give the final desired
directions.

For an elastic three-dimensional orthotropic model, the command block starts
with the input line

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC].

In the above command blocks:

- The density is defined with the DENSITY command line.

- The Youngs moduli corresponding to the principal material axes A, B, and

108

C are given by the YOUNGS MODULUS AA, YOUNGS MODULUS BB, and YOUNGS

MODULUS CCcommand lines.

- The Poisson’s ratio defining the BB normal strain when the material is subjected
only to AA normal stress is given by the POISSONS RATIO ABcommand line.

- The Poisson’s ratio defining the CC normal strain when the material is subjected
only to BB normal stress is given by the POISSONS RATIO BCcommand line.

- The Poisson’s ratio defining the AA normal strain when the material is subjected
only to CC normal stress is given by the POISSONS RATIO CAcommand line.

- The shear moduli for shear in the AB, BC, and CA planes are given by the
SHEAR MODULUS AB, SHEAR MODULUS BC, and SHEAR MODULUS CAcommand
lines, respectively.

- The specification of the principal material directions begins with the selection of
a user-specified coordinate system given by the COORDINATE SYSTEMcommand
line. This initial coordinate system can then be rotated twice to give the final
material directions.

- The rotation of the initial coordinate system is defined with the DIRECTION

FOR ROTATIONand ALPHAcommand lines. The axis for rotation of the initial
coordinate system is specified by the DIRECTION FOR ROTATIONcommand
line, while the angle of rotation is given by the ALPHA command line. This
gives an intermediate specification of the material directions.

- The rotation of the intermediate coordinate system is defined with the SECOND

DIRECTION FOR ROTATIONand SECOND ALPHAcommand lines. The axis for
rotation of the intermediate coordinate system is specified by the SECOND DI-

RECTION FOR ROTATIONcommand line, while the angle of rotation is given by
the SECOND ALPHAcommand line. The resulting coordinate system gives the
final specification of the material directions.

- The thermal strain functions for normal thermal strains along the principal
material directions are given by the THERMAL STRAIN AA FUNCTION, THERMAL

STRAIN BB FUNCTION, and THERMAL STRAIN CC FUNCTIONcommand lines.

See Reference 8 for more information about the elastic three-dimensional or-
thotropic model.

109

4.1.12 Orthotropic Crush Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
EX = <real>modulus_x
EY = <real>modulus_y
EZ = <real>modulus_z
GXY = <real>shear_modulus_xy
GYZ = <real>shear_modulus_yz
GZX = <real>shear_modulus_zx
VMIN = <real>min_crush_volume
CRUSH XX = <string>stress_volume_xx_function_name
CRUSH YY = <string>stress_volume_yy_function_name
CRUSH ZZ = <string>stress_volume_zz_function_name
CRUSH XY = <string>shear_stress_volume_xy_function_name
CRUSH YZ = <string>shear_stress_volume_yz_function_name
CRUSH ZX = <string>shear_stress_volume_zx_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic crush model is an empirically based constitutive relation that
is useful for modeling materials like metallic honeycomb and wood. This partic-
ular implementation follows the formulation of the metallic honeycomb model in
DYNA3D [9]. The orthotropic crush model divides material behavior into three
phases:

• orthotropic elastic,

• volumetric crush (partially compacted), and

• elastic–perfectly plastic (fully compacted).

For an orthotropic crush material, an orthotropic crush command block starts
with the input line

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

110

and terminates with the input line

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH].

In the above command blocks:

- The uncompacted density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus for the fully compacted state is defined with the YOUNGS

MODULUScommand line. This is the elastic–perfectly plastic value of Young’s
modulus.

- Poisson’s ratio for the fully compacted state is defined with the POISSONS

RATIO command line. This is the elastic–perfectly plastic value of Poisson’s
ratio.

- The bulk modulus is defined with the BULK MODULUScommand line.

- The shear modulus is defined with the SHEAR MODULUScommand line.

- Lambda is defined with the LAMBDAcommand line.

- The yield stress for the fully compacted state is defined with the YIELD STRESS

command line. This is the elastic–perfectly plastic value of the yield stress.

- The initial directional modulus Exx is defined with the EX command line.

- The initial directional modulus Eyy is defined with the EY command line.

- The initial directional modulus Ezz is defined with the EZ command line.

- The initial directional shear modulus Gxy is defined with the GXY command
line.

- The initial directional shear modulus Gyz is defined with the GYZcommand line.

- The initial directional shear modulus Gzx is defined with the GZX command
line.

- The minimum crush volume as a fraction of the original volume is defined with
the VMIN command line.

- The directional stress σxx as a function of the volume crush is defined by the
function referenced in the CRUSH XXcommand line.

111

- The directional stress σyy as a function of the volume crush is defined by the
function referenced in the CRUSH YY command line.

- The directional stress σzz as a function of the volume crush is defined by the
function referenced in the CRUSH ZZcommand line.

- The directional stress σxy as a function of the volume crush is defined by the
function referenced in the CRUSH XYcommand line.

- The directional stress σyz as a function of the volume crush is defined by the
function referenced in the CRUSH YZcommand line.

- The directional stress σzx as a function of the volume crush is defined by the
function referenced in the CRUSH ZXcommand line.

Only two of the elastic constants are required. Note that several of the command
lines in this command block (those beginning with CRUSH) reference functions. These
functions must be defined in the domain scope. For information about the orthotropic
crush model, consult Reference 9.

112

4.1.13 Orthotropic Rate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
{thermal strain option }
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
MODULUS TTTT = <real>modulus_tttt
MODULUS TTLL = <real>modulus_ttll
MODULUS TTWW = <real>modulus_ttww
MODULUS LLLL = <real>modulus_llll
MODULUS LLWW = <real>modulus_llww
MODULUS WWWW = <real>modulus_wwww
MODULUS TLTL = <real>modulus_tltl
MODULUS LWLW = <real>modulus_lwlw
MODULUS WTWT = <real>modulus_wtwt
TX = <real>tx
TY = <real>ty
TZ = <real>tz
LX = <real>lx
LY = <real>ly
LZ = <real>lz
MODULUS FUNCTION = <string>modulus_function_name
RATE FUNCTION = <string>rate_function_name
T FUNCTION = <string>t_function_name
L FUNCTION = <string>l_function_name
W FUNCTION = <string>w_function_name
TL FUNCTION = <string>tl_function_name
LW FUNCTION = <string>lw_function_name
WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic rate is a new and improved version of the orthotropic crush constitu-
tive model. This model has been developed to describe the behavior of an aluminum
honeycomb subjected to large deformation. The new orthotropic rate model, like the
original orthotropic crush model, has six independent yield functions that evolve with
volume strain. Unlike the original model, this new model has yield functions that also
depend on strain rate. The new model also uses an orthotropic elasticity tensor with
nine elastic moduli in place of the orthotropic elasticity tensor with six elastic moduli

113

used in the original orthotropic crush model. A new honeycomb orientation capabil-
ity has also been added that allows users to prescribe initial honeycomb orientations
that are not aligned with the original global coordinate system.

For an orthotropic rate material, an orthotropic rate command block starts with
the input line

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

and terminates with the input line

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE].

In the above command blocks:

- Density is defined with the DENSITY command line.

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- Young’s modulus for the fully compacted honeycomb is defined with the YOUNGS

MODULUScommand line.

- Poisson’s ratio for the fully compacted state is defined with the POISSONS

RATIO command line.

- The bulk modulus for the fully compacted state is defined with the BULK MOD-

ULUScommand line.

- The shear modulus for the fully compacted state is defined with the SHEAR

MODULUScommand line.

- Lambda for the fully compacted state is defined with the LAMBDAcommand
line.

- The yield stress for the fully compacted honeycomb is defined with the YIELD

STRESScommand line.

- The nine elastic moduli for the orthotropic uncompacted honeycomb are de-
fined with the MODULUS TTT, MODULUS TTLL, MODULUS TTWW, MODULUS LLLL,
MODULUS LLWW, MODULUS WWWW, MODULUS TLTL, MODULUS LWLW, and MODU-

LUS WTWTcommand lines. The T-direction is usually associated with the gen-
erator axis for the honeycomb. The L-direction is in the ribbon plane (plane
defined by flat sheets used in reinforced honeycomb) and orthogonal to the
generator axis. The W-direction is perpendicular to the ribbon plane.

114

- The components of a vector defining the T-direction of the honeycomb are
defined by the TX, TY, and TZ command lines. The values tx , ty , and tz

are components of a vector in the global coordinate system that define the
orientation of the honeycomb’s T-direction (generator axis).

- The components of a vector defining the L-direction of the honeycomb are de-
fined by the LX, LY, and LZ command lines. The values lx, ly, and lz are
components of a vector in the global coordinate system that define the orien-
tation of the honeycomb’s L-direction. Caution: The vectors T and L must be
orthogonal.

- The function describing the variation in moduli with compaction is given by the
MODULUS FUNCTIONcommand line. The moduli vary continuously from their
initial orthotropic values to isotropic values when full compaction is obtained.

- The function describing the change in strength with strain rate is given by the
RATE FUNCTIONcommand line. Note that all strengths are scaled with the
multiplier obtained from this function.

- The function describing the T-normal strength of the honeycomb as a function
of compaction is given by the T FUNCTIONcommand line.

- The function describing the L-normal strength of the honeycomb as a function
of compaction is given by the L FUNCTIONcommand line.

- The function describing the W-normal strength of the honeycomb as a function
of compaction is given by the W FUNCTIONcommand line.

- The function describing the TL-normal strength of the honeycomb as a function
of compaction is given by the TL FUNCTIONcommand line.

- The function describing the LW-normal strength of the honeycomb as a function
of compaction is given by the LW FUNCTIONcommand line.

- The function describing the WT-normal strength of the honeycomb as a function
of compaction is given by the WT FUNCTIONcommand line.

Only the elastic modulus (Young’s modulus) is required for this model. If two
elastic constants are supplied, the elastic constants will be completed. However, only
the elastic modulus is used in this model. Note that several of the command lines
in this command block reference functions. These functions must be defined in the
domain scope. For information about the orthotropic rate model, contact William
Scherzinger at Sandia National Laboratories (Sandia) in Albuquerque, NM. His phone
number is 505-284-4866, and his email address is wmscher@sandia.gov.

115

4.1.14 Mie-Gruneisen Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

RHO_0 = <real>density
C_0 = <real>sound_speed
SHUG = <real>const_shock_velocity
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield_strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen material model describes the nonlinear pressure-volume (or
equivalently pressure-density) response of solids or fluids in terms of a reference
pressure-volume curve and deviations from the reference curve in energy space. The
reference curve is taken to be the experimentally determined principal Hugoniot,
which is the locus of end states that can be reached by a shock transition from the
ambient state. For details about this model, see Reference 10.

For Mie-Gruneisen energy-dependent materials, the Mie-Gruneisen command block
begins with the input line

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

and is terminated with the input line

END [PARAMETERS FOR MODEL MIE_GRUNEISEN].

In the above command blocks:

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- The ambient density, ρ0, is defined with the RHO_0command line. The ambient
density is the density at which the mean pressure is zero, not necessarily the
initial density.

- The ambient bulk sound speed, c0, is defined by the C_0 command line. The
ambient bulk sound speed is also the first constant in the shock-velocity-versus-
particle-velocity relation D = c0 +Su, where u is the particle velocity. (See the
following description of the SHUGcommand line for the definition of S.)

116

- The second constant in the shock-velocity-versus-particle-velocity equation, S,
is defined by the SHUGcommand line. The shock-velocity-versus-particle-velocity
relation is D = c0 + Su, where u is the particle velocity. (See the previous de-
scription of the C_0 command line for the definition of c0.)

- The ambient gruneisen parameter, Γ0, is defined by the GAMMA_0command line.

- Poisson’s ratio, ν, is defined by the POISSR command line. Poisson’s ratio is
assumed constant.

- The yield strength, y0, is defined by the Y_0 command line. The yield strength
is zero for the hydrodynamic case.

- The fracture stress is defined by the PMIN command line. The fracture stress is
a mean stress or pressure, so it must be negative or zero. This is an optional
parameter; if not specified, the parameter defaults to REAL_MAX(no fracture).

For information about the Mie-Gruneisen model, consult Reference 10.

117

4.1.15 Mie-Gruneisen Power-Series Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

RHO_0 = <real>density
C_0 = <real>sound_speed
K1 = <real>power_series_coeff1
K2 = <real>power_series_coeff2
K3 = <real>power_series_coeff3
K4 = <real>power_series_coeff4
K5 = <real>power_series_coeff5
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen power-series model describes the nonlinear pressure-volume
(or equivalently pressure-density) response of solids or fluids in terms of a reference
pressure-volume curve and deviations from the reference curve in energy space. The
reference curve is taken to be the experimentally determined principal Hugoniot,
which is the locus of end states that can be reached by a shock transition from the
ambient state. The Mie-Gruneisen power-series model is very similar to the Mie-
Gruneisen model, except that the Mie-Gruneisen model bases the Hugoniot pressure-
volume response on the assumption of a linear shock-velocity-versus-particle-velocity
relation, while the Mie-Gruneisen power-series model uses a power-series expression.
For details about this model, see Reference 10.

For Mie-Gruneisen power-series energy-dependent materials, the Mie-Gruneisen
power-series command block begins with the input line

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

and is terminated with the input line

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES].

In the above command blocks:

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- The ambient density, ρ0, is defined with the RHO_0command line. The ambient

118

density is the density at which the mean pressure is zero, not necessarily the
initial density.

- The ambient bulk sound speed, c0, is defined by the C_0 command line.

- The power-series coefficients k1, k2, k3, k4, and k5 are defined by the command
lines K1, K2, K3, K4, and K5, respectively. Only the nonzero power-series coef-
ficients need be input, since coefficients not specified will default to zero.

- The ambient gruneisen parameter, Γ0, is defined by the GAMMA_0command line.

- Poisson’s ratio, ν, is defined by the POISSR command line. Poisson’s ratio is
assumed constant.

- The yield strength, y0, is defined by the Y_0 command line. The yield strength
is zero for the hydrodynamic case.

- The fracture stress is defined by the PMIN command line. The fracture stress is
a mean stress or pressure, so it must be negative or zero. This is an optional
parameter; if not specified, the parameter defaults to REAL_MAX(no fracture).

For information about the Mie-Gruneisen power-series model, consult Reference 10.

119

4.1.16 JWL (Jones-Wilkins-Lee) Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }

BEGIN PARAMETERS FOR MODEL JWL
RHO_0 = <real>initial_density
D = <real>detonation_velocity
E_0 = <real>init_chem_energy
A = <real>jwl_const_pressure1
B = <real>jwl_const_pressure2
R1 = <real>jwl_const_nondim1
R2 = <real>jwl_const_nondim2
OMEGA = <real>jwl_const_nondim3
XDET = <real>x_detonation_point
YDET = <real>y_detonation_point
ZDET = <real>z_detonation_point
TDET = <real>time_of_detonation
B5 = <real>burn_width_const(2.5)

END [PARAMETERS FOR MODEL JWL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The JWL model describes the pressure-volume-energy response of the gaseous
detonation products of HE (High Explosive). For details about this model, see Ref-
erence 10.

For JWL energy-dependent materials, the JWL command block begins with the
input line

BEGIN PARAMETERS FOR MODEL JWL

and is terminated with the input line

END [PARAMETERS FOR MODEL JWL].

In the above command blocks:

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- The initial density of the unburned explosive, ρ0, is given by the RHO_0com-
mand line.

- The detonation velocity, D, is given by the D command line.

- The initial chemical energy per unit mass in the explosive, E0, is given by the
E_0 command line. Most compilations of JWL parameters give E0 in units of

120

energy per unit volume, rather than energy per unit mass. Thus, the tabulated
value must be divided by ρ0, the initial density of the unburned explosive.

- The JWL constants with units of pressure, A and B, are given by the A and B

command lines, respectively.

- The dimensionless JWL constants, R1, R2, and ω, are given by the R1, R2, and
OMEGAcommand lines, respectively.

- The x-coordinate of the detonation point, xD, is given by the XDETcommand
line.

- The y-coordinate of the detonation point, yD, is given by the YDET command

line.

- The z-coordinate of the detonation point, zD, is given by the ZDET command
line.

- The time of detonation, tD, is given by the TDETcommand line.

- The burn-width constant, B5, is given by the B5 command line. The burn-width
constant has a default value of 2.5.

For information about the JWL model, consult Reference 10.

121

4.1.17 Ideal Gas Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }

BEGIN PARAMETERS FOR MODEL IDEAL_GAS
RHO_0 = <real>initial_density
C_0 = <real>initial_sound_speed
GAMMA = <real>ratio_specific_heats

END [PARAMETERS FOR MODEL IDEAL_GAS]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The ideal gas model provides a material description based on the ideal gas law.
For details about this model, see Reference 10.

For ideal gas materials, the ideal gas command block begins with the input line

BEGIN PARAMETERS FOR MODEL IDEAL_GAS

and is terminated with the input line

END [PARAMETERS FOR MODEL IDEAL_GAS].

In the above command blocks:

- The {thermal strain option } is used to define thermal strains. See Sec-
tion 4.1.1 and Section 4.2 for further information on specifying and applying
thermal strains and temperatures.

- The initial density, ρ0, is given by the RHO_0command line.

- The initial sound speed, c0, is given by the C_0 command line.

- The ratio of specific heats, γ, is given by the GAMMAcommand line.

For information about the ideal gas model, consult Reference 10.

122

4.1.18 Elastic Laminate Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

A11 = <real>a11_value
A12 = <real>a12_value
A16 = <real>a16_value
A22 = <real>a22_value
A26 = <real>a26_value
A66 = <real>a66_value
A44 = <real>a44_value
A45 = <real>a45_value
A55 = <real>a55_value
B11 = <real>b11_value
B12 = <real>b12_value
B16 = <real>b16_value
B22 = <real>b22_value
B26 = <real>b26_value
B66 = <real>b66_value
D11 = <real>d11_value
D12 = <real>d12_value
D16 = <real>d16_value
D22 = <real>d22_value
D26 = <real>d26_value
D66 = <real>d66_value
COORDINATE SYSTEM = <string>coord_sys_name
DIRECTION FOR ROTATION = 1|2|3
ALPHA = <real>alpha_value_in_degrees
THETA = <real>theta_value_in_degrees
NTH11 FUNCTION = <string>nth11_function_name
NTH22 FUNCTION = <string>nth22_function_name
NTH12 FUNCTION = <string>nth12_function_name
MTH11 FUNCTION = <string>mth11_function_name
MTH22 FUNCTION = <string>mth22_function_name
MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic laminate model can be used to describe the overall linear elastic re-
sponse of layered shells. The response of each layer is pre-integrated through the
thickness under an assumed variation of strain through the thickness. That is, the
user inputs laminate stiffness matrices directly, and the overall response is calculated
appropriately. This model allows the user to input laminate stiffness matrices that
are consistent with a state of generalized plane stress for each layer. Each layer can be

123

orthotropic with a unique orientation. This model is primarily intended for capturing
the response of fiber-reinforced laminated composites. The user inputs the laminate
stiffness matrices calculated with respect to a chosen coordinate system and then
specifies this coordinate system’s definition relative to the global coordinate system.
Thermal stresses are handled via the input of thermal-force and thermal-force-couple
resultants for the laminate as a whole. At present, the user cannot get layer stresses
out from this material model. However, the overall section-force and force-couple
resultants can be computed from available output. The details of this model are
described in References 11 and 12.

For elastic laminate materials, the elastic laminate command block begins with
the input line

BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE].

In the above command blocks:

- The density is defined with the DENSITY command line.

- The extensional stiffnesses are defined with the Aij command lines, where the
values of ij are 11, 12, 16, 22, 26, 66, 44, 45, and 55.

- The coupling stiffnesses are defined with the Bij command lines, where the
values of ij are 11, 12, 16, 22, 26, and 66.

- The bending stiffnesses are defined with the Dij command lines, where the values
of ij are 11, 12, 16, 22, 26, and 66.

- The initial laminate coordinate system is defined with the COORDINATE SYSTEM

command line.

- The rotation of the initial laminate coordinate system is defined with the DI-

RECTION FOR ROTATIONand ALPHAcommand lines. The axis of initial lam-
inate coordinate system is specified by the DIRECTION FOR ROTATIONcom-
mand line while the angle of rotation is given by the ALPHA command line.
This produces an intermediate laminate coordinate system which is then pro-
jected onto the surface of each shell element.

- The projected intermediate laminate coordinate system is rotated about the
element normal by angle theta which is specified by the THETAcommand line.

- The thermal-force resultants are defined with functions named on the NTH11

FUNCTION, NTH22 FUNCTION, and NTH12 FUNCTIONcommand lines.

124

- The thermal-force-couple resultants are defined with functions named on the
MTH11 FUNCTION, MTH22 FUNCTION, and MTH12 FUNCTIONcommand lines.

125

4.2 Applying Temperatures and Thermal Strains

Presto has the capability to compute thermal strains on three-dimensional contin-
uum and two-dimensional (shell, membrane) elements. Three things are required to
activate thermal strains:

• First, one or more thermal strain functions (strain as a function of temperature)
must be defined. Each thermal strain function is defined with a DEFINITION

FOR FUNCTIONcommand block. (This function is the standard function def-
inition that appears in the domain scope.) The thermal strain function gives
the total thermal strain associated with a given temperature. It is the change
in thermal strain with the change in temperature that gives rise to thermal
stresses in a body.

• Second, each element block with either isotropic or orthotropic thermal strain
behavior must reference a material model command block with thermal strain
command lines defined in Section 4.1.1. If an element block exhibits isotropic
thermal strain behavior, the block must reference a material model with a
THERMAL STRAIN FUNCTIONcommand line. (This THERMAL STRAIN FUNC-

TION command line must reference some function name defined with a DEFI-

NITION FOR FUNCTIONcommand block in the domain scope.) If an element
block exhibits orthotropic strain behavior, the block must reference a material
model with the THERMAL STRAIN FUNCTION X, THERMAL STRAIN FUNCTION

Y, and THERMAL STRAIN FUNCTION Zcommand lines. (These three command
lines must reference function names defined with DEFINITION FOR FUNCTION

command blocks in the domain scope.)

• Third, a temperature field must be applied to the Presto region. The command
block to specify the application of temperatures is PRESCRIBED TEMPERATURE,
which is implemented as a standard boundary condition. You should consult
with Chapter 6 for a description of the PRESCRIBED TEMPERATUREcommand
block.

Temperature is applied to the nodes. For elements, the nodal values are aver-
aged (depending on element) connectivity to produce an element temperature. At
the element level, two element temperatures and the current time step are used to
compute a thermal strain rate. The difference between the thermal strain associated
with the temperature at the current time and the thermal strain associated with the
temperature at the current time plus the current time step divided by the current
time step is the thermal strain rate.

You will not want to use the THERMAL STRAIN FUNCTIONcommand line or
the THERMAL STRAIN FUNCTION X, THERMAL STRAIN FUNCTION Y, and THERMAL

126

STRAIN FUNCTION Zcommand lines with the elastic three-dimensional orthotropic
model. This model has command lines that define thermal strains in the material
direction. See Section 4.1.11 regarding the definition of thermal strains for the elas-
tic three-dimensional orthotropic model. You will need function definitions and a
temperature field to apply thermal strains to this model.

The elastic laminate does not use thermal strains. Therefore, you will not want to
use the THERMAL STRAIN FUNCTIONcommand line or the THERMAL STRAIN FUNC-

TION X, THERMAL STRAIN FUNCTION Y, and THERMAL STRAIN FUNCTION Zcom-
mand lines with the elastic laminate model. The elastic laminate model uses thermal-
force and thermal-force-couple resultants. The thermal-force and thermal-force-couple
resultants are defined with functions. You will need these function definitions and a
temperature field to apply the thermal force and thermal force-couple resultants for
an elastic laminate model. See Section 4.1.18 for a description of the elastic lamainate
model.

127

4.3 Energy Deposition

BEGIN PRESCRIBED ENERGY DEPOSITION
{block set commands }
#
function commands
T FUNCTION = <string>t_func_name
X FUNCTION = <string>x_func_name
Y FUNCTION = <string>y_func_name
Z FUNCTION = <string>z_func_name
#
input mesh command
READ VARIABLE = <string>mesh_var_name
#
user subroutine commands
ELEMENT SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }

END [PRESCRIBED ENERGY DEPOSITION]

The PRESCRIBED ENERGY DEPOSITIONcommand block applies a set quantity of
energy to energy-dependent material models for a given set of element blocks. Energy
deposition represents a particular type of boundary condition, and thus this command
block follows the general specification of command blocks used to specify boundary
conditions in Chapter 6. The PRESCRIBED ENERGY DEPOSITIONcommand block
must appear in the region scope.

There are three options for defining the energy deposition for a set of elements:
with standard SIERRA functions, with a mesh variable in the input mesh file, and
by a user subroutine. If the energy deposition is a reasonably simple description
and can be defined using the standard SIERRA functions, the function option is
recommended. If the energy deposition requires a more complex description, it is
necessary to use either the input mesh option or the user subroutine option. Only
one of the three options can be specified in the command block.

The PRESCRIBED ENERGY DEPOSITIONcommand block contains four groups of
commands—block set, function, input mesh, and user subroutine. Each of these
command groups, with the exception of the T FUNCTIONcommand line, is basi-
cally independent of the others. Following are descriptions of the different command
groups.

4.3.1 Block Set Commands

The {block set commands} portion of the PRESCRIBED ENERGY DEPOSITIONcom-
mand block defines a set of element blocks associated with the prescribed energy

128

deposition and can include some combination of the following command lines:

BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of blocks. See Section 6.1 for more information about the
use of these command lines for creating a set of blocks used in the command block.
Either the BLOCKcommand line or the INCLUDE ALL BLOCKScommand line must
be present in the command block.

4.3.2 Function Commands

If the function option is used, all four function-type command lines, each referencing
a user-defined function, must be included in the command block.

Following are the command lines related to the function option:

T FUNCTION = <string>t_func_name
X FUNCTION = <string>x_func_name
Y FUNCTION = <string>y_func_name
Z FUNCTION = <string>z_func_name

Each of the above command lines references a function name (defined in the
domain scope in a DEFINITION FOR FUNCTIONcommand block). All of the functions
referenced in these four command lines must appear in the domain scope.

The T FUNCTIONcommand line gives the name of the user-defined T function.
The T function describes how the applied input energy dose is integrated over time
t. The T function should be 0 at the start time and 1 at the time at which all energy
is deposited. The T function must be monotonically increasing over the time it is
defined. The T function describes the total percentage of energy that is deposited at
a given time.

The X FUNCTION, Y FUNCTION, and Z FUNCTIONcommand lines define three
functions, which we will denote as X, Y , and Z, respectively. The X, Y , and Z
functions describe the total amount of energy to be deposited in an element as a
function of position. Suppose we have element A with centroid (Ax, Ay, and Ax).
The total energy that will have been deposited in element A at time tis given by

EA = X (Ax)Y (Ay)Z (Az)T (t) (4.7)

where EA is the total energy deposited.

129

4.3.3 Input Mesh Command

If the input mesh option is used, the quantity of energy deposited for each element
will be read from an element variable defined in the mesh file.

Following is the command line related to the input mesh option:

READ VARIABLE =<string> mesh_var_name

The string mesh_var_name must match the name of an element variable in the
mesh file that defines the energy deposition. Suppose that the total energy to be
deposited for element A is ν(A). The quantity of energy deposited at time t is then
given by

EA = ν(A)T (t). (4.8)

The T function in Equation (4.8) is the same as that described in the previous
section.

4.3.4 User Subroutine Commands

The user subroutine option allows for a very general description of the energy depo-
sition, but this option requires that you write a user subroutine to implement this
capability. The subroutine will be called by Presto at the appropriate time to generate
the energy deposition.

Energy deposition uses an element subroutine signature. The subroutine returns
one value per element for all of the elements selected by use of the block set commands.
The returned value is the current energy flux at an element at a given time. The
output flags array is ignored. The total energy deposited in an element is found by a
time integration of the returned subroutine fluxes. See Chapter 9 for more information
about user subroutines.

Following are the command lines related to the user subroutine option:

ELEMENT SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the ELEMENT SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

130

4.4 References

1. Stone, C. M. SANTOS – A Two-Dimensional Finite Element Program for the
Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543.
Albuquerque, NM: Sandia National Laboratories, 1996.

2. Bammann, D. J., M. L. Chiesa, and G. C. Johnson. “Modelling Large Defor-
mation and Failure in Manufacturing Processes.” In Proceedings of the 19th
International Congress of Theoretical and Applied Mechanics, edited by T. Tat-
sumi, E. Watanabe, and T. Kambe, 359–376. Amsterdam: Elsevier Science
Publishers, 1997.

3. Bammann, D. J., M. L. Chiesa, M. F. Horstemeyer, and L. E. Weingarten.
“Failure in Ductile Materials Using Finite Element Methods.” In Structural
Crashworthiness and Failure, edited by N. Jones and T. Wierzbicki, 1–53. Lon-
don: Elsevier Applied Science, 1993.

4. Bammann, D. J. “Modeling Temperature and Strain Dependent Large Defor-
mations in Metals.” Applied Mechanics Reviews 43, no. 5 (1990): S312–319.

5. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient
Solid Dynamics Program, SAND87-1912. Albuquerque, NM: Sandia National
Laboratories, March 1989.

6. Krieg, R. D. A Simple Constitutive Description for Cellular Concrete, SAND
SC-DR-72-0883. Albuquerque, NM: Sandia National Laboratories, 1978.

7. Swenson, D. V., and L. M. Taylor. “A Finite Element Model for the Analysis of
Tailored Pulse Stimulation of Boreholes.” International Journal for Numerical
and Analytical Methods in Geomechanics 7 (1983): 469–484.

8. Green, A. E., and W. Zerna. Theoretical Elasticity, 2nd Edition. Oxford:
Clarendon Press, 1968.

9. Whirley, R. G., B. E. Engelmann, and J. O. Halquist. DYNA3D Users Manual.
Livermore, CA: Lawrence Livermore Laboratory, 1991.

10. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent
Materials Version 1.0. Albuquerque, NM: Sandia National Laboratories, Octo-
ber 2001.

11. Hammerand, D. C. Laminated Composites Modeling in ADAGIO/PRESTO,
SAND2004-2143. Albuquerque, NM: Sandia National Laboratories, 2004.

131

12. Hammerand, D. C. Critical Time Step for a Bilinear Laminated Composite
Mindlin Shell Element, SAND2004-2487. Albuquerque, NM: Sandia National
Laboratories, 2004.

132

Chapter 5

Elements

This chapter explains how we associate material, geometric, and other properties with
the various element blocks in a mesh file. A mesh file contains, for the most part,
only topological information about elements. For example, there may be a group of
elements in the mesh file that consists of four nodes defining a planar facet in three-
dimensional space. Whether or not these elements are used as shells or membranes
in our actual model of an object is determined by command lines in the Presto input
file. The specifics of a material type associated with these four node facets are also
set in the Presto input file.

In addition to the regular elements in Presto, there is some specialized function-
ality that exhibits element-like behavior. We discuss this functionality—torsional
springs and rigid bodies—in this chapter. Furthermore, element related subjects—
mass property calculations, element death, mesh rebalancing—are also discussed in
this chapter.

Highlights of chapter contents follow. Section 5.1 discusses the FINITE ELEMENT

MODELcommand block, which provides the description of a mesh that will be asso-
ciated with the elements. Section 5.2 presents the section command blocks that are
used to define the different element sections. Next are descriptions of command blocks
that exhibit element-like functionality. Section 5.3.1 describes how to implement a
torsional spring mechanism in Presto. Section 5.3.2 explains the use of rigid bodies.
In Section 5.4, the MASS PROPERTIEScommand block is described, which lets the
user compute the total mass of the model or the mass of subparts of the model once
the element blocks are completely defined in terms of geometry and material. Sec-
tion 5.5 details the ELEMENT DEATHcommand block, which lets the user delete (kill)
elements based on various criteria during an analysis. Finally, Section 5.6 presents
various options for partitioning a mesh for parallel runs with Presto. The partitioning
scheme can greatly influence the run time for a particular analysis. The command
block for selecting a partitioning scheme is REBALANCE. The REBALANCEreferences

133

a ZOLTAN PARAMETERScommand block. The ZOLTAN PARAMETERScommand block
sets various parameters that control the partitioning.

Most of the command blocks and command lines described next appear within
the domain scope. There are some exceptions, and these exceptions are noted.

5.1 Finite Element Model

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor
DATABASE NAME = <string>mesh_file_name
DATABASE TYPE = <string>database_type(exodusII)
ALIAS <string>mesh_identifier AS <string>user_name
BEGIN PARAMETERS FOR BLOCK <string list>block_names

#
Command lines that define attributes for
a particular element block appear in this
command block.
#

END [PARAMETERS FOR BLOCK <string list>block_names]
END [FINITE ELEMENT MODEL <string>mesh_descriptor]

The Presto input file must point to a mesh file that is to be used for an analysis.
The name of the mesh file appears within a FINITE ELEMENT MODELcommand block,
which appears in the domain scope. In this command block, you will identify the
particular mesh file that describes your model. Also within this command block,
there will be one or more PARAMETERS FOR BLOCKcommand blocks. (All of the
PARAMETERS FOR BLOCKcommand blocks are embedded in the FINITE ELEMENT

MODELcommand block.) Within the PARAMETERS FOR BLOCKcommand block, you
will set a material type and model, a section, and various other parameters for the
element block. The concept of “section” is explained in Section 5.1.2.

Currently, the elements supported in Presto are as follows:

- Eight-node, uniform-gradient hexahedron: Both a midpoint-increment formu-
lation [1] and a strongly objective formulation are implemented [2]. These
elements can be used with any of the material models described in Chapter 4,
including the equation of state (EOS) models.

- Eight-node, selective-deviatoric hexahedron: Only a strongly objective formu-
lation is provided. This element can be used with any of the material models
described in Chapter 4 except the EOS models.

134

- Four-node tetrahedron: There is now the regular element formulation for the
four-node tetrahedron and a node-based formulation for the four-node tetrahe-
dron. For the regular element formulation, only a strongly objective formulation
is implemented. The concept of a node-based four-node tetrahedron is described
in Reference 3. The regular four-node tetrahedron can be used with any of the
material models described in Chapter 4 except the EOS models. The node-
based tetrahedron can be used with any of the material models described in
Chapter 4, including the EOS models.

- Eight-node tetrahedron: This tetrahedral element has nodes at the four vertices
and nodes on the four faces. The eight-node tetrahedron has only a strongly
objective formulation [4]. The eight-node tetrahedron uses a mean quadrature
formulation even though it has the additional nodes. This element can be used
with any of the material models described in Chapter 4, including the EOS
models.

- Ten-node tetrahedron: Only a strongly objective formulation is implemented.
This element can be used with any of the material models described in Chap-
ter 4, including the EOS models.

- Four-node, quadrilateral, uniform-gradient membrane: Both a midpoint-
increment formulation and a strongly objective formulation are implemented.
This element is derived from the Key-Hoff shell formulation [5]. The strongly
objective formulation has not been extensively tested, and it is recommended
that the midpoint-increment formulation, which is the default, be used for this
element type. These elements can be used with any of the following material
models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic power-law hardening (no failure)

- Four-node, quadrilateral shell: This shell uses the Key-Hoff formulation [5].
Both a midpoint-increment formulation and a strongly objective formulation
are implemented. The strongly objective formulation has not been extensively
tested, and it is recommended that the midpoint-increment formulation, which
is the default, be used for this element type. These elements can be used with
any of the following material models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

135

– Multilinear elastic-plastic power-law hardening (no failure)

- Four-node, quadrilateral, selective-deviatoric membrane: Only a midpoint-
increment formulation is implemented. These elements can be used with any of
the following material models described in Chapter 4:

– Elastic

– Elastic-plastic

– Elastic-plastic power-law hardening

– Multilinear elastic-plastic power-law hardening (no failure)

- Two-node beam: The beam element is a uniform result model. Strains and
stresses are computed only at the midpoint of the element. These midpoint
values determine the forces and moments for the beam. There are five different
sections currently implemented for the beam: rod, tube, bar, box, and I. This
element can be used with any of the following material models described in
Chapter 4:

– Elastic

– Elastic-plastic

- Two-node truss: The two-node truss element carries only a uniform axial stress.
Currently, there is a linear-elastic material model for the truss element.

- Two-node damper: The two-node damping element computes a damping force
based on the relative velocity of the two nodes along the axis of the element.
This element uses only a damping parameter for a material property.

- Point mass: Presto has a point mass element that allows the user to put a
specified mass (and a mass only) at a node. This element requires input for
density and an elastic material, but does not make use of the elastic material
properties.

- Smoothed particle hydrodynamics (SPH) elements: These are one-dimensional
elements. These elements can be used with any of the material models described
in Chapter 4, including the EOS models.

The command block to describe a mesh file begins with

BEGIN FINITE ELEMENT MODEL<string>mesh_descriptor

and is terminated with

END [FINITE ELEMENT MODEL<string>mesh_descriptor] ,

136

where mesh_descriptor is a user-selected name for the mesh. In this section, we
will first discuss the command lines within the scope of the FINITE ELEMENT MODEL

command block but outside the scope of the PARAMETERS FOR BLOCKcommand
block. We will then discuss the PARAMETERS FOR BLOCKcommand block and the
associated command lines for this particular block.

5.1.1 Identification of Mesh File

Nested within the FINITE ELEMENT MODELcommand block are two command lines
(DATABASE NAMEand DATABASE TYPE) that give the mesh name and define the type
for the mesh file, respectively. The command line

DATABASE NAME =<string> mesh_file_name

gives the name of the mesh file with the string mesh_file_name . If the current mesh
file is in the default directory and is named job.g , then this command line would
appear as

DATABASE NAME = job.g .

If the mesh file is in some other directory, the command line would have to show
the path to that directory. For parallel runs, the string mesh_file_name is the base
name for the spread of parallel mesh files. For example, for a four-processor run,
the actual mesh files associated with a base name of job.g would be job.g.4.0 ,
job.g.4.1 , job.g.4.2 , and job.g.4.3 . The database name on the command line
would be job.g .

If the mesh file does not use the Exodus II format, you must specify the format
for the mesh file using the command line

DATABASE TYPE =<string> database_type(exodusII) .

Currently, only the Exodus II database is supported by Presto. Other options will
be added in the future.

It is possible to associate a user-defined name with some mesh entity. The mesh
entity for Exodus II relies on some type of integer identification. You can relate
the integer identification to some name that is more descriptive by using the ALIAS

command line :

ALIAS <string >mesh_identifier AS <string >user_name .

This alias can then be used in other locations in the input file in place of the
Exodus II name.

Examples of this association are as follows:

Alias block_1 as Case

137

Alias block_10 as Fin
Alias block_12 as Nose
Alias surface_1 as Nose_Case_Interface
Alias surface_2 as OuterBoundary

The above examples use the Exodus II naming convention described in Section 1.5.

5.1.2 Descriptors of Element Blocks

BEGIN PARAMETERS FOR BLOCK <string list>block_names
MATERIAL <string>material_name
SOLID MECHANICS USE MODEL <string>model_name
SECTION = <string>section_id
LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)
QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)
HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,
shell/membrane = 0.0)

HOURGLASS VISCOSITY =
<real>hour_glass_visc_value(solid = 0.0,

shell/membrane = 0.0)
EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|CURRENT|

ELASTIC(PRONTO)
ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)
ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names
RIGID BODY = <string>rb_name

END [PARAMETERS FOR BLOCK <string list>block_names]

The finite element model consists of one or more element blocks. Associated with
an element block or group of element blocks will be a PARAMETERS FOR BLOCKcom-
mand block, which is also referred to in this document as an element-block command
block. The basic information about the element blocks (number of elements, topol-
ogy, connectivity, etc.) is contained in a mesh file. Specific attributes for an element
block must be specified in the Presto input file. If for example, a block of eight-node
hexahedra is to use the selective-deviatoric versus mean-quadrature formulation, then
the selective-deviatoric formulation must be specified in the input file. The elements
currently implemented in Presto are listed at the beginning of Section 5.1.

The element-block command block begins with the input line

BEGIN PARAMETERS FOR BLOCK<string list>block_names

138

and is terminated with the input line

END [PARAMETERS FOR BLOCK<string list>block_names] ,

where block_names is the list of element blocks assigned to the element-block com-
mand block. If the format for the mesh file is Exodus II, the typical form of a
block_name is block_integerid , where integerid is the integer identifier for the
block. If the element block is 280, the value of block_name would be block_280 .
It is also possible to generate an alias identifier for the element block and use this
for the block_name . If block_280 is aliased to AL6061 , then block_name becomes
AL6061 .

All of the element blocks listed on the PARAMETERS FOR BLOCKcommand line
will have the same mechanics properties. The mechanics properties are set by use
of the various command lines. One of the key command lines, i.e., MATERIAL, will
let you associate a material with the elements in the block. Another key command
line is the SECTIONcommand line. This command line lets you differentiate between
elements with the same topology but different formulations. For example, assume
that the topology of the elements in a block is a four-node quadrilateral. With the
SECTIONcommand line you can specify whether the element block will be used as a
membrane or a shell. The SECTION command line also lets you assign a variety of
parameters to an element depending on the element formulation.

It is important to state here that the SECTION command line only specifies an
identifier that maps to a section command block that is defined by the user. There are
currently several kinds of section command blocks for the different elements: SOLID

SECTION, SHELL SECTION, MEMBRANE SECTION, BEAM SECTION, TRUSS SECTION,
DAMPER SECTION, POINT MASS SECTION, and SPH SECTION. It is within a section
command block that the formulation-specific entities related to a particular element
are specified. If no SECTIONcommand line is present in an element-block command
block, Presto assumes the element block is a block of eight-node hexahedra using
mean quadrature and the midpoint-increment formulation.

(Similar to the SECTION command line is a RIGID BODY command line. The
RIGID BODYcommand lines specifies an identifier that maps to a rigid body command
block that appears in the region scope. This identifier ties an element block to a
specific rigid body.)

In addition to the material- and section-related command lines in an element-block
command block, there are a number of other command lines. There are, for example,
two command lines, HOURGLASS STIFFNESS, and HOURGLASS VISCOSITY, that will
let you specify hourglass control parameters for the elements in the block (if these
elements use hourglass control). These two command lines will overwrite the default
hourglass control parameters for all of the elements in the block.

All of the command lines that can be used for the element-block command block

139

are described in Section 5.1.2.1 through Section 5.1.2.8. The various section command
blocks are described in Section 5.2. The section command blocks and their related
command lines are much easier to understand once the element-block command lines
are described.

5.1.2.1 Material Property

MATERIAL <string>material_name
SOLID MECHANICS USE MODEL <string>model_name

The material property specification for an element block is done by using the
above two command lines. The property specification references both a PROPERTY

SPECIFICATION FOR MATERIALcommand block and a material-model command
block, which has the general form PARAMETERS FOR MODEL model_name.These
command blocks are described in Chapter 4. The PROPERTY SPECIFICATION FOR

MATERIALcommand block contains all of the parameters needed to define a material,
and is associated with an element block (PARAMETERS FOR BLOCKcommand block)
by use of the MATERIAL command line. Some of the material parameters inside the
property specification are grouped on the basis of material models. A material-model
command block is associated with an element block by use of the SOLID MECHANICS

USE MODELcommand line.

Consider the following example. Suppose there is a PROPERTY SPECIFICATION

FOR MATERIALcommand block with a material_name of steel. Embedded within
this command block for steel is a material-model command block for an elastic model
of steel and an elastic-plastic model of steel. Suppose that for the current element
block we would like to use the material steel with the elastic model. Then the element-
block command block would contain the input lines

MATERIAL steel
SOLID MECHANICS USE MODEL elastic .

If, on the other hand, we would like to use the material steel with the elastic-plastic
model, the element-block command block would contain the input lines

MATERIAL steel
SOLID MECHANICS USE MODEL elastic_plastic .

The user should remember that not all material types can be used with all element
types.

140

5.1.2.2 Section

SECTION = <string>section_id

The section specification for an element-block command block is done by using the
above command line. The section_id is a string associated with a section command
block. The various section command blocks are described in Section 5.2.

Suppose you wanted the current element-block command block to use the mem-
brane formulation. You would define a MEMBRANE SECTIONcommand block with
some name, such as membrane rubber. Inside the current element-block command
block you would have the command line

SECTION = membrane_rubber .

The thickness of the membrane would be described in the MEMBRANE SECTIONcom-
mand block and then associated with the current element-block command block.

There can be only one SECTION command line in an element-block command
block. Each element-block command block within the model description can ref-
erence a unique section command block, or several element-block command blocks
can reference the same section command block. For example, in Figure 5.1, the
section named membrane_rubber appears in two different PARAMETERS FOR MODEL

command blocks, but there is only one specification for their associated MEMBRANE

SECTION command block. When several element-block command blocks reference
the same section, the input file is less verbose, and it is easier to maintain the input
file.

5.1.2.3 Linear and Quadratic Bulk Viscosity

LINEAR BULK VISCOSITY =
<real>linear_bulk_viscosity_value(0.06)

QUADRATIC BULK VISCOSITY =
<real>quad_bulk_viscosity_value(1.20)

The linear and quadratic bulk viscosity are set with these two command lines.
Consult the documentation for the elements [6] for a description of the bulk viscosity
parameters.

5.1.2.4 Hourglass Control

HOURGLASS STIFFNESS = <real>hour_glass_stiff_value(solid
= 0.05, shell/membrane = 0.0)

HOURGLASS VISCOSITY = <real>hour_glass_visc_value(solid
= 0.0, shell/membrane = 0.0)

141

Figure 5.1: Association between SECTION command lines and a section command
block.

These two command lines set the hourglass control parameters for elements that
use hourglass control. Currently, this includes the eight-node, uniform-gradient hexa-
hedral elements; the eight-node and ten-node tetrahedral elements; and the four-node
membrane and shell elements. Consult the element documentation [6] for a descrip-
tion of the hourglass parameters.

The hourglass stiffness parameter defaults to 0.05 for solids using hourglass con-
trol; it defaults to 0.0 for shell and membrane elements. The hourglass viscosity
parameter defaults to 0.0 for all elements currently using hourglass control.

The hourglass stiffness is the same as the dilatational hourglass parameter, and
the hourglass viscosity is the same as the deviatoric hourglass parameter.

The computation of the hourglass parameters can be strongly affected by the
method that computes the effective moduli. The command line in Section 5.1.2.5
selects the method for computing the effective moduli.

142

5.1.2.5 Effective Moduli Model

EFFECTIVE MODULI MODEL =
<string>PRESTO|PRONTO|CURRENT|ELASTIC(PRONTO)

The hourglass force computations require a measure of the material moduli to
ensure appropriate scaling of the hourglass forces. For elastic, isotropic material
models, the moduli are constant throughout the analysis. However, for nonlinear
materials, the moduli are typically computed numerically from the stresses. For
models with softening regimes or that approach perfect plasticity, the moduli may be
difficult to define, and the way in which they are computed may adversely affect the
analysis. Through the EFFECTIVE MODULI MODELcommand line, Presto provides
several methods for the computation of these effective moduli:

• PRESTO: This method includes a number of techniques for returning reasonable
moduli for softening and perfectly plastic materials. The effective moduli that
this approach produces are stiffer than those computed by the PRONTOapproach.

• PRONTO: This method is the default and is identical to the method of comput-
ing effective moduli present in the Pronto3D code. It is similar to the PRESTO

approach but generally produces moduli that are softer than the PRESTOap-
proach.

• CURRENT: This method computes the effective moduli without any extra han-
dling of negative or near-zero moduli cases. It generally provides the softest
response but is also less stable.

• ELASTIC: This method simply uses the initial elastic moduli for the entire anal-
ysis. It is the most robust but also the most stiff, and may produce an overly
stiff global response.

The EFFECTIVE MODULI MODELcommand line should be used with caution be-
cause it can strongly affect the analysis results.

5.1.2.6 Element Numerical Formulation

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)

For calculation of the critical time step, it is necessary to determine a character-
istic length for each element. In one dimension, the correct characteristic element
length is obviously the distance between the two nodes of the element. In higher
dimensions, this length is usually taken to be the minimum distance between any of

143

the nodes in the element. However, some finite element codes, primarily those based
on Pronto3D [1], use as a characteristic length an eigenvalue estimate based on work
by Flanagan and Belytschko [7]. That characteristic length provides a stable time
step, but in many cases is far more conservative than the minimum distance between
nodes. For a cubic element with side length equal to 1, and thus also surface area of
each face and volume equal to 1, the minimum distance between nodes is 1. However,
the eigenvalue estimate is 1

/√
3, which is only 58% of the minimum distance. As

the length of the element is increased in one direction while keeping surfaces in the
lateral direction squares of area 1, the eigenvalue estimate asymptotes to 1

/√
2 for

very long elements. If the length is decreased, the eigenvalue estimate asymptotes
to the minimum distance between nodes for very thin elements. In this case, the
eigenvalue estimate is always more conservative than the minimum distance between
nodes. However, consider an element whose cross section in one direction is not a
square but a trapezoid with one side length much greater than the other. Assume
the large side length is 1 and the other side length is arbitrarily small, ε. In this case,
the minimum distance between nodes becomes ε, creating a very small and inefficient
time step. However, the eigenvalue estimate is related to the length across the middle
of the trapezoid, which for the conditions stated is 1/2. Since both distances provide
stable time steps, and one or the other can be much larger in various circumstances,
the most efficient calculation is obtained by using the maximum of the two lengths,
either the eigenvalue estimate or the minimum distance between nodes, to determine
the time step.

By using the maximum of the lengths, the computed critical time step should be
at the edge of instability, and the TIME STEP SCALE FACTORcommand line should
be used to provide a margin of safety. In this case the scale factor for the time step
should not be greater than 0.9, and in some cases it may have to be reduced further.
Thus, although the maximum of the lengths provides a time step that is closer to the
critical value and provides better accuracy and efficiency, you may need to specify a
smaller-than-expected scale factor for stability. For this reason, the choice of which
approach to use is left to the user and is determined by the command line

ELEMENT NUMERICAL FORMULATION =<string >OLD|NEW(OLD).

If the input parameter is OLD, only the eigenvalue estimate is used; NEWmeans
that the maximum of the two lengths is used. The default is OLDso that users will
have to specifically choose the new approach and be aware of the scale factor for the
time step.

The ELEMENT NUMERICAL FORMULATIONcommand line is applicable to both the
energy-dependent and purely mechanical material models. If this command line is
applied to blocks using energy-dependent materials, only the determination of the
characteristic length is affected. If this command line is applied to an element block
with a purely mechanical model and the OLD option is used, the Pronto3D-based

144

artificial viscosity, time step, and eigenvalue estimate will be used in the element
calculations. If, however, the NEWoption is used, the artificial viscosity and time step
will be computed from equations associated with the energy-dependent models. You
should consult Reference 8 for further details about the critical time-step calculations
and the use of this command line.

5.1.2.7 Activation/Deactivation of Element Blocks by Time

ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS
<string list>period_names

This command line permits the activation and deactivation of element blocks by
time period. The time periods are defined in the TIME STEPPING BLOCKcommand
block (Section 3.1.1) within a specific procedure named in a PRESTO PROCEDURE

command block (Section 2.2.1). In the ACTIVE FOR PROCEDUREcommand line, the
element block is active for all periods listed for the named procedure. The element
block is deactivated for all time periods that are absent from the list. If this command
line is not used, then by default the block is active during all time periods. While
this command line controls the activation and deactivation of all elements in a block,
individual elements can be deactivated with the ELEMENT DEATHcommand block (see
Section 5.5).

5.1.2.8 Rigid Body Declaration

RIGID BODY = <string>rb_name

Any combination of elements blocks (except a combination involving SPH ele-
ments) can be used to create a rigid body. Suppose you wish to create a rigid body
named rigidbody_1 . If you want to include element block 280 as part of this rigid
body, then, in the parameters command block for element block 280, you will include
the command line

RIGID BODY = rigidbody_1 .

Consult with Section 5.3.2 for a full discussion of how to create rigid bodies in
Presto.

145

5.2 Element Sections

Element sections are defined by section command blocks. There are currently eight
different types of section command blocks. The section command blocks appear in
the domain scope, at the same level as the FINITE ELEMENT MODELcommand block.
In general, a section command block has the following form:

BEGIN section_type SECTION <string>section_name
command lines dependent on section type

END [section_type SECTION <string>section_name]

Currently, section_type can be SOLID, SHELL, MEMBRANE, BEAM, TRUSS, DAMPER,
POINT MASS, or SPH. These various section types are identified as individual section
command blocks and are described below. The corresponding section_name pa-
rameter in each of these command blocks, e.g., truss_section_name in the TRUSS

SECTION command block, is selected by the user. Associating these names with in-
dividual SECTION command lines in PARAMETERS FOR BLOCKcommand blocks is
discussed in Section 5.1.2.2.

5.2.1 Solid Section

BEGIN SOLID SECTION <string>solid_section_name
FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN_QUADRATURE)
DEVIATORIC PARAMETER = <real>deviatoric_param
STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|

STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)
NODE BASED ALPHA FACTOR = <real>bulk_stress_weight(0.01)
NODE BASED BETA FACTOR = <real>shear stress_weight(0.35)

END [SOLID SECTION <string>solid_section_name]

The SOLID SECTION command block is used to specify the properties for solid
elements (hexahedra and tetrahedra). This command block is to be referenced by
an element block made up of solid elements. The two types of solid-element topolo-
gies currently supported by Presto are hexahedra and tetrahedra. The parameter
solid_section_name is user-defined and is referenced by a SECTIONcommand line
in a PARAMETERS FOR BLOCKcommand block.

The FORMULATIONcommand line specifies whether the element will use a single-
point integration rule (mean quadrature) or a selective-deviatoric rule. The selective-
deviatoric integration rule is a higher-order integration scheme, which is discussed
below.

146

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAME-

TER command line must also appear in the SOLID SECTIONcommand block. The
selective-deviatoric parameter, deviatoric_param , which is valid from 0.0 to 1.0, in-
dicates how much of the deviatoric response should be taken from a uniform-gradient
integration and how much should be taken from a full integration of the element.
A value of 0.0 will give a pure uniform-gradient response with no hourglass control.
Thus, this value is of little practical use. A value of 1.0 will give a fully integrated
deviatoric response. Although any value between 0.0 and 1.0 is perfectly valid, lower
values are generally preferred.

The selective-deviatoric elements, when used with a parameter greater than 0.0,
provide hourglass control without artificial hourglass parameters.

Some of the solid elements support different strain-incrementation formula-
tions. See the element summary at the beginning of Section 5.1 to determine
what strain-incrementation formulations are available for the various elements. The
STRAIN INCREMENTATIONcommand line, lets you specify a midpoint-increment
strain formulation (MIDPOINT_INCREMENT), a strongly objective strain formulation
(STRONGLY_OBJECTIVE), or a node-based formulation (NODE_BASED) for some of the
elements. Consult the element documentation [2, 6] for a description of these strain
formulations.

The node-based formulation can only be used with four-node tetrahedral elements.
If your element-block command block (i.e., a PARAMETERS FOR BLOCKcommand
block) has a SECTION command line that references a SOLID SECTION command
block that uses

STRAIN INCREMENTATION = NODE_BASED,

then the element block must be a block of four-node tetrahedral elements.

The node-based formulation lets you calculate a solution that is some mixture
of an element-based formulation (information from the center of an element) and a
node-based formulation (information at a node that is based on all elements attached
to the node). The node-based tetrahedron allows the user to model with four-node
tetrahedral elements and avoid the main problems with regular tetrahedral elements.
Regular tetrahedral elements are much too stiff and can produce very inaccurate
results.

You can adjust the mixture of node-based versus element-based information incor-
porated into your solution with the NODE BASED ALPHA FACTORand NODE BASED

BETA FACTORcommand lines. These two lines apply only if you have selected the
NODE BASEDoption on the STRAIN INCREMENTATIONcommand line. The value
for bulk_stress_weight on the NODE BASED ALPHA FACTORcommand line sets
the element bulk stress weighting factor; the value for shear_stress_weight on
the NODE BASED BETA FACTORcommand line sets the element shear stress weight-

147

ing factor. You should consult Reference 3 to better understand the use of these
weighting factors. If both of these factors are set to 0.0, you will be using a strictly
node-based formulation. If both of these factors are set to 1.0, you will be using a
strictly element-based formulation.

5.2.2 Shell Section

BEGIN SHELL SECTION <string>shell_section_name
THICKNESS = <real>shell_thickness
THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name
THICKNESS TIME STEP = <real>time_value
THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)
INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)
NUMBER OF INTEGRATION POINTS = <integer>num_int_points(5)
BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1
<real>location_2 <real>weight_2
.
.
<real>location_n <real>weight_n

END [USER INTEGRATION RULE]
LOFTING FACTOR = <real>lofting_factor(0.5)
ORIENTATION = <string>orientation_name

END [SHELL SECTION <string>shell_section_name]

The SHELL SECTIONcommand block is used to specify the properties for a shell
element. If this command block is referenced in an element block of three-dimensional,
four-node elements, the elements in the block will be treated as shell elements. The
parameter, shell_section_name , is user-defined and is referenced by a SECTION

command line in a PARAMETERS FOR BLOCKcommand block.

Either a THICKNESScommand line or a THICKNESS MESH VARIABLEcommand
line must appear in the SHELL SECTIONcommand block.

If a shell element block references a SHELL SECTIONcommand block with the
command line

THICKNESS = <real>shell_thickness ,

then all of the membrane elements in the block will have their thickness initialized to
the value shell_thickness .

Presto can also initialize the thickness using an attribute defined on elements in
the mesh file. Meshing programs such as PATRAN and CUBIT typically set the

148

element thickness as an attribute on the elements. If the elements have one and only
one attribute defined on the mesh, the THICKNESS MESH VARIABLEcommand line
should be specified as

THICKNESS MESH VARIABLE = THICKNESS,

which causes the thickness of the element to be initialized to the value of the attribute
for that element. If there are zero attributes or more than one attribute, the thickness
variable will not be automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input
mesh. To specify a field other than the single-element attribute, use this form of the
THICKNESS MESH VARIABLEcommand line:

THICKNESS MESH VARIABLE =<string>var_name ,

where the string var_name is the name of the initializing field.

The input mesh may have values defined at more than one point in time. To
choose the point in time in the mesh file that the variable should be read, use the
command line

THICKNESS TIME STEP =<real >time_value .

The default time point in the mesh file at which the variable is read is 0.0.

Once the thickness of a shell element is initialized by using either the THICK-

NESScommand line or the THICKNESS MESH VARIABLEcommand line, this initial
thickness value can then be scaled using the scale-factor command line

THICKNESS SCALE FACTOR =<real>thick_scale_factor .

If the initial thickness of the shell is 0.15 inch, and the value for
thick_scale_factor is 0.5, then the scaled thickness of the membrane will be
0.075.

The thickness mesh variable specification may be coupled with the THICKNESS

SCALE FACTORcommand line. In this case, the thickness mesh variable is scaled by
the specified factor.

For shell elements, the user can select from a number of integration rules, including
a user-defined integration option. The integration rule is selected with the command
line

INTEGRATION RULE = <string>TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID) .

Consult the element documentation [6] for a description of different integration
schemes for shell elements.

The default integration scheme is TRAPEZOIDwith five integration points through
the thickness. The number of integration points for TRAPEZOIDcan be set to any

149

number greater than one by using the following command line:

NUMBER OF INTEGRATION POINTS =<integer >num_int_points(5)

The SIMPSONS, GAUSS, and LOBATTOintegration schemes in the INTEGRATION

RULEcommand line all default to five integration points. The number of integration
points for these three schemes can be reset by using the NUMBER OF INTEGRATION

POINTS command line. There are limitations on the number of integration points for
some of these integration rules. The SIMPSONSrule can be set to any number greater
than one, the GAUSSscheme can be set to one through seven integration points, and
the LOBATTOintegration scheme can be set to two through seven integration points.

In addition to these standard integration schemes, you may also define an inte-
gration scheme by using the USER INTEGRATION RULEcommand block.

BEGIN USER INTEGRATION RULE
<real>location_1 <real>weight_1
<real>location_2 <real>weight_2
.
.
<real>location_n <real>weight_n

END [USER INTEGRATION RULE]

You may NOT specify both a standard integration scheme and a user scheme. If
the USERoption is specified in the INTEGRATION RULEcommand line, a set of inte-
gration locations with associated weight factors must be specified. This is done with
tabular input command lines inside the USER INTEGRATION RULEcommand block.
The number of command lines inside this command block should match the number
of integration points specified in the NUMBER OF INTEGRATION POINTScommand
line. For example, suppose we wish to use a user-defined scheme with three integra-
tion points. The NUMBER OF INTEGRATION POINTScommand line should specify
three (3) integration points and the number of command lines inside the USER IN-

TEGRATION RULEcommand block should be three (to give three locations and three
weight factors).

For the user-defined rule, the integration point locations should fall between –1
and +1, and the weights should sum to 1.0.

The command line

LOFTING FACTOR =<real>lofting_factor(0.5)

allows the user to shift the location of the midsurface of a shell element relative to the
geometric location of the shell element. By default, the geometric location of a shell
element in a mesh represents the midsurface of the shell. If a shell has a thickness of
0.2 inch, the top surface of the shell is 0.1 inch above the geometric surface defined by
the shell element, and the bottom surface of the shell is 0.1 inch below the geometric

150

surface defined by the shell element. (The top surface of the shell is the surface with a
positive element normal; the bottom surface of the shell is the surface with a negative
element normal.)

Figure 5.2 shows an edge-on view of shell elements with a thickness of t and the
location of the geometric plane in relation to the shell surfaces for three different
values of the lofting factor—0.0, 0.5, and 1.0. If you want to have the geometric
surface defined by the shell correspond to the top surface of the shell element, set the
lofting factor to 1.0. If you want to have the geometric surface defined by the shell
correspond to the bottom surface of the shell element, set the lofting factor to 0.0.
The geometric surface is midway between the top and bottom surfaces for a lofting
factor of 0.5. Note that the default for this factor is 0.5.

Figure 5.2: Location of geometric plane of shell for various lofting factors.

Suppose that the lofting factor is set to 1.0 and the thickness of the shell is 0.2
inch. Let us measure distances to the shell surfaces (top and bottom) by measuring
along the positive element normal. The top surface of the shell will be located at a
distance of 0.0 inch from the geometric shell surface, and the bottom surface of the
shell will be located at a distance of –0.2 inch from the geometric shell surface.

Both the shell mechanics and contact use shell lofting. See Section 7.2 for a
discussion of lofting surfaces for shells and contact.

151

The ORIENTATIONcommand line lets you select a coordinate system for output of
stresses. The ORIENTATIONoption makes use of an embedded coordinate system rst
associated with each shell element. The rst coordinate system for a shell element is
shown in Figure 5.3. The r-axis extends from the center of the shell to the midpoint
of the side of the shell defined by nodes 1 and 2. The t-axis is located at the center
of the shell and is normal to the surface of the shell at the center point. The s-axis is
the cross-product of the t-axis and the r-axis. The rst-axes form a local coordinate
system at the center of the shell; this local coordinate system moves with the shell
element as the element deforms.

Figure 5.3: Local rst coordinate system for a shell element.

The ORIENTATION command line in the SHELL SECTIONcommand block refer-
ences an ORIENTATION command block that appears in the domain scope. As de-
scribed in Chapter 2 of this manual, the ORIENTATIONcommand block can be used
to define a local coordinate system X ′′Y ′′Z ′′ at the center of a shell element. In the
original shell configuration (time 0), one of the axes—X ′′, Y ′′, or Z ′′—is projected
onto the plane of the shell element. The angle between this projected axis of the
X ′′Y ′′Z ′′ coordinate system and the r-axis is used to establish the transformation for
the stresses. We will illustrate this with an example.

152

Suppose that in our ORIENTATION command block we have specified a rotation
of 30 degrees about the 1-axis (X ′-axis). The command line for this rotation in the
ORIENTATIONcommand block would be

ROTATION ABOUT 1 = 30.

For this case, we project the Y ′′-axis onto the plane of the shell (Figure 5.4). The
angle between this projection and the r-axis establishes a transformation for the in-
plane stresses of the shell (the stresses in the center of the shell lying in the plane of
the shell). What will be output as the in-plane stress σip

xx will be in the Y ′′-direction;
what will be output as the in-plane stress σip

yy will be in the Z ′′-direction. The in-
plane stress σip

xy is a shear stress in the Y ′′Z ′′-plane. The X ′′Y ′′Z ′′ coordinate system
maintains the same relative position in regard to the rst coordinate system. This
means that the X ′′Y ′′Z ′′ coordinate system is a local coordinate system that moves
with the shell element as the element deforms.

Figure 5.4: Rotation of 30 degrees about the 1-axis (X ′-axis).

The following permutations for output of the in-plane stress occur depending on
the axis (1, 2, or 3) specification for the ROTATION ABOUTcommand line:

• Rotation about the 1-axis (X ′-axis): The in-plane stress σip
xx will be in the Y ′′-

direction; the in-plane stress σip
yy will be in the Z ′′-direction. The in-plane stress

153

σip
xy is a shear stress in the Y ′′Z ′′-plane.

• Rotation about the 2-axis (Y ′-axis): The in-plane stress σip
xx will be in the Z ′′-

direction; the in-plane stress σip
yy will be in the X ′′-direction. The in-plane stress

σip
xy is a shear stress in the Z ′′X ′′-plane.

• Rotation about the 3-axis (Z ′-axis): The in-plane stress σip
xx will be in the X ′′-

direction; the in-plane stress σip
yy will be in the Y ′′-direction. The in-plane stress

σip
xy is a shear stress in the X ′′Y ′′-plane.

5.2.3 Membrane Section

BEGIN MEMBRANE SECTION <string>membrane_section_name
THICKNESS = <real>mem_thickness
THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name
THICKNESS TIME STEP = <real>time_value
THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)
FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN_QUADRATURE)
DEVIATORIC PARAMETER = <real>deviatoric_param
LOFTING FACTOR = <real>lofting_factor(0.5)

END [MEMBRANE SECTION <string>membrane_section_name]

The MEMBRANE SECTIONcommand block is used to specify the properties for
a membrane element. If this command block is referenced in an element block of
three-dimensional, four-node elements, the elements in the block will be treated as a
membrane element. The parameter, membrane_section_name , is user-defined and
is referenced by a SECTION command line in a PARAMETERS FOR BLOCKcommand
block.

Either a THICKNESScommand line or a THICKNESS MESH VARIABLEcommand
line must appear in the MEMBRANE SECTIONcommand block.

If a membrane element block references a MEMBRANE SECTIONcommand block
with the command line

THICKNESS = <real>mem_thickness ,

then all of the membrane elements in the block will have their thickness initialized to
the value mem_thickness .

Presto can also initialize the thickness using an attribute defined on elements in
the mesh file. Meshing programs such as PATRAN and CUBIT typically set the
element thickness as an attribute on the elements. If the elements have one and only

154

one attribute defined on the mesh, the THICKNESS MESH VARIABLEcommand line
should be specified as

THICKNESS MESH VARIABLE = THICKNESS,

which causes the thickness of the element to be initialized to the value of the attribute
for that element. If there are zero attributes or more than one attribute, the thickness
variable will not be automatically defined, and the command will fail.

The thickness may also be initialized by any other field present on the input
mesh. To specify a field other than the single-element attribute, use this form of the
THICKNESS MESH VARIABLEcommand line:

THICKNESS MESH VARIABLE =<string>var_name ,

where the string var_name is the name of the initializing field.

The input mesh may have values defined at more than one point in time. To
choose the point in time in the mesh file that the variable should be read, use the
command line

THICKNESS TIME STEP =<real >time_value .

The default time point in the mesh file at which the variable is read is 0.0.

Once the thickness of a membrane element is initialized by using either the THICK-

NESScommand line or the THICKNESS MESH VARIABLEcommand line, this initial
thickness value can then be scaled by using the scale-factor command line

THICKNESS SCALE FACTOR =<real>thick scale_factor .

If the initial thickness of the membrane is 0.15 inch, and the value for
thick_scale_factor is 0.5, then the scaled thickness of the membrane will be
0.075.

The FORMULATIONcommand line specifies whether the element will use a single-
point integration rule (mean quadrature) or a selective-deviatoric integration rule:

FORMULATION = <string>MEAN_QUADRATURE|SELECTIVE_DEVIATORIC
(MEAN_QUADRATURE)

The selective-deviatoric rule is a higher-order integration scheme, which is dis-
cussed below.

If the user wishes to use the selective-deviatoric rule, the DEVIATORIC PARAMETER

command line must also appear in the MEMBRANE SECTIONcommand block:

DEVIATORIC PARAMETER =<real >deviatoric_param

The selective-deviatoric parameter, deviatoric_param , which is valid from 0.0
to 1.0, indicates how much of the deviatoric response should be taken from a uniform-
gradient integration and how much should be taken from a full integration of the

155

element. A value of 0.0 will give a pure uniform-gradient response with no hourglass
control. Thus, this value is of little practical use. A value of 1.0 will give a fully
integrated deviatoric response. Although any value between 0.0 and 1.0 is perfectly
valid, lower values are generally preferred.

The selective-deviatoric elements, when used with a parameter greater than 0.0,
provide hourglass control without artificial hourglass parameters.

The command line

LOFTING FACTOR =<real>lofting_factor(0.5)

allows the user to shift the location of the midsurface of a membrane element relative
to the geometric location of the membrane element. By default, the geometric location
of a membrane element in a mesh represents the midsurface of the membrane. If a
membrane has a thickness of 0.2 inch, the top surface of the membrane is 0.1 inch
above the geometric surface defined by the membrane element, and the bottom surface
of the membrane is 0.1 inch below the geometric surface defined by the membrane
element. (The top surface of the membrane is the surface with a positive element
normal; the bottom surface of the membrane is the surface with a negative element
normal.)

Figure 5.2, which shows lofting for shells, is also applicable to membranes. For
membranes, Figure 5.2 represents an edge-on view of membrane elements with a
thickness of t and the location of the geometric plane in relation to the membrane
surfaces for three different values of the lofting factor—0.0, 0.5, and 1.0. If you want
to have the geometric surface defined by the membrane correspond to the top surface
of the membrane element, set the lofting factor to 1.0. If you want to have the
geometric surface defined by the membrane correspond to the bottom surface of the
membrane element, set the lofting factor to 0.0. The geometric surface is midway
between the top and bottom surfaces for a lofting factor of 0.5. Note that the default
for this factor is 0.5.

Suppose that the lofting factor is set to 1.0 and the thickness of the membrane is
0.2 inch. Let us measure distances to the membrane surfaces (top and bottom) by
measuring along the positive element normal. The top surface of the membrane will
be located at a distance of 0.0 inch from the geometric membrane surface, and the
bottom surface of the membrane will be located at a distance of –0.2 inch from the
geometric membrane surface.

Both the membrane mechanics and contact use membrane lofting. See Section 7.2
for a discussion of lofting surfaces for membranes and contact.

156

5.2.4 Beam Section

BEGIN BEAM SECTION <string>beam_section_name
SECTION = <string>ROD|TUBE|BAR|BOX|I
WIDTH = <real>section_width
HEIGHT = <real>section_width
WALL THICKNESS = <real>wall_thickness
FLANGE THICKNESS = <real>flange_thickness
T AXIS = <real>tx <real>ty <real>tz (0 0 1)
REFERENCE AXIS = <string>CENTER|RIGHT|

TOP|LEFT|BOTTOM(CENTER)
OFFSET AXIS = <real>s_offset <real>t_offset

END [BEAM SECTION <string>beam_section_name]

The BEAM SECTIONcommand block is used to specify the properties for a beam
element. If this command block is referenced in an element block of three-dimensional,
two-node elements, the elements in the block will be treated as beam elements. The
parameter, beam_section_name , is user-defined and is referenced by a SECTION

command line in a PARAMETERS FOR BLOCKcommand block.

Five different cross sections can be specified for the beam—ROD, TUBE, BAR, BOX,
and I —via use of the SECTIONcommand line. Each section requires a specific set of
command lines for a complete geometric description. The command lines related to
section geometry are WIDTH, HEIGHT, WALL THICKNESS, and FLANGE THICKNESS.
We present a summary of the geometric parameter command lines required for each
section as a quick reference.

• If the section is ROD, the following geometry command lines are required:

WIDTH = <real>section_width
HEIGHT = <real>section_width

• If the section is TUBE, the following geometry command lines are required:

WIDTH = <real>section_width
HEIGHT = <real>section_width
WALL THICKNESS = <real>wall_thickness

• If the section is BAR, the following geometry command lines are required:

WIDTH = <real>section_width
HEIGHT = <real>section_width

• If the section is BOX, the following geometry command lines are required:

157

WIDTH = <real>section_width
HEIGHT = <real>section_width
WALL THICKNESS = <real>wall_thickness

• If the section is I , the following geometry command lines are required:

WIDTH = <real>section_width
HEIGHT = <real>section_width
WALL THICKNESS = <real>wall_thickness
FLANGE THICKNESS = <real>flange_thickness

All of the sections require the T AXIS command line. The REFERENCE AXISand
OFFSET AXIScommand lines are optional.

Before presenting details about the various sections, we will discuss the local co-
ordinate system for the beam. (The geometric properties are related to this local
coordinate system.) For the beam, it is necessary to specify a local Cartesian coordi-
nate system, which will be designated as r, s, and t. The r-axis lies along the length
of the beam and passes through the centroid of the beam. The t-axis is specified
by the user. The initial direction of the t-axis is specified by a vector in the global
coordinate system. If we want the initial position of the t-axis to be parallel to the
global Z-axis, then we would use the command line

T AXIS = 0 0 1 .

If we wanted the initial position of the t-axis to be parallel to a vector (0.5, 0.8660,
0) in the global coordinate system, then we would use the command line

T AXIS = 0.5 0.8660 0.0 ,

The t-axis will change position as the beam deforms (rotates about the r-axis).
This change in position is tracked internally by the computations for the beam el-
ement. The s-axis is computed from the cross-product of the t- and r-axes. The
HEIGHT for the beam cross section is in the direction of the t-axis, and the WIDTHof
the beam cross section is in the direction of the s-axis.

Now that the local coordinate system for the beam has been defined, we can
describe the definition of each section.

• The RODsection is a solid elliptical section. The diameter along the height is
specified by the HEIGHT command line, and the diameter along the width is
specified by the WIDTHcommand line.

• The TUBE section is a hollow elliptical section. The diameter along the height
is specified by the HEIGHT command line, and the diameter along the width
is specified by the WIDTH command line. The wall thickness for the tube is
specified by the WALL THICKNESScommand line.

158

• The BAR section is a solid rectangular section. The height is specified by the
HEIGHT command line, and the width is specified by the WIDTHcommand line.

• The BOXsection is a hollow rectangular section. The height is specified by the
HEIGHT command line, and the width is specified by the WIDTHcommand line.
The wall thickness for the box is specified by the WALL THICKNESScommand
line.

• The I section is the standard I-section associated with a beam. The height of
the I-section is given by the HEIGHTcommand line, and the width of the flanges
is given by the WIDTHcommand line. The thickness of the vertical member is
given by the WALL THICKNESScommand line, and the thickness of the flanges
is given by the FLANGE THICKNESScommand line.

By default, the r-axis coincides with the geometric centerline of the beam. The
geometric centerline of the beam is defined by the location of the two nodes defining
the beam connectivity. It is possible to offset the local r-axis, s-axis, and t-axis from
the geometric centerline of the beam. To do this, one can use either the REFERENCE

AXIS command line or the OFFSET AXIScommand line, but not both.

The REFERENCE AXIScommand line has the options CENTER, TOP, RIGHT, BOT-

TOM, and LEFT. The CENTERoption is the default, which means that the r-axis coin-
cides with the geometric centerline of the beam. If the TOPoption is used, the r-axis
is moved in the direction of the original t-axis by a positive distance HEIGHT/2 from
the centroid so that it passes through the top of the beam section (top being defined
in the direction of the positive t-axis). If the RIGHT option is used, the r-axis is
moved in the direction of the original s-axis by a positive distance WIDTH/2 so that
it passes through the right side of the beam section (the section being viewed in the
direction of the negative r-axis). If the BOTTOMoption is used, the r-axis is moved in
the direction of the original t-axis by a distance HEIGHT/2 so that it passes through
the bottom of the beam section (bottom being defined in the direction of the negative
t-axis). If the LEFT option is used, the r-axis is moved in the direction of the original
s-axis by a negative distance WIDTH/2 so that it passes through the left side of the
beam section (the section being viewed in the direction of the negative r-axis). For
all options, the s-axis and the t-axis remain parallel to their original positions before
the translation of the r-axis.

The OFFSET AXIS command line allows the user to offset the local coordinate
system from the geometric centerline by an arbitrary distance. The first parameter
on the command line moves the r-axis a distance s_offset from the centroid of the
section along the original s-axis. The second parameter on the command line moves
the r-axis a distance t_offset from the centroid of the section along the original
t-axis. The s-axis and t-axis remain parallel to their original positions before the
translation of the r-axis.

159

Strains and stresses are computed at the midpoint of the beam. The integration
of the stresses over the cross section at the midpoint is used to compute the internal
forces in the beam. Each beam section has its own integration scheme. The integra-
tion scheme for each of the sections is shown in Figure 5.5 through Figure 5.7. The
numbers in these figures show the relative location of the integration points in regard
to the centroid of the section and the s-axis and the t-axis.

Figure 5.5: Integration points for rod and tube.

At each integration point, there is an axial strain (with a corresponding axial
stress) and an in-plane (in the plane of the cross section) shear strain (with a corre-
sponding shear stress). The user can output this stress and strain information by using
the results output commands described in Chapter 8. The registered variable that
will let users access the strain at the beam integration points is beam_strain_inc ,
and the registered variable that will let users access the stress at the beam integration
points is beam_stress . If the user requests output for the beam strain, 32 values
are given for the strain. The first value (designated in the output as 01) is the axial
strain at the first integration point, the second value (designated in the output as 02)
is the shear strain at the first integration point, etc. The odd values for the strain
output (01, 03, 05, etc.) are the axial strains at the integration points. The even
values of the strain output (02, 04, 06, etc.) are the shear strains at the integration
points. For the case where there are only nine integration points (the rod), only the

160

Figure 5.6: Integration points for bar and box.

first 18 values for strain have any meaning for the section (the values 19 through 32
are zero). For the I-section, only the first 30 of the strain values have meaning since
this section only has 15 integration points. For all other sections, all 32 values have
meaning. A pattern similar to that for the strains holds for stresses.

As as alternative for the stress output, you may use the registered variables
beam_stress_axial and beam_stress_shear . The variable beam_stress_axial

contains only the axial stresses. The first value associated with beam_stress_axial

(designated as 01) corresponds to the axial stress at integration point 1, the second
value associated with beam_stress_axial (designated as 02) corresponds to the
axial stress at integration point 2, and so on. The variable beam_stress_shear

contains only shear stresses. The correlation between numbering the values for
beam_stress_shear (01, 02, . . .) and the integration points is the same as
for beam_stress_axial .

It is possible to access mean values for the internal forces at the midpoint of
the beam. The axial force at the midpoint of the beam is obtained by referenc-
ing the registered variable beam_axial_force . The transverse forces at the mid-
point of the beam in the s-direction and the t-direction are obtained by referencing
beam_transverse_force_s and beam_transverse_force_t , respectively. The

161

Figure 5.7: Integration points for I-section.

torsion at the midpoint of the beam (the moment about the r-axis), is obtained
by referencing beam_moment_r . The moments about the s-axis and the t-axis are
obtained by referencing beam_moment_s and beam_moment_t , respectively.

5.2.5 Truss Section

BEGIN TRUSS SECTION <string>truss_section_name
AREA = <real>cross_sectional_area
INITIAL LOAD = <real>initial_load
PERIOD = <real>period

END [TRUSS SECTION <string>truss_section_name]

The TRUSS SECTIONcommand block is used to specify the properties for a truss
element. If this command block is referenced in an element block of three-dimensional,
two-node elements, the elements in the block will be treated as truss elements. The
parameter, truss_section_name , is user-defined and is referenced by a SECTION

command line in a PARAMETERS FOR BLOCKcommand block.

162

The cross-sectional area for truss elements is specified by the AREAcommand line.
The value cross_sectional_area is the cross-sectional area of the truss members
in the element block.

The truss can be given some initial load over some given time period. The mag-
nitude of the load is specified by the INITIAL LOAD command line. If the load is
compressive, the sign on the value initial_load should be negative; if the load is
tensile, the sign on the value initial value should be positive. The period is specified
by the PERIODcommand line.

The initial load is applied over some period by specifying the axial strain rate in
the truss, ε̇, over some period p. At some given time t, the strain rate is

ε̇ =
ap

2
[1 − cos (πt/p)] , (5.1)

where

a =
2Fi

EAp
. (5.2)

In Equation (5.2), Fi is the initial load, E is the modulus of elasticity for the
truss, and A is the area of the truss. Over the period p, the total strain increment
generates the desired initial load in the truss.

During the initial load period, the time increments should be reasonably small so
that the integration of ε̇ over the period is accurate. The period should be set long
enough so that, if the model were held in a steady state after time p, there will be
only a small amount of oscillation in the load in the truss.

When doing an analysis, you may not want to activate certain boundary condi-
tions until after the prestressing is done. During the prestressing, time-independent
boundary conditions such as fixed displacement will most likely be turned on. Time-
dependent boundary conditions such as prescribed acceleration or prescribed force
will most likely be activated after the prestressing is complete.

5.2.6 Damper Section

BEGIN DAMPER SECTION <string>damper_section_name
AREA = <real>damper_cross_sectional_area

END [DAMPER SECTION <string>damper_section_name]

The DAMPER SECTIONcommand block is used to specify the properties for a
damper element. If this command block is referenced in an element block of three-
dimensional, two-node elements, the elements in the block will be treated as damper

163

elements. The parameter, damper_section_name , is user-defined and is referenced
by a SECTIONcommand line in a PARAMETERS FOR BLOCKcommand block.

The cross-sectional area for damper elements is specified by the DAMPER AREA

command line. The value damper_cross_sectional_area is the cross-sectional
area of the dampers in the element block.

The damper area is used only to generate mass associated with the damper el-
ement. The mass is the density for the damper element multiplied by the original
volume of the element (original length multiplied by the damper area).

The force generated by the damper element depends on the relative velocity along
the current direction vector for the damper element. If n is a unit normal pointing
in the direction from node 1 to node 2, if v1 and v2 are the velocity vectors at nodes
1 and 2, respectively, then the force generated by the damper element is

Fd = ηn · (v2 − v1) (5.3)

where η is the damping parameter. Currently, the damping parameter must be speci-
fied by using an elastic material model for the damper element. The value for Young’s
modulus in the elastic material model is used for the damping parameter η.

5.2.7 Point Mass Section

BEGIN POINT MASS SECTION <string>pointmass_section_name
VOLUME = <real>volume

END [POINT MASS SECTION <string>pointmass_section_name]

A point mass element is simply a mass at a node, which can be a convenient
modeling tool in certain instances. The user can create an element block with one
or more point masses. Each point mass must be associated with an existing node.
A point mass will have its mass added to the mass at the node. (Other mass at the
node will be derived from mass due to elements attached to the node.) The mass at
a node due to a point mass is treated like any other mass at a node derived from an
element. The mass due to point mass will be included in body force calculations and
kinetic energy calculations, for example.

Point masses are a convenient modeling tool to be used in conjunction with rigid
bodies. An element block including one or more point masses can be included like
any other element block in a collection of element blocks used to define a rigid body.
The element block of point masses can be used to adjust the total mass and inertia
properties for the rigid body. (The point mass element does not have to be used only
in conjunction with rigid bodies. One can place a point mass at a node associated
with solid or structural elements.)

164

If you have an element block in which the connectivity for each element is only
one node, then you may use this element block as a collection of point masses. This
command block would have the form:

BEGIN PARAMETERS FOR BLOCK <string>block_id
MATERIAL = <string>material_name
SOLID MECHANICS USE MODEL <string> material_model_name
SECTION = <string>point_mass_section_name

END PARAMETERS FOR BLOCK <string>block_id

The element block associated with our point mass must reference a material com-
mand block just like any other element block. The product of the density specified
in the material block and the volume specified in the section block (for the point
mass) will be taken as the mass of each point mass in the element block. Suppose,
for example, you have the following PARAMETERS FOR BLOCKcommand block for an
element block with point masses:

BEGIN PARAMETERS FOR BLOCK block_105
MATERIAL = mass_for_pointmass
SOLID MECHANICS USE MODEL elastic
SECTION = pmass_1

END PARAMETERS FOR BLOCK block_105

The above element block for the point mass elements references the material
mass_for_pointmass . Let the density associated with this material be 0.0153. Let
the volume parameter associated with the section block pmass_1 be 4.0. Each point
mass in the element block will have a mass of 4.0 × 0.0153 = 0.0612.

If you have access to the SEACAS codes from Sandia National Laboratories,
you may use the codes in this library to generate element blocks with point mass
elements. See Reference 10 for an overview of the SEACAS codes. By using various
SEACAS codes, you can easily generate an element block with one or more point
masses. For each point mass in the element block, you should create an eight-node
hexahedral element that is centered at the point where you want the point mass
located. The hexahedron can have arbitrary dimensions, but it is best to work with
a unit cube. Suppose you wanted a point mass at (13.5, 27.0, 3.1415). You could
create a unit hexahedron (1 by 1 by 1) centered on (13.5, 27.0, 3.1415). The SEACAS
program SPHGEN3D will convert the hexahedron to a zero-dimensional element in
three-dimensional space located at the center of the hexahedron. For our specific
example, the program SPHGEN3D would create a zero-dimensional element, basically
an element consisting of a single node, at (13.5, 27.0, 3.1415).

165

5.2.8 SPH Section

BEGIN SPH SECTION <string>sph_section_name
RADIUS MESH VARIABLE = <string>var_name|<string>attribute|

SPHERE INITIAL RADIUS = <real>rad
RADIUS MESH VARIABLE TIME STEP = <string>time
PROBLEM DIMENSION = <integer>1|2|3(3)
CONSTANT SPHERE RADIUS

END [SPH SECTION <string>sph_section_name]

SPH (smoothed particle hydrodynamics) is useful for modeling fluids or for mod-
eling materials that undergo extremely large distortions. One must be careful when
using SPH for modeling. SPH tends to exhibit both accuracy and stability problems,
particularly in tension. An SPH particle interacts with other nearest-neighbor SPH
particles based on radius properties of all the elements involved; SPH particles react
with other elements, such as tetrahedra, hexahedra, and shells, through contact. You
should consult Reference regarding the theoretical background for SPH.

All of the particles contained in an SPH element block must be given some initial
radius. There are two options for setting the initial radius for each particle. First,
each particle can be given the same radius. To set the radius for each particle in an
element block to the same value, use the SPHERE INITIAL RADIUS command line.
The parameter rad on this command line sets the radius for all the SPH particles in
the element block. Second, the radius for each particle can be read from a mesh file.
The radii can be read from a variable on the mesh file as the attributes associated
with the element block. If you want to read some variable from the mesh file for the
radii, then you would use

RADIUS MESH VARIABLE = sph_radius ,

where sph_radius is the variable name on the mesh file. If you want to use the
variable associated with a specific time on the mesh file, you should use the RADIUS

MESH VARIABLE TIME STEPcommand line to select the specific time. If you want to
read the attributes associated with the particles, then you should insert the command
line

RADIUS MESH VARIABLE = attribute

(as shown) into the SPH SECTIONcommand block. Pronto3d [1] only offers the at-
tribute option. To compare Presto and Pronto3d results, you should use the attribute
option.

Once SPH determines the initial radius (through either the SPHERE INITIAL

RADIUS command line or the RADIUS MESH VARIABLEcommand line), it will recal-
culate the optimal radius for the particle. The initial radii must be such that each
sphere will overlap at least a few other SPH elements. If the initial radii are too

166

small, the optimal radius calculation will fail, and the particles will not interact. If
the initial radii are too large, many interactions may need to be checked, and the
initialization calculation for the optimal radius step may take a long time.

After the radii are initialized, you may determine whether the radii are to remain
constant or are to change throughout the analysis. The CONSTANT SPHERE RADIUS

command line is an optional command line that prevents the sphere radius from
changing over the course of the calculation. By default, the sphere radii will expand
or contact based on the changing density in the elements to satisfy the relation that
element mass (a constant) equals element volume times element density. If the CON-

STANT SPHERE RADIUScommand line appears, then the radii for all particles will
remain constant.

Your analysis problem using SPH may be inherently one-, two-, or three-
dimensional. You may indicate whether or not there is some inherent dimension-
ality in the problem by using the PROBLEM DIMENSIONcommand line. The pos-
sible value for this command line is 1 (one-dimensional), 2 (two-dimensional), or 3
(three-dimensional). The default value is 3 for three-dimensional. The internal SPH
calculations are modified depending on the value set on the PROBLEM DIMENSION

command line. If, for example, your problem is inherently two-dimensional in nature,
you may get more accurate results by specifying the dimension for your problem as
2 (as opposed to 1 or 3).

Utility Commands. In addition to the SPH-related command lines just described
(which appear in the SPH SECTIONcommand block) there are two other SPH-related
command lines:

SPH SYMMETRY PLANE <string>+X|+Y|+Z|-X|-Y|-Z
<real>position_on_axis(0.0)

SPH DECOUPLE STRAINS: <string>material1 <string>material2

If either one or both of these command lines are used, they should be placed
directly into the domain scope. (All other SPH-related command lines must be nested
within the SPH SECTIONcommand block; the SPH SECTIONcommand block, like all
other section command blocks, is in the domain scope.) The symmetry conditions
are applied to all SPH element blocks.

The SPH SYMMETRY PLANEcommand line may be used to reduce model sizes by
specifying symmetry planes and modeling only a portion of the model. Due to the
nonlocal nature of SPH element integration, symmetry planes cannot be defined with
boundary conditions alone; these planes must be explicitly defined. A plane is defined
by an outward normal vector aligned with one of the axes (+X, +Y, +Z, -X , -Y , -Z) and
some point on the axis, which represents a point in the plane. Suppose for example,
the outward normal to the plane of symmetry is in the negative Y -direction (-Y) and

167

the plane of symmetry passes through the y-axis at y = +2.56. Then the definition
for the symmetry plane would be

SPH SYMMETRY PLANE -Y +2.56.

The SPH DECOUPLE STRAINScommand line prevents two dissimilar materials
from directly interacting. Generally, the material properties at a particle are the
average of the material properties from nearby particles. If particles with very dis-
similar material properties are interacting, this interaction can create problems. The
SPH DECOUPLE STRAINScommand line ensures that particles with very dissimilar
material properties do not directly interact by material-property averaging, but in-
stead just interact with a contact-like interaction. The two material types that are
not to interact are specified by the parameters material1 and material2 . These
parameters will appear as material names on a PROPERTY SPECIFICATION FOR MA-

TERIAL command block.

Display. For purposes of visualizing the element stresses, it may be necessary to copy
these element variables into nodal variables. This can easily be done by defining a
USER VARIABLEcommand block (Section 9.2.4) in conjunction with a USER OUTPUT

command block (Section 8.1.2). Once the nodal variable is defined, it can be output in
a RESULTS OUTPUTcommand block (Section 8.1.1). An example is provided below.
The SPHelement blocks for the problem are element blocks 20, 21, and 22. All other
element blocks are non-SPH elements.

- In the domain scope:

BEGIN USER VARIABLE nodal_stress
TYPE = NODE SYM_TENSOR LENGTH = 1

END

- In the region scope:

BEGIN USER OUTPUT
BLOCK = block_20 block_21 block_22
COPY ELEMENT VARIABLE rotated_stress TO NODAL VARIABLE

nodal_stress
END

BEGIN RESULTS OUTPUT output_presto
DATABASE NAME = sph.e
DATABASE TYPE = exodusII
AT TIME 0.0 INCREMENT = 1.0e-04
NODAL VARIABLES = nodal_stress

END RESULTS OUTPUT output_presto

168

5.3 Element-like Functionality

This section describes functionality in Presto that resembles the previously described
elements to some extent. This functionality is not really implemented using the
element structure in Presto, however. The functionality described in this section—the
torsional spring mechanism and rigid bodies—is specified through command blocks
that appear in a Presto region.

5.3.1 Torsional Spring Mechanism

BEGIN TORSIONAL SPRING MECHANISM <string>spring_name
NODE SETS = <string>nodelist_int1 <string>nodelist_int2

<string>nodelist_int3 <string>nodelist_int4
TORSIONAL STIFFNESS = <real>stiffness
INITIAL TORQUE = <real>init_load
PERIOD = <real>time_period
ACTIVE PERIODS = <string list>period_names

END [TORSIONAL SPRING MECHANISM <string>spring_name]

This feature was originally implemented to model a torsional spring wrapped
around a fixed pin. One end of the pin is fixed to a base, and one end of the spring
is attached to this base. There is an arm on the other end of the pin, and this arm
can rotate around the pin. The second end of the spring is attached to this arm. The
spring resists motion of the arm. Any similar mechanism can be modeled with the
torsional spring. Although the torsional spring is element-like in its overall behavior,
its implementation within the code structure is different from the other elements
described in Chapter 5. The torsional spring does not make use of a section, and
its command block (TORSIONAL SPRING MECHANISM) should appear in the region
scope. A schematic for the torsional spring mechanism is shown in Figure 5.8.

The mechanism consists of two nodes that represent the axis of a torsional spring.
Node 0 is at the base of the torsional spring, and node 1 is at the top of the torsional
spring. A third node, reference node 0, defines an arm extending from the axis of
the torsional spring to some attachment point near the base of the spring. A fourth
node, reference node 1, defines an arm extending from the axis of the torsional spring
to some attachment point near the top of the spring. The rotation of the two arms
relative to each other as measured along the axis of the torsional spring represents
the angular deformation of the spring and determines the moment in the spring. The
moment in the spring is translated into external forces at the two attachment points,
reference node 0 and reference node 1.

In the TORSIONAL SPRING MECHANISMcommand block, the string spring_name

is defined by the user. Via the NODE SETScommand line, the mechanism is de-

169

Figure 5.8: Schematic for torsional spring.

fined with four node sets, and each node set has a single node. The first set
(nodelist_int1) defines node 0 in Figure 5.8; node 0 is the origin of a lo-
cal coordinate system for the torsional spring mechanism. The second node set
(nodelist_int2) defines node 1 in Figure 5.8; node 0 and node 1 define the axis of
the torsional spring mechanism. The third node set (nodelist_int3) defines refer-
ence node 0; reference node 0 is an attachment point for the spring associated with
node 0. The fourth node set (node_int4) defines reference node 1; reference node 1
is an attachment point for the spring associated with node 1.

The nodes defining the spring mechanism are used to set up a local coordinate
system (x′, y′, z′). The (z′-axis runs along the axis of the spring from node 0 to node
1. The x′-axis extends from the axis of the spring and passes through reference node
0. If we are looking down the axis of the spring in the negative z′-direction, a positive
rotation of the arm defined by node 1 and reference node 1 is in the counterclockwise
direction. This is shown in Figure 5.9.

The torque, T , in the spring is simply

T = Kθ, (5.4)

170

Figure 5.9: Positive direction of rotation for torsional spring.

where K is the torsional stiffness and θ is the rotation of the top arm relative to the
bottom arm as measured along the axis of the spring. In the TORSIONAL STIFFNESS

command line, K is specified by the real value stiffness .

The torque in the spring is converted to external forces with components in the
global coordinate system XYZ. These external forces depend on the torque and the
length of the spring arms. The length of the spring arms is automatically calculated.

You can apply an initial torque with the real value init_load in the INITIAL

TORQUEcommand line. The maximum value of the torque is reached in the time
specified by the real value time_period in the PERIODcommand line.

The initial torque is applied over some period by specifying the angular rate of
deformation in the torsional spring, θ̇, over some period p. At some given time t, the
angular rate of deformation is

θ̇ =
ap

2
[1 − cos (πt/p)] , (5.5)

where

171

a =
2Ti

Kp
. (5.6)

In Equation (5.6), Ti is the initial torque. Over the period p, the total strain
increment generates the desired initial load in the truss.

During the initial load period, the time increments should be reasonably small so
that the integration of θ̇ over the period is accurate. The period should be set long
enough so that, if the model were held in a steady state after time p, there will be
only a small amount of oscillation in the load in the torsional spring.

When doing an analysis, you may not want to activate certain boundary condi-
tions until after the prestressing is done. During the prestressing, time-independent
boundary conditions such as fixed displacement will most likely be turned on. Time-
dependent boundary conditions such as prescribed acceleration or prescribed force
will most likely be activated after the prestressing is complete.

You can output the torque in the spring, the total rotation, and the last angle
between the arms. The name specified on the command block is used to construct
parameters for the mechanism. Suppose the input line is

begin torsional spring mechanism lower_spring .

where lower_spring is a user-specified name. The code will automatically gener-
ate the parameters TS_lower_spring_MOMENT , TS_lower_spring_ROTATION , and
TS_lower_spring_LAST_ANGLE . These variables can then be output in a results file.
For example, one could use

global variables = TS_lower_spring_MOMENT as ts_lspring_m
global variables = TS_lower_spring_ROTATION as ts_lspring_r
global variables = TS_lower_spring_LAST_ANGLE as

ts_lspring_la

in the RESULTS OUTPUTcommand block. If several torsional spring mechanisms
appear in one model, you can generate unique names to keep track of the parameters
associated with each spring. See Section 8.1 for further information about results
output.

The ACTIVE PERIODScommand line determines when the torsional spring is ac-
tive. See Section 2.5 for more information about this command line. Although the
active periods option is available in the TORSIONAL SPRINGcommand block, use of
this option to turn the torsional spring off and on repeatedly is not recommended.
Turning the torsional spring off and on repeatedly may lead to erroneous behavior in
the spring model.

172

5.3.2 Rigid Body

BEGIN RIGID BODY <string>rb_name
POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx
MAGNITUDE = <real>magnitude_of_velocity
DIRECTION = <string>direction_definition
ANGULAR VELOCITY = <real>omega
CYLINDRICAL AXIS = <string>axis_definition

END [RIGID BODY <string>rb_name]

A rigid body can consist of any combination of elements—solid elements, struc-
tural elements, and point masses—except SPH elements. All of the nodes associated
with a rigid body maintain their same relative position to each other as determined
at time 0 when there is no deformation of the body. This means that the elements
associated with the rigid body do not deform over time. These elements are free to
move (rotate and translate) through space, but they cannot deform. Element blocks
that are part of a rigid body can adjoin deformable element blocks. For any rigid
body consisting of several element blocks, the element blocks defining the rigid body
do not have to be contiguous. You may have more than one rigid body in a model.

If you construct a model where all of the element blocks compose a rigid body, you
will need to set an initial time in the TIME CONTROLcommand block (Section 3.1.1).
Include the line

INITIAL TIME STEP = 1.0e-6 .

If an element block is declared to be a part of a rigid body, the internal force
calculations are not called for the elements in that block. Part of the internal force
calculation for an element is an element time-step estimate. If all elements are in a
rigid body, the element time-step computations are not performed, and there is no
estimate for a global time step. You must supply an initial time step only if all the
elements are part of a rigid body. If some elements are in a rigid body, but others are
not, then you will automatically obtain a valid time step estimate for the problem. If
you must set an initial time step for your problem because all elements are in a rigid
body, then you should not override the default value of 1.0 for the time step scale
factor (Section 3.1.1). The time step you set for this particular case (all elements in
a rigid body) must remain constant. The value of 1.0 × 10−6 should work well for
most problems. Do not use an initial time step larger than 1.0 × 10−6 as this could
cause loss of accuracy in the solution of the problem.

To construct the rigid body, you will need to use the above command block, which
appears in the region scope, plus the RIGID BODYcommand line that appears in the
PARAMETERS FOR BLOCKcommand block for an element block. Suppose, for exam-
ple, rigidbody_1 consists of element blocks 100, 110, and 280. The PARAMETERS

173

FOR BLOCKcommand blocks for element blocks 100, 110, and 280 must all contain
the command line

RIGID BODY = rigidbody_1 .

Once you have declared an element block or some collection of element blocks to
be a rigid body and created a rigid body name, that rigid body name must appear as
the name in a RIGID BODYcommand block. In our example, we must have a RIGID

BODYcommand block with the value for rb_name set to rigidbody_1 . Therefore,
at a minimum, you must have a command block in the region with the form

BEGIN RIGID BODY rigidbody_1

END RIGID BODY rigidbody_1

for our example.

The RIGID BODYcommand block has several different command lines, composing
essentially three groups of commands. One group consists of the POINT INERTIA

command line, a second group consists of the paired MAGNITUDEand DIRECTION

command lines, and a third group consists of the paired ANGULAR VELOCITYand
CYLINDRICAL AXIS command lines. Each of the three groups is optional. You can
combine any of these groups in the command block, or you could have a command
block that contains none of the command lines, whereupon you would only supply
the value for rb_name in the block.

Input to the POINT INERTIA command line consists of six real numbers that
define the moments (Ixx , Iyy , Izz) and products (Ixy , Iyx , Izx) of the inertia
referenced to the center of mass of the rigid body. For the rigid body, the center of
mass is first calculated from the element masses for all elements that define the rigid
body. Moments and products of inertia are then computed for the rigid body based
on the location of the center of mass of the rigid body and the element masses for all
of the elements associated with the rigid body. The moments and products of inertia
specified in the POINT INERTIA command line are then added to the products and
moments computed from the elements masses. This modified inertia tensor (rather
than the inertia tensor based solely on element mass) is then used to calculate the
motion of the rigid body.

If the rigid body has an initial velocity in some direction, this should be specified
with the MAGNITUDEand DIRECTION command lines. The MAGNITUDEcommand
line gives the magnitude of the initial velocity applied to the center of mass of the
rigid body and the DIRECTION command line gives a defined direction for the initial
velocity for the center of mass. All of the blocks associated with the rigid body should
be given the same initial velocity by using an INITIAL VELOCITY command block.
(The information in the RIGID BODYcommand block is only applied to the center of
mass of the rigid body.)

174

If the rigid body has an initial rotation about some axis, this should be specified
with the ANGULAR VELOCITYand CYLINDRICAL AXIS command lines. The ANGULAR

VELOCITY command line gives the initial velocity of the center of mass of the rigid
body due to an angular velocity about some defined axis given on the CYLINDRICAL

AXIS command line. All of the blocks associated with the rigid body should be given
the same initial angular velocity by using an INITIAL VELOCITY command block.
(The information in the RIGID BODYcommand block is only applied to the center of
mass of the rigid body.)

You can output the acceleration, velocity, and displacement for the center of mass
of the rigid body. The name assigned to a rigid body will be used to construct
registered variable names that give the above quantities. This lets you identify the
output associated with a rigid body based on the name you assigned for the rigid
body.

Immediately before the results file is written, the accelerations for nodes associated
with a rigid body are updated to reflect the accelerations due to the rigid-body
constraints. This ensures that the accelerations sent to the results output are correct
for a given time.

In summary, if you use a rigid body in an analysis, you will do one or more of the
following steps:

- Create a rigid body using one or more element blocks (except SPH element
blocks). A RIGID BODY command line must appear in the PARAMETERS FOR

BLOCKcommand block for any element block associated with a rigid body.

- Include point mass element blocks with the rigid body if appropriate. A RIGID

BODYcommand line must appear in the PARAMETERS FOR BLOCKcommand
block for any point mass element block associated with a rigid body.

- Include a RIGID BODYcommand block in the region.

- Associate an initial velocity or initial rotation about an axis with the rigid body.
If any of the blocks associated with a rigid body have been given an initial
velocity or initial rotation, the rigid body must have the same specification for
the initial velocity or initial rotation.

- Output center-of-mass information for the rigid body.

The above steps involve a number of different command blocks. To demonstrate
how to fully implement a rigid body, we will provide a specific example that exercises
the various options available to a user.

Let us assume that we want to create a rigid body named part_a consisting of
three element blocks. Two of the element blocks, element block 100 and element

175

block 535, are eight-node hexahedra; one of the element blocks, element block 600,
consists of only point masses. The RIGID BODY SECTIONcommand block and the
element blocks we want to associate with the rigid body will be as follows:

begin parameters for block block_100
material steel
solid mechanics model use elastic
rigid body = part_a

end
begin parameters for block block_535

material = aluminum
solid mechanics model use elastic
rigid body = part_a

end
begin parameters for block block_600

material = mass_for_pointmass
solid mechanics model use elastic
rigid body = part_a

end

To adjust the moments and products of inertia computed by Presto for the rigid
body part_a , we have to included the POINT INERTIA command line in the above
section command block for the rigid body.

Now that we have defined the rigid body, we will examine how to specify an initial
angular velocity about an axis for the rigid body and how to output information at
the center of mass for the rigid body. The center of mass of the rigid body is some
computed point associated with the body. It may or may not be at or near any node
in the body.

Suppose we want to have the rigid body spin at 600 radians/sec about an axis
parallel to the x-axis and passing through a point at (0, 10, 20). We would define
this axis using the following set of DEFINE command lines:

define direction parallel_to_x with vector 2.0 0.0 0.0
define point off_axis with coordinates 0.0 10.0 20.0
define axis body_axis with point off_axis
direction parallel to x

The blocks in the rigid body will be given an initial angular velocity of 600 radi-
ans/sec about the above axis if we use the following command block for initial angular
velocity:

begin initial velocity

176

block = block_100 block_535 block_600
cylindrical axis = body_axis
angular velocity = 600

end initial velocity

The RIGID BODYcommand block must be given the same specification for an ini-
tial angular velocity. The angular velocity specification in the RIGID BODYcommand
block is applied to the center of mass of the rigid body to make sure its initial motion
is consistent with the initial motion of all the nodes in the rigid body as defined by
the BEGIN INITIAL VELOCITY command block. Our RIGID BODYcommand block
(in the region) will appear as follows:

begin rigid body part_a
cylindrical axis = body_axis
angular velocity = 600

end rigid body part_a

Now suppose that we want the acceleration, velocity, and displacement output
at the center of mass for the rigid body that we have named part_a . Presto au-
tomatically generates registered variables giving this information. The registered
variables for acceleration, velocity, and displacement are RB_section_name_ACCL ,
RB_section_name_VEL , and RB_section_name_DISPL , respectively. In the pre-
ceding sentence, section_name will be the name you supply for the rigid body in
the RIGID BODY SECTIONcommand block. The registered variables can be listed as
output in a RESULTS OUTPUTcommand block. For our specific example, we would
have the following:

begin results output out_presto
database name = model_with_rb.e
at time 0.0 increment = 5.0e-5
.
.
global variables = RB_part_a_ACCL as part_a_accl
global variables = RB_part_a_VEL as part_a_vel
global variables = RB_part_a_DISPL as part_a_displ

end results output out_presto

If you have more than one rigid body in your model, you will be able to keep track
of the center-of-mass information based on the section name you give to each rigid
body.

177

5.4 Mass Property Calculations

BEGIN MASS PROPERTIES
{block set commands }
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names
#
structure command
STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Presto automatically gives mass property information for the total model, which
consists of all of the element blocks. (The mass for the total model, for example,
is the total mass of all the element blocks.) Presto also automatically gives mass
property information for each element block.

In addition to the mass property information that is generated, Presto gives you
the option of defining a structure that represents some combination of element blocks
and then calculating the mass properties for this particular structure. If you wish to
define a structure that is a combination of some group of element blocks, you must
use the MASS PROPERTIEScommand block. This command block appears in the
region scope.

For the total model, each element block, and any user defined structure, Presto
reports the total mass, the center of mass in the global coordinate system XY Z, the
moments of inertia (Ixx, Iyy, and Izz), and the products of inertia (Ixy, Iyz, Izx). The
moments and products of inertia are in the global coordinate system.

The MASS PROPERTIEScommand block contains two groups of commands—block
set and structure. Each of these groups is basically independent of the other. Follow-
ing are descriptions of the two command groups.

5.4.1 Block Set Commands

The {block set commands } portion of the MASS PROPERTIEScommand block de-
fines a set of blocks for which mass properties are being requested and can include
some combination of the following command lines:

BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for
constructing a set of blocks. See Section 5.1 for more information about the use of

178

these command lines for creating a set of blocks used by the command block. There
must be at least one BLOCKor INCLUDE ALL BLOCKScommand line in the command
block.

The REMOVE BLOCKcommand line allows you to delete blocks from the set speci-
fied in the BLOCKand/or INCLUDE ALL BLOCKScommand line(s) through the string
list block_names . Typically, you will use the REMOVE BLOCKcommand line with the
INCLUDE ALL BLOCKScommand line. If you have the case where you want to include
all but a few of the element blocks, a combination of the REMOVE BLOCKcommand
line and INCLUDE ALL BLOCKSshould minimize input information.

Note that if only one element block (block_id1) is specified on the BLOCKcom-
mand line, only the mass properties for that block will be calculated. If several element
blocks are specified on the BLOCKcommand line, then that collection of blocks will be
treated as one entity, and the mass properties for that single entity will be calculated.
If, for example, two element blocks are listed (block_id1 and block_id2), the total
mass for the two element blocks will be reported as the total mass property.

5.4.2 Structure Command

The output for the mass properties will be identified by the command line

STRUCTURE NAME =<string>structure_name ,

where the string structure_name is a user-defined name for the structure.

179

5.5 Element Death

BEGIN ELEMENT DEATH <string>death_name
{block set commands }
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names
#
criteria commands
CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

CRITERION IS ELEMENT VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

CRITERION IS GLOBAL VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

ELEMENT SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
MATERIAL CRITERION = <string list>material_names
#
evaluation commands
CHECK STEP INTERVAL = <integer>num_steps
CHECK TIME INTERVAL = <real>delta_t
DEATH START TIME = <real>time
#
miscellaneous option commands
DEATH STEPS = <integer>death_steps(1)
FORCE VALID ACME CONNECTIVITY

END [ELEMENT DEATH <string>death_name]

The ELEMENT DEATHcommand block is used to remove elements from an analysis.
For example, the command block can be used to remove elements that have fractured,
that are no longer important to the analysis results, or that are nearing inversion.
The name of the command block, death_name , is user-defined and can be referenced
in other commands to update boundary or contact conditions based on the death of
elements creating new exposed surfaces.

When an element dies, it is removed permanently. Any number of ELEMENT

DEATHcommand blocks may exist within a region. However, a particular block of
elements may be associated with at most one element death instance. If all of the
elements in a region are killed, the analysis will terminate. If all of the elements
attached to a node are killed, the mass for the node and all associated nodal quantities

180

will be set to zero. If an element is killed, but an attached element is not, the mass
of the killed element will remain at the nodes shared with the “living” element.

The ELEMENT DEATHcommand block contains four groups of commands—block
set, criteria, evaluation, and miscellaneous. The command block must contain com-
mands from the block set and criteria groups. Command lines from the evaluation
and miscellaneous groups are optional. Following are descriptions of the different
command groups, an example of using the ELEMENT DEATHcommand block, and
some concluding remarks related to element death visualization.

5.5.1 Block Set Commands

BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names

The {block set commands } portion of the ELEMENT DEATHcommand block
defines a set of blocks for selecting the elements to be referenced. These command
lines, taken collectively, constitute a set of Boolean operators for constructing a set
of blocks, as described in Section 5.1.

Element death must apply to a group of elements. There are two commands
for selecting the elements to be referenced: BLOCKand INCLUDE ALL BLOCKS. In
the BLOCK command line, you can list a series of blocks through the string list
block_names . This command line may also be repeated multiple times. The IN-

CLUDE ALL BLOCKScommand line adds all of the element blocks present in the region
to the current element death instance. There must be at least one BLOCKor INCLUDE

ALL BLOCKScommand line in the ELEMENT DEATHcommand block.

The REMOVE BLOCKcommand line allows you to delete blocks from the set speci-
fied in the BLOCKand/or INCLUDE ALL BLOCKScommand line(s) through the string
list block_names . Typically, you will use the REMOVE BLOCKcommand line with the
INCLUDE ALL BLOCKScommand line. If you have the case where you want to include
all but a few of the element blocks, a combination of the REMOVE BLOCKcommand
line and INCLUDE ALL BLOCKScommand line should minimize input information.

5.5.2 Criteria Commands

Any combination of criteria (CRITERION IS NODAL, CRITERION IS ELEMENT, CRI-

TERION IS GLOBAL, ELEMENT SUBROUTINE, MATERIAL CRITERION) can be speci-
fied within a single ELEMENT DEATHcommand block. However, only one user sub-
routine criterion may appear in a set of criteria command lines. For example, you
might want to use two element criteria, one for failure in tension and one for failure

181

in compression. As another example, you might want to use a nodal criterion and
a user subroutine criterion. For this second example, you are precluded from using
another subroutine criterion because you already have one.

5.5.2.1 Nodal Variable Death Criterion

CRITERION IS AVG|MAX|MIN NODAL VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

Any registered Presto nodal variable may be used by an element death criterion,
as specified in this nodal criterion command line. (You could also use a user-defined
variable; however, this case is not recommended. User subroutines should cover
situations where you might want to reference a user variable.)

The input parameters are described as follows:

- Nodal variables are present on the nodes of an element, and these nodal values
must be reduced to a single element value for use by the criterion. The avail-
able types of reduction are AVG, which takes the average of the nodal values;
MAX, which takes the maximum of the nodal values; and MIN, which takes the
minimum of the nodal values.

- The string var_name gives the name of the registered variable. See Section 8.4
for a listing of the registered variables.

- For variables with multiple components, a component number can be specified.
For example, a value of (2) for component_num refers to the y component of
displacement. See Table 8.2 in Chapter 8 for how to determine the component
number.

The specified component of the specified variable may be compared to a given
tolerance with one of five operators. The operator is specified with the appropriate
symbol for less than (<), less than or equal to (<=), equal to (=), greater than or
equal to (>=), or greater than (>). The given tolerance is specified with the real
value tolerance .

5.5.2.2 Element Variable Death Criterion

CRITERION IS ELEMENT VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

182

Any registered Presto element variable may be used by an element death criterion,
as specified in this element criterion command line. An element variable is present
on the element itself, so no reduction is required, which is why the first line in the
format of the above command line differs from that of the nodal criterion command
line in Section 5.5.2.1. The variable name, component number, and tolerance can be
specified in the same manner as defined for the nodal criterion command line. (You
could also use a user-defined variable as opposed to the registered variable; however,
this case is not recommended. User subroutines should cover situations where you
might want to reference a user variable.)

The input parameters are described as follows:

- The string var_name gives the name of the registered variable. See Section 8.4
for a listing of the registered variables.

- For variables with multiple components, a component number can be specified.
For example, a value of (2) for component_num refers to the yy component of
stress. See Table 8.2 in Chapter 8 for how to determine the component number.

The specified component of the specified variable may be compared to a given
tolerance with one of five operators. The operator is specified with the appropriate
symbol for less than (<), less than or equal to (<=), equal to (=), greater than or
equal to (>=), or greater than (>). The given tolerance is specified with the real
value tolerance .

5.5.2.3 Global Death Criterion

CRITERION IS GLOBAL VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

Any registered Presto global variable may be used as an element death criterion.
Once the global criterion is reached, all elements specified in the ELEMENT DEATH

command block are killed. The variable name, component number, and tolerance can
be specified in the same manner as defined for the nodal criterion command line.

The input parameters are described as follows:

- The string var_name gives the name of the registered variable. See Section 8.4
for a listing of the registered variables.

- For variables with multiple components, a component number can be specified.
Global variables are typically scalar quantities. If you encounter a global vari-
able with multiple components, consult with Table 8.2 in Chapter 8 for how to

183

determine the component number. The previous sections provide examples for
use of the component option.

The specified component of the specified variable may be compared to a given
tolerance with one of five operators. The operator is specified with the appropriate
symbol for less than (<), less than or equal to (<=), equal to (=), greater than or
equal to (>=), or greater than (>). The given tolerance is specified with the real
value tolerance .

5.5.2.4 Subroutine Death Criterion

ELEMENT SUBROUTINE = <string>subroutine_name

A death criterion can be specified via a user-defined subroutine (see Chapter 8).
The user-defined subroutine for element death must be an element subroutine signa-
ture (see Section 9.2.2). The element subroutine will return an output values array
and a flag array of one flag per element (see Table 9.2 in Chapter 9). The output
values array is ignored. Death is determined by the flag return value. For user-defined
subroutines, a flag return value of –1 indicates that the element should die. A flag
return value greater than or equal to 0 indicates that the element should remain alive.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Section 8.

5.5.2.5 Material Death Criterion

MATERIAL CRITERION = <string list>material_name

There are some material models that have a failure criterion. When this failure
criterion is satisfied within an element, the element has fractured or disintegrated.
The material models reduce the stress in these fractured or disintegrated elements to
zero. The MATERIAL CRITERIONcommand line can be used to remove these fractured
or disintegrated elements from an analysis. Removal of the fractured elements will
speed computations, enhance visualization, and prevent spurious inversion of these
elements that may stop the analysis.

The current supported material models for use by the MATERIAL CRITERION

command line are ELASTIC_FRACTURE(see Section 4.1.3), DUCTILE FRACTURE(see
Section 4.1.6), and ML_EP_FAIL (see Section 4.1.7).

184

Suppose you have created a material named failure_type1 using the elastic
fracture model to describe failure in tension, and a material named failure_type2

using the elastic fracture model to describe failure in compression (see Section 4.1.3
for further information on this model). If we wanted to have element death activated
for both of these failure mechanisms, then we would substitute failure_type1 and
failure_type2 for the value material_names to produce the following command
line:

MATERIAL CRITERION = failure_type1 failure_type2

5.5.3 Evaluation Commands

CHECK STEP INTERVAL = <integer>num_steps
CHECK TIME INTERVAL = <real>delta_t
DEATH START TIME = <real>time

Evaluation of element death criteria may be time consuming. Additionally, re-
construction of contact or other boundary conditions after element death can be very
time consuming. For these reasons, three command lines are available for determining
the frequency at which element death is evaluated. The default is to evaluate element
death at every time step. You can limit the number of times at which the element
death evaluation is done by using the following commands.

- The CHECK STEP INTERVALcommand line instructs element death to evaluate
the element death criteria only every num_steps time steps.

- The CHECK TIME INTERVALcommand line instructs element death to evaluate
the element death criteria only every delta_t time units.

- The DEATH START TIMEcommand line instructs element death not to evaluate
death criteria before a user-specified time, as given by the real value time.

You may use both the CHECK STEP INTERVALand CHECK TIME INTERVAL

command lines in a command block. Evaluations for element death will be made
at both the time and step intervals if both of these command lines are included.

All three of the above command lines—CHECK STEP INTERVAL, CHECK TIME

INTERVAL, and DEATH START TIME—are optional command lines.

5.5.4 Miscellaneous Option Commands

The command lines listed below need not be present in the ELEMENT DEATHcommand
block unless the conditions addressed by each call for their inclusion.

185

5.5.4.1 Death Steps

DEATH STEPS = <integer>death_steps(1)

If the DEATH STEPScommand line is used and the value for death steps is set to
some value greater than 1, the stress in a killed element will not be set to 0 until
the prescribed number of steps has occurred. The stress in the killed element will
decrease (if it is positive) to 0 in a linear fashion over the prescribed number of steps;
the stress in the killed element will increase (if it is negative) to 0 over the prescribed
number of steps. If the stress in a killed element is set to 0 over a single time step, the
resulting change in stress can sometimes cause instabilities due to the sudden release
of energy. However, elimination of the stress over an excessive number of load steps
can make it appear as if the element is present long after it has been killed. The
default number of steps, as provided in the integer value death_steps , is 1.

The value you select for death steps will depend on your analysis. A small number
such as 3 or 5 may be sufficient to prevent instabilities for most cases. However, in
some cases it may be necessary to use a value for death_steps of 10 or larger. The
loads, material models, and model complexity in your analysis will impact the value
of death_steps .

5.5.4.2 Degenerate Mesh Repair

FORCE VALID ACME CONNECTIVITY

If the FORCE VALID ACME CONNECTIVITYcommand line is present, degenerate
mesh occurrences will be repaired. Element death has the possibility of creating de-
generate mesh occurrences that will not be accepted by the ACME (see Reference 11)
contact algorithms used by Presto. For example, if two continuum elements are con-
nected only by an edge, ACME will not accept the mesh as a valid mesh. For this
degenerate mesh occurrence (continuum elements connected only at an edge), the
degeneracy is repaired by deleting all elements attached to the offending edge if we
have turned on this repair option.

The option to repair degenerate mesh occurrences is on by default if there is a
contact block that includes the command line

UPDATE ALL SURFACES FOR ELEMENT DEATH = 0N.

See Section 7.4 for a description of the UPDATE ALL SURFACES FOR ELEMENT

DEATHcommand line.

If you do not have a CONTACT DEFINITIONcommand block and want to repair
degenerate mesh occurrences for whatever purposes, you should include the FORCE

VALID ACME CONNECTIVITYcommand line.

186

5.5.5 Example

The following example provides instructions to kill elements in block_1 when they
leave a bounding box. This type of element death can be useful in an analysis where
some peripheral parts, because of fracture, separate and fly away from a central body,
this central body being our part of interest. In this case, these peripheral parts no
longer impact the solution. The instructions in this ELEMENT DEATHcommand block
will cause the parts to be killed, thus speeding up the computation.

begin element death out_of_bounds
block = block_1
check x coordinates
criterion is avg nodal value of coordinates(1) >= 10
criterion is avg nodal value of coordinates(1) <= -10
check y coordinates
criterion is avg nodal value of coordinates(2) >= 10
criterion is avg nodal value of coordinates(2) <= -10
check z coordinates
criterion is avg nodal value of coordinates(3) >= 10
criterion is avg nodal value of coordinates(3) <= -10

end element death out_of_bounds

5.5.6 Element Death Visualization

When an element dies, information about this element will still be sent, along with
information for all other elements, to the Exodus II results file. (Chapter 8 describes
the output of element variables to the results file.) The death status of the elements
may be output to the results file by requesting element variable output for the element
variable DEATH_DUMMY_VAR. Including the command line

ELEMENT VARIABLES = DEATH_DUMMY_VAR as death_var

in a RESULTS OUTPUTcommand block (Chapter 8) will output this element variable
with the name death_var on the results file.

The convention for DEATH_DUMMY_VARis as follows: An element with a value
of 1.0 for DEATH_DUMMY_VARis a living element. An element with a value of
0.0 for DEATH_DUMMY_VARis a dead element. A value between 1.0 and 0.0 indi-
cates an element in the process of dying. A dying element has its material stress
scaled down over a number of time steps. The current scaling factor for an ele-
ment is given by DEATH_DUMMY_VAR. Whether or not an element can have a value for
DEATH_DUMMY_VARother than 0.0 or 1.0 will depend on whether or not you have used
the DEATH STEPSoption in the ELEMENT DEATHcommand block. If the number of
steps over which death occurs is greater than 1, then DEATH_DUMMY_VARcan be some

187

value between 0.0 and 1.0.

If DEATH_DUMMY_VARis written to a results file, and the results file is used in
some visualization program to examine the mesh for the model, it is possible to use
DEATH_DUMMY_VARto exclude killed elements in any view of the model. A subset
of the mesh showing just the living elements can be created by selecting only those
elements with DEATH_DUMMY_VAR= 1.0 values.

188

5.6 Mesh Rebalancing

Mesh rebalancing is a feature in Presto that may improve the efficiency of an analysis.
Two command blocks can be used for mesh rebalancing: REBALANCEand ZOLTAN

PARAMETERS. The REBALANCEcommand block is required; the ZOLTAN PARAMETERS

command block is optional. Sections 5.6.1 and 5.6.2 describe these command blocks.

5.6.1 Rebalance

BEGIN REBALANCE
INITIAL REBALANCE = ON|OFF(OFF)
PERIODIC REBALANCE = ON|OFF|AUTO(OFF)
REBALANCE STEP INTERVAL = <integer>step_interval
COMMUNICATION RATIO THRESHOLD = <real>ratio
USE ZOLTAN PARAMETERS = <string>parameter_name

END REBALANCE

Initial decomposition of a mesh for parallel runs with Presto is done by a util-
ity called loadbal. The initial decomposition provided by loadbal may not provide a
decomposition for good-to-optimal parallel performance of Presto under certain cir-
cumstances. Therefore, Presto supports a simple mesh-rebalancing capability that
can be used to improve the parallel performance of some problems. When mesh re-
balancing is invoked, the initial decomposition is changed and elements are moved
among the processors in such a way as to balance the computational load and mini-
mize the processor-to-processor communication. Mesh rebalancing may be useful in
the following circumstances:

• The mesh decomposition produced by loadbal for SPH meshes is nearly always
poor. It is recommended that an initial mesh rebalance be done for all SPH
problems.

• If the contact option

SKIP SECONDARY = on

is used, an initial mesh rebalance should be performed. When the secondary
decomposition is not used, the mesh decomposition must be constructed in such
a way to yield decent load balancing for elements and for contact surfaces. The
utility loadbal generally does not have the information to do this type of load
balancing, so the Presto rebalancing must be used.

• If a problem experiences very large deformations, periodic rebalancing may be
helpful. In contact or SPH problems, communication is performed between

189

physically nearby contact surfaces or SPH particles. To maintain optimum
performance, it is helpful to have neighboring particles located on the same
processors. Periodic mesh rebalancing can ensure that neighboring entities tend
to remain on the same processor during large mesh deformations.

The REBALANCEcommand block is placed in the Presto region scope. The mesh
rebalancing in Presto uses a mesh balancing library called Zoltan (Reference 12).
Zoltan performs the actual rebalancing. By default, Presto creates a Zoltan object
with a default set of parameters. However, a Zoltan object with a customized set of
parameters can be created and referenced from the REBALANCEcommand block.

5.6.1.1 Rebalance Command Lines

INITIAL REBALANCE = on|off (off)
PERIODIC REBALANCE = on|off|auto (off)
REBALANCE STEP INTERVAL = <integer>step_interval
COMMUNICATION RATIO THRESHOLD = <real>ratio

The above command lines control the frequency with which the rebalancing is
done.

The INITIAL REBALANCE command line is used to rebalance the mesh at time
zero before any calculations occur. This option should be used if the initial mesh
decomposition passed to Presto is poor.

If the PERIODIC REBALANCE COMMANDoption is on, the mesh will be rebalanced
every step_interval steps, where step_interval is the parameter specified by
the REBALANCE STEP INTERVALcommand line. If the option is auto , the mesh will
be rebalanced every step_interval steps or when the communication ratio reaches
a critical value. The communication ratio is currently defined only for SPH problems.
The communication ratio is a measure of how much communication is required in the
current mesh decomposition versus an estimate of what the communication could
be with an optimal decomposition. Mesh rebalancing is expensive, so rebalancing
should be done rarely. The communication ratio is set by the parameter ratio

on the COMMUNICATION RATIO THRESHOLDcommand line. A communication ratio
parameter in the range of 1.25 to 1.5 is usually ideal.

5.6.1.2 Zoltan Command Line

The command line

USE ZOLTAN PARAMETERS = <string>parameter_name

190

references a ZOLTAN PARAMETERScommand block named parameter_name . Various
parameters for Zoltan can be set in the ZOLTAN PARAMETERScommand block. If you
do not use the USE ZOLTAN PARAMETERScommand line, a default set of parameters
is used. The default parameter command block is shown as follows:

BEGIN ZOLTAN PARAMETERS default
LOAD BALANCING METHOD = recursive coordinate bisection

string parameter
OVER ALLOCATE MEMORY = 1.5 # real parameter
REUSE CUTS = true # string parameter
ALGORITHM DEBUG LEVEL = 0 # integer parameter
CHECK GEOMETRY = true # string parameter
ZOLTAN DEBUG LEVEL = 0 # integer parameter

END ZOLTAN PARAMETERS default

See Section 5.6.2 for a discussion of the ZOLTAN PARAMETERScommand block.
Section 5.6.2 lists the command lines that can be used to set Zoltan parameters.

191

5.6.2 Zoltan Parameters

BEGIN ZOLTAN PARAMETERS <string>parameter_name
LOAD BALANCING METHOD = <string>recursive coordinate bisection|

recursive inertial bisection|hilbert space filling curve|
octree

DETERMINISTIC DECOMPOSITION = <string>false|true
IMBALANCE TOLERANCE = <real>imb_tol
OVER ALLOCATE MEMORY = <real>over_all_mem
REUSE CUTS = <string>false|true
ALGORITHM DEBUG LEVEL = <integer>alg_level

0<=(alg_level)<=3
CHECK GEOMETRY = <string>false|true
KEEP CUTS = <string>false|true
LOCK RCB DIRECTIONS = <string>false|true
SET RCB DIRECTIONS = <string>do not order cuts|xyz|xzy|

yzx|yxz|zxy|zyx
RECTILINEAR RCB BLOCKS = <string>false|true
RENUMBER PARTITIONS = <string>false|true
OCTREE DIMENSION = <integer>oct_dimension
OCTREE METHOD = <string>morton indexing|grey code|hilbert
OCTREE MIN OBJECTS = <integer>min_obj # 1<=(min_obj)
OCTREE MAX OBJECTS = <integer>max_obj # 1<=(max_obj)
ZOLTAN DEBUG LEVEL = <integer>zoltan_level

0<=(zoltan_level)<=10
DEBUG PROCESSOR NUMBER = <integer>proc # 1<=proc
TIMER = <string> wall|cpu
DEBUG MEMORY = <integer>dbg_mem # 0<=(dbg_mem)<=3

END [ZOLTAN PARAMETERS <string>parameter_name]

The ZOLTAN PARAMETERScommand block is used to set parameters for Zoltan
(see Reference 12), a program that can be used for mesh rebalancing in Presto. The
ZOLTAN PARAMETERScommand block is used in association with the REBALANCE

command block. A REBALANCEcommand block may reference a ZOLTAN PARAME-

TERScommand block via the name, parameter_name , for the parameter command
block. Reference Section 5.6.1 regarding the use of the ZOLTAN PARAMETERScom-
mand block for mesh rebalancing in Presto.

Setting the parameters for Zoltan involves some understanding of how Zoltan
works. We will not present a discussion of the various parameters that you may set in
the ZOLTAN PARAMETERScommand block. You should consult with Reference 12 for
a discussion of the parameters that can be set by the various command lines in the
parameters command block. Note that some of the command lines in this command
block have comments that provide additional information about the parameters. The
“#” symbol precedes a comment.

192

In the above command block, = and IS are the allowed delimiters, which is dif-
ferent from the usual Presto convention of =, IS , and ARE. Note that the ZOLTAN

PARAMETERScommand block should be specified in the domain scope when it is ref-
erenced from the USE ZOLTAN PARAMETERScommand line in the REBALANCEcom-
mand block. When the default set of parameters is used for a Zoltan object, the USE

ZOLTAN PARAMETERScommand block need not be included in the input file.

5.7 References

1. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient
Solid Dynamics Program, SAND87-1912. Albuquerque, NM: Sandia National
Laboratories, March 1989.

2. Rashid, M. M. “Incremental Kinematics for Finite Element Applications.” In-
ternational Journal for Numerical Methods in Engineering 36 (1993): 3937–
3956.

3. Dohrman, C. R., M. W. Heinstein, J. Jung, S. W. Key, and W. R. Witkowski.
“Node-Based Uniform Strain Elements for Three-Node Triangular and Four-
Node Tetrahedral Meshes.” International Journal for Numerical Methods in
Engineering 47 (2000): 1549–1568.

4. Key, S. W., M. W. Heinstein, C. M. Stone, F. J. Mello, M. L. Blanford, and
K. G. Budge. “A Suitable Low-Order, Tetrahedral Finite Element for Solids.”
International Journal for Numerical Methods in Engineering 44 (1999) 1785–
1805.

5. Key, S. W., and C. C. Hoff. “An Improved Constant Membrane and Bending
Stress Shell Element for Explicit Transient Dynamics.” Computer Methods in
Applied Mechanics and Engineering 124, no. 1–2 (1995): 33–47.

6. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manu-
als: Part III. Finite Element Analysis in Nonlinear Solid Mechanics, SAND98-
1760/3. Albuquerque, NM: Sandia National Laboratories, 1999.

7. Flanagan, D. P., and T. Belytschko. “A Uniform Strain Hexahedron and
Quadrilateral with Orthogonal Hourglass Control.” International Journal for
Numerical Methods in Engineering 17 (1981): 679–706.

8. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent
Materials Version 1.0. Albuquerque, NM: Sandia National Laboratories, Octo-
ber 2001.

193

9. Swegle, J. W., S. W. Attaway, M. W. Heinstein, F. J. Mello, and D. L. Hicks. An
Analysis of Smoothed Particle Hydrodynamics, SAND93-2513. Albuquerque,
NM: Sandia National Laboratories, March 1994.

10. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering
Analysis Code Access System, SAND92-2292. Albuquerque, NM: Sandia Na-
tional Laboratories, January 1993.

11. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein,
and R. E. Jones. ACME: Algorithms for Contact in a Multiphysics Environ-
ment, API Version, 2.2, SAND2004-5486. Albuquerque, NM: Sandia National
Laboratories, October 2001.

12. Sandia National Laboratories. “Zoltan: Data-Management Services for Parallel
Applications.” http://www.cs.sandia.gov/zoltan/ (accessed May 31, 2006).

194

Chapter 6

Boundary Conditions and Initial
Conditions

Presto offers a variety of options for defining boundary and initial conditions. Typ-
ically, boundary and initial conditions are defined on some subset of mesh entities
(node, element face, element) defining a model. Presto offers a flexible means to de-
fine subsets of mesh entities. Section 6.1 describes commands that will let you define
some subset of a mesh entity using a collection of command that constitute a set of
Boolean operators.

The remaining parts of this chapter discuss the following functionality:

- Section 6.2 presents methods for setting the initial values of registered variables
in Presto. Presto has the flexibility to set a complex initial state for some
variable such as nodal velocity or element stress.

- Kinematic boundary conditions typical of those you would expect in an explicit,
transient dynamics code (fixed displacement, prescribed acceleration, etc.) are
options in Presto and described in Section 6.3. Most of these boundary con-
ditions let you specify a time history using some SIERRA function or a more
complex time-varying and spatially varying history with a user subroutine.

- Section 6.4 documents a number of initial velocity options available in Presto.

- Force boundary conditions typical of those you would expect in an explicit,
transient dynamics code (prescribed force, traction, etc.) are options in Presto
and described in Section 6.5. Most of these force boundary conditions let you
specify a time history using some SIERRA function or a more complex time-
varying and spatially varying history with a user subroutine.

- Section 6.6 details a number of options available for describing a temperature
field in Presto.

195

- Presto has a number of specialized boundary conditions—gravity, cavity ex-
pansion, silent boundary, spot-weld, and line weld. These specialized boundary
conditions are described in Section 6.7.

6.1 General Mesh-Entity Assignment Commands

A number of standard command lines exist to define a set of mesh entities (node,
element face, element) associated with some type of mechanics. (Mechanics can be
a boundary condition, an initial condition, or a gravity load.) All of these command
lines exist within the command blocks for the various mechanics, which in turn exist
within the region scope. These command lines, taken collectively, constitute a set of
boolean operators for constructing sets of mesh entities.

The first set of command lines we will consider are as follows:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS

In the above command lines, the string list nodelist_names is used to repre-
sent one or more node sets as discussed in Section 1.5. A node set is referenced as
nodelist_id , where id is some integer. For example, suppose you have three node
lists in your model: 10, 23, and 105. If you want to combine all of these node lists so
that they form one set of nodes for, say, your boundary condition or initial condition,
then you would use the command line

NODE SET = nodelist_10 nodelist_23 nodelist_105 .

This convention applies as well to any surface-related command line that uses the
string list surface_names or any block-related command line that uses the string
list block_names .

The NODE SETcommand line associates a set of nodes with a mechanics. A
mechanics may be applied to multiple node sets by putting multiple node set names
on the command line or by repeating the command line multiple times.

The SURFACEcommand line associates a set of element faces with a mechanics. A
mechanics may be applied to multiple surfaces by putting multiple surface names on
the command line or by repeating the command line multiple times. The SURFACE

command line can also be used to associate a set of nodes with a mechanics. For ex-
ample, suppose we wish to use the fixed displacement kinematic boundary condition.
Although this is a nodal boundary condition (the condition is applied to individual

196

nodes), a SURFACEcommand line can be used to establish the set of nodes. If the
command line

SURFACE = surface_101

appears in a fixed displacement boundary condition, then all of the nodes associated
with surface 101 will be associated with the boundary condition.

The BLOCKcommand line associates a set of elements with a mechanics. A me-
chanics may be applied to multiple blocks by putting multiple block names on the
command line or by repeating the command line multiple times. The BLOCKcom-
mand line can also be used to associate a set of nodes with a mechanics. For example,
suppose we wish to use the fixed displacement kinematic boundary condition as in
the previous example. If the command line

BLOCK = block_50

appears in a fixed displacement kinematic boundary condition, then all of the nodes
associated with block 50 will be associated with the boundary condition.

The INCLUDE ALL BLOCKScommand line associates all blocks with a mechanics.
This will apply the mechanics to all nodes and elements in the model.

The block-related command lines associated with contact will generate surfaces.
The block command lines associated with boundary conditions, initial conditions, and
gravity will NOT generate surfaces.

Any combination of the above command lines can be used to create a union of
mesh entities. Suppose, for example, that the command lines

NODE SET = nodelist_2

SURFACE = surface_3

appear in a FIXED DISPLACEMENTcommand block for a kinematic boundary condi-
tion. The set of nodes associated with the boundary condition will be the union of
the set of nodes associated with surface 3 and the set of nodes associated with node
set 2.

When creating a union of mesh entities by using two or more of the above com-
mand lines, a mesh entity may appear in more than one topological entity—node set,
surface, block. However, the mechanics is applied to the mesh entity only once. For
example, node 67 may be a part of nodelist 2 and surface 3. Including both nodelist 2
and surface 3 into a mechanics will only apply the mechanics to node 67 once.

The set of mesh entities associated with a mechanics can be edited (mesh entities
can be deleted from the set) by using the following command lines:

REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

197

The REMOVE NODE SETcommand line deletes a set of nodes from the node set
associated with a mechanics.

The REMOVE SURFACEcommand line deletes a set of element faces from the set
of element faces associated with a mechanics. It will remove a set of nodes associated
with the surface from the set of nodes associated with the mechanics.

The REMOVE BLOCKcommand line deletes a set of elements from the set of ele-
ments associated with a mechanics. It will remove a set of nodes associated with the
block from the node set associated with the mechanics.

198

6.2 Initial Variable Assignment

BEGIN INITIAL CONDITION
{mesh-entity set commands }
#
variable identification commands
INITIALIZE VARIABLE NAME = <string>var_name
VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]
#
constant magnitude command
MAGNITUDE = <real list>initial_values
TIME = <real>time
#
input mesh command
READ VARIABLE = <string>mesh_var_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }
#
additional command
SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

Presto supports a general initialization procedure for setting the value of any
variable. This procedure can be used to set material state variables, shell thickness,
initial stress, etc. There is minimal checking in Presto, however, to ensure that the
changes made yield a consistent system. There is also no guarantee that the changes
will not be overwritten or misinterpreted by some other internal routine depending on
what variable is being changed. Thus, caution is advised when using this capability.

The INITIAL CONDITION command block, which appears in the region scope, is
used to select a method and set values for initializing a variable. The command block
specifies the initial value of a global variable or a variable associated with a set of
mesh entities, i.e., nodes, edges, faces, or elements. The user has three options for
setting initial values: with a constant magnitude, with an input mesh variable, or by
a user subroutine. Only one of these three options can be specified in the command
block.

The command block contains five groups of commands—mesh-entity set, variable
identification, magnitude, input mesh variable, and user subroutine. In addition to
the command lines in the five groups, there is one additional command line: SCALE

FACTOR. Following are descriptions of the different command groups and the SCALE

199

FACTORcommand line.

6.2.1 Mesh-Entity Set Commands

The {mesh-entity set commands } portion of the INITIAL CONDITION command
block specifies the nodes, element faces, or elements associated with the variable to
be initialized. This portion of the command block can include some combination of
the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes, element faces, or elements. See Section 6.1 for more
information about the use of these command lines for mesh entities. There must be
at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKScommand line in
the command block.

6.2.2 Variable Identification Commands

Any variable used in the INITIAL CONDITION command block must exist in Presto.
The variable can be any currently registered variable in Presto or any user-defined
variable created with the USER VARIABLEcommand block (see Section 9.2.4).

There are two command lines that identify the variable:

INITIALIZE VARIABLE NAME = <string>var_name

VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]

The INITIALIZE VARIABLE NAME command line gives the name of the variable
for which initial values are being assigned. As mentioned, the string var_name must
be some variable known to Presto; it cannot be an arbitrary user-selected name.

The VARIABLE TYPEcommand line provides additional information about the
variable being initialized. The options NODE, EDGE, FACE, ELEMENT, and GLOBALon
the command line indicate whether the variable is, respectively, a nodal, edge, face,
element, or global quantity. One of these options must appear in the VARIABLE TYPE

command line.

200

Both of these command lines are required regardless of the option selected to set
values for the variable.

6.2.3 Constant Magnitude Command

If the constant magnitude option is used, one or more initial values are specified
directly in the command block. Following is the command line used for the constant
magnitude option:

MAGNITUDE =<real list>initial_values

The initial_values specified on the MAGNITUDEcommand line will set the
values for the variable given by var name in the INITIALIZE VARIABLE NAME com-
mand line. The number of values is dependent on the type of the variable specified
in the INITIALIZE VARIABLE NAME command line. For example, if the user wanted
to initialize the velocity at a set of nodes, three quantities would have to be speci-
fied since the velocity at a node is a vector quantity. If the user wanted to initialize
the stress tensor for a set of uniform-gradient, eight-node hexahedral elements, six
quantities would have to be specified since the stress tensor for this element type is
described with six values.

6.2.4 Input Mesh Command

If the input mesh option is used, the initial values will be read from a variable that
exists in a mesh file. As an example, suppose the mesh file contains a set of element
temperatures. These temperature values (which can vary for each element) can be
used to initialize a temperature value associated with each element.

Following are the command lines related to the input mesh option:

READ VARIABLE =<string> mesh_var_name

TIME = <real >temp_time

The string mesh_var_name must match the name of the variable in the mesh
file. The number of values associated with the variable in the mesh file must be the
same number associated with the variable name specified in the INITIALIZE VARI-

ABLE NAMEcommand line. For example, if the variable specified by the INITIALIZE

VARIABLE NAMEhas a single value, then the variable specified in the mesh file must
also have a single value. You may select the variable at a specific time by using the
TIME command line. If the specified time on the TIME command line does not corre-
spond exactly to a time on the mesh file, the data on the mesh file will be interpolated
as needed to obtain the initial values.

The variable name used on the mesh file can be arbitrary. The name can be

201

identical to or different from the registered variable name specified on the INITIALIZE

VARIABLE NAMEcommand line.

6.2.5 User Subroutine Commands

If the user subroutine option is used, the initial values will be calculated by a sub-
routine that is written by the user explicitly for this purpose. The subroutine will be
called by Presto at the appropriate time to perform the calculations.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |
SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }

Only one of the three command lines can be specified in the command block. The
particular command line selected depends on the mesh-entity type of the variable
being initialized. For example, variables associated with nodes would be initialized if
you are using the NODE SET SUBROUTINEcommand line, variables associated with
faces if you are using the SURFACE SUBROUTINEcommand line, and variables asso-
ciated with elements if you are using the ELEMENT SUBROUTINEcommand line. The
string subroutine_name is the name of a FORTRAN subroutine that is written by
the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The application of user subroutines for variable initialization is essentially the same
as the application of user subroutines in general. See Section 6.3.7 and Chapter 9 for
more details on implementing the user subroutine option.

When the user subroutine option is used for variable initialization, the user sub-
routine is only called once. Also, when a user subroutine is being used, the returned
value is the new (initial) variable value at each mesh entity, and the flags array is
ignored.

202

6.2.6 Additional Command

This command line provides an additional option for the INITIAL CONDITION com-
mand block:

SCALE FACTOR =<real>scale_factor(1.0)

Any initial value can be scaled by use of the SCALE FACTORcommand line. An
initial value generated by any one of the three initial-value-setting options in this
command block (i.e., constant magnitude, input mesh, or user subroutine) will be
scaled by the real value scale_factor .

203

6.3 Kinematic Boundary Conditions

The various kinematic boundary conditions available in Presto are described in this
section. The kinematic boundary conditions are nested inside the region scope.

6.3.1 Fixed Displacement Components

BEGIN FIXED DISPLACEMENT
{node set commands }
#
component commands
COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z
#
additional command
ACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

The FIXED DISPLACEMENTcommand block fixes displacement components (X,
Y, Z, or some combination thereof) for a set of nodes. This command block contains
two groups of commands—node set and component. Each of these command groups is
basically independent of the other. In addition to the command lines in the two com-
mand groups, there is an additional command line: ACTIVE PERIODS. The ACTIVE

PERIODScommand line is used to activate or deactivate this kinematic boundary con-
dition for certain time periods. Following are descriptions of the different command
groups and the ACTIVE PERIODScommand line.

6.3.1.1 Node Set Commands

The {node set commands } portion of the FIXED DISPLACEMENTcommand block
specifies the nodes associated with the boundary condition. This portion of the
command block can include some combination of the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use

204

of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.3.1.2 Component Commands

There are two component command lines in the FIXED DISPLACEMENTcommand
block:

COMPONENT =<string>X/Y/Z | COMPONENTS = <string >X/Y/Z

The displacement components that are to be fixed can be specified with either the
COMPONENTcommand line or the COMPONENTScommand line. There can be only one
COMPONENTcommand line or one COMPONENTScommand line in the command block.
The user can specify any combination of the components to be fixed, as in X, Z, X Z,
Y X, etc.

6.3.1.3 Additional Command

The ACTIVE PERIOD command line can appear as an option in the FIXED DIS-

PLACEMENTcommand block:

ACTIVE PERIODS = <string list >period_names

This command line determines when the boundary condition is active. See Sec-
tion 2.5 for more information about this optional command line.

205

6.3.2 Prescribed Displacement

BEGIN PRESCRIBED DISPLACEMENT
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

The PRESCRIBED DISPLACEMENTcommand block prescribes a displacement field
for a given set of nodes. The displacement field associates a vector giving the mag-
nitude and direction of the displacement with each node in the node set. The dis-
placement field may vary over time and space. If the displacement field has only
a time-varying magnitude and uses one of four methods for setting direction, the
function option in the above command block can be used to specify the displacement
field. If the displacement field is more complex, a user subroutine option is used to
specify the displacement field. You cannot use both the function option and the user
subroutine option in the same command block.

The PRESCRIBED DISPLACEMENTcommand block contains three groups of
commands—node set, function, and user subroutine. Each of these command groups
is basically independent of the others. In addition to the command lines in the three
command groups, there are two additional command lines: SCALE FACTORand AC-

TIVE PERIODS. The SCALE FACTORcommand line can be used in conjunction with
either the function option or the user subroutine option. The ACTIVE PERIODScom-
mand line is used to activate or deactivate this kinematic boundary condition for
certain time periods. Following are descriptions of the different command groups and
the SCALE FACTORand ACTIVE PERIODScommand lines.

206

6.3.2.1 Node Set Commands

The {node set commands } portion of the PRESCRIBED DISPLACEMENTcommand
block defines a set of nodes associated with the prescribed displacement field and can
include some combination of the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.3.2.2 Function Commands

If the function option is used, the displacement vector at any given time is the same for
all nodes in the node set associated with the particular PRESCRIBED DISPLACEMENT

command block.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z |
CYLINDRICAL AXIS = <string >defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name

The magnitude of the displacement can be specified in some arbitrary direction,
along a component direction (X, Y, or Z), along a cylindrical direction (defined in
reference to some axis), or along a radial direction (defined in reference to some axis).
Only one of these options (i.e., command lines) is allowed.

- The DIRECTION command line is used to specify that the prescribed displace-
ment vector lies along an arbitrary direction. The string defined_direction

uses a direction_name that has been defined in the domain scope via a DE-

FINE DIRECTION command line.

207

- The COMPONENTcommand line is used to specify that the prescribed displace-
ment vector lies along one of the component directions. The COMPONENTcom-
mand line is a shortcut to an internally defined direction vector; for example,
component X corresponds to using direction vector (1, 0, 0).

- The CYLINDRICAL AXIS command line requires an axis definition that appears
in the domain scope. The string defined_axis uses an axis_name that is
defined in the domain scope (via a DEFINE AXIS command line). For this
option, a radial line will be drawn from a node to the cylindrical axis; the
radial line is normal to the cylindrical axis. If we project the motion of any
node using the prescribed cylindrical displacement option onto a plane normal
to the cylindrical axis, the motion of the node will be be a circular path (with
the radius equal to the original distance of the node from the axis) around the
cylindrical axis.

- The RADIAL AXIS command line requires an axis definition that appears in the
domain scope. The string defined_axis uses an axis_name that is defined
in the domain scope (via a DEFINE AXIS command line). For this option, a
radial line is drawn from a node to the radial axis. The prescribed displacement
vector lies along this radial line from the node to the radial axis.

The magnitude of the displacement is specified by the FUNCTIONcommand line.
This references a function name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the displacement vector
as a function of time. The magnitude can be scaled by use of the SCALE FACTOR

command line described in Section 6.3.2.4.

The function option specifies the displacement only in the prescribed direction. It
does not influence the displacement normal to the prescribed direction.

6.3.2.3 User Subroutine Commands

If the user subroutine option is used, the displacement vector may vary spatially at
any given time for each of the nodes in the node set associated with the particular
PRESCRIBED DISPLACEMENTcommand block. The user subroutine option allows for
a more complex description of the displacement field than does the function option,
but the user subroutine option also requires that you write a user subroutine to
implement this capability. The user subroutine will be used to define a displacement
direction and a magnitude for every node to which the boundary condition will be
applied. The subroutine will be called by Presto at the appropriate time to generate
the displacement field.

Following are the command lines related to the user subroutine option:

208

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.3.2.4.

See Section 6.3.7 and Chapter 9 for more details on implementing the user sub-
routine option.

6.3.2.4 Additional Commands

These command lines in the PRESCRIBED DISPLACEMENTcommand block provide
additional options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the displacement in a time history function is given as 1.5 from time
1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the displacement
from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

209

6.3.3 Prescribed Velocity

BEGIN PRESCRIBED VELOCITY
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

The PRESCRIBED VELOCITYcommand block prescribes a velocity field for a given
set of nodes. The velocity field associates a vector giving the magnitude and direction
of the velocity with each node in the node set. The velocity field may vary over time
and space. If the velocity field has only a time-varying magnitude and uses one of
four methods for setting direction, the function option in the above command block
can be used to specify the velocity field. If the velocity field is more complex, a
user subroutine option is used to specify the velocity field. You cannot use both the
function option and the user subroutine option in the same command block.

The PRESCRIBED VELOCITYcommand block contains three groups of commands—
node set, function, and user subroutine. Each of these command groups is basically
independent of the others. In addition to the command lines in the three command
groups, there are two additional command lines: SCALE FACTORand ACTIVE PERI-

ODS. The SCALE FACTORcommand line can be used in conjunction with either the
function option or the user subroutine option. The ACTIVE PERIODScommand line
is used to activate or deactivate this kinematic boundary condition for certain time
periods. Following are descriptions of the different command groups and the SCALE

FACTORand ACTIVE PERIODScommand lines.

6.3.3.1 Node Set Commands

The {node set commands} portion of the PRESCRIBED VELOCITYcommand block
defines a set of nodes associated with the prescribed velocity field and can include

210

some combination of the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.3.3.2 Function Commands

If the function option is used, the velocity vector at any given time is the same
for all nodes in the node set associated with the particular PRESCRIBED VELOCITY

command block.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z |
CYLINDRICAL AXIS = <string >defined axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name |

The magnitude of the velocity can be specified in some arbitrary direction, along
a component direction (X, Y, or Z), along a cylindrical direction (defined in reference
to some axis), or along a radial direction (defined in reference to some axis). Only
one of these options (i.e., command lines) is allowed.

- The DIRECTION command line is used to specify that the velocity vector lies
along an arbitrary direction. The string defined_direction uses a direc-

tion_name that has been defined in the domain scope via a DEFINE DIREC-

TION command line.

- The COMPONENTcommand line is used to specify that the velocity vector lies
along one of the component directions. The COMPONENTcommand line is a
shortcut to an internally defined direction vector; for example, component X
corresponds to using direction vector (1, 0, 0).

211

- The CYLINDRICAL AXIS command line requires an axis definition that appears
in the domain scope. The string defined_axis uses an axis_name that is
defined in the domain scope (via a DEFINE AXIS command line). For this
option, a radial line will be drawn from a node to the cylindrical axis; the radial
line is normal to the cylindrical axis. The velocity vector will lie along a path
that is tangent to a circle that lies in a plane normal to the cylindrical axis and
has a radius defined by the magnitude of the radial line from the node to the
cylindrical axis.

- The RADIAL AXIS command line requires an axis definition that appears in the
domain scope. The string defined_axis uses an axis_name that is defined in
the domain scope (via a DEFINE AXIS command line). For this option, a radial
line is drawn from a node to the radial axis. The velocity vector lies along this
radial line from the node to the radial axis.

The magnitude of the velocity is specified by the FUNCTIONcommand line. This
references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the velocity vector as a
function of time. The magnitude can be scaled by use of the SCALE FACTORcommand
line described in Section 6.3.3.4.

The function option specifies the velocity only in the prescribed direction. It does
not influence the velocity normal to the prescribed direction.

6.3.3.3 User Subroutine Commands

If the user subroutine option is used, the velocity vector may vary spatially at any
given time for each of the nodes in the node set associated with the particular PRE-

SCRIBED VELOCITYcommand block. The user subroutine option allows for a more
complex description of the velocity field than does the function option, but the user
subroutine option also requires that you write a user subroutine to implement this
capability. The user subroutine will be used to define a velocity direction and a magni-
tude for every node to which the boundary condition will be applied. The subroutine
will be called by Presto at the appropriate time to generate the velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine name is the name of a FORTRAN subroutine that
is written by the user.

The {other user subroutine command lines } portion refers to additional

212

command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.3.3.4.

6.3.3.4 Additional Commands

These command lines in the PRESCRIBED VELOCITYcommand block provide addi-
tional options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the velocity in a time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the magnitude of the velocity from time 1.0
to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

213

6.3.4 Prescribed Acceleration

BEGIN PRESCRIBED ACCELERATION
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

The PRESCRIBED ACCELERATIONcommand block prescribes an acceleration field
for a given set of nodes. The acceleration field associates a vector giving the magnitude
and direction of the acceleration with each node in the node set. The acceleration
field may vary over time and space. If the acceleration field has only a time-varying
component, the function option in the above command block can be used to specify
the acceleration field. If the acceleration field has both time-varying and spatially
varying components, a user subroutine option is used to specify the acceleration field.
You cannot use both the function option and the user subroutine option in the same
command block.

The PRESCRIBED ACCELERATIONcommand block contains three groups of
commands—node set, function, and user subroutine. Each of these command groups
is basically independent of the others. In addition to the command lines in the three
command groups, there are two additional command lines: SCALE FACTORand AC-

TIVE PERIODS. The SCALE FACTORcommand line can be used in conjunction with
either the function option or the user subroutine option. The ACTIVE PERIODScom-
mand line is used to activate or deactivate this kinematic boundary condition for
certain time periods. Following are descriptions of the different command groups and
the SCALE FACTORand ACTIVE PERIODScommand lines.

6.3.4.1 Node Set Commands

The {node set commands} portion of the PRESCRIBED ACCELERATIONcommand
block defines a set of nodes associated with the prescribed acceleration field and can
include some combination of the following command lines:

214

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.3.4.2 Function Commands

If the function option is used, the acceleration vector at any given time is the same for
all nodes in the node set associated with the particular PRESCRIBED ACCELERATION

command block. The direction of the acceleration vector is constant for all time; the
magnitude of the acceleration vector may vary with time, however.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z

FUNCTION = <string>function_name

The magnitude of the acceleration can be specified either in some arbitrary di-
rection or along a component direction (X, Y, or Z), but not both. The DIRECTION

command line is used to specify that the acceleration vector lies along an arbitrary
direction. The string defined_direction uses a direction_name that has been
defined in the domain scope (via a DEFINE DIRECTIONcommand line). The COMPO-

NENTcommand line is used to specify that the acceleration vector lies along one of the
component directions. The COMPONENTcommand line is a shortcut to an internally
defined direction vector; for example, component X corresponds to using direction
vector (1, 0, 0).

The magnitude of the acceleration is specified by the FUNCTIONcommand line.
This references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the acceleration vector
as a function of time. The magnitude can be scaled by use of the SCALE FACTOR

command line described in Section 6.3.4.4.

The function option specifies the acceleration only in the prescribed direction. It
does not influence the acceleration normal to the prescribed direction.

215

6.3.4.3 User Subroutine Commands

If the user subroutine option is used, the acceleration vector may vary spatially at
any given time for each of the nodes in the node set associated with the particular
PRESCRIBED ACCELERATIONcommand block. The user subroutine option allows for
a more complex description of the acceleration field than does the function option,
but the user subroutine option also requires that you write a user subroutine to
implement this capability. The user subroutine will be used to define an acceleration
direction and a magnitude for every node to which the boundary condition will be
applied. The subroutine will be called by Presto at the appropriate time to generate
the acceleration field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.3.4.4.

See Section 6.3.7 and Chapter 9 for more details on implementing the user sub-
routine option.

6.3.4.4 Additional Commands

These command lines in the PRESCRIBED ACCELERATIONcommand block provide
additional options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the acceleration in a time history function is given as 1.5 from time 1.0
to time 2.0 and the scale factor is 0.5, then the magnitude of the acceleration from

216

time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

217

6.3.5 Fixed Rotation

BEGIN FIXED ROTATION
{node set commands }
#
component commands
COMPONENT = <string>X/Y/Z | COMPONENTS = <string>X/Y/Z
#
additional command
ACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

The FIXED ROTATIONcommand block fixes rotation about direction components
(X, Y, Z, or some combination thereof) for a set of nodes. This command block con-
tains two groups of commands—node set and component. Each of these command
groups is basically independent of the other. In addition to the command lines in
the two command groups, there is an additional command line: ACTIVE PERIODS.
The ACTIVE PERIODScommand line is used to activate or deactivate this kinematic
boundary condition for certain time periods. Following are descriptions of the differ-
ent command groups and the ACTIVE PERIODScommand line.

6.3.5.1 Node Set Commands

The {node set commands } portion of the command block specifies the nodes asso-
ciated with the boundary condition. This portion of the command block can include
some combination of the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

218

6.3.5.2 Component Commands

There are two component command lines in the FIXED ROTATIONcommand block:

COMPONENT =<string>X/Y/Z | COMPONENTS =<string>X/Y/Z

The rotation components that are to be fixed can be specified with either the
COMPONENTcommand line or the COMPONENTScommand line. There can be only one
COMPONENTcommand line or one COMPONENTScommand line in the command block.
The user can specify any combination of the components to be fixed, as in X, Z, X Z,
Y X, etc.

6.3.5.3 Additional Command

The ACTIVE PERIODScommand line can appear as an option in the FIXED ROTA-

TION command block:

ACTIVE PERIODS = <string list >period_names

This command line determines when the boundary condition is active. See Sec-
tion 2.5 for more information about this optional command line.

219

6.3.6 Prescribed Rotation

BEGIN PRESCRIBED ROTATION
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

The PRESCRIBED ROTATIONcommand block prescribes the rotation about an axis
for a given set of nodes. The rotation field associates a vector giving the magnitude
and direction of the rotation with each node in the node set. The rotation field may
vary over time and space. If the rotation field has only a time-varying component,
the function option in the above command block can be used to specify the rotation
field. If the rotation field has both time-varying and spatially varying components, a
user subroutine option is used to specify the rotation field. You cannot use both the
function option and the user subroutine option in the same command block.

The PRESCRIBED ROTATIONcommand block contains three groups of commands—
node set, function, and user subroutine. Each of these command groups is basically
independent of the others. In addition to the command lines in the three command
groups, there are two additional command lines: SCALE FACTORand ACTIVE PERI-

ODS. The SCALE FACTORcommand line can be used in conjunction with either the
function option or the user subroutine option. The ACTIVE PERIODScommand line
is used to activate or deactivate this kinematic boundary condition for certain time
periods. Following are descriptions of the different command groups and the SCALE

FACTORand ACTIVE PERIODScommand lines.

6.3.6.1 Node Set Commands

The {node set commands } portion of the PRESCRIBED ROTATIONcommand block
defines a set of nodes associated with the prescribed rotation field and can include
some combination of the following command lines:

220

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.3.6.2 Function Commands

If the function option is used, the rotation vector at any given time is the same
for all nodes in the node set associated with the particular PRESCRIBED ROTATION

command block. The direction of the rotation vector is constant for all time; the
magnitude of the rotation vector may vary with time, however.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z

FUNCTION = <string>function_name

The magnitude of the rotation can be specified either in some arbitrary direction
or along a component direction (X, Y, or Z), but not both. The DIRECTION command
line is used to specify that the rotation vector lies along an arbitrary direction. The
string defined_direction uses a direction_name that has been defined in the
domain scope (via a DEFINE DIRECTIONcommand line). The COMPONENTcommand
line is used to specify that the rotation vector lies along one of the component direc-
tions. The COMPONENTcommand line is a shortcut to an internally defined direction
vector; for example, component X corresponds to using direction vector (1, 0, 0).

The magnitude of the rotation is specified by the FUNCTIONcommand line. This
references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the rotation vector as a
function of time. The magnitude can be scaled by use of the SCALE FACTORcommand
line described in Section 6.3.6.4.

The magnitude of the rotation, as specified by the product of the function and
the scale factor, has units of radians per second.

221

The function option specifies the rotation only in the prescribed direction. It does
not influence the rotation normal to the prescribed direction.

6.3.6.3 User Subroutine Commands

If the user subroutine option is used, the rotation vector may vary spatially at any
given time for each of the nodes in the node set associated with the particular PRE-

SCRIBED ROTATIONcommand block. The user subroutine option allows for a more
complex description of the rotation field than does the function option, but the user
subroutine option also requires that you write a user subroutine to implement this
capability. The user subroutine will be used to define a rotation direction and a
magnitude for every node to which the boundary condition will be applied. The
subroutine will be called by Presto at the appropriate time to generate the rotation
field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.3.6.4.

See Section 6.3.7 and Chapter 9 for more details on implementing the user sub-
routine option.

6.3.6.4 Additional Commands

These command lines in the PRESCRIBED ROTATIONcommand block provide addi-
tional options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,

222

which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the rotation in a time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the magnitude of the rotation from time 1.0
to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

223

6.3.7 Subroutine Usage for Kinematic Boundary Conditions

The prescribed kinematic boundary conditions may be defined by a user subroutine.
All of these conditions use a node set subroutine. See Chapter 9 for an in-depth
discussion of user subroutines. The kinematic boundary conditions will be applied
to nodes. The subroutine that you write will have to return six output values per
node and one output flag per node. The usage of the output values depends on the
returned flag value for a node, as follows:

• If the flag value is negative, no constraint will be applied to the node.

• If the flag value is equal to zero, the constraint will be absolute. All compo-
nents of the boundary condition will be specified. For example, suppose you
have written a user subroutine to be called from a prescribed displacement
subroutine. The prescribed displacements are to be passed through an array
output_values . For a given node inode , the output_values array would
have the following values:

output_values(1,inode) = displacement in x at inode
output_values(2,inode) = displacement in y at inode
output_values(3,inode) = displacement in z at inode
output_values(4,inode) = not used
output_values(5,inode) = not used
output_values(6,inode) = not used

• If the flag value is equal to one, the constraint will be a specified amount in a
given direction. For example, suppose you have written a user subroutine to be
called from a prescribed displacement subroutine. The prescribed displacements
are to be passed through an array output_values . For a given node inode ,
the output_values array would have the following values:

output_values(1,inode) = magnitude of displacement
output(values(2,inode) = not used
output_values(3,inode) = not used
output_values(4,inode) = x component of direction vector
output_values(5,inode) = y component of direction vector
output_values(6,inode) = z component of direction vector

The direction in which the constraint will act is given by output_values 4
through 6 for inode . The magnitude of the displacement in the specified direction is
given by output_values 1 at inode . To compute the constraint, Presto first nor-
malizes the direction vector. Next, Presto multiplies the normalized direction vector
by the magnitude of the displacement and applies the resultant constraint vector.

224

Displacements or velocities orthogonal to the prescribed direction will not be con-
strained. (This is true regardless of whether one uses a user subroutine or not for the
prescribed kinematic boundary conditions.) Take the case of a prescribed displace-
ment condition. The displacement orthogonal to a prescribed direction of motion
depends on the internal and external forces orthogonal to the prescribed direction.
Displacement orthogonal to the prescribed direction may or may not be zero.

225

6.4 Initial Velocity Conditions

BEGIN INITIAL VELOCITY
{node set commands }
#
direction commands
COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction
MAGNITUDE = <real>magnitude_of_velocity
#
angular velocity commands
CYLINDRICAL AXIS = <string>defined_axis
ANGULAR VELOCITY = <real>angular_velocity
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }

END [INITIAL VELOCITY]

The INITIAL VELOCITY command block specifies an initial velocity field for a
set of nodes. There are two simple options for specifying the initial velocity field:
by direction and by angular velocity. The user subroutine option available is also
available to specify an initial velocity. You may use only one of the available options—
direction, angular velocity, or user subroutine.

The INITIAL VELOCITY command block contains four groups of commands—
node set, direction, angular velocity, and user subroutine. Command lines associated
with the node set commands must appear. As mentioned, command lines associated
with one of the options must also appear. Following are descriptions of the different
command groups.

6.4.1 Node Set Commands

The {node set commands } portion of the INITIAL VELOCITY command block de-
fines a set of nodes associated with the initial velocity field and can include some
combination of the following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

226

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.4.2 Direction Commands

If the direction option is used, the initial velocity is applied along a defined direction
with a specific magnitude. Following are the command lines for the direction option:

COMPONENT =<string>X|Y|Z |
DIRECTION = <string>defined_direction

MAGNITUDE =<real>magnitude_of_velocity

The direction of the velocity vector can be specified by either the COMPONENTcom-
mand line or the DIRECTION command line. If the COMPONENTcommand line is used,
the velocity is specified in one of the directions (X, Y, or Z) in the global coordinate
system. If the DIRECTION command line is used, the initial velocity is specified along
a user-defined direction. The string defined_direction uses a direction_name

that has been defined in the domain scope (via a DEFINE DIRECTIONcommand line).

The magnitude of the initial velocity is given by the MAGNITUDEcommand line
with the real value magnitude_of_velocity .

Either the COMPONENTcommand line or the DIRECTION command line must be
specified with the MAGNITUDEcommand line if you use the direction option.

6.4.3 Angular Velocity Commands

If the angular velocity option is used, the initial velocity is applied as an initial angular
velocity about some axis. Following are the command lines for the angular velocity
option:

CYLINDRICAL AXIS = <string >defined_axis

ANGULAR VELOCITY =<real>angular_velocity

The axis about which the body is initially rotating is given by the CYLINDRICAL

AXIS command line. The string defined_axis uses an axis_name that is defined
in the domain scope (via a DEFINE AXIS command line).

The magnitude of the angular velocity about this axis is given by the ANGULAR

VELOCITY command line with the real value angular_velocity . This value is
specified in units of radians per unit of time. Typically, the value for the angular
velocity will be radians per second.

227

Both the CYLINDRICAL AXIS command line and the ANGULAR VELOCITYcom-
mand line are required if you use the angular velocity option.

6.4.4 User Subroutine Commands

If the user subroutine option is used, the initial velocity vector may vary spatially at
any given time for each of the nodes in the node set associated with the particular
INITIAL CONDITION command block. The user subroutine option allows for a more
complex description of the initial velocity field than do the direction and angular-
velocity options, but the user subroutine option also requires that you write a user
subroutine to implement this capability. The user subroutine will be used to define a
velocity direction and a magnitude for every node to which the initial velocity field
will be applied. The subroutine will be called by Presto at the appropriate time to
generate the initial velocity field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

See Section 6.3.7 and Chapter 9 for more details on implementing the user sub-
routine option.

228

6.5 Force Boundary Conditions

There are a variety of force boundary conditions that are available in Presto. This
section describes these boundary conditions.

6.5.1 Pressure

BEGIN PRESSURE
{surface set commands }
SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
#
function command
FUNCTION = <string>function_name
#
user subroutine commands
SURFACE SUBROUTINE = <string>subroutine_name
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
USE DEATH = <string>death_name
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESSURE]

The PRESSUREcommand block applies a pressure to each face in the associated
surfaces. The pressure field can either be constant over the faces and vary in time,
or it can be determined by a user subroutine. If the pressure field is constant over
the faces and has only a time-varying component, the function option in the above
command block can be used to specify the pressure field. If the pressure field has
both time-varying and spatially varying components, a user subroutine option is used
to specify the pressure field. You cannot use both the function option and the user
subroutine option in the same command block.

Currently, the PRESSUREcommand block can be used for surfaces that have faces
derived from solid elements (eight-node hexahedrons, four-node tetrahedrons, eight-
node tetrahedrons, etc.), membranes, and shells.

The PRESSUREcommand block contains three groups of commands—surface set,
function, and user subroutine. Each of these command groups is basically independent
of the others. In addition to the command lines in the three command groups,
there are three additional command lines: USE DEATH, SCALE FACTORand ACTIVE

PERIODS. The USE DEATHcommand line links the pressure boundary condition to an

229

element death instance. The SCALE FACTORcommand line can be used in conjunction
with either the function option or the user subroutine option. The ACTIVE PERIODS

command line is used to activate or deactivate this force boundary condition for
certain time periods. Following are descriptions of the different command groups and
the USE DEATH, SCALE FACTOR, and ACTIVE PERIODScommand lines.

6.5.1.1 Surface Set Commands

The {surface set commands } portion of the PRESSUREcommand block defines a
set of surfaces associated with the pressure field and can include some combination
of the following command lines:

SURFACE =<string list>surface_names

REMOVE SURFACE =<string list >surface_names

In the SURFACEcommand line, you can list a series of surfaces through the string
list surface_names . There must be at least one SURFACEcommand line in the
command block. The REMOVE SURFACEcommand line allows you to delete surfaces
from the set specified in the SURFACEcommand line(s) through the string list sur-

face_names . See Section 6.1 for more information about the use of these command
lines for creating a set of surfaces used by the boundary condition.

6.5.1.2 Function Commands

If the function option is used, the pressure vector at any given time is the same for
all surfaces associated with the particular PRESSUREcommand block. The direction
of the pressure vector is constant for all time; the magnitude of the pressure vector
may vary with time, however.

Following is the command line related to the function option:

FUNCTION = <string>function_name

The magnitude of the pressure is in the opposite direction to the outward normals
of the faces that define the surfaces. The magnitude of the pressure is specified
by the FUNCTIONcommand line. This references a function_name (defined in the
domain scope in a DEFINITION FOR FUNCTIONcommand block) that specifies the
magnitude of the pressure vector as a function of time. The magnitude can be scaled
by use of the SCALE FACTORcommand line described in Section 6.5.1.4.

6.5.1.3 User Subroutine Commands

If the user subroutine option is used, the pressure may vary spatially at any given time
for each of the surfaces associated with the particular PRESSUREcommand block. The

230

user subroutine option allows for a more complex description of the pressure field than
does the function option, but the user subroutine option also requires that you write
a user subroutine to implement this capability. The user subroutine will be used to
define a pressure for every face to which the boundary condition will be applied. The
subroutine will be called by Presto at the appropriate time to generate the pressure
field.

Following are the command lines related to the user subroutine option:

SURFACE SUBROUTINE =<string >subroutine_name

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the SURFACE SUBROUTINEcom-
mand line or the NODE SETsubroutine command line. The string subroutine_name

in both command lines is the name of a FORTRAN subroutine that is written by
the user. The particular command line selected depends on the mesh-entity type for
which the pressure field is being calculated. Associating pressure values with faces
would require the use of a SURFACE SUBROUTINEcommand line. Associating pres-
sure values with nodes would require the use of a NODE SET SUBROUTINEcommand
line.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.5.1.4.

Usage requirements. Following are the usage requirements for the two types of
subroutines:

• The surface subroutine operates on a group of faces. The subroutine that you
write will return one output value per face. Suppose you write a user subroutine
that returns the pressure information through an array output_value . The
value output_value(1,iface) corresponds to the average pressure on face
iface . The values of the flags array are not used.

• The node set subroutine that you write will return one value per node. Sup-
pose you write a user subroutine that returns the pressure information through
an array output_value . The return value output_value(1,inode) is the
pressure at the node inode . The total pressure on the each face is found by

231

integrating the pressures at the nodes. The values of the flags array are not
used.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.1.4 Additional Commands

These command lines in the PRESSUREcommand block provide additional options
for the boundary condition:

USE DEATH =<string>death_name

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The USE DEATHcommand line links the pressure boundary condition to an ele-
ment death instance. The string death_name must match a name used in an ELE-

MENT DEATHcommand block. When elements are killed by the named element death
instance, the pressure boundary condition will be applied to the newly exposed faces.

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the pressure in a time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the magnitude of the pressure from time 1.0
to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

232

6.5.2 Traction

BEGIN TRACTION
{surface set commands }
SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
#
function commands
DIRECTION = <string>direction_name
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
SIMOD commands
USE SIMOD MODEL = <string>Simod_model_name
REFERENCE PLANE AXIS = <string>axis_direction
REFERENCE PLANE T1 DIRECTION = <string>t1_direction
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names
#

END [TRACTION]

The TRACTIONcommand block applies a traction to each face in the associated
surfaces. The traction has units of force per unit area. (A traction, unlike a pressure,
may not necessarily be in the direction of the normal to the face to which it is applied.)
The given traction is integrated over the surface area of a face.

The traction field can be determined by a SIERRA function, it can be determined
by a user subroutine, or it can be determined through the use of Shared Interface
MODels (SIMOD). If the traction field is constant over the faces and has only a time-
varying component, the function option in the above command block can be used to
specify the traction field. If the traction field has both time-varying and spatially
varying components, a user subroutine option is used to specify the traction field.
The SIMOD option lets you work with surface-physics models to define the traction
field on a surface. You should consult with Section 10.2 for a detailed explanation of
the use of a SIMOD model and which surface-physics models are currently available
in Presto. We will not discuss the details of the use of the SIMOD option in this
chapter.

You must use only one of the three options—function, user subroutine, or SIMOD—
in a TRACTIONcommand block.

233

Currently, the TRACTIONcommand block can be used for surfaces that have faces
derived from solid elements (eight-node hexahedrons, four-node tetrahedrons, eight-
node tetrahedrons, etc.), membranes, and shells.

The TRACTIONcommand block contains four groups of commands—surface set,
function, user subroutine, and SIMOD. Each of these command groups is basically
independent of the others. In addition to the command lines in the four command
groups, there are two additional command lines: SCALE FACTORand ACTIVE PERI-

ODS. The SCALE FACTORcommand line can be used in conjunction with the function
option, the user subroutine option, or the SIMOD option. The ACTIVE PERIODS

command line is used to activate or deactivate this force boundary condition for cer-
tain time periods. Following are descriptions of the different command groups and
the SCALE FACTORand ACTIVE PERIODScommand lines.

6.5.2.1 Surface Set Commands

The {surface set commands } portion of the TRACTIONcommand block defines a
set of surfaces associated with the traction field and can include some combination
of the following command lines:

SURFACE =<string list>surface_names

REMOVE SURFACE =<string list >surface names

In the SURFACEcommand line, you can list a series of surfaces through the string
list surface_names . There must be at least one SURFACEcommand line in the
command block. The REMOVE SURFACEcommand line allows you to delete surfaces
from the set specified in the SURFACEcommand line(s) through the string list sur-

face_names . See Section 6.1 for more information about the use of these command
lines for creating a set of surfaces used by the boundary condition.

6.5.2.2 Function Commands

If the function option is used, the traction vector at any given time is the same for
all surfaces associated with the particular TRACTIONcommand block. The direction
of the traction vector is constant for all time; the magnitude of the traction vector
may vary with time, however.

Following are the command lines related to the function option:

DIRECTION = <string>direction_name

FUNCTION = <string>function_name

The magnitude of the traction can be specified along a component direction (X,
Y, or Z). The DIRECTION command line is used to specify that the traction vector
lies along an arbitrary direction. The string defined_direction uses a direc-

234

tion_name that has been defined in the domain scope (via a DEFINE DIRECTION

command line).

The magnitude of the traction is specified by the FUNCTIONcommand line. This
references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the traction vector as a
function of time. The magnitude can be scaled by use of the SCALE FACTORcommand
line described in Section 6.5.2.4.

6.5.2.3 User Subroutine Commands

If the user subroutine option is used, the traction vector may vary spatially at any
given time for each of the surfaces associated with the particular TRACTIONcommand
block. The user subroutine option allows for a more complex description of the
traction field than does the function option, but the user subroutine option also
requires that you write a user subroutine to implement this capability. The user
subroutine will be used to define a traction for every face to which the boundary
condition will be applied. The subroutine will be called by Presto at the appropriate
time to generate the traction field.

Following is the command line related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SETsubroutine command
line. The string subroutine_name is the name of a FORTRAN subroutine that is
written by the user. Associating traction values with nodes requires the use of a NODE

SET SUBROUTINEcommand line.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.5.2.4.

Usage requirements for the node set subroutine. The node set subroutine
that you write will return six values per node. Suppose you have written a user
subroutine that passes the output values through an array output_values . For a
given node inode, the output_values array would have the following values:

output_values(1,inode) = magnitude of traction

235

output(values(2,inode) = not used
output_values(3,inode) = not used
output_values(4,inode) = x component of direction vector
output_values(5,inode) = y component of direction vector
output_values(6,inode) = z component of direction vector

The direction in which the traction will act is given by output_values 4 through
6 for inode . The magnitude of the traction in the specified direction is given by
output_values 1 at inode . The total force on each node is found by integrating
the local nodal tractions using the associated directions, which are normalized by
Presto, over the face areas. The values of the flags array are not used.

See Chapter 9 for more details on implementing the user subroutine option.

6.5.2.4 Additional Commands

These command lines in the TRACTIONcommand block provide additional options
for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the traction in a time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the magnitude of the traction from time 1.0
to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

236

6.5.3 Prescribed Force

BEGIN PRESCRIBED FORCE
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

The PRESCRIBED FORCEcommand block prescribes a force field for a given set
of nodes. The force field associates a vector giving the magnitude and direction of
the force with each node in the node set. The force field may vary over time and
space. If the force field has only a time-varying component, the function option in
the above command block can be used to specify the force field. If the force field
has both time-varying and spatially varying components, a user subroutine option is
used to specify the force field. You cannot use both the function option and the user
subroutine option in the same command block.

The PRESCRIBED FORCEcommand block contains three groups of commands—
node set, function, and user subroutine. Each of these command groups is basically
independent of the others. In addition to the command lines in the three command
groups, there are two additional command lines: SCALE FACTORand ACTIVE PE-

RIODS. The SCALE FACTORcommand line can be used in conjunction with either
the function option or the user subroutine option. The ACTIVE PERIODScommand
line is used to activate or deactivate this force boundary condition for certain time
periods. Following are descriptions of the different command groups and the SCALE

FACTORand ACTIVE PERIODScommand lines.

6.5.3.1 Node Set Commands

The {node set commands } portion of the PRESCRIBED FORCEcommand block de-
fines a set of nodes associated with the prescribed force field and can include some
combination of the following command lines:

237

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.5.3.2 Function Commands

If the function option is used, the force vector at any given time is the same for all
nodes in the node set associated with the particular PRESCRIBED FORCEcommand
block. The direction of the force vector is constant for all time; the magnitude of the
force vector may vary with time, however.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z

FUNCTION = <string>function_name

The magnitude of the force can be specified either in some arbitrary direction or
along a component direction (X, Y, or Z), but not both. The DIRECTION command
line is used to specify that the force vector lies along an arbitrary direction. The string
defined_direction uses a direction_name that has been defined in the domain
scope (via a DEFINE DIRECTION command line). The COMPONENTcommand line is
used to specify that the acceleration vector lies along one of the component directions.
The COMPONENTcommand line is a shortcut to an internally defined direction vector;
for example, component X corresponds to using direction vector (1, 0, 0).

The magnitude of the force is specified by the FUNCTIONcommand line. This
references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTION command block) that specifies the magnitude of the force vector as a
function of time. The magnitude can be scaled by use of the SCALE FACTORcommand
line described in Section 6.5.3.4.

The function option specifies the force only in the prescribed direction. It does
not set the force in any direction normal to the prescribed direction.

238

6.5.3.3 User Subroutine Commands

If the user subroutine option is used, the force vector may vary spatially at any given
time for each of the nodes in the node set associated with the particular PRESCRIBED

FORCEcommand block. The user subroutine option allows for a more complex de-
scription of the force field than does the function option, but the user subroutine
option also requires that you write a user subroutine to implement this capability.
The user subroutine will be used to define a force direction and a magnitude for every
node to which the boundary condition will be applied. The subroutine will be called
by Presto at the appropriate time to generate the force field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.5.3.4.

Usage requirements for the node set subroutine. The subroutine that you
write will return three output values per node. Suppose you write a user subroutine
that passes the output values through an array output_values . For a given node
inode , the output_values array would have the following values:

output_values(1,inode) = x component of force at inode
output_values(2,inode) = y component of force at inode
output_values(3,inode) = z component of force at inode

The three components of the force vector are given in output_values 1 through
3. The values of the flags array are ignored.

See Chapter 9 for more details on implementing the user subroutine option.

239

6.5.3.4 Additional Commands

These command lines in the PRESCRIBED FORCEcommand block provide additional
options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the force in a time history function is given as 1.5 from time 1.0 to time
2.0 and the scale factor is 0.5, then the magnitude of the force from time 1.0 to 2.0
is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

240

6.5.4 Prescribed Moment

BEGIN PRESCRIBED MOMENT
{node set commands }
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

The PRESCRIBED MOMENTcommand block prescribes a moment field for a given
set of nodes. Moments can only be defined for nodes attached to beam or shell
elements. The moment field associates a vector giving the magnitude and direction
of the moment with each node in the node set. If the moment field has only a time-
varying component, the function option in the above command block can be used to
specify the moment field. If the moment field has both time-varying and spatially
varying components, a user subroutine option is used to specify the moment field.
You cannot use both the function option and the user subroutine option in the same
command block.

The PRESCRIBED MOMENTcommand block contains three groups of commands—
node set, function, and user subroutine. Each of these command groups is basically
independent of the others. In addition to the command lines in the three command
groups, there are two additional command lines: SCALE FACTORand ACTIVE PE-

RIODS. The SCALE FACTORcommand line can be used in conjunction with either
the function option or the user subroutine option. The ACTIVE PERIODScommand
line is used to activate or deactivate this force boundary condition for certain time
periods. Following are descriptions of the different command groups and the SCALE

FACTORand ACTIVE PERIODScommand lines.

6.5.4.1 Node Set Commands

The {node set commands} portion of the PRESCRIBED MOMENTcommand block de-
fines a set of nodes associated with the prescribed moment field and can include some
combination of the following command lines:

241

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

6.5.4.2 Function Commands

If the function option is used, the moment vector at any given time is the same for all
nodes in the node set associated with the particular PRESCRIBED MOMENTcommand
block. The direction of the moment vector is constant for all time; the magnitude of
the moment vector may vary with time, however.

Following are the command lines related to the function option:

DIRECTION = <string>defined_direction |
COMPONENT =<string>X|Y|Z

FUNCTION = <string>function_name

The magnitude of the moment can be specified either about some arbitrary di-
rection or about a component direction (X, Y, or Z), but not both. The DIRECTION

command line is used to specify that the moment vector lies along an arbitrary di-
rection. The string defined_direction uses a direction_name that has been
defined in the domain scope (via a DEFINE DIRECTION command line). The COM-

PONENTcommand line is used to specify that the moment vector lies along one of the
component directions. The COMPONENTcommand line is a shortcut to an internally
defined direction vector; for example, component X corresponds to using direction
vector (1, 0, 0).

The magnitude of the moment is specified by the FUNCTIONcommand line. This
references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the magnitude of the moment vector as a
function of time. The magnitude can be scaled by use of the SCALE FACTORcommand
line described in Section 6.5.4.4.

The function option specifies the moment only about the prescribed direction. It
does not influence the moment about any direction normal to the prescribed direction.

242

6.5.4.3 User Subroutine Commands

If the user subroutine option is used, the moment vector may vary spatially at any
given time for each of the nodes in the node set associated with the particular PRE-

SCRIBED MOMENTcommand block. The user subroutine option allows for a more
complex description of the moment field than does the function option, but the user
subroutine option also requires that you write a user subroutine to implement this
capability. The user subroutine will be used to define a moment direction and a
magnitude for every node to which the boundary condition will be applied. The
subroutine will be called by Presto at the appropriate time to generate the moment
field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The magnitude set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.5.4.4.

Usage requirements for the node set subroutine. The subroutine that you
write will return three output values per node. Suppose you write a user subroutine
that passes the output values through an array output_values . For a given node
inode , the output_values array would have the following values:

output_values(1,inode) = moment about x-direction at inode
output_values(2,inode) = moment about y-direction at inode
output_values(3,inode) = moment about z-direction at inode

The three components of the moment vector are given in output_values 1
through 3. The values of the flags array are ignored.

See Chapter 9 for more details on implementing the user subroutine option.

243

6.5.4.4 Additional Commands

These command lines in the PRESCRIBED MOMENTcommand block provide additional
options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all vector magnitude values of the field
defined by the function option or the user subroutine option. For example, if the
magnitude of the moment in a time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the magnitude of the moment from time 1.0
to 2.0 is 0.75. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

244

6.6 Prescribed Temperature

BEGIN PRESCRIBED TEMPERATURE
{block set commands }
#
function command
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
#
read variable commands
READ VARIABLE = <string>variable_name
TIME = <real>time
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

The PRESCRIBED TEMPERATUREcommand block prescribes a temperature field
for a given set of nodes. The prescribed temperature is for each node in the node set.
The temperature field may vary over time and space. If the temperature field has only
a time-varying component, the function option in the above command block can be
used to specify the acceleration field. If the temperature field has both time-varying
and spatially varying components, a user subroutine option can be used to specify
the temperature field. Finally, you may also read the temperature as a variable from
the mesh file. You can select only one of these options—function, user subroutine, or
read variable—in a command block.

Temperature is applied to nodes, but it is frequently used at the element level, such
as in the case for thermal strains. If the temperatures are used at the element level,
the nodal values are averaged (depending on element) connectivity to produce an
element temperature. The temperatures must be defined for all of the nodes defining
the connectivity for any given element. For this reason, we use block commands to
derive a set of nodes at which to define temperatures. If the temperatures are used on
an element basis, then the temperature at all of the necessary nodes will be defined.

The PRESCRIBED TEMPERATUREcommand block contains four groups of
commands—block set, function, user subroutine, and read variable. Each of these
command groups is basically independent of the others. In addition to the command
lines in the four command groups, there are two additional command lines: SCALE

FACTORand ACTIVE PERIODS. The SCALE FACTORcommand line can be used in

245

conjunction with the function option, the user subroutine option, or the read vari-
able option. The ACTIVE PERIODScommand line is used to activate or deactivate
this kinematic boundary condition for certain time periods. Following are descrip-
tions of the different command groups and the SCALE FACTORand ACTIVE PERIODS

command lines.

6.6.1 Node Set Commands

The {block set commands } portion of the PRESCRIBED TEMPERATUREcommand
block defines a set of nodes associated with the prescribed temperature field and can
include some combination of the following command lines:

BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators for
constructing a set of nodes derived from some combination of element blocks. See
Section 6.1 for more information about the use of these command lines for creating
a set of nodes used by the boundary condition. There must be at least one BLOCKor
INCLUDE ALL BLOCKScommand line in the command block.

6.6.2 Function Commands

If the function option is used, the temperature at any given time is the same for
all nodes in the node set associated with the particular PRESCRIBED TEMPERATURE

command block. The command line

FUNCTION = <string>function_name

references a function_name (defined in the domain scope in a DEFINITION FOR

FUNCTIONcommand block) that specifies the temperature as a function of time. The
temperature can be scaled by use of the SCALE FACTORcommand line described in
Section 6.6.5.

6.6.3 User Subroutine Commands

If the user subroutine option is used, the temperature field may vary spatially at
any given time for each of the nodes in the node set associated with the particular
PRESCRIBED TEMPERATUREcommand block. The user subroutine option allows for a
more complex description of the temperature field than does the function option, but

246

the user subroutine option also requires that you write a user subroutine to implement
this capability. The user subroutine will be used to define a temperature for every
node to which the boundary condition will be applied. The subroutine will be called
by Presto at the appropriate time to generate the temperature field.

Following are the command lines related to the user subroutine option:

NODE SET SUBROUTINE =<string >subroutine_name

{other user subroutine command lines }

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided throughout Chapter 9.

The temperature set in the user subroutine can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.6.5.

See Chapter 9 for more details on implementing the user subroutine option.

6.6.4 Read Variable Commands

If the read variable option is used, the temperature field will be read from a variable
defined in the mesh file. The following command lines are used for the read variable
option:

READ VARIABLE =<string> mesh_var_name

TIME = <real >temp_time

The string mesh_var_name must correspond to the variable name for the temper-
ature field present in the mesh file. The temperature field may be specified at several
different times on the mesh file. You may select the temperature field at a specific
time by using the TIME command line. If the specified time on the TIME command
line does not correspond exactly to a time on the mesh file, the data on the mesh file
will be interpolated as needed to obtain the nodal temperatures.

The temperature set by the read variable option can be scaled by use of the SCALE

FACTORcommand line, as described in Section 6.6.5.

247

6.6.5 Additional Commands

These command lines in the PRESCRIBED TEMPERATUREcommand block provide
additional options for the boundary condition:

SCALE FACTOR =<real>scale_factor(1.0)

ACTIVE PERIODS = <string list >period_names

The SCALE FACTORcommand line is used to apply an additional scaling factor,
which is constant in both time and space, to all temperature values of the field defined
by the function option, the user subroutine option, or the read variable option. For
example, if the temperature in a time history function is given as 100.5 from time 1.0
to time 2.0 and the scale factor is 0.5, then the temperature from time 1.0 to 2.0 is
50.25. The default value for the scale factor is 1.0.

The ACTIVE PERIODScommand line determines when the boundary condition is
active. See Section 2.5 for more information about this command line.

248

6.7 Specialized Boundary Conditions

There are a number of specialized boundary conditions implemented in Presto. Some
of them enforce kinematic conditions, and some result in the application of loads.

6.7.1 Gravity

BEGIN GRAVITY
{node set commands }
DIRECTION = <string>defined_direction
FUNCTION = <string>function_name
GRAVITATIONAL CONSTANT = <real>g_constant
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [GRAVITY]

The GRAVITY command block is used to specify a gravity load that is applied to
all nodes selected within a command block. The gravity load boundary condition
uses the function and scale (gravitational constant and scale factor) information to
generate a body force at a node based on the mass of the node. Multiple GRAVITY

command blocks can be defined on different sets of nodes. If two different GRAVITY

command blocks reference the same node, the node will have gravity loads applied
by both of the command blocks. Care must be taken to make sure you do not apply
multiple gravity loads to one block if that if you only want one gravity load condition
applied.

The {node set commands } portion of the GRAVITYcommand block defines a set
of nodes associated with the gravity load and can include some combination of the
following command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes. See Section 6.1 for more information about the use
of these command lines for creating a set of nodes used by the boundary condition.
There must be at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKS

command line in the command block.

249

The magnitude of the gravity load is specified in some arbitrary direction via
the DIRECTION command line. The string defined_direction uses a direc-

tion_name defined in the domain scope in a DEFINE DIRECTION command line.

The strength of the gravitational field can be varied with time by using the FUNC-

TION command line. This command line references a function_name defined in the
domain scope in a DEFINITION FOR FUNCTIONcommand block.

A gravitational constant is specified by the GRAVITATIONAL CONSTANTcommand
line in the real value g_constant . For example, the gravitational constant in units
of inches and seconds would be 386.4 inches per second squared. You must set this
quantity based on the actual units for your model.

The dependent variables in the function can be scaled by the real value
scale_factor in the SCALE FACTORcommand line. At any given time, the strength
of the gravitational field is a product of the gravitational constant, the value of the
function at that time, and the scale factor.

The ACTIVE PERIODScommand line provides an additional option for the gravity
load condition. This command line can activate or deactivate the gravity load for
certain time periods. See Section 2.5 for more information about this command line.

250

6.7.2 Cavity Expansion

BEGIN CAVITY EXPANSION
EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

(spherical)
SURFACE = <string list>surface_ids
REMOVE SURFACE = <string list>surface_ids
FREE SURFACE = <real>top_surface_zcoord

<real>bottom_surface_zcoord
NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_1 <string>nodelist_id2
TIP RADIUS = <real>tip_radius
BEGIN LAYER <string>layer_name

LAYER SURFACE = <real>top_layer_zcoord
<real>bottom_layer_zcoord

PRESSURE COEFFICIENTS = <real>c0 <real>c1 <real>c2
SURFACE EFFECT = <string>NONE|SIMPLE_ON_OFF(NONE)
FREE SURFACE EFFECT COEFFICIENTS = <real>coeff1

<real>coeff2
END [LAYER <string>layer_name]
ACTIVE PERIODS = <string list>period_names

END [CAVITY EXPANSION]

The CAVITY EXPANSIONcommand block is used to apply a cavity expansion
boundary condition to a surface on a body. This boundary condition is typically
used for earth penetration studies where some type of projectile (penetrator) strikes
a target. For a more detailed explanation of the numerical implementation of the
cavity expansion boundary condition and the parameters for this boundary condition,
consult Reference 1. The cavity expansion boundary condition is a complex boundary
condition with several options, and the detailed explanation of the implementation of
the boundary condition in the above reference is required reading to fully understand
the input parameters for this boundary condition.

There are two types of cavity expansion—cylindrical expansion and spherical ex-
pansion. You can select either the spherical or cylindrical option by using the EXPAN-

SION RADIUScommand line; the default is SPHERICAL. Reference 1 describes these
two types of cavity expansion.

The boundary condition is applied to the surfaces (surface_ids) in the finite
element model specified by the SURFACEcommand line. (Any surface specified on the
SURFACEcommand line can be removed from the list of surfaces by using a REMOVE

SURFACEcommand line.) This boundary condition generates a pressure at a node
based on the velocity and surface geometry at the node. Since cavity expansion is
essentially a pressure boundary condition, cavity expansion must be specified for a
surface.

251

The target has a top free surface with a normal in the global positive z-direction;
the target has a bottom free surface with a normal in the global negative z-direction.
The point on the global z-axis intersected by the top free surface is given by the
parameter top_surface_zcoord on the FREE SURFACEcommand line. The point
on the global z-axis intersected by the bottom free surface is given by the parameter
bottom_surface_zcoord on the FREE SURFACEcommand line.

It is necessary to define two points that lie on the axis (usually the axis of rev-
olution) of the penetrator. These two nodes are specified with the NODE SETS TO

DEFINE BODY AXIScommand line. The first node should be a node toward the tip
of the penetrator (nodelist_1), and the second node should be a node toward the
back of the penetrator (nodelist_2). Only one node is allowed in each node set.

It is necessary to compute either a spherical or cylindrical radius for nodes on
the surface where the cavity expansion boundary condition is applied. This is done
automatically for most nodes. The calculations for these radii break down if the node
is close to or at the tip of the axis of revolution of the penetrator. For nodes where
the radii calculations break down, a user-defined radius can be specified with the TIP

RADIUS command line. For more information, consult Reference 1.

Embedded within the target can be any number of layers. Each layer is defined
with a LAYERcommand block. The command block begins with

BEGIN LAYER <string>layer_name

and is terminated with

END [LAYER <string>layer_name] ,

where the string layer_name is a user-selected name for the layer. This name must be
unique to all other layer names defined in the CAVITY EXPANSIONcommand blocks.
The layer properties are defined by several different command lines—LAYER SUR-

FACE, PRESSURE COEFFICIENTS, SURFACE EFFECT, and FREE SURFACE EFFECT

COEFFICIENTS. These command lines are described next.

- LAYER SURFACE =<real>top_layer_zcoord

<real>bottom_layer_zcoord

The layer has a top surface with a normal in the global positive z-direction; the
layer has a bottom surface with a normal in the global negative z-direction. In
the LAYER SURFACEcommand line, the point on the global z-axis intersected
by the top layer surface is given by the parameter top_layer_zcoord , and the
point on the global z-axis intersected by the bottom layer surface is given by
the parameter bottom_layer_zcoord .

- PRESSURE COEFFICIENTS =<real>c0 <real>c1 <real>c2

The value of the pressure at a node is derived from an equation that is quadratic

252

based on some scalar value derived from the velocity vector at the node. The
three coefficients for the quadratic equation (c0 , c1 , c2) in the PRESSURE CO-

EFFICIENTS command line define the impact properties of a layer.

- SURFACE EFFECT =<string>NONE|SIMPLE_ON_OFF(NONE)

There can be no surface effects associated with a layer, or there can be a simple
on/off surface effect model associated with a layer. The type of surface effect
is determined by the SURFACE EFFECTcommand line. The default is no sur-
face effects. If the SIMPLE_ON_OFFmodel is chosen, it is necessary to specify
free surface effect coefficients with the FREE SURFACE EFFECT COEFFICIENTS

command line.

- FREE SURFACE EFFECT COEFFICIENTS =<real>coeff1 <real>coeff2

All of the parameters defined in a LAYERcommand block apply to that layer. If
a simple on/off surface effect is applied to a layer, the surface effect coefficients
are associated with the layer values. The surface effect parameter associated
with the top of the layer is coeff1 ; the surface effect parameter associated with
the bottom of the layer is coeff2 .

The ACTIVE PERIODS command line provides an additional option for cavity
expansion. This command line can activate or deactivate cavity expansion for certain
time periods. See Section 2.5 for more information about this command line.

253

6.7.3 Silent Boundary

BEGIN SILENT BOUNDARY
SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
ACTIVE PERIODS = <string list>period_names

END [SILENT BOUNDARY]

The SILENT BOUNDARYcommand block is also referred to as a nonreflecting sur-
face boundary condition. A wave striking this surface is not reflected. This boundary
condition is implemented with the techniques described in Reference 2. The method
described in this reference is excellent at transmitting the low- and medium-frequency
content through the boundary. While the method does reflect some of the high-
frequency content, the amount of energy reflected is usually minimal. On the whole,
the silent boundary condition implemented in Presto is highly effective.

In the SURFACEcommand line, you can list a series of surfaces through the string
list surface_names . There must be at least one SURFACEcommand line in the
command block. The REMOVE SURFACEcommand line allows you to delete surfaces
from the set specified in the SURFACEcommand line(s) through the string list sur-

face_names . See Section 6.1 for more information about the use of these command
lines for creating a set of surfaces used by the boundary condition.

The ACTIVE PERIODScommand line provides an additional option for the bound-
ary condition. This command line is used to activate or deactivate the boundary
condition for certain time periods. See Section 2.5 for more information about this
command line.

254

6.7.4 Spot-Weld

BEGIN SPOT WELD
NODE SET = <string list>nodelist_ids
REMOVE NODE SET = <string list>nodelist_ids
SURFACE = <string list>surface_ids
REMOVE SURFACE = <string list>surface_ids
SECOND SURFACE = <string>surface_id
NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp[1.0]
TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp
TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_tang_disp[1.0]
FAILURE ENVELOPE EXPONENT = <real>exponent
FAILURE FUNCTION = <string>fail_func_name
FAILURE DECAY CYCLES = <integer>number_decay_cycles
SEARCH TOLERANCE = <real>search_tolerance
ACTIVE PERIODS = <string list>period_names

END [SPOT WELD]

The spot-weld option lets the user model an “attachment” between a node on
one surface and a face on another surface. This option models a weld or a small
screw or bolt with a force-displacement curve like that shown in Figure 6.1. The
displacement shown in the figure is the distance that the node moves from the nearest
point on the face as measured in the original configuration. The force shown in
the figure is the force at the attachment as a function of the distance between the
two attachment points. (The force-displacement curve assumes the two attachment
points are originally at the same location and the initial distance is zero.) Two force-
displacement curves are required for the spot-weld model. One curve models normal
behavior, and the other curve models tangential behavior.

The attachment in Presto is defined between a node on one surface and the closest
point on an element face on the other surface. Since a face is used to define one of
the attachment points, it is possible to compute a normal vector and a tangent vector
associated with the face. This allows us to resolve the displacement (distance) and
force into normal and tangential components. With normal and tangential vectors
associated with the attachment, the attachment can be characterized for the case of
pure tension and pure shear.

Presto includes two mechanisms for determining failure for cases that fall between
pure tension and pure shear. In the first case, failure is governed by the equation:

255

Figure 6.1: Force-displacement curve for spot-weld.

(un/uncrit)
p + (ut/utcrit)

p < 1.0 . (6.1)

In Equation 6.1, the distance from the node to the original attachment point on
the face as measured normal to the face is un, which is defined as the normal distance.
The maximum value given for un in the normal force-displacement curve is uncrit . The
distance from the node to the original attachment point on the face as measured along
a tangent to the face is ut, which is defined as the tangential distance. The maximum
value given for ut in the tangential force-displacement curve is utcrit. In Figure 6.1, the
maximum value for the displacement is ucrit. The value p is a user-specified exponent
that controls the shape of the failure surface.

Alternatively, Presto permits a user-specified function to determine the failure
surface. The function defines the ratio of ut/utcrit at which failure will occur as a
function of un/uncrit . The function must range from 0.0 to 1.0, and have a value of
1.0 at 0.0 and a value of 0.0 at 1.0. These restrictions preserve proper failure for the
cases of pure tension and pure shear.

To use the spot-weld option in Presto, a SPOT WELDcommand block begins with
the input line

BEGIN SPOT WELD

and is terminated with the input line

END [SPOT WELD].

Within the command block, it is necessary to specify the set of nodes on one side
of the spot-weld with the NODE SETcommand line. The NODE SETcommand line can
list one or more node sets. Any node set listed on the NODE SETcommand line can

256

be deleted from the list of node sets by using a REMOVE NODE SETcommand line. A
set of element faces on an opposing side of the spot-weld (which we will refer to as the
first surface) is specified with the SURFACEcommand line. The SURFACEcommand
line can list one or more surfaces. Any surface listed on the SURFACEcommand line
can be deleted from the list of surface by using a REMOVE SURFACEcommand line.
For any node in the node set, the closest point to this node on the opposing surface
should lie within the element faces specified by the SURFACEcommand line.

The normal force-displacement curve is specified by a function named by the value
function_nor_disp in the NORMAL DISPLACEMENT FUNCTIONcommand line. This
function can be scaled by the real value scale_nor_disp in the NORMAL DISPLACE-

MENT SCALE FACTORcommand line; the default for this factor is 1.0. The tangen-
tial force-displacement curve is specified by a function named by the string func-

tion_tang_disp in the TANGENTIAL DISPLACEMENT FUNCTIONcommand line. This
function can be scaled by the real value scale_tang_disp given in the TANGENTIAL

DISPLACEMENT SCALE FACTORcommand line; the default for this factor is 1.0.

The failure surface between pure tension and pure shear is controlled by specifying
either the failure envelope exponent, p in Equation 6.1, or a failure function. The
failure exponent is specified by the real value exponent in the FAILURE ENVELOPE

EXPONENTcommand line. The failure function is specified by the FAILURE FUNCTION

command line. If both a failure function and a failure exponent are given, then the
failure function is used.

For an explicit, transient dynamics code like Presto, it is better to remove the
force for the spot-weld over several load steps rather than over a single load step
once the failure criterion is exceeded. The FAILURE DECAY CYCLEScommand line
controls the number of load steps over which the final force is removed. To remove
the final force at a spot-weld over five load increments, the integer specified by num-

ber_decay_cycles would be set to 5. Once the force at the spot-weld is reduced to
zero, it remains zero for all subsequent time.

The spot-weld can take on area-based behavior by specifying a surface in place of
a set of nodes. The identifier of this surface is specified by the string surface_id

in the SECOND SURFACEcommand line. The area-based spot-weld creates a weld
between all nodes on the second surface and the faces of the first surface. The load-
resistance curve at each node is derived from the tributary area of the node times
the given force-displacement curves. Thus, for the area-based spot-welds, the force-
displacement curves give the force per unit area resisted by the weld. The user must
set a tolerance for the node-to-face search with the

SEARCH TOLERANCE =<real>search_tolerance

command line. The value you select for search tolerance will depend upon the distance
between the nodes and surfaces used to define the spot-weld.

257

The ACTIVE PERIODScommand line provides an additional option for the bound-
ary condition. This command line is used to activate or deactivate the boundary
condition for certain time periods. See Section 2.5 for more information about this
command line.

258

6.7.5 Line Weld

BEGIN LINE WELD
SURFACE = <string list> surface_names
REMOVE SURFACE = <string list> surface_names
BLOCK = <string list> block_names
REMOVE BLOCK = <string list>block_names
R DISPLACEMENT FUNCTION = <string>r_disp_function_name
R DISPLACEMENT SCALE FACTOR = <real>r_disp_scale
S DISPLACEMENT FUNCTION = <string>s_disp_function_name
S DISPLACEMENT SCALE FACTOR = <real>s_disp_scale
T DISPLACEMENT FUNCTION = <string>t_disp_function_name
T DISPLACEMENT SCALE FACTOR = <real>t_disp_scale
R ROTATION FUNCTION = <string>r_rotation_function_name
R ROTATION SCALE FACTOR = <real>r_rotation_scale
S ROTATION FUNCTION = <string>s_rotation_function_name
S ROTATION SCALE FACTOR = <real>s_rotation_scale
T ROTATION FUNCTION = <string>t_rotation_function_name
T ROTATION SCALE FACTOR = <real>t_rotation_scale
FAILURE ENVELOPE EXPONENT = <real>k
FAILURE DECAY CYCLES = <integer>number_decay_cycles
ACTIVE PERIODS = <string list>period_names

END LINE WELD

The line-weld capability is used to weld the edge of a shell to the face of another
shell. The bond can transmit both translational and rotational forces. When failure
of the line weld occurs, it breaks and no longer transmits any forces.

The edge of the shell that is tied to a surface is modeled with a block of one-
dimensional elements (truss, beam, spring, etc.). The edge of the shell and the one-
dimensional elements will share the same nodes. We will refer to the shell edge and
the one-dimensional elements associated with it as the one-dimensional part of the
line-weld model. The element blocks with the one-dimensional elements are specified
by using the BLOCKcommand line. More than one element block can be listed on
this command line. The element blocks referenced by the BLOCKcommand line must
be one-dimensional elements—truss, beam, spring, etc.

The other part of the line weld is a set of faces defined by shell elements; this set of
faces is the two-dimensional part of the line weld. The surface (the two-dimensional
part of the model) to which the nodes (from the one-dimensional part of the model)
are to be bonded is defined by any surface of element faces derived from shell elements.
The line weld will bond each node in the element blocks listed in the BLOCKcommand
line to the closest face (or faces) of element faces in the surfaces listed in the SURFACE

command line. More than one surface can be listed on this command line.

259

Each section of the line weld has its own local coordinate system (r, s, t). The
r-direction lies along a one-dimensional element (and hence on the surface). The
s-direction lies on the surface and is tangential to the one-dimensional element. The
t-direction lies normal to the face and is orthogonal to the r- and s-directions. Force-
displacement functions and moment-rotation functions may be specified for all axes
in the local coordinate system. If one of the functions is left out, the resistance is
zero for that axis. These functions are similar to the ones used for the spot-weld (see
Figure 6.1).

The force-displacement function in the r-direction represents shear resistance in
the direction of the weld; this function is specified by a SIERRA function name on
the R DISPLACEMENT FUNCTIONcommand line. The force-displacement in the s-
direction represents shear resistance tangential to the weld; this function is specified
by a SIERRA function name on the S DISPLACEMENT FUNCTIONcommand line.
The force-displacement in the t-direction function represents tearing resistance nor-
mal to the surface; this function is specified by a SIERRA function name on the
T DISPLACEMENT FUNCTIONcommand line. The moment-rotation about the r-axis
represents a rotational tearing resistance; this is specified by a SIERRA function name
on the R ROTATION FUNCTIONcommand line. The rotational resistances about the
s- and t-directions are likely not very meaningful, as rotations along these axes should
be well constrained by the normal and tangential displacement relations. These two
rotational resistances, if used, are defined with SIERRA function names on the S

ROTATION FUNCTIONand T ROTATION FUNCTIONcommand lines. Note that each
SIERRA function used in this command block is defined via a DEFINITION FOR

FUNCTIONcommand block in the domain scope.

Any of the above functions can be scaled by using a corresponding scale factor.
For example, the force-displacement function on the R DISPLACEMENT FUNCTION

command line can be scaled by the value r_disp_scale on the R DISPLACEMENT

SCALE FACTORcommand line. Only the force values of the force-displacement curve
will be scaled.

The failure function for the line weld is similar to that for the spot-weld. Denote
the displacement or rotation associated with a line weld as δ. Suppose that δi is
a displacement in the r-direction. The force-displacement curve specified on the R

DISPLACEMENT FUNCTIONcommand line has a maximum value η. This is the maxi-
mum displacement the weld can endure in the r-direction before breaking. Associate
this value of η with δi by designating it as ηi. Repeat this pairing process for all
of the displacements and rotations defining the line weld. Each displacement com-
ponent in the line weld will be paired with one of the three maximum displacement
values associated with the line weld. Each rotation component in the line weld will be
paired with one of the three maximum rotation values associated with the line weld.
Breaking of the weld under combined loading is calculated the same as the spot-weld.
The weld breaks if

260

k

√
∑(

δi

ηi

)k

> 1 . (6.2)

In the above equation, the parameter k is set by the user. A typical value for k is
2. The summation takes place over all the failure functions (force-displacement and
moment-rotation) for all of the nodes. (The value for k is specified on the FAILURE

ENVELOPE EXPONENTcommand line.)

For an explicit, transient dynamics code like Presto, it is better to remove the
forces for the line weld over several time steps rather than over a single time step
once the failure criterion is exceeded. The FAILURE DECAY CYCLEScommand line
controls the number of time steps over which the final force is removed. To re-
move the final force at a line weld over five time steps, the integer specified by num-

ber_decay_cycles would be set to 5. Once the force in the line weld is reduced to
zero, it remains zero for all subsequent time.

The ACTIVE PERIODScommand line provides an additional option for the bound-
ary condition. This command line is used to activate or deactivate the boundary
condition for certain time periods. See Section 2.5 for more information about this
command line.

261

6.7.6 Viscous Damping

BEGIN VISCOUS DAMPING <string>damp_name
{block set commands }
#
MASS DAMPING COEFFICIENT = <real>mass_damping
STIFFNESS DAMPING COEFFICIENT = <real>stiff_damping
#
additional commands
ACTIVE PERIODS = <string list>period names

END [VISCOUS DAMPING <string>damp_name]

The VISCOUS DAMPINGcommand block adds simple Rayleigh viscous damping
to mesh nodes. Presto computes a damping coefficient at each node, which is then
multiplied by the node velocity to create a damping force. The damping coefficient
is the sum of the mass times a mass damping coefficient and the nodal stiffness times
a stiffness damping coefficient. In general, the mass damping portion damps out
low-frequency modes in the mesh, while the stiffness damping portion damps out
higher-frequency terms. Appropriate values for the damping coefficients depend on
the frequencies of interest in the mesh. The general expression for the critical damping
fraction, cd, for a given frequency is

cd = (kd ∗ ω + md/ω)/2 , (6.3)

where kd is the stiffness damping coefficient, md is the mass damping coefficient, and
ω is the frequency of interest. The stiffness damping portion must be used with
caution. Because this term depends on the stiffness, it can affect the critical time
step; thus certain ranges of values for the stiffness damping coefficient can change the
critical time step for the mesh. Presto does not currently modify the critical time step
based on the selected values for this coefficient, thus some choices for this parameter
can cause solution instability.

6.7.6.1 Block Set Commands

The {block set commands} portion of the VISCOUS DAMPINGdefines a set of element
blocks associated with the viscous damping and can include some combination of the
following command lines:

BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of element blocks. See Section 6.1 for more information about

262

the use of these command lines for creating a set of element blocks used by viscous
damping. There must be at least one BLOCKor INCLUDE ALL BLOCKScommand line
in the command block.

All of the nodes associated with the elements specified by the block set commands
will have viscous damping forces applied.

6.7.6.2 Viscous Damping Coefficient

The mass damping coefficient in Equation 6.3, md, is specified as the parameter
mass_damping on the command line

MASS DAMPING COEFFICIENT =<real>mass_damping .

Mass damping most strongly damps the low-frequency modes.

The stiffness damping coefficient command line in Equation 6.3, kd, is specified as
the parameter stiff_damping on the command line

STIFFNESS DAMPING COEFFICIENT =<real>stiff_damping .

Stiffness damping most strongly damps high-frequency modes. Large values for
the stiffness damping coefficient can affect the critical time step. Since Presto does
not modify the critical time step based on the stiffness damping coefficient, it may
be necessary for the user to manually decrease the critical time step.

The ACTIVE PERIODScommand line provides an additional option for the vis-
cous damping condition. This command line can activate or deactivate the viscous
damping for certain time periods. See Section 2.5 for more information about this
command line.

263

6.8 References

1. Brown, K. H., J. R. Koteras, D. B. Longcope, and T. L. Warren. CavityEx-
pansion: A Library for Cavity Expansion Algorithms, Version 1.0, in review.
Albuquerque, NM: Sandia National Laboratories, 2003.

2. Lysmer, J., and R. L. Kuhlmeyer. “Finite Dynamic Model for Infinite Media.”
Journal of the Engineering Mechanics Division, Proceedings of the American
Society of Civil Engineers (August 1979): 859–877.

3. Cook, R. D., Malkus, D. S., and Plesha, M. E. Concepts and Applications of
Finite Element Analysis, Third Edition. New York: John Wiley and Sons, 1989.

264

Chapter 7

Contact

This chapter describes the input syntax for defining interactions of contact surfaces
in a Presto analysis. For more information on contact and its computational details,
consult References 1 and 2.

Contact refers to the interaction of one or more bodies when they physically touch.
This can include the interaction of one part of a surface against another part of the
same surface, the surface of one body against the surface of another body, and so
forth. The contact algorithms within Presto are designed to ensure that surfaces do
not interpenetrate in a nonphysical way, and that the interface behavior is computed
correctly according to any user-specified surface-physics models (e.g., energy dissipa-
tion from a friction model). Presto uses a kinematic approach rather than a penalty
approach to eliminate the interpenetration of surfaces. In the kinematic approach, a
series of constraint equations are satisfied that remove interpenetration. A penalty
approach can be thought of as introducing “stiff” springs between contact surfaces
as a means of preventing interpenetration.

In the current version of Presto, contact between surfaces is computed as node-
face interactions. To establish some key definitions for node-face contact and node-
face interactions, we consider the simple two-dimensional contact problem shown in
Figure 7.1. There are two blocks, a and b. Block a is enclosed by surface a, and
block b is enclosed by surface b. In finite element models, a surface is defined by a
collection of finite element faces. The surface of a block of hexahedral elements, for
example, is defined by a collection of quadrilateral faces on the surface of the block.
For our two-dimensional example, the faces are a straight line between two nodes.
We only show the faces on the portions of the surfaces that will come into contact.

Figure 7.1 shows the two blocks at time step n. Figure 7.2 shows the two blocks at
time step n+1. The blocks have moved and deformed under the influence of external
forces. Contact has not been taken into account, and we now observe interpenetration
of the two blocks. We remove this interpenetration by applying our contact algorithm.

265

Figure 7.1: Two blocks at time step n before contact.

For interpenetration to occur as shown in Figure 7.2, any node on surface a that
interpenetrates surface b must pass through some face on surface b. Likewise, each
node on surface b that interpenetrates surface a must pass through some face on
surface a. We could push all of the nodes on surface a so that they lie on surface b,
where surface b has the configuration shown in Figure 7.2. Or we could push all of the
nodes on surface b so that they lie on surface a, where surface a has the configuration
shown in Figure 7.2. In some cases, we do use one of these two options, a to b or b to
a. However, we typically do something “in between” and move nodes to what can be
described as an interface surface, which is shown by a thick black line in Figure 7.2.
The interface surface is shown as a straight line, but it would really be a curved line
in all but the most unusual cases for a two-dimensional problem like the one shown.
For three-dimensional problems, the interface surface will be a complex surface in
three-dimensional space.

For our “in between” solution, each node on surface a that has penetrated some
face on surface b, we compute some set of forces (based on the amount of node
penetration) on the node on a and the nodes associated with the face on b to remove
“some part” of the interpenetration. Likewise, for each node on surface b that has
penetrated some face on surface a, we can compute some set of forces (based on

266

Figure 7.2: Two blocks at time step n+1, after penetration.

the amount of node penetration) on surface b and the nodes associated with the
face on surface a to remove “another part” of the interpenetration. This node-face
interaction from both contact surfaces is typically what is encountered in Presto, and
it is referred to as “symmetric” contact. After the nodes on both surfaces, a and b,
have been moved, we have defined an interface surface. A more detailed discussion of
how we move the nodes on both surfaces is given in those sections related to kinematic
partitioning, Section 7.13.4 and Section 7.14.2.

The simple two-dimensional example we have just discussed is analogous to much
of the contact that is encountered when contact in Presto is used in an analysis.
Surfaces are generated that consist of a collection of faces, each face being defined by
a nodal connectivity. Node-face interactions from both contact surfaces (symmetric
contact) are used to move nodes to account for any interpenetration of the two sur-
faces. Interpenetration means we have a node on a surface that has “moved through”
a face on an opposing surface.

Contact in Presto will handle the node-face contact just presented. It will also
handle variations of the node-face contact we have just discussed. Some of these
variations are as follows:

267

• In some cases, you may want one surface of a surface pair to determine the
interface surface. One surface will be designated as the master surface. The
opposing surface will be designated as the slave surface. The nodes on the
slave surface will be moved to the master surface. The master surface sets the
interface surface. This arrangement would be a pure master-slave situation.
You might want to use this arrangement if you had a very stiff surface like steel
contacting a very weak surface like foam.

• In some cases, you may want one surface of a surface pair to be more influential
in determining the interface surface than its opposing surface. This arrangement
is done by “weighting” the more influential surface and involves a concept called
kinematic partitioning. The above case of pure master-slave represents the
limiting case for kinematic partitioning.

• A special case of contact called tied contact allows you to tie two surfaces
on different objects together. The two surfaces that are tied together share a
coincident surface or are in very close proximity at time 0.0. The initial point
of contact between a tied node and an opposing face at time 0.0 is maintained
for all times. At each time step, the node is moved so that it as the same point
on the face regardless of where the faces moves or how the face deforms.

• One of the surfaces in a contact pair can be an analytic surface. An analytic
surface is defined by an algebraic expression, not by a collection of faces derived
from elements. The algebraic expression that defines the surface of a cylinder
is an example of an analytic surface. The nodes on the opposing surface cannot
penetrate the analytic surface.

• Instead of having two surfaces in contact, you can have a set of nodes not
associated with faces that contacts a surface. We refer to this set of nodes as
a “contact node set.” The nodes in the contact node set can contact a surface
that is a collection of faces (the usual surface definition) or an analytic surface.
The nodes in the contact node set cannot penetrate the surface.

• A mesh could have an initial interpenetration of two surfaces due to the meshing
process. We refer to this situation as “initial overlap.” You have the option of
removing this initial overlap.

• An element block can contact itself. A block of elements may deform to such an
extent that a part of the surface of the block comes into contact with another
part of the surface of the block. This is referred to as “self-contact.” For self-
contact, a node that is part of an element block can contact a face that is
exterior to the same element block.

There are some special considerations for contact with structural elements (shells,
springs, trusses, beams) with the current implementation of contact. A shell element

268

has both a top face and a bottom face that are defined by the same geometric entity.
One-dimensional elements (springs, trusses, and beams) have no faces.

Shell elements are handled by the contact algorithm, but they are much more
difficult to handle than solid elements. Determining whether a node has penetrated
a shell element is more difficult than determining whether a node has penetrated a
solid. For a solid element with an external face, there is only one normal for the face.
For a shell element, there are two faces—one on each side of the geometric entity
that defines the shell. Each face has a normal, and the two normals for the shell
element point in opposite directions. For shell elements, two faces are constructed
for the element within the contact algorithm. The faces, each with a unique outward
normal, can be coincident, or they can be separated by the thickness of the shell.
Separating the two shell faces that are originally coincident at the geometric plane of
the shell by the thickness of the shell is referred to as “lofting.” To implement lofting,
we need information about the thickness of the shell. This information is specified in
the SHELL SECTIONcommand block described in Section 5.2.2. For more information
on lofting, see Section 7.8.

Contact for shell elements is only considered on shell faces; shell edges are currently
not considered. The contact of a shell edge with another shell edge is not detected,
and the contact of a shell edge with a continuum element edge is not detected. A shell
element can coincide with the face of a continuum element. The contact algorithm
will properly account for this situation. Two shell elements can also overlay each
other, i.e., share the same set of nodes. The contact algorithm will also properly
account for this situation. For a block of shell elements, two surfaces are created in
contact.

Contact for one-dimensional elements (springs, trusses, beams) is currently imple-
mented only for one-dimensional elements contacting a surface. The contact algorithm
will not detect contact of a one-dimensional element with the edge of a continuum
element, with the edge of a shell element, or with another one-dimensional element.
Contact of one-dimensional elements is discussed in Section 7.2.4.

Contact in Presto is implemented in two distinct phases: a search algorithm and an
enforcement algorithm. The search algorithm identifies nodes that have penetrated a
face, while the enforcement algorithm computes the forces to remove penetration and
the forces that observe the user-specified surface physics. The contact search within
Presto focuses on large-scale global contact in a massively parallel environment. This
processing step can be quite expensive, taking upwards of 60% of the analysis time,
especially on multiprocessor analyses. The search algorithm relies on normal and
tangential tolerances to describe a region around each face within which any nodes
found are identified as potential interactions. The size of these tolerances is problem
dependent.

The enforcement algorithm is based on a kinematic approach that satisfies mo-

269

mentum balance by default or, optionally, a penalty approach. A kinematic approach
with momentum balance enforcement, where iterations are used to ensure normal
impact momentum balance and frictional response, is always more accurate than the
penalty approach. Consequently, when the surface interaction involves a frictional
response, the kinematic approach with momentum balance is recommended. Cur-
rently, the penalty approach is under development. Use the kinematic approach with
momentum balance (the default) until the penalty approach has been fully developed
and tested.

A number of friction models are available to describe the surface interactions.
In this chapter on contact, we will use the term friction model for what is really a
surface-physics model.

Contact within a Presto analysis is defined within a CONTACT DEFINITIONcom-
mand block. Within the contact definition scope, there are command lines and com-
mand blocks that define the specifics for the interaction of surfaces via the contact
algorithm. Some of the command lines and command blocks within the contact scope
set up default parameters that affect all contact calculations. Some of the command
blocks in the contact scope affect only the interaction between a pair of surfaces.

There are three approaches that can be used to define a contact problem:

1. Accept all of the Presto default parameters for a problem.

2. Accept the Presto default parameters for some of the contact surfaces. For the
rest of the contact surfaces, the user can change some of the Presto default
settings.

3. Define all surface-pair interactions separately.

Note that the speed of contact is based primarily on the number of nodes and faces
in the contact surfaces and, to a much lesser extent, on the number of interactions
specified. Consequently, choosing the third approach above is not likely to reduce the
run time significantly.

The general pattern of syntax for describing contact is as follows:

- Identify all surfaces that need to be considered for contact. This is done with
command lines (or command blocks) within the contact scope.

- Specify any analytic surface used for contact. Analytic surfaces are described
with a command block.

- Specify any special contact options such as initial overlap removal or angle
for multiple interactions. This is done with command lines within the contact
scope.

270

- Describe friction models used in the surface interactions for this analysis. Cur-
rently, there are 11 types of primary friction models. The Shared Interface
MODels (SIMOD) and user subroutines can also be used as friction models. A
friction model is described with a command block.

- Set contact search options that will serve as defaults for all of the surface inter-
actions. These values are set in the SEARCH OPTIONScommand block.

- Set contact enforcement options that will apply to all of the surface interactions.
These values are set in the ENFORCEMENT OPTIONScommand block.

- Set default interaction values that apply to all of the surface interactions. These
values are set in the INTERACTION DEFAULTScommand block.

- Specify values for interactions between specific contact surfaces. This is done
within an INTERACTION command block. Values specified in this command
block override the defaults for the particular pair of surface interactions.

271

7.1 Contact Definition Block

All commands for contact occur within a CONTACT DEFINITIONcommand block. A
summary of these commands follows.

BEGIN CONTACT DEFINITION <string>name
#
contact surface and node set definition
CONTACT SURFACE <string>name

CONTAINS <string list>surface_names
#
SKIN ALL BLOCKS = <string>ON|OFF(OFF)

[EXCEPT <string list> block_names]
#
BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names
SURFACE = <string list>surface_names
NODE SET = <string list>node_set_names
REMOVE BLOCK = <string list>block_names
REMOVE SURFACE = <string list>surface_names
REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]
#
CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names
#
analytic surfaces
BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction
POINT = <string>defined_point

END [ANALYTIC PLANE <string>name]
#
BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point
AXIAL DIRECTION = <string>defined_axis
RADIUS = <real>cylinder_radius
LENGTH = <real>cylinder_length
CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]
#
BEGIN ANALYTIC SPHERE <string>name

CENTER = <string>defined_point
RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]
end contact surface and node set definition

272

#
UPDATE ALL SURFACES FOR ELEMENT DEATH = <string>ON|OFF(ON)
#
BEGIN REMOVE INITIAL OVERLAP

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
SHELL OVERLAP ITERATIONS = <integer>max_iter(10)
SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END [REMOVE INITIAL OVERLAP]
#
MULTIPLE INTERACTIONS = <string>ON|OFF(ON)
MULTIPLE INTERACTIONS WITH ANGLE = <real>angle(60.0)
#
SURFACE NORMAL SMOOTHING = <string>ON|OFF(OFF)
#
shell lofting
BEGIN SHELL LOFTING

LOFTING ALGORITHM = <string>ON|OFF(ON)
COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)
COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)
END [SHELL LOFTING]
#
SHELL LOFTING = <string>ON|OFF(ON)
end shell lofting
#
CONTACT VARIABLES = <string>ON|OFF(OFF)
#
surface-physics models
BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]
#
BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff
END [CONSTANT FRICTION MODEL <string>name]
#
BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]
#
BEGIN SPRING WELD MODEL <string>name

NORMAL DISPLACEMENT FUNCTION = <string>func_name
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name

273

TANGENTIAL DISPLACEMENT SCALE FACTOR =
<real>scale_factor(1.0)

FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SPRING WELD MODEL <string>name]
#
BEGIN SURFACE WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SURFACE WELD MODEL <string>name]
#
BEGIN AREA WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [AREA WELD MODEL <string>name]
#
BEGIN ADHESION MODEL <string>name

ADHESION FUNCTION = <string>func_name
ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]
#
BEGIN COHESIVE ZONE MODEL <string>name

TRACTION DISPLACEMENT FUNCTION = <string>func_name
TRACTION DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
CRITICAL NORMAL GAP = <real>crit_norm_gap
CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]
#
BEGIN JUNCTION MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)
NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION =

<real>distance

274

END [JUNCTION MODEL <string>name]
#
BEGIN THREADED MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)
TANGENTIAL TRACTION GAP FUNCTION = <string>func_name
TANGENTIAL TRACTION GAP SCALE FACTOR =

<real>scale_factor(1.0)
NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [THREADED MODEL <string>name]
#
BEGIN PV_DEPENDENT MODEL <string>name

STATIC COEFFICIENT = <real>stat_coeff
DYNAMIC COEFFICIENT = <real>dyn_coeff
VELOCITY DECAY = <real>vel_decay
REFERENCE PRESSURE = <real>p_ref
OFFSET PRESSURE = <real>p_off
PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string>name]
#
BEGIN SIMOD SHARED MODEL <string>name

USE SIMOD MODEL = <string>name
FAILED MODEL = <string>name|FRICTIONLESS

(FRICTIONLESS)
END [SIMOD SHARED MODEL <string>name]
#
BEGIN SIMOD UNKNOWN MODEL <string>name

USE SIMOD MODEL = <string>name
FAILED MODEL = <string>name|FRICTIONLESS

(FRICTIONLESS)
END [SIMOD UNKNOWN MODEL <string>name]
end surface physics models
#
BEGIN USER SUBROUTINE MODEL <string>name

INITIALIZE MODEL SUBROUTINE = <string>init_model_name
INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name
INITIALIZE NODE STATE DATA SUBROUTINE =

275

<string>init_node_data_name
LIMIT FORCE SUBROUTINE = <string>limit_force_name
ACTIVE SUBROUTINE = <string>active_name
INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]
#
search options command block
BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)
GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)
SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED

(AUTOMATIC)
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
SECONDARY DECOMPOSITION = <string>ON|OFF(ON)

END [SEARCH OPTIONS <string>name]
#
enforcement
BEGIN ENFORCEMENT OPTIONS [<string>name]

ENFORCEMENT ALGORITHM = <string>MOMENTUM_BALANCE|
PENALTY(MOMENTUM_BALANCE)

MOMENTUM BALANCE ITERATIONS = <integer>num_iter(5)
END [ENFORCEMENT OPTIONS <string>name]
#
BEGIN INTERACTION DEFAULTS [<string>name]

SURFACES = <string list>surface_names
SELF CONTACT = <string>ON|OFF(OFF)
GENERAL CONTACT = <string>ON|OFF(OFF)
AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)
END [INTERACTION DEFAULTS <string>name]
#
BEGIN INTERACTION [<string>name]

SURFACES = <string>surface1 <string>surface2
MASTER = <string>surface
SLAVE = <string>surface
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>friction_model_name|

276

FRICTIONLESS(FRICTIONLESS)
AUTOMATIC KINEMATIC PARTITION
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
END [INTERACTION <string>name]
end enforcement
#

END [CONTACT DEFINITION <string>name]

The command block begins with the input line

BEGIN CONTACT DEFINITION<string>name

and is terminated with the input line

END [CONTACT DEFINITION <string>name] ,

where name is a name for this contact definition. The name should be unique among
all the contact definitions in an analysis. All other contact commands are encapsu-
lated within this command block, as shown in the summary of the block presented
previously. These other contact commands are described in Section 7.2 through Sec-
tion 7.14. Section 7.15 explains how to implement contact for several example prob-
lems.

A typical analysis will have only one CONTACT DEFINITION command block.
However, more than one contact definition can be used. As each CONTACT DEF-

INITION command block creates its own contact entity, fewer of these command
blocks provide more efficient contact processing.

277

7.2 Descriptions of Contact Surfaces

In general, contact determines whether one surface has interpenetrated another sur-
face. As indicated previously, a surface is defined by an analytic representation or
a collection of finite element faces. This section describes how to define a surface
composed of finite element faces. It also describes how to define a set of nodes (zero-
dimensional entities) not associated with faces that can contact a surface, the surface
being composed of finite element faces or the surface being an analytic surface. This
latter case (a node not associated with a face contacting a surface) is useful for mod-
els where, for example, we have both continuum and SPH elements. (We will refer
to nodes not associated with faces as “unassociated” nodes.) Defining rigid analytic
surfaces is discussed in Section 7.3.

Generally, a surface is defined as a collection of finite element faces. Both con-
tinuum elements and shell elements have faces. For a continuum element, any face
that is not shared with another element can be considered for contact. For a shell
element, one element can have both a top face and a bottom face. These top and bot-
tom surfaces are automatically created for the contact algorithm and may be lofted
by a user-specified thickness. Shell contact is done by computing the contact forces
on the top and bottom surfaces of the shells and then moving the resulting forces
back to the original shell nodes.

At this point, it is important to introduce the concept of “skinning” a block of
elements. We can generate a surface (a collection of faces) from a block of continuum
elements by skinning the block of elements. All exterior faces (any face not shared
by two elements) will be associated with the surface for that block when the block
is skinned. If we have two blocks of continuum elements that are connected (some
of the element faces in one block are shared by the element faces in the other block)
and we skin both of these blocks, then the skinned surface for each block will consist
of faces that are exterior to both blocks. For this case, we will have generated two
surfaces. The set of external faces from skinning the first block will have a unique
surface name, and the set of external faces generated by skinning the second block
will have a unique surface name. Any face shared by the two blocks will not be in
the surfaces derived by skinning the two blocks. If we have a single block of shell
elements and we skin the block, then all the top faces of all the shell elements will
be one surface and the bottom faces of all the shell elements will be another surface.
(In Presto, we do not have to be concerned with naming two distinct surfaces for
shell elements. This is handled internally by the code.) Suppose we have two blocks
of shell elements in which none of the elements in one block overlap the elements in
another block; the two blocks are joined only at the shell edges. In this case, we will
get a unique surface identifier that references both the top and bottom faces of all
the shell elements in the first block, and we will get a unique surface identifier that
references both the top and bottom faces of all the shell elements in the second block.

278

Skinning becomes more complicated when we have a shell surface that overlays
the surface of a block of continuum elements. If a shell surface overlays the surface of
a block of continuum elements, we can have shell elements that are coincident with
the external faces of the continuum elements. Coincident in this case means that a
shell element has the same nodal connectivity as the nodal connectivity defining an
external face of a continuum element. Skinning also becomes more complicated when
we have two shell blocks with coincident elements. Coincident in this case means we
have two shell elements in different blocks that have the same nodal connectivity. See
Section 7.8 for more information about skinning with shells.

An important consideration in the contact surface definitions is that any given
face can NOT be included in more than one contact surface. Suppose you define a
surface by skinning an element block of hexahedral elements. Assume the name of
this surface obtained by skinning a block is block_1024 . One of the faces in surface
block_1024 is defined by the node connectivity {100, 101, 1002, 1001}. A surface on
the same element block is defined by specifying a side set definition. Assume that the
name of this surface obtained by using a side set definition is surface_1000 . One
of the faces in surface surface_1000 is defined by the node connectivity {100, 101,
1002, 1001}. In this example, we have the same face, {100, 101, 1002, 1001}, defined
on two different surfaces, block_1024 and surface_1000 . The definition of the
surface with the side set includes one of the faces in the surface obtained by skinning
the block. This appearance of the same face in more than one surface will generate
an error. You only want a node to contact a face once. The same face appearing on
two different surfaces creates an ambiguous situation for contact.

For the case where unassociated nodes are contacting a surface, you will need to
define some collection of unassociated nodes and a surface that can be contacted by
these nodes. SPH particles contacting a surface is an example of nodes contacting
a surface. The contact of one-dimensional elements (springs, trusses, beams) with a
surface can also be modeled as unassociated nodes contacting a surface, although, as
in the case of shells, there are some limitations. The contact algorithm cannot detect
a one-dimensional element cutting through the edge of a shell element, the edge of a
continuum element, or through another one-dimensional element.

To describe surfaces defined by finite element faces that can be considered for
contact, you can use the CONTACT SURFACEcommand line, the SKIN ALL BLOCKS

command line, or the CONTACT SURFACEcommand block. To describe unassociated
nodes that can come into contact with surfaces, you should use the CONTACT NODE

SET command line or the CONTACT SURFACEcommand block. A CONTACT DEFI-

NITION command block can contain any combination of these command lines and
command blocks provided that no two of these commands have the same name. The
CONTACT DEFINITIONcommand block MUST include some type of surface defini-
tion. Any element faces or unassociated nodes that you want to use for contact
interaction must be identified as contact faces or contact nodes, respectively.

279

Section 7.2.1 through Section 7.2.4 describe the command lines and command
blocks for defining contact surfaces composed of finite element faces and node sets
that can contact surfaces.

7.2.1 Contact Surface Command Line

CONTACT SURFACE <string>name
CONTAINS <string list>surface_names

This command line identifies a set of surfaces (specified as side sets) and element
blocks that will be considered as a single contact surface; the string name is the
unique name for this contact surface. The list denoted by surfaces_names is a list
of strings identifying surfaces that are to be associated with this contact surface name.
The surfaces can be side sets, element blocks, or any combination of the two. Any
specified element blocks are “skinned,” i.e., a surface is created from the exterior of
the element block. See the previous discussion on skinning. Blocks of shell elements
will be skinned, and the shell surfaces generated from a CONTACT SURFACEcommand
line will be lofted for contact if the lofting algorithm is ON in the SHELL LOFTING

command block.

If a block of one-dimensional elements (springs, trusses, beams) is included in
the list of surface_names , the element block will be ignored. Thus, to include the
one-dimensional elements for contact, a CONTACT NODE SETcommand line should
be used. See Section 7.2.

The name you create for a surface can be referenced in command blocks that
specify how that surface will interact with another contact surface or with itself. See
Section 7.13.1 and Section 7.14.1.

The surfaces can contain a heterogeneous set of face types as well as any number
of side sets and element blocks.

If a face appears in a side set and also in a set of faces generated by the skinning
of an element block, that face will produce an error. As indicated previously, any
given face may not appear in more than one contact surface.

7.2.2 Skin All Blocks

SKIN ALL BLOCKS = <string>ON|OFF(OFF)
[EXCEPT <string list>block_names]

You may wish to consider contact between the external surfaces of all the element
blocks in the mesh. The SKIN ALL BLOCKScommand line causes all element blocks

280

to be “skinned,” i.e., a surface is created from the exterior of each element block.
The skinned surfaces are then given contact surface names identical to the name of
the element block. For instance, if a mesh contained the element blocks block_1 ,
block_10 , and block_11 , then SKIN ALL BLOCKSwould create three contact sur-
faces from these blocks with the names block_1 , block_10 , and block_11 , respec-
tively.

You can selectively delete some blocks from skinning by using the EXCEPToption.
Any blocks you do not want to be skinned will be included in a list of block names
following EXCEPT.

The SKIN ALL BLOCKSis useful for large models in which the individual specifi-
cation of contact surfaces would be unwieldy.

If the SKIN ALL BLOCKScommand line is used without the EXCEPToption, con-
tact surfaces cannot be defined by the above CONTACT SURFACEcommand line or the
CONTACT SURFACEcommand block. The use of the SKIN ALL BLOCKScommand line
without the EXCEPToption would include all exterior faces for all element blocks in
the set of contact surfaces generated by the SKIN ALL BLOCKScommand line. The
added use of a CONTACT SURFACEcommand line or CONTACT SURFACEcommand
block would then generate a new surface that would have to include at least one
exterior face. But all exterior faces have been included in the surfaces generated by
the SKIN ALL BLOCKScommand line (without the EXCEPToption). This creates a
situation where we have the same face in two different surfaces. Specifying the same
face in two different contact surfaces is not allowed. See the example discussed in
Section 7.2.

If you use the EXCEPToption, you can use a CONTACT SURFACEcommand line or
the CONTACT SURFACEcommand block as long as you do not reference the same face
on different surfaces when defining the various contact surfaces.

The CONTACT SURFACEcommand block, if it is used to defined a set of unassoci-
ated nodes for a contact node set, and the CONTACT NODE SETcommand line can be
used with the SKIN ALL BLOCKScommand line regardless of whether or not it uses
the EXCEPToption.

If the mesh includes blocks of shell elements, the shell surfaces generated from a
SKIN ALL BLOCKScommand line will be lofted for contact according to the lofting
algorithm specified in the SHELL LOFTINGcommand block.

If the mesh includes blocks of one-dimensional elements (beams, trusses), the
element blocks with one-dimensional elements are ignored in contact. Thus, to include
the one-dimensional elements for contact, a CONTACT NODE SETcommand line should
be used. See Section 7.2.

281

7.2.3 Contact Surface Command Block

BEGIN CONTACT SURFACE <string>name
BLOCK = <string list>block_names
SURFACE = <string list>surface_names
NODE SET = <string list>node_set_names
REMOVE BLOCK = <string list>block_names
REMOVE SURFACE = <string list>surface_names
REMOVE NODE SET = <string list>node_set_names

END [CONTACT SURFACE <string>name]

The CONTACT SURFACEcommand block can be used to define a contact surface
consisting of a collection of finite element faces or a set of unassociated nodes that
will be a contact node set. We can use some combinations of the above command
lines as a set of Boolean operations to define our collection of faces or collection of
unassociated nodes. The result of this command block must be either a set of faces
or a set of nodes.

If you want to define a surface named name that is a set of faces, you can use some
combination of the command lines BLOCK, SURFACE, REMOVE BLOCK, and REMOVE

SURFACE. For this case, however, the BLOCKand REMOVE BLOCKcommand lines must
refer to element blocks that are continuum or shell elements. If the element block
referred to is a block of continuum elements, the block is skinned. If the element
block referred to is a block of shell elements, the top and bottom faces of the shell
elements will form the contact faces.

Suppose you specify a BLOCKcommand line that references several continuum
blocks. The set of faces defining the surface will consist of the exterior faces for all of
the element blocks. If you want to preserve the list of element blocks on the BLOCK

command line while removing the exterior faces associated with one or more of the
blocks, you could simply add a REMOVE BLOCKcommand line listing only those blocks
whose associated faces are to be removed from the contact surface.

Suppose you specify a BLOCKcommand line that references a block of continuum
elements and a SURFACEcommand line that references a side set. Then the contact
surface produced by the command block will be the union of the faces defined by the
skinning of the block of continuum elements and the faces defined in the side set.

Suppose you specify a BLOCKcommand line that references a block of continuum
elements and a REMOVE SURFACEcommand line that references a side set. Further-
more, suppose that the side set is a set of faces that is a subset of the set of faces
obtained from skinning the continuum block. Then the contact surface produced by
the command block will be the set of faces obtained by skinning the continuum block
minus the faces in the side set.

As can be seen from the above examples, we can use the command lines BLOCK,

282

SURFACE, REMOVE BLOCK, and REMOVE SURFACEas Boolean operators to construct
a set of finite element faces defining a surface. The BLOCKand REMOVE BLOCKcom-
mand lines should produce (or remove) faces, however, so that we are performing the
Boolean operations on like topological entities. See Section 7.2.4 for further informa-
tion about using a node set that contacts a surface.

If you want to define a set of unassociated nodes for contact with a surface, you can
use some combination of the command lines BLOCK, NODE SET, REMOVE BLOCK, and
REMOVE NODE SET. For this case, however, the BLOCKand REMOVE BLOCKcommand
lines must refer to element blocks that are SPH elements, which are topologically
equivalent to a node.

Suppose you specify a BLOCKcommand line that references a block of SPH ele-
ments and a NODE SETcommand line that references a node set within a command
block. Then the node set produced by the command block will be the union of the
nodes defined by the SPH elements and the nodes defined in the node set.

Suppose you specify a BLOCKcommand line that references a block of SPH ele-
ments and a REMOVE NODE SETcommand line that references a node set. Further-
more, suppose that the node set is a set of nodes that is a subset of the set of nodes
in the SPH block. Then the set of nodes produced by the command block will be the
set of nodes obtained from the SPH block minus the nodes in the node set.

There must be at least one BLOCK, SURFACE, or NODE SETcommand line in the
command block.

7.2.4 Contact Node Set

CONTACT NODE SET <string>surface_name
CONTAINS <string list>nodelist_names

As indicated previously, contact interactions may also be defined between a surface
and a set of nodes. The CONTACT NODE SETcommand line names a set of nodes (the
parameter surface_name in the above command line) as a collection of nodes in
various node sets specified by the string list nodelist_names . All of the nodes in
the node set can then interact with a contact surface. If a node in the node set defined
as surface_name attempts to penetrate a contact surface, the node will be moved
to the surface through the contact calculations.

The node defined by the CONTACT NODE SETcommand line will be paired with
either a mesh surface or an analytic surface when contact interactions are defined. In
defining interactions between a contact node set and another surface, the interaction
must be defined as a pure master-slave interaction, where the nodes in the contact
node set are the slave nodes. The master-slave interaction is defined in the INTERAC-

TION command block (see Section 7.14). The easiest way to define the correct relation

283

between the nodes in the node set and the faces in the actual surface is to pair the
surface with the MASTERcommand line and the node set with the SLAVE command
line. Suppose the set of nodes is named beam_nodes on the CONTACT NODE SET

command line and the surface these nodes are paired with is named plate . Then the
INTERACTION command block for the interaction of the node set and surface would
contain the command lines below.

MASTER = plate

SLAVE = beam_nodes

Presto will not detect whether or not you have specified a master-slave relation
between a surface and a set of nodes. If the interaction between a surface and a set of
nodes defaults to a kinematic partition value of 0.5 and there is only one enforcement
iteration, then any nodes that have penetrated the surface will only be moved one-half
the penetration distance. Therefore, you should check your input carefully if you have
an interaction between a surface and a node set to make sure that the master-slave
relation has been properly defined for this interaction.

The CONTACT NODE SETcommand line is used to define contact interac-
tions between SPH particles and other contact surfaces—faces on solid elements,
shell/membrane faces, and analytic surfaces. The CONTACT NODE SETcommand line
also presents a simple approach for contact between one-dimensional elements (beams,
trusses) and other contact surfaces—faces on solid elements, shell/membrane faces,
and analytic surfaces. In this case, contact processing will seek to remove interpene-
tration of the nodes of the one-dimensional elements into the other contact surfaces.
The contact capabilities in Presto will not currently handle any contact between two
one-dimensional elements.

284

7.3 Analytic Contact Surfaces

Presto permits the definition of rigid analytic surfaces for use in contact. Contact
evaluation between a deformable body and a rigid analytic surface is much faster
than contact evaluation between two deformable bodies. Therefore, using a rigid
analytic surface is more efficient than using a very stiff deformable body to try to
approximate a rigid surface. The commands for defining the rigid analytic surfaces
currently available in Presto—plane, cylinder, and sphere—are described next.

7.3.1 Plane

BEGIN ANALYTIC PLANE <string>name
NORMAL = <string>defined_direction
POINT = <string>defined_point

END [ANALYTIC PLANE <string>name]

Analytic planes are not deformable, they cannot be moved, and two analytic
planes will not interact with each other. The ANALYTIC PLANEcommand block for
defining an analytic plane begins with the input line

BEGIN ANALYTIC PLANE<string >name

and is terminated with the input line

END [ANALYTIC PLANE <string >name] ,

where the string name is some user-selected name for this particular plane. This
name is used to identify the surface in the interaction definitions. The string de-

fined_direction in the NORMALcommand line refers to a vector that has been
defined with a DEFINE DIRECTION command line; this vector defines the outward
normal to the plane. The string defined_point in the POINT command line refers
to a point in a plane that has been defined with a DEFINE POINTcommand line. The
deformable body should initially be on the side of the plane defined by the outward
normal.

7.3.2 Cylinder

BEGIN ANALYTIC CYLINDER <string>name
CENTER = <string>defined_point
AXIAL DIRECTION = <string>defined_axis
RADIUS = <real>cylinder_radius
LENGTH = <real>cylinder_length
CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]

285

Analytic cylindrical surfaces are not deformable, they cannot be moved, and two
analytic cylindrical surfaces will not interact with each other. The ANALYTIC CYLIN-

DERcommand block for defining an analytic cylindrical surface begins with the com-
mand line

BEGIN ANALYTIC CYLINDER<string>name

and is terminated with the command line

END [ANALYTIC CYLINDER <string >name] ,

where the string name is some user-selected name for this particular cylindrical sur-
face. This name is used to identify the surface in the interaction definitions. The
cylindrical surface has a finite length; the cylindrical surface is not an infinitely long
surface. To fully specify the location of the cylindrical surface, therefore, you must
specify the center point of the cylindrical surface in addition to the axial direction of
the cylinder. These quantities, center point and direction, are defined by the CENTER

and AXIAL DIRECTION command lines, respectively. The string defined_point in
the CENTERcommand line refers to a point that has been defined with a DEFINE

POINT command line; the string defined_axis in the AXIAL DIRECTION command
line refers to a vector that has been defined with a DEFINE DIRECTION command
line. The radius of the cylinder is the real value cylinder_radius specified with
the RADIUS command line, and the length of the cylinder is the real value cylin-

der_length specified by the LENGTHcommand line. The length of the cylinder
(cylinder_length) extends a distance of cylinder_length divided by 2 along
the cylinder axis in both directions from the center point. If the rigid surface is the
outside of the cylinder, you should specify

CONTACT NORMAL = OUTSIDE.

If the rigid surface is the inside of the cylinder, you should specify

CONTACT NORMAL = INSIDE.

7.3.3 Sphere

BEGIN ANALYTIC SPHERE <string>name
CENTER = <string>defined_point
RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]

Analytic spherical surfaces are not deformable, they cannot be moved, and two
analytic spherical surfaces will not interact with each other. The ANALYTIC SPHERE

command block for defining an analytic spherical surface begins with the input line

BEGIN ANALYTIC SPHERE<string >name

286

and is terminated with the input line

END [ANALYTIC SPHERE<string >name] ,

where the string name is some user-selected name for this particular spherical surface.
This name is used to identify the surface in the interaction definitions. The center
point of the sphere is defined by the CENTERcommand line, which references a point,
defined_point , specified by a DEFINE POINT command line. The radius of the
sphere is the real value sphere_radius specified with the RADIUS command line.

287

7.4 Update All Surfaces for Element Death

UPDATE ALL SURFACES FOR ELEMENT DEATH
= <string>ON|OFF(ON)

When elements are killed in an analysis, contact surfaces may need to be updated
to account for the removal of faces attached to killed elements or the addition of
faces exposed by element death. The command line UPDATE ALL SURFACES FOR

ELEMENT DEATHpermits contact surfaces to be updated based on all the ELEMENT

DEATHcommand block(s) specified in the input file (see Section 5.5). This update of
contact surfaces is controlled by the command line being set to ON, the default. The
update encompasses the full reinitialization of contact. Thus, surface-physics models
that involve state data may lose some information when the new contact surfaces are
created. If the command line is set to OFF, an element associated with a face on the
contact surface could be killed, but the face would remain in the list of faces defining
the contact surface, which may be unacceptable for your analysis.

288

7.5 Remove Initial Overlap

BEGIN REMOVE INITIAL OVERLAP
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
SHELL OVERLAP MAX ITERATIONS = <integer>max_iter(10)
SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END REMOVE INITIAL OVERLAP

Meshes supplied for finite element analyses frequently have some level of initial
mesh overlap, where finite element nodes rest inside the volume of elements. This can
cause problems with contact; overlaps may cause initial forces that are nonphysical
and produce erroneous stress waves. Presto provides a mechanism to modify the
initial mesh to attempt to remove overlaps in surfaces defined for contact via the
REMOVE INITIAL OVERLAPcommand block.

The process used to remove the initial overlap for three-dimensional solid elements
involves changing the original coordinates of nodes on contact surfaces. Changing the
coordinates yields a new mesh with the overlap removed; the overlap removal adds
no initial stresses. Normal and tangential tolerances are specified by the user for all
of the contact surfaces in the REMOVE INITIAL OVERLAPcommand block. It is also
possible to specify overlap normal and tangential tolerances on each surface pairing
separately in the INTERACTION command block. In other words, overlap removal
tolerances specified in INTERACTION command blocks will overwrite the tolerances
specified in the REMOVE INITIAL OVERLAPcommand block—see Section 7.14). The
REMOVE INITIAL OVERLAPcommand block only removes overlaps that are detected
along the surfaces defined for contact and not all surfaces in the mesh.

Overlap tolerances are used to designate a box around each surface pair to search
for overlaps. If the overlap of the mesh is larger than the box defined by the toler-
ances, then the overlap will not be found and thus will not be removed. However, if
the specified tolerances are larger than an element length in the analysis, the overlap
removal mechanism may invert elements, leading to analysis failure. This has two
ramifications. First, the tolerances must be carefully specified to correct mesh over-
laps and to not invert elements. Second, this mechanism is unable to remove initial
overlaps that are greater than an element length. In such cases, the overlap must be
removed manually using a meshing tool. The mesh modification done by the REMOVE

INITIAL OVERLAP feature changes the meshed geometry, and thus can change the
mass and time step of affected elements. The mesh returned in the results file includes
the changed coordinates and should be checked to ensure that the modifications are
acceptable. A summary of the overlap that is removed is reported in the log file. The
log file lists each block in which the initial overlap has been removed as well as the
maximum amount of overlap for each of these blocks. Additionally, you can request
that a nodal variable called REMOVED_OVERLAPbe written to the results file. See

289

Section 8.1.1.1 for a discussion of the output of nodal variables to the results file.

For contact between shell elements, a slightly different approach is used. Because
the thickness of a shell must be preserved when shell lofting is requested, removing
the initial overlap between nested shells becomes an iterative process whereby shell
locations are adjusted to remove the overlap. This process is approximate and may not
remove all the overlap in all cases. It is advised to check the corrected mesh to make
sure that the mesh modifications are acceptable. In the input, two additional input
lines SHELL OVERLAP MAX ITERATIONSand SHELL OVERLAP TOLERANCEmay be
needed to properly remove the initial overlap.

• The SHELL OVERLAP MAX ITERATIONScommand line controls the maximum
number of iterations that the overlap removal mechanism will use to resolve
nested shells. By default, the value of max_iter is 10. If the mesh has only
a few layers of shells that may overlap, a value of 10 should suffice. However,
if the mesh has a number of layers of shells that may overlap, this value may
need to be much larger.

• The SHELL OVERLAP TOLERANCEcommand line specifies an amount of overlap,
shell_over_tol , that is permitted to be left in the shell elements. This helps
to limit the actual number of iterations required to remove the shell overlap,
and to spread any remaining overlap over a number of shells instead of concen-
trating it all in a single shell. If the default value of 0.0 for the shell overlap
tolerance is used, iteration continues until either all the overlap is removed or
the maximum number of iterations is reached. If a nonzero value for the shell
overlap tolerance is used, iteration continues until the tolerance is reached or
the maximum number of iteration is reached. Note that the overlap removal
process is only done once during an analysis, so a large number of iterations
will only affect the first time step, not every time step.

The SHELL OVERLAP TOLERANCEcommand line and the SHELL OVERLAP MAX

ITERATIONS command line have no meaning for analyses that do not have shell
elements.

290

7.6 Angle for Multiple Interactions

MULTIPLE INTERACTIONS = <string>ON|OFF(ON)
MULTIPLE INTERACTIONS WITH ANGLE = <real>angle(60.0)

When a node lies on the edge of a body, that node may need to support contact
interactions with more than one face at the same time. For instance, see Figure 7.3.
In Figure 7.3a, three blocks are shown, with a single node identified. Through contact,
this node can interact with both the block on the upper right and the block on the
bottom. If the node only supports a single interaction, then it will be arbitrarily
considered for contact between one of the blocks, but not the other, as in Figure 7.3b.
In this case, contact enforcement will prevent penetration into the lower block, but
may permit penetration into the upper right block. The proper way to deal with this
case is shown in Figure 7.3c, where multiple interactions are considered at the node.

Figure 7.3: Illustrations of multiple interactions at a node: (a) initial configuration,
with node of interest identified; (b) single interaction; and (c) multiple interactions.

By default, Presto permits multiple interactions at a node. However, these multi-
ple interactions may incur extra cost in the contact algorithm by increasing the num-
ber of interactions in enforcement. Also, a local search algorithm (see Section 7.11),
which uses various contact tracking approaches, may operate more efficiently when
the node can only have one interaction. Finally, multiple interactions may lead to
instabilities that can be eliminated by switching to single interactions. For these rea-
sons, the MULTIPLE INTERACTIONScommand line allows the user to choose whether
multiple interactions should be considered at a node. A value of OFF indicates that
a node can have only one interaction. This value affects all interactions in a contact
definition. Presto does not currently have the capability to force single interactions
for some surface pairs while allowing multiple interactions for other surface pairs.

291

When the MULTIPLE INTERACTIONScommand line is ON, the number of interac-
tions that can be considered at a node is dependent on the measure of curvature of
those faces that are connected to the node. If the angle between two faces on which
the node is attached is small, then only one interaction is allowed. However, in cases
where the angle between the faces is large enough such that they form a discrete cor-
ner, multiple interactions are considered. The contact algorithms can properly handle
only a limited number of interactions per node (currently three), so it is generally
feasible to properly define interactions at a node, e.g., at the corner of a block.

Presto defines the critical angle for multiple interactions via the MULTIPLE IN-

TERACTIONS WITH ANGLEcommand line, where angle is the angle over which an
edge is considered sharp. If the angle between adjoining faces is greater than this
critical angle, multiple interactions can be created. By default, this critical angle is
60 degrees, which works well for most analyses. This value can be changed in the
contact input if needed.

292

7.7 Surface Normal Smoothing

SURFACE NORMAL SMOOTHING = <string>ON|OFF(OFF)

Surface normal smoothing is a feature that is primarily used in Adagio, a quasi-
static code.

Suppose that a node has penetrated a face near an edge that is shared with an
adjacent face. Now consider the case where the faces sharing that edge do not lie in a
plane. In this case, the angle between the faces is other than 180 degrees, and there
is a discontinuity in the normal at the edge. One face lying adjacent to the edge has
one normal, and the other face lying adjacent to the same edge has another normal.
If a node penetrates one of the faces close to the edge, an iterative solver, like a solver
used in Adagio, might have a difficult time converging to a solution at the edge. On
one iteration, the node might penetrate the node on one side of the edge, but, on the
next iteration, the node might penetrate the face on the other side of the edge. For
these two iterations, the push-back direction for the node will be different because of
the different normals for each face. It is difficult for an iterative solver to converge
to a solution in the case we have just described—contact (penetration) alternating
between two faces at an edge with a discontinuous normal at the edge.

The surface-normal smoothing technique creates a smooth variation in the normal
near the edge. The normal varies linearly from the value on one face to the value on
the other face over a distance that spans the edge. A smoothly varying normal at the
edge makes it much easier for an iterative solver to converge to a solution for a case
where a node has penetrated a face somewhere near the edge.

Presto does not use an iterative solver and does not encounter the problems with
nodes penetrating near an edge that are encountered by an iterative solver. Con-
sequently, the SURFACE NORMAL SMOOTHINGcommand line is not really required.
However, if you couple a Presto analysis with an Adagio analysis (the Adagio analy-
sis preceding the Presto analysis), you should use the SURFACE NORMAL SMOOTHING

command line in Presto. Using the surface smoothing in Presto will create a consis-
tent contact transition between the two codes, Presto and Adagio.

293

7.8 Shell Lofting

BEGIN SHELL LOFTING
LOFTING ALGORITHM = <string>ON|OFF(ON)
COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)
COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)
END [SHELL LOFTING]

SHELL LOFTING = ON|OFF(ON)

Presto can also assess contact on shell elements. Shell elements can interact with
other shell elements, faces of solid elements, and contact node sets (such as SPH).
Contact on shell elements can occur on either the meshed shell geometry, i.e., ignoring
any shell thickness, or on the “lofted” geometry, i.e., a geometry that includes the
thickness of the shell. Currently, contact appears to be more robust on the nonlofted
geometry; however, for simulations in which the thickness is important, the lofted
geometry can provide more-reasonable results. Also critical to shell contact is how
shells that are fully coincident with other elements (i.e., share all their nodes with
another element) are treated. These options are controlled by the user in the SHELL

LOFTING command block.

The LOFTING ALGORITHMcommand line determines whether contact on a shell
should be done on the lofted geometry or on the original shell geometry. If the LOFT-

ING ALGORITHMcommand line is set to ON, shell contact uses the lofted geometry; if
the command line is set to OFF, shell contact uses the original shell geometry.

The COINCIDENT SHELL TREATMENTcommand line identifies how shells that
share the same nodes should be treated. If the DISALLOWoption is selected, (the
default), then any time that shells in contact are detected to share all the same
nodes, the code will abort with an error message indicating which elements were
found to be coincident. The DISALLOWoption should be used if you do not want any
coincident shells to be considered in the analysis. The option operates essentially as
a check on the mesh. If the IGNOREoption is selected, any contact faces attached to
coincident shells are ignored for contact. This option is only provided as a backup
approach if undiagnosed code problems arise from coincident shells. If such a case
occurs, the IGNOREoption may permit the user to continue with an analysis while the
code team diagnoses the problem. The SIMPLE option enables coincident shells to be
processed correctly. If lofting has been enabled and the SIMPLE option is selected,
the thickness of the lofted coincident shell is taken as the largest thickness of all the
coincident shells. If lofting is off and the SIMPLE option is selected, the coincident
shell is treated as if only one of the shells is present.

294

The COINCIDENT SHELL HEX TREATMENTcommand line is similar to the COIN-

CIDENT SHELL TREATMENTcommand line. The COINCIDENT SHELL HEX TREAT-

MENTcommand line, however, identifies how shells that are fully coincident with the
hex elements are treated. If the DISALLOWoption is selected (the default), then any
time that a shell in contact is detected to share all the same nodes with the face
of a continuum element, the code will abort with an error message indicating which
elements were found to be coincident. The DISALLOWoption should be used if you
do not want any shells coincident with hexes to be considered in the analysis. The
option operates essentially as a check on the mesh. If the IGNOREoption is selected,
any contact faces attached to shells that are coincident with faces of continuum el-
ements are ignored for contact. This option is only provided as a backup approach
if undiagnosed code problems arise from coincident shells and continuum elements.
If such a case occurs, the IGNOREoption may permit the user to continue with an
analysis while the code team diagnoses the problem. The TAPEREDand EMBEDDED

options permit shells that are coincident with faces of continuum elements to be pro-
cessed in contact. The TAPEREDoption does two things: it includes for contact any
faces that are on the free surface and ignores faces sandwiched between the shell and
the continuum element, and it automatically adjusts the lofting of the surfaces to
provide a smooth transition between shells that are not coincident with the faces of
the continuum elements and those that are coincident with the faces of the contin-
uum elements. The EMBEDDEDoption includes for contact both free surface faces and
those that are between the coincident shells and faces of the continuum elements; the
option does not adjust thicknesses to make smooth transitions between shells that are
not coincident with faces of continuum elements and those that are coincident with
faces of continuum elements. In general, the TAPEREDoption is preferred; only use
the EMBEDDEDoption if the TAPEREDoption causes a code problem.

As an alternative to creating a SHELL LOFTINGcommand block, a single SHELL

LOFTING command line is provided. The SHELL LOFTINGcommand line enables the
user to specify the setting for the LOFTING ALGORITHMcommand line and accept
the defaults set in the SHELL LOFTINGcommand block for the COINCIDENT SHELL

TREATMENTand COINCIDENT SHELL HEX TREATMENTcommand lines.

295

7.9 Contact Output Variables

CONTACT VARIABLES = ON|OFF(OFF)

To provide more information about the enforcement of contact interactions, Presto
can provide additional contact variables for output. The CONTACT VARIABLEScom-
mand line permits the user to activate the computation of these variables. Because
the computation of these variables incurs additional computational cost, the variables
are deactivated, i.e., the default is set to OFF. Currently, information on only one in-
teraction at each node is provided. If a node has more than one interaction, the last
one in its internal interaction list is reported.

The additional nodal contact variables activated by the CONTACT VARIABLES

command are listed in Table 7.1. The variables can be output in history files or results
files; see Chapter 8 for more information on outputting nodal variables. Note that the
CONTACT VARIABLEScommand line activates the computation of these variables. If
this command is set to OFF, then the variables will all be zero when output.

Table 7.1: Nodal Variables for Output

Variable Description
contact status Status of the interactions at the node.

Possible values are as follows:
0.0 = Node is not a contact node (not in
a defined contact surface)
0.5 = Node is not in contact
1, 2, or 3 = Node has 1, 2, or 3 interac-
tions

contact normal direction Vector direction of the constraint. This
is, in general, the normal of the face in
the interaction.

contact tangential direction Velocity of the node relative to the face
times the time step minus the compo-
nent of this vector along the normal to
the face. Note that this vector is NOT
normalized.

Continued on next page

296

Table 7.1 – Continued from previous page
Variable Description

contact normal force magnitude Magnitude of the contact force at the
node in the direction normal to the con-
tact face (contact normal direction).

contact tangential force magnitude Magnitude of the contact force at the
node in the plane of the contact face
(contact tangential direction).

contact normal traction magnitude Traction normal to the contact face, i.e.,
contact normal force magnitude scaled
by contact area. If there are multiple
interactions for this node, the traction
only for the last interaction is given.

contact tangential traction magnitude Traction in the plane of the contact face,
i.e., contact traction force magnitude
scaled by contact area. If there are
multiple interactions for this node, the
traction only for the last interaction is
given.

contact slip increment current Increment of slip tangential to the face
that occurs over the time step.

contact frictional energy dissipation Amount of frictional energy dissipated
over the time step.

contact area Contact area for the node. This is the
tributary area around the node for this
interaction. If there are multiple inter-
actions, the reported area is the area as-
sociated with the last interaction.

contact current gap Value of the gap for the current time
step. If the node has multiple interac-
tions, the reported gap is for the last in-
teraction.

contact previous gap Value of the gap for the previous time
step. If the node has multiple interac-
tions, the reported gap is for the last in-
teraction.

297

7.10 Friction Models

To describe the physics of interactions that occur between contact surfaces, the Presto
input for contact relies upon the definition of friction models. The user then relates
these friction models to pairs of interactions in the interaction-definition blocks (see
Section 7.13 and Section 7.14). During the search phase of contact, node-face inter-
actions are identified, and the designated friction model is used to determine how the
resulting contact forces are resolved between these pairs.

Currently, there are 11 primary friction models: frictionless contact, constant
coulomb friction, tied contact, spring weld, surface weld, area weld, adhesion, co-
hesive zone, junction, threaded joint, and pressure-velocity–dependent friction. In
addition, the SIMOD interface models can be used as friction models, as well as mod-
els defined by user subroutines. By default, interactions between contact surfaces that
have not had friction models assigned are treated as frictionless. All friction models
are command blocks, although some of the models do not have any command lines
inside the command block. The commands for defining the available friction models
are described next. Friction models are associated with specific pairings of contact
surfaces through the interaction-definition blocks in Section 7.13 and Section 7.14.
Presto uses the ACME library for contact enforcement. See the documentation for
ACME to obtain a more in-depth description of the implementation and usage for
the various friction models.

7.10.1 Frictionless Model

BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]

The FRICTIONLESS MODELcommand block defines frictionless contact between
surfaces. In frictionless contact, contact forces are computed normal to the contact
surfaces to prevent penetration, but no forces are computed tangential to the contact
surfaces. The string name is a user-selected name for this friction model that is used
when identifying this model in the interaction definitions. No command lines are
needed inside the command block.

7.10.2 Constant Friction Model

BEGIN CONSTANT FRICTION MODEL <string>name
FRICTION COEFFICIENT = <real>coeff

END [CONSTANT FRICTION MODEL <string>name]

298

The CONSTANT FRICTION MODELcommand block defines a constant coulomb
friction coefficient between two surfaces as they slide past each other in contact.
No resistance is provided to keep the surfaces together if they start to separate. The
string name is a user-selected name for this friction model that is used to identify
this model in the interaction definitions, and coeff is the constant coulomb friction
coefficient. There is no default value for the friction coefficient.

7.10.3 Tied Model

BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]

The TIED MODELcommand block restricts nodes found in initial contact with
faces to stay in the same relative location to the faces throughout the analysis. The
string name is a user-selected name for this friction model that is used to identify
this model in the interaction definitions. No command lines are needed inside the
command block.

7.10.4 Spring Weld Model

BEGIN SPRING WELD MODEL <string>name
NORMAL DISPLACEMENT FUNCTION = <string>func_name
NORMAL DISPLACEMENT SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name
TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer> num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SPRING WELD MODEL <string>name]

The SPRING WELD MODELcommand block defines a contact friction model that,
when applied between two contact surfaces, connects a slave node to the nearest point
of a corresponding master face with a spring. The spring behavior is defined by a
force-displacement curve in the normal and tangential directions. If the motion of the
problem generates displacement between the slave node and its corresponding master
face and this motion is in purely the normal or tangential direction, the spring will
fail once it passes the maximum displacement in the normal and tangential force-
displacement curves, respectively. For displacements that include both normal and
tangential components, the spring fails according to a failure criterion defined as the

299

sum of the ratios of the normal and tangential components to their maximum values,
raised to a power. If the criterion is greater than 1.0, the spring fails. Once the
spring fails, its contact forces reduce over a number of load steps, and the contact
evaluation reverts to another user-specified friction model (or frictionless contact if
not specified).

In the above command block:

- The string name is a user-selected name for this friction model that is used to
identify this model in the interaction definitions.

- The normal force-displacement curve is specified by the NORMAL DISPLACEMENT

FUNCTIONcommand line, where the string func_name is the name of a function
defined in a DEFINITION FOR FUNCTIONcommand line in the domain scope.
This function can be scaled by the real value scale_factor in the NORMAL

DISPLACEMENT SCALE FACTORcommand line; the default for this factor is
1.0.

- The tangential force-displacement curve is specified by the TANGENTIAL DIS-

PLACEMENT FUNCTIONcommand line, where the string func_name is the name
of a function defined in a DEFINITION FOR FUNCTIONcommand line in the do-
main scope. This function can be scaled by the real value scale_factor in
the TANGENTIAL DISPLACEMENT SCALE FACTORcommand line; the default
for this factor is 1.0.

- The real value exponent in the FAILURE ENVELOPE EXPONENTcommand line
specifies how normal and tangential failure criteria may be combined to yield
failure of the weld, as described above. The default value for this exponent is
2.0.

- The FAILURE DECAY CYCLEScommand line describes how many cycles to
ramp down the load in the point weld after it fails through the integer value
num_cycles . The default value for the number of decay cycles is 1.

- When the spring weld breaks, the friction model that contact reverts to when
evaluating future node-face interactions between the surfaces is identified in
the FAILED MODELcommand line with the string failed_model_name . The
friction model listed in this command must have been previously defined in the
input file. The default value for the model used after failure is the frictionless
model.

The SPRING WELD MODELcommand block is very similar to the Presto SPOT

WELDcommand block, but permits greater flexibility in specifying a different friction
model to be applied after failure.

300

7.10.5 Surface Weld Model

BEGIN SURFACE WELD MODEL <string>name
NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SURFACE WELD MODEL <string>name]

The SURFACE WELD MODELcommand block defines a contact friction model that
behaves identically to the TIED MODELuntil a maximum force between the node and
face of an interaction is reached in the normal direction or the tangential direction.
Once this maximum force is reached, the tied contact “fails” and the friction model
switches to a different friction model, as specified by the user.

In the above command block, the string name is a user-selected name for this
friction model that is used to identify this model in the interaction definitions. The
maximum allowed force in the normal direction is specified by the real value nor-

mal_cap in the NORMAL CAPACITYcommand line. The maximum allowed force in
the tangential direction is specified by the real value tangential_cap in the TAN-

GENTIAL CAPACITY command line. There are no defaults for these values. The
surface weld will break when either the specified normal or tangential capacity is
reached. Once the model fails, the applied forces decrease to zero over a number
of time steps defined through the integer value num_cycles in the FAILURE DECAY

CYCLEScommand line. The default for num_cycles is 1. The friction model that
should be used after the weld fails is identified in the FAILED MODELcommand line
with the string failed_model_name . The friction model designated in the FAILED

MODELcommand line must be defined within the CONTACT DEFINITIONcommand
block. The default model after failure is the frictionless contact model.

7.10.6 Area Weld Model

BEGIN AREA WELD MODEL <string>name
NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE DECAY CYCLES = <integer> num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [AREA WELD MODEL <string>name]

The AREA WELD MODELcommand block defines a contact friction model that be-
haves identically to the TIED MODELuntil a maximum traction between a node and

301

face in an interaction is reached in the normal direction or the tangential direction.
Once this maximum traction is reached, the tied contact “fails” and the friction model
switches to a different friction model, as specified by the user. This model is identical
to the SURFACE WELD MODELcommand block, except that tractions are used instead
of forces.

In the above command block, the string name is a user-selected name for this
friction model that is used to identify this model in the interaction definitions. The
maximum allowed traction in the normal direction is specified by the real value nor-

mal_cap in the NORMAL CAPACITYcommand line. The maximum allowed traction
in the tangential direction is specified by the real value tangential_cap in the TAN-

GENTIAL CAPACITYcommand line. There are no defaults for these values. The area
weld will break when either the specified normal or tangential capacity is reached.
Once the model fails, the applied tractions decrease to zero over a number of time
steps defined through the integer value num_cycles in the FAILURE DECAY CYCLES

command line. The default for num_cycles is 1. The friction model that should be
used after the weld fails is identified in the FAILED MODELcommand line with the
string failed_model_name . The friction model designated in the FAILED MODEL

command line must be defined within the CONTACT DEFINITIONcommand block.
The default model after failure is the frictionless contact model.

7.10.7 Adhesion Model

BEGIN ADHESION MODEL <string>name
ADHESION FUNCTION = <string>func_name
ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]

The ADHESION MODELcommand block defines a friction model that behaves like
frictionless contact when two surfaces are in contact, but computes an additional force
between the surfaces when they are not touching. The value of the additional force is
given by a user-specified function of force versus distance, where the distance is the
distance between a node and the closest point on the opposing surface.

In the above command block, the string name is a user-selected name for this
friction model that is used to identify this model in the interaction definitions. The
force between surfaces that are not touching is given by the ADHESION FUNCTION

command line, where the string func_name is the name of a function defined in a
DEFINITION FOR FUNCTIONcommand block in the domain scope. The values of
this function are expected to be nonnegative. The function can be scaled by the real
value scale_factor in the ADHESION SCALE FACTORcommand line; the default
for this factor is 1.0. Because contact forces are typically only given to node-face
interactions if they touching, the contact search requires appropriate tolerances when

302

this model is used. The normal and tangential tolerances specified in the interaction
definitions should be set to the maximum distance at which the adhesion model
should be applying force. However, setting this distance to be very large may cause
excessive numbers of interactions to be identified in the search phase, causing the
contact processing to be very slow and/or generate erroneous interactions.

7.10.8 Cohesive Zone Model

BEGIN COHESIVE ZONE MODEL <string>name
TRACTION DISPLACEMENT FUNCTION = <string>func_name
TRACTION DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
CRITICAL NORMAL GAP = <real>crit_norm_gap
CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]

The COHESIVE ZONE MODELcommand block defines a friction model that pre-
vents penetration when contact surfaces are touching, but provides an additional force
when the distance between the node and face in an interaction increases. This force
is determined by a user-specified function. Once the distance exceeds a user-specified
value in the normal direction or the tangential direction, the force is no longer ap-
plied. This model can be used to mimic the energy required to separate two surfaces
that are initially touching.

In the above command block, the string name is a user-selected name for this
friction model that is used to identify this model in the interaction definitions. The
displacement function for traction is given by the TRACTION DISPLACEMENT FUNC-

TION command line, where the string func_name is the name of a function defined in a
DEFINITION FOR FUNCTIONcommand block in the domain scope. This function can
be scaled by the real value scale_factor in the TRACTION DISPLACEMENT SCALE

FACTORcommand line; the default for this factor is 1.0. In the CRITICAL NORMAL

GAPcommand line, the real value crit_norm_gap specifies the normal distance be-
tween the node and face past which the cohesive zone no longer provides a force. In the
CRITICAL TANGENTIAL GAPcommand line, the real value crit_tangential_gap

specifies the tangential distance between the node and face past which the cohesive
zone no longer provides a force.

7.10.9 Junction Model

BEGIN JUNCTION MODEL <string>name
NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

303

TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION =

<real>distance
END [JUNCTION MODEL <string>name]

The JUNCTION MODELcommand block defines a model that prevents the inter-
penetration of contact surfaces and that also provides normal and tangential tractions
to a node-face interaction when the surfaces are not touching. The normal tractions
are defined as a function of the normal distance between the node and face of an
interaction, while the tangential traction is given as a function of the relative tangen-
tial velocity. The tractions are defined by user-specified functions, and the tangential
tractions from this model drop to zero once the normal distance between the node
and the face exceeds a critical value. This friction model provides a simple way to
model threaded connections, though the THREADED MODELdefined in Section 7.10.10
has more flexibility.

In the above command block, the string name is a user-selected name for this
friction model that is used to identify this model in the interaction blocks. The nor-
mal traction curve is specified by the NORMAL TRACTION FUNCTIONcommand line,
where the string func name is the name of a function defined in a DEFINITION FOR

FUNCTIONcommand block in the domain scope. This function defines a relation
between the traction and the distance between the node and the face in the nor-
mal direction. This function can be scaled by the real value scale_factor in the
NORMAL TRACTION SCALE FACTORcommand line; the default for this factor is 1.0.
Similarly, the tangential traction curve is specified by the TANGENTIAL TRACTION

FUNCTIONcommand line, where the string func_name is the name of a function de-
fined in a DEFINITION FOR FUNCTIONcommand block in the domain scope. This
function defines a relation between the traction and the relative velocity of the node
and face in the tangential direction. This function can be scaled by the real value
scale_factor in the TANGENTIAL TRACTION SCALE FACTORcommand line; the
default for this factor is 1.0. Once the normal distance between a node and a face
using this model reaches a critical distance, the tangential traction drops to zero; this
distance is specified with the real value distance in the NORMAL CUTOFF DISTANCE

FOR TANGENTIAL TRACTIONcommand line.

7.10.10 Threaded Model

BEGIN THREADED MODEL <string>name
NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)

304

TANGENTIAL TRACTION GAP FUNCTION = <string>func_name
TANGENTIAL TRACTION GAP SCALE FACTOR =

<real>scale_factor(1.0)
NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [THREADED MODEL <string>name]

The THREADED MODELcommand block defines a friction model that is designed to
mimic a threaded interface. This model prevents interpenetration of contact surfaces,
and also supplies additional tractions when the surfaces are not touching. Tensile
tractions in the normal direction are given by a user-specified function of force versus
distance between the node and face. Tensile tractions in the tangential direction are
computed as the product of a traction tangential-displacement curve and a scaling
curve that is a function of the normal displacement. Maximum normal and tangential
tractions are input such that the model “fails” at a node-face interaction once they
are reached. For interactions that include both normal and tangential displacements,
the model failure is defined according to a failure criterion defined as the sum of the
ratios of the normal and tangential traction components to their maximum capacity
values, raised to a power. After failure, interactions shift to a different user-specified
friction model.

In the above command block:

- The string name is a user-selected name for this friction model that is used to
identify the model in the interaction definitions.

- The traction-displacement relation in the normal direction is specified by the
NORMAL TRACTION FUNCTIONcommand line, where the string func_name is
the name of a function defined in a DEFINITION FOR FUNCTIONcommand
block in the domain scope. This function can be scaled by the real value
scale_factor in the NORMAL TRACTION SCALE FACTORcommand line; the
default for this factor is 1.0.

- The traction-displacement relation in the tangential direction is specified by
two curves. The traction-displacement relation in the tangential direction when
there is no displacement in the normal direction is defined by the TANGENTIAL

TRACTION FUNCTIONcommand line, where the string func_name is the name
of a function defined in a DEFINITION FOR FUNCTIONcommand block in the
domain scope. This function can be scaled by the real value scale_factor in
the TANGENTIAL TRACTION SCALE FACTORcommand line; the default for this

305

factor is 1.0. When the distance in the normal direction is greater than zero,
the tangential traction is scaled by the TANGENTIAL TRACTION GAP FUNCTION

command line, where the string func_name is the name of a function defined
in a DEFINITION FOR FUNCTIONcommand block in the domain scope. This
function defines a scaling factor as a function of the normal displacement. The
function can be scaled by the real value scale_factor in the TANGENTIAL

TRACTION GAP SCALE FACTORcommand line; the default for this factor is
1.0.

- The threaded model “fails” once the normal and tangential tractions reach a
critical capacity value. The normal capacity is specified by the real value nor-

mal_cap in the NORMAL CAPACITYcommand line. The tangential capacity is
specified by the real value tangential_cap in the TANGENTIAL CAPACITY

command line. There are no default values for these parameters. These capac-
ities are defined for pure normal or tangential displacements. In cases where
there is a combination of tangential and normal displacements, a failure curve
is used to determine the combination of tangential and normal tractions that
determines model failure. This curve is defined as the sum of the ratios of the
normal and tangential traction components to their maximum capacity values,
raised to a power. The power in the function is defined by the real value expo-
nent in the FAILURE ENVELOPE EXPONENTcommand line. The default value
of the exponent is 2.0. Once the model fails, the applied tractions decrease to
zero over a number of time steps defined through the integer value num_cycles

in the FAILURE DECAY CYCLEScommand line. The default for num_cycles

is 1. When the model exceeds the designated capacity, the contact surfaces
using this model switch to a different friction model as identified in the FAILED

MODELcommand line with the string failed_model_name . The friction model
designated in the FAILED MODELcommand line must be defined within the
CONTACT DEFINITIONcommand block. The default model is the frictionless
model.

7.10.11 PV Dependent Model

BEGIN PV_DEPENDENT MODEL <string>name
STATIC COEFFICIENT = <real>stat_coeff
DYNAMIC COEFFICIENT = <real>dyn_coeff
VELOCITY DECAY = <real>vel_decay
REFERENCE PRESSURE = <real>p_ref
OFFSET PRESSURE = <real>p_off
PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string> name]

The PV_DEPENDENT MODELcommand block defines a friction model similar to a

306

coulomb friction model, but which provides a frictional response that is dependent on
the pressure and the velocity. The pressure-dependent portion of the model behaves
similarly to the constant friction model except that the tangential traction is given
by

[
p + p off

p ref

]p exp

. (7.1)

The velocity-dependent part is given by

(stat coeff − dyn coeff) e(−vel decay‖v‖) + dyn coeff. (7.2)

The PV_DEPENDENT MODELcommand block multiplies the pressure and velocity
effects together.

In the above command block:

- The string name is a name assigned to this friction model that is used to identify
the model in the interaction definitions.

- The real value p_ref in the pressure-dependent part given in Equation (7.1) is
specified with the REFERENCE PRESSUREcommand line.

- The real value p_off in the pressure-dependent part given in Equation (7.1) is
specified with the OFFSET PRESSUREcommand line.

- The real value p_exp in the pressure-dependent part given in Equation (7.1) is
specified with the PRESSURE EXPONENTcommand line.

- The real value stat_coeff in the velocity-dependent part given in Equa-
tion (7.2) is specified with the STATIC COEFFICIENT command line.

- The real value dyn_coeff in the velocity-dependent part given in Equation (7.2)
is specified with the DYNAMIC COEFFICIENTcommand line.

- The real value vel_decay in the velocity-dependent part given in Equation (7.2)
is specified with the VELOCITY DECAYcommand line.

7.10.12 SIMOD Friction Models

BEGIN SIMOD SHARED MODEL <string>name
USE SIMOD MODEL = <string>simod_model_name
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)

307

END [SIMOD SHARED MODEL <string>name]

BEGIN SIMOD UNKNOWN MODEL <string>name
USE SIMOD MODEL = <string>simod_model_name
FAILED MODEL = <string>failed_model_name|FRICTIONLESS(FRICTIONLESS)

END [SIMOD UNKNOWN MODEL <string>name]

The SIMOD SHARED MODELand SIMOD UNKNOWN MODELcommand blocks permit
contact to use SIMOD models defined in the input file. The two command blocks
handle standard shared SIMOD models and special unknown SIMOD models, respec-
tively. See Chapter 10 for more information about the SIMOD models and how to
specify them within the input file.

The string name is a user-selected name for the model that is used to identify the
model in the interaction definitions. The USE SIMOD MODELcommand line specifies
the SIMOD model defined in the input file with the name simod_model_name . The
friction model that should be used for contact evaluation after the SIMOD model fails
is identified in the FAILED MODELcommand line with the string failed_model_name .
The friction model designated in the FAILED MODELcommand line must be defined
within the CONTACT DEFINITIONcommand block. The default failed model is the
frictionless model.

7.10.13 User Subroutine Friction Models

BEGIN USER SUBROUTINE MODEL <string>name
INITIALIZE MODEL SUBROUTINE = <string>init_model_name
INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name
INITIALIZE NODE STATE DATA SUBROUTINE =

<string>init_node_data_name
LIMIT FORCE SUBROUTINE = <string>limit_force_name
ACTIVE SUBROUTINE = <string>active_name
INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]

The USER SUBROUTINE MODELcommand blocks permit contact to use a user
subroutine to define a friction model between surfaces. This capability is in a test
phase at this time; please contact a Presto developer for more information.

In this command block:

- The string name is a user-specified name that is used to identify this model in
the interaction definitions.

308

- The command line INITIALIZE MODEL SUBROUTINE specifies a user subrou-
tine to initialize the friction model. The name of the subroutine is given by
init_model_name .

- The command line INITIALIZE TIME STEP SUBROUTINE specifies a user sub-
routine to initialize the time step. The name of the subroutine is given by
init_ts_name .

- The command line INITIALIZE NODE STATE DATA SUBROUTINEspecifies a
user subroutine to initialize the node state data. The name of the subroutine is
given by init_node_data_name .

- The command line LIMIT FORCE SUBROUTINEspecifies a user subroutine to
provide the limit force for the friction model. The name of the subroutine is
given by limit_force_name .

- The command line ACTIVE SUBROUTINEspecifies a user subroutine to compute
forces for an active node-face interaction. The name of the subroutine is given
by active_name .

- The command line INTERACTION TYPE SUBROUTINEspecifies a user subrou-
tine to define the type of the interaction. The name of the subroutine is given
by interaction_name .

309

7.11 Search Options

BEGIN SEARCH OPTIONS [<string>name]
search algorithms
GLOBAL SEARCH INCREMENT = <integer>num_steps(1)
GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)
#
search tolerances
SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED

(AUTOMATIC)
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
#
secondary decomposition
SECONDARY DECOMPOSITION = <string>ON|OFF(OFF)

END [SEARCH OPTIONS <string>name]

For this section, the command usage conforms to the 2.6 release of Presto.

Contact involves a search phase and an enforcement phase. The contact search
algorithm used to detect interactions between contact surfaces is often the most com-
putationally expensive part of an analysis. The user can exert some control over how
the search phase is carried out via the SEARCH OPTIONScommand block. By select-
ing different options in this command block, the user can make trade-offs between
the accuracy of the search and computing time.

The most accurate approach to the search phase is a global search at every time
step. For a global search, a box is drawn around each face. The box depends on
the shape of the face, the location of the face in space, and search tolerances. Now
suppose we want to determine whether some node has penetrated that face. We
must first determine if the node lies in one or more boxes that surround a face. This
search, although done with an optimal algorithm, is still time consuming. The search
must be done for all nodes that may be in contact with a face. A less accurate
approach for the search phase is to use what is called a local tracking algorithm.
For the tracking algorithm approach, we first do a global search. When a node has
contacted a face in the global search, we record the face (or faces) contacted by the
node. Instead of using the global search on subsequent time steps, we simply rely
on the record of the node-face interactions to compute the contact forces. The last
face contacted by a node in the global search is assumed to remain in contact with
that node for subsequent time steps. In actuality, the node may slide off the face
it was contacting at the time of the global search. In this case, faces that share
an edge with the original contact face are searched to determine whether they (the
edge adjacent faces) are in contact with the node. If the node moves across a corner
of the face (rather than an edge), we may lose the contact interaction for the node

310

until the next global search. If we lose the contact interaction, we lose some of the
accuracy in the contact calculations until we do the next global search. Furthermore,
it is possible that additional nodes may actually come into contact in the time steps
between global searches. These nodes are typically caught during the next global
search, but inaccuracies can result from missing the exact time of contact. The
tracking algorithm, under certain circumstances, can work quite well even though it
is less accurate. We can encounter analyses where we can set the number of intervals
(time steps) between global searches to a relatively small number (5) and lose only
a few or none of the node-to-face contacts between global searches. Likewise, we
can encounter analyses where we can set the interval between global searches to a
large number (100 or more) and lose only a few or none of the node-to-face contacts
between global searches. Finally, we can encounter problems where we may only have
to do one global search at the beginning and rely solely on the tracking information
for the rest of the problem (without losing any contact). What search approach is
best for your problem depends on the geometry of your structure, the loads on your
structure, and the amount of deformation of your structure. This section tells you
how to control the search phase for your specific problem.

The SEARCH OPTIONScommand block begins with the input line

BEGIN SEARCH OPTIONS [<string >name]

and ends with

END [SEARCH OPTIONS<string >name] .

The name for the command block is optional.

Without a SEARCH OPTIONScommand block, the default search with associated
default search parameters is used for all contact pairs. If you want to override the
default search method for all contact pairs, you should add a SEARCH OPTIONScom-
mand block. By adding a SEARCH OPTIONScommand block, you establish a new set
of global defaults for the search for all contact pairs. The default for the search is that
tracking is turned on and the number of intervals (time steps) between a global search
is one (GLOBAL SEARCH INCREMENT = 1and GLOBAL SEARCH ONCE = OFF).

The valid command lines within a SEARCH OPTIONScommand block are described
in Section 7.11.1, Section 7.11.2, and Section 7.11.3. The values specified by these
commands are applied by default to all interaction contact surfaces, unless overridden
by a specific interaction definition.

7.11.1 Search Algorithms

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)
GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)

311

The above two command lines let you determine the frequency of the global search.
Although these command lines are mutually exclusive, they provide for three search
options:

1. If you want to do only one global search and have all subsequent searches be
tracking searches, then you should use the GLOBAL SEARCH ONCEcommand line
with the string parameter set to ON. By default, the GLOBAL SEARCH ONCE

option is OFF. If you set GLOBAL SEARCH ONCEto ON, then this should be
the only command line for the search algorithms in the command block. The
GLOBAL SEARCH INCREMENTcommand line should not be used.

2. If you want to use the global search only intermittently, with the tracking search
in between the global search, you should use the GLOBAL SEARCH INCREMENT

set to some integer value greater than 1. The integer value num_steps deter-
mines the number of time steps between global searches. The GLOBAL SEARCH

ONCEcommand line should not be used.

3. If you want to do a global search at every time step, you should use the GLOBAL

SEARCH INCREMENTcommand line with num_steps set to 1 or just simply omit
this line since the default for the search increment is 1. The GLOBAL SEARCH

ONCEcommand line should not be used.

In summary, you have three options for the global search. You can do a global
search only once (the first time step), and do a tracking search for all subsequent
searches by setting GLOBAL SEARCH ONCEto ON. You can do a global search for
the beginning time step and intermittently thereafter; the time steps between the
global searches will use a tracking search. For this approach, you will need only the
GLOBAL SEARCH INCREMENTcommand line. Finally, you can set GLOBAL SEARCH

INCREMENTto 1 and do a global search at every time step.

7.11.2 Search Tolerances

SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED(AUTOMATIC)
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol

As indicated previously, the contact functionality in Presto uses a box defined
around each face to locate nodes that may potentially contact the face. This box
is defined by a tolerance normal to the face and another tolerance tangential to the
face (see Figure 7.4). The code adds to these tolerances the maximum motion over a
time step when identifying interactions. In the above command lines, the parameter
norm_tol is the normal tolerance (defined on the NORMAL TOLERANCEcommand line)

312

for the search box and the parameter tang_tol is the tangential tolerance (defined
on the TANGENTIAL TOLERANCEcommand line) for the search box.

By default, Presto will automatically calculate normal and tangential tolerances.
The default value for the command line SEARCH TOLERANCEis AUTOMATIC. If you
leave automatic search on and also specify normal and/or tangential tolerances with
the NORMAL TOLERANCEand TANGENTIAL TOLERANCEcommand lines, the larger of
the two tolerances - automatic or user specified - will be used. For example, suppose
you specify a normal tolerance of 1.0×10−3 1.0×10−3 and the automatic tolerancing
computes a normal tolerance of 1.05× 10−3. Then Presto will use a normal tolerance
of 1.05 × 10−3.

When the USER_DEFINEDoption is specified for the SEARCH TOLERANCEcom-
mand line, these normal and tangential tolerances must be specified. If these toler-
ances are not specified, code execution will be terminated with an error.

Figure 7.4: Illustration of normal and tangential tolerances.

Both of these tolerances are absolute distances in the same units as the analysis.
The proper tolerances are problem dependent. If a normal or tangential tolerance
is specified in the SEARCH OPTIONScommand block, they apply to all interactions.
These default search tolerances can be overwritten for a specific interaction by speci-
fying a value for the normal tolerance and/or tangential tolerance for that interaction
inside the INTERACTION command block (see Section 7.14).

313

7.11.3 Secondary Decomposition

SECONDARY DECOMPOSITION = <string>ON|OFF(ON)

The SECONDARY DECOMPOSITIONcommand line controls internal options used by
the ACME contact search algorithm. Computational results for secondary decompo-
sition ONshould be identical to those for secondary decomposition OFF. However, the
computational time for these two distinct options may vary significantly.

When a mesh is divided for parallel processing, it is usually divided such that
each processor has the same number of elements. The element-based load balance
needs to achieve good parallel performance for element and material calculations. It
is possible to have the number of elements per processor balanced but the number of
contact faces per processor highly unbalanced. If contact is highly localized in one
region of the model, it may happen that a small subset of the processors contains most
of the contact interactions. A secondary decomposition is a parallel decomposition
that balances the number of contact faces. When secondary decomposition is on, the
contact algorithm first moves all data to the secondary decomposition and then it
runs the contact calculations. When the secondary decomposition is off, all contact
calculations are done in the primary decomposition.

The computational effort to move data to the secondary decomposition can be
quite large. Thus, if the contact surfaces are well balanced in the primary decomposi-
tion, a large cost savings can be realized by turning off the secondary decomposition.
Three conditions must be met for turning off the secondary decomposition to achieve
cost savings. First, the number of contact faces per processor must be somewhat bal-
anced in the primary decomposition. Second, faces in contact should be on the same
processor as much as possible. Inertial and RCB decomposition tend to meet this
condition of having contact faces in proximity on the same processor while Multi-KL
does not. Third, conditions one and two must persist throughout the entire analy-
sis. An initially well balanced, well distributed mesh may become poorly balanced
through element death or large deformations.

The best recommendation is to leave the secondary decomposition on.

314

7.12 Enforcement Options

BEGIN ENFORCEMENT OPTIONS [<string>name]
ENFORCEMENT ALGORITHM = <string>MOMENTUM_BALANCE|

PENALTY(MOMENTUM_BALANCE)
MOMENTUM BALANCE ITERATIONS = <integer>num_iterations(5)

END [ENFORCEMENT OPTIONS <string>name]

Contact, as previously indicated, involves a search phase and an enforcement
phase. The user can exert some control over how the enforcement phase is carried
out via the ENFORCEMENT OPTIONScommand block. By selecting different options
in this command block, the user can make trade-offs between solution accuracy and
computing time. The ENFORCEMENT OPTIONScommand block begins with the input
line

BEGIN ENFORCEMENT OPTIONS [<string>name]

and is terminated with the input line

END [ENFORCEMENT OPTIONS<string>name] .

The name for the command block, name, is optional

Only one ENFORCEMENT OPTIONScommand block is permitted in a CONTACT

DEFINITION command block. Without an ENFORCEMENT OPTIONScommand block,
the default enforcement algorithm with associated default enforcement options is used
for all contact pairs. If you want to override the defaults for enforcement for all contact
pairs, you should add an ENFORCEMENT OPTIONScommand block. By adding this
command block, you establish a new set of global defaults for enforcement for all
contact pairs. You can override some of these global defaults for enforcement for
a contact pair by inserting certain command lines in the INTERACTION command
block (see Section 7.14) for that contact pair. It is possible, therefore to tailor the
enforcement approach for individual contact pairs.

Currently, the enforcement option is of limited use. Options for user control will
be expanded in future versions of Presto.

The ENFORCEMENT ALGORITHMcommand line lets the user select either a mo-
mentum balance enforcement algorithm (MOMENTUM_BALANCE) or a penalty method
enforcement algorithm (PENALTY). The default value is MOMENTUM_BALANCE.

For the current release of Presto, users should rely on the default enforcement
algorithm, the momentum balance approach. Consult with a Presto developer if you
would like to use the penalty method.

The momentum balance algorithm for enforcement of the contact constraints
uses an iterative process to ensure incremental momentum balance over a time step.
Rather than making one pass to compute contact forces for node push-back, several

315

passes are made to more accurately compute the normal contact force and, subse-
quently, the tangential (frictional) contact forces. The number of passes (iterations)
is set by the value num_iterations in the MOMENTUM BALANCE ITERATIONScom-
mand line. The default value for the number of iterations is 5. This value is generally
acceptable for removing overlap in the mesh. To get accurate results in a global sense
in analyses that use friction, a value of 10 is more appropriate. To get accurate contact
response at individual points in analyses with friction, a value of 20 or greater may be
needed. Note that as the number of iterations increases, the expense of enforcement
increases. Thus a user can balance execution speed and accuracy with this command
line, though care must be taken to ensure that the appropriate level of accuracy is
attained. This command line affects only the enforcement phase of the contact. A
single search phase is used for contact detection, but the enforcement phase uses an
iterative process.

316

7.13 Default Values for Interactions

BEGIN INTERACTION DEFAULTS [<string>name]
SURFACES = <string list>surface_names
SELF CONTACT = <string>ON|OFF(OFF)
GENERAL CONTACT = <string>ON|OFF(OFF)
AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)
FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
END [INTERACTION DEFAULTS <string>name]

For this section, the command usage conforms to the 2.6 release of Presto.

This section discusses the INTERACTION DEFAULTScommand block. Note that
the name for the INTERACTION DEFAULTScommand block, name, is currently not
used or required. This command block lets you enforce contact on a subset of all
contact surfaces or on all contact surfaces. You may overwrite predefined values
defining surface interaction (for all surfaces defined by this command block) by using
several different command lines.

It is important to note that unless some combination of the INTERACTION DE-

FAULTS command block and INTERACTION command blocks (Section 7.14) appears
in your CONTACT DEFINITIONcommand block, enforcement will not take place. Up
to this point, all command lines and command blocks have provided information to
set up the search phase and have provided details for surface interaction. However,
contact enforcement for surfaces—the actual removal of interpenetration between sur-
faces and the calculation of surface forces consistent with friction models—will not
take place unless some combination of the INTERACTION DEFAULTScommand block
and INTERACTION command blocks is used to set up surface interactions.

Contact between surfaces requires data to describe the interaction between these
surfaces. You may specify defaults for the surface interactions for some or all surface
pairs by using the INTERACTION DEFAULTScommand block. Within this command
block, you can provide a list of surfaces that are a subset of the contact surfaces. Any
pair of surfaces listed in the INTERACTION DEFAULTScommand block will acquire the
default values that are defined within the INTERACTION DEFAULTScommand block.
If you omit the SURFACEScommand line, defaults in the INTERACTION DEFAULTS

command block are applied to all surfaces. Any default set within an INTERACTION

DEFAULTScommand block can be overridden by commands in an INTERACTIONcom-
mand block. See Section 7.14.

If you consider only the use of the INTERACTION DEFAULTScommand block (and
not the use of the INTERACTION command block), you have three options for the

317

surface interaction values:

• You can specify default surface interaction values for all the contact surface
pairs by specifying all of the contact surfaces in an INTERACTION DEFAULTS

command block.

• You can specify default surface interaction values for some of the contact sur-
face pairs by specifying a subset of the contact surfaces in an INTERACTION

DEFAULTScommand block.

• You can leave all interactions off by default by not specifying an INTERACTION

DEFAULTScommand block.

You can overwrite surface interaction values that you have set with an INTERAC-

TION DEFAULTScommand block by using an INTERACTION command block.

The valid commands within an INTERACTION DEFAULTScommand block are de-
scribed in Section 7.13.1 through Section 7.13.5. The values specified by the command
lines in the INTERACTION DEFAULTScommand block are applied by default to all
interaction contact surfaces unless overridden by a specific interaction definition.

7.13.1 Surface Identification

SURFACES = <string list>surface_names

This command line identifies the contact surfaces to which the surface interaction
values defined in the INTERACTION DEFAULTScommand block will apply. The string
list on the SURFACEScommand line specifies the names of these contact surfaces. The
SURFACEScommand line can include any surface specified in a CONTACT SURFACE

command line, a CONTACT SURFACEcommand block, or a SKIN ALL BLOCKScom-
mand line.

The SURFACEScommand line is optional. If you want the defaults to apply to
all of the surfaces you have defined, you will NOT use the SURFACEScommand line
in this command block. If you want the defaults to apply to a subset of all contact
surfaces, then you will list the specific set of surfaces on a SURFACEScommand line.
The names of all of the surfaces with the default values will be listed in the string list
designated as surface_names .

7.13.2 Self-Contact and General Contact

SELF CONTACT = <string>ON|OFF(OFF)
GENERAL CONTACT = <string>ON|OFF(OFF)

318

The SELF CONTACTcommand line, if set to ON, specifies that the default values
set in the command lines of the command block will apply to self-contact between
the listed surfaces (or all surfaces if no surfaces are listed). The GENERAL CONTACT

command line, if set to ON, specifies that the default values set in the command lines
of this command block apply to contact between the listed surfaces (or all surfaces
if no surfaces are listed) excluding self-contact. The default values for both of these
command lines is OFF. If you want to enforce general contact between all surfaces
specified in the INTERACTION DEFAULTScommand block but no self-contact, you
must include the line

GENERAL CONTACT = ON.

If you want to enforce self-contact for all surfaces specified in the INTERACTION

DEFAULTScommand block, you must include the line

SELF CONTACT = ON.

Suppose that you have only an INTERACTION DEFAULTScommand block with
no INTERACTION command block in your CONTACT DEFINITION command block.
Unless you have a GENERAL CONTACTcommand line set to ON, a SELF CONTACT

command line set to ON, or both the GENERAL CONTACTcommand line set to ONand
the SELF CONTACTcommand line set to ON, no enforcement will occur.

Suppose you have turned on contact enforcement for all contact surface pairs (gen-
eral contact and self-contact) in the INTERACTION DEFAULTScommand block. You
may turn off contact enforcement for a specific contact pair by use of the INTER-

ACTION BEHAVIORcommand line in the INTERACTION command block. (The same
holds true if you have turned on contact enforcement for only a subset of contact
surface pairs in the INTERACTION DEFAULTScommand block.)

Suppose you have turned on self-contact enforcement for all contact surfaces in
the INTERACTION DEFAULTScommand block. You may override self-enforcement for
a specific contact surface by use of the INTERACTION BEHAVIORcommand line in the
INTERACTION command block. (The same holds true if you have turned on contact
enforcement for only a subset of contact surfaces in the INTERACTION DEFAULTS

command block.)

7.13.3 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS
(FRICTIONLESS)

The FRICTION MODELcommand line permits the description of how surfaces inter-
act with each other using a friction model defined in a friction-model command block
(see Section 7.10). In the above command line, the string friction_model_name

319

should match the name assigned to some friction model command block. For exam-
ple, if you specified the name of an AREA WELDcommand block as AW1and wanted
to reference that name in the FRICTION MODELcommand line, the value of fric-

tion_model_name would be AW1.

The default interaction is frictionless contact.

7.13.4 Automatic Kinematic Partition

AUTOMATIC KINEMATIC PARTITION

If the AUTOMATIC KINEMATIC PARTITIONcommand line is used, Presto will au-
tomatically compute the kinematic partition factors for pairs of surfaces. (See Sec-
tion 7.14.2 for more information on kinematic partitioning.) The automatic kinematic
partitions are computed from the impedance of each surface based on nodal aver-
age density and wave speed. Automatic computation of kinematic partition factors
provides the best approach to exact enforcement of symmetric contact of opposing
surfaces provided that these surfaces have the same mesh resolution. If the mesh
resolution is disparate, you can specify the coarser meshed body as master, but gen-
erally it is better to use more contact iterations to deal with this case of a fine mesh
contacting a coarse mesh.

For the interaction of any two surfaces, the sum of the partition factors for the
surfaces must be 1.0. This is automatically taken care of when the AUTOMATIC KINE-

MATIC PARTITION command line is used. The default value for kinematic partition
factors for all surfaces is 0.5.

The AUTOMATIC KINEMATIC PARTITIONcommand line can be used to set the
kinematic partitions for all interactions or to set the kinematic partitions for specific
interactions. Thus the command line can appear in two different scopes:

1. The command line can be used within the INTERACTION DEFAULTScommand
block. In this case, all contact surface interactions defined in the command
block will use the automatic kinematic partitioning scheme by default. This
will override the default case that assigns a kinematic partition factor of 0.5
to all surfaces. For particular interactions, it is possible to override the use of
the automatic kinematic partition factors by specifying kinematic partition val-
ues (with the KINEMATIC PARTITION command line) within the INTERACTION

command blocks for those interactions.

2. The command line can be used inside an INTERACTION command block. If the
automatic partitioning command line appears inside an INTERACTION com-
mand block, the kinematic partition factors for that particular interaction will
be calculated by the automatic kinematic partition scheme.

320

The AUTOMATIC KINEMATIC PARTITIONcommand line is not currently opera-
tional for shell elements. An error message is reported if this option is used with shell
elements.

7.13.5 Interaction Behavior

INTERACTION BEHAVIOR = <string>SLIDING|
INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

The INTERACTION BEHAVIORcommand line specifies how the search will be done.
For SLIDING contact, the search algorithm is constantly updating information that
lets the code accurately track the sliding of the node over the face and any adja-
cent faces. The SLIDING option, which is the default, lets us handle the case where
we have large relative sliding between a face and a node. A node contacting a face
can slide over time by a significant amount over the face. The node can slide onto
an adjacent face or onto a face on a nearby surface. For the case of INFINITES-

IMAL_SLIDING , search information is not updated to the extent that it is with the
SLIDING option. In the case of INFINITESIMAL_SLIDING , it is assumed that there
is very little slip over time of a node relative to its initial contact point on a face.
Furthermore, it is assumed a node will not slide off the face that it initially contacts.
The INFINITESIMAL_SLIDING option is not as accurate as the SLIDING option, but
neither is it as expensive as the SLIDING option. For some cases, however, the IN-

FINITESIMAL_SLIDING option may work quite well even though it is not as accurate
as the SLIDING option. Finally, you may turn off the search completely by using the
NO_INTERACTIONoption.

With the third option, NO_INTERACTION, you could turn off the search for all
surfaces specified in the INTERACTION DEFAULTScommand block. You could then
turn on the search on a case-by-case basis for various contact pairs or for the self-
contact of surfaces by using INTERACTIONcommand blocks. This is a convenient way
to set defaults for the friction model and automatic kinematic partitioning without
turning on all the interactions. More likely, you will set contact interactions to default
to the SLIDING option in the INTERACTION DEFAULTScommand block, and then
turn off specific contact interactions through INTERACTION command blocks.

Using the INTERACTION BEHAVIORcommand line in the INTERACTION DE-

FAULTScommand block represents a sophisticated application of this command line.
Please consult with Presto developers for more information about this command line
if it is used in an INTERACTION DEFAULTScommand block.

321

7.14 Values for Specific Interactions

BEGIN INTERACTION [<string>name]
SURFACES = <string>surface1 <string>surface2
MASTER = <string>surface
SLAVE = <string>surface
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>friction_model_name|FRICTIONLESS

(FRICTIONLESS)
AUTOMATIC KINEMATIC PARTITION
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
END [INTERACTION <string>name]

The Presto contact input also permits the setting of values for specific interactions
using the INTERACTION command block. If an INTERACTION DEFAULTScommand
block is present within a CONTACT DEFINITIONcommand block, the values provided
by an INTERACTION command block override the defined defaults. If an INTERAC-

TION DEFAULTScommand block is not present, only those interactions described by
INTERACTION command blocks are searched for contact, and values without system
defaults must be specified.

The INTERACTION command block begins with

BEGIN INTERACTION [<string >name]

and ends with

END [INTERACTION <string>name] ,

where name is a name for the interaction. Note that this name is currently not used
or required.

The valid commands within an INTERACTION command block are described in
Section 7.14.1 through Section 7.14.6.

7.14.1 Surface Identification

SURFACES = <string>surface1 <string>surface2

MASTER = <string>surface
SLAVE = <string>surface

322

There are two methods to identify the surfaces described by a specific interaction.
The standard method is to identify both surfaces in a single line with the SURFACES

command line, where surface1 and surface2 are the names of the two contact
surfaces to which the interaction refers. In this syntax, the values supplied for the
interaction are defined for two-way contact, where contact is evaluated twice: once
with the first surface as master and the second as slave, and once with the oppo-
site arrangement. How the two contact enforcements are combined is defined with
the KINEMATIC PARTITION command line (see Section 7.14.2). Two-way contact
provides better-quality contact results for most problems.

To specify one-way contact, where the nodes of the “slave” surfaces are searched
against the “master” surface, use the MASTERand SLAVEcommand lines, where sur-

face is the name of a contact surface defined in the CONTACT DEFINITIONcommand
block (see Section 7.2). In this case, all interaction values specified in this command
block are applied only to nodes of the slave surface interacting with faces of the mas-
ter surface. You cannot specify two master-slave interactions in which the contact
surfaces are switched. You also cannot specify a kinematic partition for a master-slave
interaction; it is assumed to be 1.0.

In the INTERACTION command block, either the SURFACESsyntax (SURFACES

command line only) or the MASTER/SLAVE syntax (MASTERand SLAVE command
lines) should be used, but not both.

For self-contact, use the SURFACEScommand lines. The two surfaces given in the
SURFACEScommand line are the same contact surface.

7.14.2 Kinematic Partition

KINEMATIC PARTITION = <real>kin_part

To provide accurate contact evaluation, Presto typically computes two-way con-
tact between two surfaces, where interactions are defined between the nodes of the
first surface and the faces of the second surface, and also between the nodes of the
second surface and the faces of the first surface. If the two surfaces have penetrated
each other by a distance δ, then each of the contact evaluations will compute forces
to move the surface a distance δ, so that the total resulting displacement would be 2δ
if both sets of contact computations were fully applied. The KINEMATIC PARTITION

command line defines a kinematic partition scaling factor, kin_part , for the two
contact computations so that the total contact motion is correct. The kinematic par-
tition factor, kin_part , is a value between 0.0 and 1.0. The factor scales the relative
motion of the first surface, where kin_part = 0.0 means the first surface will move
none of δ, while kin_part = 1.0 means the surface moves all of δ. The second surface
moves the portion of δ that remains after the motion of the first surface (i.e., δ for

323

second surface = 1.0 – kin_part). For instance, if kin_part is 0.2, the first surface
will move 20% of the penetration distance (0.2δ in our example), and the second
surface would move the remaining 80% (0.8δ in our example). The default value is
0.5, so that each surface would move half of the penetration distance. If kin_part is
0.0, the first surface does not move at all, and the second surface moves the full dis-
tance. This is exactly equivalent to a one-way master-slave contact definition, where
the first surface is the master and the second is the slave. If kin_part is 1.0, the
second surface is the master, and the first surface is the slave. Figure 7.5 illustrates
how the kinematic partition factor varies from 0.0 to 1.0, with the specific example
of kin_part being set to 0.2.

Figure 7.5: Illustration of kinematic partition values.

The capability provided by the KINEMATIC PARTITION command line is impor-
tant in cases where contact occurs between two materials of disparate stiffness. Phys-
ically, we would expect a material with a higher stiffness to have more of an effect in
determining the position of the contact surface than a more compliant material. In
this case, we want the softer material to move more of the distance, and thus it should
have a higher kinematic partition factor. The appropriate kinematic partition factor
can be determined in closed form; see the ACME contact library reference (1) for
more information. Alternately, the AUTOMATIC KINEMATIC PARTITIONcapability
can automatically calculate the proper kinematic partition based on the stiffness of
the materials.

Another case where the kinematic partition factor has traditionally been used
is when meshes with dissimilar resolutions contact each other. If an interaction is

324

defined with a fine mesh as the master surface and a coarse mesh as a slave surface,
the contact algorithms will permit nodes on the master surface to penetrate the slave
surface. In these cases, such problems can be alleviated by making the coarse mesh
the master surface. However, the iterative approach implemented in the enforcement
can also take care of this problem and is advised. If very few iterations are chosen,
an appropriate kinematic partition factor may be needed to prevent unintentional
penetration due to mesh discretization.

For self-contact, the kinematic partition factor should be 0.5.

A kinematic partition factor cannot be defined for interactions that use the pure
master-slave syntax (see Section 7.14.1).

In general, it is best to use the automatic kinematic partition option to properly
compute the kinematic partition for a pair of surfaces. However, in a few cases,
master-slave interactions are preferred. These cases consist of (1) interaction between
an analytic surface and a deformable body, where the analytic body should be the
master surface; and (2) contact between shells and solids, where the solid should be
the master surface.

7.14.3 Tolerances

NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

You can set tolerances for the interaction for a specific contact surface pair or
for self-contact of a surface by using the above tolerance related command lines in a
INTERACTIONcommand block. See Section 7.11.2 on search tolerances and Section 7.5
on overlap tolerances for a complete discussion of tolerances for contact.

7.14.4 Friction Model

FRICTION MODEL = <string>friction_model_name|FRICTIONLESS
(FRICTIONLESS)

You can set the friction model for the interaction for a specific contact surface pair
or for self-contact of a surface by using the above command line in an INTERACTION

command block. See Section 7.13.3 for a discussion of this command line.

325

7.14.5 Automatic Kinematic Partition

AUTOMATIC KINEMATIC PARTITION

You can turn on (or off) automatic kinematic partitioning for a specific contact
surface pair by using the above command line in an INTERACTION command block.
See Section 7.13.4 for a discussion of automatic kinematic partitioning.

7.14.6 Interaction Behavior

INTERACTION BEHAVIOR = <string>SLIDING|
INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)

You can set the search behavior for a specific contact surface pair or for self-
contact of a surface by using the above command line in an INTERACTION command
block. See Section 7.13.5 for a discussion of this command line.

Of particular use of this command line in this particular command block is setting
the interaction behavior to NO_INTERACTION. This deactivates enforcement between
the surfaces specified in the INTERACTION command block.

326

7.15 Examples

This section has several example problems. We present the geometric configuration
for the problems and the appropriate command lines to describe contact for the
problems.

7.15.1 Example 1

Our first example problem has two blocks that come into contact due to initial ve-
locity conditions. Block 1 has an initial velocity equal to v1, and block 2 has an
initial velocity equal to v2. The geometric configuration for this problem is shown in
Figure 7.6.

Figure 7.6: Problem with two blocks coming into contact.

The simplest input for this problem will be named EXAMPLE1and is shown as
follows:

BEGIN CONTACT DEFINITION EXAMPLE1

define contact surfaces
SKIN ALL BLOCKS = ON

set interactions
BEGIN INTERACTION DEFAULTS

GENERAL CONTACT = ON
END INTERACTION DEFAULTS

END CONTACT DEFINITION EXAMPLE1

In our example, the SKIN ALL BLOCKScommand line with its parameter set to

327

ON will create a surface named surface_1 (from the skinning of block_1 and a
surface named surface_2 (from the skinning of block_2).

All of the normal and tangential tolerances will be set automatically in the above
example. Frictionless contact is assumed. The kinematic partition factor defaults to
0.5 for both surfaces, surface_1 and surface_2 .

If you omitted the INTERACTION DEFAULTScommand block with GENERAL CON-

TACT set to ON, then contact enforcement would not take place.

Now, let us consider the same problem (two blocks coming into contact) in which
the contact definition for the problem is not defined simply by using all of the de-
fault settings. The input for this variation of our two-block problem will be named
EXAMPLE1Aand is shown as follows:

BEGIN CONTACT DEFINITION EXAMPLE1A

define contact surfaces
SKIN ALL BLOCKS = ON

friction model
BEGIN CONSTANT FRICTION MODEL ROUGH

FRICTION COEFFICIENT = 0.5
END CONSTANT FRICTION MODEL ROUGH

search options
BEGIN SEARCH OPTIONS

GLOBAL SEARCH INCREMENT = 10
NORMAL TOLERANCE = 1.0E-3
TANGENTIAL TOLERANCE = 1.0E-3

END SEARCH OPTIONS

set interactions
BEGIN INTERACTION DEFAULTS

FRICTION MODEL = ROUGH
GENERAL CONTACT = 0N

END INTERACTION DEFAULTS

END CONTACT DEFINITION EXAMPLE1A

As is the case of the EXAMPLE1command block, the SKIN ALL BLOCKScom-
mand line with its parameter set to ONwill create a surface named surface_1 (from
the skinning of block_1) and a surface named surface_2 (from the skinning of
block_2).

For EXAMPLE1A, we want to have frictional contact between the two blocks. For

328

the frictional contact, we define a constant friction model with a CONSTANT FRICTION

MODELcommand block. We name this model ROUGH.

The SEARCH OPTIONScommand block sets the interval between global searches
to 10; the default value is 5. Also, in this command block, we have set values for the
normal and tangential tolerances. The option to compute the search tolerance auto-
matically has been left on. The larger of the two values—an automatically computed
tolerance or the user-specified tolerance—will be selected as the search tolerance dur-
ing the search phase.

In the INTERACTION DEFAULTScommand block, we select the friction model
ROUGHon the FRICTION MODELcommand line. As in the case of the EXAMPLE1

command block, if you omitted the INTERACTION DEFAULTScommand block with
GENERAL CONTACTset to ON, contact enforcement would not take place.

7.15.2 Example 2

Our second example problem has three blocks that come into contact due to initial
velocity conditions. Block 1 has an initial velocity equal to v1, and block 3 has an
initial velocity equal to v3. The geometric configuration for this problem is shown in
Figure 7.7.

Figure 7.7: Problem with three blocks coming into contact.

The input for this three-block problem will be named EXAMPLE2and is shown as
follows:

BEGIN CONTACT DEFINITION EXAMPLE2

329

define contact surfaces
CONTACT SURFACE surface_1 CONTAINS block_1
CONTACT SURFACE surface_2 CONTAINS block_2
CONTACT SURFACE surf_3 CONTAINS surface_3

friction model
BEGIN CONSTANT FRICTION MODEL ROUGH

FRICTION COEFFICIENT = 0.5
END CONSTANT FRICTION MODEL ROUGH

search options
BEGIN SEARCH OPTIONS

GLOBAL SEARCH INCREMENT = 10
NORMAL TOLERANCE = 1.0E-3
TANGENTIAL TOLERANCE = 1.0E-3

END SEARCH OPTIONS

set interactions
BEGIN INTERACTION DEFAULTS

FRICTION MODEL = ROUGH
GENERAL CONTACT = 0N
SELF CONTACT = ON

END INTERACTION DEFAULTS

set specific interaction
BEGIN INTERACTION S2TOS3

SURFACES = surface_2 surf_3
KINEMATIC PARTITION = 0.4
NORMAL TOLERANCE = 0.5E-3
TANGENTIAL TOLERANCE = 0.5E-3
FRICTION MODEL = FRICTIONLESS

END INTERACTION S2TOS3

END CONTACT DEFINITION EXAMPLE2

For the EXAMPLE2command block, we have defined three surfaces. The first sur-
face, surface_1 , is obtained by skinning block_1 . The second surface, surface_2

is obtained by skinning block_2 . The third surface, surf_3 , is the user-defined
surface surface_3 . The user-defined surface, surface_3 , can contain a subset of
the external element faces that define block_3 or all of the external element faces
that define block_3 .

The SEARCH OPTIONScommand block sets the interval between global searches
to 10; the default value is 5. Also, in this command block, we have set values for the

330

normal and tangential tolerances. The option to compute the search tolerance auto-
matically has been left on. The larger of the two values—an automatically computed
tolerance or the user-specified tolerance—will be selected as the search tolerance dur-
ing the search phase.

In the INTERACTION DEFAULTScommand block, we select the friction model
ROUGHon the FRICTION MODELcommand line. Both GENERAL CONTACTand SELF

CONTACTare set to ONin the EXAMPLE2command block. For this problem, block_2

can undergo self-contact. Setting GENERAL CONTACTto ONwill enforce contact be-
tween surface_1 and surface_2 , surface_2 and surf_3 , and surface_1 and
surf_3 . Setting SELF CONTACTto ONwill enforce self-contact for all three of the
surfaces.

For this particular example, we want to override some of the Presto default values
for surface interaction and some of the default values for surface interaction set by
the INTERACTION DEFAULTScommand block for the interaction between surface_2

and surf_3 . To override default values, we use an INTERACTION command block
and indicate that it applies to surface_2 and surf_3 with a SURFACEScommand
line. We override the Presto default for the kinematic partition factor by using a
KINEMATIC PARTITION command line with the kinematic partition parameter set to
a value of 0.4. We override the normal and tangential tolerances and the friction model
set in the INTERACTION command block. The normal and tangential tolerances for
interaction between surface_2 and surf_3 is set to 0.5E-3 rather than the global
value of 1.0E-3 . The friction model for interaction between surface_2 and surf_3

is set to FRICTIONLESS rather than the default value of ROUGH.

331

7.16 References

1. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein,
and R. E. Jones. ACME: Algorithms for Contact in a Multiphysics Environ-
ment, API Version, 2.2, SAND2004-5486. Albuquerque, NM: Sandia National
Laboratories, October 2001.

2. Heinstein, M. W., and T. E. Voth. Contact Enforcement for Explicit Transient
Dynamics, Draft SAND report. Albuquerque, NM: Sandia National Laborato-
ries, 2005.

332

Chapter 8

Output

It is possible to output a variety of information from Presto. This chapter of the
user’s guide describes how to select the type of information that is to be output and
the frequency with which it is to be output. There are three main output options:
results output, history output, and restart output. The results output option lets
the user select some set of variables (registered, user-defined, or some combination
thereof). If the user selects a nodal variable such as displacement for results output,
the displacements for all of the nodes in a model will be output to a results file. If the
user selects an element variable such as rotated stress for results output, the rotated
stress for all elements in the model that calculate this quantity (rotated stress) will be
output. The history output option lets the user select a very specific set of information
for output. For example, if you know that the displacement at a particular node is
critical, then you can select only the displacement at that particular node as history
output. The restart output is written so that any calculation with Presto can be
halted at some arbitrary analysis time and then restarted at this time. The user has
no control over what is written to the restart file. When a restart file is written, it
must be a complete state description of the calculations at some given time. A restart
file contains a great deal of information, and is typically much larger than a results
file. You need to carefully limit how often a restart file is written.

Section 8.1 describes the results output. Included in the results output is a de-
scription of commands for user-defined output (Section 8.1.2). User-defined output
lets the user postprocess analysis results as the code is running to produce a reduced
set of output information. Section 8.2 describes the history output, and Section 8.3
describes the restart output. In Section 8.4, there is a list of key registered variables.

Unless otherwise noted, the command blocks and command lines discussed in
Chapter 8 appear in the region scope.

333

8.1 Results Output

The results output lets you select some set of variables to write to a file at various
intervals. (The interval at which information is written can be changed throughout the
analysis time.) The name of the results file is set in the RESULTS OUTPUTcommand
block. As indicated earlier, the results output option sends all of the values for a
particular variable to the results file.

334

8.1.1 Exodus Results Output File

BEGIN RESULTS OUTPUT <string>results_name
DATABASE NAME = <string>results_file_name
DATABASE TYPE = <string>database_type(exodusII)
TITLE = <string>user_title
NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

ELEMENT VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

GLOBAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

END [RESULTS OUTPUT <string>results_name]

You can specify a results file, the results to be included in this file, and the
frequency at which results are written by using a RESULTS OUTPUTcommand block.
The command block appears inside the region scope.

More than one results file can be specified for an analysis. Thus for each results
file, there will be one RESULTS OUTPUTcommand block. The command block begins
with

335

BEGIN RESULTS OUTPUT<string >results_name

and is terminated with

END [RESULTS OUTPUT<string >results_name] ,

where results_name is a user-selected name for the command block. Nested within
the RESULTS OUTPUTcommand block are a set of command lines, as shown in the
block summary given above. The first two command lines listed (DATABASE NAME

and DATABASE TYPE) give pertinent information about the results file. The command
line

DATABASE NAME =<string> results_file_name

gives the name of the results file with the string results_file_name . If the results
file is to appear in the current directory and is named job.e , this command line
would appear as

DATABASE NAME = job.e .

If the results file is to be created in some other directory, the command line would
have to show the path to that directory.

If the results file does not use the Exodus II format, you must specify the format
for the results file using the command line

DATABASE TYPE =<string> database_type(exodusII) .

Currently, only the Exodus II database is supported in Presto. Other options will be
added in the future.

You may add a title to the results file by using the TITLE command line. Whatever
you specify for the user_title will be written to the results file. Some of the
programs that process the results file (such as various SEACAS programs [1]) can
read and display this information.

The other command lines that appear in the RESULTS OUTPUTcommand block
determine the type and frequency of information that is output. Descriptions of these
command lines follow in Section 8.1.1.1 through Section 8.1.1.11.

8.1.1.1 Output Nodal Variables

NODE VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

336

Any nodal variable in Presto can be selected for output in the results file by using
a command line in one of the two forms shown above. The only difference between
the two forms is the use of NODEor NODAL. The string variable_name is the name
of the nodal variable. The string variable_name can be either a registered variable
listed in Section 8.4 or a user-defined variable (see Section 8.1.2 and Section 9.2.4).

It is possible to specify an alias for any of the nodal variables by using the AS

specification. Suppose, for example, you wanted to output the external forces in
Presto, which are registered as force_external , with the alias f_ext . You would
then enter the command line

NODE VARIABLES = force_external AS f_ext .

The NODE VARIABLEScommand line can be used any number of times within a
RESULTS OUTPUTcommand block. It is also possible to specify more than one nodal
variable for output on a command line. If you also wanted to output the internal
forces, which are registered as force_internal , with the alias f_int , you would
enter the command line

NODE VARIABLES = force_external AS f_ext

force_internal AS f_int .

The specification of an alias is always optional.

8.1.1.2 Output Element Variables

ELEMENT VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

Any element variable in Presto can be selected for output in the results file by using
the ELEMENT VARIABLEScommand line. The string variable_name is the name of
the element variable. The string variable_name can be a registered variable listed in
Section 8.4, a user-defined variable (see Section 8.1.2 and Section 9.2.4), or a derived
output quantity. The derived output option is discussed in detail in the latter portion
of this discussion of the ELEMENT VARIABLEScommand line.

It is possible to specify an alias for any of the element variables by using the AS

specification. Suppose, for example, you wanted to output the stress in Presto, which
is registered as rotated_stress , with the alias stress . You would then enter the
command line

ELEMENT VARIABLES = rotated_stress AS stress .

The ELEMENT VARIABLEScommand line can be used any number of times within
a RESULTS OUTPUTcommand block. It is also possible to specify more than one
element variable for output on a command line. If you also wanted to output the

337

stretch, which is registered as stretch , with the alias stretch , you would enter the
command line

ELEMENT VARIABLES = rotated_stress AS stress

stretch AS stretch .

The specification of an alias is always optional.

As mentioned previously, you can use the ELEMENT VARIABLEScommand line for
the output of a derived quantity. All derived quantities are calculated from element
stress computed for a solid element. A derived quantity is identified by supplying
one of the available options listed in Table 8.1 for the string variable_name . For
example, you would use the following command to compute and output Von Mises
stress on all solid elements:

ELEMENT VARIABLES = von_mises

Note that the AS specification can be included in the command line when you
output derived quantities.

Table 8.1 gives the complete set of options for calculating derived quantities.

Table 8.1: Options for Derived Output

Option Option Description
von mises Von Mises stress norm.
hydrostatic stress One-third the trace of the stress sensor.
stress invariant 1 Trace of the stress tensor.
stress invariant 2 Second invariant of the stress tensor.
stress invariant 3 Third invariant of the stress tensor.
max principal Largest eigenvalue of the stress tensor.
intermediate principal Middle eigenvalue of the stress tensor.
min principal Smallest eigenvalue of the stress tensor
max shear Maximum shear stress from Mohr’s circle.
octahedral shear Octahedral shear norm of the stress tensor.

8.1.1.3 Output Global Variables

GLOBAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

Any global variable in Presto can be selected for output in the results file by using
the GLOBAL VARIABLEScommand line. The string variable_name is the name of

338

the global variable. The string variable_name can be either a registered variable
listed in Section 8.4 or a user-defined variable (see Section 8.1.2 and Section 9.2.4).

With the AS specification, you can specify the variable and select an alias for this
variable in the results file. Suppose, for example, you wanted to output the time steps
in Presto, which are identified as timestep , with the alias tstep . You would then
enter the command line

GLOBAL VARIABLES = timestep AS tstep .

The GLOBAL VARIABLEScommand line can be used any number of times within a
RESULTS OUTPUTcommand block. It is also possible to specify more than one global
variable for output on a command line. If you also wanted to output the kinetic
energy, which is registered as KineticEnergy , with the alias ke , you would enter
the command line

GLOBAL VARIABLES = timestep as tstep

KineticEnergy as ke .

The specification of an alias is always optional.

8.1.1.4 Set Begin Time for Results Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write output to the results file
beginning at time output_start_time . No results will be written before this time.
If other commands set times for results (AT TIME, ADDITIONAL TIMES) that are
less than output_start_time , those times will be ignored, and results will not be
written at those times.

8.1.1.5 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times
specified. To hit the output times exactly in an explicit, transient dynamics code,
it is necessary to adjust the time step as the time approaches an output time. The
integer value steps in the TIMESTEP ADJUSTMENT INTERVALcommand line specifies
the number of time steps to look ahead in order to adjust the time step.

If this command line does not appear, results are output at times closest to the
specified output times.

339

8.1.1.6 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin , results will be output every time increment
given by the real value time_increment_dt .

8.1.1.7 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.1.1.6, you
can use the ADDITIONAL TIMES command line to specify an arbitrary number of
additional output times.

8.1.1.8 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =
<integer>step_increment

At the step specified by step_begin , results will be output every step increment
given by the integer value step_increment .

8.1.1.9 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1
<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.1.1.8, you
can use the ADDITIONAL STEPScommand line to specify an arbitrary number of
additional output steps.

8.1.1.10 Set End Time for Results Output

TERMINATION TIME = <real>termination_time_value

Results will not be written to the results file after time termination_time_value .
If other commands set times for results (AT TIME, ADDITIONAL TIMES) that are
greater than termination_time_value , those times will be ignored, and results
will not be written at those times.

340

8.1.1.11 Write Results If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|
SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNALcommand line is used to initiate the write of a results
file if some type of system error is encountered. The user should specify one of the
above system errors.

This command is primarily a debugging tool for developers.

8.1.2 User-Defined Output

BEGIN USER OUTPUT
{mesh-entity set commands }
#
compute global result command
COMPUTE GLOBAL <string>results_var_name AS

<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|ELEMENT
<string>value_var_name [(<integer>component_num)]

#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }
#
copy command
COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name
#
additional command
ACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

The USER OUTPUTcommand block lets the user generate specialized output in-
formation derived from analysis results such as element stresses, displacements, and
velocities. For example, the USER OUTPUTcommand block could be used to sum the
contact forces in a particular direction in the global axes and on a certain surface
to give a net resultant contact force on that surface. In this example, we essentially
postprocess contact information and reduce it to a single value for a surface (or set
of surfaces). In general, then, this is the purpose of the USER OUTPUTcommand

341

block—to postprocess analysis results as the code is running and produce a reduced
set of specialized output information. The USER OUTPUTcommand block offers an
alternative to writing out large quantities of data and then postprocessing them with
some external code in order to produce specialized output results.

There are three options for calculating user-defined quantities. In the first op-
tion, a single command line in the command block is used to compute reductions
of registered variables on subsets of the mesh. This option makes use of the COM-

PUTE GLOBALcommand line. The above example of the contact force represents an
instance where we can accomplish the desired result simply by using the COMPUTE

GLOBALcommand line. In the second option, the command block specifies a user
subroutine to run immediately preceding output to calculate any desired variable.
This option makes use of a NODE SET, SURFACE, or ELEMENT SUBROUTINEcommand
line. Finally, there is an option to copy an element variable for an element to the
nodes associated with the element, via the COPY ELEMENT VARIABLEcommand line.
This copy option is a specialized option that has been made available primarily for
creating results files for some of the postprocessing tools used with Presto. You can
use only one of the three options—compute global result, user subroutine, or copy—in
a given command block.

For the compute global result option, a user-defined variable is automatically
generated. This user-defined variable is given whatever name the user selects for
results_var_name in the above specification for the COMPUTE GLOBALcommand
line. If the user subroutine or copy option is used, the user will need to define
some type of user variable with the USER VARIABLEcommand block described in
Section 9.2.4.

User-defined variables, whether they are generated via the compute global result
option or the USER VARIABLEcommand block, are not automatically written to a
results or history file. If the user wants to output any user-defined variables, these
variables must be referenced in a results or history output specification (see Sec-
tion 8.1.1 and Section 8.2, which describe the output of variables to results files and
history files, respectively).

The USER OUTPUTcommand block contains four groups of commands—mesh-
entity set, compute global result, user subroutine, and copy. Each of these command
groups is basically independent of the others. In addition to the command lines in
the four command groups, there is an additional command line: ACTIVE PERIODS.
The following sections provide descriptions of the different command groups and the
ACTIVE PERIODScommand line.

342

8.1.2.1 Mesh-Entity Set Commands

The {mesh-entity set commands } portion of the USER OUTPUTcommand block
specifies the nodes, element faces, or elements associated with the variable to be
output. This portion of the command block can include some combination of the
following command lines:

NODE SET = <string_list>nodeset_names
SURFACE = <string_list>surface_names
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list> surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes, element faces, or elements. See Section 6.1 for more
information about the use of these command lines for mesh entities. There must be
at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKScommand line in
the command block.

8.1.2.2 Compute Global Result Command

If the compute global result option is selected, Presto returns a single global value or
a set of global values by examining the current values for a named registered nodal
or element variable and then calculating the output according to a user-specified
operation. A single global value, for example, might be the maximum value of one of
the stress components of all of the elements in our specified set; a set of global values
would be the maximum value of each stress component of all elements in our specified
set. Importantly, this option can only be used with a variable that is registered in
Presto, not a variable that is created by the user via the USER VARIABLEcommand
block.

The following command line is related to the compute global result option.

COMPUTE GLOBAL <string>results_var_name AS
<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|ELEMENT
<string>value_var_name [(<integer>component_num)]

In the above command line, the following definitions apply:

- The string results_var_name is the name of a new global variable in which
to store the reduced results. To output this variable in a results file or a history

343

file, you will simply use whatever you have selected for results_var_name as
the variable name in a GLOBAL VARIABLEScommand line.

- Four different methods (or reduction types) are available for specifying the
operation that will be performed on the values retrieved from the registered
variable: SUM, AVERAGE, MAX, and MIN. Only one of these methods can be
selected in a GLOBAL COMPUTEcommand line, however. SUMadds the variable
value of all included mesh entities. AVERAGEtakes the average value of the
variable over all included mesh entities. MAXfinds the maximum value over all
included mesh entities. MIN finds the minimum value over all included mesh
entities.

- The registered variable used to compute the global variable must be either a
nodal quantity or an element quantity, as specified by the NODALor ELEMENT

option.

- The string value_var_name is the name of the registered variable (see Sec-
tion 8.4 for a listing of the registered variables).

- There is an optional input, component_num (meaning component number), on
the command line that allows the user to specify a particular (and single) value
that will be returned for the new global variable. If component_num is not
included in the command line, the global variable will have as many components
as the registered variable. For example, if component_num was not specified
and the registered variable was a displacement (which has three components—
x, y, and z), the global variable that is returned would have three values. Each
component of the registered variable will be reduced independently and placed
in the corresponding position of the returned global variable. In the output
file, the returned values will begin with the name of the global variable and
be appended with the identification of the kind of component. For example, if
myresults was specified for results_var_name and the registered variable
was a displacement, the output values would be displayed as myresults_x ,
myresults_y , and myresults_z .

Usage of component_num , which must be enclosed in parentheses, requires that
you enter an integer number that corresponds to the position of the desired value
in the set of possible values for the named registered variable. In other words,
this number does not indicate how many components are stored for the variable.
See the section below titled “Determining the Component Number” for further
information on obtaining the required value for component_num .

The following is an example of using the GLOBAL COMPUTEcommand line to com-
pute the net x-direction reaction force:

COMPUTE GLOBAL wall_x_reaction AS SUM OF NODAL reactions(1)

344

Determining the Component Number: If you want to specify that a specific
value is returned for the global variable, the one named results_var_name , select
an integer that corresponds to the position of that value in Table 8.2. Thus, for
example, if you only wanted the ZZ component of a registered variable that was a
symmetric tensor, the value for component_num would be specified as “(3)” in the
command line.

Table 8.2: Selection of Component Number

Variable Type component num and
Description

Notes

Vector 1 X component
2 Y component
3 Z component

A vector has three
components. Displacements,
for example, are handled as
vectors.

Symmetric Tensor 1 XX component
2 YY component
3 ZZ component
4 XY component
5 YZ component
6 ZX component

Symmetric tensors have six
components. Stresses for most
solid elements are symmetric
tensors.

Full Tensor 1 XX component
2 YY component
3 ZZ component
4 XY component
5 YZ component
6 ZX component
7 YX component
8 ZY component
9 XZ component

Full tensors are used
occasionally by Presto.
Examples include velocity
gradients and material
rotations.

8.1.2.3 User Subroutine Commands

If the user subroutine option is used, the user-defined output quantities will be cal-
culated by a subroutine that is written by the user explicitly for this purpose. The
subroutine will be called by Presto at the appropriate time to perform the calcula-
tions. User subroutines allow for more generality in computing user-defined results
than the COMPUTE GLOBALcommand line. Suppose, for example, you had an an-
alytic solution for a problem and wanted to compute the difference between some
analytic value and a corresponding computed value throughout an analysis. The user

345

subroutine option would allow you to make this comparison. The full details for user
subroutines are given in Chapter 9.

The following command lines are related to the user subroutine option:

NODE SET SUBROUTINE = <string>subroutine_name |
SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

other user subroutine command lines

The user subroutine option is invoked by using the NODE SET SUBROUTINEcom-
mand line, the SURFACE SUBROUTINEcommand line, or the ELEMENT SUBROUTINE

command line. The particular command line selected depends on the mesh-entity
type of the variable for which the result quantities are being calculated. For ex-
ample, variables associated with nodes would be calculated by using a NODE SET

SUBROUTINEcommand line, variables associated with faces by using a SURFACE SUB-

ROUTINEcommand line, and variables associated with elements by using the ELE-

MENT SUBROUTINEcommand line. The string subroutine_name is the name of a
FORTRAN subroutine that is written by the user. A user subroutine in the USER

OUTPUTcommand block returns no values. Instead, it performs its operations di-
rectly with commands such as aupst_put_nodal_var , apst_put_elem_var , and
apust_put_global_var . Consult with Chapter 9 for further discussion of these
various put commands.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block to implement the user
subroutine option. These command lines are described in Section 9.2.2 and consist
of SUBROUTINE DEBUGGING OFF, SUBROUTINE DEBUGGING ON, SUBROUTINE REAL

PARAMETER, SUBROUTINE INTEGER PARAMETER, and SUBROUTINE STRING PARAM-

ETER. Examples of using these command lines are provided in Chapter 9.

Importantly, to implement the user subroutine option and output the calculated
information, you would also need to do the following:

1. Create the user-defined variable with a USER VARIABLEcommand block.

2. Calculate the results for the user-defined variable in the user subroutine.

3. Write the results for the user-defined variable to an output file by referencing it
in a RESULTS OUTPUTcommand block and/or a HISTORY OUTPUTcommand
block. In the RESULTS OUTPUTcommand block, you would use a NODAL VARI-

ABLES command line, an ELEMENT VARIABLEScommand line, or a GLOBAL

VARIABLES command line, depending on how you have defined the variable
in the USER VARIABLEcommand block. Similarly, in the HISTORY OUTPUT

346

command block, you would use the applicable form of the VARIABLE command
line, depending on how you have defined the variable in the USER VARIABLE

command block.

8.1.2.4 Copy Command

The COPY ELEMENT VARIABLEcommand line copies an element’s variables to the
nodes associated with the element.

COPY ELEMENT VARIABLE <string>ev_name TO NODAL VARIABLE

<string>nv_name

The element variable to be copied is specified by ev_name; the name of the nodal
variable to transfer to is nv_name. The nodal variable must be specified as a user-
defined variable.

8.1.2.5 Additional Command

The ACTIVE PERIOD command line can appear as an option in the USER OUTPUT

command block:

ACTIVE PERIODS = <string list>period_names

This command line determines when the boundary condition is active. See Sec-
tion 2.5 for more information about this optional command line.

347

8.2 History Output

BEGIN HISTORY OUTPUT <string>history_name
DATABASE NAME = <string>history_file_name
DATABASE TYPE = <string>database_type(exodusII)
TITLE = <string>user_title
#
for global variables
VARIABLE = GLOBAL

<string>variable_name
[AS <string>history_variable_name]

#
for node and element variables
entity_type = NODE|NODAL|ELEMENT
VARIABLE =

<string>entity_type <string>variable_name
AT <string>entity_type <integer>entity_id
[AS <string>history_variable_name]

#
for node variables
entity_type = NODE or NODAL
VARIABLE =

<string>entity_type <string>variable_name
NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z
[AS <string>history_variable_name]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

A history file gives nodal results (displacements, forces, etc.) for specific nodes,
element results (stress, strain, etc.) for specific elements, and global results at spec-
ified times. You can specify a history file, the results to be included in this file, and

348

the frequency at which results are written by using a HISTORY OUTPUTcommand
block. The command block appears inside the region scope.

More than one history file can be specified for an analysis. For each history file,
there will be one HISTORY OUTPUTcommand block. The command block for a history
file description begins with

BEGIN HISTORY OUTPUT<string >history_name

and is terminated with

END [HISTORY OUTPUT<string >history_name] ,

where history_name is a user-selected name for the command block. Nested within
the HISTORY OUTPUTcommand block are a set of command lines, as shown in the
block summary given above. The first two command lines listed (DATABASE NAMEand
DATABASE TYPE) give pertinent information about the history file. The command
line

DATABASE NAME =<string> history_file_name

gives the name of the history file with the string history_file_name . If the history
file is to appear in the current directory and is named job.e , this command line
would appear as

DATABASE NAME = job.e .

If the history file is to be created in some other directory, the command line would
have to show the path to that directory.

If the history file does not use the Exodus II format, you must specify the format
for the history file using the command line

DATABASE TYPE =<string> database_type(exodusII) .

Currently, only the Exodus II database is supported in Presto. Other options will be
added in the future.

You may add a title to the history file by using the TITLE command line. Whatever
you specify for the user title will be written to the history file. Some of the programs
that process the history file (such as various SEACAS programs [1]) can read and
display this information.

The other command lines that appear in the HISTORY OUTPUTcommand block
determine the type and frequency of information that is output. Descriptions of these
command lines follow in Section 8.2.1 through Section 8.2.10. Note that the com-
mand lines for controlling the frequency of history output (in Section 8.2.1 through
Section 8.2.10) are the same as those for controlling the frequency of results output.
These frequency-related command lines are repeated here for convenience.

349

8.2.1 Output Variables

The VARIABLE command line is used to select variables for output in the history
file. One of three types of variables—GLOBAL, NODE(or NODAL), or ELEMENT—can be
selected for output. The form of the command line varies depending on the type of
variable that is selected for output.

8.2.1.1 Global Output Variables

VARIABLE = GLOBAL
<string>variable_name
[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any global variable for
output in the history file. The variable is selected with the string variable_name .
The string variable_name is the name of the global variable and can be either a
registered variable listed in Section 8.4 or a user-defined variable (see Section 8.1.2
and Section 9.2.4).

You can also specify an arbitrary name, history_variable_name , for the se-
lected entity following the AS key word. For example, suppose you want to output
the kinetic energy (KineticEnergy) as KE. The command line to obtain the kinetic
energy in the history file would be

VARIABLE = GLOBAL KineticEnergy AS KE .

The specification of an alias is always optional.

8.2.1.2 Nodal and Element Output Variables

VARIABLE =
<string>entity_type <string>variable_name
AT <string>entity_type <integer>entity_id
[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any nodal or element
variable for output in the history output file. The parameter entity_type is set
to NODE(or NODAL) or ELEMENTdepending on the entity type to be output. If the
entity type is set to NODE(or NODAL), the string variable_name can be either a
registered variable listed in Section 8.4 or a user-defined variable (see Section 8.1.2
and Section 9.2.4). If the entity type is set to ELEMENT, the string variable_name

can be a registered variable listed in Section 8.4, a user-defined variable (see Sec-
tion 8.1.2 and Section 9.2.4), or a derived output quantity. See the latter portion of

350

Section 8.1.1.2 for a detailed discussion of derived output. A complete list of derived
output quantities is given in Table 8.1 (in Section 8.1.1.2).

Selection of the variable (acceleration, stress, etc.) to be output follows the AT key
word. You select a specific entity (node or element number) with the integer quantity
entity_id . You can specify an arbitrary name, history_variable_name , for the
selected entity following the AS key word. For example, suppose you want to output
the accelerations at node 88. The command line to obtain the accelerations at node
88 for the history file would be

VARIABLE = NODE ACCELERATION AT NODE 88 AS accel_88,

where accel 88 is the arbitrary name that will be used for this history variable in
the history file.

Note that either the key word NODEor NODALcan be used for nodal quantities.
The specification of an alias is always optional.

As an example of derived output, suppose you wanted to output the von Mises
stress for solid element 1024. The command line to obtain the von Mises stress for
element 1024 for the history file would be

VARIABLE = ELEMENT VON_MISES AT ELEMENT 1024 AS vm_1024,

where vm_1024 is the arbitrary name that will be used for this history variable in the
history file.

8.2.1.3 Nodal Output Variables

VARIABLE =
string<entity_name> <string>variable_name
NEAREST LOCATION <real>global_x,

real<global_y>, real<global_z>
[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any nodal variable for
output in the history output file. The parameter entity_type is set to NODE(or
NODAL). The string variable_name can be either a registered variable listed in Sec-
tion 8.4 or a user-defined variable (see Section 8.1.2 and Section 9.2.4).

The command block described in this subsection is an alternative to the com-
mand block described in the preceding section, Section 8.2.1.2, for obtaining nodal
history output. When the entity type is NODEor NODAL, either the command block in
this section or the command block in Section 8.2.1.2, will produce history files with
nodal information. The difference in these two command blocks (Section 8.2.1.3 and
Section 8.2.1.2) is simply in how the specific node is selected.

351

Selection of the specific nodal entity to be output follows the NEAREST LOCATION

key word and its associated input parameters—global_x , global_y , global_z .
The specific nodal entity to be output is the node whose initial position is nearest
the input global X, Y, and Z coordinates specified with the parameters global_x ,
global_y , global_z . (Note that the original model coordinates are used when
selecting the nearest entity, not the current coordinates.) You can specify an arbitrary
name, history_variable_name , for the selected entity following the AS key word.

As an example, suppose you want to output the accelerations at a node closest
to the point with global coordinates (1012.0, 54.86, 103.3141). The command line to
obtain the accelerations at the node closest to this location for the history file would
be

VARIABLE = NODE ACCELERATION

NEAREST LOCATION 1012.0, 54.86, 103.3141 AS accel_near ,

where accel near is the arbitrary name that will be used for this history variable in
the history file.

Note that either the key word NODEor NODALcan be used for nodal quantities.
The specification of an alias is always optional.

8.2.2 Outputting History Data on a Node Set

It is commonly desired to output history data on a single-node node set. If a mesh
file is slightly modified, the node and element numbers will completely change. The
node associated with a node set, however, remains the same, i.e., the node in the node
set remains retains the same initial geometric location with the same connectivity to
other elements even when its node number changes. Therefore, we might want to
specify the history output for a node set with a single node rather than with the
global identifier for a node. However, in Presto, history output for a node set is not
directly supported. This limitation can easily be overcome with user defined output.
An example is shown as follows:

begin user output
node set = nodelist_1
compute global disp_ns_1 as average of nodal displacement

end

begin history output
variable = global disp_ns_1

end

If nodelist_1 contains only a single node, the history output variable disp_ns_1

will contain the displacement for the single node in the node set. If nodelist_1

352

contains multiple nodes, the average displacement of the nodes will be output.

8.2.3 Set Begin Time for History Output

START TIME = <real>output_start_time

Using the START TIME command line, you can write history variables to the
history file beginning at time output_start_time . No history variables will be
written before this time. If other commands set times for history output (AT TIME,
ADDITIONAL TIMES) that are less than output_start_time , those times will be
ignored, and history output will not be written at those times.

8.2.4 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times
specified. To hit the output times exactly in an explicit, transient dynamics code,
it is necessary to adjust the time step as the time approaches an output time. The
integer value steps in the TIMESTEP ADJUSTMENT INTERVALcommand line specifies
the number of time steps to look ahead in order to adjust the time step.

If this command line does not appear, history variables are output at times closest
to the specified output times.

8.2.5 Output Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin , history variables will be output every time
increment given by the real value time_increment_dt .

8.2.6 Additional Times for Output

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 8.2.5, you
can use the ADDITIONAL TIMES command line to specify an arbitrary number of
additional output times.

353

8.2.7 Output Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =
<integer>step_increment

At the step specified by step_begin , history variables will be output every step
increment given by the integer value step_increment .

8.2.8 Additional Steps for Output

ADDITIONAL STEPS = <integer>output_step1
<integer>output_step2 ...

In addition to any steps specified by the command line in Section 8.2.7, you can use
the ADDITIONAL STEPScommand line to specify an arbitrary number of additional
output steps.

8.2.9 Set End Time for History Output

TERMINATION TIME = <real>termination_time_value

History output will not be written to the history file after time
termination_time_value . If other commands set times for history output (AT

TIME, ADDITIONAL TIMES) that are greater than termination_time_value , those
times will be ignored, and history output will not be written at those times.

8.2.10 Write History If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|
SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNALcommand line is used to initiate the write of a history
file if some type of system error is encountered. The user should specify one of the
above system errors.

This command is primarily a debugging tool for developers.

354

8.3 Restart Data

BEGIN RESTART DATA <string>restart_name
DATABASE NAME = <string>restart_file
INPUT DATABASE NAME = <string>restart_input_file
OUTPUT DATABASE NAME = <string>restart_output_file
DATABASE TYPE = <string>database_type(exodusII)
START TIME = <real>restart_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

END [RESTART DATA <string>restart_name]

You can specify restart files, either to be written to or read from, and the frequency
at which restarts are written by using a RESTART DATAcommand block. The com-
mand block appears inside the region scope. To initiate a restart, the RESTART TIME

command line (see Section 2.1.3.1) or the RESTARTcommand line (see Section 2.1.3.2)
must also be used. These command lines appear in the domain scope.

NOTE: In addition to the times at which you request restart information to be
written, restart information is automatically written when an element inverts.

The RESTART DATAcommand block begins with the input line

BEGIN RESTART DATA<string >restart_name

and is terminated with

END [RESTART DATA<string >restart_name] ,

where restart_name is a user-selected name for the RESTART DATAcommand block.

Nested within the RESTART DATAcommand block are a set of command lines, as
shown in the block summary given above.

We begin the discussion of the RESTART DATAcommand block with various op-
tions regarding the use of restart in general. In this discussion of the various options
for restart, you will learn how to use the DATABASE NAME, INPUT DATABASE NAME,

355

OUTPUT DATABASE NAME, and DATABASE TYPEcommand lines. Use of the first three
of these command lines is tied to the two restart-related command lines RESTARTand
RESTART TIME, which are found in the domain scope. Section 8.3.1 provides the de-
tails for use of the command lines in the domain scope with the RESTART DATA

command block.

The other command lines that appear in the RESTART DATAcommand block
determine the frequency at which restarts are written. Descriptions of these command
lines follow in Section 8.3.2 through Section 8.3.9. Note that the command lines for
controlling the frequency of restart output are the same as those for controlling the
frequency of results output and history output. These frequency-related command
lines are repeated here for convenience.

8.3.1 Restart Options

DATABASE NAME = <string>restart_file
INPUT DATABASE NAME = <string>restart_input_file
OUTPUT DATABASE NAME = <string>restart_output_file
DATABASE TYPE = <string>database_type(exodusII)

You can read from and create restart files in an automated fashion, the preferred
method, or you can carefully control how you read from and create restart files. In
our discussion of the overall options for the use of restart, we begin with the first three
command lines listed above (DATABASE NAME, INPUT DATABASE NAME, and OUTPUT

DATABASE NAME). All three of these command lines specify a parameter that is a
file name or a directory path and file name. If the parameter begins with the ‘/’
character, it is an absolute path; otherwise, the path to the current directory will
be prepended to the parameter on the command line. Suppose, for example, that
we want to work with a restart file named component.rst in the current directory.
If we are using the DATABASE NAMEcommand line, then this command line would
appear as

DATABASE NAME = component.rst .

If we wanted to read or create files in some other directory, the command line would
have to show the path to that directory in addition to our file name.

The DATABASE NAMEcommand line will let you read restart information and write
restart information to the same file. Section 8.3.1.1 through Section 8.3.1.4 show how
this command line is used in particular instances.

You can specify a restart file to read from by using the command line

INPUT DATABASE NAME =<string >restart_input_file .

You can specify a restart file to write to by using the command line

356

OUTPUT DATABASE NAME =<string >restart_output_file .

Note that you must use either a DATABASE NAMEcommand line or the INPUT

DATABASE NAMEcommand line/OUTPUT DATABASE NAMEcommand line pair, but
not both, in a RESTART DATAcommand block.

If the restart file does not use the Exodus II format, you must specify the format
for the results file using the DATABASE TYPEcommand line:

DATABASE TYPE =<string> database_type(exodusII)

Currently, only the Exodus II database is supported in Presto. Other options will be
added in the future.

8.3.1.1 Automatic Read and Write of Restart Files

You can use the restart option in an automated fashion by using a combination of
the RESTARTcommand line in the domain scope and the DATABASE NAMEcommand
line in the RESTART DATAcommand block. This automated use of restart can best
be explained by an example. We will use a two-processor example and assume all
files will be in our current directory.

The option of automated restart will not only manage the restart files to prevent
overwriting, it will also manage the results files and history files to prevent overwriting.
In the example we give, we will assume our run includes a RESULTS OUTPUTcommand
block with the command line

DATABASE NAME = rslt.e

to generate results files with the root file name rslt.e . We will also assume a run
includes a HISTORY OUTPUTcommand block with the command line

DATABASE NAME = hist.h

to generate history files with the root file name hist.h .

For the first run in our restart sequence, we will have the command line

RESTART = AUTOMATIC

in the domain scope of our input file. In a TIME STEPPINGcomamand block, which
is embedded in a TIME CONTROLcommand block (Section 3.1.1) in the procedure
scope of our input file, we will have the command line

START TIME = 0.0 .

In the TIME CONTROLcommand block we will have the command line

TERMINATION TIME = 2.5E-3

to set the limits for the begin and end times of the first restart run. These time-related

357

command lines should not be confused with the similarly named START TIMEand
TERMINATION TIMEcommand lines that can be used in the RESTART DATAcommand
block.

Finally, for the first run in our restart sequence, the RESTART DATAcommand
block in our input file will be as follows:

BEGIN RESTART DATA PRESTO_RESTART
DATABASE NAME = g.rsout
AT TIME 0, INCREMENT = 0.25E-3

END RESTART DATA PRESTO_RESTART

In this block, the DATABASE NAMEcommand line specifies a root file name for the
restart file. The AT TIME command line gives the time when we will start to write the
restart information and the interval at which the restart information will be written
(see Section 8.3.4).

For our first run, the automatic restart option will generate the following restart
files:

restart files
g.rsout.2.0
g.rsout.2.1
results files
rslt.e.2.0
rslt.e.2.1
history files
hist.h.2.0
hist.h.2.1

For the above files, there are extensions on the file names that indicate we have a
two-processor run. The 2.0 and 2.1 extensions associate the restart files with the cor-
responding individual mesh files on each processor. (If our mesh file is mesh.g , then
our mesh files on the individual processors will be mesh.g.2.0 and mesh.g.2.1 .)
All restart information in the above files appears at time intervals of 0.25×10−3, and
the last restart information is written at time 2.5 × 10−3. We have also listed the
results and history files that will be generated for this run due to the file definitions
in the command blocks for the results and history files.

For the second run in our sequence of restart runs, we want to start at the previous
termination time, 2.5×10−3, and terminate at time 5.0×10−3. We leave everything in
our input file (including the START TIME = 0.0 command line in the TIME STEP-

PING command block, the RESTARTcommand line, and the RESTART DATAcommand
block) the same except for the TERMINATION TIMEcommand line (in the TIME CON-

TROLcommand block). The TERMINATION TIMEcommand line will now become

358

TERMINATION TIME = 5.0E-3 .

It is important to note here that the actual start time for the second run in
our analysis is now set by the last time (2.5 × 10−3) that restart information was
written. The command line START TIME = 0.0 in the TIME STEPPINGcommand
block is now superseded as the actual starting time for the second run by the restart
commands. Any START TIMEcommand line in a TIME STEPPINGcommand block
is still valid in terms of defining time stepping blocks (these blocks being used to set
activation periods), but the restart process sets the actual start time for our analysis.
This pattern of control for setting the actual start time holds for any run in our
sequence of restart runs.

For our second run in our sequence of restart runs, the restart files will be from
time 2.5× 10−3 to time 5.0× 10−3. The restart files in our current directory after the
second run will be as follows:

restart files
g.rsout.2.0
g.rsout.2.1
g.rsout-s0002.2.0
g.rsout-s0002.2.1
results files
rslt.e.2.0
rslt.e.2.1
rslt.e-s0002.2.0
rslt.e-s0002.2.1
history files
hist.h.2.0
hist.h.2.1
hist.h-s0002.2.0
hist.h-s0002.2.1

Notice that we have generated new restart files with a -s0002 extension in addi-
tion to the extension associated with the individual processors. All restart information
in the above files with the -s0002 extension appears at time intervals of 0.25× 10−3,
the restart information is written between time 2.5 × 10−3 and time 5.0 × 10−3, and
the final restart information is written at time 5.0 × 10−3. The restart files for the
first run in our sequence of restart runs, g.rsout.2.0 and g.rsout.2.1 , have been
preserved. New results and history files have been created using the same extension,
-s0002 , as that used for the restart files. The original results and history files have
been preserved.

Now, we want to do a third run in our sequence of restart runs. For the third
run in our sequence of restart runs, we want to start at the previous termination
time, 5.0 × 10−3, and terminate at time 8.5 × 10−3. We leave everything in our

359

input file (including the START TIME command line, the RESTARTcommand line,
and the RESTART DATAcommand block) the same except for the TERMINATION TIME

command line. The TERMINATION TIMEcommand line (within the TIME CONTROL

command block) will now become

TERMINATION TIME = 8.5E-3 .

For the third run in our sequence of restart runs, the restart files will be from
time 5.0× 10−3 to time 8.5× 10−3. The restart files in our current directory after the
third run will be as follows:

restart files
g.rsout.2.0
g.rsout.2.1
g.rsout-s0002.2.0
g.rsout-s0002.2.1
g.rsout-s0003.2.0
g.rsout-s0003.2.1
results files
rslt.e.2.0
rslt.e.2.1
rslt.e-s0002.2.0
rslt.e-s0002.2.1
rslt.e-s0003.2.0
rslt.e-s0003.2.1
history files
hist.h.2.0
hist.h.2.1
hist.h-s0002.2.0
hist.h-s0002.2.1
hist.h-s0003.2.0
hist.h-s0003.2.1

Notice that we have generated new restart files with a -s0003 extension in addi-
tion to the extension associated with the individual processors. All restart information
in the above files with the -s0003 extension appears at time intervals of 0.25× 10−3,
the restart information is written between time 5.0 × 10−3 and time 8.5 × 10−3, and
the final restart information is written at time 8.5 × 10−3. The restart files for the
first and second runs in our sequence of restart runs have been preserved. New results
and history files have been created using the same extension, -s0003 , as that used
for the restart files. The original results and history files have been preserved.

The process just described can be continued as long as necessary. We will continue
the process of generating new restart files with extensions that indicate their place in
the sequence of runs.

360

8.3.1.2 User-Controlled Read and Write of Restart Files

You can use the restart option and select specific restart times and specific restart files
to read from and write to by using a combination of the RESTART TIMEcommand
line in the domain scope and the INPUT DATABASE NAMEand OUTPUT DATABASE

NAMEcommand line in the RESTART DATAcommand block. This “controlled” use of
restart can best be explained by an example. We will use a two-processor example
and assume all files will be in our current directory. In this example, we will manage
the creation of new restart files so as not to overwrite existing restart files. Unlike
the automated option for restart, this controlled use of restart requires that the user
manage restart file names so as to prevent overwriting previously generated restart
files. The same is true for the results and history files. The user will have to manage
the creation of new results and history files so as not to overwrite existing results
and history files. Creating new results and history files for each run in the sequence
of restart runs requires changing the DATABASE NAMEcommand line in the RESULTS

OUTPUTand HISTORY OUTPUTcommand blocks. We will not show examples for use
of the DATABASE NAMEcommand line in the RESULTS OUTPUTand HISTORY OUTPUT

command blocks here, as the actual use of the DATABASE NAMEcommand line in the
results and history command blocks would closely parallel the pattern we see for
management of the restart file names.

For the first run in our restart sequence, we will have only a RESTART DATA

command block in the region; there will be no restart-related command line in the
domain scope of our input file. We will, however, have a

START TIME = 0.0

command line in a TIME STEPPINGcommand block (within the TIME CONTROLcom-
mand block) and a

TERMINATION TIME = 2.5E-3

command line within the TIME CONTROLcommand block to set the limits for the
begin and end times. The RESTART DATAcommand block in our input file will be as
follows:

BEGIN RESTART DATA PRESTO_RESTART
OUTPUT DATABASE NAME = RS1.rsout
AT TIME 0, INCREMENT = 0.5E-3

END RESTART DATA PRESTO_RESTART

For our first run, the restart option will generate the following restart files:

RS1.rsout.2.0
RS1.rsout.2.1

361

For the above files, the extensions on the file names indicate that we have a two-
processor run. The 2.0 and 2.1 extensions associate the restart files with the corre-
sponding individual mesh files on each processor. If our mesh file is mesh.g , then our
mesh files on the individual processors will be mesh.g.2.0 and mesh.g.2.1 . All
restart information in the above files appears at time intervals of 0.5× 10−3, and the
last restart information is written at time 2.5 × 10−3.

For the second run in our sequence of restart runs, we want to start at the previous
termination time, 2.5× 10−3, and terminate at time 5.0× 10−3. To do this, we must
add a

RESTART TIME = 2.5E-3

command line to the domain scope and set the termination time to 5.0 × 10−3 by
using the command line

TERMINATION TIME = 5.0E-3

within the TIME CONTROLcommand block.

It is important to note here that the actual start time for the second run in
our analysis is now set by the restart time set on the RESTART TIMEcommand line,
2.5×10−3. The command line START TIME = 0.0 in the TIME STEPPINGcommand
block is now superseded as the actual starting time for the second run by the restart
commands. Any START TIMEcommand line in a TIME STEPPINGcommand block
is still valid in terms of defining time stepping blocks (these blocks being used to set
activation periods), but the restart process sets the actual start time for our analysis.
This pattern of control for setting the actual start time holds for any run in our
sequence of restart runs.

We also must change the RESTART DATAcommand block to the following:

BEGIN RESTART DATA PRESTO_RESTART
INPUT DATABASE NAME = RS1.rsout
OUTPUT DATABASE NAME = RS2.rsout
AT TIME 0, INCREMENT = 0.5E-3

END RESTART DATA PRESTO_RESTART

For this second run, we will read from the following files:

RS1.rsout.2.0
RS1.rsout.2.1

And we will write to the following files:

RS2.rsout.2.0
RS2.rsout.2.1

362

All restart information in the above output files, RS2.rsout.2.0 and
RS2.rsout.2.1 , appears at time intervals of 0.5×10−3, restart information is written
from time 2.5×10−3 to time 5.0×10−3, and the last restart information is written at
time 5.0×10−3. Notice that we have preserved the restart files from the first run from
our restart sequence of runs because we have specifically given the input and output
databases distinct names—RS2.rsout for the input file name and RS1.rsout for
the output file name.

Now, we want to do a third run in our sequence of restart runs. For this third
run, we want to start at time 4.5×10−3 and terminate at time 8.5×10−3. We do not
want to start at the termination time for the previous restart, which is 5.0 × 10−3;
rather, we want to start at time 4.5×10−3. We change the RESTART TIMEcommand
line to

RESTART TIME = 4.5E-3

and the TERMINATION TIME command line within the TIME CONTROLcommand
block to

TERMINATION TIME = 8.5E-3 .

And we change the RESTART DATAcommand block to the following:

BEGIN RESTART DATA PRESTO_RESTART
INPUT DATABASE NAME = RS2.rsout
OUTPUT DATABASE NAME = RS3.rsout
AT TIME 0, INCREMENT = 0.5E-3

END RESTART DATA PRESTO_RESTART

For this third run, we will read from the following files:

RS2.rsout.2.0
RS2.rsout.2.1

And we will write to the following files:

RS3.rsout.2.0
RS3.rsout.2.1

All restart information in the above output files, RS3.rsout.2.0 and
RS3.rsout.2.1 , appears at time intervals of 0.5×10−3, restart information is written
from time 4.5×10−3 to time 8.5×10−3, and the last restart information is written at
time 8.5× 10−3. Notice that we have preserved all restart files from previous runs in
our restart sequence of runs because we have specifically given the input and output
databases distinct names for this third run.

363

8.3.1.3 Overwriting Restart Files

If you use the RESTART TIMEcommand line in conjunction with the DATABASE NAME

command line, you will overwrite restart information. As indicated previously, you
will probably want to have a restart file (or files in the case of parallel runs) associated
with each run in a sequence of restart runs. The example in this section shows how
to overwrite restart files if that is an acceptable approach for a particular analysis.

For our first run, we will set a termination time of 1.0 × 10−3 with the command
line

TERMINATION TIME = 1.0E-3

and set the RESTART DATAcommand block as follows:

BEGIN RESTART DATA
DATABASE NAME = RS.out
AT TIME 0.0 INTERVAL = 0.25E-3

END RESTART DATA

Our first run will generate the following restart files:

RS.out.2.0
RS.out.2.1

All restart information in the above output files, RS.out.2.0 and RS.out.2.1 ,
appears at time intervals of 0.25 × 10−3, restart information is written from time 0.0
to time 1.0 × 10−3, and the last restart information is written at time 1.0 × 10−3.

Suppose for our second run we set the termination time to 2.0 × 10−3 with the
command line

TERMINATION TIME = 2.0E-3

and add the command line

RESTART TIME = 1.0E-3

to the domain scope. We leave the RESTART DATAcommand block unchanged.

For our second run, restart information is read from the files RS.out.2.0 and
RS.out.2.1 . These files are then overwritten with new restart information begin-
ning at time 1.0 × 10−3. The files RS.out.2.0 and RS.out.2.1 will have restart
information beginning at time 1.0 × 10−3 in intervals of 0.25 × 10−3. The restart
information will terminate at time 2.0 × 10−3.

Now we want to do a third run with a termination time of 3.0× 10−3. We change
the termination time by using the command line

364

TERMINATION TIME = 3.0E-3 .

And we change the RESTART TIMEcommand line so that it is now

RESTART TIME = 3.0E-3 .

For our third run, restart information is read from the files RS.out.2.0 and
RS.out.2.1 . These files are then overwritten with new restart information begin-
ning at time 2.0 × 10−3. The files RS.out.2.0 and RS.out.2.1 will have restart
information beginning at time 2.0 × 10−3 in intervals of 0.25 × 10−3. The restart
information will terminate at time 3.0 × 10−3.

8.3.1.4 Recovering from a Corrupted Restart

Suppose you are using the automated option for restart and a system crash occurs
when the restart file is being written. The restart file contains a corrupted entry for
one of the restart times. In this case, you can continue using the automated option
for restart. Restart will detect the corrupted entry and then find an entry previous
to the corrupted entry that can be used for restart. This previous entry should be
the entry prior to the corrupted entry unless something unusual has occurred. If the
first intact restart entry is not the previous entry, restart continues to back up until
an intact restart entry is found.

You could do a manual recovery. The manual recovery requires the use of a
RESTART TIMEcommand line to select some intact restart entry. You will have to use
the INPUT DATABASE NAMEand OUTPUT DATABASE NAMEcommand lines to avoid
overwriting previous restart files (see Section 8.3.1.2). You will also have to change
file names in the results and history command blocks to avoid overwriting previous
results and history files. Once you have done the manual recovery, you could then
revert to the automatic restart option.

8.3.2 Set Begin Time for Restart Writes

START TIME = <real>restart_start_time

Using the START TIMEcommand line, you can write restarts to the restart file
beginning at time restart_start_time . No restarts will be written before this
time. If other commands set times for restarts (AT TIME, ADDITIONAL TIMES) that
are less than restart_start_time , those times will be ignored, and restarts will
not be written at those times.

365

8.3.3 Adjust Interval for Time Steps

TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the restarts will be written at exactly
the times specified. To hit the restart times exactly in an explicit transient dynamics
code, it is necessary to adjust the time step as the time approaches a restart time. The
integer value steps in the TIMESTEP ADJUSTMENT INTERVALcommand line specifies
the number of time steps to look ahead in order to adjust the time step.

If this command line does not appear, then restarts are written at times closest
to the specified restart times.

8.3.4 Restart Interval Specified by Time Increment

AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin , restarts will be written every time increment
given by the real value time_increment_dt .

8.3.5 Additional Times for Restart

ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any restart times specified by the command line in Section 8.3.4,
you can use the ADDITIONAL TIMES command line to specify an arbitrary number
of additional restart times.

8.3.6 Restart Interval Specified by Step Increment

AT STEP <integer>step_begin INCREMENT =
<integer>step_increment

At the step specified by step_begin , restarts will be written every step increment
given by the integer value step_increment .

8.3.7 Additional Steps for Restart

ADDITIONAL STEPS = <integer>output_step1
<integer>output_step2 ...

366

In addition to any steps specified by the command line in Section 8.3.6, you can use
the ADDITIONAL STEPScommand line to specify an arbitrary number of additional
restart steps.

8.3.8 Set End Time for Restart Writes

TERMINATION TIME = <real>termination_time_value

Restarts will not be written to the restart file after time termination_time_value .
If other commands set times for restarts (AT TIME, ADDITIONAL TIMES) that are
greater than termination_time_value , those times will be ignored, and restarts
will not be written at those times.

8.3.9 Write Restart If System Error Encountered

OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|
SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

The OUTPUT ON SIGNALcommand line is used to initiate the write of a restart
file if some type of system error is encountered. The user should specify one of the
above system errors.

This command option is primarily a debugging tool for developers.

367

8.4 Registered Variables

This section lists commonly used registered variables that the user can select as output
to the results file and the history file. The first part of this section lists global, nodal,
and element registered variables. The second part of this section lists registered
variables associated with material models.

8.4.1 Global, Nodal, Element Registered Variables

This sections list commonly used global, nodal, and element registered variables. The
registered variables are presented in tables based on use, as follows:

- Table 8.3 Variables Registered on Nodes (Variable and Type)

- Table 8.4 Element Variables Registered for All Elements

- Table 8.5 Element Variables Registered for Energy-Dependent (Equation-of-
State) Elements

- Table 8.6 Element Variables Registered for Solid Elements

- Table 8.7 Element Variables Registered for Membranes

- Table 8.8 Nodal Variables Registered for Shells

- Table 8.9 Element Variables Registered for Shells

- Table 8.10 Element Variables Registered for Truss

- Table 8.11 Element Variables Registered for Beam

- Table 8.12 Global Registered Variables

- Table 8.13 Nodal Variables Registered for Spot Welds

The tables provide the following information about each registered variable:

Variable Name. This is the string that will appear on the GLOBAL VARIABLES,
NODE VARIABLES, or ELEMENT VARIABLEScommand line.

Type. This is the variable’s type. The various types are denoted with the la-
bels Integer , Real , Vector_2D , Vector_3D , SymTen33, and FullTen36 . The
type Integer indicates the registered variable is an integer; the type Real indi-
cates the registered variable is a real. The type Vector_2D indicates the registered
variable type is a two-dimensional vector. The type Vector_3D indicates the reg-
istered variable is a three-dimensional vector. For a three-dimensional vector, the

368

variable quantities will be output with suffixes of _x , _y , and _z . For example, if
the registered variable displacement is requested to be output as displ , the compo-
nents of the displacement vector on the results file will be displ_x , displ_y , and
displ_z . The type SymTen33 indicates the registered variable is a symmetric 3 ×
3 tensor. For a 3 × 3 symmetric tensor, the variable quantities will be output with
suffixes of _xx , _yy , _zz , _xy , _yz , and _zx . For example, if the registered vari-
able rotated_stress is requested for output as stress, the components of the stress
tensor on the results file will be stress_xx , stress_yy , stress_zz , stress_xy ,
stress_yz , and stress_zx . The type FullTen36 is a full 3 × 3 tensor with three
diagonal terms and six off-diagonal terms.

The tables of registered variables follow.

Table 8.3: Variables Registered on Nodes (Variable and Type)

Variable Name Type State
Specification

Comments

reactions Vector 3D temporary
moment reactions Vector 3D temporary
model coordinates Vector 3D model
coordinates Vector 3D temporary
displacement Vector 3D state
displacement increment Vector 3D temporary
velocity Vector 3D state
acceleration Vector 3D state
force internal Vector 3D state
force external Vector 3D state
force hourglass Vector 3D state
mass Real model
force contact Vector 3D state
moment reactions Vector 3D temporary

369

Table 8.4: Element Variables Registered for All Elements

Variable Name Type State
Specification

Comments

elem time step Real temporary The critical time step
for the element. The
element in the model
with the smallest time
step controls the
analysis time step.

element mass Real model

Table 8.5: Element Variables Registered for Energy-Dependent (“Equation-of-State”)
Elements

Variable Name Type State
Specification

Comments

stress SymTen33 state
stretch SymTen33 persistent
rotation FullTen36 state
element density Real state
sound speed Real state
specific internal energy Real state
artificial viscosity Real state
volume Real temporary
shrmod Real temporary
dilmod Real temporary
rotated stress SymTen33 temporary
stress SymTen33 state

370

Table 8.6: Element Variables Registered for Solid Elements

Variable Name Type State
Specification

Comments

stress SymTen33 state
stretch SymTen33 persistent
rotation FullTen36 state
volume Real temporary
shrmod Real temporary
dilmod Real temporary
rotated stress SymTen33 temporary
stress SymTen33 state

Table 8.7: Element Variables Registered for Membranes

Variable Name Type State
Specification

Comments

memb stress SymTen33 temporary
element area Real state
element thickness Real state

Table 8.8: Nodal Variables Registered for Shells

Variable Name Type State
Specification

Comments

rotational displacement Vector 3D state
rotational velocity Vector 3D state
rotational acceleration Vector 3D state
moment internal Vector 3D state
moment external Vector 3D state
rotational mass Real temporary

371

Table 8.9: Element Variables Registered for Shells

Variable Name Type State
Specification

Comments

memb stress SymTen33 temporary
bottom stress SymTen33 temporary
top stress SymTen33 temporary
element area Real state
element thickness Real state

Table 8.10: Element Variables Registered for Truss

Variable Name Type State
Specification

Comments

truss init length Real model
truss stretch Real persistent
truss stress Real state
truss strain incr Real state
truss force Real state

372

Table 8.11: Element Variables Registered for Beam

Variable Name Type State
Specification

Comments

beam strain inc Vector 2D persistent Thirty-two strain
increment values are
output. Some values
may be zero depending
on section. Axial strains
are 01, 03, 05, . . .
Shear strains are 02, 04,
06, . . . See
Section 5.2.4 for more
details.

beam stress Vector 2D persistent Thirty-two stress values
are output. Some values
may be zero depending
on section. Axial
stresses are 01, 03, 05, .
. . Shear stresses are 02,
04, 06, . . . See
Section 5.2.4 for more
details.

beam stress axial Real persistent Sixteen axial stress
values. Some may be
zero depending on
section.

beam stress shear Real persistent Sixteen shear stress
values. Some may be
zero depending on
section.

beam axial force Real persistent Axial force at midpoint.
beam transverse force s Real persistent Transverse shear in

s-direction at midpoint.
beam tranverse force t Real persistent Transverse shear in

t-direction at midpoint.
beam moment r Real persistent Torsion at the midpoint.
beam moment s Real persistent Moment about

s-direction at midpoint.
beam moment t Real persistent Moment about

t-direction at midpoint.

373

Table 8.12: Global Registered Variables

Variable Name Type State
Specification

Comments

timestep Real temporary
KineticEnergy Real temporary
MomentumX Real temporary Momentum in global

X-direction.
MomentumY Real temporary Momentum in global

Y-direction.
MomentumZ Real temporary Momentum in global

Z-direction.

Table 8.13: Nodal Variables Registered for Spot Welds

Variable Name Type State
Specification

Comments

SPOT WELD%parametr
ic coords

Vector 2D model Coordinates of node on
face.

SPOT WELD&norm fo
rce at death

Real persistent Value of force normal to
face when spot weld
breaks.

SPOT WELD%tang for
ce at death

Real persistent Value of force tangential
to face when spot weld
breaks.

SPOT WELD%death fl
ag

Integer persistent 0 = alive, 1 = dead.

SPOT WELD%scale fa
ctor

Real persistent Nodal influence area of
current node.

SPOT WELD%norm di
splacement

Real persistent Current displacement of
weld normal to face.

SPOT WELD%tang dis
placement

Real persistent Current displacement of
weld tangential to face.

374

8.4.2 Registered Variables for Material Models

State Specification. It is possible to output the state variables from the material
models. For the elastic material model, there are no state variables. For other models,
including the energy-dependent models (Mie-Gruneisen, Mie-Gruneisen Power-Series,
JWL, and ideal gas), the associated registered variables are accessed as any other
registered variables.

To get the state variables for materials, you should use the ELEMENT VARIABLES

command line in the RESULTS OUTPUTcommand block in the form

ELEMENT VARIABLES = MAT%material_name ,

where material_name can be some material model such as elastic_plastic ,
power_law_hardening , foam_plasticity , or orthotropic_rate .

For example, if you wanted to get all the state variables for the elastic-plastic
material model, you would use

ELEMENT VARIABLES = MAT%elastic_plastic

or

ELEMENT VARIABLES = MAT%elastic_plastic(:) .

In the preceding command line, the parentheses indicate a subset of the state
variables, and the colon should be read as “through.” The notation (:) implies all of
the state variables; the notion (3:7) would imply state variables 3 through 7.

Depending on material type, there may be several hundred material state vari-
ables. A subset of state variables may be output using FORTRAN-like array syntax.
For example, to output the equivalent plastic strain for the elastic-plastic material
and rename it to something meaningful, use

ELEMENT VARIABLES = MAT%elastic_plastic(1) as eqps .

To output a six-entry symmetric tensor subset of the orthotropic rate material,
use

ELEMENT VARIABLES = MAT%orthotropic_rate(2:7) .

Finally, if a scattered set of material variables is desired, the variables may be
selected by using the | array operator, as in the command

ELEMENT VARIABLES = MAT%foam_plasticity(1 |4:6 |9) .

This command would output state variables 1, 4, 5, 6, and 9 of the foam plasticity
model.

The state variable name and corresponding index for some of the more com-
monly used material models are listed in Tables 8.14 through 8.16. To find
what state variable number corresponds to what quantity of interest for other

375

material models, consult with William Scherzinger (wmscher@sandia.gov), Richard
Koteras (jrkoter@sandia.gov), Arne Gullerud (asgulle@sandia.gov), or Nathan Crane
(nkcrane@sandia.gov).

Table 8.14: Elastic Plastic State Variables

Index Variable Name
1 equivalent plastic strain
2 back stress - xx component
3 back stress - yy component
4 back stress - zz component
5 back stress - xy component
6 back stress - yz component
7 back stress - zx component

Table 8.15: Elastic-Plastic Power-Law Hardening State Variables

Index Variable Name
1 equivalent plastic strain
2 radius of yield surface

Table 8.16: Foam Plasticity State Variables

Index Variable Name
1 iterations
2 volumetric strain
3 phi
4 equivalent plastic strain
5 A
6 B

376

8.5 References

1. Sjaardema, G. D. Overview of the Sandia National Laboratories Engineering
Analysis Code Access System, SAND92-2292. Albuquerque, NM: Sandia Na-
tional Laboratories, January 1993.

377

Chapter 9

User Subroutines

This chapter describes the use of user-defined subroutines in Presto. In the intro-
ductory part of Chapter 9, we first describe, in general, possible applications for
the user subroutine functionality in Presto. Then, again in general, we describe the
various “pieces” and steps that are required by the user to implement a user subrou-
tine. Subsequently, we focus on various aspects of implementing the user subroutine
functionality. Section 9.1 describes the details of the user subroutine. Section 9.2
describes the command lines associated with user subroutines that will appear in a
Presto input file. In Section 9.3, we explain how to build and use a version of Presto
that incorporates your user subroutine. Finally, Section 9.4 provides examples of
actual user subroutines, and Section 9.5 lists some subroutines that are now in the
standard user library.

Applications. User subroutines are primarily intended as complex function evalu-
ators that are to be used in conjunction with existing Presto capability (boundary
conditions, element death, user output, etc.). For example, suppose we want to have
a prescribed displacement boundary condition applied to a set of nodes, and we want
the displacement at each node to vary with both time and spatial location of the node.
The standard function option associated with the prescribed direction displacement
boundary condition in Presto only allows for time variation; i.e., at any given time,
the direction and the magnitude of the displacement at each node, regardless of the
spatial location of the node, is the same. If we wanted to have a spatial variation
of the displacement field in addition to the time variation, it would be necessary
to implement a user subroutine for the prescribed direction displacement boundary
condition. Other examples of possible uses of user subroutines are as follows:

• Element death is determined by a complex function based on a set of physical
parameters and element stress.

• The user wants to compute the total contact force acting on a given surface.

378

• Element stress information must be transformed to a local coordinate system
so that the stress values will be meaningful.

• An aerodynamic pressure based on velocity and surface normal is applied to a
specified surface.

Some capability exists for using mesh connectivity. It is possible to compute an
element quantity based on values at the element nodes.

Some difficulties might occur in parallel applications. If computations for element
A depend on quantities in element B and elements A and B are on different processors,
then the computations for A may not have access to quantities in element B. For most
computations in user subroutines, however, this should not be a problem.

Implementing completely new capabilities, particularly if these capabilities involve
parallel computing, may be difficult or impossible with user subroutines.

General Pieces and Steps. A number of pieces and steps are required to make
use of user subroutines. Here, we present a brief description of the pieces and steps
that a user will need for user subroutines without going into detail. The details are
discussed in later parts of this chapter.

1. You must first determine whether your application fits in the user subroutine
format. This can be done by considering the above requirements and examining
the description of commands for functionality in Presto. For example, the basic
kinematic boundary conditions and force conditions allow for the use of user
subroutines. The description of these commands includes a discussion of how
a user subroutine could be applied and what command line will invoke a user
subroutine.

2. If you determine that your application can make use of the user subroutine
functionality in Presto, you will then need to write the subroutine. The parts
of the subroutine that interface to Presto have specified formats. The details of
these interfaces are described in later sections. One part of the subroutine with
a specified format is the call list. Other parts of the subroutine with a specified
format are code that will do the following:

- Read parameters from the Presto input file

- Access a variety of information—field variables, analysis time, etc.—from
Presto

- Store computed quantities

Parameters are values they may be passed from the Presto input file to the
user subroutine. Suppose that the spatial variation for some quantity in the

379

user subroutine uses some characteristic length and the user wishes to examine
results generated by using several different values of the characteristic length.
By setting up the characteristic length as a parameter, the value for the param-
eter in the user subroutine can easily be changed by changing the value for the
parameter in the input file. This lets the user change the value for a variable
inside the user subroutine without having to recompile the user subroutine.

The portion of your subroutine not built on the Presto specifications will reflect
your specific application. The code to implement your application may include
a loop over nodes that prescribes a displacement based on the current time for
the analysis and the spatial location of the node.

3. After you write the user subroutine, you will need to have a command line
in your input file that tells Presto you want to use the user subroutine you
have written. For example, if your user subroutine is a specialized prescribed
displacement boundary condition, then inside a PRESCRIBED DISPLACEMENT

command block, you will have a command line of the form

NODE SET SUBROUTINE =<string >subroutine_name

that provides the name of your user subroutine.

4. Following the invocation of the user subroutine, there may be command lines
for various parameters associated with the user subroutine. There may also be
some additional command lines in other sections of the code required for your
application. For example, you may have to add command lines in the region
scope that will create an internal variable associated with a computed quantity
so that the computed quantity can be written to the results file.

5. Once you have constructed the user subroutine, which is a FORTRAN file, and
the Presto input file, you can build an executable version of Presto that will run
your user subroutine. Your Presto run will then incorporate the functionality
you have created in your user subroutine.

Figure 9.1 presents a very high-level overview of the various components that work
together to implement the user subroutine functionality. The two main components
needed for user subroutines, which are commands in the Presto input file and the
actual user subroutine, are represented by the two columns in Figure 9.1.

380

Figure 9.1: Overview of components required to implement user subroutine function-
ality, excluding compilation and execution commands.

381

9.1 User Subroutines: Programming

Currently, user subroutines are only supported in FORTRAN 77. Any subroutine that
can be compiled with a FORTRAN 77 compiler on the target execution machine can
be used. The user should be aware that some computers support different FORTRAN
language extensions than others. (In the future, other languages such as FORTRAN
90, C, and C++ may be supported.)

User subroutine variable types must interface directly with the matching variable
types used in the main Presto code. Thus, the FORTRAN 77 subroutines should use
only integer, double precision, or character types for any data used in the interface
or in any query function. Using the wrong data type may yield unpredictable results.
The methods used to pass character types from Presto to FORTRAN user subroutines
can be machine-dependent, but generally this functionality works quite well.

The basic structure for the user subroutine is as follows:

subroutine sub_name(call list)
{declaration of variables }
{retrieve parameters from Presto input file }
{query Presto for information }
{application-specific code

.

.
}
{write computed values }
END

In general, the user will begin the subroutine with variable declarations. After the
variable declarations, the user can then query the Presto input file for parameters.
Additional Presto information such as field variables or element topology can then
be retrieved from Presto. Once the user has collected all of the information for the
application, the application-specific portion of the code can be written. After the
application-specific code is complete, the user may store computed values.

Section 9.1.1 through Section 9.1.3 describe in detail the format for the interfaces
to Presto that will allow the user to make the subroutine call, retrieve information
from Presto, and write computed values. In these sections, mesh entities can be a
node, an element face, or an element.

382

9.1.1 Subroutine Interface

The following interface is used for all user subroutines:

subroutine sub_name(int num_objects,
int num_values,
real evaluation_time,
int object_ids[],
real output_values[],
int output_flags[],
int error_code)

The name of the user subroutine, sub_name, is selected by the user. Avoid names
for the subroutine that are longer than 10 characters. This may cause build problems
on some systems.

A detailed description of the input and output parameters is provided in Table 9.1
and Table 9.2.

Table 9.1: Subroutine Input Parameters

Input Parameter Data Type Parameter Description
num objects Integer Number of input mesh entities. For

example, if the subroutine is a node set
subroutine, this would be the number of
nodes on which the subroutine will
operate.

num values Integer Number of return values. This is the
number of values per mesh entity.

evaluation time Real Time at which the subroutine should be
evaluated. This may vary slightly from
the current analysis time. Velocities for
example are evaluated one-half time
step ahead.

object ids
(num objects)

Integer Array of mesh-entity identification
numbers. The array has a length of
num objects. The input numbers are
the global numbers of the input objects.
The object ID numbers can be used to
query information about a mesh entity.

383

Table 9.2: Subroutine Output Parameters

Output Parameter Data Type Parameter Description
output values
(num values,
num objects)

Integer Array of output values computed by the
subroutine. The number of output
values will be either the number of mesh
entities or some multiple of the number
of mesh entities. For example, if there
were six nodes (num objects equals 6)
and one value was to be computed per
node, the length of output values would
be 6. Similarly, if there were six nodes
(num objects equals 6) and three values
were to be computed for each node (as
for acceleration, which has X-, Y-, and
Z-components), the length of
output values would be 18.

output flags
(num objects)

Integer Array of returned flags for each set of
data values. When used, this array will
generally have a length of num objects.
The usage of the flags depends on
subroutine type; the flags are currently
used only for element death and for
kinematic boundary conditions. For the
kinematic boundary conditions
(displacement, velocity, acceleration) a
flag of –1 means ignore the constraint, a
flag of 0 means set the absolute
constraint value, and a flag of 1 means
set the constraint with direction and
distance.

error code Integer Error code returned by the user
subroutine. A value of 0 indicates no
errors. Any value other than zero is an
error. If the return value is nonzero,
Presto will report the error code and
terminate the analysis.

384

9.1.2 Query Functions

Presto follows a design philosophy for user subroutines that a minimal amount of
information should be passed through the call list. Additional information may be
queried from within the subroutine. A user subroutine may query a wide variety of
information from Presto.

9.1.2.1 Parameter Query

A number of user subroutine parameters may be set as described in Section 9.2.2.3.
These subroutine parameters can be obtained from the Presto input file via the query
functions listed below.

aupst_get_real_param(string var_name, real var_value,
int error_code)

aupst_get_integer_param(string var_name, int var_value,
int error_code)

aupst_get_string_param(string var_name, string var_value,
int error_code)

All three of these subroutine calls are tied to a corresponding “parameter” com-
mand line that will appear in the Presto input file. The parameter command lines are
described in Section 9.2.2.3. These command lines are named based on the type of
value they store, i.e., SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER PA-

RAMETER, and SUBROUTINE STRING PARAMETER.

We will use the example of a real parameter to show how the subroutine call works
in conjunction with the SUBROUTINE REAL PARAMETERcommand line. Suppose we
have a real parameter radius that is set to a value of 2.75 on the SUBROUTINE REAL

PARAMETERcommand line:

SUBROUTINE REAL PARAMETER: radius = 2.75

Also suppose we have a call to aupst_get_real_parameter in the user subrou-
tine:

call aupst_get_real_parameter(‘‘radius’’,cyl_radius,error_code)

In the call to aupst_get_real_parameter , we have var_name set to radius

and var_value defined as the real FORTRAN variable cyl_radius . The call to
aupst_get_real_parameter will assign the value 2.75 to the FORTRAN variable
cyl_radius . A similar pattern is followed for integer and string parameters.

385

The arguments for the parameter-related query functions are described in Ta-
ble 9.3, Table 9.4, and Table 9.5. The function is repeated prior to each table for easy
reference.

386

aupst_get_real_param(string var_name, real var_value,
int error_code)

Table 9.3: aupst get real param Arguments

Parameter Usage Data Type Description
var name Input String Name of a real-valued subroutine

parameter, as defined in the Presto
input file via the SUBROUTINE

REAL PARAMETERcommand line.
var value Output Real Name of a real variable to be used

in the FORTRAN subroutine. The
FORTRAN variable var value will
be set to the value specified by the
SUBROUTINE REAL PARAMETER

command line.
error code Output Integer Error code indicating status of

retrieving the parameter value from
the input file. If the retrieval is
successful, error code is set to 0. If
the parameter is not found or is the
wrong type, error code is set to a
value other than 0.

387

aupst_get_integer_param(string var_name, int var_value,
int error_code)

Table 9.4: aupst get integer param Arguments

Parameter Usage Data Type Description
var name Input String Name of an integer-valued

subroutine parameter, as defined in
the Presto input file via the
SUBROUTINE INTEGER PARAMETER

command line.
var value Output Integer Name of an integer variable to be

used in the FORTRAN subroutine.
The FORTRAN variable var value
will be set to the value specified by
the SUBROUTINE INTEGER

PARAMETERcommand line.
error code Output Integer Error code indicating status of

retrieving the parameter value from
the input file. If the retrieval is
successful, error code is set to 0. If
the parameter is not found or is the
wrong type, error code is set to a
value other than 0.

388

aupst_get_string_param(string var_name, string var_value,
int error_code)

Table 9.5: aupst get string param Arguments

Parameter Usage Data Type Description
var name Input String Name of a string-valued subroutine

parameter, as defined in the Presto
input file via the SUBROUTINE

STRING PARAMETERcommand line.
var value Output String Name of a string variable to be used

in the FORTRAN subroutine. The
FORTRAN variable var value will
be set to the value specified by the
SUBROUTINE STRING PARAMETER

command line.
error code Output Integer Error code indicating status of

retrieving the parameter value from
the input file. If the retrieval is
successful, error code is set to 0. If
the parameter is not found or is the
wrong type, error code is set to a
value other than 0.

389

9.1.2.2 Function Data Query

The function data query routine listed below may be used for extracting data from
a function that is defined in a DEFINITION FOR FUNCTIONcommand block in the
Presto input file. This query allows the user to directly access information stored in
a function defined in the Presto input file.

aupst_evaluate_function(string func_name, real
input_times[], int num_times, real output_data[])

The arguments for this function are described in Table 9.6.

Table 9.6: aupst evaluate function Arguments

Parameter Usage Data Type Description
func name Input String Name of the function to look up.
input times
(num times)

Input Real Array of times used to extract
values of the function.

num times Input Integer Length of the array input times.
output data
(num times)

Output Real Array of output values of the named
function at the specified times.

9.1.2.3 Time Query

The time query function can be used to determine the current analysis time. This is
the time associated with the new time step. This time may not be equivalent to the
evaluation_time argument passed into the subroutine (see Section 9.1.1, Table 9.1)
as some boundary conditions need to be evaluated at different times than others. The
parameter of the time query function listed below is given in Table 9.7.

aupst_get_time(real time)

Table 9.7: aupst get time Argument

Parameter Usage Data Type Description
time Output Real Current analysis time.

390

9.1.2.4 Field Variables

Field variables (displacements, stresses, etc.) may be defined on groups of mesh
entities. A number of queries are available for getting and putting field variables.
These queries involve passing in a set of mesh-entity identification numbers to receive
field values on the mesh entities. There are query functions to check for the existence
and size of a field, functions to retrieve the field values, and functions to store new
variables in a field. The field query functions listed below can be used to extract any
registered nodal or element variable field.

aupst_check_node_var(int num_nodes, int num_components,
int node_ids[], string var_name,
int error_code)

aupst_check_elem_var(int num_elems, int num_components,
int elem_ids[], string var_name,
int error_code)

aupst_get_node_var(int num_nodes, int num_components,
int node_ids[], real return_data[],
string var_name, int error_code)

aupst_get_elem_var(int num_elems, int num_components,
int elem_ids[], real return_data[],
string var_name, int error_code)

aupst_put_node_var(int num_nodes, int num_components,
int node_ids[], real new_data[],
string var_name, int error_code)

aupst_put_elem_var(int num_elems, int num_components,
int elem_ids[], real new_data[],
string var_name, int error_code)

The arrays where data are stored are static arrays. These arrays of a set size will
be declared at the beginning of a user subroutine. The query functions to check for
the existence and size of a field can be used to ensure that the size of the array of
information being returned from Presto does not exceed the size of the array allocated
by the user.

The arguments to field query functions are defined in Table 9.8 through Table 9.13.
The function is repeated before each table for easy reference.

391

aupst_check_node_var(int num_nodes, int num_components,
int node_ids[], string var_name,
int error_code)

Table 9.8: aupst check node var Arguments

Parameter Usage Data Type Description
num nodes Input Integer Number of nodes used to extract

field information.
num components Output Integer Number of components in the field

information. A displacement field
at a node has three components, for
example.

node ids
(num nodes)

Input Integer Array of size num nodes listing the
node identification number for each
node where field information will be
retrieved.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

392

aupst_check_elem_var(int num_elems, int num_components,
int elem_ids[], string var_name,
int error_code)

Table 9.9: aupst check elem var Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements used to extract

field information.
num components Output Integer Number of components in the field

information. A stress field for a an
eight-node hexahedron element has
six components, for example.

elem ids
(num elems)

Input Integer Array of size num elems listing the
element identification number for
each element where field
information will be retrieved.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

393

aupst_get_node_var(int num_nodes, int num_components,
int node_ids[], real return_data[],
string var_name, int error_code)

Table 9.10: aupst get node var Arguments

Parameter Usage Data Type Description
num nodes Input Integer Number of nodes used to extract

field information.
num components Input Integer Number of components in the field

information. A displacement field
at a node has three components, for
example.

node ids
(num nodes)

Input Integer Array of size num nodes listing the
node identification number for each
node where field information will be
retrieved.

return data
(num components,
num nodes)

Output Real Array of size num components ×
num nodes containing the field data
at each node.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

394

aupst_get_elem_var(int num_elems, int num_components,
int elem_ids[], real return_data[],
string var_name, int error_code)

Table 9.11: aupst get elem var Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements used to extract

field information.
num components Input Integer Number of components in the field

information. A stress field for a an
eight-node hexahedron element has
six components, for example.

elem ids
(num elems)

Input Integer Array of size num elems listing the
element identification number for
each element where field
information will be retrieved.

return data
(num components,
num elems)

Output Real Array of size num components ×
num elems containing the field data
for each element.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

395

aupst_put_node_var(int num_nodes, int num_components,
int node_ids[], real new_data[],
string var_name, int error_code)

Table 9.12: aupst put node var Arguments

Parameter Usage Data Type Description
num nodes Input Integer Number of nodes for which the user

will specify the field data.
num components Input Integer Number of components in the field

information. A displacement field
at a node has three components, for
example.

node ids
(num nodes)

Input Integer Array of size num nodes listing the
node identification number for each
node where field information will be
retrieved.

new data
(num components,
num nodes)

Input Real Array of size num components ×
num nodes containing the new data
for the field.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

396

aupst_put_elem_var(int num_elems, int num_components,
int elem_ids[], real new_data[],
string var_name, int error_code)

Table 9.13: aupst put elem var Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements for which the

user will specify the field data.
num components Input Integer Number of components in the field

information. A stress field for a an
eight-node hexahedron element has
six components, for example.

elem ids
(num elems)

Input Integer Array of size num elems listing the
element identification number for
each element where field
information will be retrieved.

new data
(num components,
num elems)

Input Real Array of size num components ×
num elems containing the new data
for the field.

var name Input String Name of the field variable. The field
variable must be a registered Presto
variable.

error code Output Integer Error code indicating status of
retrieving the field. If the retrieval
is successful, error code is set to 0.
If a nonzero value is returned for
error code, the field variable does
not exist or is not defined on one or
more of the input nodes.

9.1.2.5 Global Variables

Global variables may be extracted or set from user subroutines. A global variable has
a single value for a given region.

Global variables have limited support for parallel operations. There are two sub-
routines to perform parallel modification of global variables: aupst_put_global_var

and aupst_local_put_global_var .

• The subroutine aupst_local_put_global_var only modifies a temporary lo-
cal copy of the global variable. The local copies on the various processes are

397

reduced to create the true global value at the end of the time step. Global
variables set with aupst_local_put_global_var do not have the single pro-
cessor value available immediately. The true global variable will not be available
through the aupst_get_global_var routine until the next time step.

• The subroutine aupst_put_global_var attempts to immediately modify and
perform a parallel reduction of the value of a global variable. Care must be
taken to call this routine on all processors at the same time with the same ar-
guments. Failure to call the routine from all processors will result in the code
hanging. For some types of subroutines this is not possible or reliable. For ex-
ample, a boundary condition subroutine may not be called at all on a processor
that contains no nodes in the set of nodes assigned to the boundary condition.
It is recommended that aupst_local_put_global_var only be used in con-
junction with a user subroutine referenced in a USER OUTPUTcommand block
(Section 8.1.2).

Only user-defined global variables may be modified by the user subroutine (see
Section 9.2.4). However, any global variable that exists on the region may be checked
or extracted. The following subroutine calls pertain to global variables:

aupst_get_global_var(int num_comp, real return_data,
string var_name, int error_code)

aupst_put_global_var(int num_comp, real input_data,
string reduction_type,
string var_name, int error_code)

aupst_local_put_global_var(int num_comp, real input_data,
string reduction_type,
string var_name, int error_code)

The arguments for subroutine calls pertaining to global variables are defined in
Table 9.14 through Table 9.17. The call is repeated before each table for easy refer-
ence.

398

aupst_check_global_var(int num_comp, string var_name
int error_code)

Table 9.14: aupst check global var Arguments

Parameter Usage Data Type Description
num comp Output Integer Number of components of the

global variable.
var name Input String Name of the global variable.
error code Output Integer Error code indicating status of

accessing the global variable. If
there is no error in accessing this
variable, error code is set to 0. A
nonzero value of error code means
the global variable does not exist or
in some way cannot be accessed.

aupst_get_global_var(int num_comp, real return_data,
string var_name, int error_code)

Table 9.15: aupst get global var Arguments

Parameter Usage Data Type Description
num comp Input Integer Number of components of the

global variable.
return data Output Real Value of the global variable.
var name Input String Name of the global variable.
error code Output Integer Error code indicating status of

accessing the global variable. If
there is no error in accessing this
variable, error code is set to 0. A
nonzero value of error code means
the global variable does not exist or
in some way cannot be accessed.

399

aupst_put_global_var(int num_comp, real input_data,
string reduction_type,
string var_name, int error_code)

Table 9.16: aupst put global var Arguments

Parameter Usage Data Type Description
num comp Input Integer Number of components of the

global variable.
input data Input Real New value of the global variable.
reduction type Input String Type of parallel reduction to

perform on the variable. Options
are “sum”, “min”, “max”, and
“none”.

var name Input String Name of the global variable.
error code Output Integer Error code indicating status of

accessing the global variable. If
there is no error in accessing this
variable, error code is set to 0. A
nonzero value of error code means
the global variable does not exist, in
some way cannot be accessed, or
may not be overwritten.

400

aupst_local_put_global_var(int num_comp, real input_data,
string reduction_type,
string var_name, int error_code)

Table 9.17: aupst local put global var Arguments

Parameter Usage Data Type Description
num comp Input Integer Number of components of the

global variable.
input data Input Real New value of the global variable.
reduction type Input String Type of parallel reduction to

perform on the variable. Options
are “sum”, “min”, and “max”. The
operation type specified here must
match the operation type given to
the user-defined global variable
when it is defined in the Presto
input file.

var name Input String Name of the global variable.
error code Output Integer Error code indicating status of

accessing the global variable. If
there is no error in accessing this
variable, error code is set to 0. A
nonzero value of error code means
the global variable does not exist, in
some way cannot be accessed, or
may not be overwritten.

9.1.2.6 Topology Extraction

The element and surface subroutines operate on groups of elements or faces. The ele-
ments and faces may have a variety of topologies. Topology queries can be used to get
topological data about elements and faces. The topology of an object is represented
by an integer. The integer is formed from a function of the number of dimensions,
vertices, and nodes of an object. The topology of an object is given by

topology = num_node + 100 * num_vert + 10000 * num_dim .

In a FORTRAN routine, the number of nodes can easily be extracted with the
mod function:

num_node = mod(topo,100)

401

num_vert = mod(topo / 100, 100)
num_dim = mod(topo / 10000, 100)

Table 9.18 lists the topologies currently in use by Presto.

Table 9.18: Topologies Used by Presto

Topology Element / Face Type
00101 One-node particle
10202 Two-node beam, truss, or damper
20404 Four-node quadrilateral
20303 Three-node triangle
20304 Four-node triangle
20306 Six-node triangle
30404 Four-node tetrahedron
30408 Eight-node tetrahedron
30410 Ten-node tetrahedron
30808 Eight-node hexahedron

The following topology query functions are available in Presto:

aupst_get_elem_topology(int num_elems, int elem_ids[],
int topology[], int error_code)

aupst_get_elem_nodes(int num_elems, int elem_ids[],
int elem_node_ids[], int error_code)

aupst_get_face_topology(int num_faces, int face_ids[],
int topology[], int error_code)

aupst_get_face_nodes(int num_faces, int face_ids[],
int face_node_ids[], int error_code)

The arguments for the topology extraction functions are defined in Table 9.19
through Table 9.22. The function is repeated before each table for easy reference.

402

aupst_get_elem_topology(int num_elems, int elem_ids[],
int topology[], int error_code)

Table 9.19: aupst get elem topology Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements from which the

topology will be extracted.
elem ids
(num elems)

Input Integer Array of length num elems listing
the element identification for each
element from which the topology
will be extracted.

topology
(num elems)

Output Integer Array of length num elems that has
the topology for each element. See
Table 8.18.

error code Output Integer Error code indicating status of
retrieving the element identification
numbers. If the retrieval is
successful, error code is set to 0. A
nonzero value is returned for
error code if one of the element
identification numbers is not valid.

403

aupst_get_elem_nodes(int num_elems, int elem_ids[],
int elem_node_ids[], int error_code)

Table 9.20: aupst get elem nodes Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements from which the

topology will be extracted.
elem ids
(num elems)

Input Integer Array of length num elems listing
the element identification for each
element from which the topology
will be extracted.

elem node ids
(number of
nodes for
element type ×
num elems)

Output Integer Array containing the node IDs for
each element requested. The length
of the array is the total number of
nodes contained in all elements. If
the elements are eight-node
hexahedra, then the number of
nodes will be 8 × num elems. The
first set of eight entries in the array
will be the eight nodes defining the
first element. The second set of
eight entries will be the eight nodes
defining the second element, and so
on.

error code Output Integer Error code indicating status of
retrieving the element identification
numbers. If the retrieval is
successful, error code is set to 0. A
nonzero value is returned for
error code if one of the element
identification numbers is not valid.

404

aupst_get_face_topology(int num_faces, int face_ids[],
int topology[], int error_code)

Table 9.21: aupst get face topology Arguments

Parameter Usage Data Type Description
num faces Input Integer Number of faces from which the

topology will be extracted.
face ids
(num faces)

Input Integer Array of length num faces listing
the face identification for each face
from which the topology will be
extracted.

topology
(num faces)

Output Integer Array of length num faces
containing the output topologies of
each face.

error code Output Integer Error code indicating status of
retrieving the face identification
numbers. If the retrieval is
successful, error code is set to 0. A
nonzero value is returned for
error code if one of the face
identification numbers is not valid.

405

aupst_get_face_nodes(int num_faces, int face_ids[],
int face_node_ids[], int error_code)

Table 9.22: aupst get face nodes Arguments

Parameter Usage Data Type Description
num faces Input Integer Number of faces from which the

topology will be extracted.
face ids
(num faces)

Input Integer Array of length num faces listing
the face identification for each face
from which the topology will be
extracted.

face node ids
(number of
nodes for face
type ×
num faces)

Output Integer Array containing the node IDs for
each face requested. The length of
the array is the total number of
nodes contained in all faces. If the
faces are four-node quadrilaterals,
then the number of nodes will be 4
× num faces. The first set of four
entries in the array will be the four
nodes defining the first face. The
second set of four entries will be the
four nodes defining the second face,
and so on.

error code Output Integer Error code indicating status of
retrieving the face identification
numbers. If the retrieval is
successful, error code is set to 0. A
nonzero value is returned for
error code if one of the face
identification numbers is not valid.

406

9.1.3 Miscellaneous Query Functions

A number of miscellaneous query functions are available for computing some com-
monly used quantities.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],
real centroids, int error_code)

aupst_get_point(string point_name, real point_coords,
int error_code)

aupst_get_proc_num(proc_num)

The arguments for the miscellaneous query functions are defined in Table 9.23
through Table 9.25. The function is repeated before each table for easy reference.

aupst_get_one_elem_centroid(int num_elems, int elem_ids[],
real centroids[], int error_code)

Table 9.23: aupst get one elem centroid Arguments

Parameter Usage Data Type Description
num elems Input Integer Number of elements for which to

extract the topology.
elem ids
(num elems)

Input Integer Array of length num elems listing
the element identification for each
element for which the centroid will
be computed.

centroids
(3, num elems)

Output Real Array of length 3 × num elems
containing the centroid of each
element.

error code Output Integer Error code indicating status of
retrieving the element identification
numbers. If the retrieval is
successful, error code is set to 0. A
nonzero value is returned for
error code if one of the element
identification numbers is not valid.

407

aupst_get_point(string point_name, real point_coords,
int error_code)

Table 9.24: aupst get point Arguments

Parameter Usage Data Type Description
point name Input String SIERRA name for a given point.
point coords
(3)

Output Real Array of length 3 containing the
XYZ coordinates of the point.

error code Output Integer Error code indicating status of
retrieving the point. If the retrieval
is successful, error code is set to 0.
A nonzero value is returned for
error code if the point cannot be
found

aupst_get_proc_num(proc_num)

Table 9.25: aupst get proc num Arguments

Parameter Usage Data Type Description
proc num Output Integer Processor number of the calling

process. This number can be used
for informational purposes. A
common example is that output
could only be written by a single
processor, e.g., processor 0, rather
than by all processors.

408

9.2 User Subroutines: Command File

In addition to the actual user subroutine, you will need to add command lines to
your input file to make use of your user subroutine. This section describes the com-
mand lines that are used in conjunction with user subroutines. This section also
describes two additional command blocks, TIME STEP INITIALIZATION and USER

VARIABLE. The TIME STEP INITIALIZATION command block lets you execute a
user subroutine at the beginning of a time step as opposed to some later time. The
USER VARIABLEcommand block can be used in conjunction with user subroutines
or for user-defined output.

9.2.1 Subroutine Identification

As described in Section 2.1.4, there is one command line associated with the user
subroutine functionality that must be provided in the domain scope:

USER SUBROUTINE FILE =<string >file_name

The named file may contain one or more user subroutines. The file must have an
extension of “.F”, as in blast.F.

9.2.2 User Subroutine Command Lines

{begin command block }
NODE SET SUBROUTINE = <string>subroutine name |

SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
{end command block }

A number of user subroutine command lines will appear in some Presto command
block. User subroutine commands can appear in boundary condition, element death,
user output, and state initialization command blocks. The possible command lines
are shown above. The following sections describe the command lines related to user
subroutines.

409

9.2.2.1 Type

User subroutines are currently available in three general types: node set, surface, and
element.

Node set subroutines operate on groups of nodes. The command line for defining
a node set subroutine is

NODE SET SUBROUTINE =<string >subroutine_name ,

where subroutine_name is the name of the user subroutine. The name is case
sensitive. A node set subroutine will operate on all nodes contained in an associated
mechanics instance.

Surface subroutines work on groups of surfaces. A surface may be an external face
of a solid element or the face of a shell element associated with either the positive or
negative normal for the surface of the shell. The command line for defining a surface
subroutine is

SURFACE SUBROUTINE =<string >subroutine_name .

Element subroutines work on groups of elements. The command line for defining
an element subroutine is

ELEMENT SUBROUTINE =<string >subroutine_name .

An element may be a solid element such as a hexahedron or a 2-D element such as a
shell.

Different Presto features may accept one or more types of user subroutines. Only
one subroutine is allowed per command block.

9.2.2.2 Debugging

Subroutines may be run in a special debugging mode to help catch memory errors.
For example, there is a potential for a user subroutine to write outside of its allotted
data space by writing beyond the bounds of an input or output array. Generally, this
causes Presto to crash, but it also has the potential to introduce other very hard-
to-trace bugs into the Presto analysis. Subroutines run in debug mode require more
memory and more processing time than subroutines not run in debug mode.

Subroutine debugging is on by default in debug executables. It can be turned off
with the following command line:

SUBROUTINE DEBUGGING OFF

Subroutine debugging is off by default in optimized executables. It can be turned
on with the following command line:

SUBROUTINE DEBUGGING ON

410

9.2.2.3 Parameters

All user subroutines have the ability to use parameters. Parameters are defined
in the input file and are quickly accessible by the user subroutine during runtime.
Parameters are a way of making a single user subroutine much more versatile. For
example, a user subroutine could be written to define a periodic loading on a structure.
A parameter for the subroutine could be defined specifying the frequency of the
function. In this way, the same subroutine can be used in different parts of the model,
and the subroutine behavior can be modified without recompiling the program. These
command lines are placed within the scope of the command block in which the user
subroutine is specified.

Real-valued parameters can be stored with the following command line:

SUBROUTINE REAL PARAMETER:<string>param_name

= <real>param value

Integer-valued parameters can be stored with the following command line:

SUBROUTINE INTEGER PARAMETER:<string>param_name

= <integer >param value

String-valued parameters can be stored with the following command line:

SUBROUTINE STRING PARAMETER:<string>param_name

= <string >param value

Any number of subroutine parameters may be defined. The subroutine parameters
may be defined in any order within the command block. The user subroutine may
request the values of the parameters but is not required to use them or even have any
knowledge of their existence. An example of subroutine usage with parameters is as
follows:

BEGIN PRESSURE
SURFACE = surface_1
SURFACE SUBROUTINE = blast_pressure
SUBROUTINE REAL PARAMETER: blast_time = 1.2
SUBROUTINE REAL PARAMETER: blast_power = 1.3e+07
SUBROUTINE STRING PARAMETER: formulation = alpha
SUBROUTINE INTEGER PARAMETER: decay_exponent = 2
SUBROUTINE DEBUGGING ON

END PRESSURE

In the above example, four parameters are associated with the subroutine
blast_pressure . Two of the parameters are real (blast_time and blast_power),
one of the parameters is a string (formulation), and one of the parameters is an

411

integer (decay_exponent). To access the parameters in the user subroutine, the
user will need to include interface calls described in previous sections.

412

9.2.3 Time Step Initialization

BEGIN TIME STEP INITIALIZATION
{mesh-entity set commands }
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>sub_name |
ELEMENT SUBROUTINE = <string>sub_name

{other user subroutine command lines }
#
additional command
ACTIVE PERIODS = <string list>period_names

END TIME STEP INITIALIZATION

The TIME STEP INITIALIZATION command block, which appears in the region
scope, is used to flag a user subroutine to run at the beginning of every time step.
This subroutine can be used to compute quantities used by other command types.
For example, if the traction on a surface was dependent on the area, the time step
initialization subroutine could be used to calculate the area, and that area could be
stored and later read when calculating the traction. The user initialization subroutine
will pass the specified mesh objects to the subroutine for use in calculating some value.

The TIME STEP INITIALIZATION command block contains two groups of
commands—mesh entity set and user subroutine. In addition to the command lines in
the these command groups, there is an additional command line: ACTIVE PERIODS.
The ACTIVE PERIODScommand line is used to activate or deactivate the running of
the user subroutine at the beginning of every time step for certain time periods. Fol-
lowing are descriptions of the different command groups and the ACTIVE PERIODS

command lines.

9.2.3.1 Mesh-Entity Set Commands

The {mesh-entity set commands } portion of the TIME STEP INITIALIZATION

command block specifies the nodes, element faces, or elements associated with the
particular subroutine that will be run at the beginning of the applicable time steps.
This portion of the command block can include some combination of the following
command lines:

NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS

413

REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list> surface_names
REMOVE BLOCK = <string list>block_names

These command lines, taken collectively, constitute a set of Boolean operators
for constructing a set of nodes, element faces, or elements. See Section 5.1 for more
information about the use of these command lines for mesh entities. There must be
at least one NODE SET, SURFACE, BLOCK, or INCLUDE ALL BLOCKScommand line in
the command block.

9.2.3.2 User Subroutine Commands

The following command lines are related to the user subroutine specification:

NODE SET SUBROUTINE = <string>subroutine_name |
SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }

Of the three named command lines above, only one can be specified in the com-
mand block. The particular command line selected depends on the mesh-entity type
of the variable being initialized. For example, variables associated with nodes would
be initialized if you are using the NODE SET SUBROUTINEcommand line, variables
associated with faces if you are using the SURFACE SUBROUTINEcommand line, and
variables associated with elements if you are using the ELEMENT SUBROUTINEcom-
mand line. The string subroutine_name is the name of a FORTRAN subroutine
that is written by the user.

The {other user subroutine command lines } portion refers to additional
command lines that may be included in the command block. These command lines
are described in Section 9.2.2 and consist of SUBROUTINE DEBUGGING OFF, SUBROU-

TINE DEBUGGING ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER PA-

RAMETER, and SUBROUTINE STRING PARAMETER. Examples of using these command
lines are provided throughout Chapter 9.

9.2.3.3 Additional Command

The ACTIVE PERIODScommand line can appear as an option in the TIME STEP

INITIALIZATION command block:

ACTIVE PERIODS = <string list >period_names

This command line determines when time step initialization by a user subroutine
is active. See Section 2.5 for more information about this optional command line.

414

9.2.4 User Variables

BEGIN USER VARIABLE <string>var_name
TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|
[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX]
INITIAL VALUE = <real list>values

END [USER VARIABLE <string>var_name]

The USER VARIABLEcommand block is used to create a user-defined variable.
This kind of variable may be used for scratch space in a user subroutine or for some
user-defined output. A user-defined variable may be output to the results file or the
history file just like any registered variable; i.e., a user-defined variable once defined
by the USER VARIABLEcommand block can be specified in a USER OUTPUTcommand
block, a RESULTS OUTPUTcommand block, and a HISTORY OUTPUTcommand block.

User-defined variables are associated with mesh entities. For example, a node
variable will exist at every node of the model. An element variable will exist on every
element of the model. A global variable will have a single value for the entire model.

The USER VARIABLEcommand block is placed within a Presto region. The com-
mand block begins with the input line

BEGIN USER VARIABLE<string >var_name

and ends with the input line

END [USER VARIABLE<string >var_name] ,

where var_name is a user-selected name for the variable.

In the above command block:

- A user-defined variable has an associated type that is specified by the TYPE

command line, which itself contains several parameters. The TYPE command
line is required.

1. The variable must be a nodal quantity, an element quantity, or a global
quantity. The options NODE, ELEMENT, and GLOBALdetermine whether the
variable will be a nodal, element, or global quantity. One of these options
must appear on the TYPEcommand line.

2. The user variable can be either an integer or a real, as specified by the
INTEGERor REALoption.

3. The length of the variable must be set by using one of the options
SYM_TENSOR, FULL_TENSOR, VECTOR, or LENGTH =<integer>length .

415

If the LENGTHoption is used, the user must specify whether the variable is
an integer number or a real number by using the INTEGERor REALoption.
If the SYM_TENSORoption is used, the variable has six real components.
If the FULL_TENSORis used, the variable has nine real components. If the
VECTORoption is used, the variable has three real components. The three
options SYM_TENSOR, FULL_TENSOR, and VECTORall imply real numbers,
and thus the REALoption need not be included in the command line when
one of these three options is specified.

Some examples of the TYPEcommand line follow:

type = global real length = 1
type = element tensor
type = element real length = 3
type = node sym_tensor
type = node vector

- If you use the GLOBALoption on the TYPEcommand line, a global variable is cre-
ated, and this global variable must be given an associated reduction type, which
is specified by the GLOBAL OPERATORcommand line. The reduction type tells
Presto how to reduce the individual values stored on each processor to a mesh
global value. Global reductions are performed at the end of each time step. Any
modifications to a global variable made by an aupst_local_put_global_var

call (see Section 9.1.2.5) will not be seen until the next time step after the user-
defined global variables have been updated and reduced. The SUMoperator
sums all processor variable contributions. The MAXoperator takes the max-
imum value of the aupst_local_put_global_var calls. The MIN operator
takes the minimum value of the aupst_local_put_global_var calls.

- One or more initial values may be specified for the user-defined variable in the
INITIAL VALUE command line. The number of initial values specified should
be the same as the length of the variable, as specified in the TYPE command
line either explicitly via the LENGTHoption or implicitly via the SYM_TENSOR,
FULL_TENSOR, or VECTORoption. The initial values will be copied to the vari-
able space on every mesh object on which the variable is defined. Only real
type variables may be given initial values at this time.

- All intrinsic type options such as REAL, INTEGER, SYM_TENSOR, FULL_TENSOR,
VECTORand the LENGTHoption can be used with any of the mesh entity options
(NODE, ELEMENT, GLOBAL).

416

9.3 User Subroutines: Compilation and Execution

Running a code with user subroutines is a two-step process. First, you must create
an executable version of Presto that recognizes the user subroutines. Next, you must
use this version of Presto for an actual Presto run with an input file that incorporates
the proper user subroutine command lines.

How the above two steps are carried out is site-specific. The actual process will
depend on how Presto is set up at your installation. We will give an example that
shows how the process is carried out on various systems at Sandia using SIERRA
command lines. SIERRA is a general code framework and code management system
at Sandia.

For the first step, you will need the user subroutine, in a FORTRAN file, and
a Presto input file that makes use of the user subroutine. You will use a system
command line of the general form shown below.

% sierra presto -i <string >input_file_name --make

Suppose that you have a subdirectory in your area called test and you wish
to incorporate a user subroutine called blast_load . The actual user subroutine
will be in a file called blast_load.F , and the associated input file will be called
blast_load_1.i . Both of these files will be in the directory test. In the input file,
you will have the following command line in the domain scope:

USER SUBROUTINE FILE = blast_load.F

You will also have some subset of the command lines described in the previous
section in your Presto input file. The specific form of the system command line to
execute the first step of the user subroutine process is shown below.

% sierra presto -i blast_load_1.i --make

The above command will create a local version of Presto in a local directory named
UserSubsProject . The system command line to run the local version of Presto is
shown below.

% sierra presto -i <string >input_file_name

-x UserSubsProject

The specific form of the system command line you will execute in the subdirectory
test is shown below.

% sierra presto -i blast_load_1.i -x UsersSubsProjects

The second command line runs Presto using blast_load_1.i as an input file
and utilizes the user subroutines in the process. Again, all of this is a site-specific
example. You must determine how Presto is set up at your installation to determine
what system command lines are necessary to build Presto with user subroutines and

417

then use this version of Presto.

418

9.4 User Subroutines: Examples

9.4.1 Pressure as a Function of Space and Time

The following code is an example of a user subroutine to compute blast pressures on
a group of faces. The blast pressure simulates a blast occurring at a specified position
and time. The blast wave radiates out from the center of the blast and dissipates
over time. This subroutine is included in the Presto input file as follows:

#In the domain scope:
user subroutine file = blast_load.F

#In the region scope:
begin pressure

surface = surface_1
surface subroutine = blast_load
subroutine real parameter: pos_x = 5.0
subroutine real parameter: pos_y = 5.0
subroutine real parameter: pos_z = 1.6
subroutine real parameter: wave_speed = 1.5e+02
subroutine real parameter: blast_time = 0.0
subroutine real parameter: blast_energy = 1.0e+09
subroutine real parameter: blast_wave_width = 0.75

end pressure

The FORTRAN 77 subroutine listing follows. Note that it would be possible
to increase the speed of this subroutine by calling the topology functions (see Sec-
tion 9.1.2.6) on groups of elements, though this would increase subroutine complexity.

c
c Subroutine to simulate a blast load on a surface
c

subroutine blast_load(num_faces, num_vals,
& eval_time, faceID, pressure, flags, err_code)

implicit none
c
c Subroutine input arguments
c

integer num_faces
double precision eval_time
integer faceID(num_faces)
integer num_vals

419

c
c Subroutine output arguments
c

double precision pressure(num_vals, num_faces)
integer flags(num_faces)
integer err_code

c
c Variables to hold the subroutine parameters
c

double precision pos_x, pos_y, pos_z, wave_speed,
& blast_time, blast_energy,
& blast_wave_width

c
c Local variables
c

integer iface, inode
integer cur_face_id, face_topo, num_nodes
integer num_comp_check
double precision dist, blast_o_rad, blast_i_rad
double precision blast_volume, blast_pressure
integer query_error
double precision face_center(3)

c
c Create some static variables to hold queried
c information. Assume no face has more than 10
c nodes
c

double precision face_nodes(10)
double precision face_coords(3, 10)

c
c Extract the subroutine parameters
c

call aupst_get_real_param("pos_x",pos_x,query_error)
call aupst_get_real_param("pos_y",pos_y,query_error)
call aupst_get_real_param("pos_z",pos_z,query_error)
call aupst_get_real_param("wave_speed",wave_speed,

& query_error)
call aupst_get_real_param("blast_energy",

& blast_energy,query_error)
call aupst_get_real_param("blast_time",

& blast_time,query_error)
call aupst_get_real_param("blast_wave_width",

& blast_wave_width, query_error)
c

420

c Determine the outer radius of the blast wave
c

blast_o_rad = (eval_time - blast_time) * wave_speed
if(blast_o_rad .le. 0.0) return;

c
c Determine the inner radius of the blast wave
c

blast_i_rad = blast_o_rad - blast_wave_width
if(blast_i_rad .le. 0.0) blast_i_rad = 0.0

c
c Determine the total volume the blast wave occupies
c

blast_volume = 3.1415 * (4.0/3.0) *
& (blast_o_rad**2 - blast_i_rad**2)

c
c Determine the total pressure on faces inside the
c blast wave
c

blast_pressure = blast_energy / blast_volume
c
c Loop over all faces in the set
c

do iface = 1, num_faces
c
c Extract the topology of the current face
c

cur_face_id = faceID(iface)
call aupst_get_face_topology(1, cur_face_id,

& face_topo, query_error)
c
c Determine the number of nodes of the current face
c

num_nodes = mod(face_topo,100)
c
c Extract the node ids for nodes contained in the current
c face
c

call aupst_get_face_nodes(1, cur_face_id,
& face_nodes, query_error)

c
c Extract the nodal coordinates of the face nodes
c

call aupst_get_node_var(num_nodes, 3, face_nodes,
& face_coords, "coordinates", query_error)

c

421

c Compute the centroid of the face
c

face_center(1) = 0.0
face_center(2) = 0.0
face_center(3) = 0.0
do inode = 1, num_nodes

face_center(1) = face_center(1) +
& face_coords(1,inode)

face_center(2) = face_center(2) +
& face_coords(2,inode)

face_center(3) = face_center(3) +
& face_coords(3,inode)

enddo
face_center(1) = face_center(1)/num_nodes
face_center(2) = face_center(2)/num_nodes
face_center(3) = face_center(3)/num_nodes

c
c Determine the distance from the current face
c to the blast center
c

dist = sqrt((face_center(1) - pos_x)**2 +
& (face_center(2) - pos_y)**2 +
& (face_center(3) - pos_z)**2)

c
c Apply pressure to the current face if it falls within
c the blast wave
c

if(dist .ge. blast_i_rad .and.
& dist .le. blast_o_rad) then

pressure(1,iface) = blast_pressure
else

pressure(1,iface) = 0.0
endif

enddo
err_code = 0
end

9.4.2 Error Between a Computed and an Analytic Solution

The following code is a user subroutine to compute the error between a Presto-
computed subroutine and an expected analytic manufactured solution result. This
subroutine is called by a USER OUTPUTcommand block immediately prior to produc-
ing an output Exodus file. The error for the mesh is computed by taking the squared
difference between the computed and analytic displacements at every node. Finally,

422

a global sum of the error is produced along with the square root norm of the error.

This user subroutine requires a user variable, which is defined in the Presto input
file. The command block for the user variable specified in this user subroutine is as
follows:

begin user variable conv_error
type = global real length = 1

global operator = sum
initial value = 0.0

end user variable conv_error

The subroutine is called in the Presto input file as follows:

begin user output
node set = nodelist_10
node set subroutine = conv0_error
subroutine real parameter: char_length = 1.0
subroutine real parameter: char_time = 1.0e-3
subroutine real parameter: x_offset = 0.0
subroutine real parameter: y_offset = 0.0
subroutine real parameter: z_offset = 0.0
subroutine real parameter: t_offset = 0.0
subroutine real parameter: u0 = 0.01
subroutine real parameter: v0 = 0.02
subroutine real parameter: w0 = 0.03
subroutine real parameter: alpha = 1.0
subroutine real parameter: youngs_modulus = 10.0e6
subroutine real parameter: poissons_ratio = 0.3
subroutine real parameter: density = 0.0002588
subroutine real parameter: num_nodes = 125.0

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine conv0_error(num_nodes, num_vals,
& eval_time, nodeID, values, flags, ierror)

implicit none

integer num_nodes
integer num_vals
double precision eval_time
integer nodeID(num_nodes)
double precision values(1)

423

integer flags(1)
integer ierror

c
c Local vars
c

integer inode
integer error_code
double precision clength, ctime, xoff, yoff, zoff, toff
double precision zero, one, two, three, four, nine
double precision mod_coords(3,3000)
double precision cdispl(3,3000)
integer num_comp_check
double precision expat
double precision x, y, z, t
double precision u0, v0, w0, alpha
double precision pi
double precision half
double precision mdisplx, mdisply, mdisplz
double precision xdiff, ydiff, zdiff
double precision conv_error
double precision numnod

pi = 3.141592654
half = 0.5
zero = 0.0
one = 1.0
two = 2.0
three = 3.0
four = 4.0
nine = 9.0

c
c Check that the nodal coordinates will fit into the
c statically allocated array
c

if(num_nodes .gt. 3000) then
write(6,*) ERROR in sphere disp, ,

& num_nodes exceeds static array size
ierror = 1
return

endif
c
c Extract the model coordinates for all nodes
c

call aupst_check_node_var(num_nodes, num_comp_check,
& nodeID, "model_coordinates",

424

& ierror)
if(ierror .ne. 0) return
if(num_comp_check .ne. 3) return
call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, mod_coords, "model_coordinates",
& ierror)

c
c Extract the computed displacements for all nodes
c

call aupst_check_node_var(num_nodes, num_comp_check,
& nodeID, "displacement",
& ierror)

if(ierror .ne. 0) return
if(num_comp_check .ne. 3) return
call aupst_get_node_var(num_nodes, num_comp_check,

& nodeID, cdispl, "displacement",
& ierror)

c
c Extract the subroutine parameters.
c

call aupst_get_real_param("char_length",
& clength,error_code)

call aupst_get_real_param("char_time",
& ctime,error_code)

call aupst_get_real_param("x_offset",xoff,error_code)
call aupst_get_real_param("y_offset",yoff,error_code)
call aupst_get_real_param("z_offset",zoff,error_code)
call aupst_get_real_param("t_offset",toff,error_code)
call aupst_get_real_param("u0",u0,error_code)
call aupst_get_real_param("v0",v0,error_code)
call aupst_get_real_param("w0",w0,error_code)
call aupst_get_real_param("alpha",alpha,error_code)
call aupst_get_real_param("num_nodes",

& numnod,error_code)
c
c Calculate a solution scaling factor
c

expat = half * (one - cos(pi * eval_time / ctime))
c
c Compute the expected solution at each node and do a
c sum of the differences from the analytic solution
c

conv_error = zero
do inode = 1, num_nodes

c

425

c Set the displacement value from the manufactured solution
c

x = (mod_coords(1,inode) - xoff) / clength
y = (mod_coords(2,inode) - yoff) / clength
z = (mod_coords(3,inode) - zoff) / clength

c
mdisplx = u0 * sin(x) * cos(two*y) * cos(three*z)

* * expat
mdisply = v0 * cos(three*x) * sin(y) * cos(two*z)

* * expat
mdisplz = w0 * cos(two*x) * cos(three*y) * sin(z)

* * expat
c

xdiff = mdisplx - cdispl(1,inode)
ydiff = mdisply - cdispl(2,inode)
zdiff = mdisplz - cdispl(3,inode)
conv_error = conv_error + xdiff*xdiff

* + ydiff*ydiff
* + zdiff*zdiff

c
enddo

c
ierror = 0

c
c Do a parallel sum of the squared errors and extract
c the total summed value on all processors
c

call aupst_put_global_var(1,conv_error,
& "conv_error","sum",ierror)

call aupst_get_global_var(1,conv_error,
& "conv_error",ierror)

c
c Take the square root of the errors and store that as
c the net error norm
c

conv_error = sqrt(conv_error) / sqrt(numnod)
call aupst_put_global_var(1,conv_error,

& "conv_error","none",ierror)
c

return
end

426

9.4.3 Transform Output Stresses to a Cylindrical Coordinate

System

The following code is a user subroutine to transform element stresses in global XYZ
coordinates to a global cylindrical coordinate system. This subroutine could be used
to transform the relatively meaningless shell stress in XYZ coordinates to more mean-
ingful tangential, hoop, and radial stresses. The subroutine is called from a USER

OUTPUTcommand block. It reads in the old stresses, transforms them, and writes
them back out to a user-created scratch variable, defined via a USER VARIABLEcom-
mand block, for output.

begin user variable cyl_stress
type = element sym_tensor length = 1
initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

begin user output
block = block_1
element subroutine = aupst_cyl_transform
subroutine string parameter: origin_point = Point_O
subroutine string parameter: z_point = Point_Z
subroutine string parameter: xz_point = Point_XZ
subroutine string parameter: input_stress = memb_stress
subroutine string parameter: output_stress = cyl_stress

end user output

The FORTRAN listing for the subroutine is as follows:

subroutine aupst_cyl_transform(num_elems, num_vals,
* eval_time, elemID, values, flags, ierror)

implicit none
#include<framewk/Fmwk_type_sizes_decl.par>
#include<framewk/Fmwk_type_sizes.par>
c
c Subroutine Arguments
c
c num_elems: Input: Number of elements to calculate on
c num_vals : Input: Ignored
c eval_time: Input: Time at which to evaluate the stress.
c elemID : Input: Global sierra IDs of the input elements
c values : I/O : Ignored, stress will be stored manually
c flags : I/O : Ignored
c ierror :Output: Returns non-zero if an error occurs

427

c
integer num_elems
integer num_vals
double precision eval_time
integer elemID(num_elems)
double precision values(1)
integer flags(1)
integer ierror

c
c Fortran cannot dynamically allocate memory, thus worksets
c will be iterated over by chucks each of size chunk_size.
c

integer chunk_size
parameter (chunk_size = 100)
integer chunk_ids(chunk_size)

c
c Subroutine parameter data
c

character*80 origin_point_name
double precision origin_point(3)
character*80 z_point_name
double precision z_point(3)
character*80 xz_point_name
double precision xz_point(3)
character*80 input_stress_name
character*80 output_stress_name

c
c Local element data for centroids and rotation vectors
c

double precision cent(3)
double precision centerline_pos(3)
double precision dot_prod
double precision z_vec(3)
double precision r_vec(3)
double precision theta_vec(3)
double precision rotation_tensor(9)

c
c Chunk data storage
c

double precision elem_centroid(3, chunk_size)
double precision input_stress_val(6, chunk_size)
double precision output_stress_val(6, chunk_size)

c
c Simple iteration variables
c

428

integer error_code
integer ichunk, ielem
integer zero_elem, nel

c
c Extract the current subroutine parameters. origin_point
c is the origin of the coordinate system
c z_point is a point on the z axis of the coordinate system
c xz_point is a point on the xz plane
c

call aupst_get_string_param("origin_point",
& origin_point_name,
& error_code)

call aupst_get_string_param("z_point",
& z_point_name,
& error_code)

call aupst_get_string_param("xz_point",
& xz_point_name,
& error_code)

call aupst_get_string_param("input_stress",
& input_stress_name,
& error_code)

call aupst_get_string_param("output_stress",
& output_stress_name,
& error_code)

c
c Use the point names to look up the coordinates of each
c relevant point
c

call aupst_get_point(origin_point_name, origin_point,
& error_code)

call aupst_get_point(z_point_name, z_point,
& error_code)

call aupst_get_point(xz_point_name, xz_point,
& error_code)

c
c Compute the z axis vector
c

z_vec(1) = z_point(1) - origin_point(1)
z_vec(2) = z_point(2) - origin_point(2)
z_vec(3) = z_point(3) - origin_point(3)

c
c Transform z_vec into a unit vector, abort if it is invalid
c

call aupst_unitize_vector(z_vec, ierror)
if(ierror .ne. 0) return

429

c
c Loop over chunks of the data arrays
c

do ichunk = 1, (num_elems/chunk_size + 1)
c
c Determine the first and last element number for the
c current chunk of elements
c

zero_elem = (ichunk-1) * chunk_size
if((zero_elem + chunk_size) .gt. num_elems) then

nel = num_elems - zero_elem
else

nel = chunk_size
endif

c
c Copy the elemIDs for all elems in the current chunk to a
c temporary array
c

do ielem = 1, nel
chunk_ids(ielem) = elemID(zero_elem + ielem)
enddo

c
c Extract the element centroids and stresses
c

call aupst_get_elem_centroid(nel, chunk_ids,
& elem_centroid,
& ierror)

call aupst_get_elem_var(nel, 6, chunk_ids,
& input_stress_val,
& input_stress_name, ierror)

c
c Loop over each element in the current chunk
c

do ielem = 1, nel
c
c Find the closest point on the cylinder centerline axis
c to the element centroid
c

cent(1) = elem_centroid(1, ielem) - origin_point(1)
cent(2) = elem_centroid(2, ielem) - origin_point(2)
cent(3) = elem_centroid(3, ielem) - origin_point(3)
dot_prod = cent(1) * z_vec(1) +

& cent(2) * z_vec(2) +
& cent(3) * z_vec(3)

centerline_pos(1) = z_vec(1) * dot_prod

430

centerline_pos(2) = z_vec(2) * dot_prod
centerline_pos(3) = z_vec(3) * dot_prod

c
c Compute the current normal radial vector
c

r_vec(1) = cent(1) - centerline_pos(1)
r_vec(2) = cent(2) - centerline_pos(2)
r_vec(3) = cent(3) - centerline_pos(3)
call aupst_unitize_vector(r_vec, ierror)
if(ierror .ne. 0) return

c
c Compute the current hoop vector
c

theta_vec(1) = z_vec(2)*r_vec(3) - r_vec(2)*z_vec(3)
theta_vec(2) = z_vec(3)*r_vec(1) - r_vec(3)*z_vec(1)
theta_vec(3) = z_vec(1)*r_vec(2) - r_vec(1)*z_vec(2)

c
c The r, theta, and z vectors describe the new stress
c coordinate system, Transform the input stress tensor
c in x,y,z coords to the output stress tensor in r, theta,
c and z coords use the unit vectors to create a rotation
c tensor
c

rotation_tensor(k_f36xx) = r_vec(1)
rotation_tensor(k_f36yx) = r_vec(2)
rotation_tensor(k_f36zx) = r_vec(3)
rotation_tensor(k_f36xy) = theta_vec(1)
rotation_tensor(k_f36yy) = theta_vec(2)
rotation_tensor(k_f36zy) = theta_vec(3)
rotation_tensor(k_f36xz) = z_vec(1)
rotation_tensor(k_f36yz) = z_vec(2)
rotation_tensor(k_f36zz) = z_vec(3)

c
c Rotate the current stress tensor to the new configuration
c

call fmth_rotate_symten33(1, 1, 0, rotation_tensor,
& input_stress_val(1,ielem),
& output_stress_val(1,ielem))

enddo
c
c Store the new stress
c

call aupst_put_elem_var(nel, 6, chunk_ids,
& output_stress_val,
& output_stress_name, ierror)

431

enddo
ierror = 0
end

432

9.5 User Subroutines: Library

A number of user subroutines are used commonly and have been permanently incor-
porated into the code. These subroutines are used just like any other subroutines,
but they do not need to be compiled into the code. (The user need be concerned only
about the Presto command lines.) This section describes the usage of each of these
subroutines.

9.5.1 aupst cyl transform

Author: Nathan Crane

Purpose:

The purpose of this subroutine is to transform element stresses from a global rectan-
gular coordinate system to a local cylindrical coordinate system. This subroutine is
generally called by a USER OUTPUTcommand block. For example:

begin user output
block = block_1
element subroutine = aupst_cyl_transform
subroutine string parameter: origin_point = Point_O
subroutine string parameter: z_point = Point_Z
subroutine string parameter: xz_point = Point_XZ
subroutine string parameter: input_stress = memb_stress
subroutine string parameter: output_stress = cyl_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the cylindrical stress into a regis-
tered variable for each element. The registered variable is created by the following
command block in the Presto region:

begin user variable cyl_stress
type = element sym_tensor length = 1
initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

433

Parameters:

Parameter Name Usage Description
origin point String Name of the point at the cylinder origin.
z point String Point on the cylinder axis.
xz point String Point on the line that passes through

theta = 0 on the cylinder.
input stress String Name of the Presto internal input stress

tensor variable.
output stress String Name of the Presto internal output

stress tensor variable.

9.5.2 aupst rec transform

Author: Daniel Hammerand

Purpose:

The purpose of this subroutine is to transform element stresses from a global rect-
angular coordinate system to a different local rectangular coordinate system. This
subroutine is generally called by a USER OUTPUTcommand block. For example:

begin user output
block = block_1
element subroutine = aupst_rec_transform
subroutine string parameter: origin_point = Point_O
subroutine string parameter: z_point = Point_Z
subroutine string parameter: xz_point = Point_XZ
subroutine string parameter: input_stress = memb_stress
subroutine string parameter: output_stress = new_stress

end user output

Requirements:

This subroutine requires a tensor variable to store the new stress into a registered
variable for each element. The registered variable is created by the following command
block in the Presto region:

begin user variable new_stress
type = element sym_tensor length = 1
initial value = 0.0 0.0 0.0 0.0 0.0 0.0

end user variable

434

Parameters:

Parameter Name Usage Description
origin point String Name of the point at the cylinder origin.
z point String Point on the cylinder axis.
xz point String Point on the line that passes through

theta = 0 on the cylinder.
input stress String Name of the Presto internal input stress

tensor variable.
output stress String Name of the Presto internal output

stress tensor variable.

435

Chapter 10

Shared Interface Models (SIMOD)

SIMOD is a modular third-party library that allows for the addition of surface physics
in a modular fashion. As such, the emphasis of the library is not upon providing
a comprehensive set of surface physics models, but rather upon providing a place
to “plug-in” new models that can be used by different application codes and their
various “interface descriptors” (e.g., a contact algorithm or interface elements). As
used here, surface physics implies the description of the “mechanical interaction”
between two surfaces. A very simple surface physics scheme is the linear elastic
model that relates each component of the interfacial traction to its work-conjugate
relative displacement through a single constant of proportionality (stiffness). A more-
detailed surface physics scheme could involve electrostatic attraction or even a model
with history dependence.

SIMOD is used to construct various surface physics models for contact, mixed
boundary conditions, interface elements, and continuum elements with surfaces of
discontinuity. Currently, for Presto, users can access SIMOD as one of several options
for the traction force boundary condition described in Section 6.5.2. In the future,
SIMOD will be accessible in conjunction with contact (Chapter 7).

The set of SIMOD interface models available for use in Presto is under develop-
ment. These models are divided into two sets: test models and core models. Some of
the test models are under development; others are being used to verify the generality
of the SIMOD library (e.g., a model that is two-dimensional and includes internal
state data). The core models are supported for production application and are listed
as model options in Section 10.3. Users should contact James V. Cox (505-284-4816,
jvcox@sandia.gov) for a complete list of interface models undergoing testing and de-
velopment.

436

10.1 Defining a SIMOD Model

To use a SIMOD interface model, you must include a SIMOD MODELcommand block
in the domain scope. The SIMOD model can then be referenced in a traction force
boundary condition via the TRACTION command block. The format of the SIMOD

MODELcommand block follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = <string>model_name
BOOLEAN PARAMETER: <string>bool_name = <boolean>bool_val
CHARACTER PARAMETER: <string>char_name = <string>char_val
REAL PARAMETER: <string>real_name = <real>real_val
INTEGER PARAMETER: <string>int_name = <integer>int_val
STRING PARAMETER: <string>string_name = <string>str_name
MODEL PARAMETER: <string>param_name = <string>str_name
FUNCTION PARAMETER: <string>func_name =

<string>sierra_function
END [SIMOD MODEL <string>some_name]

The string some_name is a user-selected name for the SIMOD model. A particular
interface model is selected by using the MODEL TYPEcommand line. The current list
of choices for the model type (of core models only) are

- Composite2d_via_1d ,

- Composite3d_via_1d ,

- Concrete_Exp1d ,

- Elastic_IM ,

- Electrostatic_ParallelPL ,

- Hamaker_ParallelPL ,

- and null_IM .

Each interface model has a specific set of parameters that are used to define the
model. The parameters are set by some combination of the parameter command lines
in the above command block. The various parameter names correspond to SIMOD
names. For example, if you selected model type Elastic_IM and that model type
required the real parameter k , the SIMOD MODELcommand block would appear as
follows:

437

BEGIN SIMOD MODEL elastic_im_bond1
MODEL TYPE = Elastic_IM
REAL PARAMETER: k = 1.0e6

END SIMOD MODEL

438

10.2 Use of a SIMOD Model with the Traction

Boundary Condition

SIMOD models referenced for traction force boundary conditions must be fully three-
dimensional. The dimension of an interface model is defined as the number of traction
components that are related to their work-conjugate kinematic variables (e.g., relative
displacements). A three-dimensional model can be built up from one-dimensional
models via a SIMOD composite model. Please reference the SIMOD Application
Programmer Interface [1] regarding the use of composite models. A null SIMOD
model named null is automatically defined by SIERRA for use with traction force
boundary conditions. For example, by using the Composite3d via 1d model you may
use the adhesion model (Hamaker ParallelPL) for the normal response and two null
models for the tangential response components.

When using the traction boundary condition option, the surface interaction is
between some user-defined plane and a surface on the mesh. There may be a prefer-
ential direction in the user-defined plane. For example, a stick-slip condition interface
may show certain behavior along the preferential direction, a different behavior along
a direction normal to the preferential direction, and some combination of the two
(preferential and normal) behaviors for any direction in between.

The command block for the traction boundary conditions appears in the region
scope. If we want to use a SIMOD model, it is necessary to introduce a TRACTION

command block of the form:

BEGIN TRACTION
USE SIMOD MODEL = <string>some_name
SURFACE = <string list>surface_names
REFERENCE PLANE AXIS = <string>axis_name
REFERENCE PLANE T1 DIRECTION = <string>t1_direction

END [TRACTION]

The specific model is selected with the USE SIMOD MODELcommand line. The
string some_name on this command line references the string used to name a SIMOD

MODELcommand block. The surface on the mesh is defined with the SURFACEcom-
mand line. The plane with which the surface of the mesh interacts is defined with the
REFERENCE PLANE AXIScommand line. The string axis_name uses an axis_name

that is defined in the domain scope via a DEFINE AXIS command line. An axis defi-
nition (rather than a simple direction definition) is required to define the plane. An
axis definition includes both a point and a direction. The point lies in the plane, and
the direction defines the outward normal to the plane. If there is a preferential di-
rection for model behavior in the plane, this direction is defined with the REFERENCE

439

PLANE T1command line. The string t1_direction uses a direction_name that
is defined in the domain scope via a DEFINE DIRECTIONcommand line).

440

10.3 SIMOD Core Models

The specific interface models that are currently available to users (the core models)
are described in the following subsections in alphabetical order. Each model type
listed includes a complete list of the required parameters. Again, other models (the
test models) are available, but their support is limited. As mentioned previously, all
of these core models use the SIMOD MODELcommand block as their format. The type
of the model must be specified in the MODEL TYPEcommand line.

The units for various parameters in the SIMOD models are dependent upon the
units you have selected for your analysis model. In the following model description,
F represents force, L represents length, and V represents voltage.

10.3.1 Composite2d via 1d

The Composite2d via 1d model is a two-dimensional model that is composed of two
one-dimensional models: a tangent response model and a normal response model.
By definition these two components of the response are uncoupled, i.e., the normal
response has no dependence upon the tangent response and visa versa. The format
of the SIMOD MODELcommand block for the Composite2d via 1d model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Composite2d_via_1d
MODEL PARAMETER: tangent_model = <string>name_tangent
MODEL PARAMETER: normal_model = <string>name_normal

END [SIMOD MODEL <string>some_name]

In the above command block:

- The string some_name is a user-selected name for the model.

- The string name_tangent specifies the name of a one-dimensional SIMOD
model that will be applied to define the tangent response. This string can
be (1) the name of a previously user-defined one-dimensional SIMOD model or
(2) the name of the default null model, i.e., null .

- The string name_normal specifies the name of a SIMOD model that will be
applied to define the normal response. This string can be (1) the name of a
previously user-defined one-dimensional SIMOD model or (2) the name of the
default null model, i.e., null .

If a MODEL PARAMETERcommand line is omitted, the null model is assumed.

See Section 10.4 for an example of constructing a composite model with the
SIMOD library.

441

10.3.2 Composite3d via 1d

The Composite3d via 1d model is a three-dimensional model that is composed of
three one-dimensional models: a tangent response model for the t1 direction, a tangent
response model for the t2 direction (where t1⊥t2), and a normal response model. By
definition, these three components of the response are uncoupled. The format of the
SIMOD MODELcommand block for the Composite3d via 1d model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Composite3d_via_1d
MODEL PARAMETER: tangent1_model = <string>name_tangent1
MODEL PARAMETER: tangent2_model = <string>name_tangent2
MODEL PARAMETER: normal_model = <string>name_normal

END [SIMOD MODEL <string>some_name]

In the above command block:

- The string some_name is a user-selected name for the model.

- The string name_tangent1 specifies the name of a one-dimensional SIMOD
model that will be applied to define the tangent response in the t1 direction.
This string can be (1) the name of a previously user-defined one-dimensional
SIMOD model or (2) the name of the default null model, i.e., null .

- The string name_tangent2 specifies the name of a one-dimensional SIMOD
model that will be applied to define the tangent response in the t2 direction.
This string can be (1) the name of a previously user-defined one-dimensional
SIMOD model or (2) the name of the default null model, i.e., null.

- The string name_normal specifies the name of a one-dimensional SIMOD model
that will be applied to define the normal response. This string can be (1) the
name of a previously user-defined one-dimensional SIMOD model or (2) the
name of the default null model, i.e., null .

If a MODEL PARAMETERcommand line is omitted, the null model is assumed.

See Section 10.4 for an example of constructing a composite model with the
SIMOD library.

10.3.3 Concrete Exp1d

The Concrete Exp1d model is a one-dimensional model for concrete tensile response
across a surface, typically used in cohesive zone modeling of concrete fracture. The

442

underlying assumptions are that (1) failure is by mode I fracture, (2) compression and
elastic tensile loading can be represented by an elastic constant, and (3) the process
zone can be mathematically represented by a strong discontinuity. The character
string “Exp” in the model name denotes that an exponential function is used to
represent the traction-separation softening response. The format of the SIMOD MODEL

command block for the Concrete Exp1d model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Concrete_Exp1d
REAL PARAMETER: Ec = <real>real_val
REAL PARAMETER: sigt = <real>real_val
REAL PARAMETER: wo = <real>real_val
REAL PARAMETER: Gf = <real>real_val
REAL PARAMETER: c2 = <real>real_val

END [SIMOD MODEL <string>some_name]

In the above command block:

- The name some_name is a user-selected name for the model.

- The parameter Ec is the elastic constant for the interface, in units of F/L3.

- The parameter sigt is the tensile failure stress, in units of F/L2.

- The parameter wo is the relative displacement at which the traction unloads to
zero, in units of L.

- The parameter Gf is the fracture energy—the energy required to create a unit
area of “unbonded surface,” in units of FL/L2 = F/L. Graphically, it is the area
under the curve for the traction-separation law.

- The parameter c2 is the exponential softening parameter—a unitless user-
defined fitting parameter that affects the shape of the traction-separation curve.

10.3.4 Elastic IM

The Elastic IM model is a one-, two-, or three-dimensional, linear, isotropic, elastic
interface model. Each relative displacement component multiplied by the elastic
constant gives the corresponding work-conjugate traction. The format of the SIMOD

MODELcommand block for the Elastic IM model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Elastic_IM
REAL PARAMETER: k = <real>real_val

END [SIMOD MODEL <string>some_name]

443

In the above command block:

- The name some_name is a user-selected name for the model.

- The parameter k is the elastic constant—the interface stiffness—in units of
F/L3.

10.3.5 Electrostatic ParallelPL

The Electrostatic ParallelPL model is a simple parallel plate model for electrostatic
attraction or repulsion. The model is one-dimensional and relates traction to the
distance of separation. The format of the SIMOD MODELcommand block for the
Electrostatic ParallelPL model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Electrostatic_ParallelPL
REAL PARAMETER: zero_offset = <real>real_val
REAL PARAMETER: clip_distance = <real>real_val
REAL PARAMETER: scale_factor = <real>real_val
REAL PARAMETER: permittivity = <real>real_val
FUNCTION PARAMETER: voltage_function =

<string>sierra_function
END [SIMOD MODEL <string>some_name]

In the above command block:

- The name some_name is a user-selected name for the model.

- The parameter zero_offset is the position of the reference plane for zero gap,
in units of L. This parameter has two purposes: it avoids singularity of the
rational function and sets the adhesion energy. Warning: The sign of this term
may change in a future release.

- The parameter clip_distance is the distance to clip of a singular function,
in units of L. This distance value must be less than the value of the parameter
zero_offset .

- The parameter scale_factor (unitless) indicates attraction or repulsion, where
a positive number implies attraction and a negative number implies repulsion.

- The parameter permittivity is the permittivity constant of the dielectric, in
units of F/V2.

- The parameter voltage_function refers to the name of a SIERRA function
that defines voltage as a function of time. This function must be defined in the
domain scope in a DEFINITION FOR FUNCTIONcommand block.

444

10.3.6 Hamaker ParallelPL

The Hamaker ParallelPL model is a simple parallel plate model for adhesion associ-
ated with van der Waals forces. The model is one-dimensional and relates traction to
the distance of separation. The format of the SIMOD MODELcommand block for the
Hamaker ParallelPL model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Hamaker_ParallelPL
REAL PARAMETER: zero_offset = <real>real_val
REAL PARAMETER: clip_distance = <real>real_val
REAL PARAMETER: A = <real>real_val
REAL PARAMETER: permittivity = <real>real_val
FUNCTION PARAMETER: time_function =

<string>sierra_function
END [SIMOD MODEL <string>some_name]

In the above command block:

- The name some_name is a user-selected name for the model.

- The parameter zero_offset is the position of the reference plane for zero gap,
in units of L. This parameter has two purposes: it avoids singularity of the
rational function and sets the adhesion energy. Warning: The sign of this term
may change in a future release.

- The parameter clip_distance is the distance to clip of a singular function in
units of L. This distance value must be less than the value of the parameter
zero_offset .

- The parameter A is the Hamaker constant, in units of FL.

- The parameter time_function refers to the name of a SIERRA function that
defines a scalar multiplier as a function of time. This function must be defined in
the domain scope in a DEFINITION FOR FUNCTIONcommand block. The time
function is used to facilitate convergence in quasi-static analyses. For explicit,
transient dynamic analyses, the time function should reference a function with
a value of unity for all times.

10.3.7 null IM

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = null_IM

END [SIMOD MODEL <string>some_name]

445

In addition to the default null model null, you can also define a null model using a
model type of null_IM . The null_IM model is a one-dimensional model that always
gives a value of zero traction. The null IM model may be referenced in a MODEL

PARAMETERcommand line in the composite models. The model will be referenced by
using the value some_name you have specified on the BEGIN SIMOD MODELcommand
line.

446

10.4 Example of Constructing a Composite Model

This section explains how to construct a Composite2d via 1d model. This expla-
nation also applies to the construction of a Composite3d via 1d model, though the
particulars of the model parameters may differ in the Composite3d via 1d model.

For reference, the format of the SIMOD MODELcommand block for constructing
the Composite2d via 1d model is as follows:

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Composite2d_via_1d
MODEL PARAMETER: tangent_model = <string>name_tangent
MODEL PARAMETER: normal_model = <string>name_normal

END [SIMOD MODEL <string>some_name]

The previously defined SIMOD models are models that have been defined
by the user with a SIMOD MODELcommand block. The string name tangent or
name normal in a MODEL PARAMETERcommand line will reference the user-defined
name, some_name, of another SIMOD MODELcommand block. For example, sup-
pose we are constructing a Composite2d via 1d model that is composed of two Con-
crete Exp1d models. One of the models, which we will assign the user-defined name
of CEXP1 N, will define behavior in the normal direction; the other model, which we
will assign the user-defined name of CEXP1 T, will define behavior in the tangential
direction. If the name of our composite model is Concrete1 , then our command
block for this composite model is as follows:

BEGIN SIMOD MODEL Concrete1
MODEL TYPE = Composite2d_via_1d
MODEL PARAMETER: tangent_model = CEXP1_T
MODEL PARAMETER: normal_model = CEXP1_N

END SIMOD MODEL Concrete1

The user-defined name Concrete1 will be referenced by a traction boundary
condition specified with a TRACTIONcommand block in the region.

Figure 10.1 highlights the relationships involved in the construction of this type
of composite model.

447

Figure 10.1: Relationships among command blocks in constructing a composite
SIMOD model.

448

10.5 References

1. Cox, J. V.“Shared Interface Models - SIMOD Application Programmer Inter-
face.” Draft Report, Department 9123, Sandia National Laboratories.

449

Chapter 11

Example Problem

This chapter provides an example problem to illustrate the construction of an input
file for an analysis. The example problem consists of 124 spheres made of lead enclosed
in a steel box. The steel box has an open top into which a steel plate is placed (see
Figure 11.1). A prescribed velocity is then applied on the steel plate, pushing it into
the box and crushing the spheres contained within using frictionless contact. This
problem is a severe test for the contact algorithms as the spheres crush into a nearly
solid block. See Figure 11.2 for results of this problem.

X

Y

Z

(a) Undeformed Mesh

X

Y

Z

(b) Initial Crush of Spheres

Figure 11.1: Mesh for example problem: (a) box (red and green surfaces) with plate
in top (blue surface) and (b) mesh with blue and green surfaces removed to show
internal spheres (yellow) with initial crush.

The input file is described below, with comments to explain every few lines. Fol-
lowing the description, the full input file is listed again. Most of the key words in
this example are all lowercase, which is different from the convention we have used
to describe the command lines in this document. However, all of the lowercase usage
in the following example is an acceptable format in Presto.

The input file starts with a begin sierra statement, as is required for all input files:

450

X

Y

Z

(a) Additional Crush of Spheres

X

Y

Z

(b) Final Deformed Configuration

Figure 11.2: Mesh with blue and green surfaces removed to show internal spheres
(yellow) after initial crush shown in Figure 11.1 (b).

begin sierra crush_124_spheres

We now need to define the functions used with this problem. The boundary
conditions require a function for the initial velocity, as follows:

begin definition for function constant_velocity
type is piecewise linear
ordinate is velocity
abscissa is time
begin values

0.0 30.0
1.0 30.0

end values
end definition for function constant_velocity

To define the boundary conditions, we need to define the direction for the initial
velocity—this is in the y-direction. We could also choose to simply specify the Y
component for the initial condition, but this input file uses directions.

define direction y_axis with vector 0.0 1.0 0.0

Next we define the material models that will be used for this analysis. There
are two materials in this problem: steel for the box, and lead for the spheres. Both
materials use the elastic-plastic material model (denoted as elastic_plastic) .

begin property specification for material steel
density = 7871.966988

451

begin parameters for model elastic_plastic
youngs modulus = 1.999479615e+11
poissons ratio = 0.33333
yield stress = 275790291.7
hardening modulus = 275790291.7
beta = 1.0

end parameters for model elastic_plastic

end property specification for material steel

begin property specification for material lead
density = 11253.30062

begin parameters for model elastic_plastic
youngs modulus = 1.378951459e+10
poissons ratio = 0.44
yield stress = 13789514.59
hardening modulus = 0.0
beta = 1.0

end parameters for model elastic_plastic

end property specification for material lead

Now, we define the finite element mesh. This includes specification of the file
that contains the mesh, as well as a list of all the element blocks we will use from
the mesh and the material associated with each block. The name of the file is
crush_124_spheres.g . The specification of the database type is optional—ExodusII
is the default. Currently, each element block must be defined individually. For this
particular problem, all of the spheres are the same element block. Each sphere is a
distinct geometry entity, but all spheres constitute one element block in the Exodus
II database. Note that the three element blocks that make up the box and lid all
reference the same material description. The material description is not repeated
three times. The material description for steel appears once and is then referenced
three times.

begin finite element model mesh1
Database Name = crush_124_spheres.g
Database Type = exodusII

begin parameters for block block_1
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_1

452

begin parameters for block block_2
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_2

begin parameters for block block_3
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_3

begin parameters for block block_4
material linear_elastic_lead
solid mechanics use model elastic_plastic

end parameters for block block_4

end finite element model mesh1

As an alternative to referencing the material description for steel three times as
done above, you could define multiple element blocks simultaneously on the same
command line. Thus, the three element block specifications with the material lin-

ear_elastic_steel could be consolidated into one, as follows:

begin parameters for block block_1 block 2 block 3
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_1 block 2 block 3

At this point we have finished specifying physics-independent quantities. We now
want to set up the Presto procedure and region, along with the time control command
block. We start by defining the beginning of the procedure scope, the time control
command block, and the beginning of the region scope. Only one time stepping block
command block is needed for this analysis. The termination time is set to 7 × 10−4.

begin presto procedure Apst_Procedure

begin time control
begin time stepping block p1

start time = 0.0
begin parameters for presto region presto

time step scale factor = 1.0
time step increase factor = 2.0
step interval = 25

end parameters for presto region presto

453

end time stepping block p1

termination time = 7.0e-4
end time control

begin presto region presto

Next we associate the finite element model we defined above (mesh1) with this
presto region.

use finite element model mesh1

Now we define the boundary conditions on the problem. We prescribe the velocity
on the top surface of the box (nodelist 100) to crush the spheres, and we confine the
bottom surface of the box (nodelist 200) not to move. Note that although we use
node sets to define these boundary conditions, we could have used the corresponding
side sets.

begin prescribed velocity
node set = nodelist_100
direction = y_axis
function = constant_velocity
scale factor = -1.0

end

begin fixed displacement
node set = nodelist_200
components = Y

end

Now we define the contact for this problem. For this problem, we want all four
element blocks to be able to contact each other, with a normal tolerance of 0.0001
and a tangential tolerance of 0.0005. In this case, we simply define the same contact
characteristics for all interactions. However, we could also specify tolerances and
kinematic partition factors for individual interactions. Since no friction model is
defined in the block below, the contact defaults to frictionless contact. (There are
numerous options you can use to control the contact algorithm. The options you
choose will affect contact algorithm efficiency and solution accuracy. Consult with
Chapter 7 to determine how to set input for the CONTACT DEFINITIONcommand
block to obtain the best level of efficiency and accuracy for your particular problem.)

begin contact definition

454

skin all blocks = on
begin defaults

global seach increment = 1
normal tolerance = 0.0001
tangential tolerance = 0.00005

end
begin interaction defaults

all contact = on
end

end

Now we define what variables we want in the results file, as well as how often
we want this file to be written. Here we request files written every 7 × 10−6 sec of
analysis time. This will result in results output at one hundred time steps (plus the
zero time step) since the termination time is set to 7 × 10−4 sec. The output file
will be called crush 124 spheres.e, and it will be an Exodus II file (the database type
command is optional; it defaults to ExodusII). The variables we are requesting are the
displacements and external forces at the nodes, the rotated stresses for the elements,
the time-step increment, and the kinetic energy.

begin Results Output output_presto
Database Name = crush_124_spheres.e
Database Type = exodusII
At Time 0.0, Increment = 7.0e-6
nodal Variables = displacement as displ
nodal Variables = force_external as fext
element Variables = rotated_stress as stress
global Variables = KineticEnergy as KE
global Variables = timestep

end

Now we end the presto region, presto procedure, and sierra blocks to complete the
input file.

end presto region presto
end presto procedure Apst_Procedure

end sierra crush_124_spheres

Here is the resulting full input file for this problem:

455

begin sierra crush_124_spheres
begin definition for function constant_velocity

type is piecewise linear
ordinate is velocity
abscissa is time
begin values

0.0 30.0
1.0 30.0

end values
end definition for function constant_velocity
define direction y_axis with vector 0.0 1.0 0.0

begin property specification for material steel
density = 7871.966988

begin parameters for model elastic_plastic
youngs modulus = 1.999479615e+11
poissons ratio = 0.33333
yield stress = 275790291.7
hardening modulus = 275790291.7
beta = 1.0

end parameters for model elastic_plastic

end property specification for material steel

begin property specification for material lead
density = 11253.30062

begin parameters for model elastic_plastic
youngs modulus = 1.378951459e+10
poissons ratio = 0.44
yield stress = 13789514.59
hardening modulus = 0.0
beta = 1.0

end parameters for model elastic_plastic

end property specification for material lead

begin finite element model mesh1
Database Name = crush_124_spheres.g
Database Type = exodusII

begin parameters for block block_1
material linear_elastic_steel
solid mechanics use model elastic_plastic

456

end parameters for block block_1

begin parameters for block block_2
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_2

begin parameters for block block_3
material linear_elastic_steel
solid mechanics use model elastic_plastic

end parameters for block block_3

begin parameters for block block_4
material linear_elastic_lead
solid mechanics use model elastic_plastic

end parameters for block block_4

end finite element model mesh1

begin presto procedure Apst_Procedure

begin time control
begin time stepping block p1

start time = 0.0
begin parameters for presto region presto

time step scale factor = 1.0
time step increase factor = 2.0
step interval = 25

end parameters for presto region presto
end time stepping block p1

termination time = 7.0e-4
end time control

begin presto region presto

use finite element model mesh1

begin prescribed velocity
node set = nodelist_100
direction = y_axis
function = constant_velocity
scale factor = -1.0

end prescribed velocity

457

begin fixed displacement
node set = nodelist_200
components = Y

end fixed displacement

begin contact definition
skin all blocks = on
begin defaults

global seach increment = 1
normal tolerance = 0.0001
tangential tolerance = 0.00005

end
begin interaction defaults

all contact = on
end

end

begin Results Output output_presto
Database Name = crush_124_spheres.e
Database Type = exodusII
At Time 0.0, Increment = 7.0e-6
nodal Variables = displacement as displ
nodal Variables = force_external as fext
element Variables = rotated_stress as stress
global Variables = KineticEnergy as KE
global Variables = timestep

end results output output_presto

end presto region presto
end presto procedure Apst_Procedure

end sierra crush_124_spheres

458

Chapter 12

Command Summary

This chapter gives all of the Presto commands in the proper scope. Please note that
in the command blocks that contain all or some subset of the mesh-entity command
lines (described in Section 6.1), we have identified the specific commands that are
available in the sets, even though the main format of the command blocks that con-
tain these lines in general (though not in all cases) refers to them in command block
input lines as {node set commands }, {surface set commands }, and {block set

commands}, as well as {other user subroutine command lines }. In the appli-
cable command blocks, you will see both these abbreviated terms (always shown in
this chapter as comment lines) followed by the full list of the command lines are avail-
able for these sets. Thus, the command block formats in this chapter are typically
more detailed than you will find them in their original presentation form in other
parts of the document.

Domain specification
BEGIN SIERRA <string>name

Title

TITLE = <string list>title

Restart time

RESTART TIME = <real>restart_time
RESTART = AUTOMATIC

User subroutine file

USER SUBROUTINE FILE = <string>file name

459

Function definition

BEGIN DEFINITION FOR FUNCTION <string>function_name
TYPE = <string>CONSTANT|PIECEWISE LINEAR|

ANALYTIC
ABSCISSA = <string>abscissa_label
ORDINATE = <string>ordinate_label
BEGIN VALUES

<real>value_1 [<real>value_2
<real>value_3 <real>value_4
... <real>value_n]

END [VALUES]
EVALUATE EXPRESSION = <string>analytic_expression1;

analytic_expression2;...
END [DEFINITION FOR FUNCTION <string>function_name]

Definitions

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR
<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT
<string>point_1 POINT <string>point_2

DEFINE AXIS <string>axis_name WITH POINT
<string>point_name DIRECTION <string>direction

Local coordinate system

BEGIN ORIENTATION <string>orientation_name
SYSTEM = <string>RECTANGULAR|Z RECTANGULAR|CYLINDRICAL|

SPHERICAL(RECTANGULAR)
#
POINT A = <real>global_ax <real>global_ay <real>global_az
POINT B = <real>global_bx <real>global_by <real>global_bz
#
ROTATION ABOUT <integer> 1|2|3(1) = <real>theta(0.0)

END [ORIENTATION <string>orientation_name]

Error estimator controller

BEGIN ERROR ESTIMATION CONTROLLER <string>err_name

460

ERROR ESTIMATOR = <string>DISTORTION
COMPUTE METRIC = <string>ASPECT_RATIO/SOLID_ANGLE
COMPUTE STEP INTERVAL = <integer>step_int
COMPUTE AT OUTPUT

END [ERROR ESTIMATION CONTROLLER <string>name]

Elastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic fracture material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#

461

BEGIN PARAMETERS FOR MODEL ELASTIC_FRACTURE
YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
MAX STRESS = <real>max_stress
CRITICAL STRAIN = <real>critical_strain

END [PARAMETERS FOR MODEL ELASTIC_FRACTURE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING MODULUS = <real>hardening_modulus
BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic power-law hardening

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function

462

or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent
LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic plastic power-law hardening with failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent

463

LUDERS STRAIN <real>luders_strain
CRITICAL TEARING PARAMETER = <real>crit_tearing
CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Multilinear elastic plaster power-law hardening with
failure

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
BETA = <real>beta_parameter(1.0)
HARDENING FUNCTION = <real>hardening_function_name
YOUNGS MODULUS FUNCTION = <real>ym_function_name
POISSONS RATIO FUNCTION = <real>pr_function_name
YIELD STRESS FUNCTION =

<real>yield_stress_function_name
CRITICAL TEARING PARAMETER = <real>crit_tearing
CRITICAL CRACK OPENING STRAIN = <real>crit_crack

END [PARAMETERS FOR MODEL ML_EP_FAIL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

BCJ plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#

464

{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL BCJ

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
TWOMU = <real>twomu
C1 = <real>c1
C2 = <real>c2
C3 = <real>c3
C4 = <real>c4
C5 = <real>c5
C6 = <real>c6
C7 = <real>c7
C8 = <real>c8
C9 = <real>c9
C10 = <real>c10
C11 = <real>c11
C12 = <real>c12
C13 = <real>c13
C14 = <real>c14
C15 = <real>c15
C16 = <real>c16
C17 = <real>c17
C18 = <real>c18
C19 = <real>c19
C20 = <real>c20
DAMAGE EXPONENT = <real>damage_exponent
INITIAL ALPHA_XX = <real>alpha_xx
INITIAL ALPHA_YY = <real>alpha_yy
INITIAL ALPHA_ZZ = <real>alpha_zz
INITIAL ALPHA_XY = <real>alpha_xy
INITIAL ALPHA_YZ = <real>alpha_yz
INITIAL ALPHA_XZ = <real>alpha_xz
INITIAL DAMAGE = <real>initial_damage

465

YOUNGS MODULUS FUNCTION = <string>ym_function_name
POISSONS RATIO FUNCTION = <string>pr_function_name
SPECIFIC HEAT = <real>specific_heat
THETA OPT = <integer>theta_opt
FACTOR = <real>factor
RHO = <real>rho
TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Soil and crushable foam

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
A0 = <real>const_coeff_yieldsurf
A1 = <real>lin_coeff_yieldsurf
A2 = <real>quad_coeff_yieldsurf
PRESSURE CUTOFF = <real>pressure_cutoff
PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

Foam plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }

466

THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
PHI = <real>phi
SHEAR STRENGTH = <real>shear_strength
SHEAR HARDENING = <real>shear_hardening
SHEAR EXPONENT = <real>shear_exponent
HYDRO STRENGTH = <real>hydro_strength
HYDRO HARDENING = <real>hydro_hardening
HYDRO EXPONENT = <real>hydro_exponent
BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic three-dimensional orthotropic
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

YOUNGS MODULUS AA = <real>Eaa_value
YOUNGS MODULUS BB = <real>Ebb_value
YOUNGS MODULUS CC = <real>Ecc_value
POISSONS RATIO AB = <real>NUab_value
POISSONS RATIO BC = <real>NUbc_value
POISSONS RATIO CA = <real>NUca_value
SHEAR MODULUS AB = <real>Gab_value
SHEAR MODULUS BC = <real>Gbc_value
SHEAR MODULUS CA = <real>Gca_value
COORDINATE SYSTEM = <string>coordinate_system_name
DIRECTION FOR ROTATION = <real>1|2|3
ALPHA = <real>alpha_in_degrees
SECOND DIRECTION FOR ROTATION = <real>1|2|3
SECOND ALPHA = <real>second_alpha_in_degrees
THERMAL STRAIN AA FUNCTION = <string>ethaa_function_name

467

THERMAL STRAIN BB FUNCTION = <string>ethbb_function_name
THERMAL STRAIN CC FUNCTION = <string>ethcc_function_name

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic crush

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
EX = <real>modulus_x
EY = <real>modulus_y
EZ = <real>modulus_z
GXY = <real>shear_modulus_xy
GYZ = <real>shear_modulus_yz
GZX = <real>shear_modulus_zx
VMIN = <real>min_crush_volume
CRUSH XX = <string>stress_volume_xx_function_name
CRUSH YY = <string>stress_volume_yy_function_name
CRUSH ZZ = <string>stress_volume_zz_function_name
CRUSH XY =

<string>shear_stress_volume_xy_function_name
CRUSH YZ =

<string>shear_stress_volume_yz_function_name
CRUSH ZX =

<string>shear_stress_volume_zx_function_name
END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

468

Orthotropic rate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
MODULUS TTTT = <real>modulus_tttt
MODULUS TTLL = <real>modulus_ttll
MODULUS TTWW = <real>modulus_ttww
MODULUS LLLL = <real>modulus_llll
MODULUS LLWW = <real>modulus_llww
MODULUS WWWW = <real>modulus_wwww
MODULUS TLTL = <real>modulus_tltl
MODULUS LWLW = <real>modulus_lwlw
MODULUS WTWT = <real>modulus_wtwt
TX = <real>tx
TY = <real>ty
TZ = <real>tz
LX = <real>lx
LY = <real>ly
LZ = <real>lz
MODULUS FUNCTION = <string>modulus_function_name
RATE FUNCTION = <string>rate_function_name
T FUNCTION = <string>t_function_name
L FUNCTION = <string>l_function_name
W FUNCTION = <string>w_function_name
TL FUNCTION = <string>tl_function_name
LW FUNCTION = <string>lw_function_name

469

WT FUNCTION = <string>wt_function_name
END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mie-Gruneisen

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

RHO_0 = <real>density
C_0 = <real>sound_speed
SHUG = <real>const_shock_velocity
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield_strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mie-Gruneisen power series

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

RHO_0 = <real>density
C_0 = <real>sound_speed
K1 = <real>power_series_coeff1

470

K2 = <real>power_series_coeff2
K3 = <real>power_series_coeff3
K4 = <real>power_series_coeff4
K5 = <real>power_series_coeff5
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

JWL (Jones-Wilkins-Lee)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }
THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL JWL

RHO_0 = <real>initial_density
D = <real>detonation_velocity
E_0 = <real>init_chem_energy
A = <real>jwl_const_pressure1
B = <real>jwl_const_pressure2
R1 = <real>jwl_const_nondim1
R2 = <real>jwl_const_nondim2
OMEGA = <real>jwl_const_nondim3
XDET = <real>x_detonation_point
YDET = <real>y_detonation_point
ZDET = <real>z_detonation_point
TDET = <real>time_of_detonation
B5 = <real>burn_width_const(2.5)

END [PARAMETERS FOR MODEL JWL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Ideal gas

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
{thermal strain option }

471

THERMAL STRAIN FUNCTION = <string>thermal_strain_function
or all three of the following
THERMAL STRAIN X FUNCTION =

<string>thermal_strain_x_function
THERMAL STRAIN Y FUNCTION =

<string>thermal_strain_y_function
THERMAL STRAIN Z FUNCTION =

<string>thermal_strain_z_function
#
BEGIN PARAMETERS FOR MODEL IDEAL_GAS

RHO_0 = <real>initial_density
C_0 = <real>initial_sound_speed
GAMMA = <real>ratio_specific_heats

END [PARAMETERS FOR MODEL IDEAL_GAS]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic laminate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_LAMINATE

A11 = <real>a11_value
A12 = <real>a12_value
A16 = <real>a16_value
A22 = <real>a22_value
A26 = <real>a26_value
A66 = <real>a66_value
A44 = <real>a44_value
A45 = <real>a45_value
A55 = <real>a55_value
B11 = <real>b11_value
B12 = <real>b12_value
B16 = <real>b16_value
B22 = <real>b22_value
B26 = <real>b26_value
B66 = <real>b66_value
D11 = <real>d11_value
D12 = <real>d12_value
D16 = <real>d16_value
D22 = <real>d22_value
D26 = <real>d26_value
D66 = <real>d66_value
COORDINATE SYSTEM = <string>coord_sys_name
DIRECTION FOR ROTATION = 1|2|3
ALPHA = <real>alpha_value_in_degrees

472

THETA = <real>theta_value_in_degrees
NTH11 FUNCTION = <string>nth11_function_name
NTH22 FUNCTION = <string>nth22_function_name
NTH12 FUNCTION = <string>nth12_function_name
MTH11 FUNCTION = <string>mth11_function_name
MTH22 FUNCTION = <string>mth22_function_name
MTH12 FUNCTION = <string>mth12_function_name

END [PARAMETERS FOR MODEL ELASTIC_LAMINATE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Define mesh

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor
DATABASE NAME = <string>mesh_file_name
DATABASE TYPE = <string>database_type(exodusII)
ALIAS <string>mesh_identifier AS <string>user_name
BEGIN PARAMETERS FOR BLOCK <string list>block_names

MATERIAL <string>material_name
SOLID MECHANICS USE MODEL <string>model_name
SECTION = <string>section_id
LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)
QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)
HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(solid = 0.05,
shell/membrane = 0.0)

HOURGLASS VISCOSITY =
<real>hour_glass_visc_value(solid = 0.0,
shell/membrane = 0.0)

EFFECTIVE MODULI MODEL = <string>PRESTO|PRONTO|
CURRENT|ELASTIC(PRONTO)

ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW(OLD)
ACTIVE FOR PROCEDURE <string>proc_name DURING PERIODS

<string list>period_names
RIGID BODY = <string>rb_name

END [PARAMETERS FOR BLOCK <string list>block_names]
END [FINITE ELEMENT MODEL <string>mesh_descriptor]

Element sections

BEGIN SOLID SECTION <string>solid_section_name
FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN QUADRATURE)
DEVIATORIC PARAMETER = <real>deviatoric_param

473

STRAIN INCREMENTATION = <string>MIDPOINT_INCREMENT|
STRONGLY_OBJECTIVE|NODE_BASED(MIDPOINT_INCREMENT)

NODE BASED ALPHA FACTOR =
<real>bulk_stress_weight(0.01)

NODE BASED BETA FACTOR =
<real>shear stress_weight(0.35)

END [SOLID SECTION <string>solid_section_name]

BEGIN SHELL SECTION <string>shell_section_name
THICKNESS = <real>shell_thickness
THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name
THICKNESS TIME STEP = <real>time_value
THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)
INTEGRATION RULE = TRAPEZOID|GAUSS|LOBATTO|SIMPSONS|

USER(TRAPEZOID)
NUMBER OF INTEGRATION POINTS =

<integer>num_int_points(5)
BEGIN USER INTEGRATION RULE

<real>location_1 <real>weight_1
<real>location_2 <real>weight_2
.
.
<real>location_n <real>weight_n

END [USER INTEGRATION RULE]
LOFTING FACTOR = <real>lofting_factor(0.5)
ORIENTATION = <string>orientation_name

END [SHELL SECTION <string>shell_section_name]

BEGIN MEMBRANE SECTION <string>membrane_section_name
THICKNESS = <real>mem_thickness
THICKNESS MESH VARIABLE =

<string>THICKNESS|<string>var_name
THICKNESS TIME STEP = <real>time_value
THICKNESS SCALE FACTOR = <real>thick_scale_factor(1.0)
FORMULATION = <string>MEAN_QUADRATURE|

SELECTIVE_DEVIATORIC(MEAN QUADRATURE)
DEVIATORIC PARAMETER = <real>deviatoric_param
LOFTING FACTOR = <real>lofting_factor(0.5)

END [MEMBRANE SECTION <string>membrane_section_name]

BEGIN BEAM SECTION <string>beam_section_name
SECTION = <string>ROD|TUBE|BAR|BOX|I
WIDTH = <real>section_width
HEIGHT = <real>section_width

474

WALL THICKNESS = <real>wall_thickness
FLANGE THICKNESS = <real>flange_thickness
T AXIS = <real>tx <real>ty <real>tz (0 0 1)
REFERENCE AXIS = <string>CENTER|RIGHT|

TOP|LEFT|BOTTOM (CENTER)
OFFSET AXIS = <real>s_offset <real>t_offset

END [BEAM SECTION <string>beam_section_name]

BEGIN TRUSS SECTION <string>truss_section_name
AREA = <real>cross_sectional_area
INITIAL LOAD = <real>initial_load
PERIOD = <real>period

END [TRUSS SECTION <string>truss_section_name]

BEGIN DAMPER SECTION <string>damper_section_name
AREA = <real>damper_cross_sectional_area

END [DAMPER SECTION <string>damper_section_name]

BEGIN POINT MASS SECTION <string>pointmass_section_name
VOLUME = <real>volume

END [POINT MASS SECTION <string>pointmass_section_name]

BEGIN SPH SECTION <string>sph_section_name
RADIUS MESH VARIABLE =

<string>var_name|<string>attribute|SPHERE INITIAL
RADIUS = <real>rad

RADIUS MESH VARIABLE TIME STEP = <string>time
PROBLEM DIMENSION = <integer>1|2|3(3)
CONSTANT SPHERE RADIUS

END [SPH SECTION <string>sph_section_name]

SPH utility commands

SPH SYMMETRY PLANE <string>+X|+Y|+Z|-X|-Y|-Z
<real>position_on_axis(0.0)

SPH DECOUPLE STRAINS: <string>material1 <string>material2

Zoltan parameters

BEGIN ZOLTAN PARAMETERS <string>parameter_name
LOAD BALANCING METHOD = <string>recursive coordinate bisection|

recursive inertial bisection|hilbert space filling curve|
octree

DETERMINISTIC DECOMPOSITION = <string>false|true
IMBALANCE TOLERANCE = <real>imb_tol

475

OVER ALLOCATE MEMORY = <real>over_all_mem
REUSE CUTS = <string>false|true
ALGORITHM DEBUG LEVEL = <integer>alg_level

0<=(alg_level)<=3
CHECK GEOMETRY = <string>false|true
KEEP CUTS = <string>false|true
LOCK RCB DIRECTIONS = <string>false|true
SET RCB DIRECTIONS = <string>do not order cuts|xyz|xzy|

yzx|yxz|zxy|zyx
RECTILINEAR RCB BLOCKS = <string>false|true
RENUMBER PARTITIONS = <string>false|true
OCTREE DIMENSION = <integer>oct_dimension
OCTREE METHOD = <string>morton indexing|grey code|hilbert
OCTREE MIN OBJECTS = <integer>min_obj # 1<=(min_obj)
OCTREE MAX OBJECTS = <integer>max_obj # 1<=(max_obj)
ZOLTAN DEBUG LEVEL = <integer>zoltan_level

0<=(zoltan_level)<=10
DEBUG PROCESSOR NUMBER = <integer>proc # 1<=proc
TIMER = <string> wall|cpu
DEBUG MEMORY = <integer>dbg_mem # 0<=(dbg_mem)<=3

END [ZOLTAN PARAMETERS <string>parameter_name]

SIMOD Composite2d_via_1d model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Composite2d_via_1d
MODEL PARAMETER: tangent_model = <string>name_tangent
MODEL PARAMETER: normal_model = <string>name_normal

END [SIMOD MODEL <string>some_name]

SIMOD Composite3d_via_1d model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Composite3d_via_1d
MODEL PARAMETER: tangent1_model = <string>name_tangent1
MODEL PARAMETER: tangent2_model = <string>name_tangent2
MODEL PARAMETER: normal_model = <string>name_normal

END [SIMOD MODEL <string>some_name]

SIMOD Concrete_Exp1d model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Concrete_Exp1d
REAL PARAMETER: Ec = <real>real_val
REAL PARAMETER: sigt = <real>real_val

476

REAL PARAMETER: wo = <real>real_val
REAL PARAMETER: Gf = <real>real_val
REAL PARAMETER: c2 = <real>real_val

END [SIMOD MODEL <string>some_name]

SIMOD Elastic_IM model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Elastic_IM
REAL PARAMETER: k = <real>real_val

END [SIMOD MODEL <string>some_name]

SIMOD Electrostatic_ParallelPL model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Electrostatic_ParallelPL
REAL PARAMETER: zero_offset = <real>real_val
REAL PARAMETER: clip_distance = <real>real_val
REAL PARAMETER: scale_factor = <real>real_val
REAL PARAMETER: permittivity = <real>real_val
FUNCTION PARAMETER: voltage_function =

<string>sierra_function
END [SIMOD MODEL <string>some_name]

SIMOD Hamaker_ParallelPL model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = Hamaker_ParallelPL
REAL PARAMETER: zero_offset = <real>real_val
REAL PARAMETER: clip_distance = <real>real_val
REAL PARAMETER: A = <real>real_val
REAL PARAMETER: permittivity = <real>real_val
FUNCTION PARAMETER: time_function =

<string>sierra_function
END [SIMOD MODEL <string>some_name]

SIMOD null_IM model

BEGIN SIMOD MODEL <string>some_name
MODEL TYPE = null_IM

END [SIMOD MODEL <string>some_name]

Begin Procedure scope

BEGIN PRESTO PROCEDURE <string>presto_procedure_name

477

Time block

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value
BEGIN PARAMETERS FOR PRESTO REGION

<string>region_name
INITIAL TIME STEP = <real>initial_time_step_value
TIME STEP SCALE FACTOR =

<real>time_step_scale_factor(1.0)
TIME STEP INCREASE FACTOR =

<real>time_step_increase_factor(1.1)
STEP INTERVAL = <integer>nsteps(100)

END [PARAMETERS FOR PRESTO REGION
<string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]
TERMINATION TIME = <real>termination_time

END TIME CONTROL

Begin Region scope

BEGIN PRESTO REGION <string>presto_region_name

USE FINITE ELEMENT MODEL <string>model_name

Error controller

USE ERROR ESTIMATION CONTROLLER <string>err_name

Time step control using Lanczos

BEGIN LANCZOS PARAMETERS <string>lanczos_name
NUMBER EIGENVALUES = <integer>num_eig(20)
STARTING VECTOR = <string>STRETCH_X|STRETCH_Y|STRETCH_Z

(STRETCH_X)
VECTOR SCALE = <real>vec_scale(1.0e-5)
TIME SCALE = <real>time_scale(0.9)
STEP INTERVAL = <integer>step_int(500)
INCREMENT INTERVAL = <integer>incr_int(5)
TIME STEP LIMIT = <real>step_lim(0.10)

END [LANCZOS PARAMETERS <string>lanczos_name]

Time step control using nodes

478

BEGIN NODE BASED TIME STEP PARAMETERS <string>nbased_name
INCREMENT INTERVAL = <integer>incr_int(5)
STEP INTERVAL = <integer>step_int(500)
TIME STEP LIMIT = <real>step_lim(0.10)

END [NODE BASED TIME STEP PARAMETERS <string>nbased_name]

Mass scaling

BEGIN MASS SCALING
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
TARGET TIME STEP = <real>target_time_step
ALLOWABLE MASS INCREASE RATIO = <real>mass_increase_ratio
#
additional command
ACTIVE PERIODS = <string list>periods

END MASS SCALING

Energy deposition

BEGIN PRESCRIBED ENERGY DEPOSITION
{block set commands }
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK
#
function commands
T FUNCTION = <string>t_func_name
X FUNCTION = <string>x_func_name
Y FUNCTION = <string>y_func_name
Z FUNCTION = <string>z_func_name
#
input mesh command
READ VARIABLE = <string>mesh_var_name
#
user subroutine commands
ELEMENT SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }

479

SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
END [PRESCRIBED ENERGY DEPOSITION]

Torsional spring

BEGIN TORSIONAL SPRING MECHANISM <string>spring_name
NODE SETS = <string>nodelist_int1

<string>nodelist_int2
<string>nodelist_int3 <string>nodelist_int4

TORSIONAL STIFFNESS = <real>stiffness
INITIAL TORQUE = <real>init_load
PERIOD = <real>time_period
ACTIVE PERIODS = <string list>period_names

END [TORSIONAL SPRING MECHANISM <string>spring_name]

Rigid body

BEGIN RIGID BODY <string>rb_name
POINT INERTIA = <real>Ixx <real>Iyy <real>Izz <real>Ixy

<real>Iyz <real>Izx
MAGNITUDE = <real>magnitude_of_velocity
DIRECTION = <string>direction_definition
ANGULAR VELOCITY = <real>omega
CYLINDRICAL AXIS = <string>axis_definition

END [RIGID BODY <string>rb_name]

Mass property calculations

BEGIN MASS PROPERTIES
{block set commands }
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names
#
structure command
STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Element death

480

BEGIN ELEMENT DEATH <string>death_name
{block set commands }
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK = <string list>block_names
#
criteria commands
CRITERION IS AVG|MAX|MIN NODAL VALUE OF

<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

CRITERION IS ELEMENT VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

CRITERION IS GLOBAL VALUE OF
<string>var_name[(<integer>component_num)]
<|<=|=|>=|> <real>tolerance

ELEMENT SUBROUTINE = <string>subroutine_name
#
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
MATERIAL CRITERION = <string list>material_names
#
evaluation commands
CHECK STEP INTERVAL = <integer>num_steps
CHECK TIME INTERVAL = <real>delta_t
DEATH START TIME = <real>time
#
miscellaneous option commands
DEATH STEPS = <integer>death_steps(1)
FORCE VALID ACME CONNECTIVITY

END [ELEMENT DEATH <string>death_name]

Mesh rebalance

BEGIN REBALANCE
INITIAL REBALANCE = ON|OFF(OFF)
PERIODIC REBALANCE = ON|OFF|AUTO(OFF)

481

REBALANCE STEP INTERVAL = <integer>step_interval
COMMUNICATION RATIO THRESHOLD = <real>ratio
USE ZOLTAN PARAMETERS = <string>parameter_name

END REBALANCE

Initial condition

BEGIN INITIAL CONDITION
{mesh-entity set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
variable identification commands
INITIALIZE VARIABLE NAME = <string>var_name
VARIABLE TYPE = [NODE|EDGE|FACE|ELEMENT|GLOBAL]
#
constant magnitude command
MAGNITUDE = <real list>initial_values
TIME = <real>time
#
input mesh command
READ VARIABLE = <string>mesh_var_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional command
SCALE FACTOR = <real>scale_factor(1.0)

END [INITIAL CONDITION]

482

Boundary conditions

BEGIN FIXED DISPLACEMENT
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
component commands
COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z
#
additional command
ACTIVE PERIODS = <string list>period_names

END [FIXED DISPLACEMENT]

BEGIN PRESCRIBED DISPLACEMENT
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value

483

SUBROUTINE STRING PARAMETER: <string>param_name
= <string>param_value

#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED DISPLACEMENT]

BEGIN PRESCRIBED VELOCITY
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED VELOCITY]

BEGIN PRESCRIBED ACCELERATION
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names

484

BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ACCELERATION]

BEGIN FIXED ROTATION
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
component commands
COMPONENT = <string>X/Y/Z | COMPONENTS =

<string>X/Y/Z
#
additional command
ACTIVE PERIODS = <string list>periods_names

END [FIXED ROTATION]

485

BEGIN PRESCRIBED ROTATION
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED ROTATION]

BEGIN INITIAL VELOCITY
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
direction commands
COMPONENT = <string>X|Y|Z |

DIRECTION = <string>defined_direction
MAGNITUDE = <real>magnitude_of_velocity

486

#
angular velocity commands
CYLINDRICAL AXIS = <string>defined_axis
ANGULAR VELOCITY = <real>angular_velocity
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
END [INITIAL VELOCITY]

BEGIN PRESSURE
{surface set commands }
SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
#
function command
FUNCTION = <string>function_name
#
user subroutine commands
SURFACE SUBROUTINE = <string>subroutine_name |
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
USE DEATH = <string>death_name
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESSURE]

BEGIN TRACTION
{surface set commands }

487

SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
#
function commands
DIRECTION = <string>direction_name
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
SIMOD commands
USE SIMOD MODEL = <string>Simod_model_name
REFERENCE PLANE AXIS = <string>axis_direction
REFERENCE PLANE T1 DIRECTION = <string>t1_direction
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [TRACTION]

BEGIN PRESCRIBED FORCE
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name

488

{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED FORCE]

BEGIN PRESCRIBED MOMENT
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
function commands
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED MOMENT]

489

Standard temperature boundary condition

BEGIN PRESCRIBED TEMPERATURE
{block set commands }
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK
#
function command
FUNCTION = <string>function_name
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name
{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
read variable commands
READ VARIABLE = <string>variable_name
TIME = <real>time
#
additional commands
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [PRESCRIBED TEMPERATURE]

Specialized boundary conditions

BEGIN GRAVITY
{node set commands }
NODE SET = <string list>nodelist_names
SURFACE = <string list>surface_names
BLOCK = <string list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list>surface_names
REMOVE BLOCK = <string list>block_names
#
DIRECTION = <string>defined_direction
FUNCTION = <string>function_name

490

GRAVITATIONAL CONSTANT = <real>g_constant
SCALE FACTOR = <real>scale_factor(1.0)
ACTIVE PERIODS = <string list>period_names

END [GRAVITY]

BEGIN CAVITY EXPANSION
EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

(spherical)
SURFACE = <string list>surface_ids
REMOVE SURFACE = <string list>surface_ids
FREE SURFACE = <real>top_surface_zcoord

<real>bottom_surface_zcoord
NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_1 <string>nodelist_id2
TIP RADIUS = <real>tip_radius
BEGIN LAYER <string>layer_name

LAYER SURFACE = <real>top_layer_zcoord
<real>bottom_layer_zcoord

PRESSURE COEFFICIENTS = <real>c0 <real>c1
<real>c2

SURFACE EFFECT = <string>NONE|SIMPLE_ON_OFF(NONE)
FREE SURFACE EFFECT COEFFICIENTS = <real>coeff1

<real>coeff2
END [LAYER <string>layer_name]
ACTIVE PERIODS = <string list>period_names

END [CAVITY EXPANSION]

BEGIN SILENT BOUNDARY
SURFACE = <string list>surface_names
REMOVE SURFACE = <string list>surface_names
ACTIVE PERIODS = <string list>period_names

END [SILENT BOUNDARY]

BEGIN SPOT WELD
NODE SET = <string list>nodelist_ids
REMOVE NODE SET = <string list>nodelist_ids
SURFACE = <string list>surface_ids
REMOVE SURFACE = <string list>surfac_ids
SECOND SURFACE = <string>surface_id
NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp[1.0]
TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp

491

TANGENTIAL DISPLACEMENT SCALE FACTOR =
<real>scale_tang_disp[1.0]

FAILURE ENVELOPE EXPONENT = <real>exponent
FAILURE FUNCTION = <string>fail_func_name
FAILURE DECAY CYCLES = <integer>number_decay_cycles
SEARCH TOLERANCE = <real>search_tolerance
ACTIVE PERIODS = <string list>period_names

END [SPOT WELD]

BEGIN LINE WELD
SURFACE = <string list> surface_names
REMOVE SURFACE = <string list> surface_names
BLOCK = <string list> block_names
REMOVE BLOCK = <string list>block_names
R DISPLACEMENT FUNCTION =

<string>r_disp_fucntion_name
R DISPLACEMENT SCALE FACTOR = <real>r_disp_scale
S DISPLACEMENT FUNCTION =

<string>s_disp_function_name
S DISPLACEMENT SCALE FACTOR = <real>s_disp_scale
T DISPLACEMENT FUNCTION =

<string>t_disp_function_name
T DISPLACEMENT SCALE FACTOR = <real>t_disp_scale
R ROTATION FUNCTION =

<string>r_rotation_function_name
R ROTATION SCALE FACTOR = <real>r_rotation_scale
S ROTATION FUNCTION =

<string>s_rotation_function_name
S ROTATION SCALE FACTOR = <real>s_rotation_scale
T ROTATION FUNCTION =

<string>t_rotation_function_name
T ROTATION SCALE FACTOR = <real>t_rotation_scale
FAILURE ENVELOPE EXPONENT = <real>k
FAILURE DECAY CYCLES = <integer>number_decay_cycles
ACTIVE PERIODS = <string list>period_names

END [LINE WELD]

Contact

BEGIN CONTACT DEFINITION <string>name
#
contact surface and node set definition
CONTACT SURFACE <string>name
CONTAINS <string list>surface_names
#

492

SKIN ALL BLOCKS = <string>ON|OFF(OFF)
[EXCEPT <string list> block_names]

#
BEGIN CONTACT SURFACE <string>name

BLOCK = <string list>block_names
SURFACE = <string list>surface_names
NODE SET = <string list>node_set_names
REMOVE BLOCK = <string list>block_names
REMOVE SURFACE = <string list>surface_names
REMOVE NODE SET = <string list>nodelist_names

END [CONTACT SURFACE <string>name]
#
CONTACT NODE SET <string>surface_name

CONTAINS <string>nodelist_names
#
analytic surfaces
BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction
POINT = <string>defined_point

END [ANALYTIC PLANE <string>name]
#
BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point
AXIAL DIRECTION = <string>defined_axis
RADIUS = <real>cylinder_radius
LENGTH = <real>cylinder_length
CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]
#
BEGIN ANALYTIC SPHERE <string>name

CENTER = <string>defined_point
RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]
end contact surface and node set definition
#
UPDATE ALL SURFACES FOR ELEMENT DEATH = <string>ON|OFF(ON)
#
BEGIN REMOVE INITIAL OVERLAP

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
SHELL OVERLAP ITERATIONS = <integer>max_iter(10)
SHELL OVERLAP TOLERANCE = <real>shell_over_tol(0.0)

END [REMOVE INITIAL OVERLAP]
#
MULTIPLE INTERACTIONS = <string>ON|OFF(ON)

493

MULTIPLE INTERACTIONS WITH ANGLE = <real>angle(60.0)
#
SURFACE NORMAL SMOOTHING = <string>ON|OFF(OFF)
#
shell lofting
BEGIN SHELL LOFTING

LOFTING ALGORITHM = <string>ON|OFF(ON)
COINCIDENT SHELL TREATMENT = <string>DISALLOW|IGNORE|

SIMPLE(DISALLOW)
COINCIDENT SHELL HEX TREATMENT = <string>DISALLOW|

IGNORE|TAPERED|EMBEDDED(DISALLOW)
END [SHELL LOFTING]
#
SHELL LOFTING = <string>ON|OFF(ON)
end shell lofting
#
CONTACT VARIABLES = <string>ON|OFF(OFF)
#
surface-physics models
BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]
#
BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff
END [CONSTANT FRICTION MODEL <string>name]
#
BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]
#
BEGIN SPRING WELD MODEL <string>name

NORMAL DISPLACEMENT FUNCTION = <string>func_name
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
TANGENTIAL DISPLACEMENT FUNCTION = <string>func_name
TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SPRING WELD MODEL <string>name]
#
BEGIN SURFACE WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap

494

FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [SURFACE WELD MODEL <string>name]
#
BEGIN AREA WELD MODEL <string>name

NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [AREA WELD MODEL <string>name]
#
BEGIN ADHESION MODEL <string>name

ADHESION FUNCTION = <string>func_name
ADHESION SCALE FACTOR = <real>scale_factor(1.0)

END [ADHESION MODEL <string>name]
#
BEGIN COHESIVE ZONE MODEL <string>name

TRACTION DISPLACEMENT FUNCTION = <string>func_name
TRACTION DISPLACEMENT SCALE FACTOR =

<real>scale_factor(1.0)
CRITICAL NORMAL GAP = <real>crit_norm_gap
CRITICAL TANGENTIAL GAP = <real>crit_tangential_gap

END [COHESIVE ZONE MODEL <string>name]
#
BEGIN JUNCTION MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)
NORMAL CUTOFF DISTANCE FOR TANGENTIAL TRACTION =

<real>distance
END [JUNCTION MODEL <string>name]
#
BEGIN THREADED MODEL <string>name

NORMAL TRACTION FUNCTION = <string>func_name
NORMAL TRACTION SCALE FACTOR = <real>scale_factor(1.0)
TANGENTIAL TRACTION FUNCTION = <string>func_name
TANGENTIAL TRACTION SCALE FACTOR =

<real>scale_factor(1.0)
TANGENTIAL TRACTION GAP FUNCTION = <string>func_name
TANGENTIAL TRACTION GAP SCALE FACTOR =

<real>scale_factor(1.0)

495

NORMAL CAPACITY = <real>normal_cap
TANGENTIAL CAPACITY = <real>tangential_cap
FAILURE ENVELOPE EXPONENT = <real>exponent(2.0)
FAILURE DECAY CYCLES = <integer>num_cycles(1)
FAILED MODEL = <string>failed_model_name|FRICTIONLESS

(FRICTIONLESS)
END [THREADED MODEL <string>name]
#
BEGIN PV_DEPENDENT MODEL <string>name

STATIC COEFFICIENT = <real>stat_coeff
DYNAMIC COEFFICIENT = <real>dyn_coeff
VELOCITY DECAY = <real>vel_decay
REFERENCE PRESSURE = <real>p_ref
OFFSET PRESSURE = <real>p_off
PRESSURE EXPONENT = <real>p_exp

END [PV_DEPENDENT MODEL <string>name]
#
BEGIN SIMOD SHARED MODEL <string>name

USE SIMOD MODEL = <string>name
FAILED MODEL = <string>name|FRICTIONLESS

(FRICTIONLESS)
END [SIMOD SHARED MODEL <string>name]
#
BEGIN SIMOD UNKNOWN MODEL <string>name

USE SIMOD MODEL = <string>name
FAILED MODEL = <string>name|FRICTIONLESS

(FRICTIONLESS)
END [SIMOD UNKNOWN MODEL <string>name]
end surface physics models
#
BEGIN USER SUBROUTINE MODEL <string>name

INITIALIZE MODEL SUBROUTINE = <string>init_model_name
INITIALIZE TIME STEP SUBROUTINE = <string>init_ts_name
INITIALIZE NODE STATE DATA SUBROUTINE =

<string>init_node_data_name
LIMIT FORCE SUBROUTINE = <string>limit_force_name
ACTIVE SUBROUTINE = <string>active_name
INTERACTION TYPE SUBROUTINE = <string>interaction_name

END [USER SUBROUTINE MODEL <string>name]
#
search options command block
BEGIN SEARCH OPTIONS [<string>name]

GLOBAL SEARCH INCREMENT = <integer>num_steps(1)
GLOBAL SEARCH ONCE = <string>ON|OFF(OFF)
SEARCH TOLERANCE = <string>AUTOMATIC|USER_DEFINED

496

(AUTOMATIC)
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
SECONDARY DECOMPOSITION = <string>ON|OFF(ON)

END [SEARCH OPTIONS <string>name]
#
enforcement
BEGIN ENFORCEMENT OPTIONS [<string>name]

ENFORCEMENT ALGORITHM = <string>MOMENTUM_BALANCE|
PENALTY(MOMENTUM_BALANCE)

MOMENTUM BALANCE ITERATIONS = <integer>num_iter(5)
END [ENFORCEMENT OPTIONS <string>name]
#
BEGIN INTERACTION DEFAULTS [<string>name]

SURFACES = <string list>surface_names
SELF CONTACT = <string>ON|OFF(OFF)
GENERAL CONTACT = <string>ON|OFF(OFF)
AUTOMATIC KINEMATIC PARTITION = <string>ON|OFF(OFF)
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)
END [INTERACTION DEFAULTS <string>name]
#
BEGIN INTERACTION [<string>name]

SURFACES = <string>surface1 <string>surface2
MASTER = <string>surface
SLAVE = <string>surface
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>friction_model_name|

FRICTIONLESS(FRICTIONLESS)
AUTOMATIC KINEMATIC PARTITION
INTERACTION BEHAVIOR = <string>SLIDING|

INFINITESIMAL_SLIDING|NO_INTERACTION(SLIDING)
END [INTERACTION <string>name]
end enforcement
#

END [CONTACT DEFINITION <string>name]

Results specification

497

BEGIN RESULTS OUTPUT <string>results_name
DATABASE NAME = <string>results_file_name
DATABASE TYPE =

<string>database_type(exodusII)
TITLE = <string>user_title
NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

ELEMENT VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

GLOBAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|

SIGHUP|SIGINT|SIGPIPE|SIGQUIT|SIGTERM|
SIGUSR1|SIGUSR2|SIGABRT|SIGKILL|SIGILL|SIGSEGV

END [RESULTS OUTPUT <string>results_name]

User output

BEGIN USER OUTPUT
{mesh-entity set commands }
NODE SET = <string_list>nodeset_names
SURFACE = <string_list>surface_names
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS

498

REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list> surface_names
REMOVE BLOCK = <string list>block_names
#
compute global result command
COMPUTE GLOBAL <string>results_var_name AS

<string>SUM|AVERAGE|MAX|MIN OF <string>NODAL|
ELEMENT <string>value_var_name
[(<integer>component_num)]

#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

SURFACE SUBROUTINE = <string>subroutine_name |
ELEMENT SUBROUTINE = <string>subroutine_name

{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
copy command
COPY ELEMENT VARIABLE <string>ev_name TO NODAL

VARIABLE <string>nv_name
#
additional command
ACTIVE PERIODS = <string list>period_names

END [USER OUTPUT]

Time step initialization

BEGIN TIME STEP INITIALIZATION
{mesh-entity set commands }
NODE SET = <string_list>nodeset_names
SURFACE = <string_list>surface_names
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE NODE SET = <string list>nodelist_names
REMOVE SURFACE = <string list> surface_names
REMOVE BLOCK = <string list>block_names
#
user subroutine commands
NODE SET SUBROUTINE = <string>subroutine_name |

499

SURFACE SUBROUTINE = <string>sub_name |
ELEMENT SUBROUTINE = <string>sub_name

{other user subroutine command lines }
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value
#
additional command
ACTIVE PERIODS = <string list>period_names

END TIME STEP INITIALIZATION

User variable

BEGIN USER VARIABLE <string>var_name
TYPE = <string>NODE|ELEMENT|GLOBAL

[<string>REAL|INTEGER LENGTH = <integer>length]|
[<string>SYM_TENSOR|FULL_TENSOR|VECTOR]

GLOBAL OPERATOR = <string>SUM|MIN|MAX]
INITIAL VALUE = <real list>values

END [USER VARIABLE <string>var_name]

History specification

BEGIN HISTORY OUTPUT <string>history_name
DATABASE NAME = <string>history_file_name
DATABASE TYPE =

<string>database_type(exodusII)
TITLE = <string>user_title
#
for global variables
VARIABLE = GLOBAL

<string>variable_name
[AS <string>history_variable_name]

#
for node and element variables
entity_type = NODE|NODAL|ELEMENT
VARIABLE =

<string>entity_type <string>variable_name
AT <string>entity_type <integer>entity_id
[AS <string>history_variable_name]

#

500

for node variables
entity_type = NODE or NODAL
VARIABLE =

<string>entity_type <string>variable_name
NEAREST LOCATION <real>global_x,

<real>global_y>, <real>global_z
[AS <string>history_variable_name]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|

SIGHUP|SIGINT|SIGPIPE|SIGQUIT|SIGTERM|
SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

END [HISTORY OUTPUT <string>history_name]

Restart specification

BEGIN RESTART DATA <string>restart_name
DATABASE NAME = <string>restart_file_name
INPUT DATABASE NAME = <string>restart_input_file
OUTPUT DATABASE NAME =

<string>restart_output_file
DATABASE TYPE =

<string>database_type(exodusII)
START TIME = <real>restart_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value
OUTPUT ON SIGNAL = <string>SIGALRM|SIGFPE|SIGHUP|SIGINT|

501

SIGPIPE|SIGQUIT|SIGTERM|SIGUSR1|SIGUSR2|SIGABRT|
SIGKILL|SIGILL|SIGSEGV

END [RESTART DATA <string>restart_name]

END [PRESTO REGION <string>presto_region_name]

END [PRESTO PROCEDURE <string>presto_procedure_name]

END [SIERRA <string>name]

502

Distribution

1 0372 Bishop, Joseph E., 1525
1 0372 Breivik, Nicole L., 1524
1 0372 Dempsey, J. Franklin, 1524
1 0372 Dion, Kristin, 1524
1 0372 Gruda, Jeffrey D., 1524
1 0372 Gwinn, Kenneth W., 1524
1 0372 Hammerand, Daniel C., 1524
1 0372 Harding, David C., 1524
1 0372 Hinnerichs, Terry D., 1524
1 0372 Holland, John F., 1524
1 0372 Jones, Timothy C., 1524
1 0372 Lo, Chi S., 1524
1 0372 Metzinger, Kurt E., 1524
1 0372 Neidigk, Matthew A., 1524
1 0372 Pott, John, 1524
1 0372 Rath, Jonathan S., 1524
1 0372 Scherzinger, William M., 1524
1 0372 Skousen, Troy J., 1524
1 0372 Wellman, Gerald W., 1525
1 0372 Worrel, Leah, 1524
1 0376 Arguello Jr., Jose G., 1525
1 0376 Stone, Charles M., 1525
1 0380 Crane, Nathan K., 1542
1 0380 Fortier, Harrison, 1542
1 0380 Gullerud, Arne S., 1542
1 0380 Hales, Jason D., 1542
1 0380 Heinstein, Martin W., 1542
1 0380 Jung, Joseph, 1542
1 0380 Key, Samuel Witt, 1542
1 0380 Koteras, James R., 1542
1 0380 Morgan, Harold S., 1540
1 0380 Pierson, Kendall H., 1542
1 0380 Porter, Vicki L., 1542
1 0380 Reese, Garth M., 1542
1 0380 Spencer, Benjamin W., 1542
1 0380 Walsh, Timothy F., 1542

503

1 0382 Baur, David Gregory, 1543
1 0382 Edwards, Harold C.
1 0382 Gianoulakis, Steven D., 1541
1 0382 Overfelt, James R., 1543
1 0382 Sjaardema, Gregory D., 1543
1 0382 Stewart, James R., 1543
1 0382 Subia, Samuel R., 1541
1 0382 Williams, Alan B., 1543
1 0557 Segalman, Daniel J., 1525
1 0557 Simmermacher, Todd W., 1523
1 0826 Piekos, Edward S., 1513
1 0826 Wong, Chungnin C., 1513
1 0847 Bitsie, Fernando, 1523
1 0847 Chaplya, Pavel M., 1526
1 0847 Field Jr., Richard V., 1526
1 0847 Fulcher, Clay W. G., 1526
1 0847 Redmond, James M., 1526
1 0847 Rouse, Jerry W., 1526
1 0847 Starr, Michael J., 1526
1 0886 Cox, James V., 1526
1 0886 Lavin, Colby A., 1524
1 0888 Reedy Jr., Earl David, 1526
1 1070 Massad, Jordan E., 1526
1 1070 Reu, Phillip L., 1526
1 1070 Sumali, Hartono, 1526
2 9018 Central Technical Files, 8944
2 0899 Technical Library, 4536

504

	Presto User’s Guide Version 2.6
	Abstract
	Document History
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Document Overview
	1.2 Overall Input Structure
	1.3 Conventions for Command Descriptions
	1.4 Style Guidelines
	1.5 Naming Conventions Associated with the Exodus II Database
	1.6 Major Scope Definitions for a Presto Input File
	1.7 References

	Chapter 2 General Commands
	2.1 Domain Scope
	2.2 Presto Procedure and Region
	2.3 Use Finite Element Model
	2.4 Error Estimation
	2.5 Activation/Deactivation of Functionality

	Chapter 3 Time Step Control in Presto
	3.1 Procedure Time Control
	3.2 Other Critical Time Step Methods
	3.3 Mass Scaling

	Chapter 4 Materials
	4.1 Property Specification
	4.2 Applying Temperatures and Thermal Strains
	4.3 Energy Deposition
	4.4 References

	Chapter 5 Elements
	5.1 Finite Element Model
	5.2 Element Sections
	5.3 Element-like Functionality
	5.4 Mass Property Calculations
	5.5 Element Death
	5.6 Mesh Rebalancing
	5.7 References

	Chapter 6 Boundary Conditions and Initial Conditions
	6.1 General Mesh-Entity Assignment Commands
	6.2 Initial Variable Assignment
	6.3 Kinematic Boundary Conditions
	6.4 Initial Velocity Conditions
	6.5 Force Boundary Conditions
	6.6 Prescribed Temperature
	6.7 Specialized Boundary Conditions
	6.8 References

	Chapter 7 Contact
	7.1 Contact Definition Block
	7.2 Descriptions of Contact Surfaces
	7.3 Analytic Contact Surfaces
	7.4 Update All Surfaces for Element Death
	7.5 Remove Initial Overlap
	7.6 Angle for Multiple Interactions
	7.7 Surface Normal Smoothing
	7.8 Shell Lofting
	7.9 Contact Output Variables
	7.10 Friction Models
	7.11 Search Options
	7.12 Enforcement Options
	7.13 Default Values for Interactions
	7.14 Values for Specific Interactions
	7.15 Examples
	7.16 References

	Chapter 8 Output
	8.1 Results Output
	8.2 History Output
	8.3 Restart Data
	8.4 Registered Variables
	8.5 References

	Chapter 9 User Subroutines
	9.1 User Subroutines: Programming
	9.2 User Subroutines: Command File
	9.3 User Subroutines: Compilation and Execution
	9.4 User Subroutines: Examples
	9.5 User Subroutines: Library

	Chapter 10 Shared Interface Models (SIMOD)
	10.1 Defining a SIMOD Model
	10.2 Use of a SIMOD Model with the Traction Boundary Condition
	10.3 SIMOD Core Models
	10.4 Example of Constructing a Composite Model
	10.5 References

	Chapter 11 Example Problem
	Chapter 12 Command Summary
	Distribution

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

