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Abstract 
 
Using molecular dynamics simulations, a constitutive model for the chemical aging of polymer 
networks was developed.  This model incorporates the effects on the stress from the chemical 
crosslinks and the physical entanglements.  The independent network hypothesis has been 
modified to account for the stress transfer between networks due to crosslinking and scission in 
strained states.  This model was implemented in the finite element code Adagio and validated 
through comparison with experiment.  Stress relaxation data was used to deduce crosslinking 
history and the resulting history was used to predict permanent set.  The permanent set 
predictions agree quantitatively with experiment. 
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LIST OF SYMBOLS 
 
 A elastic modulus due to slip-tube 

entanglements 
 c monomer density 
 cjk coefficients for a power series representation 

of the strain energy in terms of strain 
invariants 

 f deformation scaling under uniaxial conditions 
for the entanglements from the slip-
tube model 

 F free energy 
 Fe normalized force for the entanglement 

contribution 
 Fph free energy of the phantom model 
 F0 original force measurement 
 Fcont continuous force measurement 
 Fint intermittent force measurement 
 G shear modulus 
 Gc chemical contribution to the shear modulus 
 Ge entanglement contribution to the shear 

modulus 
 GN

0 plateau modulus 
 Gx modulus due to stage x crosslinking  
 Gx

eff effective modulus attributed to stage x 
crosslinking 

 Gx* maximum modulus due to stage x 
crosslinking 

 G2
α modulus from stage two crosslinks that can 

contribute to stress transfer 
 G2

β modulus from stage two crosslinks that will 
not contribute to stress transfer 

 gα scaling parameter for the slip-tube in the α 
direction 

 H parameter for bonded interactions 
 I1 first strain invariant (  I1 = λ1

2 + λ2
2 + λ3

2 ) 
 I2 second strain invariant 

(  I2 = λ1
2λ2

2 + λ1
2λ3

2 + λ2
2 λ3

2 ) 
 I3 third strain invariant (  I3 = λ1

2λ2
2 λ3

2 ) 
 k rate constant for scission 
 kB Boltzmann's constant 
 L slip-tube parameter 
 Li length in the i direction 
 Li0 original length in the i direction 
 m mass of a simulation site 
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 N (1) number of terms in the Ogden form of the 
strain energy 

  (2) slip-tube parameter 
 Ne entanglement spacing 
 p indeterminate Lagrangian multiplier 
 PS permanent set 
 r distance between simulation sites 
 R0 maximum bond length 
 S S = g1 + g2 + g3 − 3 
 t time 
 T temperature 
 W strain energy 
 Ub potential energy due to bonded interactions 
 Uev potential energy due to excluded volume 
 αp pth term for the exponent for the Ogden form 

of the strain energy 
 Δλ small changes in deformation 
 εLJ Lennard-Jones energy parameter 
 λ current sample deformation  
 λs deformation corresponding to the system state 

of ease 
 λx (1) under uniaxial deformation, the 

deformation at which the stage x 
crosslinks were introduced. 

  (2) for arbitrary deformation, the principal 
stretch ratio in direction x 

 Λ Lagrangian multiplier 
 μp pth term for the material modulus for the 

Ogden form of the strain energy 
 ν actual total strand density 
 νgel strand density required for gelation (stage one 

strand densities do not include this 
value) 

 νx actual strand density remaining from 
crosslinking at stage x 

 νx* maximum actual strand density for stage x 
 νx

eff effective strand density for stage x 
 ρ number density 
 σi Cauchy stress in the i direction 
 σLJ Lennard-Jones length parameter 
 τ Lennard-Jones time unit 
 φ crosslink functionality 
 Φ stress transfer function 
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1.  INTRODUCTION  
 
Chemical aging of rubber under strain can be a problem for seals and o-rings left in service 
for years.  Two related phenomena are observed experimentally: 1) stress relaxation in the 
rubber component with time and 2) permanent set (failure of the rubber component to 
return to the original dimensions upon removal of the strain).  Both of these phenomena 
indicate a reduction in sealing force, which means that after years in service a rubber seal 
or o-ring no longer performs its desired function.  While both physical and chemical 
processes contribute to the observed stress relaxation1,2, failure of the o-ring is due to 
chemical aging.  Previous work used an elastic material model to give an analytical 
solution for the stress in an o-ring3.  The goal of this project is to predict stress relaxation 
and permanent set due to chemical changes in the polymer network that make up the 
rubber. 
 
The technical difficulty in making these predictions lies in the multiscale nature of the 
problem.  Any single chemical reaction is fast (on the order of femtoseconds) and involves 
only a few atoms.  However, chemical reactions change the network that gives the rubber 
its elastic nature.  The cumulative effect of these small changes can be quite large as seen 
in field-aged o-rings with permanent sets of 30 to 60% after 16 to 22 years in service4. 
 
Therefore, the challenge is to develop a model that includes the molecular details of 
chemical changes of the network topology, yet can make predictions of the long-time 
behavior.  We accomplished this through a hierarchical approach.  First, we smeared out 
the specific chemical details.  The polymer chains used in molecular dynamics simulations 
include bonded connectivity and excluded volume, but individual sites correspond to a 
length scale of several mers, not simply a single atom or small chemical group.  Coarse-
graining in this manner allows us to investigate the physics of the sample stress with 
changes in network topology, using simulations that require days rather than months on 
high-performance computers.  In this first phase of model development, the detailed 
kinetics of the reactions are unimportant; what matters is how the relative level of 
crosslinking changes over time coupled with the strain history of the sample.   
 
Simulations were performed with crosslinking of an original network in an unstrained state 
(stage 1).  The sample was strained and a second phase of crosslinking was done in the 
strained state (stage 2).  Determining the zero stress deformation allows the permanent set 
to be calculated.  We can then compare the simulated results with predictions from rubber 
elasticity models suggested in the literature.  Doing this permits a more rigorous test of the 
rubber elasticity models than simply requiring the stress to match.  Scission of the original 
network (stage 3) and monitoring of the resulting stress change yields information about 
the coupling of reaction and strain history.  Complete scission of the original network does 
not negate its effect on the material properties.  Instead, the bias in the reactions available 
to the second network causes a memory effect so that, for all practical purposes, a fraction 
of the second network acts as though it were the original network.  We have quantified this 
fraction through stress transfer functions. 
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The outcome of this procedure was a constitutive model connecting changes in the 
microscopic network topology during a strain history with the macroscopic stress.  This 
model was implemented into the material library Strumento that is used in conjunction 
with the finite element code Adagio.  This report provides details about the new 
constitutive model and key points about how this model can be used to perform finite 
element calculations.  The remainder of this introduction is a brief overview of rubber 
elasticity from both the atomistic and continuum viewpoints.  The following section 
describes features of the molecular dynamics simulations with emphasis on the specific 
simulation features that were required to develop the constitutive model.  Later sections of 
this report describe particular features of the model as implemented in Adagio/Strumento.  
The final section of the main body is a comparison of finite element calculations and 
experimental data.  Appendix A is a condensed version of the material model and 
instructions on use for finite element calculations.  The Fortran code used to generate the 
scaling factors for the slip-tube model is also included in this report as Appendix B.  This 
is the final report.  Details of the stress transfer function, particularly the extension to 
multiple stages of crosslinking and scission, and some simulation results were given in the 
previous report5 and are not repeated here. 
 

1.1. Rubber Elasticity (from the atomistic viewpoint) 
 
Rubber elasticity is primarily the result of entropy.  Polymer molecules have maximum 
entropy in a random coil conformation.  Crosslinking the polymer molecules into a 
network restricts the conformations that they can adopt.  Straining the network further 
restricts the conformations that the strands can adopt.  Physically, the measured stress 
arises from the strands pulling or pushing to achieve an equilibrium conformation, with 
entropy maximization as the driving force.  The stress can be calculated from the 
difference in free energy between the deformation at which the network was formed and 
the imposed deformation.  Networks exhibit zero stress in the deformation at which they 
were formed.  This deformation is termed the state of ease. 
 
Strands that are between two crosslinks contribute to the measured stress.  Dangling ends 
do not because they can adopt the entropically favored random coil conformations.  Loops 
(a strand that is terminated at both ends by the same crosslink) do not unless the loop forms 
a knot with another restricted strand.  This intertwining will support stress because it also 
provides a physical restriction on the conformations that the polymer strands can adopt.  
Thus, crosslinking a system of long polymer chains will not only give a network based on 
the chemical connectivity of the strands, but also have some stress supported by trapped 
entanglements (physical snarls of strands that cannot unravel because of the network 
structure). 
 
Referring back to the chemical aging problem, two processes occur in rubber networks 
held in a strained state: chemical crosslinking of a new network with its state of ease in the 
strained state and scission of both networks.  The independent network hypothesis 
(originally proposed by Tobolsky and coworkers6) states that the overall stress in the 
sample can be considered as the sum of the stresses in each network individually.  Since 
networks in their state of ease should have zero stress contribution, simply adding more 
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crosslinks at a given deformation should have no effect on the stress.  Previous 
simulations7 showed this to be true in uniaxial extension and this holds true also in uniaxial 
compression (see Figure 1.1). 
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The phenomenon of permanent set arises because these two networks have competing 
effects on the overall sample stress.  The state of ease of the sample will be a deformation 
intermediate between the deformations at which the two networks were crosslinked.  The 
amount of permanent set observed will depend on the relative amounts of the networks.  
Heavily crosslinked networks will pull more strongly than lightly crosslinked networks.  
Networks crosslinked to the same extent will not necessarily exhibit the same stress 
because of the trapped entanglements.  Only the first crosslinking about the gel point traps 
entanglements; later stages of crosslinking do not trap additional entanglements. 
 
 

 
 

Figure 1.1: Illustration of the Independent Network Hypothesis 
These systems were crosslinked at λ1=1.0, compressed to λ2=0.534, and then reacted to 
a second stage chain density of ν2.  ν1* is defined as chain density above the gel point 
(νgel=0.0033).  Error bars are standard deviation in deviatoric stress values during 
production time.  Simulation details are given in Section 2:   Molecular Dynamics 
Simulations.  Units are reduced Lennard-Jones units. 
 
 
The effect of network scission on the stress is not as straightforward because of the 
coupling of reaction and strain histories.  Figure 1.2 shows a schematic of the sequential 
crosslinking and scission for two networks.  While the two networks are independent if 
only crosslinking occurs, scission of the original network does not negate its effect.  The 
sample retains a memory of the original network because of its influence on how the 
second network formed.  The first network was free to react in any chemically feasible 
manner.  The second network was limited to reactions that could find each other under the 
restrictions imposed by the first network.  Thus, as seen in the second panel of Figure 1.2, 
the reactions to create the second network occur only between strands in close proximity 
under the restraints imposed by the first network.  Therefore, when the first network 
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scissions, not all of the stress is released.  Some fraction of the second network may act 
like crosslinks from the original network and continue to support stress.  This effect is 
probably not a one-for-one exchange, but is more likely to be the collective effect of 
several crosslinks.  This memory effect (the second network effectively acting as the first 
network) can be quantified by stress transfer functions.  The incorporation of stress transfer 
functions into a constitutive model for the chemical aging of rubber under strain is the 
main technical advance of this work. 
 
 

 
 

Figure 1.2: Schematic of Coupling Strain and Reaction Histories 
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1.2. Rubber Elasticity (from the continuum viewpoint) 

 
At the continuum level, rubber elasticity is described in constitutive equations relating 
stress to strain, just like in standard elasticity theory.  For the simple case of one network 
(i.e., no chemistry occurs in the strained state), the stress is generally written in terms of 
principal stretch ratios {λi} or, frequently, combinations of the principal stretch ratios, 
which are invariant under rotation.  The standard way to write the three strain invariants is 
 

 

 (1) 
  

I1 = λ1
2 + λ2

2 + λ3
2

I2 = λ1
2λ2

2 + λ1
2λ3

2 + λ2
2 λ3

2

I3 = λ1
2λ2

2λ3
2

 
At room temperature, most rubber samples are nearly incompressible with a Poisson's ratio 
of about 0.5.  Incompressibility leads to the third strain invariant (I3) being unity. 
 
 

 
 

Figure 1.3: Illustration of Principal Stretch Ratios in Cartesian Coordinates 
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Many theories of rubber elasticity can be written as special cases of incompressible 
hyperelasticity theory.  The principal Cauchy stresses {σi} can be calculated as derivatives 
of the strain energy (W) 
 

 
  
σ i = λi

∂W
∂λi

− p

 (2) 
 
where p is an indeterminate Lagrangian multiplier dependent on the boundary conditions 
of the specific problem.  The strain energy for an incompressible hyperelastic material (the 
ideal rubber) can be written as 
 

  

 (3) 

W = c jk I1 − 3( ) j

k= 0

∞

∑
j= 0

∞

∑ I2 − 3( )k

 
where the cjk are particular to the model chosen and physical system under study.   
 
 
The classical theories of rubber elasticity for the affine8 and phantom9,10 networks can be 
written as the first term of the first strain invariant: 
 

 
  
W =

G
2

I1 − 3( )
 (4) 
 
The difference between these models is relating the modulus G to the molecular details of 
the systems.  The phantom model has a modulus that is one-half the value of the affine 
model.  Many people have worked on modifications of this general formula to account for 
the molecular details of imperfections in the networks, but most of that work is relating G 
to the molecular network. 
 
 
The Mooney-Rivlin equation11,12 may be written as 
 
 
 (5) 

  W = c10 I1 − 3( )+ c01 I2 − 3( )

 
While this general form is often used to describe experimental data under moderate strains, 
efforts to connect the constants c10 and c01 to molecular quantities have been much less 
successful. 
 
 
Another general power series for the strain energy for an incompressible, hyperelastic 
material in terms of principal stretches is attributed to Ogden13
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W =

μp

α p

λ1
α p + λ2

α p + λ3
α p − 3( )

p=1

N

∑
 (6) 
 
where N, μp, and αp are all material dependent.  The affine, phantom, and Mooney-Rivlin 
equations can also be written as special cases of this equation. 
 
 
The difficulty in developing a constitutive model for rubber elasticity is relating the 
molecular network and changes therein to the macroscopic properties.  Until recently, 
approaches from the molecular and continuum viewpoints were too widely separated to 
connect.  The new connection method is simulation.  With the advances in simulation 
techniques, particularly parallelization that allows much larger systems to be simulated, 
polymer networks can now be studied computationally.  Simulation provides the ability to 
calculate stress and to know all the topological information of the network.  Even more 
appealing, complete control over the deformation and chemical changes to the network is 
possible. 
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2.  MOLECULAR DYNAMICS SIMULATIONS 
 
The purpose of performing molecular dynamics simulations was to evaluate standard 
constitutive models for their general physics.  Our goal was to find a constitutive model 
appropriate for use with the independent network hypothesis that predicts permanent set.  
Permanent set is measured in field experiments and is related to sealing force.  Here, 
permanent set is used as a more rigorous criterion than simply predicting stress.  Using the 
assumption that the moduli can be used as adjustable parameters, all standard models of 
rubber elasticity have had some success in fitting experimental stress.  The compatibility 
with the independent network hypothesis is important because of the stress transfer during 
scission.  We want to keep the form of the constitutive model constant during chemical 
reaction and use effective crosslink densities (crosslink densities modified by the stress 
transfer function) to calculate stress and permanent set. 
 

2.1. General Model 
 
We performed molecular dynamics simulations of coarse-grained polymer models.  This 
reduces the simulation time by ignoring the fine chemical detail of polymer systems.  
However, the essential physics of rubber elasticity are retained.  Each polymer molecule 
starts as a linear chain of 500 sites.  These chains cannot cross each other or otherwise 
overlap in an unphysical manner.  Reactions are performed on the linear chains to link 
them into networks.  In this way, the effect of crosslinking and the resultant trapping of 
entanglements can be investigated in general for any rubber network system. 
 
The polymer chains follow a standard bead-spring model14 with an excluded volume 
interaction of 
 

 

    

Uev r( )= 4εLJ
σ LJ

r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

12

−
σ LJ

r
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

6

+
1
4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥            r ≤ 21/6σ LJ

Uev r( )= 0                                                   r > 21/6σ LJ

 (7) 
 
For this work, both εLJ and σLJ were set to unity.  Time is in reduced units of 

  τ = σ LJ m/εLJ  with m also set to unity.  In addition, adjacent sites are connected by 
finitely extensible non-linear elastic (FENE) bonds of the form 
 

 

    

Ub r( )= −
HR0

2

2
ln 1−

r
R0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
               r ≤ R0

Ub r( )= ∞                                           r > R0

 (8) 
 
with H=30εLJ/σLJ

2 and R0=1.5σLJ.  Crosslinks use the same bonding potential; the 
difference is that sites involved in a crosslink have three bonded neighbors instead of only 
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two.  This results in tetrafunctional crosslinks (four strands emanate from the pair of sites 
forming the extra bond). 
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All simulations were performed using the LAMMPS99 code15 modified to perform 
reactions16.  The integration method was a velocity Verlet algorithm under NVT (T*=1.0, 
ρ*=0.85) conditions with a Nose-Hoover thermostat.  The time step was 0.005 or 0.01 τ.  
Systems began as 500 linear chains with 500 sites each.  On each chain, twenty sites are 
chosen randomly as reactive (i.e., capable of forming three bonds instead of the standard 
two bonds).  These reactive sites are chosen under the rules that 1) no chain ends are 
designated reactive and 2) reactive sites on the same chain must be separated by at least 
two bonds.  Reactions are probabilistic.  At regular intervals, the distance between reactive 
sites is calculated and compared to a capture radius (typically between 1.122 and 1.3 σLJ).  
Pairs of reactive sites within the capture radius then form a bond with some reaction 
probability (which was adjusted to keep quasi-equilibrium conditions).  In the unstrained 
state, crosslinking 20, 40, or 60% of the reactive sites formed the original, stage 1 
networks.  
 
The systems were then uniaxially deformed in a series of affine steps, keeping the volume 
constant.  The coordinates for each site were scaled as Δλx, y/ Δλ , and z/ Δλ  with 
typical values of Δλ=0.01.  The molecular dynamics simulation continued through this 
deformation.  Consequently, while each step is affine, the system adjusts through the entire 
deformation, resulting in an overall nonaffine process. 
 
After equilibration at the new deformation (designated λ2), a second stage of crosslinking 
occurred.  Again, the levels of crosslinking are 20, 40, and 60% of the starting reactive 
sites with the limitation that a maximum of 80% of the starting reactive sites are used in a 
given system.  With two networks, a state of ease between the two deformations is possible 
and a permanent set can be observed.  Performing simulations at deformations between the 
two crosslinking deformations permits the determination of λs (the deformation 
corresponding to the system state of ease) and, thus, calculation of the permanent set from  
 

 
  
PS =

λs −1
λ2 −1

*100

 (9) 
 

2.2. Permanent Set from Uniaxial Extension Results 
 
For the uniaxial extension case, the systems were deformed to a stretch ratio of λ2=2.0.  
These results were published in the journal Macromolecules17.  Four standard models of 
rubber elasticity were compared to the simulated permanent set results: phantom9,10, 
affine8, constrained junction18, and slip tube19.  The phantom and affine models differ only 
by a multiplicative constant.  Therefore, they both predict the same result: the permanent 
set depends only on the relative degree of crosslinking of the two systems.  The 
constrained junction model is a modification of the affine model to account for the effect 
of entanglements.  It also predicts that permanent set is only a single-valued function of the 
ratio of crosslinking in stage 2 to that of stage 1.  As seen in Figure 2.1, initial crosslinking 
density is important for the simulation results.  The three different levels of stage one 
crosslink density give rise to three discrete series of permanent set results.  
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Figure 2.1: Permanent Set.  Comparison of Simulated Results and Classical Rubber 
Elasticity Theories Predictions. 

Symbols are simulated results for a double network in uniaxial extension.  Squares are 
20% initial crosslinking, circles are 40% initial crosslinking, and the triangle is 60% initial 
crosslinking. 
 
 
While the slip-tube model is a modification to the phantom model that incorporates the 
effect of entanglements, the slip-tube model predicts that both initial extent of crosslinking 
and the relative degrees of crosslinking matter.  As shown in Figure 2.2, the slip-tube 
model is in good agreement with the simulation results.  Therefore, the slip-tube model is 
chosen as the constitutive model to be implemented in the finite element code.  The slip-
tube model is described in detail in the next chapter. 
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Figure 2.2: Permanent Set.  Comparison of Uniaxially Extended Simulations to the 
Slip-Tube Model. 

Symbols are simulated results.  Squares are 20% initial crosslinking, circles are 40% initial 
crosslinking, and the triangle is 60% initial crosslinking. 
 
 

2.3. Model-free Determination of the Stress Transfer 
Function from Simulation 

 
 
The stress transfer functions are only available for systems undergoing scission.  Using the 
double network systems (still at the stage two deformation), crosslinks were removed from 
the original network.  For convenience, the maximum removal of stage one crosslinks is to 
the gel point.  This situation keeps the entanglements trapped with the same state of ease, 
but the stress from the stage one chemical crosslinks is zero.   
 
 
The model-free approach uses the intuitive definition of effective chain density.  What 
single stage network at this strain would have the same stress as the double network after 
scission has?  The stresses for each of the initial chain densities at the second stage strain 
was recorded and plotted as a function of stage one chain density.  As Figure 2.3 shows, 
deviatoric stress is linearly related to the original chain density.  Consequently, 
determining the effective chain density simply requires reading the ν1 value from Figure 
2.3 at the appropriate stress.  The stress transfer function (Φ) is related to the chain 
densities through 
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   ν1
eff = ν1 + Φν 2

 (10) 
 
where ν1 is actual density of stage one chains (only counting chains above the gel point), 
ν2 is the actual density of stage two chains, and ν1

eff is the effective density of stage one 
chains.  In these simulated systems, ν1 and ν2 are known and ν1

eff is determined from 
Figure 2.3, which allows Φ to be determined by simple algebra.  Results of this model-free 
determination of the stress transfer function are shown in Figure 2.4. 
 
To be of value in the finite element code, the stress transfer function needs to be calculable 
from the chain densities without needing the stress.  Based on theoretical considerations 
for the phantom model, Fricker20 proposed that the stress transfer function for a two-stage 
network has the analytical form 
 

 Φ =
ν1

* −ν1

ν1
* + ν 2

=1−
ν1 + ν 2

ν1
* + ν 2

 (11) 
 
where ν1* denotes stage one chain density (above the gel point) before scission, ν1 denotes 
stage one chain density (above the gel point) after scission, and ν2 denotes stage two chain 
density.  Figure 2.4 shows that this equation is a good approximation to the simulation 
results.  An extension of this formula for multiple stages of crosslinking and scission was 
implemented in the material model and is given in Appendix A: Summary of Material 
Model. 
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Figure 2.3: Deviatoric Stress for Single-Stage Network Stretched to λ2=2.0 

Note that ν1 includes only stage one chains above the gel point.  Points are simulation 
results; line is a linear fit to the simulation results. 
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Figure 2.4: Stress Transfer Functions.  Comparing Model-Free Value with the 
Fricker20 Function. 

Circles denote removal of stage one crosslinks to the gel point; squares denote systems 
with remaining stage one crosslinks above the gel point.  The line is Fricker's analytical 
expression from Eq. 11. 
 

2.4. Uniaxial Compression Results 
 
For the uniaxial compression case, the systems were deformed to a stretch ratio of 
λ2=0.534.  Permanent set was also calculated for double networks with the second stage 
crosslinked in compression (shown in Figure 2.5).  Similar to the extension results, the 
three original crosslinking densities give rise to three series of permanent set data.  The 
slip-tube model predictions are also presented in Figure 2.5 with good agreement between 
theory and simulation. 
 
 
We know that stress transfer is important during scission at λ2.  However, does that stress 
transfer effect (a portion of the stage two network acting as stage one networks) carry over 
for scission that occurs in other deformations?  In other words, will the stage two network 
always "come to the rescue" of the stage one network or is that an artifact of the removal of 
crosslinks at λ2?  As a test, the stress was measured for three cases.  For case 1, after 
crosslinking in the compressed state, the double network was stretched back to λ=1.0, 
allowed to equilibrate, and the stress was measured.  Case 2 began from the end of the case 
1 equilibrated system and had stage one crosslinks removed to the gel point.  The system 
was reequilibrated and stress was then measured.  Case 3 began with the double network 
just after crosslinking in the compressed state.  The system was equilibrated, and then 
stage one crosslinks were removed to obtain the gel point concentration.  The system was 
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then stretched to λ=1.0, equilibrated, and then the stress was measured.  λ=1.0 was chosen 
so that only the effect of the stage two crosslinks is seen. 
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Figure 2.6 shows the stress of case 1 (double network only).  As one would expect, the 
deviatoric stress clearly can be grouped according to level of stage two crosslinking.  The 
networks subjected to scission are given in Figure 2.7.  Within error, both treatments give 
the same stress; however, scission at λ=λ2 generally gives a slightly higher stress, closer to 
the value of the double network without scission. 
 
 

 
 

Figure 2.5: Permanent Set for Compressed Simulations Compared to Slip-Tube 
Model. 

Symbols are simulated results.  Squares are 20% initial crosslinking, circles are 40% initial 
crosslinking, and the triangle is 60% initial crosslinking.  Lines are slip-tube model results. 
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Figure 2.6: Stress from Double Network Crosslinked at λ2=0.534 with Stress 
Measured at λ=1.0 

 
 

 
 

Figure 2.7: Stress from Double Networks Crosslinked in Compression and 
Stretched to λ=1.0.  Does Deformation at Which Stage 1 Scission Occurs Have an 

Effect? 
The squares are stage one crosslinks removed at λ4=1.0.  The circles are stage one 
crosslinks removed at λ3=0.534.  Stresses for systems are measured at λ=1.0. 
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3.  THE SLIP-TUBE MODEL 
 
Rubinstein and Panyukov19 developed a tube model that includes the effect of 
entanglements as deformation is applied to a sample.  This slip-tube model is in good 
agreement with the simulated permanent set results.  Unfortunately, as originally 
formulated, the free energy calculation involves a self-consistent calculation at every 
deformation.  This is computationally intensive and impractical for large systems using the 
finite element code.  Instead, a deformation range suitable for o-rings has been identified 
and self-consistent calculations were done within that range.  The resulting strain energy 
was fit analytically to a power series of strain invariants.  The method used to determine 
that power series is given in the first section of this chapter along with the coefficients of 
that power series and figures illustrating goodness of fit.  The second section of this 
chapter details the stress calculation implemented in the finite element code and shows a 
comparison of stress calculated from the finite element code with the original slip-tube 
model fit to experimental data. 
 
 

3.1. Analytical Fit to the Strain Energy Equation 
 
 
The free energy expression for the original formulation of the slip-tube model is19

 

 F =
A

2
λα

gα
1/ 2 +

gα
1/ 2

λα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α
∑ −

A

3
ln N

L
gα

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

α
∑ + Fph

 (12) 
 
where A is an elastic modulus due to the entanglements, λα is a principal stretch in the α 
direction, N and L deal with the tube, and Fph is the free energy of the phantom chain 
model.  The gα are used to renormalize the deformation of the tube in a given direction.  In 
an affine model, the microscopic deformation scales uniformly with the macroscopic 
deformation.  In the slip-tube model, the microscopic deformation (denoted by prime) is   
 

 λα
′ =

λα

gα
1/ 2

 (13) 
 
To calculate values for gα, Eq. 12 must be minimized with respect to gα under the 
condition that the sum of the three gα equals three.  Using a Langrangian multiplier 
method, the equations to solve are 
 

 12Λ
A

= 3 −
λ2

g2
3 / 2 +

1
g2

1/ 2λ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

4
g2

 (14) 

30 



 g1
3 / 2 12Λ

Ge

λ1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − 3g1 + 4g1

1/ 2λ1 + 3λ1
2 = 0

 (15) 

 g3
3 / 2 12Λ

Ge

λ3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − 3g3 + 4g3

1/ 2λ3 + 3λ3
2 = 0

 (16) 
 S = g1 + g2 + g3 − 3
 (17) 
 
where Λ is the Lagrangian multiplier.  From these equations, the set of {gα} are a function 
of the set of {λα}.  Solving these equations for a general case is difficult.  Instead, an 
iterative technique is used to solve these equations numerically at a specific deformation.  
The flow chart on the next page shows an outline of the steps.  For Eqs. 15 and 16, a cubic 
equation21 in gα

1/ 2  is solved and the root which is physical (i.e., positive and smaller than 
the square root of 3) is chosen.  The use of a secant method22 gives successively better 
approximations to g .  Like all iterative techniques, a good initial guess is required to 
obtain reasonable solutions.  The program used to calculate a set of {g

2
1/ 2

α} is given in 
Appendix B. 
 
 
The next step is to calculate {gα} for many sets of {λα}.  The overall goal is to have a 
strain energy function for arbitrary deformation (subject only to the limitation of an 
incompressible material).  Strain energy for an arbitrary deformation8 can be written as 
 

 

 (18) 

W = c pq I1 − 3( )p

p,q= 0

∞

∑ I2 − 3( )q

 
where 
 

 

 (19) 

I1 = λi
2

i=1

3

∑

 I2 = λ1
2λ2

2 + λ2
2 λ3

2 + λ3
2 λ1

2

 (20) 
 I3 = λ1

2λ2
2 λ3

2 = 1
 (21) 
 
c00 =0 so that zero deformation corresponds to zero strain energy.  To match with the slip-
tube strain energy, Eq. 12 is written as 
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A
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1
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gα
1/ 2 +
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1/ 2
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⎛ 

⎝ 
⎜ 
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⎠ 
⎟ −

2
3
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α
∑ − 3
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∑

 (22) 
 
This function also goes to W=0 for {λα}=1.  The strain energies for many deformations 
corresponding to 0.3 ≤ λα{ }≤ 3.0 were calculated.  This range was chosen as 
representative of the types of deformation encountered during standard O-ring usages.  The 
deformations were chosen systematically by a double loop over λ1 and λ2 (each one taking 

values between 0.3 to 3.0) with λ3 =
1

λ1λ2

 and keeping only the points such that all three 

principal stretch ratios lie between 0.3 and 3.0.  Figure 3.2 shows the corresponding values 
of the strain invariants. 
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Given {λα}, an initial guess for 
{ga(0)} and g2(1) and i=1 

calculate 12Λ
A

 from Eq. 14 

using g2(i) 

calculate g1(i) from Eq. 15 
calculate g3(i) from Eq. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Flowchart of Procedure to Calculate Rubinstein-Panyukov Scaling 
Factors gα 
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calculate S(i) from Eq. 17
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Figure 3.2: Deformation Space Used for Analytical Fit to Slip-Tube Model. 
The red points correspond to an error of greater than 1% when using a fit to the entire 
space.  Black points correspond to an error of less than 1%. 
 
 
When fitting to the strain energy determined by this map, the poorest fit was found for the 
small (I1 and I2 less than 6) deformations.  This poorness of fit can be characterized as the 
difference between the fit strain energy and the calculated strain energy normalized by the 
calculated strain energy.  In Figure 3.2, greater than 1% error is indicated in red.  Thus, two 
fits (parameters shown in Table 3.1) were actually done for this data: one for 
    I1 ≤ 5.0 and I2 ≤ 6.27 and one for the rest of the points. 
 
 

Table 3.1.  Analytical Strain Energy Fits to the Slip-Tube Model 
 

Constant I1 ≤ 5.0 and I2 ≤ 6.27  Outside the small I range 
c10 0.0851661 0.0943634 
c01 0.057562 0.043431 
c11 -0.00334862 0.00113886 
c20 -0.00478368 -0.00745304 
c02 -0.00280587 -0.000935738 
c21 -0.000418954 -0.000340933 
c12 0.000503024 0.0000767233 
c30 0.000841539 0.000553051 
c03 0.000609627 -0.0000339206 
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Figure 3.3: Strain Energies from the Slip-Tube Model.  Comparison of Self-
Consistent Calculation and Analytical Fit. 

A) for     I1 ≤ 5.0 and I2 ≤ 6.27.  B) for the other deformations.  Squares are the calculated 
strain energies from Eq. 22.  The x's are from the fit to Eq. 18. 
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The benefit of doing two fits is shown in Figure 3.3.  Small strain invariants correspond to 
small deformations.  The errors in those fits are now considerably less than 1%.  Indeed, 
most of the range has an error of less than 0.1%.  The larger strain invariants have larger 
error.  However, even the worst error seen is less than 2.5% with most of the errors less 
than 1%. 
 
A point of concern is whether the artificiality of having two fits would cause anomalies in 
systems as they switch from one region to the other.  Examining this region shows that 
anomalies are very small (deviation in the third significant figure) and that the deformation 
changes must be proceeding in small (Δλ=0.01) steps to see this anomaly.  Representative 
plots are shown in Figure 3.4. 
 
 
An interesting comparison is for a particular deformation mode.  This can be done by self-
consistently calculating {ga} from Eq. 12 to put in the strain energy formula (Eq. 22) and 
then calculating the strain energy from the analytical fit at the same stretch ratios.  Uniaxial 
extension has a deformation according to 
 

 
λ1 = λ

λ2 = λ3 = 1
λ

 (23) 
 
Pure shear can be summarized as 
 

 

λ1 = λ

λ2 =
1
λ

λ3 =1
 (24) 
 
The comparisons for these two deformation modes are shown in Figure 3.5 and Figure 3.6.  
Within the range of λ that was fit, the agreement is good (less than 1% relative error 
between using the full strain energy and fit strain energy).  The agreement rapidly 
deteriorates for deformations outside the fit region.   
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Figure 3.4: Examining Stress at the Crossover Point Between Analytical Fits to the 
Slip-Tube Model. 

This is a system in uniaxial extension (x-direction) with Gc=0.177 MPa and G3=0.177 MPa.  
A) Stress as a function of I1.  B) Stress as a function of I2.  Diamonds are stress in the x-
direction, squares, in the y-direction, triangles, in the z-direction. 
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Figure 3.5: Strain Energies from the Slip-Tube Model.  For Uniaxial Extension, 
Comparison of Analytical Fit and Self-Consistent Calculation. 

A) plotted versus I1  B) plotted versus 1/λ.  Squares are the calculated strain energies 
from Eq. 22.  The x's are from the fit to Eq. 18. 
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Figure 3.6: Strain Energies from the Slip-Tube Model.  For Pure Shear, Comparison 

of Analytical Fit and Self-Consistent Calculation. 
A) strain energy versus I1.  B) strain energy versus 1/λ.  Symbols are same as in Figure 
3.3. 
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3.2. Calculating Stress from Strain Energy 
 
 
With the strain energy written in terms of principal stretches, the stress is determined from 
 

 σ i = λi

∂W

λi

+ p

 (25) 
 
where p is a Lagrangian indeterminate multiplier depending on the specific deformation 
conditions.  Using Eq. 18 to calculate the stress gives 
 

 

σα
ST = 2λα

2 c10 + 2λα
2 c01B + 2λα

2 c11 I2 − 3( )+ B I1 − 3( )[ ]+ 4λα
2 c20 I1 − 3( )

      + 4λα
2 c02B I2 − 3( )+ 2λα

2 c21 2 I1 − 3( ) I2 − 3( )+ B I1 − 3( )2[ ]
      + 2λα

2 c12 I2 − 3( )2 + 2B I1 − 3( ) I2 − 3( )[ ]+ 6λα
2 c30 I1 − 3( )2 + 6λα

2 c03B I2 − 3( )2

      + p
 (26) 
 
where  
 
 B = λβ

2 + λγ
2

 (27). 
 
 
To calculate the entire stress, the stress for the phantom model is added to the 
entanglement contribution 
 
 σα

Ph = λα
2 + p2

 (28) 
 
where p2 is another indeterminate Lagrangian multiplier.  The general method to calculate 
the indeterminate multipliers is to subtract 1/3 the trace of the individual stress components 
and then add back a contribution from the bulk modulus.  In uniaxial extension, one takes 
the difference of two stresses to eliminate the indeterminate multipliers. 
 
 
The total stress can then be written as 
 
 σα = 2Geσα

ST + Gcσα
Ph

 (29) 
 
where  
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 Ge =
4
7
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4
7

ckBT
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 (31) 
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with ν as chain density, φ as crosslink functionality, kB as Boltzmann's constant, T as 
temperature, c as the monomer density, and N

B

e as the entanglement spacing.  The stress is 
written in Eq.  so that it matches with the results of Rubinstein and Panyukov. 29
 
Rubinstein and Panyukov19 have an expression for the stress for uniaxial extension 
 

 σ || −σ ⊥ = Gc λ2 −
1
λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

Ge

0.74λ +
0.61

λ
− 0.35

λ2 −
1
λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 (32) 
 
where the stress is measured as the difference between the stresses parallel and 
perpendicular to the stretch direction and the stretch ratio is λ.  Figure 3.7 shows this 
comparison.  As seen with the strain energy, the error in the stress is much larger outside 
the fit range of deformation. 
 
 

 
 

Figure 3.7: Uniaxial Stress from the Slip-Tube Model.  Comparing Analytical Fit to 
Arbitrary Deformation with Analytical Fit to Uniaxial Extension. 

Squares are calculated using Eq. 29 and the line is Eq. 32 with Ge=0.177 MPa and 
Gc=0.177 MPa.  
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4.  COMPARISON OF FINITE ELEMENT CALCULATIONS WITH 
EXPERIMENT 

 
To validate the model, comparison with experimental results is essential.  Although the 
goal is to predict chemical aging over long times of decades, controlled experiments that 
provide enough information to use our model have not been performed23.  However, 
accelerated aging experimental studies on butyl rubber and butyl o-rings are available in 
the literature. 
 
 
As formulated from the simulations, the constitutive model is incompressible.  This is a 
good approximation, but not appropriate for use with finite element.  The material model 
as implemented in Adagio uses a nearly incompressible formulation and the augmented 
Lagrangian technique available in Adagio.  This gives a more realistic response since 
rubber is nearly incompressible and the modulus will change as chemical aging occurs. 
 

4.1. Physical Properties Required for Calculations 
 
In addition to the reaction and strain histories, the finite element code requires elastic 
constants and the plateau modulus (if an entanglement contribution is desired) in order to 
perform calculations.  While all of these quantities are measurable by experiment, no 
published studies have all of this information for the same sample.  Therefore, we have 
made some approximations.  Because our main objective is to match relative quantities 
(normalized stress relaxation and permanent set), the exact magnitude of the elastic 
constants will be unimportant as long as two conditions are met.  First, the bulk modulus 
must be substantially larger than the shear modulus so that the Poisson's ratio is about 0.5.  
Second, the magnitudes must be large enough to prevent numerical problems with the 
finite element solvers.  For example, stress is only accurate to about 0.01 units so working 
in the reduced space of one stress unit is unfeasible.  Working in the physically reasonable 
range with stresses ranging from hundreds of psi to zero is acceptable. 
 
Another difficulty is that crosslinking magnitudes are rarely reported in the literature for 
experimental aging studies.  More commonly, normalized stress relaxation data are given.  
Crosslinking history can be inferred using normalized stress relaxation results by making a 
few assumptions and that procedure has been employed here on two experimental studies.  
The classic work on permanent set and the independent network hypothesis was done by 
Tobolsky and coworkers6.  Consequently, their results on butyl rubber are used as one of 
the experimental data sets to validate the new model.  The other experimental study used is 
work from researchers here at Sandia on butyl O-rings in compression.  Both of these 
studies are accelerated aging (high temperature) experiments so that the reduction in stress 
can be observed in reasonable time. 
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The remainder of this section is the comparison of finite element calculations with results 
from stress relaxation experiments.  Because only a single stress value is reported as a 
function of time, a uniform stress state can be assumed.  This assumption allows for a 
simple cube of material to be used as the geometry.  Calculations have been done with an 
o-ring geometry to observe stress distributions across the cross-section, but they are not 
suitable for validation purposes.  For each experimental data set, the method of extracting 
the crosslinking history and the assumptions used are detailed.  The resulting crosslink 
history is shown for each set and finite element results are given for continuous stress 
relaxation.  Permanent set is predicted using that chemistry and is found to be in good 
agreement with the experimental data. 
 

4.2. Tobolsky Experimental Data in Extension 
 
Our particular interest here is the butyl gum data from Tobolsky's group (Figure 7 of 
Reference 6).  Two stress relaxation experiments were performed on samples from the 
same cure batch.  Consequently, the chemistry of both samples as a function of time is 
expected to be the same.  Both procedures report the ratio of current stress with initial 
stress for the time of the test.  The difference between the two types of investigation is 
their strain history.  Continuous stress relaxation is the more common test.  The sample is 
deformed and stress measurements are taken while the sample is held in the deformed 
state.  This approach provides information about the effective stage one network as a 
function of time.  In this case, the sample was uniaxially deformed to a stretch ratio of 
λ2=1.5.  The intermittent stress relaxation procedure periodically stretches the sample to λ2 
for long enough to take a stress reading and then releases the sample.  As a result, the 
chemical reactions take place primarily in the unstretched state.  The intermittent method 
provides information about the total crosslinking density of the sample.  The data for butyl 
gum at 130 0C is shown in Figure 4.1. 
 
Some type of kinetics must be assumed to get G1 and G2 (moduli of stage 1 and stage 2 
networks).  Scission of stage 1 is likely to be first order and for times less than 1.35 hours, 
crosslink density stays constant so scission and crosslinking occur at equal rates.  Under 
those conditions, 
 

 
    

G1
eff

G1
* =

1
2 − exp −kt( )

;     G1 = G1
* exp −kt( );      G2 = G1

* 1− exp −kt( )( )
 (33) 
 
G1* can be identified as the shear modulus.  Fitting the continuous stress relaxation data 
(which can be identified with G1

eff/G1*) yields k=1.54 h-1.  We assume that the first 
network continues to scission with first order kinetics; however, the second network no 
longer crosslinks at the same rate.  We calculate G2 after aging time = 1.35 hours using the 
continuous stress relaxation from the definitions of G1

eff and Φ and solving for G2.  The 
resulting expression is 
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G2* is the maximum in G2 up to the current time and is found through enforcing self-
consistency.  We ensure that the values of G2 obtained from first-order kinetics and Eq. 34 
match at time = 1.35h with the difference between the two cases added as an offset to all 
later G2.   
 
 
Another complication occurs as the original network scissions below its gel point.  New 
crosslinks formed after this point will not contribute to stress transfer.  Chemically, no 
difference exists between a first and second stage crosslink.  Thus, second stage crosslinks 
also undergo scission, but they may reform.  Memory of the original network fades as 
fewer crosslinks were formed under its influence.  Thus, accounting for crosslinks formed 
at λ2 after the original network has decayed below its gel point is necessary.  The 
intermittent stress relaxation is the sum of all crosslink contributions.  The magnitude of 
these new crosslinks can be determined by difference 
 

 
  

G2
β

G1
* =

F int

F0

−
G1

G1
* −

G2
α

G1
*

 (35) 
 
where G2

α is stage two crosslinks formed while the original network existed and G2
β 

denotes stage two crosslinks formed after the original network disintegrated.  Eq. 34 is 
actually only for G2

α.  These three contributions are shown in Figure 4.2 based on the 
initial shear modulus having a value of 109 psi.  For the finite element calculations, a bulk 
modulus of 34.0x103 psi was used.  This gives a Poisson's ratio of 0.498.  Combining the 
chemistry and the elastic constants in the finite element calculation produces the 
continuous stress relaxation shown as black curve in Figure 4.1.  This is in excellent 
agreement with the experiment, as one would expect since, in essence, this data was fit.  
This procedure verifies that the computer code for the model was correctly implemented. 
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Figure 4.1: Stress Relaxation of Butyl Gum.  Comparison of Experimental Data from 
the Tobolsky Group6 and Finite Element Calculations. 

The sample is butyl gum in uniaxial extension (λ2=1.5) at 130 0C.  The dashed line is 
intermittent stress relaxation data; the x's are continuous relaxation data.  The solid line is 
finite element results using the fit parameters as described in the text. 
 
 

 
 

Figure 4.2: Crosslinking History Deduced from the Tobolsky Data6

 

48 



A more stringent test is to predict permanent set.  The finite element calculation was 
performed for the continuous stress relaxation test with restart files written at regular 
intervals.  The finite element calculation for permanent set begins with one of the restart 
files.  With the chemistry fixed for the network at that time, the sample was deformed back 
to the original shape.  The stress was tracked during the deformation and the stretch ratio 
corresponding to the zero stress deformation was noted as λs.  The permanent set can then 
be calculated from 
 

 
  
PS =

λs −1
λ2 −1

*100

 (36) 
 
Figure 4.3 compares the finite element results with the experimental data.  The agreement 
between our predictions and experiment is quantitative. 
 
 

 
 

Figure 4.3: Permanent Set Comparison for Finite Element Calculation and Tobolsky 
Data6

Experimental data are denoted by x's and finite element calculations are squares. 
 

4.3. Sandia Experimental Data in Compression  
 
Gillen, Celina, and Bernstein24 have reported sealing force relaxation data for o-rings from 
Burke Rubber Company (Compound 4061) at 125 0C.  The data used was extracted from 
Figure 8 of Reference 24.  Times reported here are aging times to coincide with those 
reported in Reference 24.  The nominal deformation corresponds to λ2=0.75.  
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Unfortunately, only continuous stress relaxation data were reported so less information is 
available directly from experiment.  
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A shear modulus of 146 psi and a bulk modulus of 34.0x103 psi were used.  To fully 
explore the model, the entanglement contribution was estimated from literature data.  
Graessley25 reports a plateau modulus of 32x104 Pa for polyisobutylene at 140 0C.  
Converting this for use in the slip-tube model at 125 0C involves a temperature conversion, 
a unit conversion, and multiplying by 4/7 
 

 

    

Ge =
4
7

GN
0 Tdesired

Toriginal

Ge = 4
7

32∗104Pa[ ]398K
413K

14.7psi
101325Pa

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = 26psi

 (37) 
 
This means that G1

*=120 psi (subtracting Ge from the shear modulus).  Including the 
entanglement contribution slightly complicates the calculation of the crosslinking history 
from the stress relaxation.  The continuous stress relaxation is 
 

 

  

F cont

F0

=
G1

eff + f λ( )Ge

G1
* + f λ( )Ge

=

G1
eff

G1
* +

f λ( )Ge

G1
*

1+
f λ( )Ge

G1
*

 (38) 
 
where f(0.75)=1.10 as determined from the uniaxial slip-tube function19.  Letting 
 

 
  
Fe =

f λ( )Ge

G1
* = 0.23

 (39) 
 
eq. 38 can be written explicitly for G1

eff as 
 

 
  

G1
eff

G1
* =

F cont

F0

+
F cont

F0

−1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Fe

 (40) 
 
Using this relation, the effective stage one crosslinks were determined and the first order 
kinetics with equal rates crosslinking and scission applied (Eq. 33).  This gives a rate 
constant k=0.067 h-1 up to a time of 5.86 h.  G2

*/G1
*=0.38 from applying Eq. 34 during 

calculation of the G2
α.  The G2

β were determined assuming that equal rates crosslinking 
and scission still hold after the time of 5.86 h.  This will overestimate G2

β since no 
provision is made for scission, even if the rate assumption is correct.  The crosslink history 
determined for this sample is shown in Figure 4.4 and the comparison with experiment is 
shown in Figure 4.5.  As before, the agreement between calculated stress relaxation and 
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experiment is good, further verifying the proper implementation of the model in the 
computer code. 
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Figure 4.4: Crosslinking History for Butyl O-ring 

 

 
Figure 4.5: Continuous Stress Relaxation.  Comparison of Finite Element 
Calculations with Experimental Results from Gillen, Celina, Bernstein24

Data is for o-ring from Burke Rubber Company (Compound 4061) at 125 0C.  Symbols are 
experiment; line is finite element calculation. 
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Permanent set predictions were made using this crosslinking history in the finite element 
code.  As can be seen in Figure 4.6, the finite element predictions agree well with the 
experiment.  Because of the assumption of equal rates of crosslinking and scission, the 
permanent set is likely to be too large at long time which corresponds to small stress and 
higher permanent set.  This is observed in Figure 4.6 where the two small permanent set 
points are closer to the experimental line than the two large permanent set points. 
 
 

 
Figure 4.6: Permanent Set for Butyl Rubber in Compression 

Symbols are from finite element calculation; line is derived from experiment as given in 
Gillen, Bernstein, and Wilson4. 
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5.  CONCLUSIONS 
 
Using molecular dynamics simulations, we have developed a constitutive model for the 
crosslinking and scission of rubber networks in deformed states.  This constitutive model is 
based on some well-established models from the literature and a few often-neglected 
points.  The independent network hypothesis proposed by Tobolsky6 in the 1940's is used 
in conjunction with the slip-tube model19 of Rubinstein and Panyukov.  This allows for the 
effects on the resulting network arising from both chemical crosslinks and physical 
entanglements to be included.  The independent network hypothesis has been demonstrated 
to be valid for crosslinking in deformed states through simulation.  Classical rubber 
elasticity models only require the relative crosslinking density of the two networks.  
However, permanent set determined from simulations showed that the crosslinking density 
of the original network also is a factor.  The entanglements trapped by the original network 
must be included in the stress calculation and the slip-tube model ably captures this 
phenomenon.   
 
To include the effects of scission of the original network, the independent network 
hypothesis has been modified to use effective crosslink densities.  If scission of the original 
network occurs after crosslinking of a second network, a memory effect is seen.  Some 
fraction of that second network will adopt the role of the original network, effectively 
acting as stage one crosslinks.  This fraction can be quantified through stress transfer 
functions.  The stress transfer function proposed by Fricker (based on theoretical 
considerations of phantom networks20) was found to agree with a model-free determination 
of the stress transfer functions from simulation. 
 
This constitutive model has been implemented into the finite element code Adagio.  In 
order to do this, the slip-tube model was modified to be computationally tractable.  An 
analytical fit was applied to strain energies calculated from the original self-consistent 
formulation.  This fit was seen to match the self-consistent formulation over the expected 
deformation range for an o-ring and a uniaxial extension in an experimental system.  The 
model developed from simulation was incompressible.  The model implemented in Adagio 
is nearly incompressible, taking advantage of the augmented Lagrangian technique 
available in the finite element code. 
 
The model was validated through comparison with accelerated aging experiments on butyl 
rubber.  Experimental data in uniaxial extension and an o-ring in compression were chosen 
as the test cases.  Crosslinking history was deduced from stress relaxation measurements 
and used in conjunction with estimates of elastic constants to perform finite element 
calculations.  Continuous stress relaxation results from those calculations were in good 
agreement with the experimental data.  The deduced chemistry was then used in finite 
element calculations to predict permanent set.  Those permanent set predictions are also in 
excellent agreement with the experimental data. 
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6.  FUTURE WORK 
 
The Kansas City plant has been working on new butyl rubber formulations specifically 
tailored for Sandia.  This provides an opportunity to plan complementary simulations and 
experiments to investigate this new formulation.  In this way, all the experimental data 
necessary to validate the model can be obtained.  In addition, simulations using recently 
developed reactive forcefields can be used to help elucidate the chemical reaction 
mechanisms. 
 
Simulations are planned to validate the reactive forcefields using experimental data for 
chemical aging of polypropylene26.  This polypropylene system was a pure system and was 
specially synthesized to scrutinize reactive species.  After the forcefields have been 
validated for chemical aging in olefins, they may be suitable for studying the chemical 
aging of the more complicated butyl systems.  As an efficiency measure, the simulations to 
validate the forcefields can be run while the experiments on the new butyl formulations are 
being performed.  In that way, when the experimental butyl data becomes available, the 
constitutive model can be tested and the new simulations on the butyl may be ready to 
begin. 
 
Another possible avenue of exploration is the effect of filler.  While most o-rings have 
filler added to enhance the mechanical properties, the microscopic interactions between the 
filler particles and the polymer matrix are not well understood.  Micromechanics 
calculations could help investigate those interactions. 
 
Refinements to the stress transfer functions are also possible.  The current equations were 
developed from sequential crosslinking and scission.  Simultaneous crosslinking and 
scission may need a slightly different form.  We have developed a logical extension of the 
Fricker formula for two stages to multiple stages, with only cursory testing.  More 
comprehensive testing would be wise. 
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APPENDIX A: SUMMARY OF MATERIAL MODEL 
 

A.1.  Introduction 
 
 
This material model was developed for the crosslinking and scission of rubbers in multiple 
strained states.  The basis of the model is a modification of the independent network 
hypothesisi.  In the independent network hypothesis, networks have a state of ease (i.e., 
zero stress) at the deformation state in which they were formed.  Thus, crosslinking in a 
strained state will lead to additional networks being formed.  The resulting stress on the 
entire sample is the sum of the individual stresses from each network.  This model as 
implemented in Strumento is capable of having five different networks with corresponding 
states of ease. 
 
 
Scission requires a modification to the independent network hypothesis.  Because of the 
coupling between the strain history and the reaction history, the networks that form in the 
strained states have a dependence upon the prior topology of the sample.  This can be seen 
schematically in Figure A.1.  The system is crosslinked once in an isotropic state.  After 
deformation, the system is crosslinked for a second time in the deformed state.  These 
crosslinks are not necessarily chemically different from the first crosslinks, but their state 
of ease will be the deformed state.  If the first network undergoes scission, the stress will 
decrease.  However, the stress will not decrease as far as the independent network predicts.  
Some of the second stage crosslinks will continue to hold the sample in the same 
deformation and effectively act as first stage crosslinks.  From Figure A.1, this result is not 
a one-for-one exchange, but is instead a consequence of several crosslinks acting together.  
In this manner, the sample retains memory of the coupling of the deformation and reaction 
histories   The term stress transfer is used to denote the result of crosslinks from a 
particular network acting as crosslinks from a different network.  The stress transfer 
functions (as defined under the section titled "Parameter Explanations") quantitatively 
describe the portion of a given network acting as a different network. 
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Figure A.1: Schematic of a Two-Stage Network Undergoing Crosslinking and 
Scission. 

 
 

A.2.  Strain Energy Formulations 
 
 
As implemented, this material model actually has three strain energy types available.  This 
feature allows for comparison of the effects of chemical crosslinks, physical 
entanglements, and stress transfer on the sample stress.  This section gives the formulae for 
calculation of the stresses from the three strain energy types.  The section labeled 
"Parameter Explanations" details how to calculate the values that are required for the input 
deck. 
 
 
  A.2.1.  Strain Energy Type 1: Affine Model 
 
 
This strain energy only includes the effects of chemical crosslinks.  The affine model of 
rubber elasticity is used.  For a given stage i, the stress is calculated as 
 

 σ
i

affine =
Gi

det λ( )
λλ

i

−1 λ
i

−1[ ]T
λT + p

 (A.1) 
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where Gi is the modulus of stage i (number of chains formed during stage i per original 
volume multiplied by RT), λ  is the deformation gradient tensor relative to the original 
state, and λ

i
 is the deformation gradient at which the i stage crosslinks were inserted.  p is 

an indeterminate Lagrangian multiplier.   
 
The total Cauchy stress is calculated from 
 

 σ = σ
i

affine − I
Tr σ

i

affine( )
3

+
Gi

G
κ ln

det λ( )
det λi( )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

i=1

nstages

∑

 (A.2) 
 
where κ is the bulk compressibility of the entire sample and G is the sum of moduli for 
stages not in their state of ease. 
 
A.2.2.  Strain Energy Type 2: Affine Model with Ogden Entanglements 
 
This strain energy has chemical crosslinks using the affine model and an entanglement 
contribution using the Ogden modelii.  Stress for the Ogden model can be written in terms 
of principal stretches as: 
 

 σ k
ogden =

Ge,1

det λ( )
λk

a1 +
Ge,2

det λ( )
λk

a 2 + p

 (A.3) 
 
where Ge,1 and Ge,2 are moduli (effectively, number of entanglements per original volume 
multiplied by RT), a1 and a2 are chosen constants, and λk is a principal stretch.  p is again 
an indeterminate Lagrangian multiplier.  The total Cauchy stress is then calculated as 
 
 

σ = σ ogden − I
Tr σ ogden( )

3
+

Ge,1

G
κ ln det λ( )[ ]+ σ

i

affine − I
Tr σ

i

affine( )
3

+
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G
κ ln

det λ( )
det λi( )
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⎥ 
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⎨ 
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⎫ 

⎬ 
⎪ 

⎭⎪  i=1

nstages

∑  

 
 (A.4) 
 
where G now includes Ge,1 as part of the sum of moduli not in their state of ease.  Ge,2 is 
not included as part of the G sum.  Note that both entanglement terms are assumed to have 
the original deformation as their state of ease.  Physically, this corresponds to the fact that 
the initial gelation traps the maximum number of entanglements so that additional 
crosslinks do not trap any additional entanglements.  This may not be true for lightly 
crosslinked networks (see Ref. iii); however, rubbers used in standard applications are well 
above their gel points. 
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The Mooney-Rivlin form is a special case of the Ogden model with a1=2.0 and a2=-2.0.  
While the Ogden model can be used by itself to calculate crosslinked networks without 
entanglements, the current implementation will only support one such network with its 
state of ease at the original deformation. 
 
A.2.3.  Strain Energy Type 3: Phantom Model with Slip-tube Entanglements 
 
This strain energy has chemical crosslinks using a phantom model and an entanglement 
contribution from the slip-tube modeliv.  The form of the phantom stress is the same as Eq. 
A.1; however, the phantom model has a modulus that is half that of the affine model (for 
tetrafunctional crosslinks).  The slip-tube model has been fit to a power series in the first 
two strain invariants for a series of deformations. 
 

 

 (A.5) 

W = c jk I1 − 3( ) j

k= 0

∞

∑
j= 0

∞

∑ I2 − 3( )k

 
where cjk are fit parameters and the strain invariants are defined as 
 
 I1 = λ1

2 + λ2
2 + λ3

2  
 (A.6) 
 I2 = λ1

2λ2
2 + λ2

2 λ3
2 + λ3

2 λ1
2

 (A.7) 
 
in terms of principal stretches (λi).  The deformations were chosen so that all three 
stretches lie in the range of 0.3 to 3.0 and the set of stretches is consistent with 
incompressibility.  A warning will print if the given deformation is outside this fit range.  
In fact, the region was fit in two segments: one for small strain invariant and one for larger 
strain invariant.  For deformations in which one invariant is large and one is small, the 
large strain invariant fit is used.  The code switches smoothly between the two segments 
automatically. 
 

Table A.1.  Coefficients for Slip-Tube Strain Energy as a Power Series in Strain 
Invariants 

 
Constant I1 ≤ 5.0 and I2 ≤ 6.27  I1 ≤10.0 and I2 ≤12.0  

c00 0 0 
c10 0.0851661 0.0943634 
c01 0.057562 0.043431 
c11 -0.00334862 0.00113886 
c20 -0.00478368 -0.00745304 
c02 -0.00280587 -0.000935738 
c21 -0.000418954 -0.000340933 
c12 0.000503024 0.0000767233 
c30 0.000841539 0.000553051 
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c03 0.000609627 -0.0000339206 
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The stress in principal stretch direction α is 
 

 

σα
ST det λ( )

Ge

= 2λα
2 c10 + 2λα

2 c01B + 2λα
2 c11 I2 − 3( )+ B I1 − 3( )[ ]+ 4λα

2 c20 I1 − 3( )

      + 4λα
2 c02B I2 − 3( )+ 2λα

2 c21 2 I1 − 3( ) I2 − 3( )+ B I1 − 3( )2[ ]
      + 2λα

2 c12 I2 − 3( )2 + 2B I1 − 3( ) I2 − 3( )[ ]+ 6λα
2 c30 I1 − 3( )2 + 6λα

2 c03B I2 − 3( )2 + p

 (A.8) 
where  
 
 B = λβ

2 + λγ
2

 (A.9) 
 
 
This gives the total Cauchy stress for strain energy type 3 as 
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 (A.10) 
 
where again Ge is included in G if the first stage crosslinks are not in their state of ease.  
Similar to the Ogden model, only the initial gelation can trap entanglements, which causes 
the entanglements to have the original deformation as their state of ease. 
 
 

A.3.  Parameter Explanations 
 
 
This section describes the parameters that must be given through the input deck.  These 
parameters relate to the material model flory and do not include solver specific 
formulations.  All these parameters should be entered in consistent units.  Where 
appropriate, the parameters are identified with variables in the previous section. 

 
A.3.1.  Material Parameters 

 
A.3.1.1. Physical Properties 

 
 
The density of the material must be specified along with two of the six elastic constants.  
Generally, the Young's modulus and Poisson's ratio are specified.  Since this is a model for 
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rubber, the Poisson's ratio should be close to 0.5.  However, a value of exactly 0.5 will 
cause numerical error in calculating the other elastic constants.  The shear and bulk moduli 
are calculated only once from the input Young's modulus and Poisson's ratio and, thus, 
remain constant through the calculation even as the material changes.  This may cause 
some unexpected behavior in the convergence since an augmented Lagrangian approach is 
used with shear and bulk modulus scaling based on the initial values. 
 
 
The number of reference states and their reference deformations are set using the state 
function.  This should be a piecewise continuous function so that an integer is specified at 
every time.  Care should be taken in setting reference states because the reference 
deformation is set on the first iteration of the given time.  Thus, to get an equilibrated 
reference deformation, one should hold at the desired deformation for an extra time step 
and set the new reference state during the extra time step.  Reference states should be set 
for any chemical changes (e.g., scission occurs, but not crosslinking) and the 
corresponding crosslink densities set accordingly.  A crosslink density must be set for 
every reference state even if no crosslinks were introduced in that state.  In addition, the 
number of reference states is a cumulative total, so even if all crosslinks are removed from 
some network, the reference state must remain with crosslink density set to zero. 
 
 

A.3.1.2 Chemical Properties 
 
 
The cross X functions are used to specify Gi for use in Eqs. A.1, A.2, A.4, and A.10.  X 
refers to the reference state in which the crosslinks were inserted.  The values should be 
input as 
 

 cross X function =
number of stage X crosslinks remaining * R * temperature

original volume
 (A.11) 
 
where R is the gas constant in units that will cause cross X function to have units of 
pressure matching the elastic constants.  Notice that this is a crosslink density.  The stress 
calculation assumes a tetrafunctional network with the affine model having twice as many 
strands as crosslinks (Gi=2*cross X function) and the phantom model having the number 
of strands equal to the number of crosslinks (Gi=cross X function).  In principal, any 
functionality can be used simply by adjusting the cross X function to account for the 
translation between cross X function and Gi. 
 
 
For the entanglement contributions, the entden tX functions work similarly to the cross X 
function except that the reference state is always the original deformation.  However, the 
analogous expression 
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 entden tX function =
number of entanglements * R * temperature

original volume
 (A.12) 
 
is not quite correct.  If a2 is negative in Eq. A.3, then the entden t2 function must also be 
negative.  The exponents a1 and a2 for Eq. A.3 are given using the entexp tX functions 
where X is 1 or 2. 
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For the slip-tube model, the entden t1 function is used to calculate Ge in Eq. A.10.  In their 
original formulation of the slip-tube model, Rubinstein and Panyukov effectively set  
 

 Ge =
4
7

* number of monomers
Ne *original volume

 (A.13) 
 
where Ne is the number of monomers between entanglements.  The program corrects for 
this oddity by multiplying the given value for entden t1 function by 7/4 so that the Ge used 
in the calculation matches the idea that Ge is the plateau modulus from shear experiments 
that is retained by trapping the entanglements. 
 
 
The flag "phi onoff" controls whether the stress transfer functions are used.  A value of one 
will cause the program to calculate and use stress transfer functions.  A value of zero 
prevents the use of stress transfer functions.  The generalized stress transfer functions from 
the Fricker formulav are 
 

  
Φx

Rj =
stage x crosslinks removed in stage j

total number of crosslinks added (up through stage j)
=

Gx
Rj

Gk
*

k=1

j

∑

 (A.14) 
 
where Gk

*  is the initial modulus for the network formed in stage k, Gx
Rj  is the difference 

between the modulus of the stage x network at the beginning of stage j and at the end of 
stage j (i.e., the effect of the scissions for the stage x networks that occur during stage j), 
and Φx

Rj  is the stress transfer function for the stage i network based on chemical changes 
during stage j. 
 
 
The effective modulus ( ) for each stage p of the total n stages is calculated from Gp

eff

 

 Gp
eff = Gp 1− Φi

Rk

k= p

n

∑
i=1

p−1

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + Φp

Ri Gk

k= p +1

i

∑
i= p +1

n

∑
 (A.15) 
 
where Gx is the current modulus for the network formed at stage x.  For notational 
convenience, if the end index is smaller than the start index, no terms are summed.  Notice 
that this formulation assumes an isothermal process.  Note also that entanglements are not 
included in stress transfer functions. 
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A.3.2.  Numerical Parameters 
 
 
The flag "strain energy type" can have three values: 1 denotes affine model, 2 denotes 
affine model with Ogden entanglements, and 3 denotes phantom model with slip-tube 
entanglements.  All three types can have the "phi onoff" flag set to either on (1) or off (0). 
 
 
The value of "tol function" indicates a threshold for a deviation from unity.  If the value of 

"tol function" is greater than the value of ln det λ
det λ

ref

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, then det λ

det λ
ref

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 is considered unity.  

No default exists for "tol function"; the recommended value is 1.0x10-6.  
 
 
This model is configured to work with an augmented Lagrangian solution method.  Thus, 
an adagio multilevel solver block with a control stiffness block should be used.  In 
addition, the parameters for material model flory block must contain "reference strain", 
"max poissons ratio" (νmax), and "target E" (Etar).  Generally, "reference strain" = -1.  The 
other two parameters are used to set the bulk and shear scaling for the augmented 
Lagrangian technique.  The scaling factors are calculated as 
 

 

 (A.16) 

2Greal = 4 cross
X =1

5

∑ Xfunction(t = 0)

 2Gscaled =
Etar

1+ ν max

 (A.17) 

 SCALE2G =
2Gscaled

2Greal

 (A.18) 

 κ scaled =
2Gscaled * 1+ ν max( )

3* 1− 2νmax( )
 (A.19) 

 SCALEκ =
κ scaled

κ
 (A.20) 
 
SCALE2G has a minimum value of unity, while SCALEκ has a maximum value of unity. 
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Table A.2.  Summary of Parameters for Property Specification for Material Model 
Flory  

 
Entry Description 

cross X function Real function of time.  These functions are used to set 
the modulus for the crosslinks.  Five terms (X=1 to 5) 
should be given even if some need to be set to zero.  
Should have pressure units. 

entden tX function Real function of time.  Used to set entanglement moduli 
for strain energy types 2 and 3.  However, both terms 
(X=1 and 2) must be set for all systems even if not used.  
Zero is an acceptable value function.  Should have 
pressure units. 

entexp tX function Real function of time.  Used to set the exponents for the 
Ogden entanglement terms.  However, both terms (X=1 
and 2) must be set for all systems even if not used.  Zero 
is an acceptable function. 

max poissons ratio Real, constant used as Poisson's ratio to set the scaling 
for the augmented Lagrangian technique.  Should be 
between 0 and 0.5. 

phi onoff integer flag for stress transfer functions 
1=calculate and use 
0= neglect them 

reference strain Real, constant used for the augmented Lagrangian 
technique.  Usually set to -1. 

state function integer function of time indicating a running total of 
reference states 
This function must be constant or piecewise continuous. 

strain energy type integer flag indicating 
1=affine model (crosslinks only) 
2=affine model with Ogden entanglements 
3=phantom model with slip-tube entanglements 

target E Real, constant used as Young's modulus to set the 
scaling for the augmented Lagrangian technique.  
Should have pressure units. 

tol function real function of time that indicates a threshold for 

deviations from reference states.  If ln det λ
det λ

ref

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 is 

greater than tol function, the system is away from its 
reference state. 
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APPENDIX B: FORTRAN PROGRAM FOR CALCULATING gα
 
 program rpscale 
c Description: 
c  This program will calculate the scaling factors(g) for use 
c  with the slip-tube model of Rubinstein-Panyukov 
c  Macromolecules 35, 6670 (2002) 
c The main program is a driver to give a set of stretch ratios and 
c receive the corresponding scaling factors (sqrtg). 
c This driver calculates a set of stretches by looping over stretch 
c 1 and stretch 2 and calculating stretch 3 using incompressibility 
c Since this is an iterative process, the oldscale for the next  
c combination of stretches is the current scale times 0.80. 
 
c Variables: 
c  i  int loop variable 
c  j  int loop variable 
c  k  int loop variable 
c  maxlambda? int maximum number of times to change  
c     the stretch in the ? direction 
c     maxlambda1 controls the outer  
c     stretch(1) loop while maxlambda2  
c     controls the inner stretch(2) loop 
c  oldscale real sqrtg in three directions as an  
c     initial guess 
c  one  dp 1.0d0 
c  scale  real sqrtg in three directions as current  
c     result 
c  steplambda real an increment to increase or decrease  
c     stretches 1 and 2  
c  stretch real principal stretches in 3 directions 
c 
c Subroutines: 
c  secant: uses a secant method to solve for sqrtg(2) 
c 
c Output files: 
c  sqrtg.out: contains the three stretches and three sqrtg 
c 
c 
c*********************************************************************** 
 implicit none 
 real stretch(3),scale(3),oldscale(3),steplambda 
 parameter(steplambda=0.05) 
 double precision one 
 parameter(one=1.0d0) 
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 integer i,j,k,maxlambda2,maxlambda1 
 parameter(maxlambda1=2,maxlambda2=11) 
 
 open(10,file="sqrtg.out") 
 write(10,*) "stretch1 stretch2 stretch3 sqrtg1 sqrtg2 sqrtg3" 
  
 oldscale(1)=1.294 
 oldscale(2)=1.03 
 oldscale(3)=0.51 
 scale(1)=1.298 
 scale(2)=1.02 
 scale(3)=0.52 
 stretch(1)=2.5 
 stretch(2)=1.2 
  
 do 500 k=1,maxlambda1 
   stretch(1)=stretch(1)-steplambda 
   stretch(2)=1.2 
   do 100 i=1,maxlambda2 
     stretch(2)=stretch(2)-steplambda 
     stretch(3)=one/(stretch(2)*stretch(1)) 
     call secant(oldscale,stretch,scale) 
     write(10,*) stretch,scale 
     do 10 j=1,3 
       oldscale(j)=0.80*scale(j) 
 10     continue 
 100   continue 
 500 continue 
 stop 
 end 
 
 
*********************************************************************** 
 subroutine secant(oldscale,stretch,scale) 
c*********************************************************************** 
c Description: 
c  This subroutine uses the secant method to solve 
c  for three scaling factors, given three principal 
c  stretches and initial guesses. 
c  The equation I need to solve is 
c  G=sum(g(i))-3=0 
c 
c  E. Kreyszig Advanced Engineering Mathematics 8th ed 
c   John Wiley & Sons NY (1999) p. 846 details the 
c   secant method 
c 
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c  The secant method will give me 
c  x(n+1)=x(n)-G(x(n))*{x(n)-x(n-1)} 
c    /{G(x(n))-G(x(n-1))} 
c  x is the scale factor (sqrtg) for direction = 2  
c   (an arbitrary choice). 
 
c 
c Variables: 
c  anumerator real numerator for equation to solve  
c      secant method  
c     (gbeta(n)-gbeta(n-1)) 
c  bigG  real sum of squares of current scaling 
c      factors 
c  denominator real denominator for equation to solve 
c      secant method 
c     (G(sqrtg(2,n)-G(sqrtg(2,n-1)) 
c  i  int loop index 
c  maxiter int maximum number of iterations to  
c      attempt 
c  oldbigG real bigG from last iteration 
c  oldscale real scaling factors (sqrtg) from 
c     the last iteration 
c  outerloop int loop index for the overall method 
c  scale  real current values of the scaling factors 
c      (sqrt(g)) 
c  stretch real principal stretches 
c  three  real 3.0d0 
c  tol  real tolerance to determine when to  
c     stop iterating.  Both numerator 
c     and denominator are compared to it. 
c  zero  real 0.0d0 
c   
c Subroutines: 
c  cubicsolve: returns the physical root of the cubic  
c    equation.  This returned value is sqrt(g). 
c********************************************************************** 
 implicit none 
 integer i,outerloop,maxiter 
 parameter(maxiter=100) 
 real anumerator,denominator,tol 
 parameter(tol=1.0e-09) 
 real stretch(3),scale(3),oldscale(3),bigG,oldbigG 
 real zero,three 
 parameter(zero=0.0d0,three=3.0d0) 
 
 oldbigG=-3 
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 do 10 i=1,3 
  oldbigG=oldbigG+oldscale(i)*oldscale(i) 
 10 continue 
 
 do 100 outerloop=1,maxiter 
 
c calculate the new scale values 
   call cubicsolve(stretch(2),scale(2),stretch(1),scale(1)) 
   call cubicsolve(stretch(2),scale(2),stretch(3),scale(3)) 
 
c calculate new bigG 
   bigG=-3 
   do 20 i=1,3 
  bigG=bigG+scale(i)*scale(i) 
 20   continue 
 
c apply the secant calculation 
   anumerator=scale(2)-oldscale(2) 
   denominator=bigG-oldbigG 
 
c Check for convergence and ensure not to divide by zero 
   if(abs(denominator).le.tol.or.abs(anumerator).le.tol) then 
c this exit is a Fortran 90 command to break the do loop 
  exit 
   endif 
 
   oldscale(2)=scale(2) 
   scale(2)=oldscale(2)-bigG*anumerator/denominator 
   oldbigG=bigG 
   
 100 continue 
  
 return 
 end 
 
 
c*********************************************************************** 
 subroutine cubicsolve(sbeta,gbeta,salpha,galpha) 
c*********************************************************************** 
c Description: 
c    This subroutine will solve the cubic equation associated with 
c    using the Lagrangian multiplier.   
c I am solving for galpha, given sbeta, gbeta, salpha 
c 
c The Lagrangian multiplier equation is (see Book7, p47) 
c  12/A*bigLambda=-3*sbeta/gbeta**3+3/(gbeta*sbeta) 
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c     -4/(gbeta*gbeta) 
c  where A is the prefactor containing chain density, kT, and 
c  imaginary chain length.  I don't need to calculate it here 
c  because it cancels. 
c 
c Thus, the governing cubic equation is 
c bigZ*galpha**3+bigC*galpha**2+bigD*galpha+bigE=0 
c  bigZ=bigLambda*12/A*salpha 
c  bigC=-3 
c  bigD=4*salpha 
c  bigE=3*salpha**2 
c 
c A cubic equation gives 
c  y**3+p*y**2+q*y+r=0 
c  p=bigC/bigZ 
c  q=bigD/bigZ 
c  r=bigE/bigZ 
c 
c Numerical Recipes recommends testing 
c  Q=(p**2-3*q)/9 
c  R=(2*p**3-9*p*q+27*r)/54 
c Two cases exist. 
c  If R^2<Q^3, three real roots exist 
c   theta=arccos(R/sqrt(Q^3)) 
c   y1=-2*sqrt(Q)*cos(theta/3)-p/3 
c   y2=-2*sqrt(Q)*cos((theta+2pi)/3)-p/3 
c   y3=-2*sqrt(Q)*cos((theta-2pi)/3)-p/3 
c  If R^2>=Q^3, only one real root exists 
c   A=-{R+sqrt(R^2-Q^3)}^(1/3) 
c   B=Q/A (or zero if A=0) 
c   y=A+B-p/3 
c 
c For more than one root, I check to ensure that the root squared  
c  is between 0 and 3.  If more than one root meets this test, the last  
c  root found will be returned to the calling program. 
 
c Variables: 
c Note: most of the variables are short-hand terms to substitute in 
c the equation.  Those variables are defined in the Description 
c section. 
c      
c  four dp 4.0d0 
c  galpha real RP scaling factor in the alpha direction 
c     (this really is sqrt(galpha) in the RP  
c     equation) 
c  gbeta real RP scaling factor in the beta direction 
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c     (this really is sqrt(gbeta) in the RP  
c     equation) 
c  i int loop index 
c  icount int checks if more than one root was between  
c     0 and 3.   
c  isign int a placeholder so that I can take the cube 
c    root of a negative number 
c  one dp 1.0d0 
c  sbeta real beta direction stretch 
c  salpha real alpha direction stretch 
c  three dp 3.0d0 
c  two dp 2.0d0 
c  twopi real 2*pi 
c  x real array to hold multiple roots 
c  zero dp 0.0d0 
c*********************************************************************** 
 implicit none 
 double precision three,four,one,two,zero 
 parameter(three=3.0d0,four=4.0d0,one=1.0d0,two=2.0d0,zero=0.0d0) 
 real bigA,bigB,bigC,bigD,bigE,bigZ,bigLambda,bigQ,bigR 
 real p,q,r 
 real sbeta,gbeta,salpha,galpha,x(3),twopi,theta 
 parameter(twopi=6.283184) 
 integer i,icount,isign 
 icount=0 
  
 bigLambda=-three*sbeta/(gbeta**three) 
     &  +three/(gbeta*sbeta)-four/(gbeta*gbeta) 
 bigZ=bigLambda*salpha 
 bigC=-three 
 bigD=four*salpha 
 bigE=three*salpha*salpha 
 
 p=bigC/bigZ 
 q=bigD/bigZ 
 r=bigE/bigZ 
 
 
 bigQ=(p*p-three*q)/(three*three) 
 bigR=(two*p*p*p-three*three*p*q+three**three*r)/ 
     &  (three*three*three*two) 
 
c Check for the possibility of three real roots 
 if(bigQ**three.gt.bigR**2) then 
  theta=acos(bigR/sqrt(bigQ**3)) 
  x(1)=-two*sqrt(bigQ)*cos(theta/three)-p/three 
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  x(2)=-two*sqrt(bigQ)*cos((theta+twopi)/three)-p/three 
  x(3)=-two*sqrt(bigQ)*cos((theta-twopi)/three)-p/three 
 
c Now I need to find the physical root 
  do 10 i=1,3 
   if(x(i).gt.zero.and.(x(i)*x(i)).lt.three)  
     & then 
    icount=icount+1 
    galpha=x(i) 
   endif 
 10  continue 
 else 
  isign=1 
 
  bigA=sqrt(bigR*bigR-bigQ*bigQ*bigQ) 
  bigA=bigA+bigR 
 
c Hold a negative number in isign so that I can take the cube root 
c of a negative number 
  if(bigA.lt.zero) isign=-1 
  bigA=abs(bigA)**(one/three) 
  bigA=float(isign)*bigA 
  bigA=-bigA 
  if(bigA.ne.zero) then 
   bigB=bigQ/bigA 
  else 
   bigB=zero 
  endif 
  galpha=bigA+bigB-p/three 
 endif 
 
 return 
 end 
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