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Abstract

A method is developed for reliability analysis of dynamic systems under limited
information. The available information includes one or more samples of the system
output; any known information on features of the output can be used if available. The
method is based on the theory of non-Gaussian translation processes and is shown to
be particularly suitable for problems of practical interest. For illustration, we apply the
proposed method to a series of simple example problems and compare with results given
by traditional statistical estimators in order to establish the accuracy of the method.
It is demonstrated that the method delivers accurate results for the case of linear and
nonlinear dynamic systems, and can be applied to analyze experimental data and/or
mathematical model outputs. Two complex applications of direct interest to Sandia
are also considered. First, we apply the proposed method to assess design reliability of
a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration
response during normal re-entry, where the objective is to estimate the time-dependent
probability of component failure. This last application is directly relevant to re-entry
random vibration analysis at Sandia, and may provide insights on test-based and/or
model-based qualification of weapon components for random vibration environments.
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Reliability of Dynamic Systems
Under Limited Information

1 Introduction

Consider the input/output relationship illustrated by Fig. 1 and assume that: (1) input Y
is a stochastic process with specified probability law; and (2) S is a deterministic dynamic
system. Accordingly, system output X is a stochastic process. Our objective is to estimate
properties of the output in order to assess system performance; examples include the mean,
variance, and/or covariance of X. A more difficult task, and more relevant from the perspec-
tive of engineering applications, is the estimation of system reliability, i.e., the probability
that X remains within a “safe set” during some specified time interval, denoted by [0, τ ].
The complement of this event is the probability of system failure in [0, τ ]. For example,
consider the case of a re-entry body (RB) subject to an applied stochastic pressure field, Y,
that models the dynamic excitation provided by the re-entry environment, where output X
denotes the resulting stress response at the mounting point of critical internal component.
An appropriate safe set is defined by the value for the yield stress of the mounting point
material, and system failure occurs if the value for X exceeds the yield stress at any time
prior to time τ , the duration of the re-entry event. Alternative failure modes, e.g., structural
fatigue, can also be studied in this framework.

Numerous methods have been developed to approximate the statistics and/or probability
law of the output assuming various properties of the system are known. For example, if S is
known to have a linear functional form, the second-moment properties of X can be obtained
by classical methods of linear random vibration; see, for example, [18], [20] or [25]. If,
in addition, input Y is known to follow a Gaussian distribution, so does the output and
the probability law of X is completely defined by its second-moment properties. For non-
Gaussian input, the complete probability law of X is typically unavailable, but it is possible
to calculate higher-order statistics of the output for certain classes of non-Gaussian input.
For example, moments of any order of X can be obtained when Y can be expressed as a
polynomial function of a filtered Gaussian process (see [13], Section 5.3.2).

Input
Y

Dynamic system
S

Output
X

Figure 1. Input/output relationship for dynamic systems.
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If S is a nonlinear dynamic system, analytical and numerical solutions for the output
distribution are limited to small dimensional systems. The path integral method [19] can be
applied to propagate the density of the state vector in time, provided that the state can be
expressed as a diffusion process with known functional form. The Fokker-Planck equation
can also be used, but numerical solutions are required for most problems and the method
is typically limited to state vectors with dimension four or less [24, 26]. The methods of
perturbation [6] and stochastic averaging (see [17], Section 4.7) can be used provided that
the degree of nonlinearity of S is small and input Y has small intensity with a broad band
spectrum, respectively. Equivalent linearization [23] and moment closure techniques [12] can
be used to estimate statistics of X, but can deliver inaccurate results; their usefulness must
therefore be assessed on a case-by-case basis. Monte Carlo simulation is the only general
method that can deliver the accurate approximations for the statistics of X irrespective of
the dimension of S and properties of Y, but the method proves intractable when applied to
realistic, large dimensional systems.

As demonstrated, current methods are limited to small dimensional systems and/or re-
quire knowledge of the system that, for problems of practical interest, is unavailable. To
illustrate, we consider again the example of RB normal re-entry. An analyst may have a
mathematical model for input, Y, and RB structure, S, to make predictions of output X.
Often, the models for Y and S involve a large number of equations that can only be solved
numerically with a computer, requiring many hours to obtain an accurate solution. The
information on X is therefore limited to a few samples of the output allowed under budget
and/or time constraints. Likewise, an experimentalist may collect a series of measurements
of the aircraft’s response at a few important locations during a series of flights. In both cases,
the complete representation for S is unavailable so that properties of S, e.g., the degree of
nonlinearity, are unknown.

We propose a new method to approximate the statistics of output X, including the
probability that X remains within a set of acceptable performance during a specified time
interval. The method is based on the crossing theory of translation processes [11] and is
useful for problems of practical interest because all that is required for calculation is one
or more independent samples of the system output. At present, the method is developed
assuming stationary output and, when only one sample of the system output is available, X
must also be assumed ergodic. However, it is possible to extend the method to a special class
of non-stationary, non-ergodic output. It is shown that the proposed method is applicable
for the case of linear or nonlinear systems, and is particularly useful when information on
certain features of the output, e.g., knowledge that X takes values in a bounded rectangle
or is nonnegative almost surely, is available. Further, the method can be applied when X
represents outputs from a mathematical model for a physical system, or actual experimental
measurements of physical system response. To assess the accuracy of the proposed method,
we compare with results given by classical statistical estimators.
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The organization of this report is as follows. We review the essentials of crossing theory
of stochastic processes for reliability analysis in Section 2, and develop the necessary statis-
tical estimators used in this study in Section 3. The proposed method based on crossings
of non-Gaussian translation processes is defined in Section 4 and applied to a series of ex-
ample problems in Section 5 to demonstrate the accuracy and applicability of the proposed
method. Section 5.4 is a particular interest, as we apply the method to a complex, real-world
application of relevance to re-entry random vibration analysis at Sandia. A brief extension
of the proposed method to a special class of non-stationary, non-ergodic output is discussed
in Appendix A.
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2 System reliability by crossing theory

Let X(t), t ≥ 0, be an Rd–valued mean-square differentiable stochastic processes that denotes
system output (refer to Fig. 1). Denote by

D =
{
x ∈ Rd : g(x) ≤ 0

}
⊆ Rd, (1)

the safe set for output X(t), where g : Rd → R is a deterministic, measurable function that
defines system performance. For example, if the system fails whenever the output exits a
sphere of radius a > 0 centered at the origin in Rd, then g(x) = ‖x‖−a defines an appropriate
safe set. Our objective is to estimate

pF(τ) = 1− P (X(t) ∈ D, 0 ≤ t ≤ τ) , (2)

where τ ≥ 0 denotes the system lifetime. We refer to pF(τ) as the probability of system
failure within lifetime τ ; 1− pF(τ) is a measure for system reliability.

The use of Eq. (2) for applications is oftentimes impractical because the complete proba-
bility law for X is required. One approximate solution for pF(τ) is based on crossing theory
of stochastic processes; the approach is attractive because only the marginal probability law
for X and its time derivative are required for calculations [5]. Let random variable ND(τ) ≥ 0
denote the number of departures, or outcrossings, of stochastic process X(t) from safe set D
during time interval [0, τ ]; one D–outcrossing of X(t) ∈ Rd is illustrated by Fig. 2. Assuming
infrequent D–outcrossings and P (X(0) ∈ D) = 1, i.e., the system is safe at t = 0 almost
surely, a common approximation for Eq. (2) is given by (see [22], Section 7.2)

pF(τ) ≈ 1− exp (−E [ND(τ)]), (3)

where E[A] denotes the expected value of random variable A. For the special case when X
is stationary,

pF(τ) ≈ 1− e−νD·τ , (4)

where νD = E [ND(1)] is the mean D–outcrossing rate of X.

For the remainder of the discussion, we assume X(t) is a scalar process, denoted by X(t),
and consider safe set D = (−∞, a). The D–outcrossings of X(t) in this case correspond
to crossings of level a with a positive slope, referred to as a–upcrossings of X(t). An a–
upcrossing event for one sample of X(t) is illustrated by Fig. 3. Outcrossings for a more
general safe set, e.g., a–downcrossings and/or b–upcrossings of D = (a, b), can also be
calculated. The restriction to scalar processes is not a limitation for reliability studies since,
if X denotes the vector output of a dynamic system and acceptable performance implies
X belongs to a safe set D as defined by Eq. (1), then an 0–upcrossing of scalar process
X = g(X) defines system failure.
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Figure 2. D–outcrossing of one sample of X(t) ∈ Rd.

Figure 3. An a–upcrossing event of one sample of X(t).
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By Eqs. (3) and (4), our estimate for the probability of system failure is completely
characterized by the mean D–outcrossing rate of X. We therefore focus on methods to
estimate νD under limited information; two such methods are considered. Method 1 is based
on the statistics of output X. We demonstrate that this approach works well when data on X
is abundant and/or the value of the threshold a is small. However, for the more realistic case
of limited data on a highly reliable system, i.e., a relatively large threshold a, Method 1 may
provide no information on system failure because observation of a failure event is extremely
unlikely in this case. Method 2 uses a translation process model to approximate system
output X; the crossing theory of translation processes is then used to estimate νD. The
translation model is calibrated to the available data and any prior knowledge on X, and the
method provides an estimate of system failure regardless of the amount of available data
or value for threshold a. In contrast to Method 1 which depends on the joint distribution
of (X(t), X(s)) for s > t, we show that Method 2 depends only on the second-moment
properties and marginal distribution of X. The obvious disadvantage of Method 2 is that
the functional form of the translation assumed may be incorrect, or that X may not be a
translation process. The generalities of Methods 1 and 2 are discussed in Sections 3 and 4,
respectively.
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3 Output statistics

Suppose X(t), t ≥ 0, is a real-valued stochastic process with finite moments and unknown
probability law. To simplify the discussion, we assume X is stationary and ergodic, where
the latter implies that X satisfies

E [h(X(t))] = lim
τ→∞

1

τ

∫ τ/2

−τ/2

h(X(u)) du (5)

almost surely for any real-valued measurable function h such that E [h(X(t))] < ∞ (see [14],
p. 120). Output statistics for a special class of non-stationary, non-ergodic processes are
considered in Appendix A. The available information on X is assumed limited to one sample,
denoted by (X1 = X(t1), X2 = X(t2), . . . , Xn = X(tn)), where t1 < t2 < · · · < tn and n > 1
is the sample length. We assume the time step, ∆t = tk− tk−1 for k = 2, 3, . . . , n, is constant
and sufficiently small to accurately characterize the frequency content of X(t), the output
of a dynamic system.

Let µ = E [X(t)], γp = E [(X(t)− µ)p] for p = 2, 3, . . ., r(u) = E [X(t) X(t + u)], and
F denote the mean, central moments, correlation function, and marginal CDF of X, re-
spectively. We develop unbiased estimators for these quantities based on the available data,
and calculate the relationship between the variance and/or coefficient of variation of these
estimators and sample size, n. This relationship can be used, for example, to assess the
sensitivity of the estimators to the particular sample used for calculations, or to calculate
the value for n needed to achieve estimators of specified accuracy.

3.1 Moments

Let

Mn =
1

n

n∑
i=1

Xi and Γp,n =
1

n

n∑
i=1

(Xi −Mn)p (6)

be statistical estimators for µ and γp = E [(X(t)− µ)p], the mean and central moments of
X(t), respectively, where p ≥ 2 is an integer. For p = 2, Γ2,n provides an estimate for
the variance of X(t); Γ3,n/(Γ2,n)3/2 and Γ4,n/(Γ2,n)2 provide estimates for the coefficients of
skewness and kurtosis of X(t), respectively.

The estimators defined by Eq. (6) have some desirable properties. For example, Mn is
unbiased, i.e., E [Mn] = µ, and Γ2,n is asymptotically unbiased as n → ∞. The variance of

15



Mn and Γp,n are given by

Var [Mn] =
σ2

n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
and

Var [Γp,n] =
1

n2

n∑
i,j=1

E [(Xi −Mn)p (Xj −Mn)p]− γ2
p (7)

respectively, where ρk denotes the correlation coefficient of (Xi+k, Xi). For the special case
where {Xi} is an independent identically distributed (iid) time series, Var [Mn] = γ2/n. If,
in addition, the series has zero mean and the sample size n is sufficiently large that Mn ≈ 0,
then

Var [Γp,n] ≈ 1

n

(
γ2p − γ2

p

)
. (8)

3.2 Correlation and marginal distribution

Let

Rn(k ∆t) =
1

n− k

n−k∑
i=1

Xi+k Xi, k = 0, . . . , n′ < n, and

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x), ∀x ∈ R, (9)

be statistical estimators for r(u) = E [X(t) X(t + u)] and F , the correlation function and
marginal probability law of X(t), respectively, where 1(A) = 1 if event A is true and zero
otherwise (see [2], Section 5.2.5 and [3], Section 11.4). The estimators defined by Eq. (9) are
unbiased, i.e., E [Rn(k ∆t)] = r(k ∆t) for k = 0, . . . , n′ < n, and E [Fn(x)] = F (x), ∀x ∈ R.
The variance of Rn and Fn, given by

Var [Rn(k ∆t)] =
1

(n− k)2

n−k∑
i,j=1

E [Xi+k Xi Xj+k Xj]− r(k ∆t)2 and

Var [Fn(x)] =
1

n2

n∑
i,j=1

E [1 (Xi ≤ x) 1 (Xj ≤ x)]− F (x)2, (10)

provide a measure of the accuracy of the estimators for r, and F , respectively.
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For the special case where {Xi} is an iid time series, we have

Var [Rn(0)] =
1

n

[
E
[
X4

1

]
− (E

[
X2

1

]
)2
]

and

Var [Fn] =
1

n
F (x) [1− F (x)] , (11)

demonstrating that both estimators improve with increasing sample size n.

3.3 Mean crossing rate

The mean a–upcrossing rate of mean-square differentiable process X(t) is given by (see [22],
p. 290)

ν(a) =

∫ ∞

0

u f(a, u) du, (12)

where f(x, u) denotes the joint PDF of vector (X(t), Ẋ(t)), and Ẋ(t) = dX(t)/dt. For the
special case where X is Gaussian with zero mean and variance σ2, we have [21]

ν(a) =
b

2πσ
e−a2/2σ2

(13)

where b denotes the standard deviation of process Ẋ. Assuming ∆t is sufficiently small so
that at most one a–upcrossing occurs during the interval (t, t + ∆t) for any t ≥ 0,

ν̃(a) =
1

∆t
P (Xi ≤ a, Xi+1 > a) (14)

provides an approximation for ν(a) defined by Eq. (12).

Let

Vn(a) =
1

n ∆t

n∑
i=1

1 (Xi ≤ a, Xi+1 > a) (15)

denote an estimator for ν̃(a). It follows that E [Vn(a)] = ν̃(a) so that Vn(a) is an unbiased
estimator for ν̃(a). The variance of Vn(a), given by

Var [Vn(a)] =
1

(n ∆t)2

n∑
i,j=1

E [1 (Xi ≤ a, Xi+1 > a) 1 (Xj ≤ a, Xj+1 > a)]− ν̃(a)2, (16)

demonstrates that the accuracy of Vn(a) defined by Eq. (15) depends on the sample size, n,
the threshold, a, and the correlation structure of X(t). We note that, unlike the estimators
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defined in Sections 3.1 and 3.2 which depend only on the statistics of X, the estimator for
ν̃(a) defined by Eq. (15) depends on the joint statistics of vector (Xi, Xi+1). A large sample
size may therefore be required before Vn(a) is sufficiently accurate for applications.

To illustrate the properties of estimator Vn(a), we apply it to the AR(1) time series, i.e.,
the first order, stationary, auto-regressive process defined by [4]

Xi+1 = ρ̄ Xi + (1− ρ̄)1/2 Wi, i = 0, 1, . . . , (17)

where | ρ̄ | < 1 is a deterministic constant that defines the correlation length of the sequence,
{Wi, i ≥ 1} is a sequence of independent N(0, 1) random variables that are independent
of X0 ∼ N(0, 1), and time step ∆t = 1. For the special case where ρ̄ = 0, {Xi, i ≥ 1} is
an independent standard Gaussian time series. The mean a–upcrossing rate of the AR(1)
process is given by (see [13], Section 3.6.1)

ν(a) = ν̃(a) =

∫ a

−∞

[
1− Φ

(
a− ρ̄ u

(1− ρ̄)1/2

)]
φ(u) du, (18)

where Φ and φ denote the CDF and PDF, respectively, of a N(0, 1) random variable, and
the first equality follows since {Xi} is a discrete-time stochastic process with ∆t = 1.

For ν̃(a) 6= 0, let

COV [Vn(a)] =

√
Var [Vn(a)]

E [Vn(a)]
=

1

ν̃(a)

√
Var [Vn(a)] (19)

denote the coefficient of variation of estimator Vn(a) defined by Eq. (15), where quantity
Var [Vn(a)] is defined by Eq. (16). Table 1 lists values for COV [Vn(a)] with ρ̄ = 0, 0.7, and
0.9, thresholds a = 1, 2, and 3, and samples of size n = 10, 50, and 100. Results illustrate
that COV [Vn(a)] decreases with increasing values for n, and increases with increasing values
for a. For example, with ρ̄ = 0.9 the coefficient of variation of V10(1) and V100(2) are
approximately the same.

The accuracy of Vn(a) also depends on the correlation length, ρ̄. In general, to achieve
a specified value for COV [Vn(a)] we need a longer sample for a correlated series than for
an independent series. For example, the coefficient of variation of Vn(3) is approximately 3
for (n = 70, ρ̄ = 0) and (n = 100, ρ̄ = 0.7) and approximately 5 for (n = 30, ρ̄ = 0) and
(n = 100, ρ̄ = 0.9). Hence, one sample of a correlated AR(1) process of size n = 100 with
coefficients ρ̄ = 0.7 and ρ̄ = 0.9 carries the same information as one sample of an independent
AR(1) process of size n = 70 and n = 30, respectively. This example motivates the need
for alternative methods to estimate the a–upcrossing rate for the case of high threshold, a,
and/or long correlation length, ρ̄.
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Table 1. Coefficient of variation of Vn(a) for AR(1) process.

Sample size, n Threshold, a ρ̄ = 0 ρ̄ = 0.7 ρ̄ = 0.9

1 0.6849 0.9630 1.4732
10 2 2.0538 2.6623 3.5038

3 8.5965 9.8242 15.198

1 0.3010 0.4332 0.7330
50 2 0.9167 1.2083 1.8952

3 3.8441 4.4822 7.2857

1 0.2124 0.2967 0.5134
100 2 0.6481 0.8704 1.4199

3 2.7181 3.1055 5.1499
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4 Translation model

Let X(t), t ≥ 0, be a real-valued stationary and ergodic stochastic process with unknown
probability law; the procedures considered in Appendix A can be used for a special class of
non-stationary, non-ergodic output. As in Section 3, the available information on X includes
one sample, denoted by (X1, X2, . . . , Xn); prior knowledge on X may or may not be available.
Our objective is to construct an approximation for X with known second-moment properties
and marginal probability law in order to estimate system performance. The approximation
is consistent with the available information on X and is based on a translation process
model. Estimates based on translation processes are particularly useful if prior knowledge is
available. For example, we may know that X has bounded range and/or its probability law
belongs to a family of distribution functions.

4.1 Model definition

Let XT(t), t ≥ 0, be a translation process defined by

XT(t) = F−1 ◦ Φ[G(t)] = h[G(t)], (20)

where F denotes an arbitrary distribution function, Φ denotes the CDF of a N(0, 1) random
variable, and G(t) denotes a mean-square differentiable stationary Gaussian process with
zero mean, unit variance, and known correlation function. It can be shown that: (i) XT

is stationary in the strict sense and has marginal distribution F ; and (ii) XT has an a–
upcrossing at time t if, and only if, G has an h−1(a)–upcrossing at time t [11]. By (ii),

ν(a) =
β√
2π

φ
[
Φ−1 ◦ F (a)

]
(21)

is the mean a–upcrossing rate of XT, where φ denotes the PDF of a N(0, 1) random variable
and β2 denotes the variance of process Ġ(t) = dG(t)/dt.

4.2 Model calibration to available information

Let F (x; θ) denote the marginal CDF of XT defined by Eq. (20), explicitly written as a
function of x ∈ R with parameter vector θ. The selection of F (x; θ) is a two-step process:

1. Choose the functional form for F based on any prior knowledge about X; and

2. Given a functional form for F , use the available sample, (X1, . . . , Xn), to estimate
parameter vector, θ; let θ̂ denote the estimate for θ.

21



For illustration, three specific cases are considered: (i) no prior knowledge of X is avail-
able; (ii) the range of X is known to be bounded; and (iii) the marginal distribution of X
is known to be symmetric. We note that many problems of practical interest are consistent
with cases (i)–(iii); methods of model selection, developed in [8] and [15], may be applied to
more general types of prior knowledge.

4.2.1 No prior knowledge on X

With no prior knowledge about the probability law for X, we apply the standard statistical
estimator developed in Section 3 so that F = Fn as defined by Eq. (9). This approach can
be useful if the sample size, n, is large, or the threshold a is small. However, for sufficiently
large a and/or sufficiently small n such that Xi < a, i = 1, . . . , n, we have Fn(a) = 1; in this
case, the estimator defined by Eq. (9) may be of little practical use.

4.2.2 Range of X is known to be bounded

Suppose it is known that output X takes values in bounded interval [d1, d2]. This type of
prior knowledge is common for systems subject to limiting constraints, e.g., the displacement
response of a SDOF oscillator constrained by two rigid barriers at locations d1 and d2. One
appropriate model for this case is the distribution of a beta random variable, given by (see
[2], pp. 129–133)

F (x; q, λ) =
1

B(q, λ) (d2 − d1)q+λ−1

∫ x̄

d1

(y − d1)
q−1 (d2 − y)λ−1 dy, (22)

where θ = (q, λ)T denote deterministic shaping parameters, x̄ = (x − d1)/(d2 − d1), and
B(q, λ) = Γ(q) Γ(λ)/Γ(q + λ) and Γ( · ) denote the beta and gamma functions, respectively
(see [1], Sections 6.1 and 6.2). The method of maximum likelihood can be used to calculate
θ̂ = (q̂, λ̂)T, an estimate for θ based on the available data (see [16], Chapter 25).

The coefficients of skewness and kurtosis, denoted by γ3/γ
3/2
2 and γ4/γ

2
2 respectively and

defined in Section 3.1, are illustrated by Fig. 4 for q ∈ (0, 6] and λ ∈ (0, 2]. The broad range
of values shown make the model defined by Eq. (22) very attractive for applications.

4.2.3 Marginal distribution of X is known to be symmetric

Suppose the distribution of X is known to be symmetric about x = µ, but no information
on the range of X is available. In this case, we require our model for F defined by Eq. (20)
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Figure 4. Relationship between coefficients of skewness
and kurtosis and shape parameters q and λ for the beta dis-
tribution.

to have zero skewness and be defined over the entire real line. One appropriate model in this
case is the distribution of a student-t random variable, given by (see [27], Section A.2)

F (x; θ) =
Γ( θ+1

2
)

√
π θ Γ( θ

2
)

∫ x

−∞

[
1 +

1

θ
(y − µ)2

]−(θ+1)/2

dy, (23)

where µ denotes the mean of the distribution, and θ = θ > 0 is a deterministic shape
parameter. As before, the method of maximum likelihood can be applied to provide θ̂ = θ̂,
an estimate for parameter θ (see [16], Chapter 28).

The coefficient of kurtosis of the student-t random variable as a function of parameter θ
is illustrated by Fig. 5, demonstrating the flexibility of the model defined by Eq. (23). We
note that as θ →∞, F defined by Eq. (23) approaches the distribution of a N(0, 1) random
variable.

4.3 Mean crossing rate

Let

Gi = Φ−1 ◦ F (Xi; θ̂), i = 1, . . . , n, (24)

define a collection of random variables, where F (x; θ̂) is the marginal CDF of XT defined
by Eq. (20) calibrated to the available information on X as described in Section 4.2, and
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Φ denotes the CDF of a N(0, 1) random variable. The collection (G1, . . . , Gn) denotes the
approximate Gaussian image of (X1, . . . , Xn), the available sample of output X(t). An
approximation for the mean a–upcrossing rate of XT defined by Eq. (21) is given by the
following random variable

VT,n(a) =

√
Γ2,n

2π
φ
[
Φ−1 ◦ F (a; θ̂)

]
, (25)

where Γ2,n is an estimator for β2, the variance of Ġ(t) defined by Eq. (21); for calculations,
we apply Eq. (6) to sequence (Ġ1, . . . , Ġn−2), where

Ġk =
1

2 ∆t
(Gk+2 −Gk) , k = 1, . . . , n− 2. (26)
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5 Applications

We next consider several applications to demonstrate the two methods for estimating mean
outcrossing rates defined in Sections 3 and 4. The stationary, ergodic response of a linear
and nonlinear oscillator are discussed in Sections 5.1 and 5.2, respectively. These first two
applications provide benchmark tests for the proposed method since the distribution func-
tions and mean crossing rates of the oscillator response are available analytically. We next
consider the stationary, ergodic response of a nonlinear vibro-impact system in Section 5.3,
where the system output is known to take values in a bounded interval; this system has been
successfully used to model the dynamics of certain MEMS devices at Sandia. In Section 5.4,
X(t) denotes the non-stationary, non-ergodic vibration response of RB components during
normal re-entry, where the available sample of X comes from either actual flight test data
or outputs from a complex finite element model for the RB. The applications studied in
Section 5.4 are constructed to be directly relevant to random vibration analysis at Sandia.

For each application, a single sample of the system output is assumed available, and prior
knowledge on the output may or may not be known. We apply estimators Vn(a) defined by
Eq. (15) and VT,n(a) defined by Eq. (25); for the latter, we choose marginal CDF F defined
by Eq. (20) to be consistent with any available prior knowledge on the system output. The
coefficient of variation of each estimator is used to assess the accuracy of the methods.

5.1 Linear oscillator

Let X denote the stationary response of a linear single degree-of-freedom (SDOF) oscillator
to W , a stationary, zero-mean Gaussian white noise with one-sided spectral density 1/π.
The oscillator has damping ratio 0 < ζ < 1, natural frequency ω0 > 0, and its displacement
satisfies the following differential equation

Ẍ(t) + 2 ζ ω0 Ẋ(t) + ω2
0 X(t) = W (t), t ≥ 0, (27)

with initial conditions X(0) ∼ N(0, σ) and Ẋ(0) ∼ N(0, ω0 σ), where σ2 = 1/(4 ζ ω3
0).

Parameters ζ = 0.1 and ω0 = 1 are used for calculations.

Because the input is Gaussian and the system is linear, output X is a stationary Gaussian
process with zero mean, variance σ2, and mean a–upcrossing rate (see [22], Sections 5.2.1
and 7.3.1)

ν(a) =
ω0

2π
exp

(
− a2

σ2

)
. (28)

We next apply methods developed in Sections 3 and 4 to estimate Eq. (28) under various
types of available information on X.
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Figure 6. Estimates of ν(a) for the response of the linear
oscillator with no prior knowledge and n = 4,000: (a) based
on one sample of X, and (b) the coefficient of variation of
each estimate.

5.1.1 No prior knowledge on X

We first assume information on X is limited to a single sample of length n with time step ∆t =
0.01. The exact and approximate mean a–upcrossing rates of output X(t) are illustrated by
Fig. 6(a) for sample size n = 4,000 and threshold range a ∈ (0, 5]. Results indicate that Vn(a)
and VT,n(a) both provide poor estimates of the mean a–upcrossing rates of X(t). Further,
no information is provided by either method for a > 3.5.

Estimates of the coefficient of variation of both estimators are illustrated by Fig. 6(b);
results from 100 independent Monte Carlo samples of length n were used for calculations.
Estimates of COV [Vn(a)] and COV [VT,n(a)] are nearly identical and increase with increasing
threshold, a.

5.1.2 X is known to be Gaussian with unknown variance

We next assume that, in addition to one sample of X, it is known that output X is a
stationary and ergodic Gaussian process with zero mean and unknown variance. In this
case, we apply estimator VT,n(a) defined by Eq. (25) with marginal CDF F defined by
Eq. (20) equal to the CDF of a N(0, (Γ2,n)1/2) random variable, where Γ2,n denotes the
sample variance of output X as defined by Eq. (6). The estimates of ν(a) by estimator Vn(a)
are identical to the results presented in Section 5.1.1.
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Figure 7. Estimates of ν(a) for the response of the linear
oscillator with prior knowledge and n = 4,000: (a) based on
one sample of X, and (b) the coefficient of variation of each
estimate.

The exact and approximate mean a–upcrossing rates of X(t) are illustrated by Fig. 7(a);
the results using the calibrated translation model developed in Section 4 are clearly superior
for all values for a considered. In addition, as demonstrated by Fig. 7(b), COV [VT,n(a)] <
COV [Vn(a)] meaning that the estimate of the mean a–upcrossing rate of X(t) defined by
Eq. (25) is less sensitive to the particular sample used for calculations than is the estimate
defined by Eq. (15).

Similar results are illustrated by Fig. 8 for the case of n = 40,000; the scenario demon-
strates the benefit of a longer sample, i.e., larger value for n. Results indicate significant
improvement in the accuracy of estimator Vn(a). The estimates of the mean a–upcrossing
rate of X(t) by both methods are nearly identical for all values for a considered, and the
coefficients of variation of both Vn(a) and VT,n(a) have decreased when compared to the
results for n = 4,000 illustrated by Fig. 7.

In summary, either method provides adequate estimates for ν(a) when the available
sample is long, i.e., n = 40,000. However, estimator Vn(a) is inadequate when the available
sample is short, demonstrating that the additional information on the properties of X(t)
available in Section 5.1.2 is essential when dealing with short samples. Further it is observed
that, in general, COV [VT,n(a)] ≤ COV [Vn(a)], meaning that the estimate of the mean a–
upcrossing rate of X(t) defined by Eq. (25) is less sensitive to the particular sample used for
calculations than is the estimate defined by Eq. (15).
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Figure 8. Estimates of ν(a) for the response of the linear
oscillator with prior knowledge and n = 40,000: (a) based on
one sample of X, and (b) the coefficient of variation of each
estimate.

5.2 Duffing oscillator

Next let X denote the stationary response of a nonlinear SDOF oscillator to a station-
ary, Gaussian white noise with one-sided spectral density 1/π. The oscillator displacement
satisfies the following differential equation

Ẍ(t) + c Ẋ(t) + ω2
0 X(t)

[
1 + ε X(t)2

]
= W (t), t ≥ 0, (29)

where c > 0 denotes a damping coefficient, and constants ω0 > 0 and ε define the initial
frequency and degree of nonlinearity of the oscillator, respectively. Parameters c = 0.3,
ω0 = 1, and ε = 0.4 are used for calculations.

The stationary joint density function of vector (X(t), Ẋ(t)) has an analytical solution
(see [22], p. 220) given by f(x1, x2) = f1(x1) f2(x2), where

f1(x1) =
√

2π β0 q exp

[
− 1

2 σ2
0

(
x2

1 +
ε

2
x4

1

)]
f2(x2) =

1√
2πβ0

exp

[
− 1

2 β2
0

x2
2

]
(30)

constants

σ2
0 =

1

2 c ω2
0

, β2
0 = ω2

0 σ2
0 =

1

c
, q−1 =

π√
2π c ε

exp

[
1

8 ε σ2
0

K1/4

(
1

8 ε σ2
0

)]
, (31)
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and K1/4( · ) denotes the modified Bessel function of order 1/4. The functional form of

f(x1, x2) demonstrates that, at stationarity: (i) stochastic processes X(t) and Ẋ(t) are
independent and symmetric about x = 0; and (ii) X(t) and Ẋ(t) are non-Gaussian and
Gaussian, respectively.

Let a > 0 denote a critical threshold for X(t). The mean a–upcrossing rate of X(t), at
stationarity, is

ν(a) =
1

2
√

c π
f1(a), (32)

where f1 is defined by Eq. (30). Because f1(x) is symmetric about x = 0, the mean (−a, a)–
outcrossing rate of X(t) is equal to 2 ν(a), where ν(a) is defined by Eq. (32).

5.2.1 No prior knowledge on X

We first assume information on X is limited to a single sample of length n = 4,000 with
time step ∆t = 0.01. The exact and approximate mean (−a, a)–outcrossing rates of X(t)
are illustrated by Fig. 9(a) for threshold range a ∈ (0, 3]. Results indicate that Vn(a) and
VT,n(a) both give poor estimates of the mean (−a, a)–outcrossing rates of X(t). Further, no
information is provided by either method for a > 2.5. Estimates of the coefficient of variation
of both estimators are illustrated by Fig. 9(b); results from 100 independent Monte Carlo
samples of length n were used for calculations. Estimates of COV [Vn(a)] and COV [VT,n(a)]
are nearly identical and increase with increasing threshold, a.

5.2.2 Marginal distribution of X is known to be symmetric

We next assume that, in addition to the one sample of X, the distribution of X is known
to be symmetric about x = 0. In this case, we apply estimator VT,n(a) defined by Eq. (25)
with marginal CDF F defined by Eq. (20) equal to the student-t distribution defined by
Eq. (23). The estimates of ν(a) by estimator Vn(a) are identical to the results presented in
Section 5.2.1.

The exact and approximate mean (−a, a)–outcrossing rates of X(t) are illustrated by
Fig. 10(a); the results using the calibrated translation model developed in Section 4 are
clearly superior for all values for a considered. In addition, as demonstrated by Fig. 10(b),
COV [VT,n(a)] ≤ COV [Vn(a)] meaning that the estimate of the mean (−a, a)–outcrossing
rate of X(t) defined by Eq. (25) is less sensitive to the particular sample used for calculations
than is the estimate defined by Eq. (15).
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Figure 9. Estimates of 2ν(a) for the response of the Duffing
oscillator with no prior knowledge: (a) based on one sample
of X, and (b) the coefficient of variation of each estimate.
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Figure 10. Estimates of 2ν(a) for the response of the Duff-
ing oscillator with prior knowledge: (a) based on one sample
of X, and (b) the coefficient of variation of each estimate.
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5.3 Vibro-impact system

We next consider the response of a SDOF oscillator constrained by two rigid barriers; this
type of system is often referred to in the literature as a vibro-impact system [7]. Let X
denote the stationary response of a vibro-impact system to a stationary Gaussian white
noise with zero mean and one-sided spectral density 1/π; the driving noise is denoted by W .
We consider the case of two perfectly rigid barriers located at X = ±d, where d > 0 is a
known constant, and assume |X(0)| < d.

In between impact events, i.e., when |X(t)| < d, the oscillator behaves in a linear fashion;
in this case, X satisfies the following differential equation

Ẍ(t) + 2 ζ ω0 Ẋ(t) + ω2
0 X(t) = W (t)− µ, t ≥ 0, (33)

where 0 < ζ < 1 and ω0 > 0 denote the damping ratio and natural frequency of the oscillator,
respectively, and µ ≥ 0 is a prescribed parameter. For the initial conditions to Eq. (33), we
ignore inertial and damping effects and solve Eq. (33) at t = 0, i.e.,(

X(0), Ẋ(0)
)

=

(
max

{
− µ

ω2
0

, −d

}
, 0

)
. (34)

By Eq. (34), cases X(0) = −µ/ω2
0 and X(0) = −d correspond to when the oscillator is

initially free of the barrier at −d and in contact with the barrier at −d, respectively. Hence,
we use parameter µ to control the initial position of the oscillator.

To model the effects of the rigid barriers, suppose the first impact with either barrier
occurs at time t′ > 0; the following three-step procedure can be used to generate one sample
of X(t), for 0 ≤ t ≤ τ :

1. Solve Eq. (33) with initial conditions defined by Eq. (34) over interval [0, t′);

2. Solve Eq. (33) with initial conditions (d, −η Ẋ(t−)) over interval (t′, min{t′′, τ}), where
t− < t′ denotes the time just prior to the first impact event, t′′ denotes the time of the
second impact event, and 0 < η < 1 is the deterministic coefficient of restitution; and

3. Repeat step 2 until time τ is achieved.

The vibro-impact system described has been used to model, for example, the dynamic
response of a micro-electro-mechanical system (MEMS) switch to random excitation [10].
For this application, the switch consists of a sensor mass suspended between two voltage
sources by a series of flexible supports. The time-varying location of the sensor mass is
modeled by X(t), parameters ζ and ω0 represent the effects of the flexible supports, and the
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voltage sources are assumed rigid and located at X = ±d. If the sensor mass travels near
enough to either voltage source, i.e., if |X(t)| > a where a = d − ε and ε > 0 is a small
prescribed constant, the switch is assumed closed at time t; the switch is open otherwise.
A controlled static load is also applied to the switch, modeled by parameter µ. We select a
value for µ based on whether or not we want the switch to close; for µ ≈ 0 and µ � 0, it is
desirable for the switch to remain open and closed, respectively.

With this application in mind, we consider two cases. For Case 1, µ = 0 and an appro-
priate measure on the probability of failure is given by

pF,1(τ) = 1− P (|X(t)| ≤ a, 0 ≤ t ≤ τ, | µ = 0). (35)

By Eq. (35), failure occurs if the sensor mass travels to within a distance less than ε from
either voltage source at any time during t ∈ [0, τ ]. For Case 1, we are therefore interested in
estimates for the mean (−a, a)–outcrossing rate of X. For Case 2, µ = 25 meaning that it
is desirable for the switch to remain closed such that the sensor mass stays in contact with
the voltage source located at −d. An appropriate measure on the probability of failure for
the switch in this case is given by

pF,2(τ) = 1− P (X(t) ≤ −a, 0 ≤ t ≤ τ | µ = 25), (36)

meaning that failure occurs if the sensor mass travels a distance more than ε away from the
voltage source located at −d at any time during t ∈ [0, τ ]. For Case 2, we are therefore
interested in estimates for the mean −a–upcrossing rate of X.

For Cases 1 and 2, the available information on X is given by: (i) one sample of X,
denoted by (X1, . . . , Xn); and (ii) prior knowledge that X takes values in [−d, d] almost
surely. The available sample of X for Cases 1 and 2 are illustrated by Figs. 11 and 12,
respectively, for sample size n = 1,000; parameters d = 0.2, ζ = 0.1, η = 0.9, τ = 10,
∆t = 0.01, and ω0 = 10 are used for calculations. Thresholds assuming a = 0.15 are also
shown and denoted by dashed lines. We note that numerous impacts between the oscillator
and barrier at −d = −0.2 for Case 2 are clearly evident.

We next apply estimators Vn(a) defined by Eq. (15) and VT,n(a) defined by Eq. (25) to
provide estimates for the mean outcrossing rate of X for Cases 1 and 2. For VT,n(a), we set
marginal CDF F defined by Eq. (20) equal to the beta distribution defined by Eq. (22) to
be consistent with the prior knowledge on X.

5.3.1 Case 1

The approximate mean (−a, a)–outcrossing rates of X(t) by estimators Vn(a) and VT,n(a) are
illustrated by Fig. 13(a) for threshold range a ∈ [0.05, 2). Also shown is the mean (−a, a)–
outcrossing rate of X(t) based on one sample of X computed for 1,000,000 time steps; we
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Figure 13. Estimates of the mean (−a, a)–outcrossing
rate of the response of the vibro-impact system for Case 1:
(a) based on one sample of X, and (b) the coefficient of vari-
ation of each estimate.

refer to this result as “Exact.” The estimates nearly coincide for a ≤ 0.12. For a > 0.12, no
information is provided by estimator Vn(a), while an approximation for the mean (−a, a)–
outcrossing rate of X is provided by estimator VT,n(a) for all thresholds considered. We note
VT,n(a) → 0 as a → d since F (d) = 1 (see Eq. (25)); the performance of VT,n(a) can therefore
be poor for thresholds very near the barrier. Estimates of the coefficient of variation of both
estimators are illustrated by Fig. 13(b); results from 100 Monte Carlo samples of length n
were used for calculations.

5.3.2 Case 2

The approximate mean −a–outcrossing rates of X(t) by estimators Vn(a) and VT,n(a) are
illustrated by Fig. 14(a) for threshold range −a ∈ (−0.2,−0.1]. Also shown is the mean
−a–outcrossing rate of X(t) based on one sample of X computed for 1,000,000 time steps;
we refer to this results as “Exact.” By Fig. 14(a), the estimate of ν(a) by Vn(a) becomes
unstable for a > −0.15. Estimates of COV [Vn(a)] and COV [VT,n(a)] are illustrated by
Fig. 13(b) quantifying the sensitivity of both methods to the particular sample used for
calculations. Results from 100 Monte Carlo samples of length n were used to calculate
values for COV [Vn(a)] and COV [VT,n(a)].
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Figure 14. Estimates of the mean −a–upcrossing rate of
the response of the vibro-impact system for Case 2: (a) based
on one sample of X, and (b) the coefficient of variation of each
estimate.

5.4 RB component vibration response

Finally, let X denote the vibration response of an RB weapon component during normal
re-entry. We will consider two scenarios, discussed in Sections 5.4.1 and 5.4.2, respectively.
Both scenarios are constructed to be directly relevant to structural dynamics applications
here at Sandia.

For scenario 1, X represents measured accelerometer data from a single re-entry flight test
of the W76, EFIA-1 (FCET-32). To avoid sensitivity issues, a uniform normalizing factor
has been applied to the data. For scenario 2, X is the output from a high-fidelity finite
element (FE) model simulation of a generic RB during normal re-entry, where a random
pressure field applied to the outside surface of the aeroshell provides the dynamic excitation
to the system. All calculations for scenario 2 were performed using Salinas, and because of
budget and/or time constraints, we assume that only a single run of the FE code is possible,
meaning that one sample of stochastic output X is made available. Further details of both
the FE model and the random pressure field model for the re-entry environment are provided
in [9].

In both scenarios considered, a single sample of output X is available, and prior knowledge
about the underlying physical phenomena suggests that X should come from a distribution
that is symmetric about its mean, and is not necessarily bounded. Further, we assume
that the weapon component fails when output X exceeds threshold a, a critical level of
acceleration. Our objective is to use the sample and prior knowledge on the system output
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Figure 15. Measured (normalized) response from W76
EFIA-1 (FCET-32), X(t), with constant thresholds ±a, for
a = 0.75.

to estimate the probability that X will exceed threshold a during the re-entry event; these
estimates will provide information on the time-dependent reliability of the RB component.
Our approach is to apply estimators Vn(a) defined by Eq. (15) and VT,n(a) defined by Eq. (25)
to approximate the mean (−a, a)–outcrossing rate of X. For the latter, we set marginal CDF
F defined by Eq. (20) equal to the student-t distribution defined by Eq. (23) to be consistent
with the prior knowledge on X.

5.4.1 Scenario 1: flight data

The available sample of X, i.e., the measured flight data, is illustrated by Fig. 15 where, as
mentioned, a uniform normalizing factor has been applied. The sample has length n = 22,000
and time step ∆t = 0.0002 sec. Several extreme values can be observed in the data, e.g., near
t = 0.5 sec and t = 3.1 sec. Expert opinion suggests that these extreme values are valid data
points and should not be considered “drop outs.” Further, we note that the coefficient of
kurtosis of X is approximately 3.3 (see Section 3.1), suggesting that the measured vibration
data is slightly non-Gaussian. The dashed lines shown in Fig. 15 represent thresholds ±a
for the case of a = 0.75.

Upon close inspection of Fig. 15, the sample variance of X slowly varies in time, meaning
that X should not be assumed stationary; we therefore apply techniques from Appendix A
to properly scale the available data. We apply Eqs. (37) and (38) with window size w1 = 250
assuming X can be represented by k = 1 segment. The scaled flight data, denoted by
(Z

(1)
1 , . . . , Z

(1)
n−2 w1

), is illustrated by Fig. 16. The thresholds at X = ±0.75, scaled by Eq. (40),
are also shown.
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Estimates for the mean (−a, a)–outcrossing rate of X using Vn(a) defined by Eq. (15)
and VT,n(a) defined by Eq. (25) are illustrated by Fig. 17 for thresholds 0 < a ≤ 2. For
comparison, results are also shown assuming the measured data to be Gaussian, i.e., Eq. (13)
applied to Z(1); the latter approach is common in industry when processing experimental
data. The three methods considered give similar results for a ≤ 1. For a > 1, estimates
based on Vn(a) become unreliable; this is consistent with Fig. 15 where few outcrossings are
observed for a > 1. Estimates based on VT,n(a) and the Gaussian model differ for a > 1,
and this difference increases with increasing threshold, a. This difference occurs because the
flight data is not Gaussian as evidenced by the extreme values and a coefficient of kurtosis
greater than 3. Estimator VT,n(a) is preferable in this case since, by Eq. (4), it provides
conservative estimates of system reliability when compared to the Gaussian model.

0 1 2 3 4
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Figure 16. Scaled flight data, Z(1)(t), with scaled time-
varying threshold, α(t).
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Figure 17. Estimates of the mean (−a, a)–outcrossing rate
of measured flight data, X(t).
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Figure 18. Output from Salinas FE model, X(t), with
constant threshold, a = 50 g (taken from [9]).

5.4.2 Scenario 2: FE model output

Next let X be a prediction of component vibration response, i.e., the output from a single
run of a Salinas FE model simulation of an RB during normal re-entry. For calculations, the
FE model is linear but, as demonstrated by the results in Sections 5.2 and 5.3, the proposed
method can be applied to nonlinear models for the RB as well. The available sample of X is
illustrated by Fig. 18; the sample has length n = 75,000 and time step ∆t = 1.25× 10−4 sec.
The dashed lines shown in Fig. 18 represent thresholds X = ±a for the case of a = 50 g.
For calculations, X is taken from [9].

By inspection of Fig. 18, the sample variance of X is time-varying, meaning that X
cannot be assumed stationary. As in Section 5.4.1, we apply techniques from Appendix A
to properly scale the available data. The scaled output, denoted by (Z

(1)
1 , . . . , Z

(1)
n−2 w1

), is
illustrated by Fig. 19; the thresholds at X = ±50 g, scaled by Eq. (40), are also shown.

The proposed method, i.e., estimator VT,n(a) defined by Eq. (25), is applied to approx-
imate the mean (−a, a)–outcrossing rate of X. These results can then used to provide
estimates for the time-dependent probability of failure of the RB component, i.e., estimates
for Eq. (2) with safe set D = (−a, a). Calculation of these probabilities follow from Eq. (39).

Estimates for the time-dependent probability of failure of the RB component are illus-
trated by Fig. 20 for thresholds 25 g ≤ a ≤ 100 g and times 0 ≤ τ ≤ 10 sec. In general, the
results demonstrate that the probability of failure, denoted by pF, increases with decreasing
threshold a and increasing time, τ . For example, with threshold a = 90 g, the probability of
failure during the first τ = 4 sec of the re-entry event is pF = 0.2. If a = 90 g and τ = 7 sec,
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the probability of failure increases to pF = 0.8. In summary, assuming we have a high level
of confidence in the models for the RB and re-entry environment, the results summarized by
Fig. 20 demonstrate how one might accomplish model-based qualification of RB components
for re-entry random vibration given one or more outputs from a FE model.
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Figure 19. Scaled model output, Z(1)(t), with scaled time-
varying threshold, α(t).
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Figure 20. Estimates of time-dependent probability of
component failure, pF, as a function of threshold, a, and time,
τ , based on FE model output.

39



40



6 Conclusions

A method has been developed for reliability analysis of dynamic systems under limited
information. The available information included one or more samples of the system output;
any known information on properties of the output was used when available. The proposed
method was based on the theory of non-Gaussian translation processes, where the type
of translation considered was consistent with any prior knowledge on the system output.
This feature of the method made it particularly useful for problems of practical interest. For
illustration, we applied the proposed method to a collection of simple examples and compared
with the results by traditional statistical estimators in order to assess the accuracy of the
proposed method. These studies demonstrated that the method could be applied for the
case of analytical or experimental models for linear or nonlinear systems. The proposed
method was then applied to two complex applications of direct interest to Sandia. First,
we applied the method to assess design reliability of a MEMS inertial switch. Second, we
considered RB component vibration response during normal re-entry, where the objective was
to estimate the time-dependent probability of component failure. This last application was
directly relevant to re-entry random vibration analysis at Sandia and may provide insights
on test-based and/or model-based qualification of weapon components for random vibration
environments.
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A Class of non-stationary, non-ergodic output

We consider the special class of non-stationary, non-ergodic output that can be expressed as
a collection of non-overlapping segments where, under proper scaling, each scaled segment
can be viewed as stationary and ergodic.

Let X(t), t ∈ [0, τ), be an output process of interest expressed as a collection of m ≥ 1
non-overlapping segments, denoted by {X(k)(t), k = 1, . . . ,m}. Segment X(k)(t) is defined
on time interval [τk, τk+1), k = 1, . . . ,m, where 0 = τ1 < τ2 < · · · < τm+1 = τ provides a
partition of [0, τ). We assume scaling functions µk(t) and σk(t) > 0 exist such that, for all
k = 1, . . . ,m,

Z(k)(t) =
X(k)(t)− µk(t)

σk(t)
, t ∈ [τk, τk+1), (37)

is a stationary and ergodic process, i.e., Eq. (5) is true when X(t) is replaced by Z(k)(t).

Let (X
(k)
1 = X(k)(t1), X

(k)
2 = X(k)(t2), . . . , X

(k)
nk = X(k)(tnk

)) denote the available sample
of process X(k)(t), where τk = t1 < · · · < tnk

= τk+1 denotes a partition of time interval
[τk, τk+1). Quantities

µ
(k)
i =

1

2wk

i+wk∑
j=i−wk

X
(k)
j and

σ
(k)
i =

[
1

2wk

i+wk∑
j=i−wk

(
X

(k)
j − µ

(k)
i

)2
]1/2

(38)

where wk is a positive integer for each k = 1, . . . , n, provide estimates for µk(ti) and σk(ti),
respectively, where ti ∈ [τk, τk+1), i = 1, . . . , nk.

Under the assumption that each Z(k)(t) is a stationary, ergodic process, the approaches
assuming stationary, ergodic output presented in Sections 3 and 4 can be used to estimate
the mean crossing rates for each X(k)(t) and, therefore, estimates of system performance.
For example, our estimate for system reliability as defined by Eq. (2) is

pF(τ) ≈ 1− exp

[
−

(
m∑

k=1

ν(αk(t))
sk

τ

)
τ

]
, (39)

where

αk(t) =
a− µk(t)

σk(t)
, k = 1, . . . ,m, (40)

ν(αk(t)) denotes the αk(t)–upcrossing rate of Z(k)(t) at time t ∈ [τk, τk+1), and sk = τk+1−τk,
k = 1, . . . ,m.
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