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Abstract

Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in
model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to
indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various
inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive
specification of uncertainty than is possible within the axiomatic structure on which probability theory is based.
Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more
computationally demanding than the propagation of a probabilistic representation for uncertainty, with this
difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in
predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling­
based computational strategy for the representation of epistemic uncertainty in model predictions with evidence
theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations
based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo)
procedures are impracticable due to computational cost.

Key Words: Dempster-Shafer theory, Epistemic uncertainty, Evidence theory, Monte Carlo, Numerical uncertainty
propagation, Sensitivity analysis, Uncertainty analysis
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1. Introduction

An appropriate representation of the uncertainty in
analysis outcomes is an essential part of any complete
analysis.lU Specifically, an analysis that is intended
to provide insights into the behavior of a system or the
basis for decisions must provide an assessment of the
uncertainty associated with its outcomes. Without such
an assessment, neither insights drawn from the analysis
nor decisions based on it are adequately informed and
supported.

Analyses of the behavior of complex systems typi­
cally involve two types of uncertainty: aleatory and
epistemic. 11-20 Aleatory uncertainty arises from what
is considered to be an inherent randomness in the be­
havior of the system under study. For example, in a
risk assessment for a chemical plant, the weather condi­
tions at the time of an accident are usually considered
to be an aleatory uncertainty. Alternatives to the de­
scriptor aleatory include stochastic, variability, irre­
ducible and type A. Epistemic uncertainty arises from
a lack of knowledge about a quantity that is assumed to
have a fixed value in the context of a particular analy­
sis. For example, the pressure at which a specific reac­
tor containment will fail is presumably fixed but cer­
tainly unknown and is thus an epistemic uncertainty.
Alternatives to the descriptor epistemic include subjec­
tive, state of knowledge, reducible and type B. As an
example, probabilistic risk assessments for nuclear
power plants are typically designed to maintain a sepa­
ration between aleatory uncertainty and epistemic un­
certainty.21-26

Probability has traditionally been employed as the
mathematical structure used to represent both aleatory
uncertainty and epistemic uncertainty. 17, 19,27-32 With
this usage, an analysis maintaining a separation of alea­
tory uncertainty and epistemic uncertainty involves two
probability spaces: one probability space characteriz­
ing aleatory uncertainty and one probability space char­
acterizing epistemic uncertainty. This dual usage of
probability can be traced back to at least the beginnings
of the formal development of probability theory in the
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late seventeenth century. However, many individuals
have reservations about the use of probability to repre­
sent epistemic uncertainty when there is limited infor­
mation available on which to base a fully structured
development of probability. In particular, the concern
is that the definition of a full probabilistic description
of uncertainty entails an implication of a higher resolu­
tion of knowledge than is really present.

Evidence theory provides an alternative to prob­
ability theory for the representation of epistemic uncer­
tainty in model predictions that derives from epistemic
uncertainty in model inputs.33-39 The potential benefit,
and hence appeal, of evidence theory is that it allows a
less restrictive specification of uncertainty than is pos­
sible within the axiomatic structure on which probabil­
ity theory is based. Unfortunately, the propagation of
an evidence theory representation for uncertainty
through a model is more computationally demanding
than the propagation of a probabilistic representation
for uncertainty, with this difficulty constituting a seri­
ous obstacle to the use of evidence theory in the repre­
sentation of uncertainty in predictions obtained from
computationally intensive models. This presentation
describes and illustrates a sampling-based computa­
tional strategy for the representation of epistemic un­
certainty in model predictions with evidence theory.
Preliminary trials indicate that the presented strategy
can be used to propagate uncertainty representations
based on evidence theory in analysis situations where
naive sampling-based (i.e., unsophisticated Monte
Carlo) procedures are impracticable due to computa­
tional cost.

This presentation is organized as follows. First, an
overview of evidence theory is given (Sect. 2). Then,
the numerical procedure for the construction of evi­
dence theory results is described (Sect. 3). This de­
scription is followed by the introduction of the illustra­
tive example involving a weak link (WL)/strong link
(SL) system (Sect. 4) and the presentation of results
obtained with evidence theory in the analysis of this
system (Sect. 5). Finally, the presentation ends with a
concluding discussion (Sect. 6).
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2. Evidence Theory

An analysis can be conceptually represented in the
functional form

Y= J(x),

where

(2.1)

(i.e., sample space) of possible values for x, (ii) Xp is
an appropriately defined set of subsets of Xp (i.e., a (j­

algebra), and (iii) mrs is a function (i.e., a probability
measure) that defines the probability of individual ele­
ments of Xp [Sect. IV.3, Ref. 55]. For notational con­
venience, the uncertainty in x characterized by the dis­
tributions in Eq. (2.4) and the associated probability
space (Xp, Xp, mpx) can be represented by a density
function dx{x) defined on Xp .

Probability theory provides the mathematical struc­
ture that has been traditionally used to characterize the
epistemic uncertainty in results obtained in analyses of
the form indicated in Eq. (2.1). With this approach, the
uncertainty in the elements of x is represented by a
sequence of distributions

is a vector of analysis results, and J is a function that
maps X into y. In practice,jcan be quite complex and,
as examples, could involve the solution of a system of
nonlinear partial differential equations or the operation
of a sequence of linked models. Further, the dimen­
sionality of x and y is often high (e.g., on the order of
100s). For example, the NUREG-1150 probabilistic
risk assessments considered approximately 130 - 140
uncertain analysis inputs for each of the five nuclear
power plants under consideration,21-26 the compliance
certification analysis for the Waste Isolation Pilot Plant
(WIPP) considered approximately 60 uncertain analysis
inputs.i'' and performance assessments currently being
carried out for the proposed high-level radioactive
waste disposal facility at Yucca Mountain, Nevada,
consider approximately 250 uncertain analysis in­
puts.41, 42 Further, each of the indicated analyses in­
volves the consideration of a large number of time­
dependent predicted results.

(2.6)

(2.5)y = J(x)

In turn, the uncertainty in x gives rise to uncer­
tainty in the elements of y. For notational convenience
in the following discussion, y is assumed to consist of a
single real-valued component y; specifically,

prob(y > y) = fx pJ[J(x)jy] dx (x)dX

prob(y ~ y) = fXp~[J(x)ly] dx (x)dX

In practice, the uncertainty in y is summarized by
an estimated cumulative or complementary cumulative
distribution function (i.e., a CDF or CCDF). Specifi­
cally, the CDF and CCDF for yare defined by the prob­
abilities

and

is under consideration. This eliminates the need to use
subscripting to identify individual elements of y but
does not otherwise alter the discussion. In concept, the
uncertainty in y is characterized by a probability space
('1J" JYp, mpy) and an associated density function dr<Y)
defined on '1J, that derive from the properties of the
probability space (Xp, Xp,mpx) and the function!

(2.2)

(2.3)

is a vector of analysis inputs,

(2.4)

where Dj is a distribution that characterizes the uncer­
tainty associated with the element Xj of x. Various cor­
relations and other restrictions involving the elements
of x may also be specified. Typically, the distributions
in Eq. (2.4) are developed through some form of expert
review process. 43-54 Conceptually, these distributions
give rise to a probability space (Xp, Xp, mpx) that char­
acterizes the uncertainty in x, where (i) Xp is the set

respectively, where

] {
1 ifJ(x) ~ y

~[J(x)ly = 0 ifJ(X) > y,

(2.7)

(2.8)

9



(2.14)

The results used in the estimation of the CDF and
CCDF in Eqs. (2.6) and (2.7) constitute a mapping

[Xi' f(xi)J = [XiI' Xi2' ... , Xi,nX, v, J, i = 1,2, ... , nS,

(2.15)

respectively, where Xi' i = 1, 2, ... , nS, is the sample
indicated in Eq. (2.10). However, a large amount of
information is lost when only E(y) and V(y) are used to
represent the uncertainty in y as the information given
by nS results has been coalesced into only two num­
bers. As a result, CDFs and CCDFs provide more in­
formative representations of uncertainty than means
and variances.

Analyses based on probabilistic characterization of
epistemic uncertainty are very popular and have been
widely used. 21-26,40-42,70-82 However, such analyses
are open to the criticism that there may not be enough
information available to justify the definition of the
distributions indicated in Eq. (2.4). In particular, defin­
ing a probability distribution for an element Xj of X im­
poses a large amount of structure on the characteriza­
tion of the uncertainty with respect to what the appro­
priate value for Xj is. When there is little information
about the value of a variable, this imposed structure
may not be appropriate. For example, there is a large
difference in concept and implication between saying
that all that is known about a quantity is that its value is
located somewhere in an interval [a, b] and saying that
a uniform distribution on [a, b] characterizes degrees of
belief with respect to where the value of this quantity is
located in the interval [a, b]. The indicated imposition
of a uniform distribution implies that there is a prob­
ability of 0.5 that the value for the quantity is in the
interval [a, a + (b - a)/2] and similarly that there is a
probability of 0.5 that value for the quantity is in the
interval [a + (b - a)/2, b]. In contrast, the statement
that all that is known about a quantity is that its value is

between analysis inputs and analysis results, where Yi =

.f(xJ Once generated, this mapping can be investigated
with a variety of sensitivity analysis procedures.69

Such sensitivity analyses constitute an important part of
analyses employing a sampling-based propagation of
uncertainty.

(2.10)

(2.11)

(2.12)

(2.13)

Xi = [Xi!, Xi2' ... , Xi,nX] , i =1,2, ... , nS,

and

Given that the probabilities in Eqs. (2.6) and (2.7)
can be determined, the CDF and CCDF for y are for­
mally defined by the sets

CCCIYF = {[y, prob- (ji> y)J :YE 'Yp }

is a random or Latin hypercube sample56-59 of size nS
from Xp generated in consistency with the distributions
in Eq. (2.4). Latin hypercube sampling is often used in
analyses of this type because of its efficient stratifica­
tion properties. Importance sampling is also a possibil­
ity for generating the sample in Eq. (2.10) but requires
the use of an associated weight that is more complex
than the weight (i.e., l/nS) shown in Eq. (2.6) and
(2.7).60-68 A CCDF is the preferred uncertainty repre­
sentation in most risk analyses because it provides an
answer to the question "How likely is it to be this bad
or worse?"

and

respectively.

and

The uncertainty in y can also be represented with
the expected value E(y) and variance V(y) ofy given by

10



located in the interval [a, b] implies just that and no
more.

(2.17)

Several alternatives to probability theory for the
repr~sent~tion of uncertainty have been proposed, in­
cludmg mterval analysis,83-88 possibility theory,89-93
fuzzy set theory,94-98 and evidence theory.33-39 A
number of comparative discussions of different ap­
proaches to the representation of uncertainty are avail­
able.99-106 The introduction of these alternatives to
probability theory for the representation of epistemic
uncertainty has been accompanied by a lively debate
with respect to their appropriateness and usefulness
~ith some analysts maintaining that probability theor;
IS the only appropriate mathematical structure for the
re?r.esentation of uncertainty and other analysts main­
tammg that these alternative uncertainty representations
are essential to an appropriate representation of uncer­
tainty in the presence of limited information.lv'b 107-117
While not rejecting all use of probability theory to rep­
resent epistemic uncertainty, the authors of this paper
feel that the indicated alternative mathematical struc­
tures for the representation of uncertainty do have use­
ful roles to play when uncertainty must be character­
ized, and decisions made, on the basis of limited infor­
mation.

The focus of this presentation is on evidence the­
ory, which provides a less structured representation of
uncertainty than probability theory and yet is still
closely related to probability theory. Indeed, an uncer­
tainty representation with evidence theory approaches
an uncertainty representation with probability theory as
the amount of information and/or insight available for
use in the characterization of uncertainty increases.
The authors find this connection to be very appealing.
Evidence theory is also sometimes referred to as Demp­
ster-Shafer theory in recognition of the early develop­
ment work of these two individuals.V: 118-120

and

(2.18)

The numeric value mEX(V) is referred to as the basic
probability assignment (BPA) for a subset V of XE,

and the elements of XE (i.e., the subsets of XE with
nonzero BPAs) are referred to as the focal elements of
the evidence space.

The sets Xp and XE associated with a probability
space (Xp, Xp, mpx) and an evidence space (XE, XE,
mEX) for a quantity x are conceptually the same as both
Xp and XE simply contain all possible values for x.
However, the sets Xp and XE and the functions mrx
and mEXare conceptually different. Collectively, the
sets in Xp constitute a a-algebra; specifically, (i) if V
E Xp , then V E Xp , where V is the complement of
V, and (ii) if VI' V2, ... , is a sequence of elements of
Xp, then UiVi E Xp and (\iVi E Xp. In contrast, there
is no specified structure associated with XE as the
membership of a subset V ofXE in XE is defined solely
by the property mExC'0 > O. Further, Xp has an un­
countably infinite number of elements in most devel­
opments of probability while XE can never have more
than a countably infinite number of elements and usu­
ally has a finite number of elements.

The function mrs defines the probability associ­
ated with elements of Xp and is referred to as a prob­
ability measure. Specifically, (i) if V E Xp , then 0 ~

mpxC'0 ~ 1, (ii) mpxCXp) = 1, and (iii) if Vb V 2, ... is
a sequence of disjoint sets from Xp, then mpxCui Vi) =
LimPxCVD- A fundamental property of probability that
results from the preceding is

for V E Xp . In contrast, less structure is imposed on
mEXas only the relationships in Eq. (2.16) - (2.18) are
required to hold. Conceptually, mExC'0 can be inter­
preted as the amount of information (i.e., level of credi­
bility or probability) that can be assigned to V but can
in no known way be assigned to any subset of V.

Just as a probability space involving a quantity x is
the basic mathematical structure in probability theory,
an evidence space involving a quantity x is the basic
mathematical structure in evidence theory. Similarly to
a probability space for x, an evidence space for x is a
~iple of the form (XE, XE, mEX)' where (i) XE is the set
(i.e., sample space or universal set) of possible values
of x, (ii) XE is a set of subsets of XE, and (iii) mEXis a
function satisfying the conditions

mrx (V)+mpx (vc) = 1 (2.19)

(2.16)

11

Probability theory has only one measure of uncer­
tainty: probability, which is defined by the function
mpx. In contrast, evidence theory has two measures of
uncertainty: belief and plausibility, which are derived



and

The following relationships hold for belief and
plausibility and a subset V ofXE :

(2.26)

(2.25)

(2.23)

(2.24)Pix (V)+Belx (ve) = 1.

Pix (V)+Plx (ve) ~ 1

is the set of focal elements for Xj' and (iii) the function
mEj defines the BPA for each subset ofX,Ej' .I~ turn, the
evidence spaces (XEj , XEj , mE) for the individual ele­
ments of x give rise to the evidence space (XE, XE,

mEX) for x. Specifically,

When evidence theory is used to represent the epis­
temic uncertainty associated with the elements of x, an
evidence space (XEj , XEj , mE) is defined to character­
ize the uncertainty associated with each element Xj of x,
where (i) XEj is the set of possible values for Xj' (ii)

As indicated in conjunction with Eq. (2.4), the use
of probability theory to characterize the. epistemic ~­
certainty associated with the vector x m Eq. (2.2) IS

accomplished by assigning a probability distribution Dj
to each element Xj of x. In concept, this corresponds to
developing a probability space (Xpj , Xpj , mp) for each
x, and then developing the probability space (Xp , Xp ,

~ ) characterizing the uncertainty in x from these
PX ffi 1"probability spaces. Of course, this level 0 orma.1~ IS

never used in practice as defining the Dj by specifying
CDFs (or density functions, which give rise to CDFs) is
all that is needed for the description and computational
implementation of an analysis. However, the conce~t

of probability spaces for the individual elements of x IS

introduced to make a conceptual and notational connec­
tion with what is done when evidence theory is used to
characterize the epistemic uncertainty associated with
the elements of x.

Thus unlike the probabilistic relationship in Eq. (2.19),
the belief assigned to a set does not uniquely determine
the belief assigned to its complement, and similarly, the
plausibility assigned to a set does not uniquely deter­
mine the plausibility assigned to its complement. ~ur­

ther, (i) both a set and its complement can have beh~fs

that are equal to or close to zero, (ii) both a set and Its
complement can have plausibilities that are equal to or
close to one, and (iii) a set can have plausibility close ~o

one only if the belief in the complement of that set IS

close to zero.

(2.22)

(2.21)

(2.20)

BelX (V) +Belx (sr)~ 1

from the function mEX' Specifically, the beliefBelx{'0
and plausibility PIx{V) of a subset V of XE are defined
by

The preceding definitions and interpretations for
belief and plausibility arise from viewing the BPA as­
sociated with a focal element of an evidence space as
providing a measure of the amount of information that
can be assigned to a set but cannot be specifically as­
signed to any subset of that set. Thus, as a result of the
subset requirement in Eq. (2.20), belief provides a
measure of the amount of information that has to be
assigned to a set. In contrast, as a result of the intersec­
tion requirement in Eq. (2.21), plausibility provides a
measure of the total amount of information that could
possibly be assigned to a set or, equivalently, a measure
of the absence of information that cannot be assigned to
the set. The names belief and plausibility for the
mathematical entities defined in Eqs. (2.20) and (2.21)
are intuitively suggestive of the ideas indicated in the
preceding discussion, with "belief' suggesting how
strongly it is felt that something is true and "plausibil­
ity" suggesting how strongly it is felt that something
might be true.

Intuitively, Belx{'0 provides a measure of the amount
of information that supports V being true (e.g., that V
contains the true value for the epistemically uncertain
quantity x), and Plx{'0 provides a measure of the ab­
sence of information that supports V being false (e.g.,
that V does not contain the true value for the epistemi­
cally uncertain quantity x), Thus, for example, BeM'0
= 0 indicates that none of the available information
unambiguously supports V being true (i.e., no focal
element of the evidence space is a subset of '0, and
PMV) = 1 indicates that none of the available informa­
tion unambiguously supports V being false (i.e., every
focal element of the evidence space intersects '0.

12



X E ={V: V = Vir xV2s X ... xVnX,t, 1~ r ~ n(l),

1~ s ~ n(2), ... , 1~ t ~ n(nX)} (2.27)

larly to the defining probabilities for a CDF and CCDF
in Eqs. (2.6) and (2.7), the defining beliefs and plausi­
bilities for a CBF, CCBF, CPF and CCPF are given by

and

j
mEI (Vir) mE2(V2s )... mE,nX(VnX,t)

mEX(V)= . -V V V
If V - Ir X 2s x ... X nX,t E X E

o otherwise.

(2.28)

Bely (y > y) = L mEY(V),
'Vc'Vy

(2.30)

(2.31)

(2.32)

The number of sets (i.e., focal elements) in XE is given
by

nX
n= IIn(J),

j=1

(2.29)

and

Ply(y> y)= L mEY(V),
VnVy",0

respectively, where

(2.33)

The CBF, CCBF, CPF and CCPF for y are then
formally defined by the sets

is the set of all values in 1'E that are less than or equal
toy.

which can become quite large as nX and the individual
n(j)'s increase in size. The preceding definition for
(XE, XE, mEX) is based on the assumption that the x/s
are independent. The development of an evidence
space for X is considerably more complicated if the x/s
are not independent and is not considered here.121

As indicated in conjunction with Eq. (2.5), charac­
terization of the epistemic uncertainty in x with prob­
ability (i.e., with the uncertainty in x characterized by a
probability space (Xp, Xp, mpx» results in the uncer­
tainty in y = j(x) also bring characterized by a probabil­
ity space ('1J" .lYp, mpy) that derives from the properties
of (Xp, Xp, mpx) and the function! Similarly, the
characterization of the epistemic uncertainty in X with
an evidence theory representation (i.e., with the uncer­
tainty in X characterized by an evidence space (XE, XE,

mEX» results in the uncertainty in y = j(x) also being
characterized by an evidence space (1'E, .lYE' mEY) that
derives from the properties of (XE, XE, mEX) and the
function!

CCBP ={[y, Bely (y ~ y)J: yE 'YE} ,

CC(]3P = {[y, Bely (y > v)J:y E 'YE} ,

C(}XF ={[y, Ply (y ~ y)J: yE 'YE}

and

CON ={[y, Ply (y > y)J: yE 'YE },

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

In practice, the evidence space (1'E, .lYE' mEY) is
unlikely to be constructed in a real analysis. Iff is ex­
pensive to evaluate, the computational cost of generat­
ing a reasonable approximation to (1'E, .lYE' mEY) is
likely to be prohibitive. Instead, the uncertainty associ­
ated with y is likely to be summarized with a cumula­
tive belief function and a cumulative plausibility func­
tion (i.e., a CBF and a CPF) or a complementary cumu­
lative belief function and a complementary cumulative
plausibility function (i.e., a CCBF and a CCPF). Simi-
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respectively. Analogous definitions for a CDF and a
CCDF are given in Eqs. (2.11) and (2.12).

As formally presented in Eqs. (2.30) - (2.33), the
evaluation of Bely(y ~ y), Bely(y > y), Ply(y ~ y)
and Ply(y > y) requires knowledge of all the focal ele­
ments in .lYE and their associated BPAs. Such informa­
tion is unlikely to be determined in a real analysis.
Rather, a more likely approach is to use a sampling­
based procedure to estimate Bely(y ~ y), Bely(y > y),



then a sampling distribution for each Xj for use in gen­
erating the mapping in Eq. (2.43) can be defined by the
density function

In concept, any sampling strategy can be used to
generate the mapping in Eq. (2.43) as long as the sam­
pled points provide adequate coverage of the focal ele­
ments in XE as the sample size nS increases (e.g., pro­
vided the sampled points tend to become dense in XE as
nS increases).122, 123 If the focal elements for the ele­
ments Xj of X are intervals of the form

(2.44)

where

=={[Yi, 1- PIx ({X j :Yj > Yi})} i = 1,2, ... , ns},
(2.39)

CaBP= {[Y' Belx (1-1 [V~ J)]: yE eyE}

= {[Y' I-PIx (i-I [VyJ)} yE eyE}

Ply(y 5, y) and Ply(y > y). With this approach, the
indicated beliefs and plausibilities are estimated by

=={[Yi' I-PIx ({X j :Yj 5, Yi})} i = 1, 2, ... , ns},
(2.40)

ifXj E V jk
ifxj e V jk.

(2.46)

Then, the corresponding sampling distribution for X is
defined by the density function

=={[Yi, PIx ({X j :Yj 5,Yi})}i=I,2, ...,ns},
(2.41)

(2.47)

and

CCPP = {[Y' PIx (i-I [V~ J)]: yE eyE}

== {[Yi' PIx ({x j :Yj > Yi})} i = 1, 2, ... , ns},
(2.42)

is a mapping between XE and '1E defined by a suitable
sample from XE . The conversion from belief to plausi­
bility in Eqs. (2.39) and (2.40) through the use of the
equality in Eq. (2.24) is necessary because the subset
relationship that defines belief cannot be determined
with a finite sample when the sets Vy and V~ contain
infinitely many elements (which is usually the case).

(2.48)
nX

n=IIn(j) =1015

j=1

when nX = 15 and n(j) = 10 for j = 1,2, ... , nX. The
computational challenge results because obtaining evi­
dence theory results for Y (e.g., as defined by the CBF,
CCBF, CPF and CCPF in Eqs. (2.35) - (2.38) and the

Unfortunately, there is a dimensionality challenge
in the implementation of calculations involving evi­
dence theory representations for uncertainty. Specifi­
cally, the cardinality n of XE defined in Eq. (2.29) in­
creases rapidly with increasing values for the number
of nX of components of X and the number n(j) of focal
elements associated with each component Xj of x. For
example,

This distribution is appealing as it preserves some of
the character and emphasis of the underlying evidence
space (XE, XE, mE) that has been developed from the
evidence spaces (XEj, XEj, mE), j = 1, 2, ... , nX, de­
fined for the individual components ofx.

(2.43)[Xi' Yi]= [Xi' 1 (Xi)J, i = 1,2, ... , nS,

where
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associated approximations in Eqs. (2.39) - (2.42) effec­
tively requires determining, or at least estimating, the
minimum and maximum value of y for each focal ele­
ment in XE- When n is large and/or the evaluation of
j(x) is computationally demanding, the number of
evaluations ofj(x) needed to obtain the approximations
of the CBF, CCBF, CPF and CCPF for yin Eqs. (2.39)

15

- (2.42) or to directly estimate the BPAs for all focal
elements associated with the evidence space ('Y£, lYE,
mEY) is computationally impracticable. The purpose of
this presentation is to describe a computational strategy
for the determination of the CBF, CCBF, CPF and
CCPF for y that can be successfully employed when the
cardinality n of XE is large.
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3. Computational Strategy for
Estimating CBF, CCBF, CPF and
CCPF for y

The computational strategy for estimating the CBF,
CCBF, CPF and CCPF for y involves the following
initial steps:

Step 1. Define a sampling distribution for x based
on the specified evidence theory structure for the uncer­
tain model inputs. The probability distribution defined
by the density function in Eq. (2.47) is recommended
for use here because of its match to the general charac­
ter of the evidence space for x.

L . h b 1 56-59Step 2. Generate a atm ypercu e samp e
from the uncertain inputs with the sampling distribution
defined in Step 1. The outcome of this step is a sample
of the form indicated in Eq. (2.10). In general, analyses
will contain large numbers of both uncertain input vari­
ables and uncertain predicted variables (i.e., nX and nY
as indicated in Eqs. (2.2) and (2.3)). As a result, it is
difficult to develop an a priori sampling plan based on
anticipated relationships between the elements of x and
the elements of y. Under these conditions, Latin hyper­
cube sampling is a very effective sampling strategy
because its dense stratification across the range of each
uncertain input results in a good representation of
model behavior regardless of which predicted variable
is under consideration and which elements of x actually
affect the uncertainty in this variable.124-127

Step 3. Propagate the sample generated in Step 2
through the model to obtain values for all model results
of interest. Specifically, this corresponds to generating
the mapping between uncertain input variables and un­
certain predicted variables indicated in Eq. (2.15),
where in general Yi is a vector of dimension nY rather
than a scalar. This will be the most computationally
demanding part of most real analyses.

The following additional steps are then performed
individually for each model result y of interest. As pre­
viously indicated, most analyses will involve the con­
sideration of a large number of individual results.

Step 4. Perform a sensitivity analysis to identify
which of the uncertain model inputs, say Xb x2' ... , x r
ordered by importance, are significant contributors to
the uncertainty associated with y. This sensitivity analy­
sis is based on an exploration of the mapping in Eq.
(2.15) generated in Step 3 for the particular y under
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consideration. A variety of sensitivity analysis proce-
'1 bl c. . thi t 69 128-131dures are avai a e tor use m IS s ep. '

Step 5. Use the results of Step 3 and an appropriate
regression procedure to develop a response surface
approximation to y as a function of Xb X2' ... , xr Both

Parametric and nonparametric regression models are
ID hpossible procedures for use. However, w en co~-

plex relationships between y and the xis .are presen.t, It
is likely that nonparametric procedures will be reqUired
in order to obtain a reasonable response surface ap­
proximation to y. If the response surface construction is
carried out in a stepwise manner in which (i) the most
important element of x with respect to the unce:tainty
in y is selected first (i.e., Xl) and the correspondmg .re­
sponse surface constructed, (ii) then the next ~ost ~m­

portant element of x with respect to the un~ertamty my
is selected (i.e., x2) and the correspondmg response
surface constructed with Xl and x2' and (iii) this process
continues until no more elements of x are determined to
affect y, then this stepwise procedure also provides the
sensitivity analysis results indicated in Step 4.

Step 6. Generate a "large" random sample f~om t~e

uncertain inputs in consistency with the samphng dIS­
tribution defined in Step I and use the response surface
for y constructed in Step 5 to estimate y for each ele­
ment of this sample. This creates a mapping between
Xb X2' ... , Xr and y of the form indicated in Eq ', (2.43).
However, unlike the mapping in Eq. (2.43), this map­
ping only involves the x.'s that the sensitivity analysis
in Step 4 identified as being important with respect to
the uncertainty in y. If desired, the indicated random
sample could be generated immediately after Step 3;
then, the same random sample would be used in the
analysis for each element ofy.

Step 7. Perform a sequential construction of the
CBF, CCBF, CPF and CCPF for y with the response
surface results from Step 6. In this sequential construc­
tion, a CBF, CCBF, CPF and CCPF are first estimated
for y as indicated in Eqs. (2.39)-(2.42) with Xl ass~gned

its specified evidence space and x2' x3' ... , x r asslgn~d

degenerate evidence spaces (i.e., evidence space~ .m
which the sample space is given a basic probability
assignment of one); then, a CBF, CCBF, CPF and
CCPF are estimated for y as indicated in Eqs. (2.39) ­
(2.42) with Xl and x2 assigned their specified ev~dence

spaces and x3' X4, ... , Xr assigned degenerate eVl~ence

spaces; the process continues in this manner until the
CBFs, CCBFs, CPFs and CCPFs for y no longer sho~
meaningful change with the consideration of the speer­
fied evidence spaces for additional variables or the
specified evidence spaces for all the variables identified



in the sensitivity analysis performed at Step 5 (i.e., Xl>

x2, ... , xr) have been incorporated into a CBF, CCBF,
CPF and CCPF for y.

The indicated approach to the construction of
CBFs, CCBFs, CPFs and CCPFs for model predictions
has several desirable features, including (i) efficient use
of model evaluations, (ii) capability to consider many
different model predictions with the same set of model
evaluations, (iii) mitigation of the dimensionality prob­
lem that hinders the propagation of evidence theory
structures through a model when a large number of
uncertain model inputs is under consideration, (iv) an
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"outside-in" approximation of CBFs, CCBFs, CPFs and
CCPFs that always bounds the actual CBF, CCBF, CPF
and CCPF for a model prediction (see Sect. 7, Ref.
133), and (v) the capability to generate a variety of sen­
sitivity analysis results.

The preceding computational procedure is illus­
trated with a problem involving the determination of
the probability of loss of assured safety for a weak
link/strong link system in a fire environment. The prob­
lem itself is described in next section (Sect. 4) and then
the operation of the computational procedure is illus­
trated in the following section (Sect. 5).



The formal representation for PLOAS is based on
the following system properties for j = 1, 2 and k = 1, 2:

The example involves a system with two weak
links (WLs) and two strong links (SLs) in an accident
involving a fire that has the potential to result in a con­
dition that could allow an unintended, and undesirable,
operation of the system and is adapted from an example
presented in Sect. 6 of Ref. 134. The role of the SLs is
to permit operation of the system only under intended
conditions. The role of the WLs is to fail under acci­
dent conditions and thereby render the system incapa­
ble of operation. The failure of both SLs before the
failure of either WL is considered to be the undesirable
event as this places the system in a configuration in
which an activating signal could result in operation of
the system. The likelihood that such a configuration
occurs conditional on a specific type of accident is re­
ferred to as probability of loss of assured safety
(PLOAS). As previously indicated, the problem under
consideration involves a fire accident with heating of
the WLs and SLs. In essence, there is a race (i.e., a
competing risk13S-138) to determine whether the SLs or
the WLs fail first as they increase in temperature. The
indicated probability (i.e., PLOAS) derives from the
assumption that the exact temperatures at which the
individual links will fail is not known precisely.
Rather, there is assumed to be a random (i.e., aleatory)
uncertainty resulting from manufacturing variability
that determines the exact temperatures at which the
individual links fail.

4. Example for Illustration TMNSLk =TMPSLk (tMN) , TMXSLk =TMPSLk (tMX)

(4.5)

and TMPSL/t) and TMPSLk(t) are assumed to be in­
creasing functions of time.

Given the properties in Eqs. (4.1) - (4.5) and the
assumption that a link fails immediately upon reaching
its failure temperature, the numeric value pF for
PLOAS is given by

2 rTMXSLk
pF = L Jr jSLdTsL)

k=1 'MNSLk

X{IV[~' TMPSL, [TMPSL;l (TSlJ], jSL,J1
1# f

x{g I [TMPWLj [TMPSL;l (TsLlJ, ~,jWLj J)
xdTSL '

(4.6)

where

I(a, b, f) = f f(T)dT

is used for notational convenience. A derivation of the
preceding result for an arbitrary number of WLs and an
arbitrary number of SLs is presented in conjunction
with Eq. (4.9) of Ref. [139].

TMPWL j (t) = temperature (0C) ofWLj at time t

(min),

TMPSLk (t) temperature (0C) of SL k at time t

(min),

(4.1)

(4.2)

In a real problem, the temperature curves
TMPWL/t) and TMPSLit) would be determined by the
numerical solution of a system of nonlinear partial dif­
ferential equations. However, for the present example,
these curves are assumed to be defined by

fWl., (T) = density function (Oe-I ) for failure

temperature ofWLj, (4.3)

and

jSLk (T) = density function (Oe-I ) for failure

temperature ofSL k. (4.4)

Further, time is assumed to range from tMN to tMX
with
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TMPWL j (t) = cl +[C2 +c3j exp(-C4/)sin(CS/)]

x tanh (C6/) (4.7)

where the assumed functional forms mimic results ob­
served in actual analyses. The nature of the constants
(i.e., the c's) in Eqs. (4.7) and (4.8) is indicated in Ta­
ble 1. Further, the density functions jWL/TwL) and
jSLk(TsL) are defined by



fWL j (TWL ) = (1/cg.J21t) exp[-(TWL -CS)2 /2c§ ] (4.9)

jSLk (TSL ) = (l/cll .J21t) exp[-(TSL -ClO)2 /2CfIJ

(4.10)

ciated with each variable by interpreting the given
probabilities as BPAs for the corresponding intervals
(i.e., III for Expert 1, and Iij,j = 1,2, ... , 5 for Expert
i, i = 2,3,4). Specifically, the BPA mi associated with
Expert i is given by

for an arbitrary set V of points from [a, b], where JEI =
{hd and ~ = {I ij,j = 1,2, ... , 5} for i = 2,3,4. The
BPAs from the individual experts are then equally
weighted to produce a final BPA m. In particular, this
final BPA is given by

where nE = 4 is the number of experts and V is an arbi­
trary subset of points from [a, b]. The preceding pro­
cedure results in an evidence space with 13 focal ele­
ments for each variable in Table 1 (Table 3). In turn, a
probability distribution for use in sampling can be de­
fined for each variable as indicated in Eq. (2.45). The
form of the CPF, CDF, CBF, CCPF, CCDF and CCBF
that results for each variable is shown in Fig. 1.

Again, the nature of the constants (i.e., the c's) in Eqs.
(4.9) and (4.10) is indicated in Table 1. Further, the
two WL failure temperature distributions are assumed
to be independent (i.e., although the two WLs have the
same distributional form for failure temperature, the
failure temperatures for the two WLs are independent).
A similar assumption is made for the SL failure tem­
perature distributions.

The sixteen variables used to characterize the sys­
tem defined by Eqs. (4.6) - (4.10) are treated as being
epistemically uncertain (Table 1). Each variable has an
uncertainty range [a, b] as indicated in Table 1. For
simplicity, it is assumed that the uncertainty in each
variable's possible values is specified in the same man­
ner by four independent experts (Table 2). Such con­
sistency would not be the case in a real analysis but
providing different uncertainty specifications for each
variable would complicate the presentation of this ex­
ample while adding little to its illustrative value. The
information indicated in Table 2 is encoded into an
evidence space representation for the uncertainty asso-
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ifVE JEi

otherwise

nE

m(V) = Lmi(V)/nE,
i=I

(4.11)

(4.12)



Table 1. Uncertain Variables and Associated Uncertainty Ranges Considered in Example Uncertainty
Analyses (Adapted from Table 1, Ref. 134)

CI - Temperature (0C) ofWLs and SLs before start of fire. Range: [-30, 40°C].

C2 - Temperature increase (0C) above CI at steady state. Range: [800, 1000°C].

c31 - Peak amplitude of temperature transient for WL 1. Range: [-2600, -100°C].

c32 - Peak amplitude of temperature transient for WL 2. Range: [-2600, -100°C].

c41 - Thermal heating time constant (min-I) for WL 1. Range: [0.2,0.4 min-I].

c42 - Thermal heating time constant (min-I) for WL 2. Range: [0.2,0.4 min-I].

c51 - Frequency response (min-I) of temperature transient for WL 1. Range: [0.1,0.2 min-I].

c52 - Frequency response (min-I) oftemperature transient for WL 2. Range: [0.1,0.2 min-I].

c61 - Time constant (min-I) determining the rate at which WL 1 reaches steady state temperature. Range: [0.01,
0.015 min-I].

c62 - Time constant (min-I) determining the rate at which WL 2 reaches steady state temperature. Range: [0.021,
0.025 min-I].

cn - Factor (dimensionless) used to account for more rapid heating in SL 1 than in the associated WL (i.e., WL
2). Range: [0.3, 0.5].

cn - Factor (dimensionless) used to account for more rapid heating in SL 2 than in the associated WL (i.e., WL
2). Range: [0.6, 2.0].

<s - Expected value (0C) of normal distribution for WL failure temperatures. Range: [285, 315°C].

c9 - Standard deviation (0C) of normal distribution for WL failure temperatures. Range: [4, 12°C].

<ro - Expected value (0C) of normal distribution for SL failure temperature. Range: [560, 580°C].

cII - Standard deviation (0C) of normal distribution for SL failure temperature. Range: [15, 35°C].

Table 2. Illustrative Specification of Uncertainty Information Used in Example Uncertainty Analyses
with Probability Theory and Evidence Theory for Variables in Table 1 (Table 2, Ref. 134)

Expert 1: States appropriate value for variable is in the interval 1II = [a, b] but provides no information on uncer­
tainty structure within [a, b].

Expert 2: Divides [a, b] into five nonoverlapping intervals of equal length (i.e., 12i = [a + (b - a)(i - 1)/5, a + (b­
a)iI5) for i = 1,2,3,4 and 125 = [a + (b - a)(i - 1)/5, a + (b - a)iI5] for i = 5) and states that the appropriate value
for the variable is equally likely to be in each of these intervals.

Expert 3: Divides [a, b] into following five nonoverlapping intervals: 131 = [a, a + (b - a)110], 132 = [a + (b­
a)110, a + 4(b - a)110), 133 = [a + 4(b - a)110, a + 6(b - a)/1O), 134 = [a + 6(b - a)/1O, a + 9(b - a)110), 135 = [a +
9(b - a)11 0, b]. States that the probability (i.e., likelihood) that the appropriate value for the variable is contained
in each of these intervals is 0.05, 0.2, 0.5, 0.2 and 0.05, respectively.

Expert 4: Divides [a, b] into following five nested intervals: 141 = [a + 4(b - a)110, a + 6(b - a)110), 142 = [a +
3(b - a)110, a + 7(b - a)/10), 143 = [a + 2(b - a)110, a + 8(b - a)110), 144 = [a + (b - a)110, a + 9(b - a)110), 145 =

[a, b]. States that amount of probability (i.e., likelihood) that can be assigned to the proposition that a given inter­
val contains the appropriate value to use for the variable is 0.2.

21



Table 3. Basic Probability Assignments (BPAs) for a Variable on the Interval [a, b] Derived from the
Information in Table 2 (Table 3, Ref. 134)

m(V) = 3110 if V= II = [a, b]

= 1/20 ifV=I2=[a,a+(b-a)/5)

= 1/20 ifV=I3=[a+(b-a)/5,a+2(b-a)/5)

= 9/40 if V= 14 = [a + 2(b - a)/5, a + 3(b - a)/5)

= 1/20 if V= Is = [a + 3(b - a)/5, a + 4(b - a)/5)

= 1/20 ifV=I6=[a+4(b-a)/5,b]

= 1/80 if V = 17 = [a, a + (b - a)/lO)

= 1/20 if V= 18 = [a + (b - a)110,a + 4(b - a)110)

= 1/20 ifV=I9=[a+6(b-a)/10,a+9(b-a)110)

= 1/80 ifV=I IO=[a+9(b-a)110,b]

= 1/20 ifV=I ll = [a+3(b-a)110,a+7(b-a)/10)

= 1/20 ifV=I12=[a+2(b-a)/10,a+8(b-a)/10)

= 1/20 if V= 1 13 = [a + (b - a)/lO, a + 9(b - a)/lO)

=!L- otherwise
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Fig. 1. Form of the CPF, CDF, CBF, CCPF, CCDF and CCBF that results for each variable from the uncertainty
information in Table 2 with variable range normalized to [0, 1].
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5. Example Results

For this example,

corresponds to the nX = 16 variables in Table 1. Fur­
ther, the dependent variables selected for possible
analysis correspond to

Y=[Yl'Y2""'YS]

= [WLlT25, WLlT75, SLlT25, SLlT75, pF], (5.2)

of size nS = 200 was generated from the possible values
for X in consistency with the distributions defined by
the density functions in Eq. (5.3). Further, the
Iman/Conover restricted pairing technique was used in
the generation of this sample to assure that no spurious
correlations between the sampled variables are pre­
sent. 140, 141

5.3 Step 3: Propagate Sample
Through Model

The model is evaluated for each element of the
sample in Eq. (5.4). This produces the mapping

for i = 1, 2, ... , nS = 200 from uncertain inputs to un­
certain results. As shown in Fig. 2, the analysis actu­
ally produces time-dependent values for the WL and
SL temperatures. Such time-dependence is typical of
the results obtained in large analyses. The values for
the temperature results in Eq. (5.5) correspond to the
results associated with vertical lines drawn through the
time-temperature curves in Fig. 2 at times of 25 and 75
min. The values for pF in Eq. (5.5) are summarized by
the CCDF in Fig. 3.

where (i) WLlT25 and WLlT75 are the temperatures of
WL 1 at 25 and 75 min, respectively (see Eq. (4.7)), (ii)
SLlT25 and SLlT75 are defined similarly for SL 1 (see
Eq. (4.8)) and (iii) pF is the PLOAS (see Eq. (4.6)).
Given the time dependency of the results and the pres­
ence of multiple WLs and SLs, a real analysis would
probably consider many more uncertain results than the
five indicated above. The individual steps in the com­
putational strategy for estimating CBFs, CCBFs, CPFs
and CCPFs for model results are now illustrated.

5.1 Step 1: Define Sampling
Distribution

The sampling distribution for each uncertain vari­
able is defined as shown in Eq. (2.45). Specifically,
this results in a distribution with a density function de­
fined by

5.4 Step 4: Perform Sensitivity
Analysis

(5.5)

13
dj (Xj) = z>5(XjIVk ) m(Vk )/L(Ik ), (5.3)

k=1

where I k, Vk = hand m(Vk) are defined in Table 3,
L(h) is the length of the interval Ib and the indicator
variable ~\IVk) is defined in Eq. (2.46). The form of
the CDF and CCDF associated with this distribution is
shown in Fig. 1.

5.2 Step 2: Generate Latin
Hypercube Sample

A Latin hypercube sample S6-S9

This step involves carrying out a sensitivity analy­
sis to determine the dominant contributions to the un­
certainty in each element of y. This analysis is based
on exploring the mapping between analysis inputs and
analysis results in Eq. (5.5). Many procedures exist
that might be used in this exploration, including corre­
lation and partial correlation analysis with raw or rank­
transformed data, linear regression analysis with raw or
rank-transformed data, statistical tests for patterns
based on gridding, entropy tests for patterns based on
gridding, squared rank differences/rank correlation test,
two dimensional Kolmogorov-Smirnov test, and tests
for patterns based on distance measures.v? Additional
information on sampling-based sensitivity analysis is
available in a number ofreviews.128-131,142-148

Xi = [Xii' <a- ... , Xi,16 J, i = 1, 2, ... , nS, (5.4)
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Fig. 2. Time-dependent curves for WLs and SLs obtained with Latin hypercube sample with 100 curves from
sample of size 200 shown.
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The LOESS techniquel-" is based on the assump­
tion that the relationship between y and X is of the form

where ~(x) = [PI (x), f32(x), 00" Pr(x)] and x = [xl> X2,

. 00' xr]T. In tum, an approximate relationship of the
form

Nonparametric regression procedures provide an
alternative to parametric regression procedures that can
mitigate the potential problems indicated in the preced­
ing paragraph. With nonparametric regression proce­
dures, an a priori specification of the exact algebraic
form of the regression model is not required. Rather,
an iterative procedure is used to construct a model that
captures the relationships that are present in the map­
ping between analysis inputs and a particular analysis
result. This iterative construction procedure produces a
model that can represent local patterns of behavior.
Nonparametric regression is often referred to as
smoothing. Popular nonparametric regression proce­
dures include (i) locally weighted regression (LOESS),
(ii) generalized additive models (GAMs), (iii) projec­
tion pursuit regression (PP_REG), and (iv) multivariate
adaptive regression splines (MARS). These procedures
are briefly described below.

For illustration, the results of a sensitivity analysis
with stepwise rank regressionl't? are presented in Table
4, with variable importance indicated by order of selec­
tion in the stepwise procedure, the absolute value of the
standardized rank regression coefficients (SRRCs) in
the final regression model, and incremental changes in
R2 values as additional variables are added to the model
(see Sect. 6.6.6, Ref. [129], for a discussion of sensitiv­
ity analysis with rank regression). For example, the
three dominant variables contributing to the uncertainty
in WLIT25 are c61> cI and c2'

5.5 Step 5: Develop Response
Surface Approximation

This step involves developing response surface re­
placements for the original model with the variables
identified as being important in Step 4. The most com­
putationally efficient way to do this is to simply take
the important variables identified for each component
of y as a group and construct a corresponding response
surface approximation with an appropriate procedure.
A possibility is to use parametric regression techniques.
In this case, the constructed model for a component y of
y might involve a linear regression (LIN_REG) of the
form

y = f(x) = a(x)+~(x)x, (5.8)

or a response surface regression (RS_REG) of the form

where Xl> x2' ... , Xr are the important variables affecting
y identified at Step 4. The constructions in Eqs. (5.6)
and (5.7) are known as parametric regression models
because the exact parametric form of the model is
specified before the analysis begins. Although these
models work well sometimes, there are potential draw­
backs to their use. First, it is necessary to provide an a
priori specification of the form of the regression model.
Unfortunately, when complex patterns of behavior are
present, it can be difficult to determine the appropriate
form for a regression model. Second, the specified
form for the regression is required to hold across the
entire mapping from analysis inputs to analysis results,
which makes the representation of local behavior
and/or asymptotes difficult.

For GAMs, lSI the function.f{x) is assumed to have
the form

is sought with LOESS. The quantities a(x) and ~(x)
for a given value of x are defined to be the values for ex
and ~ = [PI, 132, ... ,Pr] that minimize the sum

(5.9)y= j(x) = a(x)+~(x)x

~(a+~xi - Yi)' [,_(11;,(:)")'J[[O,d,(,)) (11x -x;j!j,
(5.10)

where (i) dk(x) is the distance to the kt1l nearest
neighbor of x in r-dimensional Eulidean space, (ii)
I[O,d (x»(llx - XiiI) equals 1 if [x - Xiii < ddx) and equals
o otterwise, and (iii) the individual independent vari­
ables (i.e., Xl> X2' . 00' xr) are normalized to mean zero
and standard deviation one so that the value for the
norm II . II is not dominated by the units used for these
variables.

(5.7)

(5.6)

r r r
y=bo+ 2.,bjxj+ 2., 2.,bj/xjx/,

j=1 j=I/=j

r

y=bo+2.,bjxj
j=1
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Table 4. Sensitivity Analysis Based on Stepwise Rank Regression for Mapping [Xi' Yi], Y =1,2, "'J nS =
200, in Eq. (5.5)

Vara SRRCb R2c Var SRRC R2 Var SRRC R2

WLlT25: WL 1 Temp at 25 min WLlT75: WL 1 Temp at 75 min 10g(PF): Logarithm PLOAS

c61 0.71 0.54 c61 0.64 0.46 C71 0.67 0.47

cI 0.49 0.78 c2 0.64 0.87 c2 0.38 0.62

c2 0.42 0.96 CI 0.30 0.96 cI -0.29 0.70

SLlT25: SL 1 Temp at 25 min SLlT75: SL 1 Temp at 75 min cn 0.23 0.76

c2 0.70 0.52 c2 0.94 0.89 Cg 0.20 0.80

c62 0.43 0.72 cI 0.30 0.97 c9 0.19 0.83

c71 0.33 0.83 c71 0.03 0.97 clO -0.16 0.85

cI 0.33 0.93 Cll 0.16 0.88

c31 0.05 0.94 c42 -0.14 0.90

c32 -0.11 0.91

c62 0.11 0.92

c52 -0.10 0.93

a Variables listed in order of selection in stepwise process with variable required to have an a-values of 0.02 and 0.05 to enter and be retained in
the regression, respectively.

b Standardized rank regression coefficient (SRRC) for variable in final regression model.

c Cumulative R2 value with entry of each variable into the regression model.

where the fj are arbitrary functions that will be deter­
mined as part of the analysis process. In tum, the ob­
served values for yare assumed to be of the form

Given initial estimates Jz, J3' ... , Jr forh,fi, ... ,1,., an
estimate Ji for II can be obtained through use of the
relationship

for i = 1, 2, ... , nS. In particular, a scatterplot smoother
(e.g., LOESS with only one independent variable) is
used to smooth the partial residuals on the left hand
side ofEq. (5.13) across XI' This produces an estimate
Ji for.li defined across the range of values for XI'

The PP_REG procedure- V involves both dimen­
sion reduction and additive modeling and is based on
the assumption thatj(x) has the form

(5.14)
nD

I(x) = Lgs (<Xsx),
s=1

Given this estimate for fi, the estimate J2 for h can be
refined in the same manner across the range of values
for X2 with Ji, J3' J4' ... , i: This procedure then
continues and repetitively cycles through the variables.
The cycling continues until convergence is achieved.

where <Xs = [al s' lXzs' ... , ars]' X = [xl> Xz, ... , xr]T, <Xsx
corresponds to a linear combination of the elements of
x, and gs is an arbitrary function. Values for gs, <Xs and
nD are determined as part of the analysis procedure.
The expression in Eq. (5.14) is an additive model with
the quantities <Xsx replacing the elements Xj of X as the
independent variables. Further, this expression in­
volves a reduction in dimension as nD is usually
smaller than r. The entities aI, a2' ... , anD and gl>
gz, ..., gnD are estimated as part of the construction
process. This is accomplished by first estimating <XI

(5.12)

(5.11)

(5.13)

r

I (X) = L I j ( X j ),

j=1

r

v, = I (Xi) = L I j ( Xij ).
j=1

r

Yi - L Jj ( xij ) == .Ii (Xii )
j=2
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The MARS procedure-S' constructs an approxima­
tion to Y of the form

and gl' Specifically, &.1 and gl are defined to be the
values for a and ga that minimize the sum

where a E W, Iiall = 1, and ga is the outcome of using a
scatterplot smoother on the points [vi- gl(&'1 X), aXil, i
= 1, 2, ... , nS. This process continues until no appre­
ciable improvement based on a relative error criterion is
observed.

predictive capability, and so on until (iii) some stopping
criterion is reached that indicates that the consideration
of additional variables does not produce models with
improved predictive capability. Order of selection in
the stepwise construction process and fraction of vari­
ability explained (i.e., an R2 value) can be used to indi­
cate variable importance. The F-statistic with appro­
priate degrees of freedom (see Sect. 3.9, Ref. [151], and
Sect. 3.13, Ref. [155]) can be used to determine a stop­
ping point in the stepwise variable selection procedure.
Additional discussion of nonparametric regression is
available in a number oftexts.151, 154-158

If the number of elements in X is not excessively
large, then this construction can be carried out in a
stepwise manner analogous to that shown in Table 4 for

• 132 h ffistepwise rank regression. T e most e ncient proce-
dure is to consider only the variables identified in Step
4 as being important. However, if computationally
practicable, this construction can be carried out with
sequential stepwise consideration of all components of
X as candidates for inclusion in the response surface
under consideration. Then, as indicated in the descrip­
tion of Step 5 in Sect. 4, the sensitivity analysis in Step
4 and the response surface construction in Step 5 are in
effect being carried out together, with variable impor­
tance indicated by order of selection in the stepwise
response surface construction and the corresponding
changes in incremental R2 values.

(5.15)

(5.16)

(5.17)
M

y(x) = Po + Lf3khk (x),
k=1

where a ERr, Iiall = 1, and g., is the outcome of using a
scatterplot smoother (e.g., LOESS) on the points [vi'
ox.], i = 1, 2, ... , nS. Once &.1 and gl are estimated, the
partial residuals Yi - gl ( &.1 Xi)' i = 1, 2, ... , nS, are used
to obtain &.2 and g2' Specifically, &.2 and g2 are de­
fined to be the values for a and S« that minimize the
sum

where the hk are basis functions for the space of possi­
ble X values. The basis functions are selected from a
large set of basis functions that span all values for x.
Initially, the MARS procedure sequentially adds an
increasing number of basis functions to the model until
a least squares goodness-of-fit criterion is satisfied,
with the result that the model can be substantially over­
fitted. Then, basis functions are dropped from the
model until a generalized cross validation criterion in­
dicates that the model is no longer overfitting the data.
The result is the model in Eq. (5.17). The MARS pro­
cedure is similar to recursive partitioning regressionl-"
in the sense that it partitions the input space into re­
gions with each region having its own regression
model.

The preceding procedures can all be carried out in
a stepwise manner to determine variable importance,
with (i) the most important variable XI being the vari­
able that results in the single-variable model with the
most predictive capability, (ii) the second most impor­
tant variable x2 being the variable that in conjunction
with XI results in the two-variable model with the most

For illustration, summaries of stepwise response
surface construction with several different methods are
presented in Table 5 for log(PF). As the MARS proce­
dure worked as well as or better than the other response
surface procedures considered for constructing ap­
proximations to the elements of y, the MARS proce­
dure was selected for use in determining the response
surface approximations to be employed in constructing
evidence theory results in Step 6 (see Table 5 for
10g(PF) and Table 6 for WLlT25, WLlT75, SLlT25
and SLlT75). The biggest differences in the response
surface constructions for the different procedures oc­
curred for 10g(PF) (Table 5). The results with the pro­
cedures illustrated for 10g(PF) in Table 5 are very simi­
lar for WLlT25, WLlT75, SLlT25 and SLlT75 as a
result of the smooth and well-defined relationships be­
tween these variables and the elements of x. However,
such similarity should not always be expected to be the
case.

The high R2 values for the final response surface
constructions with the MARS procedure in Tables 5
and 6 are indicative of a high predicative capability.
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Table 5. Summaries of Stepwise Construction of Response Surface Approximations of log(pF) from
Mapping in Eq. (5.5)

Var' R2b d.f p_vald PRESSe Var R2 df p-val PRESS Var R2 df p-val PRESS

LIN REG RS REG MARS

c71 0.4674 1.0 0.0000 1.24E2 c7\ 0.4727 2.0 0.0000 1.24E2 c7\ 0.4674 1.0 0.0000 1.24E2

c2 0.6220 1.0 0.0000 8.93EI c2 0.6260 3.0 0.0000 9.15El C? 0.6220 1.0 0.0000 9.44El

c1 0.7005 1.0 0.0000 7.16El c1 0.7089 4.0 0.0000 7.43EI c1 0.7110 2.0 0.0000 7.19El

cn 0.7624 1.0 0.0000 5.74El cn 0.7759 5.0 0.0000 6.08El cn 0.7776 2.0 0.0000 5.93El

c9 0.8076 1.0 0.0000 4.68EI c9 0.8291 6.0 0.0000 4.90El Co 0.8267 2.0 0.0000 5.08El

cR 0.8464 1.0 0.0000 3.79EI cg 0.8704 7.0 0.0000 4.14El c42 0.8857 6.0 0.0000 4.87El

cll 0.8766 1.0 0.0000 3.07El c42 0.9030 8.0 0.0000 3.60El cg 0.8990 -1.0 0.0000 3.35El

clO 0.9011 1.0 0.0000 2.48El cll 0.9340 9.0 0.0000 2.73El cll 0.9393 6.0 0.0000 2.55El

c4? 0.9234 1.0 0.0000 1.96El clO 0.9610 10.0 0.0000 1.89EI clO 0.9597 1.0 0.0000 2.30El

c<2 0.9359 1.0 0.0000 1.66EI cJ2 0.9737 11.0 0.0000 1.65El C<? 0.9755 8.0 0.0000 1.98El

c62 0.9463 1.0 0.0000 1.41El cS2 0.9869 12.0 0.0000 9.03EO c
' 2

0.9891 11.0 0.0000 1.13El

c32 0.9565 1.0 0.0000 1.17EI c"2 0.9970 13.0 0.0000 3.03EO c"2 0.9971 9.0 0.0000 3.99EO

LOESS GAM cJ 1 0.9978 9.0 0.0000 4.36EO

c71 0.4674 1.0 0.0000 1.24E2 c7\ 0.4675 1.0 0.0000 1.24E2 PP REG

c2 0.6681 12.3 0.0000 8.83El c2 0.6349 4.0 0.0000 8.90El c7\ 0.4696 1.3 0.0000 1.26E2

cn 0.6853 -10.1 0.0000 7.53El C 0.7104 1.0 0.0000 7.13El c2 0.6500 5.6 0.0000 8.67El

C 0.7629 1.3 0.0000 5.76El cn 0.7722 1.0 0.0000 5.67EI cn 0.7373 7.4 0.0000 8.57El

cg 0.8038 1.5 0.0000 4.86El cQ 0.8178 2.0 0.0000 4.60El C42 0.8196 16.2 0.0000 7.57El

Co 0.8579 2.0 0.0000 3.68EI CQ 0.8890 19.3 0.0000 7.95El

cll 0.8949 7.0 0.0000 2.92EI c lO 0.9278 8.0 0.0000 6.14El

clO 0.9177 2.0 0.0000 2.32EI

c42 0.9416 2.0 0.0000 l.7lEl

c
' 2

0.9498 1.0 0.0000 1.50EI

c62 0.9591 2.0 0.0000 1.24El

cS2 0.9678 2.0 0.0000 1.01El

a Variables listed in order of selection in stepwise process.

b Cumulative R2 value with entry of each variable into the model.

C Incremental degrees of freedom with entry of each variable into the model.

d p-value associated with entry of each variable into the model.

e Predicted error sum of squares (PRESS) value for model; a deviation from monotonically decreasing PRESS values indicates that the model
may be overfitting the data.

As a further test, a "leave one out" analysis was carried
out in which one observation at a time was dropped
from the mapping in Eq. (5.5) and then MARS re­
sponse surfaces were constructed from the remaining
199 observations and used to predict the elements of
the dropped y value. For each e1ementy ofy, the result
is a sequence

[Yi' yJ i =1, 2, ... , nS =200, (5.18)

WLlT75 and log(PF) in Fig. 4, the MARS procedure is
predicting quite well, although there is some noise in
the predictions for log(PF). Comparisons similar to the
comparison for WLIT75 were also obtained for
WLlT25, SLlT25 and SL2T75.

5.6 Step 6: Approximate y for Large
Random Sample

where Yi is the original value in Eq. (5.5) and Yi is the
corresponding predicted value. As shown by the scat­
terplots for the observed and predicted values for
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Xi = [Xi!, Xi2, ... , Xi,16]' i =1,2, ... , nS, (5.19)



Table 6. Summaries of Stepwise Construction of Response Surface Approximations to WL1T25,
WL5T75, SL1T25 and SL1T75 from Mapping in Eq. (5.5) with the MARS Procedure

Vara R2b df p-vald PRESSC Var R2 df p-val PRESS

WLlT25: WL I Temp at 25 min WLlT75: WL I Temp at 75 min

C61 0.5946 4.0 0.0000 1.12E5 C61 0.5550 5.0 0.0000 3.44E5

c1 0.8283 2.0 0.0000 4.83E4 c2 0.9176 0.0 0.0000 6.05E4

c2 0.9998 -1.0 0.0000 5.44E1 c1 1.0000 13.0 0.0000 2.60EO

C41 0.9999 4.0 0.0000 2.66E1 SL1T75: SL 1 Temp at 75 min

CS1 1.0000 8.0 0.0000 2.00E1 c2 0.8947 2.0 0.0000 6.44E4

C31 1.0000 9.0 0.0000 4.89EO c1 0.9969 0.0 0.0000 1.86E3

SLlT25: SL 1 Temp at 25 min C62 0.9987 3.0 0.0000 8.60E2

c2 0.5699 2.0 0.0000 2.37E5 C71 1.0000 11.0 0.0000 I.72EO

C62 0.7700 2.0 0.0000 1.29E5

c7l 0.8849 0.0 0.0000 6.27E4

c1 1.0000 17.0 0.0000 3.17EO

a Variables listed in order of selection in stepwise process.

b Cumulative R2 value with entry of each variable into the model.

C Incremental degrees of freedom with entry of each variable into the model.

d p-value associated with entry of each variable into the model.

e Predicted error sum of squares (PRESS) value for model; a deviation from monotonically decreasing PRESS values indicates that the model
may be overfitting the data.
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for use in estimating evidence theory results for the
elements ofy.

5.7 Step 7: Approximate Evidence
Space Results

The approximation of evidence space results is il­
lustrated for WLlT25, WLlT75, SLlT25, SLlT25 and
10g(PF) for the construction of CCBFs, CCDFs and
CCPFs as indicated in Eqs. (2.40), (2.12) and (2.42).

of size nS = 106 was generated from the possible values
for x in consistency with the distributions defined by
the de~sity functions in Eq. (5.3). The corresponding
value Yi for Yi was then estimated for each element of
this sample with the MARS approximations to
WLlT25, WL1T75, SL1T25, SLlT75 and 10g(pF) indi­
cated in Tables 5 and 6. This created the mapping

The results for 10g(PF) are shown in Fig. 7, with the
results obtained from the MARS response surface ap­
proximation shown in the left frames and the results
obtained from the actual model predictions shown in
the right frames. The construction procedure is the
same as previously illustrated in Fig. 5 for WLlT75.
The pFaxis is terminated at 10-9 for two reasons.
First, the original Latin hypercube sample used in re­
sponse surface construction only resulted in values for
pF down to 10-9.6 ; thus, values for pF much less than
10-9 will involve results based on extrapolation rather
than interpolation. Second, it is difficult to give much
credence to probabilities less than 10-9 other than to
acknowledge that they are "small." Because of the
small values associated with the CCBFs, results are
shown with both a linear scale (upper two frames) and
a log scale (lower two frames) on the ordinate (i.e., the
belief, probability and plausibility axis).

The constructions of the CCBFs and CCPFs in Fig.
7 sequentially involves 1, 2, 3, 4 and 5 variables (i.e.,
c7b C2, cb <n and c9 in sequence; see Table 5). The
corresponding evidence spaces have 13k k = 1 2 3 4
5, focal elements, with 135 = 371,293 fo~al e1e:n~nt~ i~
the evidence space for x when all five variables have
their original evidence spaces and degenerate evidence
spaces are assigned to the remaining variables. As in­
dicated by the separation of the CCBFs and CCPFs
obtained for 4 and 5 variables, the CCBFs and CCPFs
in Fig. 7 are probably not fully converged to their true
values. This lack of convergence is consistent with the
MARS response surface for 10g(PF) with the indicated

The evidence space results for WLlT25, SLlT25
and SLlT75 are similar to those for WLlT75 (Fig. 6).
The results for WLlT25 and SLlT75 illustrate the neg­
ligible changes in CCBFs and CCPFs that take place
when variables that have little effect on the result of
interest are included in the construction process. As
indicated in Table 6, C41 has little effect on WLlT25
and C62 has little effect on SLlT75. As a result, their
inclusion in the CCBFs and CCPFs for WLl T25 and
SLlT75, respectively, has little impact on the estimates
for these outcomes.

The CCDFs that result from the distribution defined by
the density functions in Eq. (5.3) are also shown in Fig.
5, with these CCDFs appearing between the CCBFs
and the CCPFs as should be the case. As comparison
of the left and right frames in Fig. 5 shows, the CCBFs
and CCPFs obtained from the MARS response surface
approximation are effectively the same as those ob­
tained from the actual model predictions.

(5.20)[ 'J'_ 6Xi'Yi ,z-1,2, ... ,nS=10,

The results for WLlT75 are shown in Fig. 5, with
the results obtained from the response surface approxi­
mation shown in the left frame and the results obtained
from the actual model predictions shown in the right
frame. The outermost CCBFs and CCPFs in the two
frames were obtained with the most important variable
(i.e., c61; see Table 6) assigned its original evidence
space and the remaining variables assigned degenerate
evidence spaces. Thus, these CCBFs and CCPFs were
constructed from an evidence space for x with 13 focal
elements (see Table 3). Then, the next inner CCBFs
and CCPFs were obtained with c61 and the next most
important variable (i.e., c2; see Table 6) assigned their
original evidence spaces and the remaining variables
assigned degenerate evidence spaces, with the result
that the CCBFs and CCPFs are now being constructed
from an evidence space with 132 = 169 focal elements.
The process continues similarly with the addition of cl

in the next iteration and the corresponding considera­
tion of an evidence space with 133 = 2197 focal ele­
ments. The process stops at this point as <sr- C2 and cl

are the only variables identified as affecting WLlT75.

The construction of CBFs, CDFs and CPFs is simi­
lar (see Eqs. (2.39), (2.11) and (2.41)). For compari­
son, results are obtained with both the MARS response
surfaces for WLlT75 and 10g(PF) and the actual values
for WL1T75 and 10g(PF). Such a comparison would
not be possible in a real analysis with computationally
demanding models but is possible here because the
example model/analysis is inexpensive to evaluate.
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Weak Link 1, Temperature (75 min) Weak Link 1, Temperature (75 min)
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Fig. 5. Stepwise construction of CCBFs and CCPFs for WLl T75 with C6b <zand cI: (a) Construction with MARS
response surface approximation to WLl T75 (left frame), and (b) Construction with predicted values for
WLlT75 (right frame).

5 variables having an R2 value of 0.83 (Table 5). Thus,
approximately 17% of the uncertainty in 10g(PF) is not
captured by the response surface approximation in use.

One possibility is to continue the sequential con­
struction of CCBFs and CCPFs by adding a sixth vari­
able (i.e., C42, which would increase the R2 value for
the MARS response surface to 0.89; see Table 5). This
would bring a inward shift of the CCBFs and CCPFs
but at the computational cost associated with increasing
the number of focal elements in the evidence space for
X from 135 to 136 = 4,826,809. At this point, the sam­
ple of size nS = 106 in Eq. (5.19) may not be suffi­
ciently large to assure adequate coverage of this many
focal elements. In particular, there must be enough
observations from each focal element to provide an
approximate estimate of the minimum and maximum of
the variable under consideration (i.e., 10g(PF) in this
case) on each focal element. However, it is important
to recognize that the sample size does not necessarily
have to be substantially larger than the number of focal
elements when there is significant overlap of the focal
elements.

Several possibilities exist at this point. One is to
conclude that an adequate bound on the location of the
true CCBF and CCPF has been determined and that the
analysis can be terminated. In particular, the construc­
tion process is "outside in" in the sense that the true
CCBF and CCPF that results from a full consideration
of the evidence spaces for all elements of x will always

lie inside the constructed CCBFs and CCPFs (see Sect.
7, Ref. [133]). The preceding statement is conditional
on two assumptions: (i) that the response surface in use
is a "good" approximation to the result under consid­
eration, and (ii) that a sufficiently large sample has
been used to obtain converged estimates for the CCBF
and CCPF for the reduced evidence space.

Another possibility is to pay the computational cost
and keep adding variables until convergence is
achieved. This could result in having to increase the
size of the sample in Eq. (5.19). For 10g(PF), this could
mean considering a total of 9 variables, which would
bring the R2 value for the MARS response surface ap­
proximation up to 0.96 (i.e., with inclusion of c7b c2'

cb cn, c9' c42' cs, ci l- clO; see Table 5). However, at
the end of the analysis, this entails considering an evi­
dence space for x that involves 139 focal elements.

Yet another possibility is to simplify the analysis
by reducing the complexity of the evidence spaces as­
sociated with the elements of x. In particular, ap­
proximations to the original evidence spaces can be
defined that involve fewer focal elements but still cap­
ture the general nature of the original uncertainty char­
acterization. This can be done on the basis of focal
elements defined by horizontal lines drawn between the
CPF and CBF for a variable (Fig. 8). In particular, the
horizontal lines in Fig. 8 can be viewed as defining
focal elements that correspond to the intervals [0.0,
0.4], [0.0, 0.6], [0.2, 0.8], [0.4, 1.0] and [0.6, 1.0] and
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Fig. 6. Stepwise construction of CCBFs and CCPFs with MARS response surface approximations for WLlT25,
SLlT25 and SLlT75: (a) WLlT25 with c6j, cj, Cz and C4j, (b) SLlT25 with <z- c6Z, c71 and <i- and (c)

SLlT75 with cz, cl and c6Z'

have BPAs of 0.2. The result is a new and simpler evi­
dence space for the variable that now has 5 rather than
13 focal elements. In general, the appropriate simplifi­
cation would depend on the structure of the original
evidence space, the amount of desired or necessary
simplification, and the importance of the variable. In
particular, it might be desirable to impose less simplifi­
cation on the more important variables and more sim­
plification on the less important variables.

As an example, the analysis for 10g(PF) was car­
ried out with the evidence spaces for the individual
components of X redefined to have 5 focal elements as
indicated in conjunction with Fig. 8. This resulted in
the need to consider sequential evidence spaces for x

with fewer focal elements than used in the construction
of the CCBFs and CCPFs in Fig. 7 and, as a result, al­
lowed the incorporation of the effects of more compo­
nents of X into the final CCBF and CCPF for 10g(PF).
Although the uncertainty in the individual components
of x has increased because of the reduction of the num­
ber of focal elements from 13 to 5, the estimated uncer­
tainty in log (PF) has actually decreased because of the
use of more components of X in the construction of the
final CCBF and CCPF (i.e., compare final CCBFs and
CCPFs in Figs. 7 and 9). Thus, although conservative
due to the reduction in the number of focal elements,
the final CCBF and CCPF in Fig. 9 provides a better
representation of the uncertainty in log (PF) than the
final CCBF and CCPF in Fig. 7.
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The sequential construction of CCBFs and CCPFs
can be viewed a form of sensitivity analysis within the
context of an evidence theory representation of uncer­
tainty. Specifically, variable importance is indicated by
the extent that the CCBFs and CCPFs change when a
variable is entered into the construction process with its
full evidence theory representation.

The results in Fig. 9 produced a surprise in that the
effect of c42 on the location of the CCPF is greater than
its incremental R2 value of 0.06 in the MARS response
surface construction would suggest (Table 5). Thus,
there is not always an exact correspondence between
incremental R2 values and shifts in the locations of
CCPFs. For perspective, Fig. 10 shows the results of a
sequential construction of CCBFs and CCPFs in which
c42 is the second rather than the sixth variable included
the construction process. With this change in the order
of variable consideration, the CCPFs now show a pat­
tern of decreasing separation as more variables are in­
corporated into the CCPFs.

1.00.5

.----_...J ......CBF

CPF--.

0.0
x
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Simplification of an evidence space with each
horizontal line corresponding to a focal ele­
ment with a BPA of 0.2 in a new evidence
space.
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Fig. 9. Stepwise construction of CCBFs and CCPFs for pF with the evidence spaces for the individual compo­
nents of x redefined to have 5 focal elements as indicated in conjunction with Fig. 8 and sequential inclu­
sion of C7l> cz, CIl> <n- c9' c42> <s and cII: (a) Construction with MARS response surface approximation
to 10g(PF)(left frames), and (b, d) Construction with predicated values for 10g(PF)(right frames).
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Fig. 10. Stepwise construction of CCBFs and CCPFs for pF with the evidence spaces for the individual compo­
nents of x redefined to have 5 focal elements as indicated in conjunction with Fig. 8 and sequential inclu­
sion of c7j, c42' c2' Cj j, cn, Cg, <s and cll: (a) Construction with MARS response surface approximation
to log(PF) (left frames), and (b, d) Construction with predicated values for log(PF) (right frames).
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6. Discussion

Evidence theory is a promising alternative to prob­
ability theory for the representation of epistemic uncer­
tainty when limited information is available. With evi­
dence theory, a less structured representation of uncer­
tainty is possible than is the case with probability the­
ory.

Evidence theory representations of uncertainty can
be interpreted in two different ways. With one inter­
pretation, an evidence theory representation of uncer­
tainty can be viewed as the specification of an incom­
pletely defined probability space. With this interpreta­
tion, the belief associated with a set is the smallest
probability that must be assigned to that set to complete
the definition of the probability space, and the plausi­
bility associated with a set is the largest probability that
could be assigned to that set in a completion of the
definition of the probability space. With the other in­
terpretation, evidence theory provides a structure for
reasoning under uncertainty. With this interpretation,
the belief associated with a set is a measure of the
amount of information that supports the truth of an as­
sertion corresponding to the set, and the plausibility
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associated with a set is a measure of the lack of infor­
mation that contradicts an assertion corresponding to
the set.

Regardless of the interpretation, the mathematics
of an evidence theory representation of uncertainty is
the same. A particular challenge in this mathematics is
the propagation of an evidence theory structure through
a function which is computationally expensive to evalu­
ate.

This presentation has described a sampling-based
computational procedure for the propagation of an evi­
dence theory representation of uncertainty through a
computationally expensive function (i.e., a numerically
demanding computer program). At the core of this
procedure is the use of Latin hypercube sampling and
nonparametric regression models to develop response
surface approximations to analysis results of interest.
This procedure provides a means to propagate an evi­
dence theory representation of uncertainty through a
function where more naive sampling-based approaches
will fail due to the high cardinality of the evidence
space. Further, the stepwise nature of the propagation
process provides sensitivity analysis results that can be
interpreted in the context of evidence theory.
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