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Abstract 

We consider the soliltion of nonlinear programs in the case where derivatives 
of the objective function and nonlinear constraints are unavailable. To solve 
such problems, we propose an adaptation of a method due to Conn, Gould, 
Sartenaer, and Toint that proceeds by approximately minimizing a succession 
of linearly constrained augmented Lagrmgians. Our modification is to usc a 

http://tgkoldaQsandia.gov


derivative-free generating set direct search algorithm to solve the linearly con- 
strained subproblems. The stopping criterion proposed by Conn, Gould, Sarte- 
naer and Toint for the approximate solution of the subproblems requires explicit 
knowledge of derivatives. Such information is presumed absent in the gener- 
ating set search method we employ. Instead, we show that stationarity results 
for linearly constrained generating set search methods provide a derivative-free 
stopping criterion, based on a step-length control parameter, that is sufficient 
to preserve the convergence properties of the original augmented Lagrangian 
algorithm. 
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1 Introduction 

In this paper, the problems of interest' are general nonlinear optimization problems 
of the following form: 

minimize f (x) 
subject to ~ ( x )  = 0 

Ax 2 b. 

Here the objective function is f : R" -+ R. The constraints are a mixture of explicit 
linear constraints and general equality constraints. The matrix A E R p x n  defines 
the explicit linear constraints, including linear equality constraints and bounds on 
the variables; UT denotes the i th row of A. The general equalit'y constraints are c : 
R" -+ Rm; q ( x )  denot'es the ith equality constraint. General inequality constraints 
are assumed to be converted to equalities by introducing nonnegative slack variables; 
see Section 7. 

The motivation for the work reported here is the situation in which the deriva- 
tives of both f and c are either unavailable or unreliable. The algorithm we present 
for solving (1) is an adaptation of an augmented Lagrangian method due to Conn, 
Gould, Sartenaer, and Toint [5] (related work may be found in [3, 4, 61). In their 
approach the linear constraints are dealt with directly, but derivatives of f and c are 
presumed to be available. Our adaptation of their algorithm makes use of generating 
set search (GSS) methods [ll], which neither require nor explicitly approximate these 
derivatives, and yet possess standard first-order convergence properties. Specifically, 
we use a derivative-free GSS variant for linearly constrained problems that is known 
to possess good convergence behavior in both theory [12] and practice [15, 91. 

In the augmented Lagrangian method due to Conn, Gould, Sartenaer, and Toint 
[5], only the general nonlinear equality constraints are included in the augmented 
Lagrangian a: 

where the components Xi of the vector X are the Lagrange mult.iplier estimates and p 
is the penalty parameter. Their method then involves successive linearly constrained 
minimization of a more general version of (2). The basic form of t,he algorithm is: 

As noted in [5], an attractive feature of this framework is that the linear con- 
straints are kept outside the augmented Lagrangian and are handled at the level of 
the subproblem minimization. This reduces the number of Lagrange multipliers that 
must be estimated. It also allows the use of algorithms that ensure that the iterates 
produced remain feasible with respect t'o the linear constraints. 
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Initialization. Choose XO, PO, and zo satisfying Azo 2 b as well as various 
parameters for stopping tolerances in the inner and outer iterations. 

Outer iteration. For k = 0 ,1 ,2 , .  . 

Inner iteration. Find a solution zk+l that approximately minimizes 
@(z; Xk, pk) subject to Azk+l 2 b, according to an appropriate 
stopping criterion. 

with the solution zk+l. 
Test for convergence. If the final convergence tests are satisfied, stop 

Updates. Else 

0 update the Lagrange multipliers to obtain &+I, 
0 update the penalty parameter to obtain p k + l ,  and 
0 update assorted parameters, including the stopping tolerances for 

the inner iteration. 

Algorithm 1.1: A basic framework for the augmented Lagrangian approach that leaves 
the linear constraints explicit. 

We adapt the above framework, making use of a GSS method for solving linearly 
constrained problems [ 121 to solve the inner iteration while preserving the convergence 
properties of the augmented Lagrangian algorithm in [5]. The catch for us is that 
the “appropriate stopping criterion” for the inner iteration, as originally defined in 
[5], involves the explicit gradient of the augmented Lagrangian. The GSS adaptation 
substitutes a suitable derivative-free stopping criterion. We show that our stopping 
criterion for the linearly constrained subproblem can be substituted for the one used 
in [5] without sacrificing the convergence properties of the original approach. Thus 
we, too, are able to proceed by successive, inexact minimization of the augmented 
Lagrangian via GSS methods, even though we do not know directly how inexact the 
minimization is. 

Dealing with general nonlinear constraints in the absence of derivatives is chal- 
lenging and has received considerable attention over the years. Summaries of early 
work appear in [7] and [l, Section 13.11. Approaches to handling general nonlinear 
constraints can be partitioned into three basic alternatives. If the derivatives of c are 
available, or reliable estimates can be obtained, then it is possible to make explicit 
use of these derivatives to compute feasible directions at the boundary of the feasible 
region. See [ll, Section 8.3.11 for a summary of work involving this approach. The 
second alternative is an augmented Lagrangian approach. The work we present here 
may be viewed as an extension of the work in [16]; see also [ll, Section 8.3.21. For both 
the feasible directions [2 l ,  171 and augmented Lagrangian approaches [16], under stan- 
dard assumptions it is possible to prove convergence to Karush-Kuhn-Tucker (KKT) 
points of problem (l), as we will do here. The third alternative involves approaches 
such as inexact penalization, exact penalization, barrier methods, and a variety of 
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heuristics-based approaches. See [ll, Section 8.3.31 for a summary of algorithmic 
developments along these lines. 

The paper proceeds as follows. Section 2 lays out the augmented Lagrangian al- 
gorithm from [5] and reviews the relevant notation. Section 3 summarizes the GSS 
algorithm from [12] for handling problems with linear constraints and recalls a criti- 
cal stationarity result. In Section 4 we show how to incorporate the GSS algorithm 
to solve the subproblems in the augmented Lagrangian algorithm by introducing a 
derivative-free stopping condition. Section 5 summarizes the convergence results from 
[5] that the GSS adaptation possesses. In Section 6 we discuss a way to relax the sub- 
problem stopping criterion update introduced in [16] so as to improve computational 
efficiency. Section 7 discusses the conversion of inequality constraints to equality 
constraints through the introduction of slack variables. We close with some final 
observations in Section 8. 

11 
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2 The augmented Lagrangian algorithm of Conn, 
Gould, Sartenaer, and Toint 

Our augmented Lagrangian GSS approach is based on Algorithm 3.1 of [5], which we 
review in this section. 

2.1 A comment on notation 

To facilitate comparison of our approach with the original algorithm, we adhere to 
the notation of [5] throughout. Subscripts may denote either a component of a vector 
or an iteration index. Thus w , ~  (or wj) denotes the ith (or j t h )  component of the 
vector w while wk denotes the vector w from the kth iteration of the algorithm. 
When combined, W k j  denotes that j t h  component of the vector w k .  A vector can 
also be subscripted by a set, Le., W[S] denotes the /SI-dimensional subvector of w 
whose entries are indexed by the set S.  Moreover, subset' indexing may be combined 
with the iteration index as wk,[q. 

2.2 The augmented Lagrangian 

For the formulation of the augmented Lagrangian, the constraints e(.) are assumed to 
be partitioned into q disjoint subsets { Qj}y=, such that U;=, Qj = { 1, . . . , m}. The 
partitioning of e(.) enables the algorithm to place greater emphasis on achieving fea- 
sibility for subsets of constraints that are, at any particular iteration, proportionally 
more violated than the others. 

The basic augmented Lagrangian given in (2) is replaced by 

The vector A = ( A l , .  . . , A,)' is the Lagrange multiplier estimate for the equality con- 
straints and the vector p = ( p l , .  . . , pq)T  cont,ains the penalty parameters associated 
with each partition of e(.). 
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2.3 The linear constraints and cones 

Mechanisms are required for handling the set of linear constraints that are nearly 
binding at x. Let 6 0  > 0 be fixed. Define Z? = { x I Ax 2 b }. For x E B,  let 

D ( x , w )  = { i E (1,. . . , p }  I U T n :  - bi 5 /€OW } (3) 

denote the indices of the linear constraints that, with respect to w ,  are considered 
nearly binding at n:. From this, define the w-normal and w-tangent cones 

The cone N ( x ,  w )  is the cone generated by the outward pointing normals to the nearly 
binding linear constraints and T ( x , w )  is its polar. If D(n:,w) = 8, then N ( x , w )  = 
(0) so that T ( x , w )  = R". The projection of the vector u onto T ( x , w )  is denoted 
P T ( Z , W )  (4 

2.4 The subproblem 

At the lcth outer iteration of the augmented Lagrangian method, an inexact solution 
to the following subproblem is required: 

minimize @ k  (x) 
subject to An: 2 b, 

where 

and the vectors X I ,  and pk are updated each outer iteration. 

The solution z k  of (4) must satisfy: 

where 

(4) 

and the scalar wk > 0 is a suitable tolerance that' is updated at each outer iteration 
in a way that ensures u k  -+ 0 as lc -+ 00. 
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2.5 The full algorithm 

We reproduce Algorithm 3.1 in [5] as Algorithm 2.1. The parameters wk and rlk 

represent stationarity and feasibility t'olerances at iteration k ,  respectively. Updates 
for these two parameters, as well as for Xk and p k  are specified. The Lagrange 
multiplier estimates X k  are updated according to the first-order Hestenes-Powell [ 10, 
191 update rule: 

Since the Hestenes-Powell multiplier update and its variants do not require informa- 
tion about derivatives of f and e, unlike other update formulas (see, for instance, 
[a, 20]), they are appropriate for derivative-free methods. 

The following assumptions are made in [5] for the purposes of their convergence 
analysis, which we review in Section 5. We also make similar assumptions for the 
results in Sections 3 and 4 so that the hypotheses are consistent. 

AS1 [5, p .  6761 The set B is  nonempty. 

AS2 [5, p .  6761 The functions f ( x )  and C(X) are twice continuously diflerentiable 
for  all x E 27. 

AS3 [5, p. 6811 The  iterates {xk} lie within a closed, bounded domain R. 

Note that we place smoothness assumption on f and c for the purposes of analysis 
only. Neither the first nor second derivatives of f and c are required or used in the 
algorithms that follow. 
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Step 0. [Initialization]. A partition of the set { 1,. . . , m} into 4 disjoint subsets 
{ Qj}:,, is given, as well as initial vectors of Lagrange multiplier estimates A0 

and positive penalty parameters po such that 

p O , j < l , j = l ,  . . . )  4 .  

The strictly positive constants no, w *  << 1, q* << 1, r < 1, aq < 1, and Pq < 1 
are specified. Set a0 = maxj=1, ..., PO,?, wo = (YO, qo = a:”, and IC = 0. 

Step 1. [Inner iteration]. Find x k  E B that approximately solves (4), Le., such that 
(6) holds. 

Step 2. [Test for convergence]. If 11 P T k ( - v z @ k )  11 L w *  and 1 1  C ( 2 k )  1 1  5 q*, stop. 

Step 3. [Disaggregated updates]. For j = 1,. . . , q, execute Step 3a if 

1 1  c ( z k ) [ Q , ]  1 1  5 q k  

or Step 3b otherwise. 

- Step 3a. [Update Lagrange multiplier estimates]. Set 

A k + l , [ Q , ]  = x ( x k ,  X k , [ Q J l ~ k , k ) [ Q , l ~  

P k + l , j  = p k , g .  

- Step 3b. [Reduce the penalty parameter]. Set 

A k + l , [ Q , ]  = X k ~ [ ~ ~ l ,  

p k + l , j  = r k , j p k , j ,  

if p k , j  = a k ?  
min(r, ( Y k )  otherwise. where r k f  = 

Step 4. [Aggregated updates]. Define 

otherwise set 
w k + l  = W k Q k + l i  

Ps 
q k + l  = q k a k + l .  

Increment k by one and go to Step 1. 

Algorithm 2.1: Augmented Lagrangian algorithm of Conn, Gould, Sartenaer, and Toint. 
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3 Generating set search for linearly constrained 
problems 

To adapt the augmented Lagrangian framework in the absence of derivatives for f and 
e, we solve subproblem (4) using a GSS algorithm for linearly constrained optimization 
[12]. In this section, we review salient details of the algorithm. 

3.1 A comment on notation 

We use a “hat” (as in f ,  b, fi, ?, &, and k )  to distinguish between variables discussed 
in [12] and those discussed in Section 2 since the notation is similar but the quantities 
are not necessarily equivalent. Once again subscripts may denote either a component 
of a vector or an iteration index. Thus bi denotes the ith component of the vector b 
while xe denotes the vector z from the t t h  iteration of the GSS algorithm for linearly 
constrained problems. 

3.2 The linearly constrained problem 

GSS for linearly constrained optimization solves problems of the form: 

minimize f(x) 
subject to Ax 2 b. 

Here f : R” -+ R and A is the same as in (1). The set B 
the feasible region for problem (8). 

(8) 

1 { x I Ax 2 b } denotes 

3.3 The linear constraints and cones 

The GSS methods in [12] also use the cone generated by the working set of nearby 
constraints and the polar of this cone, but the definitions are not identical to those 
in Section 2.3. The definition of D(x,w) in (3) defines the working set by looking 
at the values of the constraints. In the GSS case, the definition of the working set 
uses distance to the constraints. We use E rather than w and define the €-binding 
constraints (the working set) for x E B as 

ai T x - bi 

II a2 II 
i E (1, .  . . , p }  I 

17 
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From this, we define the €-normal and €-tangent cones as before: 

3.4 The GSS algorithm 

In Algorithm 3.1, we present Algorithm 5.1 from [12], stated in the notation and style 
of presentation adopted here. 

Iteration ! of a GSS algorithm proceeds as follows. Compute a set of search 
directions Gt that conforms to the boundary defined by the &-binding constraints 
b(ze, E,). Generate feasible trial points by taking a step, whose length is determined 
by the step-length control parameter A,, along each search direction. If any of the 
trial points yields sufficient decrease, specifically 

where A, = max { A E [0, A,] I xe + Ad, E B }, then the iteration is deemed suc- 
cessful and that trial point becomes q + l .  Otherwise no trial point admits sufficient 
decrease and the iteration is deemed unsuccessful, in which case the step-length con- 
trol parameter A, is reduced. The set of unsuccessful iterations is denoted by U and 
plays an important role in the analysis of GSS methods. 

Here, for convenience, we leave A, unchanged after a successful iteration and halve 
At after an unsuccessful iteration. These updates could be altered, subject to the 
conditions given in [12], without detriment to the analysis presented here. 

The following two conditions on the search directions in Step 1 play a critical 
role in the theory that follows, so we assume that both hold whenever we reference 
Algorithm 3.1. We start with the following definition from [12]. For any finite set of 
vectors G,  we define 

where K is the cone generated by G uTd K(G)  = inf max 
PK(”)#O II P K ( U )  I1 II d 1 1 ’  

and PK(u)  is the projection of the vector u onto the cone K .  This is a generalization 
of the quantity given in [ll, (3.10)], where G generates R”. 
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Step 0. [Initialization]. Let 2 0  E B be the initial guess. Let Ato* > 0 be the tolerance 
used to test for convergence. Let A, > Atol be the initial value of the 
step-length control parameter. Let E,, > PmaxAtol be the maximum distance 
used to identify nearby constraints (E,,, = +cc is permissible). Let S > 0. 

Step 1. [Choose search directions]. Let Ee = min{~max,/?maxAe}. Choose a set of 
search directions Vg = Ge U I& satisfying Conditions 3.1 and 3.2. 

Step 2. [Successful iteration]. If there exists de E Vg and a corresponding 

A e  = max{ A E [O,Ag] I ze + Ad, E B } 

such that 

f (ze  + dede) < f ( x e )  - SA:, 

then: 

~ Set xe+l = xe + &de. 

- Set At+, = A, (no change). 

Step 3. [Unsuccessful iteration]. Otherwise, 

- Set xe+l = xe (no change). 

~ Set At+, = +A,. 

If At+, < Atol, then terminate. 

Step 4. [Advance]. Increment e by one and go to Step 1. 

Algorithm 3.1: Linearly constrained generating set search of Kolda, Lewis, and Torczon. 

Condition 3.1 There exists a constant kmin > 0, independent of e, such that 
for every e for which ?(xe,  &e) # { 0 } ,  the set Ge generates ?(xe,  E ! )  and 
satisfies k(Gl)  2 kmin. 

Condition 3.2 There exist Pmax 2 Pmin > 0,  independent of e, such that for 
every e for which T ( x e ,  E ! )  # { 0 } ,  the following holds: 

Pmin L lldll F Pmax for  all d E Gt. 
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3.5 The critical stationarity result 

The following restatement of a result from [12] is central to showing that we can 
recognize when the derivative-free GSS method has solved the augmented Lagrangian 
subproblem (4) to the accuracy (6) required by Algorithm 2.1. Theorem 3.3 gives a 
bound on the size of the projection onto f'(xe, &e)  of Of(xe), which is not available to 
us in the derivative-free context, in terms of the explicitly known step-length control 
parameter A,. 

Theorem 3.3 Suppose that the set B is  nonempty, that the function f ( x )  is twice 
continuously differentiable for  all x E B, and that the iterates produced b y  Algo- 
rithm 3.1 lie within a closed, bounded domain 0. Let M be a Lipschitz constant for 
Of on R.  If Q E U and and Ee satisfies &e = PmaxAe, then 

Here, Li is f rom the step acceptance criterion ( lo ) ,  kmin is f rom Condition 3.1, and 
,&ax and Pmin are f rom Condition 3.2. 

Theorem 3.3 is a variant of Theorem 6.3 from [12] using the specific step acceptance 
criterion (10). Theorem 3.3 assumes the iterates remain in a compact set R in order to 
be assured of the existence of M ,  while Theorem 6.3 from [12] accomplishes the same 
thing by assuming that the set { x E B I f(.) I f ( x 0 )  } is compact. Furthermore, 
Theorem 6.3 from [12] assumes only that V f is Lipschitz continuous. Looking ahead 
to  the results in Section 5, here we assume the stronger condition that f(x) is C2. 
The proof of Theorem 3.3 is the same as that of Theorem 6.3. 

Finally, we need the following immediate consequence of the step acceptance cri- 
terion (10). 

Theorem 3.4 Suppose that the function f (x )  is continuous on B and that the it- 
erates produced b y  Algorithm 3.1 lie within a closed, bounded domain R.  Then 
lim infe,co A, = 0. 
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4 A GSS adaption of the augmented Lagrangian 
algorithm 

We now provide a modified version of the augmented Lagrangian algorithm of Conn, 
Gould, Sartenaer, and Toint (Algorithm 2.1) that uses our linearly constrained GSS 
algorithm (Algorithm 3.1) to solve the subproblem (4). In Algorithm 4.1 we have high- 
lighted the differences between the new algorithm and its progenitor, Algorithm 2.1, 
which lie in the choice of stopping criterion for the inner iteration, the update for the 
associated stopping tolerance, and the test for convergence of the outer iteration. 

4.1 The derivative-free stopping criterion 

The substantive change to be addressed is that of finding a suitable stopping criterion 
for the solution of (4). As noted earlier, we do not assume access to the derivatives of 
f and c and thus cannot compute V,@k as required for the original stopping condition 
(6). Instead, we make use of the conclusion of Theorem 3.3 to craft an appropriate 
termination test for the subproblem. Specifically, we stop the inner iteration at the 
first u E U (the subsequence of unsuccessful GSS iterations) for which 

where 61, t 0 is a sequence of stopping tolerances for the inner iteration that is 
updated at each outer iteration k.  Theorem 3.4 assures us that this stopping criterion 
eventually will be satisfied and thus that the inner iteration will terminate. 

This change in the termination test for the inner iteration also affects the test for 
convergence for the outer iteration. The original outer iteration convergence criteria 
are that for some w* << 1 and rl* << 1, 

These become 

for some 6, << 1. The test for feasibility is unchanged, but the test for constrained 
stationarity is necessarily altered. 

Clearly, if the convergence analysis from [5] is to hold, then the new sequence of 
stopping tolerances 61, needs to be tied to the original sequence of stopping tolerances 
wk. We also need to ensure a stable relationship between the stopping criterion (12) 
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Step 0. [Initialization]. A partition of the set {1, . . . ,m} into q disjoint subsets
{Qj}q

j=1 is given, as well as initial vectors of Lagrange multiplier estimates λ0

and positive penalty parameters µ0 such that µ0,j < 1, j = 1, . . . , q. Set
κ0 = min1,...,p{‖ai‖}. The strictly positive constants ω? � 1, η? � 1, τ < 1,
αη < 1, and βη < 1 are specified. Set α0 = maxj=1,...,q µ0,j , ω0 = α0, η0 = α

αη

0 ,
and k = 0. In addition, specify strictly positive constants δ? � 1 and
θtol � 1. Set δ0 = ω0/ (βmax θ(λ0, µ0)).

Step 1. [Inner iteration]. Find x` ∈ B that approximately solves (4), i.e., such that
(12) holds.

Step 2. [Test for convergence]. If δk ≤ δ? and ‖ c(xk) ‖ ≤ η?, stop.

Step 3. [Disaggregated updates]. For j = 1, . . . , q, execute Step 3a if

‖ c(xk)[Qj ] ‖ ≤ ηk

or Step 3b otherwise.

– Step 3a. [Update Lagrange multiplier estimates]. Set

λk+1,[Qj ] = λ̄(xk, λk,[Qj ], µj,k)[Qj ],

µk+1,j = µk,j .

– Step 3b. [Reduce the penalty parameter]. Set

λk+1,[Qj ] = λk,[Qj ],

µk+1,j = τk,jµk,j ,

where τk,j =
{

τ if µk,j = αk,
min(τ, αk) otherwise.

Step 4. [Aggregated updates]. Define

αk+1 = max
j=1,...,q

µk+1,j .

If αk+1 < αk, then set

ωk+1 = αk+1,

ηk+1 = α
αη

k+1,

δk+1 = ωk+1/θ(λk+1, µk+1);

otherwise set
ωk+1 = ωkαk+1,

ηk+1 = ηkα
βη

k+1,

δk+1 = ωk+1/θ(λk+1, µk+1).

Increment k by one and go to Step 1.

Algorithm 4.1: A generating set search augmented Lagrangian algorithm.
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in the GSS solution of the subproblems and the stationarit,y condition (6). To do so, 
let eto1 >> 1 be given and define 

4 

e ( w  = max { 1, (1 + II I1 + 1%) /eto1} 
j=1 

Any function Q(X,p) such that ( 1 1  X 1 1  + E:=, l/pj) = 0(6(X,p) )  as ( 1 1  X 1 1  + 
l/pj) + rn suffices for the purposes of establishing global convergence proper- 

ties. We discuss the role of 0 further in Section 6. 

Finally, we need to take into account the fact that in Algorithm 3.1 

This leads to the following update for d k :  

Observe that the the initialization of 60 in Algorithm 4.1 and the definition of 0 in 
(13), together with the update rule (15), ensure that for all k 2 0, 

As a practical matter, in the implementation of Algorithm 3.1 discussed in [15] the 
directions in G are normalized, so Pmax = 1, which simplifies both (15) and (16). 

4.2 The linear constraints and cones 

A technical matter to be addressed is that in (3) the condition for inclusion in the 
set D ( z ,  w) for the augmented Lagrangian is 

whereas in (9) the condition for inclusion in the set ~ ( Z , E )  for GSS is 
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Since this affects the definitions of the cones T(z ,w)  and ?(z,~) ,  which we wish to 
relate in the results that follow in the next section, we reconcile this difference within 
Algorithm 4.1 by setting 

This particular choice of K~ simplifies the upcoming proof of Proposition 4.1, but is 
not essential. Observe that with this choice of KO, if (17) holds for all i E (1, .  . . , p }  
and E 1. w, then we have aFz - bi 5 l la i l l~ 5 llaillu 5 maxi=l,.,.,p llaillw for all 
i E (1, .  . . , p } .  Thus D ( z , w )  2 h(z ,~) ,  so N ( z , w )  2 &(z, E )  and 

a fact we use shortly. 

4.3 The relationship between A, and stationarity 

We begin by relating the GSS stopping criterion (12) to the original stopping criterion 
(6). 

Proposition 4.1 Suppose that ASI-ASS hold, and let 111 be a Lipschitz constant 
for  V f (z), V c ( z ) ,  and Vc(z) ~ ( z )  on a. Then the following bound holds at outer 
iteration IC of Algorithm 4.1: 

where 

Proof. We first bound the Lipschitz constant for Vz@(z; Ak, pk) and then apply 
Theorem 3.3. We have 
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so 

Since the stopping criterion (12) is invoked at unsuccessful iterations of the GSS 
solution of (8), we may apply Theorem 3.3,  from which we obtain 

where E,+ is the value of E in the solution of (4) at the time the stopping criterion (12) 
is triggered. 

From (12), (14), and (16) we know that 5 5 w k ,  so (18) holds. There- 
fore, 

Combining this with (21) yields the result,. 0 

The next proposition is central to our approach. It says that the asymptotic 
behavior of 1 1  PTk(zk,wk)(-Vz@I,) 1 1  in Algorithm 4.1 is like its behavior in the original 
algorithm. 

Proposition 4.2 Suppose that AS1-AS3 hold. Then there exists a constant C > 0,  
independent of k ,  such that the following holds at outer iteration k of Algorithm 4.1: 

Proof. From Proposition 4.1 we have 

where M is the Lipschitz constant appearing in Proposition 4.1. The upper bounds 
on 61, from (16) tell us that SI, 5 wk/Pmax as well as 
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Therefore 

and the result follows. 
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5 The applicable convergence results from Conn, 
Gould, Sartenaer, and Toint 

The import of Proposition 4.2 is that the convergence analysis for the original algo- 
rithm can be applied and the original proofs of these results still hold with only minor 
changes involving the values of some constants that appear (see Appendix A for de- 
tails). We now briefly review some of the convergence properties of the augmented 
Lagrangian algorithm from [5] that hold for our GSS adaptation. Before doing so, we 
recall a little more notation and one additional assumption. 

Suppose {xk}kEK: is a subsequence that converges to 2,. We denote by A, the 
matrix whose rows are the linear constraints that are binding (i.e., hold as equalities) 
at x,, and denote by 2, a matrix whose columns form an orthonormal basis for the 
nullspace of A,. If J ( x )  is the Jacobian of c (x ) ,  then the least-squares multiplier 
estimate at x ,  corresponding to A, is defined to be 

A, = - ( (J(x*)Z*)+)TZ,TVf(x*) .  

AS4 [S, p. 6811 The matrix J (x , )Z ,  has column rank no smaller than m at any 
limit point x ,  of the sequence of {xk} .  

The fundamental convergence result for Algorithm 4.1 corresponds to Theorem 
4.6 in [5, p. 6861. 

Theorem 5.1 Assume that AS1  and AS2 hold. Let x ,  be any limit point of the 
sequence {xk}  generated b y  Algorithm 4.1 for  which A S 3  and AS4 hold, and let K: be 
the set of indices of an infinite subsequence of the xk whose limit is 2,. Finally, let 
A, = X(x,). Then 

( i )  there are positive constants 6 2  and ts3 such that 

and 

for all j = 1,.  . . , q and all k E K: suficiently large. 
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(zz) x, is a Karush-Kuhn-Tucker point (first-order stationary point) for the prob- 
lem (l) ,  A, is the corresponding vector of Lagrange multipliers, and the sequence 
{ X ( z k ,  ~ k ,  p k ) }  converges to A, for  IC E IC. 

Stronger results follow under additional assumptions on the regularity of f and 
c and on the stability of the reduced KKT system under small perturbations of the 
problem. Lemma 5.3 of [5, p. 6891 then relates the convergence of the iterates to 
the error in the multipliers, a relationship characteristic of augmented Lagrangian 
methods [2]. Finally, if {zk} has a single limit point x,, then Theorem 5.6 of [5, 
p. 6951 says that we may reasonably expect the penalty parameters pk,j to remain 
bounded away from zero and Theorem 5.7 of [5, p. 6961 gives a rate of convergence 
result for the outer iteration. 
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6 Updating the subproblem stopping tolerance 

The quantity 8, defined in (13), figures in the update (15) of the stopping criterion 61, 
for the augmented Lagrangian subproblems. It provides a mechanism to dealing with 
the nonlinearity of the augmented Lagrangian that can occur for very small values of 
the weights p ~ , , ~  or very large values of the multiplier estimates Xk. 

As defined in (20), the Lipschitz constant MI, for O,@(z; XI,, PI,) depends in an 
essential way on XI, and PI,. This, in turn, affects the relationship between the sta- 
tionarity condition (6) and 6, as can be seen in the bound (22) in Proposition 4.1. 
The Lipschitz constant MI, will increase as the penalty parameters pI,,j decrease or 
the multipliers XI, increase in magnitude. To counter this effect we must tighten the 
stopping tolerance accordingly. 

A device similar to 8 was used in [16]. However, independent' testing revealed that, 
for a few test problems, the update rule from [16] causes trouble because the stopping 
tolerance 61, quickly becomes very small [13]. This leads to the subproblems being 
over-solved, with an attendant increase in the overall computational cost. Further 
experiments indicated there was rarely a disadvantage to omitting the rescaling by 8 
in the update of 61,, while there were some dramatic improvements in efficiency [13]. 

For this reason we define 8 in (13) so that it becomes active only if 1 + 1 1  X 1 1  + 
E:=, l/p~,, j  exceeds the prescribed threshold Oto1. In this way, if Oto1 is sufficiently 
large, and the penalty parameters p k , j  remain uniformly bounded away from zero (as 
is the case in Theorem 5.6 from [5], for instance), and the multipliers are converging 
to their correct values, then we have = W I , / , & ~  for all I C ,  and avoid a rapid decrease 
in 61,. This threshold trigger OtOl was not present in the update rule for 61, in [16]. 

The choice of 8 in (13) is still sufficient to prove convergence of Algorithm 4.1 even 
if some of the penalty parameters tend to zero. As a practical matter, however, we do 
not expect a GSS algorithm to be efficient in this case. The augmented Lagrangian in 
(8) will become increasingly nonlinear and ill-conditioned as the penalty parameters 
become very small and GSS algorithms tend to converge slowly when confronted with 
badly scaled problems. 

The difficulty here, the unbounded nonlinearity of the augmented Lagrangian if 
some of the penalty parameters tend to zero, also arises in the original Algorithm 2.1 
if one solves the subproblem (4) using finite differences to estimate the Jacobian of 
the constraints. In this context, the nonlinearity surfaces in the truncation error of 
the finite difference estimates. If some of the penalty parameters tend to zero, then 
the finite difference perturbation used will need to decrease more quickly than the p k , j  

in order to control the truncation error and have assurance that if the finite difference 
approximation of V,@I, satisfies (6), then the exact gradient V,@k does as well. 
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7 Application to inequality constrained 
minimization 

In the framework considered here, applying a standard approach to dealing with the 
nonlinearly inequality constrained problem 

minimize f( x) 
subject to c(x) 2 0 

Ax 2 b 

leads to an augmented Lagrangian of the form 

and the solution of successive subproblems of the form 

minimize a(., z(x); A, p)  
subject to Ax 2 b. 

The multiplier update formula (7) is also modified: 

See [2, Chapter 31 for details. 
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8 Conclusion 

We have crafted a derivative-free GSS augmented Lagrangian algorithm for optimiza- 
tion with a combination of general and linear constraints based on the augmented 
Lagrangian framework of Conn, Gould, Sartenaer, and Toint [5]. To do so we use 
a linearly constrained GSS method [12] to solve the subproblems (4) and replace 
the derivative-based stopping criterion (6) with the derivative-free stopping criterion 
(12). In Proposition 4.2 we have shown that this substitution still allows us to satisfy 
the optimality condition (6). As a consequence the derivative-free adaptation inherits 
the first-order convergence properties of the original augmented Lagrangian algorithm 
(Theorem 5.1), even in the absence of explicit knowledge of derivatives for f and e. 
This extends the results in [16], which dealt directly with bound constraints only, just 
as [5]  extends the results in [6] (upon which [16] is based). 

In addition, we have improved upon the update rule introduced in [16] for the 
sequence of stopping tolerances for the subproblems. The new rule relaxes the strin- 
gency of the test for an approximate solution to subproblem (4) while still satisfying 
(6), even if some of the penalty parameters tend to zero. 
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A Global convergence analysis 

Our goal in this section is to demonstrate that the key convergence results from [5] 
still hold when we substitute our stopping criterion (12) for the original stopping 
condition (6). This reduces to an exercise in chasing through the constant that 
appears on the right-hand side of (22) to ensure that it does not change the conclusions 
of the results we need from [5]. Most of the presentation that follows is reproduced 
verbatim from [5]. The changes required to accommodate the stopping criterion we 
have substituted are highlighted. 

Let g ( x )  denote the gradient V,f(x) of f(x), with g,+ = g(xk ) .  Let g e ( x , A )  
and He( , ,  A), respectively, denote the gradient, V,!(x, A), and the Hessian matrix, 
V,,.t(x, A), of the Lagrangian function 

m 

!(x, A) = f(x) + Aici(x). 
i=l 

We note that Q(x,  A) is the Lagrangian solely with respect to the ci constraints. 

Recalling the definitions of A,, Z,, and J ( x )  from Section 5, we define the least- 
squares Lagrange multiplier estimates (corresponding to A,)  as 

A (x) 2%f - ( ( J (  x) 2, ) + ) ' z*Tg (x) (23) 

at  all points where the right generalized inverse 

( J (  x) 2, ) + 
z,T J (  x)' ( J (  x) z,z*T J (  x)') -1 

of J ( x ) Z ,  is well defined. 
differentiable and its derivative is given in the following lemma. 

We note that whenever J ( x ) Z ,  has full rank, A(x) is 

Lemma A . l  [5, Lemma 2.1, p .  6771 Suppose that AS2 holds. If J(x)Z,Z:J(x)' is  
nonsingular, A(x) is differentiable and its derivative is given by 

V,A(Z) = -((J(x)Z*)+)'Z'H"x, A(x)) - (J(x>Z*Z,TJ(x)')-'R(x), (24) 

where the ith row of R (x )  is  (Z:g(x) + Z~J(x)'X(x))TZ~O,,c~(x). 

We rewrite (7) in the compact form 
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We shall use the identity 

which we then write using the compact notation 

Once zk satisfying (6) has been determined by the inner iteration, we denote 

Denote by AD, the submatrix of A consisting of the row(s) whose index is in Dk. For 
future reference, we define 2, to be a matrix whose columns form an orthonormal 
basis of Vk:, the null space of A D k ,  and Y k  to be a matrix whose columns form an 
orthonormal basis of W k  = V k .  We note that V k  C Tk: and, hence, that 

since ZkZF is the orthogonal projection onto Vk. 

Recall that the stopping criterion (12) for Algorithm 4.1 implies that under as- 
sumptions AS1-AS3 the result (22) of Proposition 4.2 holds. Thus 

We notice that AS3 implies that there exists at least a convergent subsequence 
of iterates but does not, of course, guarantee that this subsequence converges to a 
stationary point, i.e., that "the algorithm works." We also note that it is always 
satisfied in practice because the linear constraints in (1) include lower and upper 
bounds on the variables, either actual or implied by the finite precision of computer 
arithmetic. 

We now proceed to show that Algorithm 4.1 is globally convergent under the 
additional assumption AS4, which guarantees that the dimension of the null space of 
A, is large enough to provide the number of degrees of freedom that are necessary to 
satisfy the nonlinear constraints, and we require that the gradients of these constraints 
(projected onto this null space) are linearly independent at every limit point of the 
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sequence of iterates. This assumption is the direct generalization of AS3 used by 
Conn, Gould, and Toint [6]. 

We shall analyze the convergence of Algorithm 4.1 in the case where the conver- 
gence tolerances w,, and 77, are both zero. We first need the following lemma, proving 
that (29) prevents both the reduced gradient of the augmented Lagrangian and its 
orthogonal complement from being arbitrarily large when w k  is small. 

Lemma A.2 [5, Lemma 4.1, p .  6811 Let { x k }  c B, k E IC,  be a sequence that 
converges to  the point x, and suppose that 

where the w k  are positive scalar parameters that converge to  zero as k E IC increases. 
Then  

for some K~ > 0 and for all k X: sufficiently large. 

Proof. Observe that, for k € sufficiently large, w k  is sufficiently small and x k  

sufficiently close to x ,  to ensure that all the constraints in Dk are active at x*. This 
implies that the subspace orthogonal to the normals of the dominant constraints at 
x k ,  v k ,  contains the subspace orthogonal to the normals of the constraints active at 
z,. Hence, we deduce that 

where we have used (28) to obtain the second inequality and (29) to deduce the third. 
This proves the first part of (30). 

We now turn to the second. If DI, is empty, then Y k  is the zero matrix and the 
second part of (30) immediately follows. Assume therefore that D k  # 0. We first 
select a submatrix A D ,  of A D ,  that is of maximal full row-rank and note that the 
orthogonal projection onto the subspace spanned by the { U ~ } ~ ~ D ,  is nothing but 

Hence we obtain from the orthogonality of Y k ,  the bound I DI, I 5 p ,  (3) and (27), and 
the fact that all the conshaints in Dk are active at x ,  for k sufficiently large, that 
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But there are [sic] only a finite number of nonempty sets Dk for all possible choices 
of zk and w k ,  and we may thus deduce the second parts of (30) from (31) by defining 

where the minimum is taken on all possible choices of DI, and A D k .  0 

We now examine the behavior of the sequence {V,@k}. We first recall a result 
extracted from the classical perturbation theory of convex optimization problems. 
This result is well known and can be found, for instance, in [8, pp. 14-17]. 

Lemma A.3 [5, Lemma 4.2, p. 6821 Assume that U is a continuous point-to-set 
mapping f r o m  S c Re into the power set of R" such that the set U ( 6 )  is convex and 
nonempty for each I9 E S .  Assume that the real-valued function F ( y ,  6 )  is  defined and 
continuous on the space R" x S and convex in y for each fixed 19. Then the real-valued 
function F, defined b y  

is  continuous on S .  

We now show that, if it converges, the sequence { V , @ k }  tends to a vector that is 
a linear combination of the rows of A, with nonnegative coefficients. 

Lemma A.4 15, Lemma 4.3, p.  6821 Let { x k }  C B, k E IC, be a sequence that 
converges to the point x, and suppose that the gradients v , @ k ,  IC E IC,  converge to 
some limit V,@,. Assume furthermore that (29) holds f o r  IC E IC and that w k  tends 
to zero as IC E IC increases. Then 

V,@, = ATIT, 

for some vector IT ,  2 0, where A, is the matrix whose rows are those of A correspond- 
ing to active constraints at x,. 

Proof. We first define 

def 
crk = max ( - ~ , @ r d )  

A ( s , + d ) - b > O  
I1 d 1151 

(32) 
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with the aim of showing that this quantity tends to zero when k E K: increases. We 
obtain from (32), the Moreau decomposition [18] of V,@k, and the Cauchy-Schwarz 
inequality that 

where BI, ef { d E R" I uT(zk + d )  - bi 2 0 (i E Dk) and 1 1  d 1 1  5 1 }. Since, for x k  
sufficiently close to x, and wk sufficiently small, all the constraints in DI, must be 
active at z,, we have that Nk is included in the normal cone N(x, ,  0) and therefore the 
vector PN, (-V,@k) belongs to this normal cone. Moreover, since the maximization 
problem of the last right'khand side of (33) is a concave program, since x, is feasible 
for (1) and since )I x, - xk 1 1  5 1 for IC E K: large enough, we thus deduce that 
d = x, - xk is a global solution of this problem. Observing that 

we obtain 

where we have used the Cauchy-Schwarz inequality to deduce the last inequality. We 
may now apply Lemma A.2 and deduce from the second part of (30), (34), and the 
contractive character of the projection onto a convex set containing the origin that 

and thus, from (33) and our assumptions, that 

Our assumption on the wk sequence then implies that ok converges to zero as k 
increases in IC. 

Consider now the minimization problem 

min 
dERn  
subject to A(x ,  + d )  - b 2 0 

II d II 5 1. 
(35) 
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Since the sequences { V x @ k }  and {xk} converge to Vx@, and x,, respectively, we 
deduce from Lemma A.3 applied to the optimization problem (32) (with the choices 
OT = (VXQT,xT), U ( 0 )  = { d I A ( .  + d )  - b 2 0 ,  1 1  d 1 1  5 1 }, y = d ,  F'(y,O) = 
V,@'d), and the convergence of the sequence O k  to zero that the optimal value for 
problem (35 )  is zero. The vector d = 0 is thus a solution for problem (35) and satisfies 

for some vector T, 2 0, which ends the proof. 0 

The important part of our convergence analysis is the next lemma. 

Lemma A.5 [S, Lemma 4.4, p .  6831 Suppose that A S 1  and AS2 hold. Let {xk} c 23, 
k E IC,  be a sequence satisfying AS3 that converges to  the point x, for which AS4 holds 
and let A, = X(x,), where X satisfies (23). Assume that { A k } ,  k E I C ,  is  any sequence 
of vectors and that {pk},  k E I C ,  f o r m  a nonincreasing sequence of q-dimensional 
vectors. Suppose further that (29) holds where the w k  are positive scalar parameters 
that converge to  zero as k E IC increases. Then  

( i )  there are positive constants 6 2  and ~3 such that 

and, 

for all j = 1,. . . , q and all k E IC suficiently large. 

Suppose, in addition, that c(x,) = 0.  Then  

(i i)  x, is  a Karush-Kuhn-Tucker point (first-order stationary point) for the prob- 
lem (1), A, is  the corresponding vector of Lagrange multipliers, and the sequences 
{ x ( x k ,  X k ,  p k ) }  and { X ( x k ) }  converge to  A, for IC E IC; 

(222) the gradients V x @ k  converge to  ge(x,, A,) for k E IC. 

Proof. As a consequence of AS2-AS4, we have that for k E K: sufficiently large, 
( J k Z , ) '  exists, is bounded, and converges to (J(x,)Z,)+. Thus, we may write 
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for some constant ti; > 0. Equations (26) and (25), the inner iteration termination 
criterion (29), and Lemma A.2 give that 

for all IC E K: large enough. By assumptions AS2, AS3, AS4, and (23), A(z) is bounded 
for all 2 in a neighborhood of 2,. Thus we may deduce from (23), (39), and (40) that 

Moreover, from the integral mean value theorem and Lemma A.l we have that 

where V,A(z) is given by equation (24) and z(s) = zk + s(z* - IC,) [sic]. Now the 
terms within the integral sign are bounded for all x sufficiently close to x* and hence 
(42) gives 

for all IC E K: sufficiently large and for some constant K~ > 0, which implies inequality 
(37). We then have that A(zk) converges to A,. Combining (41) and (43) we obtain 

l f  which gives the required inequality (36) with ~2 = ( t i2  . Then, since by assumption 
wk tends to zero as IC increases, (44) implies that 1, converges to A, and therefore, 
from the identity (26), V,@, converges to ge(z*, A,). Furthermore, multiplying (7) 
by P,,~ we obtain 

Taking norms of (45) and using (44), we derive (38). 

Now suppose that 

c(x*)  = 0. 
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Lemma A.4 and the convergence of V,Q to ge(x*, A,) give that 

for some vector re 2 0. This last equation and (46) show that x, is a Karush-Kuhn- 
Tucker point and A, is the corresponding set of Lagrange multipliers. Moreover, (36) 
and (37) ensure the convergence of the sequences {x(xk, Ak, pk) }  and {X(x:,)} to A, 

0 for IC E IC. Hence the lemma is proved. 

No further changes to the original analysis in [5] are needed beyond this point. 
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