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Abstract

The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is
investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise
application of the following nonparametric regression techniques are described: (i) locally weighted regression
(LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. The
indicated procedures are illustrated with both simple test problems and results from a performance assessment for a
radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the
use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity
analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression,
rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions
are present.
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1. Introduction (1.4)

The focus of this presentation is on Monte Carlo
(i.e., sampling-based) approaches to uncertainty and
sensitivity analysis. Such analyses involve the consid­
eration of models ofthe form

The importance of uncertainty analysis and sensi­
tivity analysis as components of analyses for complex
systems is almost universally recognized, where uncer­
tainty analysis designates the determination of the un­
certainty in analysis results that derives from the uncer­
tainty in analysis inputs and sensitivity analysis
designates the determination of the contributions of
~ndividua.l uncertain analysis inputs to the uncertainty
m analysis results. 1-11 A number of approaches to un­
~ertai~ty and sensitivity analysis have been developed,
mcludmg differential analysis,I2-I7 response surface
methodology,I8-26 Monte Carlo analysis,27-38 and vari­
ance decomposition procedures. 39-43 Overviews of
these approaches are available in several reviews.44-52

y=f(x),

where

(1.1)

where Dj is a probability distribution characterizing the
uncertainty in xi" Correlations and other restrictions
involving the relations between the x, are also possible.
Such distributions and any associaied restrictions are
intended to numerically capture the existing knowledge
about the elements of X and are often developed
through an expert review process. 58-73

The uncertainty characterized by the distributions
Db D2, ... , DnXin Eq. (1.4) is often referred to as epis­
temic uncertainty. Alternate designations for epistemic
uncertainty include state of knowledge, subjective, re­
ducible, and type B,74-82 In particular, epistemic un­
certainty derives from a lack of knowledge about the
appropriate value to use for a quantity that is assumed
to have a fixed value in the context of a particular
analysis. In the conceptual and computational organi­
zation of an analysis, epistemic uncertainty is generally
considered to be distinct from aleatory uncertainty,
which arises from an inherent randomness in the behav­
ior of the system under study,74-83

Sampling-based uncertainty and sensitivity analy­
ses are based on a sample

y = [Yt> Y2' ... , YnY] (1.2)
Xi =[XiI' xi2' ... , xi,nX J, i =1, 2, ... , nS, (1.5)

from the possible values for X generated in consistency
with the distributions in Eq. (1.4) and any associated
restrictions. Random sampling is one possibility for the
generation of this sample. However, owing to its effi­
cient stratification properties, Latin hypercube sampling
is widely used in analyses of this type, especially when
computationally intensive models are involved.27,37, 38

provide a mapping between analysis inputs (i.e., Xi) and
analysis results (i.e., Yi) that forms the basis for both
uncertainty analysis and sensitivity analysis. Once the
preceding mapping is available, the determination of
uncertainty analysis results is generally straightforward
and involves the generation of summary results such as
histograms, density functions, cumulative distribution
functions (CDFs), complementary cumulative distribu­
tion functions (CCDFs), and box plots for individual
elements of Y (Sect. 6.5, Ref. 29). The determination
of sensitivity analysis results involves the exploration
of the preceding mapping with techniques such as ex-

is a vector of analysis results and

(1.3)

is a vector of imprecisely known analysis inputs. In
general, the model f can be quite large and involved
(e.g., a system of nonlinear partial differential equations
requiring numerical solution (see Ref. 53) or possibly a
sequence of complex, linked models as is the case in a
probabilistic risk assessment for a nuclear power plant
(see Refs. 54, 55) or a performance assessment for a
radioactive waste disposal facility (see Refs. 56, 57));
the vector y of analysis results can be of high dimen­
sion and complex structure (e.g., the elements of y
might be several hundred temporally or spatially de­
pendent functions); and the vector x of analysis inputs
can also be of high dimension and complex structure
(e.g., several hundred variables, with some variables
corresponding to physical properties of the system un­
der study and other variables corresponding to parame­
ters in probability distributions or perhaps to designa­
tors for alternative models).

The uncertainty in the elements of x is character­
ized by a sequence of probability distributions

9
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Although analyses for real systems almost always
involve multiple output variables as indicated in con­
junction with Eqs. (Ll) - (1.3), the following discus­
sions assume that a single real-valued result of the form

these methods can be successfully applied in situations
involving nonlinear relationships between analysis in­
puts and analysis results where more traditional regres­
sion-based approaches would fail to appropriately cap­
ture these relationships.

The presentation is organized as follows. First,
traditional approaches to regression-based sensitivity
are briefly described (Sect. 2), and then nonparametric
approaches to regression analysis based on local data
smoothing are introduced (Sect. 3). Next, technical
details related to the implementation of the techniques
described in Sect. 3 to a sequence of example sensitiv­
ity analyses are described (Sect. 4), and the results of
these examples are presented (Sect. 5). The presenta­
tion concludes with a summary discussion (Sect. 6).

is used to represent the result of evaluating Y with the
sample in Eq. (1.5). This simplifies the notation and
results in no loss in generality as the results under dis­
cussion are valid for individual elements of y. All sta­
tistical analyses in this presentation are carried out
within the R statistical computing environment, I 07
which is an open source equivalent to the S-Plus statis­
tical package. 108

amination of scatterplots, regression analysis, correla­
tion and partial correlation analysis, and searches for
nonrandom patterns (Sect. 6.6, Ref. 29).

The determination of sensitivity analysis results is
generally more demanding than the determination of
uncertainty analysis results. In particular, the popular
regression and correlation based techniques can fail to
appropriately identify the effects of the individual ele­
ments of X on the elements of y when nonlinear and
nonmonotonic relations are present (Sect. 6.6, Ref. 29).
Possible approaches to sensitivity analysis to use in
such situations include grid-based statistical analyses of
scatterplots,30, 84 distance-based statistical analyses of
scatterplots,85-98 multidimensional Kolmogorov­
Smirnov tests,99-102 rank-concordance tests,103, 104 and
classification trees. 105, 106 However, the preceding
approaches lack the intuitive appeal of regression-based
approaches to sensitivity analysis. In particular, regres­
sion-based sensitivity analysis can be carried out in a
sequential manner with variable importance being indi­
cated by the order in which variables enter the regres­
sion model and by the fraction of total variance that can
be accounted for as successive variables enter the re­
gression model.

The purpose of this presentation is to describe re­
gression-based techniques for sensitivity analysis that
are based on multiple predictor smoothing methods.
Such methods are conceptually consistent with regres­
sion-based methods that have been widely used in the
past in sensitivity analysis (Sect. 6.6, Ref. 29), but have
the important advantage that they are capable of incor­
porating local changes in the relationship between a
dependent variable (i.e., an element of y) and multiple
independent variables (i.e., elements of x). As a result,

10
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2. Traditional Parametric Regression
Models

Several parametric regression models used in sen­
sitivity analysis are briefly reviewed. More information
on such models can be obtained in a number of excel­
lent texts (e.g., Ref. 109-113).

cal tests can be used to indicate if the coefficients in
Eqs. (2.2) and (2.3) appear to be different from zero.
However, in the context of sensitivity analysis, it is
important to recognize that such tests are simply one
form of guidance with respect to variable importance as
the underlying distributional assumptions with respect
to the error term e are not satisfied when deterministic
models are under consideration (Sect. 6.6.3, Ref. 29).

Linear regression has long been the method of
choice for researchers wishing to approximate a sur­
face. This regression model is predicated on a relation
of the form

2.1 Linear Regression The following identity holds when the relation in
Eq. (2.2) is estimated with least squares procedures:

(2.4)

where e is a random error term with an expected value
of zero (i.e., E(e) = 0).

nX

Y = flo +Lflj x j +e,
j=l

(2.1)

where Yi denotes the estimate of Yi obtained from the
regression model (Sect. 3.4, Ref. 109). In order from
left to right, the three summations in the preceding
equation are referred to as the total sum of squares
(SStot), the regression sum of squares (SSreg), and the
residual sum of squares (SSres). Since SSres provides a
measure of variability about the regression model,

where

The approximate form of the relation in Eq. (2.1) is

(2.5)

provides a measure of the extent to which the regres­
sion model can match the observed results. Specifi­
cally, R2 is close to 1 when the variation about the re­
gression model is small (i.e., when SSres is small
relative to SStot), which indicates that the regression
model is successful in matching the observed results.
Similarly, R2 is close to 0 when the variation about the
regression model is large (i.e., when SSreg is small rela­
tive to SStot), which indicates that the regression model
is not successful in matching the observed results.

(2.3)

(2.2)
nX

y = bo+ Lbjxj'
j=l

where the bj are typically estimated with least squares
procedures from observations of the form [Xi' Yi]' i = 1,
2, ... , nS. In turn, the preceding approximation is often
algebraically reformulated as

The coefficients bij / S in Eq. (2.3) are called stan­
dardized regression coefficients. When the Xj are inde­
pendent, Ibi j / S I can be used as a measure of variable
importance. Specifically, Ibij / S I indicates the effect
of moving a variable away from its expected value by a
fixed fraction of its standard deviation while holding all
other variables fixed at their expected values. Statisti-

When linear regression is used as a sensitivity
analysis technique, the regression is usually performed
in a stepwise manner (Sect. 6.6.4, Ref. 29). With this
approach, the most influential variable is added to the
model first (producing a model of the form in Eq. (2.2)
with one independent variable); then the next most in­
fluential variable is added to the model (producing a
model of the form in Eq. (2.2) with two independent
variables); and the process is continued in this manner
until no more influential variables can be identified.
Variable importance is then indicated by the order in
which variables entered the regression model, the
changes in R2 values as successive variables entered the
regression model, and the standardized regression coef­
ficients for the variables in the final regression model.

11



An important special situation exists when the val­
ues for the Xj used in construction of the regression
model in Eq. (2.2) (i.e., in the sample in Eq. (1.5)) are
independent. Technically, this is equivalent to XT X
being a diagonal matrix, where

However, it is important to recognize that standardized
regression coefficients can produce very misleading
indications of variable importance when highly corre­
lated variables are included in the regression model
(Sect. 6.6.7, Ref. 29). e

e

..

a ..
:0.. 0..

..
..

(2.6)x=

In this situation,

(2.7)

BHPRl\1l: l.ogBQreholePtirrtlea,pcilitYl!t1i!.2)
TR06-JR001-0

Fig. 1. Linear regression on results generated in a
sensitivity analysis of a two-phase fluid flow
model.

where RJ is the R2 value that results from regressing y
~n only Xj (p. 99, Ref. 110). Thus, RJ is the contribu­
tion of Xj to R2 when the sampled inputs are independ­
ent (i.e., when the design matrix X is orthogonal). As a
result, the incremental R2 values in a stepwise regres­
sion are equal to the contributions of the individual
independent variables to the total R2 value for the re­
gression.

variables in the regression model fails to produce a sat­
isfactory representation. For example, use of an <X­

value cutoff of 0.02 for entry of a variable into the re­
gression model produces a model with five variables
and an R2 value of only 0.27. Additional discussion is
given in Sect. 5.2.6.

2.2 Rank Regression
There are many favorable properties of linear regres­

sion such as computational speed and interpretability.
Hypothesis testing for input variable importance can be
performed with ease. When the surface to be approxi­
mated is nearly linear in the inputs (i.e., the x), there is
no better technique. However, in situations where the
underlying relationship (i.e., the model in Eq. (1.7)) is far
from linear, linear regression will produce a very poor
approximation (Fig. 1). As a result, a number of alterna­
tives to linear regression have been developed, including
rank regression (Sect. 2.2), quadratic regression (Sect.
2.3), and nonlinear regression (Sect. 2.4).

The results obtained with linear regression can of­
ten be improved with suitable transformations of the
independent (i.e., y) and dependent (i.e., xl> X2, ... , xnX)

variables. For example, logarithmic or square root
transformations may make the underlying relationships
more linear and hence more amenable to analysis by
linear regression. The identification of effective trans­
formations is often subjective and thus difficult to
automate. As a result, the effective use of transforma­
tions in a large sensitivity study can be difficult due to
the large number of independent and dependent vari­
ables under consideration.

The results in Fig. 1 come from an uncertainty and
sensitivity analysis carried out for a two phase fluid
flow model. This analysis will be described in greater
detail in Sect. 5.2 where it is used to illustrate multiple
predictor smoothing methods. This analysis involved
31 uncertain variables (i.e., nX = 31 in Eq. (1.3)). The
regression line in Fig. 1 involves only one uncertain
variable. Owing to the extreme nonlinearity of the rela­
tionships involved, the inclusion of additional uncertain

One broadly applicable transformation is the rank
transformation, which is effective when the relation­
ships between independent and dependent variables are
monotonic (Ref. 114; Sect. 6.6.6, Ref. 29). The use of
the rank transformation in conjunction with linear re­
gression is straightforward. The smallest value of a
variable is given a rank of 1; the next largest value is
given a rank of 2; and so on up to the largest value

12
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Fig. 2. Rank regression on an example monotonic relationship.

which is given a rank of nS, where nS is the sample
size. Equal variable values are assigned the average of
what their ranks would have been. Then, the usual re­
gression procedures are carried out with the original
variable values replaced by their ranks (Ref. 114; Sect.
6.6.6, Ref. 29).

The rank transformation converts monotonic rela­
tionships into linear relationships (Fig. 2). As a result,
a linear regression in this situation with rank trans­
formed data (i.e., a rank regression) provides a better
approximation to the underlying relationships than
would be obtained with a linear regression on the origi­
nal (i.e., raw) data. Rank regressions have been suc­
cessfully used in a large number of sensitivity analyses
(e.g., Refs. 115-117). However, rank regressions can­
not significantly improve the quality of a regression
analysis when the underlying relations are nonlinear
and nonmonotonic (Fig. 3).

2.3 Quadratic Regression

Quadratic regression is used as a designator for lin­
ear regression that includes individual variables (i.e.,
the x), variable squares (i.e., xJ), and multiplicative
interaction terms (i.e., xjXk)' Formally, quadratic re­
gression is predicated on a model of the form

nX nX nX

y=a+ l:{PjXj+PjjxJ)+ l: l: PjkXjXk+ c.(2.8)
j=1 j=1 k=j+I

13

More generally, polynomial regression models that
involve additional powers of the Xj and more complex
multiplicative interaction terms are also possible.

Quadratic regression removes the assumption that
the effects of the individual Xj are completely additive
but still cannot model completely general interactions.
Further, quadratic regression has difficulty representing
functions with asymptotes and other complex behavior.
Still, quadratic regression has been used with consider­
able success in industrial applications for many
years.20, 118

A quadratic regression model (Fig. 4) shows sig­
nificant improvement over the results previously shown
for the application of linear and rank regression to a
nonlinear and nonmonotonic relationship (Figs. 1,3).

2.4 Nonlinear Regression

Nonlinear regression involves estimating the coef­
ficients in a nonlinear relationship between y and the
independent variables under consideration.U? In par­
ticular, the regression models introduced in Sects. 2.1 ­
2.3 are referred to as linear models because y is ex­
pressed as a linear combination of the variables in the
regression model. In contrast, nonlinear regression
involves estimating the coefficients f3.j,j = 0, 1,2, ... , in
a hypothesized relationship such as

(2.9)
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Fig. 3. Rank regression on a nonlinear and non­
monotonic relationship generated in a sensitiv­
ity analysis of a two-phase fluid flow model.
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Fig. 4. Quadratic regression on a nonlinear and non­
monotonic relationship generated in a sensitiv­
ity analysis of a two-phase fluid flow model.
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where the relationships between y and at least some of
the independent variables are nonlinear in the sense that
y is not represented as a linear combination of these
variables. Once the candidate form for the nonlinear
regression model is decided on (e.g., the relationship in
Eq. (2.9)), the 4's can be estimated with techniques
based on least squares, which is the maximum likeli­
hood estimate when the £'s are normally distributed.

A major drawback to nonlinear regression is the
requirement to decide on the form of the nonlinear re­
gression model before the regression process can be
initiated. This can be a particularly daunting challenge

in a sensitivity analysis where several hundred different
dependent variables (i.e., y's) may be under considera­
tion with each dependent variable potentially requiring
the formulation of a different nonlinear regression
model. Further, model fitting, hypothesis testing, and
interpreting of results is more difficult than is the case
for linear regression. For the proceeding reasons,
nonlinear regression models are not considered in this
study. The nonparametric regression approaches intro­
duced in the next section (Sect. 3) have advantages
over nonlinear regression in that they can incorporate
nonlinear relationships without the need to provide a
priori specifications of model form.

14



3. Nonparametric Regression

Linear regression analysis has many desirable
properties. When the underlying relationships are close
to linear, no better technique is available. However,
when nonlinear relationships are present, linear regres­
sion analysis can give misleading results and possibly
no results at all. This potential failing provides the mo­
tivation for nonparametric regression.

hardly nonparametric. In contrast to the parametric char­
acter of linear regression, the following nonparametric
approaches to scatterplot smoothing are introduced: run­
ning means (Sect. 3.1.1), locally weighted means (Sect.
3.1.2), locally weighted regression (Sect. 3.1.3), and
smoothing splines (Sect. 3.1.4).

3.1.1 Running Means

Nonparametric regression, which is often called
smoothing, is a form of surface approximation that is
based on an assumed relationship of the form

where E(E) = 0 and, as a result, E(Ylx) = j(x). Usually,
very few restrictions or assumptions are made about the
properties off In particular, f is not assumed to take a
particular parametric form such as a multivariate poly­
nomial involving the elements of x. Sometimes f is
assumed to be "smooth" in the sense that certain conti­
nuity restrictions are imposed on f and possibly its de­
rivatives.

y = f(x)+c, x =[Xl> xz, ... , xnX], (3.1)

With running means, or possibly running medians,
the predicted (i.e., estimated) value ji(xo) ofy(xo) at a
value Xo of x is given by the mean (or median) of the
y/s associated with x/s close to xo. Typically, a fixed
number r of values for Xi is selected for use. Then,
y(xo) is defined on the basis of the r values for Xi that
are closest to xo. For running means, this leads to the
following approximation for an arbitrary value ofx:

where drCx) denotes the distance along the x-axis to the
rth nearest neighbor of x (i.e., r values of Xi satisfy IXi ­
xl :'S dr(x)) and

To facilitate the introduction of the concept of
smoothing, x is initially assumed to be univariate and
smoothing is discussed in this context (Sect. 3.1); that is,
the relation in Eq. (3.1) is assumed to be of the formy =
j(x) + E. Such univariate smoothing is often referred to as
scatterplot smoothing. Next, the concept of degrees of
freedom in association with smoothing is discussed (Sect.
3.2). Then, multivariate smoothing is described for rela­
tionships of the form in Eq. (3.1); that is, for the case
where x is a vector rather than a scalar (Sect. 3.3). Fi­
nally, hypothesis testing for variable importance in non­
parametric regression is discussed (Sect. 3.4).

3.1 Univariate Scatterplot Smoothers

The following provides a brief overview of scatter­
plot smoothing. More information is available in several
references.lZO-lZ3 As previously indicated, scatterplot
smoothers are used when there is one independent vari­
able (i.e., x) and one dependent variable (i.e., y). Specifi­
cally, a data set of the form (Xi' yD, i = 1, 2, ... , nS, is
under consideration throughout this section. As sug­
gested by the name, scatterplot smoothing involves fit­
ting a curve to the data represented in a scatterplot.
There are many ways to construct (i.e., fit) such a curve.
The most familiar approach to such construction is sim­
ple linear regression (Sect. 2.1), although this approach is
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1[0, dr(x)] (IXi - xl) = {OI if 0 ~ IXi - xl ~ d; (x) (3.3)
otherwise.

A minor modification is required if multiple observa­
tions satisfy IXi - xl = dr(x) (e.g., increase the value for r
to incorporate these values or leave r fixed and average
the corresponding Yi values). An analogous relation­
ship holds for running medians except that medians
over the y/s associated with the r x/s closest to x are
calculated rather than means.

Although running means or medians are appealing
because of their simplicity, they tend to produce a very
wiggly function l(x). Specifically, as the values for x
move along the x-axis, the sets of x/s in use change,
with these changes resulting in discontinuities in l(x).
This behavior is illustrated in Fig. 5 for running means
with the previously introduced two-phase flow data and
r=20.

3.1.2 Locally Weighted Means: Kernel
Smoothers

Smoothing based on locally weighted means is em­
ployed to keep the intuitively appealing idea of a moving
average while, concurrently, producing less small-scale
erratic behavior in l(x). Specifically, locally weighted



Kernel smoothers are "linear smoothers" In the
sense that

The use of a kernel smoother with the kernel func­
tion in Eq. (3.5) and a bandwidth of h = 0.6 is illus­
trated in Fig. 6. Comparison of Figs. 5 and 6 illustrates
the smoother form for j(x) produced by the use of
locally weighted means than is the case for running
means.

(3.7)

(3.6)

y=Sy,

can be represented by
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Fig. 5. Running means with r = 20 on results gener­
ated in a sensitivity analysis of a two-phase
fluid flow model.

where y = [YbY2, ... ,YnS]T and the ith row of the matrix
S contains the kernel weights in the linear combination
in Eq. (3.4). Specifically, the value in row i and col­
unm} ofS is

averaging with a kernel function k(z; h) produces the
approximation

(3.8)

nS Ins
j (X) = ~ k (Xi - X; h)Yi ~ k (Xi - X; h). (3.4)

which is the weight on the fh observation for prediction
at Xi'

The role of k(z; h) is to place more weight on the y/s
associated with x/s close to X and less weight on y/s
associated with x/s farther away from x. The kernel
function k(z; h) is usually chosen to have a maximum at
z = 0 and to decrease monotonically to zero as Izi in­
creases. If k(z; h) is a continuous function of z, then
j(x) will be a continuous function of x. The band­

width h, also known as the smoothing parameter, de­
termines the amount of smoothing to be done to the
data. Larger values of h result in more smoothing and
smaller values of h result in greater fidelity to the data.
A commonly used kernel function is

(3.5)

Edge effects are a potential drawback with locally
weighted means. Such effects can be manifested near
the largest and smallest observed values for x and result
because of the unequal numbers of observations to the
left and right of such values. Specifically, there are few
observations to the left of small values for Xi and few
observations to the right of large values for Xi' This
imbalance in the number of observations can result in
an overemphasis in the averaging process of observa­
tions on one side of such values and thus distort I(x)
for values of x near the upper or lower ends of the
range of values for the Xi' This effect can be seen for
the smaller values of x = BHPRM in Fig. 6, where the
value for j(x) determined with locally weighted means
appears to fall below the overall trend of the data.

3.1.3 Locally Weighted Regression

An approach similar to the kernel smoother (Sect.
3.1.2) that reduces the problem of edge effects involves
the use of a locally weighted regression line.124 With
locally weighted regression,

which corresponds to the normal density function with
I..l = 0 and o = h. Other viable choices for k(z; h) also
exist (e.g., see Sect. 2.6, Ref. 120). As discussed in
more detail in Sect. 3.2, there is no universally accepted
approach to determining the best value for h for a given
kernel function and data set. However, it is widely
accepted that the choice of the bandwidth h has more
effect on the smoothing process than the choice of the
kernel function (p. 19, Ref. 120).

j(x) = a(x)+ jJ(x)x, (3.9)
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Fig. 6.
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Locally weighted means with kernel function
k(z; h) in Eq. (3.5) and bandwidth h = 0.6 on
results generated in a sensitivity analysis of a
two-phase fluid flow model.

often referred to by the designator LOESS, which is
short for local regression and was chosen in allusion to
the fact that LOESS is a deposit of fine clay or silt
along a river valley and is thus a surface of sorts (p.
314, Ref. 126).

With LOESS, the kernel function is modified to
take into account the distance dr(x) to the rth nearest
neighbor of a point x. Specifically, Cleveland--" pro­
posed that &(x) and P(x) should be estimated by
minimizing the expression in Eq. (3.10) with the kernel
function k(z; h) defined by

(3.11)

where I[O,h)(izl) is defined analogously to the expression
in Eq. (3.3) (i.e., I[o,h)(lzl)= 1 if 0 :s Izi < hand 0 other­
wise) and h corresponds to dr(x). With this formula­
tion, &(x) and P(x) are defined to be the values for a
and ~ that minimize the expression

where &(x) and P(x) are estimated for individual
values of x. In particular a~d for a specific value of x,
the quantities &(x) and j3(x) are defined to be the
values for a and ~ that minimize the sum

~ { 3}3I(a+ j3xi - Yi)2 1-[lx-Xil/dr (x)J
1=1

X I[O,dr(x)) (Ix - XiI). (3.12)

where k(x - xi; h) is an appropriately defined kernel
function. The indicated minimization of a and ~ is
straightforward with an appropriate matrix formulation
of the problem (p. 84, Ref. 123).

Locally weighted regression is actually equivalent
to the determination of a locally weighted mean (Sect.
3.1.2) with a complicated kernel function that derives
from the estimation of &(x) and P(x). This kernel
function will not be given here but can be found else­
where (p. 241, Ref. 125). Thus, locally weighted re­
gression is also a linear smoother as it can be put in the
form y = Sy indicated in Eq. (3.7).

Both kernel smoothing of the mean and locally
weighted regression have a problem when data are
sparse in a particular region. In this situation, there are
few points close to some x values to use in the averag­
ing process and, depending on the kernel in use, j (x)
may not even be defined for such x values. Cleveland
recognized this problem and mitigated its effects by
incorporating a nearest neighbors approach with the
locally weighted regression line.124 This procedure is

nS

I(a+ j3xi - Yi )2k(x-Xi; h),
i=1

(3.10)
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The use of h = drCx) in the definition of k(z; h) allows
the bandwidth to vary along the x-axis. This assures
that r - 1 of the nS observations will have nonzero
weights when computing the local regression line j(x)
for each x regardless of how sparse the data is. If sev­
eral points are tied for being the rth nearest neighbor to
x, then there will actually be less than r - 1 points with
nonzero weight for this special case. An analysis em­
ploying LOESS is often described by its span, which is
the ratio r/nS. Intuitively, the span is the ratio of the
number of observations with nonzero weight used in
the estimation of &(x) and P(x) to the total number of
observations although this is not quite correct as only r
- 1 observations typically have nonzero weight.

The improvement in the estimate of j(x) with
LOESS over the estimate obtained with locally weighted
means can be seen by comparing the results in Figs. 6
and 7. In particular, the estimate for j(x) in Fig. 7 is
obtained from LOESS with r = 60 and a corresponding
span of 0.20. This estimate tracks the data near the ends
of the ran~e for x = BHPRM more faithfully than is the
case for f(x) in Fig. 6 obtained with locally weighted
means. This is particularly evident for the smaller values
of x. Due to its good performance, LOESS has become
one of the most popular scatterplot smoothers.
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The quantity A in Eq. (3.13) plays the role of a
smoothing parameter. As with the smoothing parame­
ters associated with the previously introduced methods,
the appropriate value to use for A is not intuitively ap­
parent. Typically, the equivalent degrees of freedom
(dj) described in the next section (Sect. 3.2) is used to
determine the value for A for smoothing splines. Fig. 8
shows a cubic smoothing spline involving BHPRM
with df= 8. As comparison of Figs. 7 and 8 shows, the
behavior of this cubic smoothing spline is similar to
that ofLOESS.

3.2 Equivalent Degrees of Freedom
and Smoothing Parameters

BHPRT\4: L~B()reh()JePert'r\,eaJji[jtY(1'll"'2)
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Fig. 7. Analysis with LOESS for kernel function k(z;
h) in Eq. (3.11) and r = 60 (i.e., a span of 0.20)
on results generated in a sensitivity analysis of
a two-phase fluid flow model.

3.1.4 Smoothing Splines

Automated methods of selecting smoothing pa­
rameters for the techniques presented in Section 3.1 are
now discussed. To do this, the related topic of degrees
of freedom is introduced. In linear model theory, the
degrees of freedom df of a model is defined to be the
number of linearly independent columns in the design
matrix X defined in Eq. (2.6). This is the same as the
number of parameters included in the associated linear
model. An equivalent definition is

where tr(S) denotes the trace of S. In tum, the degrees
of freedom for error dferr can then be defined by

where H = X(XTX)-IXT, often called the hat matrix, is
the perpendicular projection matrix that projects a vec­
tor onto the X space (i.e., the space spanned by the vec­
tors corresponding to the columns in X) and tr(H) de­
notes the trace of H (i.e., the sum of the diagonal
elements of H). Predicted values for the linear model y
= X~ are obtained from the relationship y = Hy. More
on the projection matrix H can be found elsewhere (p.
68, Ref. 127; p. 393, Ref. 128).

The nonparametric techniques discussed in Sects.
3.1.1 - 3.1.3 can be put in the form y = Sy indicated in
Eq. (3.7). Such techniques are said to be linear. For
convenience, 5 is referred to as the smoother matrix.
The symbolS is used to denote the smoother matrix to
distinguish it from H since 5 is not, in general, a per­
pendicular projection onto the X space. A natural gen­
eralization of the concept of degrees of freedom is to
define the degrees of freedom associated with a
smoother matrix 5 to be

(3.15)

(3.14)

df = tr(S),

df = tr(H) ,

(3.13)

There is a unique, explicit solution to the minimi­
zation problem associated with Eq. (3.13). This solu­
tion is a natural cubic polynomial spline with knots
(i.e., locations of change in the structure of the spline)
at the observed values for x (Sect. 2.10, Ref. 120). A
cubic polynomial spline is a function that is a cubic
polynomial on any interval defined by adjacent knots,
has two continuous derivatives, and has a third deriva­
tive that is a step function with jumps at the knots. A
natural cubic spline is a cubic spline that is restricted to
be linear on (-00, X(I)) and (x(nS)' 00).

Another popular scatterplot smoother is the cubic
smoothing spline. A cubic smoothing spline is a func­
tion j that minimizes the penalized residual sum of
squares

over all continuously differentiable functions f, where a
:s x(l) = min {xi: 1 :s i:S nS}, max {xi: 1 :s i:S nS} = x(nS)

:s b, and A is a constant (Sect. 2.10, Ref. 120). The first
term in the preceding expression is the residual sum of
squares and measures fidelity to the data; the second
term constitutes a penalty for j having too much cur­
vature.
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(3.18)

smoothing parameter that produces this value can be
determined. This still leaves open the question of what
is an appropriate value for df The approaches below
offer a better guide to smoothing parameter selection.

A widely used automatic selection procedure for
smoothing parameters is the cross validation (CV) ap­
proach. With this approach, the jackknifed (or leave
one out) residuals are obtained by fitting the model
without the Ith observation and then predicting Yj' The
deleted residual is then
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Fig. 8. Analysis with smoothing spline with a = x(1)'

b = x(nS) and df= 8 (see Eq. (3.13)) on results
generated in a sensitivity analysis of a two­
phase fluid flow model.

where Y(i) is the jackknifed (i.e., predicted) value for Yj
obtained with Yi omitted from the prediction process,
and the predicted residual sum of squares (PRESS)129
is given by

(3.19)

dferr =nS -tr(S)

in analogy to the corresponding definition

dferr =nS -tr(H)

(3.16)

(3.17)

The PRESS value PRS is then used in the selection of
the smoothing parameter. In particular, different values
for the smoothing parameter result in different values
for PRS. The preferred smoothing parameter value is
the value that minimizes PRS.

and the leverage values Sjj, which are the diagonal ele­
ments of S. In particular, the deleted residuals are
given by

(see p. 47, Ref. 120). This makes cross validation easy
to apply for linear smoothing provided S is relatively
easy to calculate.

For representations of the form 9 = Sy, it is not
necessary to fit the model multiple times to obtain the
deleted residuals. Instead, all the deleted residuals can
be obtained from the usual residuals

(3.20)

(3.21)

In practice, the preceding cross validation criterion
tends to result in the selection of smoothing parameters
that undersmooth. To correct for this, a generalized
cross validation criterion has been suggested (p. 49,
Ref. 120). This generalized criterion employs an ad­
justed PRESS value given by

for linear models.

The preceding definitions make some intuitive
sense if the two extreme prediction cases, simple aver­
aging and interpolation, are considered. For a simple
average, the diagonal elements of S are given by Sii =

1/nS. As a result, tr(S) = lor, equivalently, one de­
gree of freedom (i.e., df = 1) is being used to estimate
the overall mean value. In the interpolation case, Su = 1
and the other weights in a row must be 0 so that the
predicted value is given by j (Xj) = Yi' In this case,
each observation has its own value and tr(S) = nS,
which implies a model with nS degrees of freedom (i.e.,
df= nS). Most models fall somewhere in between these
two extremes. Additional discussion of degrees of
freedom in the context of nonparametric regression is
available elsewhere (pp. 52 - 55, Ref. 120).

Degrees of freedom will be used for inference later
in this presentation. However, degrees of freedom can
also be used to obtain some insight with respect to ap­
propriate values to use for smoothing parameters. For a
particular kernel, a desired value of df for the smoother
matrix can be specified, and then the value of the
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nS [ ]2 nS [ ']2PRSA = ri = Yi - Yi (3 22)t I-tr(S)/nS t I-tr(S)/nS .

3.3.1 Locally Weighted Regression:
LOESS

in the determination of the smoothing parameter.
Given that

The LOESS technique in multiple dimensions is
analogous to the same technique in one dimension
(Sect. 3.1.3). In particular, the relationship between Y
and x is assumed to be of the form

nS

tr(S) = ~>ii'
i=l

(3.23)
Y = f(x) =a(x)+p(x)x+c, (3.27)

each deleted residual r(i) is in essence being calculated
with an average leverage value given by

where l3(x) = [131(x), 132(X), ..., l3nX<x)], x = [xl> X2' ... ,

xnX]T, and E(E) = O. In tum, an approximate relation­
ship of the form

nS

S = tr(S)/nS = ~>ii InS.
i=l

(3.24) y= j(x) = a(x)+p(x)x (3.28)

This approach puts less emphasis on observations with
high leverage values. Another way to write PRSA is

is sought with LOESS, with the corresponding one di­
mensional special case appearing in Eq. (3.9).

[
1 ]2 nS

PRS - r2
A - I-df/nS t i ,

(3.25)

The quantities a (x) and ~ (x) for a given value of
x are defined to be the values for a. and 13 = [13l> 132, ...,
I3nX] that minimize the sum

which shows that PRSA can be viewed as the error sum
of squares penalized by the degrees of freedom associ­
ated with the model used in smoothing the data. With
this criterion, the preferred smoothing parameter value
is the value that minimizes PRSA .

3.3 Multivariate Smoothers

More general relationships of the fonn Y = j(x) in­
dicated in Eq. (1.7) are now considered. Further, a
mapping v, = j(xi) , i = 1,2, ... , nS, from analysis inputs
to analysis results as shown in Eq. (1.8) is assumed to
be availa~le for analysis. In this framework, approxi­
mations f(x) to a relationship of the form

(3.26)

are sought. The kernel methods described for the uni­
variate case in Sect. 3.1 have immediate and straight­
forward generalizations to this multivariate context.
These generalizations are often referred to as multiple
predictor techniques. In particular, the following mul­
tiple predictor techniques are considered in this section:
locally weighted regression (Sect. 3.3.1), additive mod­
els (Sect. 3.3.2), projection pursuit regression (Sect.
3.3.3), and recursive partitioning regression (Sect.
3.3.4).
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~(a+ Il><i - v, )' [1-( ";,(:;")'JI[O,d,(x)) (11x - xtll),

(3.29)

where (i) dlx) is the distance to the rth nearest
neighbor of x in nX-dimensional Eulidean space, (ii)
I[O,dr(x))(llx - XiiI) is defined analogously to I[O,dr(x))(lx­
xiI) in Eq. (3.12), and (iii) the individual independent
variables (i.e., Xl> x2' ... , xnX) are normalized to mean
zero and standard deviation one so that the value for the
norm II . II is not dominated by the units used for these
variables. The determination of a. and 13 is straightfor­
ward with the use of appropriate matrix techniques (p.
139, Ref. 121). Except for use of the norm II . II instead
of absolute value I . I, the expression in Eq. (3.29) with
LOESS for multidimensional x is the same as the ex­
pression in Eq. (3.12) for the one-dimensional case.

The determination of a and ~ (x) provides an es­
timate ofy for one value of x as indicated in Eq. (3.28).
Estimates of Y for additional values of x require the
solution of an additional minimization problem for each
x. This may seem computationally demanding but
LOESS is actually quite fast computationally even with
multiple independent variables.

The obvious benefit to using LOESS in multiple
dimensions is that it can capture nonlinear behavior that



a typical parametric model cannot. A more subtle ad­
vantage is the capability to capture very general interac­
tions between input variables. The indicated capabili­
ties derive from the property that LOESS is inherently
local in its approximations to the relationship y = j(x).
For example, a LOESS surface fitted to two variables is
shown in Fig. 9. The actual functional relationship is

y == j(XI> X2) == (Ij2Jr)exP{-[(XI_5)2 +(X2 -5)2J/2},

(3.30)

which corresponds to the density function for a bivari­
ate normal distribution. The surface in Fig. 9 was con­
structed with LOESS and a random sample of size nS =

100 from X = [xl> x2] with Xl and X2 uniform on [0, 10].
In this example, LOESS captures the nonlinear interac­
tion between Xl and X2 in the determination ofy.

TR06-JR009-0

Fig. 9. Example of LOESS surface constructed for y
= j(x!> x2) = (l/21t) exp{-[(xi - 5)2 + (x2 ­
5)2]/2}; see Eq. (3.27).

3.3.2 Additive Models

For additive modeling, the function j(x) in Eq.
(3.27) is assumed to have the form

The LOESS procedure will work in higher dimen­
sions and actually works quite well for nX:s3. For nX
> 3, however, LOESS starts to be affected by the curse
of dimensionality. As will be illustrated later, this can
cause LOESS to miss the effects of important variables
in the estimation ofj(Sect. 5).

Several procedures have been developed in an at­
tempt to overcome the dimensionality problem. These
procedures implement one or more of the following
strategies as discussed in subsequent sections: additive
modeling (Sect. 3.3.2), dimension reduction (Sect.
3.3.3), and recursive partitioning (Sect. 3.3.4).

(3.31)
nX

j(x)==2:jj(Xj) ,
j=l

where the fj are arbitrary functions that will be deter­
mined as part of the analysis process. This is analogous
to multiple linear regression where the effects of the
independent variables are additive. The difference is
that y = j(x) is not assumed to be a linear function of
the Xi This representation is not completely general as
it does not allow for interactions between the independ­
ent variables. However, nothing prevents the inclusion
of multiplicative interactions xrxs as in linear regres­
sion.

A drawback with LOESS and other local averaging
techniques in higher dimensions is that the closest ob­
served values Xi to the value X under consideration are
not necessarily local (i.e., nearby) along the axes for the
individual variables Xj' j = 1, 2, ... , nX, contained in x.
This is sometimes referred to as the curse of dimen­
sionality. To illustrate this, first consider one inde­
pendent variable. To include 30% of the data in a local
average, it is necessary to span approximately 30% of
the corresponding axis if the variable values are ap­
proximately uniformly distributed. With the same dis­
tributional assumption and two independent variables,
including 30% of the data now requires spanning 55%
of the range of each of the variables. This requirement
results because the joint range of the two variables is
now a rectangle and covering 30% of this rectangle
requires covering 55% of the range of each of the two
variables (i.e., (0.55)2 == 0.30). As the number of inde­
pendent variables increases, the problem becomes
worse. With five independent variables, use of 30% of
the data requires spanning 79% of the range of each of
the individual variables. This hardly constitutes a local
average anymore. The span (i.e., percent coverage) can
be made smaller but then there is a danger of unders­
moothing unless the number of observations is substan­
tially increased.

The LOESS technique in multiple dimensions is
also a linear smoother in the sense that it can be ex­
pressed in the form shown in Eq. (3.7). The actual
form of the kernel function is a generalization of the
univariate case given in Schimek (p.24l, Ref. 125).
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The observed values for yare assumed to be of the
form

The result is i, defined over the range of Xj for j =
1,2, ... , nX In tum, Y = j(x) can be estimated for arbi­
trary values ofx = [xl> x2' ... , xnX] by

Given initial estimates f2' f3' fnx for 12,13, ... ,
InX' (e.g., fj(xj) = bjXj forj = 2, 3, ... , nX, where the
b, are coefficients from a regression model of the form} ,
indicated in Eq. (2.2)), an estimate it for 11 can be ob-
tained through use of the relationship

The procedure indicated in this section to construct
an approximation to the functionj(x) in Eq. (3.31) is a
linear smoother provided a linear scatterplot smoother
is used in the backfitting algorithm in the sense that this
procedure can be formally represented in the form
shown in Eq. (3.7). The smoother matrix S in Eq. (3.7)
is difficult to compute in a closed form as the overall
analysis involves an iterative process. An approxima­
tion to tr(S) , which corresponds to the number of de­
grees of freedom associated with the procedure, is
given by

TR06-JR010-0

Fig. 10. Example of additive model surface constructed
for Y = j(xl> x2) = sin(xl) + (x2 - 5)3; see Eq.
(3.35).

obtained from a random sample of size nS = 100 from X

= [xl> x2] with xl and x2 uniform on [0, 10]. Additive
models also work well in higher dimensions with a
large number of independent variables as will be illus­
trated in the model is dependent on the actual relation­
ship Sect. 5. However, successful construction of an
additive model is dependent on the actual relationship
between Y and X involving limited interactions between
the elements ofx.

(3.33)

(3.32)

nX
Yi - L f j (xij ) == it (Xil )+e,

j=2

nX
Yi = I(xd+ci = LIj (xij )+Ci'

j=l

Additive models are usually constructed with a
method known as backfitting suggested by Friedman
and Stutzel. 130 The algorithm that is used in the soft­
ware packages Rand S-Plus to implement this method
is described in Chambers and Hastie (p. 300, Ref. 126).
The indicated algorithm is more efficient than the ap­
proach that is described below. However, the described
approach provides a more intuitive introduction to the
ideas involved in additive model construction.

for i = 1, 2, ... , nS. In particular, one of the scatterplot
smoothers introduced in Sect. 3.1 can be used to
smooth the partial residuals on the left hand si<!e of Eq.
(3.33) across xl' This produces an estimate it for it
defined across the range of values for xl' Given this
estimate for 11, the estimate f2 for 12 can be refined in
the same manner across the range of values for X2

with Ji, f3' f4' ... , fnx· This procedure then con­
tinues and repetitively cycles through the variables.
The cycling continues until convergence is achieved.

nX
Y==Lfj(xj)

j=l
(3.34)

nX
tr(S) == LdIj ,

j=l
(3.36)

Additional detail is available elsewhere (pp. 90 - 91,
Ref. 120; pp. 300 - 302, Ref. 126).

Additive models can be used to develop represen­
tations for complex nonlinear behavior as indicated in
Fig. 10 by the approximation to

(3.35)

where df is the degrees of freedom used in the scatter­
plot sm;other for Xj in the backfitting algorithm (p. 129,
Ref. 120).

3.3.3 Projection Pursuit Regression

Projection pursuit regression involves both dimen­
sion reduction and additive modeling and is based on
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the assumption that the function.f(x) in Eq. (3.27) has
the form

tive models, backfitting is typically not used in projec­
tion pursuit regression.

The representation forfin Eq. (3.37) allows for in­
teractions between variables, which is not the case for
the additive representation in Eq. (3.31). To see this,
consider the example in which x = [xl> X2]T, a1 = [1, 1]
andg1(u) = u2. The result is

where as = [a Is' a2s' , anX,s], as and at are orthogonal
for s :F t, X = [xl' X2' , XnX]T, asx corresponds to a lin-
ear combination of the elements of X, and gs is an arbi­
trary function. Values for gs' as and nD are determined
as part of the analysis procedure. The expression in Eq.
(3.37) is an additive model with the quantities asx re­
placing the elements Xj of X as the independent variables.
Further, this expression involves a reduction in dimen­
sion as nD is usually smaller than nX.

As indicated in Eq. (3.37), the outcome ofa projec­
tion pursuit regression consists of the vectors as de­
fined for s = 1, 2, ... , nD and corresponding functions
gs defined for asx. Predictions of Y = .f(x) are then
given by

The scatterplot smoother typically used at each
step in projection pursuit regression is a variable span
version of LOESS, called the supersmoother (supsmu)
in Rand S-Plus (p. 318, Ref. 108). This presentation
will actually use smoothing splines instead. Further
discussion on smoothing in the context of projection
pursuit regression, smoothing parameter selection and
determination of the number of projection terms nD is
given in Sect. 4. Additional information on projection
pursuit regression is available elsewhere.U"

(3.41)
nD

Y == Lgs (asx),
s=l

(3.37)
nD

f(x) = Lgs (asx),
s=l

which involves the interaction term x1x2'

(3.42)
nP

](x) = LCsIs (x),
s=l

Recursive partitioning regression is most com­
monly known in the form of regression trees.U! A
regression tree splits the data into subgroups where the
observations within each subgroup are more homoge­
neous than they are over the set of all observations.
Then, .f(x) in Eq. (3.27) is estimated by the sample
mean over each subgroup. The resultant estimate for f
is a piecewise constant function, which is also known
as a simple function. More precisely, the estimate
lex) is given by

3.3.4 Recursive Partitioning
Regression

Projection pursuit regression can represent very
general situations involving nonlinearity and variable
interactions. Further, it avoids the dimensionality prob­
lem by using projection terms and additive modeling.
However, this generality can come at a price. Results
in Sect. 5 suggest that projection pursuit regression has
a tendency to overfit the data by including spurious
variables in the model.

(3.38)

(3.39)

(3.40)

where a E RnX, Iiall = 1, and ga is the outcome of using
a scarterplot smoother (e.g., LOESS; see Sect. 3.1.3) on
the points [Yi' aXil, i = 1, 2, ... , nS. Once &'1 and gl
are estimated, the partial residuals Yi - gl( &'1 xD, i = 1,
2, ... , nS, are used to obtain &'2 and g2' Specifically,
&'2 and g2 are defined to be the values for a and g(J.
that minimize the sum

The entities &'1, &'2, ... , &'nD and th, g2' ... , gnD
are estimated as part of the construction process. This
is accomplished by first estimating a1 and gl' Specifi­
cally, &'1 and gl are defined to be the values for a and
ga that minimize the sum

where a E RnX, Iiall = 1, a and &'1 are orthogonal, and
S« is the outcome of using a scatterplot smoother on the
points [Yi - gl (&'lx ), aXil, i = 1,2, ... , nS. This proc­
ess continues until no appreciable improvement based
on a relative error criterion is observed. Unlike addi-
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Regression trees can be generalized by replacing
the mean,Cs in Eq. (3.42) with a linear function. In par­
ticular, f(x) can be defined by

with C()Is) denoting the cardinality of )Is, and (iii) Iix)
is the indicator function such that Iix) = 1 if X E )Is
and 0 otherwise. The use of regression trees in sensi­
tivity analysis is illustrated in Mishra et al.1°6

(3.45)

The linear fit associated with ](x) in Eq. (3.44)
reduces the need to split the data as many times as is
typically the case when a regression tree is used. This
approach will certainly outperform a regression tree
when the relationship between Y and the x/s is close to
linear for each partition set )Is' The interpretation of
the representation for ](x) in Eq. (3.44) with the lin­
ear fit is perhaps less obvious than the interpretation for
](X) in Eq. (3.42) with means. However, the primary
concern in this presentation is constructing close ap­
proximations to the functionj{x) that defines y. Which
independent variables are important in this approxima­
tion can be easily determined by observing the fidelity
of ](xi ) to the corresponding values Yi when ](x) is
constructed with and without the inclusion of individual
independent variables. In the examples of Section 5.1,
the recursive partitioning approach given here outper­
formed the regression tree approach indicated in Eqs.
(3.42) and (3.43), particularly in terms of estimation of
Tl 2 defined in Eq. (5.13).

The determination of the partition sets )Is, s = 1, 2,
... , nP, and the associated function ](x) is now con­
sidered. Let x(r)j' r = 1, 2, ... , nS, represent the sampled
values for Xj ordered by size (i.e., x(r)j:S x(r+l)j for r = 1,
2, ... , nS - 1), and let )Iryl and )I1]"2 denote the sets de­
fined by

(3.44)

(3.43)

nP

](x) = L(as +~sx) Is (x),
s=l

where as + ~sx is the least squares linear fit to the
data associated with)Is and Is is defined the same as in
Eq. (3.42). An example of ](x) for a single inde­
pendent variable is given in Fig. 11. The individual
regressions can also be constrained so that the regres­
sion lines (in one dimension) and regression surfaces
(in two or more dimensions) meet continuously. Ex­
amples for one and two dimensions are given in Figs.
12 and 13.

where (i) )Is, s = 1, 2, ... , nP, are the disjoint sets into
which the observed values Xi' i = 1,2, ... , nS, are parti­
tioned (usually on the basis of the values for Yi), (ii) the
mean Cs over each set)Is is defined by

The pair [)Irjb )Irj2] with regressions that together
provide the best representation for yare selected as the
initial values for )II and )I2' This determination is
made on the basis of the R2value given by

for r = 1,2, ... , nS andj = 1,2, ... , nX. A separate lin­
ear regression is performed for the set of (yj> Xi) pairs
associated with each of the sets )Iryl and )Irj"2' Some of
the sets will have too few data pairs (i.e., less than nX+
1) to fit a linear regression model and are excluded
from consideration. This results in a total of nX(nS ­
2nX - 1) pairs [)lrjb )Irj2] that are candidates to define
initial values for)Il and )I2'

The individual regression lines in Figs. l Ib and
12b are constructed with a robust regression procedure
in which the sum of squares is minimized over the mid­
dle two quartiles of the deviations from the regression
line (see Ref. 132 for additional information on robust
regression). In contrast, the individual regression lines
in Figs. lla and 12a are constructed with the traditional
least squares procedure in which the sum of squares is
minimized over all deviations from the regression line.
The robust regression procedure reduces the effects of
large deviations from the overall trend in the data. The
effect of this reduction in the examples presented in
Figs. 11 and 12 is to produce regression lines that more
closely match a visual impression of the trends in the
data. The visually appealing nature of the results in
Figs. l lb and 12b suggests that robust regression pro­
cedures could have a useful role to play in sensitivity
analysis due to their effectiveness in reducing the influ­
ence of outliers. Although all of the least squares pro­
cedures in this presentation are carried out in the tradi­
tional manner, the use of robust regression procedures
in sensitivity analysis is an area that merits additional
investigation.

and

)Irj2 = {Xi: Xij > X(r)j}

2 SST-SSEry
R . = ------':....

1] SST

for each pair [)Irjb )Iry2] , where

(3.46)

(3.47)
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Fig. 11. Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow
model: (a) Individual regression lines generated with traditional least squares regression, and (b) Individ­
ual regression lines generated with robust regression in which the sum of squares is minimized over the
middle two quartiles of the deviations from the regression line.
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Fig. 12. Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow
model with individual regression lines constrained to meet continuously: (a) Individual regression lines
generated with traditional least squares regression, and (b) Individual regression lines generated with ro­
bust regression in which the sum of squares is minimized over the middle two quartiles of the deviations
from the regression line.
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Fig. 13. Recursive partitioning regression constructed
for y = j(xb x2) = sin xl + (x2 - 5)3 with indi­
vidual regression surfaces constrained to meet
continuously; see Eq. (3.35).

nS _2 ns[ nS /.)2
SST=~(Yi-Y) =~ Yi-~Yi/ns ,

SSErj =SSE ()fTjl ) +SSE ()1.rj2 ),

Prediction of Y = j(x) for arbitrary values of X is
straightforward once the construction process to obtain
)1.s' as and ~s is complete. Specifically, the desired
prediction follows directly from Eq. (3.44).

Since the determination of the partition regions is
data driven (i.e., based on the observed Y values), the
smoother matrix S for recursive partitioning regression
depends on the Y values and is hence not a linear
smoother. Because of this, an equivalent degrees of
freedom is hard to define. However, a possible defini­
tion is to use the degrees of freedom from the model
obtained as if the partitions had been specified a priori,
and then add a certain number of degrees of freedom
for each partition.

If the partitions were known a priori, then the
smoother matrix derives from the regression analyses
carried out for each set )1.s' s = 1, 2, ... , nP, and can be
constructed from the design matrices Xs associated with
these regressions (see Eq. (2.6)). In particular, S is
constructed from the matrices

(3.49)

and has the form

when the rows of X are rearranged so rows that corre­
spond to elements of)1.s are next to each other. Further,
the degrees of freedom for the model with the sets )1.s
specified a priori is

(3.51)

(3.52)

(3.50)

dfap =nP(nX+l)

nP

dfap = tr(S) =Ltr(Hs)'
s=1

is the degrees of freedom for S.

which corresponds to the number of degrees of freedom
associated with S. Given that the regression for each
set)1.s involves the determination of nX + 1 parameters
(i.e., the coefficients in the regression model), tr(Hs) =

nX+ 1; as a result,

(3.48)

With initial values for )1.1 and)1.2 determined, con­
sideration is given to splitting X. and)1.2 into two sub­
sets to produce three sets of Xi values. This involves
consideration of triples of sets of the form [Vb o/b)1. 2]
and [)1. b V2, ~], where (i) VI and 0/1 correspond to
subsets of)1.1 obtained in a manner analogous to that
used in the definition of )1.rjl and )1.rj2 and (ii) V2 and
0/2 correspond to subsets of)1.2 also obtained in a man­
ner analogous to that used in the definition of )1.rjl and
)1.rj2· A triple of sets [iBb ~, 'B:3] is then defined that is
equal to the [Vb 1-), )1.2] or [)1. i- V 2, ~] triple that
has the highest R2 value obtained in a manner analo­
gous to that described in conjunction with Eq. (3.47)
except that results obtained from regressions involving
three sets are involved. This process of constructing
additional sets is then continued in an analogous man­
ner until further splitting would not be beneficial as
determined by some stopping criterion.

and SSE(Jlrjl) and SSE(Jlrj2) denote the error sum of
squares for the linear regressions associated with )1.rjl
and )1.rj2> respectively. The selection

is then made for the pair [)1.rjl, )1.rj2] that has the largest
value for R~ .
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is an estimate of the degrees of freedom for the entire
recursive partitioning model.

However, as the sets Jls' s = 1, 2, ... , nP, are not
specified a priori, additional degrees of freedom are
involved in the estimation of these partitions. Since the
complexity of the partitioned regions increases with the
number of independent variables, each additional parti­
tion can be viewed as involving another nX degrees of
freedom. As a result,

dj = nP(nX +1)+nX(nP-l) (3.53)

3.4 Hypothesis Testing for Variable
Importance

A number of possibilities exist for hypothesis test­
ing for smoothing methods, including the use of ap­
proximate distributions and bootstrapping. I22 For rea­
sons of computational efficiency, the following
approach to hypothesis testing is practicable for use in
sensitivity analyses employing stepwise nonparametric
regression and is used in this presentation for that rea­
son.

The usual test statistic for choosing between Ho
and Ha for linear models is

Ho: Results obtained with and without the inclusion
of Xj are the same.

The statistic F* in Eq. (3.54) can also be defined
for models with n - 1 and n variables constructed in a
smoothing process with dfR and djF defined by

IfHocan be rejected in favor ofH a, then Xj is an impor­
tant variable and should be included in the model being
constructed by the smoothing process.

(3.54)
(SSER -SSEF )/(dfp -djR)

F* - -c-_::..-_---''--'-'---'----'--_-=-=...:..
- SSEF/dfp ,

where SSERand djR are the error sum of squares and
degrees of freedom for the reduced model (i.e., the
model without x) and SSEF and djF are defined simi­
larly for the full model (i.e., the model with Xj included)
(Ref. 134, p. 169; Ref. 135, Sect. 4.4). In the testing of
linear models with normally distributed data, F* has an
F-distribution with m = djF - djR and n = djF degrees of
freedom when H o is true. As a result, a p-value equal
to prob(F > F*IHo) can be used to test Ho against Ha,

where prob(F > F*IHo) is the probability that a value F
for the F-statistic greater than F* will be obtained by
chance if the null hypothesis Hois satisfied.

Ha: Results obtained with the inclusion of Xj are dif­
ferent from the results obtained with the exclu­
sion ofxi

It is desired to compare results (i.e., estimates ofy)
obtained with a model constructed from n independent
variables (i.e., variables corresponding to n different
elements of x = [xl> x2' ... , xnXD with results obtained
from a model constructed without one of these n vari­
ables, say xi The goal is to test the following hypothe­
ses:

As is the case for LOESS (Sect. 3.3.1), additive
models (Sect. 3.3.2), and projection pursuit regression
(Sect. 3.3.3), recursive partitioning regression can
model very general nonlinear relationships. It also
models very general interactions and performs well in
higher dimensions. Unlike projection pursuit regres­
sion, the results in Sect. 5 do not indicate a tendency to
overfit the data. However, these desirable properties
come at a cost as recursive partitioning regression can
require an order of magnitude more computational ef­
fort than the other indicated methods.

Determining the number of sets Jll> Jl2, ... , Jlnp to
use in recursive partitioning regression is analogous to
choosing the smoothing parameter in previously de­
scribed methods. Therefore, a reasonable approach is
to determine a stopping point in the partitioning process
with a criterion similar to that used for the selection of
a smoothing parameter such as cross validation or gen­
eralized cross validation (Sect. 3.2). With cross valida­
tion, the PRESS value PRS is calculated as indicated in
Eq. (3.19); similarly, with generalized cross validation,
the adjusted PRESS value PRSA is calculated as indi­
cated in Eqs. (3.22) and (3.25). Then, if PRSs, S = 1,2,
... , and PRSAs' S = 1, 2, ... , represent values for PRS
and PRSA, respectively, calculated at successive steps
in the partitioning process, an appropriate stopping
point would be the last step before these values begin to
increase as such an increase is indicative of an overfit­
ting of the data.

In our experience this rule works quite well for de­
termining equivalent degrees of freedom for the recur­
sive partitioning procedure described above. Addi­
tional discussion about equivalent degrees of freedom
for adaptive or "data driven" approaches such as recur­
sive partitioning and Multivariate Adaptive Regression
Splines (MARS) is given in Hastie et al.133
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(3.55) This is particularly useful in sensitivity analysis where
the objective is to identify the important variables.

where SR and SF are the smoother matrices associated
with the reduced model (i.e., the model without x) and
t?e full model (i.e., the model with Xj included), respec­
tively. Unfortunately, the true distribution for F* is not
known for any of the smoothing methods considered in
this presentation. However, the distribution for F* for
these smoothing methods can be approximated by an F­
distribution with dfF - dfR and dfF degrees of freedom
(i.e., Frs with r = dfF - dfR and s = dfF; see pp. 66 - 67,
Ref. 120).

Determination of whether or not a particular vari­
able should be included in a smoothing process can be
made by fitting the associated model with and without
the variable and then performing the appropriate F test.
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Performance of a comprehensive robustness study
of this approach would be very beneficial. Our experi­
ence with the results contained in this presentation in­
dicates that the approach is quite reasonable. Other
approximate tests for Hoare also available (pp. 87 - 89,
Ref. 122); however, none of these tests are exact. For­
tunately, such tests in and of themselves do not have a
large bearing on which variables are identified as being
important in the stepwise procedures described in this
presentation. Rather, it is the contribution of a variable
to the model R2 value that serves as the metric for vari­
able importance (see discussion of R2 in Sect. 5.1).
Hypothesis testing merely serves as a model building
tool in the stepwise variable selection discussed in Sect.
4.1.



4. Implementation of Smoothing
Methods for Sensitivity Analysis

Explanations are now given on how the different
smoothing methods for surface approximation can be
used in sensitivity analysis. Details about the forward
(i.e., stepwise) model building process and smoothing
parameter selection are given. In particular, the follow­
ing topics are considered in the context of sensitivity
analysis: stepwise variable selection (Sect. 4.1), tradi­
tional regression methods (Sect. 4.2), locally weighted
regression, i.e., LOESS (Sect. 4.3), generalized additive
models (Sect. 4.4), projection pursuit regression (Sect.
4.5), and recursive partitioning regression (Sect. 4.6).
All of the techniques discussed here and used in the
examples of Sect. 5 were implemented using the R lan­
guage, which is an open source language very similar
to S-Plus.

4.1 Stepwise Variable Selection

For purposes of sensitivity analysis, all of the pre­
sented regression (i.e., smoothing) methods can be im­
plemented with a forward stepwise variable selection
procedure. An approach of this type is essential for
sensitivity analyses as there are usually a large number
of uncertain analysis inputs under consideration (e.g.,
nX == 150 in the NUREG-1l50 probabilistic risk as­
sessments.t>- 136-139 nX == 60 in the compliance certifi­
cation application for the Waste Isolation Pilot Plant, I40

and nX == 250 in an analysis for the proposed Yucca
Mountain facility for the disposal of high level radioac­
tive waste l41, 142). Nonparametric regression tech­
niques are not suitable for constructing models that
contain a large number of independent variables unless
the sample size is very large. Hence, it is essential to
have a method that does not include all the variables
under consideration in a model at once. Further, the
order in which variables are selected in an appropri­
ately designed stepwise procedure provides important
sensitivity information.

A forward stepwise selection procedure operates in
the following manner. A single variable model is con­
structed using each of the independent variables. Thus, if
nX independent variables are under consideration, this
results in the construction of nX single variable models.
The variable, say XI' associated with the best of these
models is identified and retained. Then, two variable
models are constructed using XI and each of the remain­
ing nX - 1 variables. This results in the construction of
nX - 1 two variable models. The variable, say x2 , asso-
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ciated with the best of these models is identified and re­
tained. The process then continues with the construction
of three variable models with XI' x2' and the remaining
nX - 2 variables, and so on. This process continues until
some stopping criterion is reached that indicates that no
additional predictive capability is provided by models
with additional variables.

Two important questions are left unanswered in the
preceding paragraph: (i) What determines which
model, and hence which variable, is best in a set of
models?, and (ii) What is an appropriate stopping crite­
rion? The best model is usually determined on the ba­
sis of a p-value (Sect. 3.4). The variable associated
with the model with the smallest p-value is considered
to provide the most predictive capability and is thus the
variable retained for use in the next step in the model
construction process. The p-value is also used to pro­
vide a stopping criterion. In particular, when the mini­
mum p-value over all models is greater than some cut­
off value (e.g., 0.02), no variable is selected and the
model construction process terminates with the model
constructed at the preceding step.

Variable selection can also be based on the PRESS
statistic (see Eq. (3.19)). At each step in the selection
process, the variable whose inclusion results in the
smallest PRESS value is the variable retained. If the
minimum PRESS value at a step is larger than the
minimum PRESS value of the preceding step, then no
variable is selected and the model construction process
terminates with the model constructed at the preceding
step. Other selection and stopping criteria are also pos­
sible, including Akaike's information criterion (p. 158,
Ref. 120), adjusted R2 values (described at the begin­
ning of Sect. 5), and the adjusted PRESS statistic (de­
scribed in Sect. 3.2). An enhancement of the forward
selection procedure is to allow for the possibility of a
previously selected variable being dropped from the
modeling process if it no longer contributes significant
predictive capability as additional variables are selected
and included in the model.

Backward stepwise selection involves fitting a
model with all nX variables. Then, unimportant vari­
ables are sequentially removed until the removal of
additional variables reduces the predictive capability of
the model. At this point the process is terminated. This
selection procedure is not appropriate for sensitivity
analysis with nonparametric regression models for two
reasons. First, the construction of nonparametric re­
gression models with a large number of variables is not
possible with relatively small sample sizes. Second, the
backward selection procedure is not useful for identify-



ing the importance of individual variables, which is the
primary goal of sensitivity analysis. In contrast, a well
designed forward selection procedure identifies the
most important variable at the first step, then the next
most important variable at the second step, and so on.

The sensitivity results presented in Sect. 5 use a p­
value criterion (Sect. 3.4) for both individual variable
selection and termination of the model construction
process. Preliminary results indicated that use of a
PRESS criterion was too computationally demanding
for some of the regression methods and also resulted in
models that tended to overfit the data. Our experience
is that using either the p-value with a cutoff of a= 0.02
or the adjusted PRESS statistic PRSA for model selec­
tion usually results in the same model.

4.2 Traditional Regression: Linear
Regression (LIN_REG), Rank
Regression (RANK_REG) and
Quadratic Regression
(QUAD_REG)

Each of the traditional regression approaches (i.e.,
LIN_REG, RANK_REG and QUAD_REG) is imple­
mented the same way with a forward stepwise selection
procedure and a p-value criterion of a = 0.02 (Table 1).
The forward selection procedure with QUAD_REG
requires some additional explanation as there are many
ways to structure this procedure to incorporate variable
interactions and squares. The approach taken is to con­
sider a variable, its square, and all two-way interactions
at each step of the selection procedure. Thus, if Xl is
the first variable selected, then the corresponding
model would be of the form

number of points averaged over and nS is the sample
size; see Sect. 3.1.3) are considered for each candidate
variable, and a LOESS model is constructed for each
span. Specifically, models are constructed for the fol­
lowing spans: 10,0.7,0.3,0.1,0.07 and 0.05, where 10
is simply an indicator for the use of a linear regression
model. This results in five models for each candidate
variable. Then, the "best" of these five models is se­
lected on the basis of generalized cross validation using
the adjusted PRESS value PRSA defined in Eqs. (3.22)
and (3.25). This produces one selected model (i.e., the
model with the smallest value for PRSA) for each candi­
date variable. Second, the "best" of the selected models
for the individual candidate variables is identified with
the approximate hypothesis test indicated in conjunction
with Eqs. (3.54). Specifically, the model with the small­
est p-value is identified, and the associated candidate
variable is the variable selected at that step in the step­
wise procedure. The procedure terminates with no vari­
able selected if allp-values exceed a = 0.02.

The flexibility provided by the different choices
for span causes a potential problem with the approxi­
mate hypothesis test indicated in conjunction with Eq.
(3.54). In particular, adding a variable to an existing
model could result in a new model with the same or
fewer degrees of freedom. This can happen if the span
selected for the new model is much larger than the span
for the previous model. This possibility exists because
smaller spans produce more complex models and thus
result in models with larger numbers of equivalent de­
grees of freedom. In tum, this would result in the nu­
merator degrees of freedom (i.e., dfF - d/R) for the F
statistic in Eq. (3.54) being less than zero.

This problem is handled in the following manner
with SSER, SSEF, dfR and dfF defined as in Eq. (3.54):

and so on.

Then, if x2 is the second variable selected, the corre­
sponding model would be of the form

(i) If dfF > d/R, define the p-value with the F test
as usual and test against a.

(4.3)

(ii) If dfF - dfR = 0, then define the p-value by

{
o ifSSEF <SSERp-value =
1 if SSEF "? SSER

(4.1)

4.3 Locally Weighted Regression
(LOESS)

and test against a.

(iii) If dfF ::; dfR' a p-value is defined with an F test
involving

The forward stepwise procedure with LOESS uses a
two stage variable selection process at each step (Table
2). First, multiple spans (i.e., r/nS, where r - 1 is the

F* = -'-(S_SE-::F_-_S_S_'ER---,)-,-I(-,-d.t:_R_-_d.t:--::.F-,--)
SSER/dJR '

(4.4)
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Table 1. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with LIN_REG,
RANK_REG and QUAD_REG

Step 1. Estimate Y == iii (xi) with regression procedure in use (i.e., LIN_REG, RANK_REG or QUAD_REG) for} =

1,2, ... , nX. For each of the models Y == iii (xi)' determine (i) degrees of freedom dfj (i.e., dfj = 2 for LIN_REG and

RANK_REG and dfj = 3 for QUAD_REG), (ii) F-statistic Fj for comparison against mean only model, and (iii) resultant

p-value Pi (see Eq. (3.54)). Variable Xl with smallestp-value is selected as most important variable at Step 1; corre­

sponding model and degrees of freedom are represented by Y == ii (Xl) and df l , respectively. The process terminates

with no variable selected if allPi are greater than a specified cutoff (e.g., ex = 0.02).

Step 2. Estimate Y == hi (Xl, Xi) with regression procedure in use (i.e., LIN_REG, RANK_REG or QUAD_REG)

for} = 1,2, ... , nX and Xi :;t: xl' For each of the models Y == hi (Xl, Xi)' determine (i) degrees of freedom dij (i.e.,

dij = 3 for LIN_REG and RANK_REG and dij = 5 for QUAD_REG), (ii) F-statistic Fj for comparison against

model Y == ii (Xl) selected at Step 1, and (iii) resultant p-value Pi (see Eq. (3.54)). Variable x2 with smallest p­

value is selected as most important variable at Step 2; corresponding model and degrees of freedom are represented

by Y == h (xl' X2) and df2,respectively. The process terminates with no variable selected at Step 2 if all Pi are

greater than a specified cutoff (e.g., ex = 0.02).

Step 3. Estimate Y == hi (Xb x2' xi) with regression procedure in use (i.e., LIN_REG, RANK REG or

QUAD_REG) for} = 1,2, ... , nX, xi:;t: Xl and xi:;t: x2' Continue as in Step 2.

Step N. Terminate process when no variable satisfies specified cutoff.

which is the original F statistic (see Eq. (3.54)) with the
roles of the two models (i.e., the reduced or old model
and the full or new model) reversed. The new variable
should be added to the model only if evidence exists
that the resultant model is better than the previous
model. Such evidence is provided if the new model
results in a significant reduction in the degrees of free­
dom (i.e., dfR - 4fF > 0) without significantly increas­
ing the error sum of squares (i.e., if SSEF - SSER is
"small"). The preceding implies that the old model
should be rejected in favor of the new model for suffi­
ciently small values of F* as defined in Eq. (4.4). In
particular, the associated p-value is given by prob(F <
F*) for an F distribution with m = dfR - dfF and n = dfR
degrees of freedom. For the special case SSEF - SSER
:::; 0, the corresponding p-value is assumed to be zero.
The usual test against ex is made (i.e., the new model is
accepted if the resultantp-value is less than ex).

4.4 Generalized Additive Models
(GAMs)

Additive models are now considered. Such models
are designated as GAMs (generalized additive models)
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after the gam function in the Rand S-Plus languages
(p. 252, Ref. 120). The descriptor "generalized" is
used to indicate fitting of a discontinuous response. All
models constructed in this presentation assume con­
tinuous responses; however, the designator GAM is
used to be consistent with the gam function in Rand S­
Plus.

Similarly to the forward stepwise procedure with
LOESS (Table 2), the forward stepwise procedure with
GAMs uses a two stage variable selection process at
each step (Table 3). First, multiple additive models are
constructed for each candidate variable, and the "best"
of these models is selected for each candidate variable.
Second, the "best" of the selected models for the indi­
vidual variables is identified with the approximate hy­
pothesis test indicated in conjunction with Eq. (3.54).
Specifically, the model with the smallest p-value is
identified, and the associated candidate variable is the
variable selected at that step. The process terminates
with no variable selected if all p-values exceed ex = 0.02.



Table 2. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with LOESS

Notation: Variables sb k= 1,2, ... ,5, represent the candidate spans 10,0.7,0.3,0.1,0.07 and 0.05 described in

Sect. 4.3 with sl = 10 designating the use oflinear regression.

Step 1. Estimate y == fijk (x j h) with LOESS for j = 1, 2, ... , nX and k = 1, 2, ... , 6. For each Xj' identify span Sj

that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25)) for the models

y == fijk (xj Isk ) , k = 1, 2, ... , 6. For each of the models y == fij (xj ISj ), determine (i) degrees of freedom dfj (i.e.,

dfj = tr (5Fj)' where 5Fj is the smoother matrix associated with the selected span Sj for Xj (see Eq. (3.54) and associ­

ated discussion in Sect. 3.4), (ii) F-statistic Fj for comparison against mean only model, and (iii) resultant p-value Pj

(see Eq. (3.54) and associated discussion in Sect. 4.3). Variable Xl with smallest p-value is selected as most important

variable at Step 1; corresponding model and degrees of freedom are represented by y == fi (xII Sl) and dfI ' respec­

tively. The process terminates with no variable selected if allPj are greater than a specified cutoff (e.g., ex = 0.02).

Step 2. Estimate y == hj (Xl' XjlSk) with LOESS forj = 1,2, ... , nX, Xj "" Xl' and k= 1,2, ... ,6. For eachxj' iden­

tify span Sj that results in smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25)) for the

models y z hjk (Xl, XjISk), k= 1,2, ... ,6. For each of the models j-a hj (Xl> XjISj), determine (i) degrees offree­

dom 4/j, (ii) F-statistic Fj for comparison against model y == fi (xII Sl) selected in Step 1, and (iii) resultant p-value Pj

(see Eq. (3.54) and associated discussion in Sect. 4.3). Variable x2 with smallestp-value is selected as most important

variable at Step 2; corresponding model and degrees of freedom are represented by y == h (xl, X21 S2) and df2 ' re­

spectively. The process terminates with no variable selected at Step 2 if allP] are greater than a specified cutoff (e.g., ex

= 0.02).

Step 3. Estimate y == hjk (Xl' X2' Xjh) with LOESS forj = 1,2, ... , nX, Xj "" xl> Xj "" x2' and k= 1,2, ... ,6.

Continue as in Step 2.

Step N. Terminate process when no variable satisfies specified cutoff.

An additive model is constructed by repeatedly
smoothing residuals across one independent variable at
a time (Sect. 3.3.2). In concept, any scatterplot
smoother could be used. However, the gam function in
Rand S-Plus is restricted to LOESS (Sect. 3.1.3) and/or
smoothing splines (Sect. 3.1.4). Both smoothers usu­
ally gave similar results in some preliminary analyses,
but an occasional convergence problem was encoun­
tered with LOESS. Therefore, smoothing splines are
indicated in Table 3 and used in the generation of the
GAM results presented in Sect. 5. Specifically, at a
given step in the stepwise procedure, multiple degrees
of freedom are considered (i.e., 1, 2, 4, 7, 10, 15) for
each candidate variable, and a GAM is constructed us­
ing smoothing splines for each of these degrees of free­
dom. This results in six models for each candidate
variable. After this construction, it is then necessary to
select that "best" of the these six models for each can­
didate variable.
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The indicated selection is made on the basis of
generalized cross validation (Sect. 3.2) employing the
adjusted PRESS values PRSA (see Eqs. (3.22) - (3.25)).
This criterion for model selection was picked because
there is not an option associated with the gam function
to use cross validation (Sect. 3.2) inside the back fitting
algorithm. Further, computing PRESS (see Eq. (3.19))
is difficult because the leverage values Sjj are not ob­
tainable for a gam fit in R and thus cannot be used in a
computationally efficient calculation of PRESS (see
Eq. (3.21)). As a result, obtaining the PRESS statistic
in R would require fitting a model nS times, where nS
is the sample size, and then making nS predictions.
Thus, use of cross validation with PRESS in the gen­
eration of GAMs with R is computationally very ex­
pensive.



Table 3. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs

Notation. Variables Ak' k = 1, 2, ... , 6, represent candidate smoothing parameters used in smoothing splines (see

Eq. (3.13)) in the sequential construction of GAMs, with Ak resulting in a smoothing process with approximately Ok

degrees of freedom. Specifically, Al - 01 = 1, Az ~ ~ = 2, A:3 - ~ = 4, ..14 ~ 04 = 7, As - Os = 10, and At; - 06 = 15.

The actual value used for Ak in Eq. (3.13) is determined from the specified value for bk (see Sect. 3.5, Ref. [120] and

Sect. 7.4.1, Ref. [126]).

Step 1. Estimate Y=- .lijk (xj IA'k) with a smoothing spline on (xij'Yi)' i = 1, 2, ... , nS, for j = 1, 2, ... , nXand k = 1,

2, ... ,6. For each Xj' select model .lij (Xj!-ij) with smoothing parameter -ij from the models Y =- .lijk (XjIAk) ' k

= 1,2, ... ,5, that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and

discussion in Sect. 4.4). For each ofthe models Y =-.lij (Xjl-i j ), determine (i) degrees offreedom (i.e., dfj = Jj ,

with -ij - Jj ; see discussion in Sect. 4.4), (ii) F-statistic Fj for comparison against mean only model, and (iii) resul­

tant p-value Pj (see Eq. (3.54)). Variable xl with smallest p-value is selected as the most important variable at Step

1; corresponding model, smoothing parameter, and degrees of freedom are represented by Y =- .Ii (XII~ ), ~ and

dl l , respectively. The process terminates with no variable selected ifallpj are greater than a specified cutoff (e.g.,

a= 0.02).

Step 2. Estimate Y=- hjk (Xl> Xjl~, Ak) through a sequence of smoothing operations forj = 1,2, ... , nX, Xj ;toxl
and k = 1,2, ... ,6; see Step 2' for details. For each Xj' select model hj (Xl> Xjl~, -ij) with smoothing parameter

-ij from the models y =- hjk (Xl'xj I~, Ak)' k = 1, 2, ... , 6, that results in the smallest value for the adjusted

PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and discussion in Sect. 4.4). For each of the models

y =- hj (Xl'xj I~, -ij ) , determine (i) degrees of freedom (i.e., dfj = ~ +Jj with ~ - ~ and -ij ~ s, ;see discus­

sion in Sect. 4.4), (ii) F-statistic Fj for comparison against model y =- .Ii (xII~) constructed in Step 1, and (iii) re­

sultant p-value P] (see Eq. (3.54)). Variable Xz with smallest p-value is selected as most important variable at Step

2; corresponding model, smoothing parameter and degrees of freedom are represented by

y=- h (Xl' xzl~, ~) = hdxd~)+ In (xzl~), ~ and dh, respectively, where hdxll~) is a smoothed

estimate ofy as function of Xl (i.e., hI (xII~) corresponds to Fjk,ZI (Xl> XjI~, Aj) in Step 2.4' for the selected

values for Xz and ~) and 122 (xzl~) is a smoothed estimate of y as a function of Xz (i.e., Ix: (xzl~) corre­

sponds to Fjk,ZI+l (Xl' xj I~, Aj) in Step 2.4' for the selected values of Xz and ~). The process terminates with

no variable selected at Step 2 if all Pj are greater than a specified cutoff (e.g., a = 0.02).

Step 2'. Procedure for obtaining smoothed model hjk (Xl, xj I~, Ak) on the basis of a relative error criterion for

variable Xj' xj ;to Xl , and smoothing parameter Akin Step 2.

Step 2.1'. Estimate Fjkl (Xl> Xjl~, A'k) =- y-.Ii (xd~) by smoothing on (xij' Yi -.Ii (xill~)), i = 1,2, ... , nS,

with a smoothing spline and smoothing parameter Ak' Result is estimate Yi =- Gjkl (Xil' xijI~, Ak) = .Ii (xill ~) +

Fjkl (Xil> xijl~, Ak)'
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Table 3. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs (Continued)

Step 2.2'. Estimate FjkZ(XI> Xjl~, Ak) == y-Fjkl (XI> Xjl~, Ak) by smoothing on (XiI> Yi -Fjkl (XiI> xul~, Ak))'

i = 1, 2, ... , nS, with a smoothing spline and smoothing parameter ~. Then, estimate Fjk3(xl, xj I~, Ak ) ==

y-FjkZ(Xl' Xjl~, Ak) by smoothing on (xu' Yi -Fuz (Xi' Xu I~, Ak)), i = 1, 2, .~., nS, with a smoothi~g spline

and smoothing parameter Ak· Result is estimate Yi == GjkZ(xiI, Xu IAt ' Ak) = FjkZ(XiI' Xu IAt, Ak )+

Fjk3(Xil' Xu I~, Ak ) .

Step 2.3'. Similar to Step 2.2'. First, estimate Fjk4 (xl' Xj I~, Ak) == Y - Fjk3(XI> Xj I~, Ak) by smoothing on

(xil' Yi - Fjk3(xil' Xu I~ ,Ak)), i = l, 2, ... , nS, with a smoothing spline and associated smoothing parameter ~ .

Then, estimate Fjk5(xl, Xj I~, Ak ) == Yz - Fjk4 (Xl' Xj I~, Ak) by smoothing on (xu' Yi - Fjk4 (xil' Xu I~, Ak )) , i =

1, 2, ... , nS, with a smoothing spline and associated smoothing parameter Ak- Result is estimate

Yi == Gjk3(XiI'xul~, Ak) = Fjk4(XiI' xul~, Ak)+ Fjk5(Xil' xul~, Ak) .

Step 2.4'. Continue as in Step 2.3' until the relative error criterion IIG jk,l+l - Gjklll :s; rerr IIGjkzl! is satisfied for

Gjlcr = [Gjkr(Xll,Xljl~,Ak),Gjkr(XZI>XZjl~,Ak), ... ,Gjkr(Xns,I>Xns,jl~, Az D , r = I, 1+ 1, and rer~ = 10-7
.

At this point, the construction process stoPS;!zjk is defined by !zjk(XI,XjIAt,Ak)= Gjk,I+I(XI>XjIAt,Ak)=

Fjk,ZI (xl' Xj I~, Ak )+ Fjk,ZI+1 (Xl, Xj I~, Ak) , where Fjk,ZI (xl' Xj I~, Ak) is a smoothed estimate ofY as a func­

tion of Xl and Fjk,ZI+1 (Xl' Xjl~, Ak) is a smoothed estimate ofy as a function of Xj; and the adjusted PRESS sta­

tistic PRSAjk is determined for the approximation to y defined bY!zjk.

Step 3. Similar to Step 2 with y == hjk (Xl, Xz,Xjl~, lz, Ak) being estimated through a sequence of smoothing

operations for j = 1, 2, ... , nX, Xj "* xI> Xj "* xz, and k = 1, 2, ... , 6; details of the estimation of

hjk (Xl' Xz,Xjl~, lz, Ak) are described in Step 3' and are similar to those described in Step 2' for the estimation

of hjk (xl' Xj I~, Ak) with the addition that the intermediate smoothings indicated in Steps 2.2' and 2.3' now in­

volve xl, Xz and Xj rather than Xl and Xj. Remainder of Step 3 is the same as in Step 2 and results in the selection

of x3 as the most important variable at Step 3.

Step 3'. Procedure for obtaining smoothed model h jk (xl, Xz, Xj I~, lz, Ak) on the basis of a relative error crite­

rion for variable Xj' Xj"* Xl, Xj"* Xz , and smoothing parameter Akin Step 3.

Step 3.1'. Estimate Fjkl (XI> xzl~, lz) == y- .Ii (xII~) by smoothing on (XiZ' Yi - .Ii (xill~)), i = 1, 2, ... , nS,

with a smoothing spline and smoothing parameter lz (Note: Fjkl (xl, xzl ~, lz) was previously determined in

Step 2.1' for Xz = Xj and lz = Ak)· Estimate fjkZ (Xl, Xz,Xjl~, lz, Ak) == Y-.Ii (xI!~) -Fjkz(xl>xzl~, lz) by

smoothing on (xU' Yi - .Ii (xill~ )- Fjkl (XiI' XiZ! ~, lz )), i = 1, 2, ... , nS, with a smoothing spline and smoothing

parameter Ak· Result is estimate Yi == Gjkdxil' xiZ' Xu I~, lz, Ak) =.Ii (xI! ~ )+Fjkl (Xil' xnl ~, lz )+

FjkZ(xiI, Xn, Xu I~, lz, Ak) .
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Table 3. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs (Continued)

Step 3.2'. Estimate Fjk3(Xl> x2' Xjl~,~, Ak) == y- Fjkl (Xl, X21~, ~ )-Fjk2 (Xl> X2'Xjl~,~, Ak) with a

smoothing spline on xl and smoothing parameter ~. Then, estimate Fjk4 (xl' X2' xj 1~, ~, Ak) == Y - Fjk2

(Xl' X2'.Xj 1~, ~, Ak~ -_Fjk3(~l' ~2' xj \~' ~, Ak) ~ith_a smo~thi~g spline on x2 ~nd_smoot~in~ paramete~ ~,
and estimate Fjk5 (Xl' X2' Xj 1/4, ~,Aj == Y - Fjk3(xl' x2' Xj 1/4, ~, Ak) - Fjk4 (xl, x2' Xj 1/4, ~, Ak) with a

smoothing spline on Xj and smoothing parameter A'k' Result is estimate Yi == Gjk2 (xii, xi2' xijI~, ~, Ak) =

L ~=3 Fjl(:r (xii, xi2' xijI~, ~, Ak) .

Step 3.3'. Similar to Step 3.2' with Fjkr(XI,X2,Xjl~,~,Ak)==y-Fjk,r-2(XI,X2,Xjl~,~,Ak)­

Fjk,r-l (xl, X2' Xj 1~ , ~, Ak) being estimated for r = 6, 7 and 8 by smoothing on xl, x2 and Xj' respectively, with

corresponding smoothing parameters ~, ~ and Ak' Result is estimate Yi == Gjk3 (xii' xi2' xijI~, ~, Ak)

= t:»: (Xii, xi2' xijl~,~, Ak)'

Step 3.4'. Continue as in Step 3.4' until the relative error criterion IIGjk,l+l -G jkzll :-::; rerrllGjkll1 is satisfied for Gjkr

= [ Gjkr (Xii' Xi2~ Xijl~,~, Ak~' Gjkr (X21' xn, ~2jl~,~,Ak), ... ,": (XnS,I' XnS,2' xnS,jl~'~' Ak)J, ~ = I, 1+
l,and rerr = 10 7. At this point, the construction process stops; .f3jk IS defined by .f3 jk Xl, x2' Xj 1/4,~, Ak) =

Gjk,l+l (Xl> X2' Xjl~,~, Ak) = L~~~~Fjkr (Xl' X2' Xjl~,~, Ak)' where Fjkr (Xl' X2' Xjl~,~, Ak) is a

smoothed estimate ofY as function of xl, x2 and Xj for ~ , ~ and Ab respectively; and the adjusted PRESS statis-

tic PRSAjk is determined for the approximation to Y defined by.f3jk'

Step N. Terminate process when no variable satisfies specified cutoff.

In contrast, use of generalized cross validation al­
lows a more computationally efficient determination of
the "best" model associated with each candidate vari­
able (Sect. 3.2). In particular, deleted residuals are not
needed in generalized cross validation (see Eq. (3.21)).
Instead, generalized cross validation is based on the
adjusted PRESS value PRSA, which uses tr(S) in its
evaluation (see Eqs. (3.22) - (3.25)). The value for
tr(S) can be estimated as indicated in Eq. (3.36). This
estimation requires the degrees offreedom dfj (i.e., 1,2,
4, 7, 10 or 15) used for each variable Xj in the scatter­
plot smoother employed in the backfitting algorithm.
Because the values for dfj are known for each GAM
constructed for a given candidate variable (see descrip­
tion of backfitting algorithm in Table 3), the determina­
tion of tr(S) (see Eq. (3.36)) and hence PRSA (see Eq.
(3.22)) is straightforward for each of these GAMs. In
tum, the selected (i.e., "best") GAM for a given candi­
date variable is the model with the smallest value for
PRSA- As already indicated, once the "best" GAM for
each variable is identified, the "best" GAM overall is
determined on the basis of the p-value associated with
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the approximate hypothesis test in Eq. (3.54), and the
variable selected at the step under consideration is the
variable associated with that model.

4.5 Projection Pursuit Regression
(PP_REG)

Similarly to the forward stepwise procedures with
LOESS (Table 2) and GAMs (Table 3), the forward
stepwise procedure with PP_REG uses a two stage
variable selection process at each step (Table 4). First,
multiple PP_REG models are constructed for each can­
didate variable, and the "best" of these models is se­
lected for each candidate variable. Second, the "best"
of the selected models for the individual variables is
identified with the approximate hypothesis test indi­
cated in conjunction with Eq. (3.54). Specifically, the
model with the smallest p-value is identified, and the
associated variable is the variable selected at that step.
The process terminates with no variable selected if all
p-values exceed a = 0.02.



Table 4. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with PP_REG

Notation. Variables A", k = 1, 2, ... , 6, represent candidate smoothing parameters used in smoothing splines (see

Eq. (3.13)) in the sequential construction of PP_REG models, with Ak resulting in a smoothing process with ap­

proximately bkdegrees of freedom. Specifically, Al ~ bi = 1,~ ~ ~ = 2, A3 ~ ~ = 4, A4 ~ 84 = 7, As ~ 85 = 10, and

~ ~ 86 = 15. However, unlike the stepwise construction procedure for GAMs described in Table 3, the degrees of

freedom associated with smoothing splines in the stepwise construction of PP_REG models is obtained directly

from the ppr subroutine in R rather than approximated from the bk'S.

Step 1. Estimate Y == iijk (xj IAk) with a smoothing spline on (xU, Yi)' i = 1, 2, ... , nS, for j = 1, 2, ... , nXand k = 1,

2, ... ,6. For each Xj' select model iij (Xjlij) with smoothing parameter i j from the models Y == iijk (Xj!Ak) , k

= 1,2, ... ,6, that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and

discussion in Sect. 4.4). For each of the models Y == iij (xj Ii j ) , determine (i) degrees of freedom, (ii) F-statistic

Fj

for comparison against mean only model, and (iii) resultant p-value P] (see Eq. (3.54)). Variable Xl with smallest p

value is selected as the most important variable at Step 1; corresponding model, smoothing parameter, and degrees

of freedom are represented by Y == ii (xII ~), ~ and df l , respectively. The process terminates with no variable

selected if all Pj are greater than a specified cutoff (e.g., a = 0.02).

Step 2. Estimate Y==hj(XI,XjIAjl,AjZ) = FjdXI>XjIAjl)+FjZ(XI'XjIAjZ) forj= 1,2, ... ,nXandxj* Xl

through a sequential application of PP_REG described in Steps 2.1' - 2.3'. For each of the models

Y == hj (XI> XjIAjl' AjZ), determine (i) degrees of freedom, (ii) F statistic for comparison against model

Y == ii (xII~d constructed in Step 1, and (iii) resultantp-value Pj (see Eq. (3.54)). Variable Xz with smallestp­

value is selected as most important variable at Step 2; corresponding model, smoothing parameters, and degrees of

freedom are represented by Y == h (xl, xzl iz1, izz ), iz1, izz, and dfZ ,respectively. The process terminates with

no variable selected at Step 2 if allPj are greater than a specified cutoff (e.g., a = 0.02).

Step 2 ~ Procedure for obtaining model hj (xl' xj IAjl' AjZ) and smoothing parameters Ajl and Ayz for variable Xj'

Xj * xl, in Step 2 through a sequential application ofPP_REG.

Step 2.1 ~ Estimate Y == Fijk (xI> xj IAk) for k = 1, 2, ... , 6 from the observations ([ xn, Xu J, Yd, i = 1, 2, ... , nS,

with PP_REG as indicated in conjunction with Eq. (3.39). Determine adjusted PRESS value PRSA (see Eqs. (3.22)

and (3.25)) for each of the six models and select model Y == Fj l (xI,XjIAjl) and associated smoothing parameter Alj

with smallest value for PRSA'

Step 2.2 ~ Estimate FZjk (xl' xj IAk) for k = 1, 2, ... , 6 from the observations ([xn, Xu J, Yi - Fj l (XiI> Xu IAjl )) , i =

1,2, ... , nS, with PP_REG as indicated in conjunction with Eq. (3.39); this corresponds to the second step in a

PP_REG as indicated in Eq. (3.40).
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Table 4. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with PP_REG
(Continued)

Step2.Y Approximations toy are given by Fjdj\,XjIAjj)+F2jk(Xl>XjjAk) fork= 1,2, ... ,6. For each of these

six models, determine the adjusted PRESS value PRSA (see Eqs. (3.22) and (3.25) and select the model with the

smallest value for PRSA . Specifically, with Fj2(Xj,Xj ! Aj2) and ~2 representing the selected model and smoothing

parameter, the desired approximation to y for Xj is given by y==hj(Xj,XjIAjj,Aj2) = FjdXj,XjIAjj) +

F2j (Xl>XjIAj2) as indicated at the beginning of Step 2.

Step 3. Same as Step 2 but starting with estimate y == hj (Xj,X2,XjIAjj,lLj2,Aj3) = L~=j Fj3(Xj,X2,XjlAjs) for

j = 1, 2, ... , nX, Xj:/:. Xj and Xj '" x2 developed through a sequential application of PP_REG analogous to that de­

scribed in Steps 2.1' - 2.3'.

Step N. Terminate process when no variable satisfies specified cutoff.

The default implementation of PP_REG in the func­
tion ppr in Rand S-Plus uses a scatterplot smoother
called supsmu, which is a variable span smoother that
usually provides a better fit to data than a fixed span
smoother.l3O However, the bandwidth at a particular
value for Xi depends on the values for y, which makes
this smoother nonlinear. In tum, this makes the equiva­
lent degrees of freedom difficult to define. Without the
degrees of freedom, it is difficult to assess the quality of
the associated model. Unfortunately, a high R2 value by
itself is not very informative because there is no way to
know if an overfit of the data has occurred. A possibility
is to use the PRESS statistic to assess the quality of the
fit, but this can be very time consuming for moderately
large samples. The preceding complication is avoided in
this study by using the option of employing smoothing
splines as the scatterplot smoother in ppr with a degrees
of freedom bk specified for each smoothing operation
(see Table 4). With this option, the resultant degrees of
freedom associated with the smoothing operations can be
obtained directly from ppr rather than approximated from
the bk's as is done in the stepwise procedure from the
construction ofGAMs (see Table 3).

As iterative smoothing operations are applied, the
possibility exists that the degrees of freedom will de­
crease when a variable is added to a model. This situa­
tion occurs when the successor model is less complex
(i.e., involves less smoothing) than the predecessor
model. When this occurs, the procedure described for
use in the same situation with LOESS is applied (Sect.
4.3).
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4.6 Recursive Partitioning
Regression (RP_REG)

As for LOESS (Table 2), GAMs (Table 3) and
PP_REG (Table 4), the forward stepwise procedure
with RP_REG uses a two stage variable selection proc­
ess at each step (Table 5). First, multiple RP_REG
models are constructed for each candidate variable, and
the "best" of these models is selected for each candi­
date variable. Second, the "best" of the selected mod­
els for the individual variables is identified with the
approximate hypothesis test indicated in conjunction
with Eq. (3.54). Specifically, the model with the small­
est p-value is identified, and the associated candidate
variable is the variable selected at that step. The proc­
ess terminates with no variable selected if all p-values
exceed a = 0.02.

For each candidate variable at each step in the par­
titioning process, it is necessary to investigate a large
number of possible split points (Sect. 3.3.4). Each pos­
sible split point requires the construction of a regres­
sion model. For example, if the partitioning process
has reached the point that five variables are under con­
sideration, then each possible split point requires the
construction of a regression model with six parameters.
To reduce the number of required regression construc­
tions, every observation for a variable is not investi­
gated as a possible split point. Instead, for every vari­
able, a split point is considered at the smallest sampled
value possible for use in splitting and then at every Jcili
observed value after that up to the largest sampled



Table 5. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with RP_REG

Step 1. Estimate Y == iij (xj) by performing RP_REG on (xij' Yi) , i = 1, 2, ... , nS, for j = 1, 2, ... , nXas described

in Sect. 3.3.4. This results in partition sets )Ijk> k = 1,2, ... , nPj' of the values xij' i = 1,2, ... , nS, and associated

regressions Yjk =POjk +PtjkXj' k = 1,2, ... , nPj' for each xj' At each step in the partitioning process for Xj (i.e.,

for nPj = 2, then nPj = 3, and so on), the partition that results in the highest R2 value is retained (see Eqs. (3.47) ­

(3.48) and associated discussion); the partitioning process for Xj is stopped when the partitioning of)Ijk> k = 1,2, ... ,

nPj' into Jtjk , k = 1, 2, ... , nPj + 1, results in the model associated with the partitions Jtjk that having a higher ad­

justed PRESS value PRSA (see Eqs. (3.22) and (3.25)) than the model associated with the partitions )Ijk (Note: Be­

cause of the sequential partitioning process, only two of the partitions in the sequence Jtjk' k = 1, 2, ... , nPj + 1,

differ from partitions in the sequence )Ijk> k = 1, 2, ... , nP). For the model constructed with Xj' determine (i) de­

grees of freedom dfj = 3nPj - 1, (ii) F-statistic Fj for comparison against mean only model, and (iii) resultant p­

value Pj (see Eq. (3.54)). Variable xl with smallest p-value is selected as most important variable at Step 1; the

corresponding model and degrees of freedom are represented by Y == ii (Xl) and df I ,respectively. The process

terminates with no variable selected if all P] are greater than a specified cutoff (e.g., ex. = 0.02).

Step 2. Estimate Y == hj (Xl, Xj) by performing RP_REG on ([Xi!, xij], Yi)' i = 1,2, ... , nS, for j = 1,2, ... , nX

and Xj i:- xl as described in Sect. 3.3.4. This results in partition sets )Ijk> k = 1,2, , nPj' for the vectors [Xib xij],

i = 1,2, ... , nS, and associated regressions Yjk = POjk +PtjkXI +P2jkXj, k = 1,2, , nPj' for each Xj (Note: Con-

struction of the partition sets for [XiI' Xij], i = 1, 2, ... , nS, starts ab initio and does not involve the partition sets

constructed for Xl in Step 1). At each step in the partitioning process for Xj (i.e., for nPj = 2, then nPj = 3, and so

on), the partition that results in the highest R2 value is retained (see Eqs. (3.47) - (3.48) and associated discussion);

the partitioning process associated with Xj is stopped when the partitioning of)Ijb k = 1, 2, ... , nPj' into Jtjk ' k = 1,

2, ... , nPj + 1, results in the model associated with the partitions Jtj k having a higher adjusted PRESS value PRSA

(see Eqs. (3.22) and (3.25)) than the model associated with the partitions )Ijk (Note: Because of the sequential parti­

tioning process, only two of the partitions in the sequence Jt-jk » k = 1, 2, ... , nPj + 1, differ from partitions in the

sequence )Ijk' k = 1,2, ... , nP). For the model constructed with Xj' determine (i) degrees of freedom dfj = 5nPj - 2,

(ii) F-statistic Fj for comparison against model Y == ii (xd selected in Step 1, and (iii) resultantp-value Pj (see Eq.

(3.54)). Variable x2 with smallest p-value is selected as most important variable at Step 2; the corresponding

model and degrees of freedom are represented by Y == 12 (Xl' X2) and df2' respectively. The process terminates

with no variable selected if all Pj are greater than a specified cutoff (e.g., ex. = 0.02).

Step 3. Estimate Y ==.I3j (Xb x2' Xj) by performing RP_REG on ([Xi!' xi2' xij J, Yi), i = 1,2, ... , nS, forj = 1,2,

... , nX, Xj i:- Xl and Xj i:- x2 as described in Sect. 3.3.4. Continue as in Step 2.

Step N. Terminate process when no variable satisfies specified cutoff.
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value possible for use in splitting. For example, if a
sample of size nS = 300 is under consideration, k = 3
and the partitioning process has reached the point at
which five independent variables are under considera­
tion in the regression model construction, then the pos­
sible split points for the variable Xj would be x(6)J' x(9)J'

... , x(291)J' x(294)J' where xCi);' i = 1,2, ... ,300, denotes
a rank ordering of the observed values for variable Xj'

In this example, the smallest possible value for splitting
is x(6)J because at least six observations are required to
estimate the six parameters in the associated regression
model. In the examples presented in Sect. 5, k = 2 is
used when nS = 100, and k = 3 is used when nS = 300.

As indicated in Table 5, the split point that results
in the largest increase in R2 defines the split point to be
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used (see Eqs. (3.47) - (3.48». If the adjusted PRESS
value PRSA is smaller after the split than before, the
split is kept and the search continues for the next possi­
ble split point. The construction process continues in
this manner until PRSA increases after a split, at which
point the split is not kept and the model is completed
for that step and the particular candidate variable under
consideration. Then, the F-static and the associated p­
value are determined for each model constructed at this
step in a comparison with the model retained at the pre­
ceding step. As with the other procedures, a cutoff of a
= 0.02 for the approximate p-value is used in the step­
wise variable selection procedure (Sect. 4.1) to deter­
mine whether or not a new variable should be retained
in the stepwise procedure.
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5. Example Sensitivity Analysis
Results

nS

(nS -1)L (.Yi - Yi )2
i=1

where p is the number of degrees of freedom associated
with the fitted model. However, the values for R2 and
R3 are similar when p is small relative to nS.

The efficacy of the various methods described in
previous sections as procedures for sensitivity analysis
is now investigated with both analytic test model data
(Sect. 5.1) and real data (Sect. 5.2). The analytic test
models were assembled as part of a review volume on
sensitivity analysis. 48, 143 The real data comes from a
performance assessment for the Waste Isolation Pilot
Plant (WIPp).56, 57 The methods are compared on the
basis of fidelity to the data, overfitting of the data, and
reproducibility.

PRESS value over the PRESS value obtained before
the addition of that variable. Such a jump in the
PRESS statistic indicates the model is starting to
"chase" results associated with individual observations
rather than following actual patterns in the data.

The adjusted PRESS value PRSA (see Eqs. (3.22)­
(3.25)) reduces the effects of highly influential observa­
tions by using an average leverage value in its defini­
tion. The adjusted PRESS value PRSA is similar in
concept to the adjusted R2 value R3 in that it penalizes
a model for the use of an excessive number of degrees
of freedom in its construction. However, as with the
original statistic PRS, there is no limiting value for
PRSA that provides a standard by which the fidelity of a
model to the underlying data can be judged. Although
PRSA can be more useful than the original PRESS sta­
tistic in comparing models constructed with different
procedures, it is less effective in checking for overfit­
ting because of the reduction in the effects of extreme
observations.

The PRESS statistic can also be used to compare
the fidelity of models constructed from the same data
set but with different procedures. In particular, a model
with a lower PRESS value is preferable to a model with
a higher PRESS value. However, there are two draw­
backs in using PRESS to compare models obtained
with different procedures. First, PRESS values can be
very sensitive to the effects of a limited number of ex­
treme observations. Second, there is no "absolute"
standard against which a PRESS value can be com­
pared to indicate whether or not a model is providing a
good match to the data. In contrast, R2 values approach
one as the fidelity of the model to the data increases;
unfortunately, there is no such limiting value for the
PRESS statistic.

(5.1)

nS

(nS - p) L (Yi - )1)2
i=1

=1-(1-R2)(~),
nS-p

The R2 statistic (see Eq. (2.5)) provides one meas­
ure of the fidelity of a regression model to the data
from which it was constructed. In particular, the closer
R2 .

IS to one, the better the model reproduces the data.
However, the R2 statistic can be misleading in that its
value can be unrealistically inflated by overfitting the
data. The adjusted R2 statistic R3 provides a measure
of fidelity that attempts to correct the effects of overfit­
ting the data (pp. 91 - 92, Ref. 110). Specifically, R3
is defined by

The PRESS statistic PRS (see Eq. (3.19)) provides
a way to test for an overfitting of the data. In particu­
lar, a decrease in PRS with the addition of a variable to
a model indicates an improvement in the predictive
capability of the model (i.e., the fidelity of the model to
the data has increased). In contrast, an increase in PRS
indicates that an overfitting of the data has taken place.
This property results because the PRESS statistic is
very sensitive to the effects of a limited number of
highly influential observations (typically observations
with extreme values for one or a few independent vari­
ables). Monitoring PRESS values as variables are
added to a model provides a way to check for overfit­
ting of the data, with such overfitting indicated when
the addition of a variable results in an increase in the

The top-down coefficient of concordance (TDCC)
provides a way to assess the reproducibility of sensitiv­
ity analysis results obtained with individual analysis
procedures. 103, 144 In particular, the TDCC provides a
measure of the agreement between results obtained
with independently generated samples in a manner that
emphasizes agreement in the identification of the most
important variables and places less emphasis on agree­
ment in the identification of the less important vari­
ables. For notational purposes in the definition of the
TDCC, suppose (i) nR independently generated sam­
ples of the same size involving a vector x = [xl> X2' ... ,

xnX] of independent variables are under consideration,
(ii) a sensitivity analysis to rank variable importance is
carried out for each sample, and (iii) rjk denotes the
rank assigned to variable j in the indicated sensitivity

41



analysis for sample k, where the most important vari­
able is assigned a rank of 1, the next most important
variable is assigned a rank of 2, and so on, with vari­
ables of the same importance assigned their average
rank (the preceding is the reverse of the ranking proce­
dure described in Sect. 2.2 for rank regression). The
TDCC is then defined by

SRD/RCC test does not involve the development of a
model that approximates the relationship between inde­
pendent and dependent variables.

A brief description of the SRD/RCC test follows.
The test is used to assess the relationships between in­
dividual elements Xj of x = [xl> x2' ... , xnX] and a pre­
dicted variable y of interest for a random or LHS and a
functional relationship of the form indicated in Eq.
(1.8). The SRD component of the test is based on the
statisticCT= {~[~'+jk lJ -(nR)' nX}

j{(nR)2[nX-~Vj)}, (5.2)
nS-l 2

Qj = I h,i+l -rji) ,
i=l

(5.3)

where ss(rjk) is the Savage score given by

nX

ss(rjk) = I lji
i=rjk

for variable j in a sample k and average Savage scores
are assigned in the event of ties. Use of the Savage
scores ss(rjk) rather than the ranks rjk in the definition
of the TDCC in Eq. (5.2) results in the previously indi­
cated emphasis on agreement on the most important
variables and deemphasis on disagreement on the less
important variables.

In the examples that follow, variable importance is
defined by the order in which variables enter the model
under construction, with the first variable entering the
model ranked 1, the second variable entering the model
ranked 2, and so on. The variables that are not selected
for entry into the model are all assigned the same aver­
age rank. The preceding ranking is used in the calcula­
tion of the TDCC. Values for the TDCC close to one
indicate a high level of reproducibility for the sensitiv­
ity analysis method under consideration, with a de­
crease in reproducibility indicated as the value for the
TDCC decreases away from one.

The primary emphasis of this presentation is on re­
gression-based procedures for sensitivity analysis. For
comparison, a nonregression-based procedure for sensi­
tivity analysis is also included. This procedure is re­
ferred to as the SRD/RCC test and is the result of com­
bining a test for nonrandomness in the relationship
between an independent and a dependent variable
called the squared rank differences (SRD) test with the
Spearman rank correlation coefficient (RCC). This test
is effective at identifying linear and very general
nonlinear patterns in analysis results. However, unlike
the regression procedures under consideration, the
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where rji' i = 1,2, ... , nS, is the rank ofy obtained with
the sample element in which Xj has rank i and the indi­
cated ranks are defined as described in Sect. 2.2. Un­
der the null hypothesis of no relationship between Xj

and y, the quantity

approximately follows a standard normal distribution
for nS > 40. Thus, a p-value Prj indicative of the
strength of the nonlinear relationship between Xj and y
can be obtained fro~ Qj. Specifically, Prj is the prob­
ability that a value Qj > Qj would occur due to chance
if there was no relationship between Xj and y. The RCC
component of the test is based on the rank (i.e., Spear­
man) correlation coefficient

(5.5)

where R(xij) and R(YD are the ranks associated Xj and y
for sample element i. Under the null hypothesis of no
rank correlation between Xj and y, the quantity Rj has a
known distribution (Table Ala, Ref. 145). Thus, a P­
value Pcj indicative of the strength of the monotonic
relationship between Xj and y can be obtained from Rf
The SRD/RCC test is obtained from combining the P­
values Prj and Pcj to obtain the statistic



xl =-2[In(Prf )+In(pcj)J, (5.6) (1.6). As in Sect. 5.2, the individual replicates are re­
ferred to as replicates RI, R2 and R3, respectively.

In concept, the example results can be thought of
as the outcome of evaluating a model of the form

with x = [xb xz, ... , xlO]. Such multiple outcomes are
usually the case in analyses of real systems (e.g., see
the analyses in Refs. 53, 146, 147 from which the ex­
amples in Sect. 5.2 are derived). Further, it is also typi­
cal of such analyses that individual results are not af­
fected by all of the uncertain variables under
consideration.

which has a chi-squared distribution with four degrees
of freedom. The p-value associated with xl consti­
tutes the SRD/RCC test for the strength of the relation­
ship between Xj and y. A detailed description of the
SRD/RCC test and the determination of the associated
p-value is available elsewhere.U'"

5.1 Example Results: Analytic Test
Models

Results obtained with the following four analytic
test models are now presented:

y =1(x) =[fi (x), Jz (x),./3 (x), 14 (x)J (5.11)

with [ab az, ... , as] = [0, 1,4.5,9,99,99,99,99], and

(5.12)

The analytic models introduced in this section
(Sect. 5.1) have an advantage over the real model con­
sidered in the following section (Sect. 5.2) in that it is
possible to unambiguously determine the contributions
of individual analysis inputs to the uncertainty in analy­
sis results. This is not possible with a computationally
demanding model of the type considered in Sect. 5.2.
In particular, such determinations make comparisons
between truth and sensitivity results obtained with the
procedures under consideration possible. The method
used to determine the actual effects of individual vari­
ables is described in the next paragraph.

The RZ value is the primary quantity used in this
presentation to assess the contribution of the uncer­
tainty associated with a group of variables to the uncer­
tainty in an analysis result. In particular, if x = [xl,
Xz, ... , Xp] is a vector of variables taken from the
variables Xb xz, ... , XnX under consideration in a par­
ticular analysis (i.e., x = [xb Xz, ... , xnX] is the vector of
uncertain inputs under consideration), lex) = 1 (Xl,
Xz, ... , xp ) is an approximation to the real model j(x)
=JCxb Xz, ... , xnx) estimated with a particular procedure
from a mapping [Xi' Ytl, i = 1, 2, .. .nS, from analysis
inputs to analysis results, and Xi = [Xn, XiZ' ... , Xip]
for i = 1,2, ... , nS, then

provides an estimate of the fraction of the uncertainty
in Y that derives from the uncertainty associated with
the variables in X.

(5.10)

Y4 = 14 (Xl, xz' X3)

= sin (2JrXI - Jr) + 7 sinz (2Jrxz - Jr)

+0.I(2JrX3 _Jr)4 sin (2JrXI -Jr).

The example analyses use three replicated random
samples of size 100 each from 10 variables (i.e., the x)
with uniform distributions on [0, 1]. This results in the
analysis for each model including from 2 to 8 com­
pletely spurious variables. The presence of such vari­
ables provides an indication of whether or not the indi­
vidual regression procedures have a tendency to include
spurious variables in model construction. As for the
WIPP example (Sect. 5.2), the replicated sampling re­
sults in the three samples of the form indicated in Eq.
(1.5) and three mappings of the form indicated in Eq.

The individual models have from 2 to 8 input variables
that are assumed to be uniformly and independently
distributed on [0, 1]. The functions1bh,./3 and14 and
the associated distributional assumptions for the x/s
correspond to Model 4c, 6b, 7 and 9, respectively, in
Ref. 143. The functions1b./3 and.f4 are also considered
in Sects. 4 and 5 of Ref. 28.
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The contribution of X to the uncertainty in y that
is estimated by RZ is formally defined by the correlation
ratio

1]Z = l-E([y-E(ylx)J)/E([Y-E(y)JZ)

= l-E[Var(ylx)]/Var(y)

=Var[E(Ylx)]/Var(y), (5.13)

where (i)

E(y) = fxf(X)dx (x) dX

E([Y-E(y)JZ) = fx[f(X)-E(y)JZdx (x) dX

=Var(y)

E([y-E(Ylx)]Z)= fx[f(X)-E(ylx)]Z dx(x)dX

=E[Var(ylx)]

Var[E(ylx)] = fx[ E(Ylx)-E(y)]Z dx (x) dX,

considered in the definition of ~ in Eq. (5.13), and the
Xj that gives the highest value for ~ is deemed to be
the most important variable and taken to be xl' The
second most important variable, designated xz, is the
element of x = [xl> xz, ... , xnX] that gives the largest
value for ~ when all possible values for X = [xl' x),
Xl i= Xj' are considered. The third most important vari­
able, designated x3' is determined in like manner from
consideration of vectors of the form X = [xl, Xz ' Xj],
Xl i= Xj and Xz i= Xj' and so on through all nX elements
ofx.

The individual analytical test models are now con­
sidered. For each test problem, RZ, R~, PRS, PRSA,

and the TDCC CT are calculated for the following
methods: LIN_REG, RANK_REG, QUAD_REG,
LOESS, PP_REG, RP_REG and GAM. The TDCC is
calculated from the three replicated samples of size
100, and the rest of the results are calculated from the
pooled sample of size 300. For comparison, the true
1]Z values are also presented. The TDCC score com­
paring the variable rankings obtained with each method
with the rankings based on the true model are also
given.

5.1.1 Monotonic Relationships:Yl =

fi(xl' xz)

In the following, ~ is calculated in a stepwise
manner for use in determining variable importance.
The most important variable, designated xl' is the ele­
ment ofx = [xl> Xz, ... , xnX] that gives the largest value
for~. That is, X = [xtl, X = [XZ] , ... , X = [xnX] are

(ii)(X X,Px), (X, X, px) and (XC .x-, P -c) are
the probability spaces associated with x, x, aid xc,
where XC contains the elements of x not contained in
X , and (iii) dxCx), dX (x) and d_C(XC) are the corre­
sponding density functions for x,""i and XC (Sect. 8.2,
Ref. 148). The quantity ~ is based on the analysis of
variance (ANOVA) decomposition

and corresponds to the fraction of the variance ofy that
derives from the uncertainty associated with the vari­
ables that constitute the elements of X .39-4Z, 148 For
the simple functions considered in this section, ~ can
be calculated and used in comparisons with its corre­
sponding estimate RZ defined in Eq. (5.12). In some
cases, the estimate RZ can be shown to converge in
probability to ~ as n ~ 00. 149, 150

Var(y) = Var[E(Ylx)J+ E[Var(yjx)J (5.14)
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The uncertainty in Yl is mainly driven by Xz as can
be seen in Fig. 14. The results of the various regression
methods applied to Yl are given in Table 6. As indi­
cated by the analysis for the true model in Table 6 (i.e.,
in the value of ~ defined in Eq. (5.13)),99.99% of the
uncertainty in Yl is due to xz. All the analysis methods
agree with the true model in the identification of Xz as
the most important variable. The analysis with
LIN_REG has some trouble with a failure to include Xl

in the model and an RZ-value of only 0.76. In contrast,
RANK_REG does better as the underlying relation­
ships are monotonic and results in a model containing
both Xl and Xz and a final RZ value of 0.98. The analy­
ses with QUAD_REG and LOESS successfully esti­
mate the contribution of Xz with RZ values of 0.98 and
1.00, respectively, but fail to identify the effect of Xl'

The analyses with PP_REG, GAM and RP_REG all do
well in that they include Xl and Xz and also give RZ val­
ues for Xl and Xz that are equal to the values obtained
for the true model. However, PP_REG includes the
spurious variables Xs and x7' The non-regression based
method SRD/RCC also identifies both Xl and Xz as im­
portant variables. The analysis of Yl is challenging
with respect to the identification of Xl due to the very
small effect associated with this variable.
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Fig. 14. Analytic test model v, = f1(xb x2) = 5x1 + (5X2?

Table 6. Sensitivity Analyses for Analytic Test Model Y1 = '1(Xl , X2)

Vara R2b d.f p-va1d PRSe Vara R2b d.f p_vald PRSe Vara R2b d.f p-vald PRSe

LIN_REG RANK_REG QUAD_REG

x2 0.7552 1.0 0.0000 1.87E6 x2 0.9774 1.0 0.0000 5.19E4 x2 0.9789 2.0 0.0000 1.63E5

R~ = 0.7544f, PRSA = 1.86E6g xl 0.9842 1.0 0.0000 3.66E4 R~ = 0.9787, PRSA = 1.62E5

CT = 1.0000,h CT w/true = 0.9294 i R~ = 0.9841, PRSA = 3.64E4 CT = 1.0000, CT w/true = 0.9294

LOESS CT = 0.9744, CT w/true = 1.0000 RP_REG

x 2 0.9999 27.1 0.0000 6.74E2 PP REG x 2 0.9999 46.0 0.0000 7.63E2

R~ = 0.9999, PRSA = 6.79E2 x2 0.9999 13.2 0.0000 2.21E3 xI 1.0000 41.0 0.0000 5.06E1

CT = 1.0000, CT w/true = 0.9294 xl 1.0000 14.4 0.0000 1.79E3 R~ = 1.0000, PRSA = 4.01E1

GAM Xs 1.0000 25.3 0.0000 1.79E3 CT = 1.0000, CT w/true = 1.0000

x2 0.9999 15.0 0.0000 6.80E2 x 7 1.0000 -18.7 0.0009 1.79E3 TRUE MODEL

xI 1.0000 1.0 0.0000 7.55E1 R~ = 1.0000, PRSA = 2.00EO x 2 0.9999 NN NA NA

R~ = 1.0000, PRSA = 4.50E1 CT = 0.9097, CT w/true = 0.9453 xI 1.0000 NA NA NA

CT = 1.0000, CT w/true = 1.0000 SRDIRCC TEST R~ = NA, PRSA = NA

x 2 NA 4.0 0.0000 NA CT = NA, CT w/true = 1.0000

xl NA 4.0 0.0101 NA

a_Variables listed in order of selection with R~ =NA, PRSA = NA

sample of size nS = 300. CT = 0.9135, CT w/true = 1.0000

b Cumulative R2 value Withentry of each vanab1e mto model (see Eq. (5.13) for True Model and Eq. (5.12) for all other cases).
c Incremental degrees of freedom with entry of each variable into model for all cases except SRD/RCC test; dJfixed at 4.0 for all variables for

SRD/RCC test (see Eq. (5.6)).
d p-value for model with addition of each new variable (see Sect. 3.4 and related discussion for individual modeling cases).
e PRESS value for model with addition of each new variable (see Eq. (3.19)).
f Adjusted R2 value for final model (see Eq. (5.1)).
g Adjusted PRESS value for final model (see Eqs. (3.22) and (3.25)).
h TDCC calculated between results for three replicated samples of size nS = 100 (see Eq. (5.2)).

TDCC calculated between results obtained for case under consideration with a sample of size nS = 300 and the results obtained for the True
Model (see Eq. (5.2)).
NA indicates that result is not applicable.

45



5.1.2 Monotonic Relationships: Y2 =

h(Xl' X2)

All of the regression methods identify the two im­
portant variables (i.e., xl and x2) for Y2 (Fig. 15). As
shown in Table 7, the regression methods all indicate that
X2 is the most important variable followed by Xl> which
results in a high TDCC with the true model for all the
methods. The analysis with LIN_REG underestimates
the contribution of xl' The analysis with RANK_REG
overestimates the contribution ofx2; this is likely because
rank transformed data instead of actual the Y values are
being used to compute R2. The analysis with GAM un­
derestimates xl's contribution because of its inability to
model interactions. The analyses with QUAD_REG,
PP_REG, LOESS, and RP_REG give good estimates of
the R2 contribution of x2 and xl' However, the analyses
with GAM and RP_REG each include one spurious vari­
able, which prevents the TDCC with the true model from
being 1.00. The analysis with PP_REG again includes
two spurious variables, x5 and x9' It is possible that an
adjustment to increase the degrees of freedom in a similar
fashion to that for RP_REG is required to account for

estimating the projections in PP_REG. The analysis with
SRD/RCC also identifies xl and x2 as the important vari­
ables in the correct order.

TR06-JR015-0

Fig. 15. Analytic test model Y2 = h(xl> x2) = (x2 +
0.5)4j(XI + 0.5)2.

Table 7. Sensitivity Analysis for Analytic Test Model Y2 =f2(x l . x2)a

Var R2 df p-val PRS Var R2 df p-val PRS Var R2 df p-val PRS

LIN REG RANK REG QUAD REG

x2 0.4550 1.0 0.0000 UIE3 Xz 0.8013 1.0 0.0000 4.52E5 Xz 0.5282 2.0 0.0000 9.75E2

Xl 0.6605 1.0 0.0000 7.03E2 Xl 0.9784 1.0 0.0000 4.99E4 Xl 0.9295 3.0 0.0000 1.55E2

R~ = 0.6582, PRSA = 6.94E2 R~ = 0.9783, PRSA = 4.95E4 R~ = 0.9283, PRSA = 1.47E2

CT = 1.0000, CT w/true = 1.0000 CT = 1.0000, CT w/true = 1.0000 CT = 0.9235, CT w/true = 1.0000

LOESS PP REG RP REG

x2 0.6199 27.1 0.0000 1.06E3 Xz 0.5323 3.0 0.0000 9.84E2 Xz 0.5597 16.0 0.0000 1.26E3

Xl 0.9995 45.7 0.0000 2.13EO Xl 0.9994 32.5 0.0000 5.08EO Xl 0.9987 56.0 0.0000 1.28El

R~ = 0.9993, PRSA = 1.88EO Xs 0.9999 4.6 0.0000 4.70EO xlO 0.9991 29.0 0.0000 1.24El

CT = 1.0000, CT w/true = 1.0000 x9 0.9999 11.5 0.0002 4.32EO R~ = 0.9986, PRSA = 4.33EO

GAM R~ = 0.9999, PRSA = 1.78E-l CT = 0.9712, CT w/true = 0.9712

Xz 0.5340 4.0 0.0000 9.79E2 CT = 0.8727, CT w/true = 0.9511 TRUE MODEL

Xl 0.8046 15.0 0.0000 4.81E2 SRDIRCC TEST Xz 0.5196 NA NA NA

x3 0.8225 10.0 0.0033 4.64E2 Xz NA 4.0 0.0000 NA Xl 1.0000 NA NA NA

R~ = 0.8034, PRSA = 4.39E2 Xl NA 4.0 0.0000 NA R~ = NA, PRSA = NA

CT = 0.9460, CT w/true = .9712 R~ = NA, PRSA = NA CT = NA, CT w/true = 1.0000

CT = 0.9317 CT w/true = 1.0000

a Table structure same as described in footnotes to Table 6.
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5.1.3 Nonmonotonic Relationships: Y3
= !3(X1' X2' ••• , X8)

Result Y3 is severely nonlinear in behavior as illus­
trated in Fig. 16, which contains a plot ofY3 versus the
two most important variables, Xl and x2' The true
model summary in Table 8 indicates that xl and X2 are
responsible for most of the uncertainty (95%) in Y3;
further, x3 accounts for about an additional 3% and x4
an additional 1% of the uncertainty in Y3' The analyses
with LIN_REG and RANK_REG demonstrate that
these methods are not capable of modeling this data.
Both analyses result in models with no variables se­
lected as important. Hence, both analyses result in R2
values of 0.00. The analysis with PP_REG does a de­
cent job of picking the two most important variables
and giving reasonable estimates of their contribution to
the uncertainty in Y3 but fails to identify the variables x3

TR06-JR016-0

Fig. 16. Analytic test model Y3 = .f3(xb x2' ... , x8) (see
Eq. (5.9)) with surface averaged over x3' x4'

""x8'

Table 8. Sensitivity Analyses for Analytic Test Model Y3 = f3(x 1' x2' ... , x8)a

Var R2 df p-va1 PRS Var R2 df p-va1 PRS Var R2 df p-va1 PRS

LIN REG RANK REG QUAD REG
None 0.0000 0.0 NA 1.18E2 None 0.0000 0.0 NA 2.27E6 xl 0.6540 2.0 0.0000 4.19E1

R~ = 0.0000, PRSA = 1.18E2 R~ = 0.0000, PRSA = 2.27E6 x 2 0.8459 3.0 0.0000 1.92E1

CT = 0.3333, CT w/true = 0.5000 CT = 0.3333, CT w/true = 0.500 x 3 0.8733 4.0 0.0000 1.63E1

LOESS PP REG x 4 0.8803 5.0 0.0063 1.6lEl

Xl 0.7047 5.8 0.0000 3.68E1 Xl 0.7177 9.9 0.0000 3.69E1 x 6 0.8870 6.0 0.0123 1.60E1

x 2 0.9503 44.2 0.0000 9.64EO x 2 0.9123 13.6 0.0000 1.79E1 R~ = 0.8789, PRSA = 1.53E1

x 3 0.9819 72.2 0.0000 1.96E1 Xs 0.9329 12.7 0.0000 1.43E1 CT = 0.9730, CT w/true = 0.9866

R~ = 0.9694, PRSA = 6.11EO x 7 0.9493 13.8 0.0000 1.54E1 RP REG
CT = 1.0000, CT w/true = 0.9726 R~ = 0.9392, PRSA = 8.71EO Xl 0.7201 10.0 0.0000 4.06E1

GAM CT = 0.8541, CT w/true = 0.9146 x 2 0.9719 62.0 0.0000 8.17EO

Xl 0.7164 10.0 0.0000 3.64E1 SRDIRCC TEST x 3 0.9818 36.0 0.0000 9.23EO

x 2 0.9089 15.0 0.0000 1.37E1 Xl NA 4.0 0.0000 NA R~ = 0.9715, PRSA = 5.99EO

x 3 0.9324 4.0 0.0000 1.05E1 x 2 NA 4.0 0.0003 NA CT = 0.9726, CT w/true = 0.9726

x 4 0.9414 4.0 0.0000 9.45EO R~ = NA, PRSA = NA TRUEMODEL
R~ = 0.9341, PRSA = 8.76EO CT = 0.9373, CT w/true = 0.9453 Xl 0.7115 NA NA NA

CT = 0.9730, CT w/true = 0.9863 x 2 0.9546 NA NA NA

x 3 0.9891 NA NA NA

x 4 0.9996 NA NA NA

Xs 0.9997 NA NA NA

x 6 0.9998 NA NA NA

x 7 0.9999 NA NA NA

Xs 1.0000 NA NA NA

R~ = NA, PRSA = NA
a Table structure same as described in footnotes to Table 6. CT = NA, CT w/true = 1.0000
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and X4' The analysis with the SRD/RCC test also iden­
tifies the two most important variables correctly. The
analyses with QUAD_REG and GAM do an even bet­
ter job by picking out and ordering the four most im­
portant variables correctly with reasonably good R2
estimates, although the R2 estimates from GAM are
closer to the true values than those from QUAD_REG.
The analysis with RP_REG and LOESS both do an
excellent job of accurately estimating the contribution
of the three most important variables Xl ,x2 and x3' but
fail to identify variable x4' In this particular example,
the standard regression tree defined in Eqs. (3.42) and
(3.43) (results not displayed) gives sequential R2 esti­
mates of 0.72, 0.92, and 0.90 as xl> x2 and x3 enter the
model. For RP_REG, these values are 0.72, 0.97, and
0.98, which are closer to the true values. In addition,
the RP_REG procedure provided superior results to the
standard regression tree approach in most of the other
examples considered in this presentation.

5.1.4 Nonmonotonic Relationship: Y4 =

J4(Xl' X2' X3)

Result Y4 is the most difficult outcome to analyze
for all of the regression methods. As shown in Table 9,
the linear methods (i.e., LIN_REG, RANK_REG and
QUAD_REG) have an R2 below 0.2 The analysis with
QUAD_REG fails because the sinusoidal relationship
that can be seen in Fig. 17 departs too much from a
quadratic. The oscillating behavior ofY4 is also diffi­
cult for LIN_REG and RANK_REG to model. The
analysis with PP_REG, which often overfits the data,

this time identified only x2 and x3 for inclusion in the
model; the reasons for this are unclear. The analysis
with GAM has an R2 value of 0.79 and identifies the
two most important variables correctly. However,
GAM also includes the spurious variable x4' The
analysis with LOESS was the most successful on this
example. It has an R2 value of 0.95 and identifies the
three important inputs correctly. The analysis with
RP_REG has an R2 value of 0.90, and also identifies all
three important inputs correctly. Both LOESS and
RP_REG give reasonable estimates of the R2 contribu­
tion of each variable as well. The analysis with the
SRD/RCC test also identifies X2 and Xl as the two most
important variables in the correct order but fails to
identify x3 and includes x6 spuriously.

5.2 Example Results: Two-Phase
Fluid Flow

The regression-based sensitivity analysis proce­
dures are now illustrated with results from an uncer­
tainty/sensitivity analysis of a model for two phase
fluid flow53, 146, 147 carried out as part of the 1996
compliance certification application (CCA) for the
Waste Isolation Pilot Plant (WIPP).56 The CCA in­
volved nX = 57 uncertain variables.l'l" with 31 of these
variables used in the two-phase fluid flow analysis con­
sidered in this section (Table 10). The two-phase fluid
flow analysis considered six different scenarios (i.e.,
modeling cases; see Table 6, Ref. 140) and generated
several hundred time-dependent analysis results for
each modeling case (e.g., see Table 1, Ref. 146, for a

D
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Fig. 17. Scatterplots for Xl andx2 for analytic test model y, = .f4(xb x2' x3) (see Eq. (5.10)).
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Table 9. Sensitivity Analyses for Analytic Test Model Y4 = f4(xI' x2' x3)a

Var R2 df p-val PRS Var R2 df p-val PRS Var R2 df p-val PRS

LIN REG RANK REG QUAD REG

xl 0.1756 1.0 0.0000 3.26£3 xl 0.1599 1.0 0.0000 1.92£6 xl 0.1768 2.0 0.0000 3.28£3

R~ = 0.1728, PRSA = 3.26£3 R~ =0.1571,PRSA= 1.92£6 R~ =0.1713,PRSA = 3.28£3

CT = 1.0000, CT w/true = 0.6949 CT = 0.9373, CT w/true = 0.6949 CT = 0.9373, CT w/true = 0.6949

LOESS PP REG RP REG

x 2 0.5030 18.1 0.0000 2.21£3 x 2 0.4669 7.9 0.0000 2.21£3 x 2 0.5114 19.0 0.0000 2.53£3

Xl 0.7982 31.9 0.0000 1.13£3 x 3 0.5483 21.0 0.0012 2.68£3 Xl 0.8180 48.0 0.0000 1.57£3

x 3 0.9519 72.2 0.0000 1.39E3 R~ = 0.4999, PRSA = 2.19£3 x 3 0.9033 41.0 0.0000 1.79£3

R~ - 0.9187, PRSA = 5.40£2 CT = 0.7675, CT w/true = 0.9171 R~ = 0.8486, PRSA = 1.00£3

CT= 1.0000, CT w/true = 1.0000 SRDIRCC TEST CT= 1.0000, CT w/true = 1.0000

GAM Xl NA 4.0 0.0000 NA TRUE MODEL

x 2 0.4736 10.0 0.0000 2.21£3 x 2 NA 4.0 0.0000 NA x 2 0.4463 NA NA NA

Xl 0.7753 7.0 0.0000 9.81£2 x 6 NA 4.0 0.0017 NA Xl 0.7593 NA NA NA

x 4 0.7920 10.0 0.0188 9.72£2 R~ =NA, R~ =NA x 3 1.0000 NA NA NA

R~ = 0.7714, PRSA = 9.87£2 CT = 0.9207 CT w/true = 0.8586 R~ = NA, PRSA = NA

CT = 0.9744, CT w/true = 0.9360 CT = NA, CT w/true = 1.0000

a Table structure same as described in footnotes to Table 6.

partial listing of these results). A small subset of these
results is considered in this presentation. In particular,
the modeling case corresponding to a drilling intrusion
at 1000 yr that penetrates both the repository and an
underlying region of pressurized brine is used as an
example (i.e., an El intrusion at 1000 yr in the termi­
nology of the 1996 WIPP CCA; see Table 6, Ref. 140),
and three time-dependent analysis results are used for
illustration (Table 11).

The example analysis used Latin hypercube sam­
pling to generate a mapping between analysis inputs
and analysis results of the form indicated in Eqs. (1.5)
and (1.6). In particular, three replicated (i.e., independ­
ently generated) Latin hypercube samples27, 38 of size
nS = 100 were used. Thus, the analysis actually had
three samples of the form indicated in Eq. (1.5) and
three mappings of the form indicated in Eq. (1.6). This
replication was performed to provide a way to test the
stability (i.e., reproducibility) of analysis results (Sect.
7, Ref. 140). For convenience, the individual replicates
are referred to as replicate Rl, R2 and R3, respectively.
The 100 time-dependent values for the variables indi­
cated in Table 11 (i.e., BRNREPTC, REP_SATB,
WAS_PRES) that result for replicate Rl are shown in
Fig. 18.

The three time-dependent results indicated in Table
11 are analyzed at 1000 yr and 10,000 yr. The results
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at 1000 yr are for undisturbed conditions immediately
prior to the drilling intrusion at 1000 yr. Because of
this timing, the 1000 yr results are unaffected by the
drilling intrusion and thus are very different from the
10,000 yr results.

5.2.1 Cumulative Brine Flow at 1000 yr
(BRNREPTC.1K)

All of the analysis methods perform well for
BRNREPTCIK (Table 12), with all methods identify­
ing HALPOR as the most important variable and all the
regression-based methods identifying HALPOR,
WMlCDFLG, ANHPRMand HALPRM as the four most
important variables. Specifically, all regression-based
methods indicate that HALPOR accounts for approxi­
mately 96% of the uncertainty in BRNREPTCIK and
that the four most important variables collectively ac­
count for between 98% and 99% of the uncertainty in
BRNREPTCIK. The examination of scatterplots
shows the dominant effect of HALPOR and also the
more subtle effects associated with WMlCDFLG,
ANHPRM and HALPRM (Fig. 19). The similarity of
the results obtained with LIN_REG and RANK_REG
indicates that the relationships between BRNREPTCIK
and the sampled variables affecting BRNREPTCIK are
effectively linear. In this situation, all of the regres­
sion-based methods are producing models of



Table 10. Independent (i.e., sampled) Variables Considered in Example Sensitivity Analyses for Two­
Phase Fluid Flow (Source: Table 1, Ref. 103, and Table 1, Ref. 140)

ANHBCEXP-Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Student's
with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644,0.644.

ANHBCVGP-Pointer variable for selection of relative permeability model for use in anhydrite. Distribution: Dis­
crete with 60% 0, 40% 1. Value of 0 implies Brooks-Corey model; value of 1 implies van Genuchten-Parker model.

ANHCOMP-Bulk compressibility of anhydrite (Pa-1) . Distribution: Student's with 3 degrees of freedom. Range:
1.09 x 10-11 to 2.75 X 10-10 Pa-1. Mean, Median: 8.26 x 10-11 Pa-1, 8.26 x 10- 11 Pa-1. Correlation: -0.99 rank
correlationl-t- 152 withANHPRM

ANHPRM-Logarithm of anhydrite permeability (m-), Distribution: Student's with 5 degrees of freedom. Range:
-21.0 to -17.1 (i.e., permeability range is 1 x 10-21 to 1 X 10-17.1 m2) . Mean, Median: -18.9, -18.9. Correlation:
-0.99 rank correlation with ANHCOMP.

ANRBRSAT-Residual brine saturation in anhydrite (dimensionless). Distribution: Student's with 5 degrees of
freedom. Range: 7.85 x 10-3 to 1.74 X 10-1. Mean, Median: 8.36 x 10-2, 8.36 X 10-2.

ANRGSSAT-Residual gas saturation in anhydrite (dimensionless). Distribution: Student's with 5 degrees of free­
dom. Range: 1.39 x 10-2 to 1.79 X 10-1. Mean, median: 7.71 x 10-2,7.71 X 10-2.

BHPRM-Logarithm of borehole permeability (m-). Distribution: Uniform. Range: -14 to -11 (i.e., permeability
range is 1 x 10-14 to 1 X 10-11 m-'), Mean, median: -12.5, -12.5.

BPCOMP-Logarithm of bulk compressibility of brine pocket (Pa-1) . Distribution: Triangular. Range:
-11.3 to -8.00 (i.e., bulk compressibility range is 1 x 10-11.3 to 1 X 10-8 Pa-1) . Mean, mode: -9.80, -10.0. Corre­
lation: -0.75 rank correlation with BPPRM

BPINTPR~Initial pressure in brine pocket (Pa). Distribution: Triangular. Range: 1.11 x 107 to 1.70 X 107 Pa.
Mean, mode: 1.36 x 107 Pa, 1.27 x 107 Pa.

BPPRM- Logarithm of intrinsic brine pocket permeability (m-), Distribution: Triangular. Range: -14.7 to -9.80
(i.e., permeability range is 1 x 10-14.7 to 1 X 10-9.80 m2) . Mean, mode: -12.1, -11.8. Correlation:
-0.75 rank correlation with BPCOMP.

BPVOL- Pointer variable for selection of brine pocket volume. Distribution: Discrete, with integer values 1, 2, ...,
32 equally likely.

HALCOMP-Bulk compressibility of halite (Pa-1) . Distribution: Uniform. Range: 2.94 x 10-12 to 1.92 X 10-10

PA-l. Mean, median: 9.75 x 10-11 Pa-1, 9.75 x 10-11 Pa-1. Correlation: -0.99 rank correlation withHALPRM

HALPOR-Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 10-3 to 3 X 10-2.

Mean, median: 1.28 x 10-2, 1.00 X 10-2.

HALPRM-Logarithm of halite permeability (m-). Distribution: Uniform. Range: -24 to -21 (i.e., permeability
range is 1 x 10-24 to 1 X 10-21 m-). Mean, median: -22.5, -22.5. Correlation: -0.99 rank correlation with
HALCOMP.
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Table 10. Independent (Le., sampled) Variables Considered in Example Sensitivity Analyses for Two­
Phase Fluid Flow (Source: Table 1, Ref. 103, and Table 1, Ref. 140) (Continued)

SALPRES--Initial brine pressure, without the repository being present, at a reference point located in the center of
the combined shafts at the elevation of the midpoint of Marker Bed (MB) 139 (Pa). Distribution: Uniform. Range:
1.104 x 107 to 1.389 X 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHBCEXP-Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise uniform.
Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRM4SP-Logarithm of permeability (m-) of asphalt component of shaft seal (m2) . Distribution: Triangular.
Range: -21 to -18 (i.e., permeability range is 1 x 1()--21 to 1 X 10-18 m-'), Mean, mode: -19.7,
-20.0.

SHPRMCLY-Logarithm of permeability (m-') for clay components of shaft. Distribution: Triangular. Range: -21
to -17.3 (i.e., permeability range is 1 x 10-21to 1 X 1()--17.3 m2). Mean, mode: -18.9, -18.3.

SHPRMCON---Same as SHPRM4SP but for concrete component of shaft seal for 0 to 400 yr. Distribution: Trian­
gular. Range: -17.0 to -14.0 (i.e., permeability range is 1 x 10-17 to 1 X 10-14 m2). Mean, mode:
-15.3, -15.0.

SHPRMDRZ-Logarithm of permeability (m-') of DRZ surrounding shaft. Distribution: Triangular. Range:
-17.0 to -14.0 (i.e., permeability range is 1 x 10-17 to 1 X 1()--14 m2). Mean, mode: -15.3, -15.0.

SHPRMHAL-Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft seal
at different times. Distribution: Uniform. Range: 0 to 1. Mean, mode: 0.5, 0.5. A distribution of permeability
(m-) in the crushed salt component of the shaft seal is defined for each of the following time intervals: [0, 10 yr],
[10,25 yr], [25, 50 yr], [50, 100 yr], [100,200 yr], [200, 10000 yr]. SHPRMHAL is used to select a permeability
value from the cumulative distribution function for permeability for each of the preceding time intervals with result
that a rank correlation of 1 exists between the permeabilities used for the individual time intervals.

SHRBRSAT-Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. Mean,
median: 0.2, 0.2.

SHRGSSAT-Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. Mean,
median: 0.2, 0.2.

WASTWICK-Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution: Uniform.
Range: 0 to 1. Mean, median: 0.5, 0.5.

WFBETCEL-Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimen­
sionless). Distribution: Uniform. Range: 0 to 1. Mean, median: 0.5,0.5.

WGRCOR--Corrosion rate for steel under inundated conditions in the absence of CO2 (mls). Distribution: Uni­
form. Range: 0 to 1.58 X 10-14 mls. Mean, median: 7.94 x 10-15 mis, 7.94 X 1()--15 mls.

WGRMlCH-Microbial degradation rate for cellulose under humid conditions (mol/leges). Distribution: Uniform.
Range: 0 to 1.27 X 1()--9 mol/kges. Mean, median: 6.34 x 10-10 mol/kges, 6.34 x 10-10 mol/kges,

WGR.MlCI-Microbial degradation rate for cellulose under inundated conditions (mol/leges). Distribution: Uni­
form. Range: 3.17 x 10-10 to 9.51 X 10-9 mol/kges, Mean, median: 4.92 x 1()--9 mol/kg-s, 4.92 x 1()--9 mol/kg-s.
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Table 10. Independent (Le., sampled) Variables Considered in Example Sensitivity Analyses for Two­
Phase Fluid Flow (Source: Table 1, Ref. 103, and Table 1, Ref. 140) (Continued)

WMICDFLG-Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0, 25% 1,
25% 2. WMICDFLG = 0, 1,2 implies no microbial degradation of cellulose, microbial degradation of only cellu­
lose, microbial degradation of cellulose, plastic, and rubber.

WRBRNSAT-Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.552.
Mean, median: 0.276, 0.276.

WRGSSAT-Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.15. Mean,
median: 0.075, 0.075.

Table 11. Time-Dependent Two-Phase Fluid Flow Results for a Drilling Intrusion at 1000 yr that Pene­
trates the Repository and an Underlying Region of Pressurized Brine (Le., an E1 intrusion at
1000 yr) Used to Illustrate Sensitivity Analysis Results

BRNREPTC: Cumulative brine flow (m3) into repository (i.e., into region corresponding to Cells 596 - 625, 638 ­
640 in Fig. 3, Ref. 53).

REP_SATB: Average brine saturation in waste panels not penetrated by the drilling intrusion (i.e., in the region
corresponding to Cells 617 - 625 in Fig. 3, Ref. 53).

WAS_PRES: Pressure (Pa) in waste panel penetrated by the drilling intrusion (i.e., in the region corresponding to
Cells 596 - 616 in Fig. 3, Ref. 53).

Note 1: Effects of the drilling intrusion are only manifested for times greater than 1000 yr. Conditions for times
less than or equal to 1000 yr are the same as for undisturbed conditions (i.e., EO conditions in the terminology of the
1996 WIPP CCA).

Note 2: Suffixes of .1K and .10K are appended to variable names to indicate results at 1000 and 10,000 years, re­
spectively.
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yr),

similar predictive capability. However, as suggested by
the incremental changes in the number of degrees of
freedom, the nonparametric regression procedures (i.e.,
LOESS, PP_REG, RP_REG, GAM) are producing
models that are more complicated than those produced
by the parametric regression procedures (i.e.,
LIN_REG, RANK_REG, QUAD_REG). For PP_REG
and RP_REG, the negative value for the incremental
degrees of freedom associated with the addition of
HALPRM and WASTWICK to the respective models
indicates a reduction in complexity for the constructed
model with the addition of this variable.

It is likely that some of the variables added near
the ends of the stepwise procedures for the individual
regression procedures are spurious. For example, the
variable BHPRM added at the end of the analysis with
PP_REG is obviously spurious because BHPRM does
not affect BRNREPTC.IK. With approximately 30
uncertain variables under consideration and use of an
a-value cutoff of 0.02, the selection of spurious vari­
ables near the end of a stepwise analysis is always a
possibility.
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Table 12. Sensitivity Analyses for Cumulative Brine Flow at 1000 yr into Repository (BRNREPTC.1K)
for Undisturbed Conditions"

Var R 2 df p-value PRS Var R2 df p-value PRS

LIN REG RANK REG

HALPOR 0.9607 1.0 0.0000 8.09E8 HALPOR 0.9550 1.0 0.0000 I.03E5

WMICDFLG 0.9704 1.0 0.0000 6.12E8 WMICDFLG 0.9658 1.0 0.0000 7.85£4

ANHPRM 0.9785 1.0 0.0000 4.57E8 ANHPRM 0.9726 1.0 0.0000 6.37£4

HALPRM 0.9801 1.0 0.0000 4.26E8 HALPRM 0.9749 1.0 0.0000 5.87E4

WRBRNSAT 0.9813 1.0 0.0000 4.02E8 WRBRNSAT 0.9764 1.0 0.0000 5.57E4

WASTWICK 0.9825 1.0 0.0000 3.80E8 WASTWICK 0.9778 1.0 0.0000 5.29E4

SALPRES 0.9831 1.0 0.0019 3.70E8 SALPRES 0.9791 1.0 0.0000 5.00E4

WGRCOR 0.9836 1.0 0.0032 3.62E8 WGRCOR 0.9800 1.0 0.0003 4.82£4

R3 = 0.9831, PRSA = 3.55E8, CT= 0.9221 R3 = 0.9795, PRSA = 4.78E4, CT= 0.9224

QUAD REG LOESS

HALPOR 0.9657 2.0 0.0000 7.09E8 HALPOR 0.9657 2.3 0.0000 7.12E8

ANHPRM 0.9813 3.0 0.0000 4.15E8 ANHPRM 0.9878 36.0 0.0000 3.75E8

WMICDFLG 0.9897 4.0 0.0000 2.42E8 WMICDFLG 0.9945 27.7 0.0000 2.49E8

HALPRM 0.9916 5.0 0.0000 2.08E8 WASTWICK 0.9963 24.6 0.0000 1.57E8

WGRCOR 0.9934 6.0 0.0000 1.75E8 HALPRM 0.9979 44.2 0.0000 2.48E8

WASTWICK 0.9944 7.0 0.0000 1.56E8 R3 = 0.9961, PRSA = 1.45E8, CT= 0.9203

SALPRES 0.9955 8.0 0.0000 1.40E8 RP REG

WRBRNSAT 0.9964 9.0 0.0000 1.17E8 HALPOR 0.9684 7.0 0.0000 7.26E8

SHPRMDRZ 0.9968 10.0 0.0046 1.14E8 ANHPRM 0.9870 15.0 0.0000 4.47E8

WRGSSAT 0.9971 11.0 0.0041 1.07E8 WMICDFLG 0.9924 2.0 0.0000 3.12E8

SHPRMCLY 0.9975 12.0 0.0025 1.04E8 BPCOMP 0.9954 34.0 0.0000 3.80E8

R3 = 0.9966, PRSA = 9.32E7, CT= 0.9211 ANRGSSAT 0.9960 13.0 0.0060 5.61E8

PP REG SALPRES 0.9965 0.0 0.0000 6.51E8

HALPOR 0.9659 2.9 0.0000 7.IOE8 WASTWICK 0.9965 -19.0 0.0000 2.71E8

ANHPRM 0.9868 12.4 0.0000 3.47E8 HALPRM 0.9974 7.0 0.0000 1.58E8

WMICDFLG 0.9933 1.9 0.0000 1.97E8 WGRCOR 0.9980 7.0 0.0000 9.18E7

SHPRMCON 0.9962 46.4 0.0000 3.07E8 SHBCEXP 0.9984 28.0 0.0119 1.54E8

HALPRM 0.9962 -42.1 0.0000 1.84E8 SHPRMCON 0.9985 8.0 0.0085 7.69E7

SALPRES 0.9984 51.3 0.0000 I.97E8 R3 = 0.9978, PRSA = 6.92E7, CT = 0.9223

SHPRMASP 0.9989 32.0 0.0000 2.58E8 GAM

BPVOL 0.9992 3.3 0.0000 1.79E8 HALPOR 0.9661 4.0 0.0000 7.10E8

WRBRNSAT 0.9997 35.0 0.0000 2.68E8 ANHPRM 0.9875 15.0 0.0000 3.10E8

R3 = 0.9995, PRSA = I.92E7, C; = 0.8103 WMICDFLG 0.9932 2.0 0.0000 1.75E8

SRDIRCC TEST HALPRM 0.9944 1.0 0.0000 1.47E8

HALPOR NA 4.0 0.0000 NA WASTWICK 0.9951 2.0 0.0000 1.31E8

R3 = NA, PRSA = NA, CT = 1.0000 SALPRES 0.9956 2.0 0.0000 1.21E8

WGRCOR 0.9961 1.0 0.0000 1.10E8

WRBRNSAT 0.9964 1.0 0.0000 1.02E8

R3 = 0.9961, PRSA = 8.90E7, CT = 0.9593

a Table structure same as described in footnotes to Table 6.
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Fig. 19. Scatterplots for cumulative brine flow at 1000 yr into repository (BRNREPTC.lK) for undisturbed condi­
tions.

The decreasing PRESS values for LIN_REG,
RANK_REG, QUAD_REG and GAM indicate that the
data is not being overfitted. However, there are some
jumps in the PRESS values for LOESS, PP_REG and
RP REG as variables with small indicated effects are
added to the regression model, which suggests that some
overfitting of the data is taking place. Further, with the
exception ofPP_REG, the values for the TDCC (i.e., Cr)
range from 0.92 to 0.96 for the individual regression pro­
cedures and indicate a high degree of reproducibility for
results obtained with the three replicated LHSs of size
100. The PP_REG procedure has a lower level of repro­
ducibility as indicated by a TDCC value of 0.81.

The SRDIRCC test identifies the dominant effect
associated with HALPOR but misses the smaller effects
associated with WMICDFLG, ANHPRMand HALPRM

5.2.2 Cumulative Brine Flow at 10,000
yr (BRNREPTC.10K)

For BRNREPTC.lOK, the methods generally agree
on the three most important variables (i.e., BHPRM,
BPCOMP, and HALPOR, with HALPOR selected fourth
with QUAD_REG and RP_REG) but there is some in­
consistency with respect to the fourth most important
variable (Table 13). The methods also do not agree on
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the total amount of uncertainty that can be explained. As
shown by the scatterplots of the four most important in­
put variables (Fig. 20), there is a definite monotonic rela­
tionship between these variables and BRNREPTC10K.
The linear methods LIN REG and RANK REG each
have a relatively low finalR2 value of 0.71. In addition,
GAM has a final R2 value of 0.79, which suggests that in
addition to nonlinearity there is also interaction between
input variables. The remaining methods, QUAD_REG,
LOESS, PP_REG, and RP_REG, all have R2 values of
about 0.8 or higher after inclusion of the fifth most im­
portant variable. After that, there is considerable dis­
agreement on which inputs make additional contributions
to the uncertainty in BRNREPTC10K. Thus, the only
safe inference that can be drawn from the collective
analyses is that these first five inputs (i.e., BHPRM,
BPCOMP, HALPOR, WMICDFLG, and ANHPRM) are
giving rise to about 80 - 90% of the uncertainty in
BRNREPTC10K. For PP_REG and RP_REG, increases
in PRESS values near the end of the stepwise process
indicate that overfitting of the data could be taking place
as variables with small effects are added to the models.

The SRD/RCC test agrees with the regression meth­
ods on four of the first five variables but also includes
BPPRM as the fifth most important input, which is not in
any of the other models except RP_REG. This differ­
ence probably results from the -0.75 rank correlation
between BPPRM and BPCOMP (see Table 10). All the
regression-based methods select BPCOMP as the second
variable in the stepwise procedure. Because of the indi­
cated correlation, the resultant regression model includes
effects that derive from both BPCOMP and BPPRM,
which reduces the likelihood that BPPRM will be se­
lected at a later step. In contrast, the SRD/RCC test ex­
amines the effects of variables individually, which makes
it more effective in identifying the effects of correlated
variables than is the case for stepwise regression proce­
dures.

The PP_REG procedure has a very low reproducibil­
ity with a TDCC value of 0.40. The LOESS and
RP_REG procedures also have relatively low IDCC
values of 0.72 and 0.71, respectively. In contrast, the
TDCC values for the other methods range between 0.87
and 0.96, which indicates fairly high levels of reproduci­
bility.

5.2.3 Brine Saturation at 1000 yr
(REP_SATB.1K)

The analysis for REP_SATB.1K (Table 14) produce
results very similar to those BRNREPTC1K (Table 12),
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where the linear methods performed well. All the meth­
ods agree on the four most important input variables (i.e.,
HALPOR, WGRCOR, WMICDFLG, WASTWICK). All
the regression-based methods indicate that HALPOR
accounts for about 60% of the uncertainty in
REP_SATB.1K. They also indicate that WGRCOR is
responsible for an additional 20% of the uncertainty in
REP SATB.1K. The dominant effects of HALPOR and
WGRCOR are clearly evident in the corresponding scat­
terplots in Fig. 21. In addition, WMICDFLG and
WASTWICK account for about another 10% and 5%,
respectively, of the uncertainty in REP_SATB.1K. The
SRD/RCC test also identifies these four variables in the
same order as the regression-based methods. All methods
also have high TDCC values, indicating a high level of
reproducibility. However, PP_REG and RP_REG have
jumps in PRESS values at the end of the stepwise proc­
ess as variables with small effects are added to the mod­
els, which indicates that an overfitting of the data could
be taking place.

5.2.4 Brine Saturation at 10,000 yr
(REP_SATB.10K)

All methods identify WGRCOR and BHPRM as the
two most important contributors to the uncertainty in
REP_SATB.10K (Table 15). The linear methods (i.e.,
LIN_REG and RANK_REG) underperform the other
regression methods in that they appear to underestimate
the contributions of WGRCOR and BHPRM to the un­
certainty in REP_SATB.1OK (i.e., compare R2 values
for the different regression procedures in Table 15).
Specifically, LIN_REG and RANK_REG indicate that
WGRCOR accounts for about 22 - 28% of the uncer­
tainty in REP_SATB.10K while the other methods indi­
cate that WGRCOR contributes in the range of 42 ­
48% of the uncertainty in REP_SATB.10K. From this,
it is then clear that BHPRM accounts for another 15 ­
20% of the uncertainty above and beyond that ac­
counted for by WGRCOR.

After WGRCOR and BHPRM, the individual analy­
ses generally indicate that additional contributions to
the uncertainty in REP_SATB.1OK are made primarily
by HALPOR (~1O -15%) and BPCOMP (~5%), with
smaller contributions from WMICDFLG, ANHPRMand
WASTWICK (~2% each). As shown by the scatterplots
in Fig. 22, WGRCOR and BHPRM have visually dis­
cemable effects on REP_SATB.10K, while the less im­
portant contributors to the uncertainty in
REP_SATB.10K have effects that are identifiable by the
analysis procedures but are less apparent in a visual
examination.



Table 13. Sensitivity Analyses for Cumulative Brine Flowat 10,000 yr into Repository (BRNREPTC.10K)
foran E1 Intrusion at 1000 yra

Var R2 df p-value PRS Var R2 df p-value PRS

LIN REG RANK REG

BHPRM 0.2868 1.0 0.0000 1.64Ell BHPRM 0.3415 1.0 0.0000 1.50E6

BPCOMP 0.4590 1.0 0.0000 1.26Ell BPCOMP 0.4874 1.0 0.0000 1.18E6

HALPOR 0.5645 1.0 0.0000 1.02EIl HALPOR 0.6065 1.0 0.0000 9.12E5

WMICDFLG 0.6267 1.0 0.0000 8.83EIO WMICDFLG 0.6778 1.0 0.0000 7.52E5

ANHPRM 0.6556 1.0 0.0000 8.24EIO BPVOL 0.6974 1.0 0.0000 7.l2E5

BPVOL 0.6797 1.0 0.0000 7.73EIO ANHPRM 0.7104 1.0 0.0003 6.87E5

SHRGSSAT 0.6886 1.0 0.0041 7.57EIO BPINTPRS 0.7Il7 1.0 0.0063 6.75E5

BPINTPRS 0.6976 1.0 0.0035 7.4IEIO R~ = 0.7109, PRSA = 6.70E5, CT= 0.9629

WGRCOR 0.7045 1.0 0.0098 7.30ElO LOESS

WASTWICK 0.7109 1.0 0.OIl8 7.20ElO BHPRM 0.2933 2.3 0.0000 1.64EII

R~ = 0.7009, PRSA = 7.10ElO, CT= 0.9467 BPCOMP 0.5242 10.8 0.0000 1.22EIl

QUAD REG HALPOR 0.7473 50.6 0.0000 1.03Ell

BHPRM 0.2923 2.0 0.0000 1.64Ell ANHPRM 0.7404 -21.7 0.0012 8.87EIO

BPCOMP 0.4890 3.0 0.0000 1.23EIl WMICDFLG 0.8379 15.5 0.0000 6.l7EIO

WMICDFLG 0.6088 4.0 0.0000 9.62EIO BPVOL 0.8814 22.5 0.0000 5.83EIO

HALPOR 0.7182 5.0 0.0000 7.l8EIO R~ = 0.8382, PRSA = 5.07EIO, CT= 0.7243

ANHPRM 0.7831 6.0 0.0000 6.03EIO RP REG

BPVOL 0.8215 7.0 0.0000 5.30EIO BHPRM 0.2868 1.0 0.0000 1.66Ell

WGRCOR 0.8477 8.0 0.0000 4.89EIO BPCOMP 0.5244 11.0 0.0000 1.25EIl

BPINTPRS 0.8709 9.0 0.0000 4.67EIO WMICDFLG 0.6582 12.0 0.0000 1.0lEIl

SHPRMDRZ 0.8866 10.0 0.0004 4.44EIO HALPOR 0.7899 16.0 0.0000 7.37EIO

SHPRMCON 0.8978 11.0 0.0093 4.43EIO ANHPRM 0.8909 42.0 0.0000 5.95EIO

SHPRMCLY 0.9087 12.0 0.0129 4.36EIO HALPRM 0.9281 41.0 0.0002 9.02EIO

R~ = 0.8770, PRSA = 3.80EIO, CT= 0.9174 BPPRM 0.9461 19.0 0.0003 7.32EIO

PP_REG R~ = 0.8973, PRSA = 4.49EIO, CT= 0.7110

BHPRM 0.2916 1.7 0.0000 1.65EII GAM

BPCOMP 0.4768 1.3 0.0000 1.29Ell BHPRM 0.2928 2.0 0.0000 1.64Ell

HALPOR 0.6822 25.0 0.0000 1.09EII BPCOMP 0.4880 2.0 0.0000 1.22Ell

WMICDFLG 0.8256 19.0 0.0000 7.06EIO HALPOR 0.60Il 4.0 0.0000 9.74EIO

ANRGSSAT 0.8389 2.6 0.0001 7.80EIO ANHPRM 0.6876 7.0 0.0000 8.03EIO

R~ = 0.8069 PRSA = 5.35EIO, CT = 0.3972 WMICDFLG 0.7450 2.0 0.0000 6.60EIO

SRD/RCC TEST BPVOL 0.7596 1.0 0.0000 6.28EIO

BHPRM NA 4.0 0.0000 NA SHRBRSAT 0.7846 10.0 0.0008 6.02EIO

BPCOMP NA 4.0 0.0000 NA SHRGSSAT 0.7951 4.0 0.0099 5.90EIO

HALPOR NA 4.0 0.0000 NA WGRCOR 0.8042 2.0 0.0024 5.7IEIO

BPPRM NA 4.0 0.0000 NA WASTWICK 0.8107 1.0 0.0028 5.58EIO

WMICDFLG NA 4.0 0.0000 NA SHPRMCLY 0.8181 2.0 0.0057 5.44EIO

BPVOL NA 4.0 0.0057 NA R~ = 0.7924, PRSA = 5.44EIO, CT= 0.8729

R~ = NA, PRSA =NA, CT = 0.9225

a Table structure same as described in footnotes to Table 6.
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Table 14. Sensitivity Analyses forAverage Brine Saturation at 1000 yr in Waste Panels Not Penetrated
by a Drilling Intrusion (REP_SATB.1K) for Undisturbed Conditions"

Var R 2 df p-value PRS Var R2 df p-value PRS

LIN REG RANK REG

HALPOR 0.5739 1.0 0.0000 1.30E2 HALPOR 0.6141 1.0 0.0000 8.79E5

WGRCOR 0.7398 1.0 0.0000 7.99EI WGRCOR 0.7704 1.0 0.0000 5.27E5

WMlCDFLG 0.8267 1.0 0.0000 5.36El WASTWICK 0.8516 1.0 0.0000 3.44E5

WASTWICK 0.8792 1.0 0.0000 3.77El WMlCDFLG 0.9201 1.0 0.0000 1.87E5

SHRGSSAT 0.8819 1.0 0.0092 3.71EI R~ = 0.9190, PRSA = 1.86E5, Cr= 0.9973

R~ = 0.8799, PRSA = 3.68EI, Cr= 0.9834 LOESS

QUAD REG HALPOR 0.5821 2.3 0.0000 1.28E2

HALPOR 0.5835 2.0 0.0000 1.28E2 WGRCOR 0.8025 9.7 0.0000 6.52EI

WGRCOR 0.7904 3.0 0.0000 6.59EI WMlCDFLG 0.9593 67.3 0.0000 2.40EI

WMlCDFLG 0.9211 4.0 0.0000 2.53EI WASTWICK 0.9919 4.0 0.0000 5.IOEO

WASTWICK 0.9804 5.0 0.0000 6.74EO R~ = 0.9888, PRSA = 4.69EO, C; = 1.000

WRBRNSAT 0.9825 6.0 0.0000 6.35EO RP_REG

SALPRES 0.9841 7.0 0.0002 6.04EO HALPOR 0.6461 10.0 0.0000 1.30E2

ANHPRM 0.9853 8.0 0.0124 6.04EO WGRCOR 0.8161 7.0 0.0000 7.84EI

SHPRMDRZ 0.9864 9.0 0.0114 5.88EO WMlCDFLG 0.9487 31.0 0.0000 2.82EI

R~ = 0.9841, PRSA = 5.62EO, Cr= 0.9243 WASTWICK 0.9896 42.0 0.0000 9.96EO

PP REG ANHBCVGP 0.9929 31.0 0.0000 1.09EI

HALPOR 0.5822 2.0 0.0000 1.29E2 R~ = 0.9881, PRSA = 6.0IEO, Cr= 0.9664

WGRCOR 0.8001 4.0 0.0000 6.44EI GAM

WMlCDFLG 0.9430 25.4 0.0000 2.31EI HALPOR 0.5821 2.0 0.0000 1.28E2

WASTWICK 0.9926 12.7 0.0000 4.22EO WGRCOR 0.7564 2.0 0.0000 7.60EI

SHRGSSAT 0.9946 25.4 0.0000 5.43EO WMlCDFLG 0.8409 2.0 0.0000 5.02EI

BHPRM 0.9961 16.6 0.0000 5.74EO WASTWICK 0.8953 2.0 0.0000 3.36EI

R~ = 0.9945 PRSA = 2.36EO, Cr= 0.8598 R~ = 0.8925, PRSA = 3.33EI, Cr= 0.9546

SRD/RCC TEST

HALPOR NA 4.0 0.0000 NA

WGRCOR NA 4.0 0.0000 NA

WMlCDFLG NA 4.0 0.0000 NA

WASTWICK NA 4. 0.0000 NA

R~ =NA,PRSA =NA, Cr= 0.9102

a Table structure same as described in footnotes to Table 6.
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Table 15. Sensitivity Analyses for Average Brine Saturation at 10,000 yr in Waste Panels Not Pene­
trated by a Drilling Intrusion (REP_SATB.10K) for an E1 Intrusion at 1000 yra

Var R 2 df p-value PRS Var R 2 df p-value PRS

LIN_REG RANK.ftEG

WGRCOR 0.2803 1.0 0.0000 2.18E2 BHPRM 0.2619 1.0 0.0000 1.68E6

BHPRM 0.4359 1.0 0.0000 1.72E2 WGRCOR 0.4790 1.0 0.0000 1.19E6

HALPOR 0.5111 1.0 0.0000 1.50E2 HALPOR 0.5584 1.0 0.0000 1.02E6

BPCOMP 0.5811 1.0 0.0000 1.30E2 BPCOMP 0.6226 1.0 0.0000 8.78E5

SHRGSSAT 0.6048 1.0 0.0000 1.23E2 WASTWICK 0.6488 1.0 0.0000 8.23E5

WASTWICK 0.6258 1.0 0.0001 1.18E2 WMICDFLG 0.6703 1.0 0.0000 7.78E5

WMICDFLG 0.6443 1.0 0.0001 1.12E2 SHRGSSAT 0.6815 1.0 0.0015 7.56E5

ANHPRM 0.6601 1.0 0.0003 1.08E2 ANHPRM 0.6928 1.0 0.0012 7.35E5

BPVOL 0.6696 1.0 0.0041 1.06E2 BPVOL 0.7023 1.0 0.0026 7.17E5

R3 = 0.6594, PRSA = 1.06E2, CT =0.9003 R3 = 0.6931 PRSA = 7.17E5, CT = 0.8966

QUAD REG LOESS

WGRCOR 0.4232 2.0 0.0000 1.76E2 WGRCOR 0.4751 5.6 0.0000 1.64E2

BHPRM 0.5992 3.0 0.0000 1.24E2 BHPRM 0.7118 29.1 0.0000 1.07E2

HALPOR 0.6717 4.0 0.0000 1.04E2 BPCOMP 0.7401 -11.3 0.0000 9.21El

BPCOMP 0.7449 5.0 0.0000 8.48El HALPOR 0.7968 14.1 0.0000 8.10El

WMICDFLG 0.7835 6.0 0.0000 7.48El R3 = 0.7676, PRSA = 8.00El, CT =0.9203

WASTWICK 0.8101 7.0 0.0000 7.04El RP_REG

ANHPRM 0.8329 8.0 0.0000 6.66El WGRCOR 0.4836 7.0 0.0000 1.68E2

SHRGSSAT 0.8496 9.0 0.0012 6.40El BHPRM 0.6905 10.0 0.0000 1.20E2

R3 = 0.8237, PRSA = 6.22El, CT =0.9120 HALPOR 0.7689 14.0 0.0000 1.06E2

PP REG BPCOMP 0.8336 9.0 0.0000 7.66EI

WGRCOR 0.4736 4.3 0.0000 1.64E2 WASTWICK 0.8740 20.0 0.0000 8.39El

BHPRM 0.6472 5.5 0.0000 1.14E2 SHRGSSAT 0.8971 24.0 0.0047 7.77El

SHPRMCLY 0.7382 27.4 0.0000 1.14E2 R3 = 0.8570, PRSA = 5.99EI, CT =0.8300

BPCOMP 0.7954 -2.5 0.0000 9.98EI GAM

HALPRM 0.8657 30.0 0.0000 9.16EI WGRCOR 0.4719 4.0 0.0000 1.63E2

BPVOL 0.8985 12.6 0.0000 1.06E2 BHPRM 0.6523 2.0 0.0000 1.09E2

R3 = 0.8632 PRSA = 5.60EI, CT =0.6226 HALPOR 0.7227 4.0 0.0000 8.88El

SRDIRCC TEST BPCOMP 0.7732 1.0 0.0000 7.35El

WGRCOR NA 4.0 0.0000 NA WASTWICK 0.7994 4.0 0.0000 6.7lEl

BHPRM NA 4.0 0.0000 NA ANHPRM 0.8169 2.0 0.0000 6.24EI

HALPOR NA 4.0 0.0000 NA WMICDFLG 0.8443 2.0 0.0000 5.35EI

BPCOMP NA 4.0 0.0001 NA R3 = 0.8338, PRSA = 5.34EI, CT =0.9000

BPPRM NA 4.0 0.0144

R3 = NA, PRSA = NA, CT = 0.9292

a Table structure same as described in footnotes to Table 6.
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Fig. 22. Scatterplots for average brine saturation at 10,000 yr in waste panels not penetrated by a drilling intrusion
(REP_SATB.10K) for an El intrusion at 1000 yr.

Although PP_REG has a reasonably high R2 value,
it has a low TDCC of 0.62. The reasons for the lack of
reproducibility, and thus overall poor performance of
the PP_REG procedure in this example, are not clear at
this time. Also, PP_REG and RP_REG again have
jumps in PRESS values at the end of the stepwise proc­
ess as variables with very small effects are added to the
models, which indicates that an overfitting of the data
could be taking place.

The other regression methods have TDCCs be­
tween 0.83 and 0.92, which suggests that they are pro­
viding more reproducible results than the PP_REG pro-

cedure. The SRD/RCC test agrees with the regression
methods on the first four variables and also has a high
TDCC of 0.93. It also includes BPPRMwhen none of
the other methods do. As discussed in conjunction with
BRNREPTC.10K in Sect. 5.2.2, this difference in vari­
able selection probably results from the -0.75 rank cor­
relation between BPPRM and BPCOMP.

5.2.5 Pressure at 1000 yr
(WAS_PRES.1K)

The analyses for WAS_PRES.1K (Table 16) show
again that linear models can work quite well in some
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Table 16. Sensitivity Analysis for Pressure at 1000 yr in Waste Panel Penetrated by a Drilling Intrusion
(WAS_PRES.1K) for Undisturbed Conditions"

Var R2 df p-value PRS Var R2 df p-value PRS

LIN REG RANK REG

WMlCDFLG 0.8457 1.0 0.0000 4.67El WMlCDFLG 0.7830 1.0 0.0000 4.94E5

WGRCOR 0.9193 1.0 0.0000 2.46El WGRCOR 0.8909 1.0 0.0000 2.51E5

WASTWICK 0.9503 1.0 0.0000 1.53El WASTWICK 0.9366 1.0 0.0000 1.47E5

HALPOR 0.9535 1.0 0.0000 1.44El HALPOR 0.9427 1.0 0.0000 l.34E5

ANHPRM 0.9559 1.0 0.0001 l.38El ANHPRM 0.9456 1.0 0.0001 l.28E5

WGRMlCI 0.9573 1.0 0.0016 l.34El WGRMlCI 0.9468 1.0 0.0094 1.26E5

ANHBCVGP 0.9582 1.0 0.0161 l.32El R~ = 0.9457, PRSA = 1.26E5, CT =0.9834

R~ = 0.9572, PRSA = l.32El, CT =0.9401 LOESS

QUAD_REG WMlCDFLG 0.8564 2.0 0.0000 4.37El

WMICDFLG 0.8564 2.0 0.0000 4.37El WGRCOR 0.9528 25.4 0.0000 1.74El

WGRCOR 0.9451 3.0 0.0000 UIEI WASTWICK 0.9852 47.0 0.0000 8.04EO

WASTWICK 0.9769 4.0 0.0000 7.44EO HALPOR 0.9924 9.0 0.0000 5.25EO

HALPOR 0.9861 5.0 0.0000 4.64EO WGRMICI 0.9949 44.3 0.0018 9.02EO

WGRMlCI 0.9886 6.0 0.0000 4.l0EO R~ = 0.9911, PRSA = 4.68EO, CT =0.9755

ANHPRM 0.9900 7.0 0.0000 3.74EO RP_REG

WGRMlCH 0.9908 8.0 0.0067 3.70EO WMlCDFLG 0.8564 4.0 0.0000 4.45El

R~ = 0.9895, PRSA = 3.57EO, CT = 0.9569 WGRCOR 0.9505 13.0 0.0000 U8El

PP_REG WASTWICK 0.9782 13.0 0.0000 9.54EO

HALPOR 0.9929 52.0 0.0000 6.55EO

WMICDFLG 0.8564 2.0 0.0000 4.37El SHPRMCON 0.9940 19.0 0.0157 8.38EO

WGRCOR 0.9458 4.3 0.0000 UIEI WGRMlCI 0.9955 19.0 0.0001 I.03El

WASTWICK 0.9718 3.8 0.0000 8.29EO R~ = 0.9924, PRSA = 3.80EO, CT = 0.9593

WRBRNSAT 0.9827 30.5 0.0000 9.15EO GAM

HALPOR 0.9904 9.9 0.0000 5.49EO WMlCDFLG 0.8457 1.0 0.0000 4.67El

SHBCEXP 0.9947 27.8 0.0000 6.68EO WGRCOR 0.9338 3.0 0.0000 2.05El

HALPRM 0.9960 19.7 0.0000 6.l6EO WASTWICK 0.9654 2.0 0.0000 1.09El

ANHBCVGP 0.9963 1.5 0.0002 6.72EO HALPOR 0.9695 1.0 0.0000 9.72EO

SHRBRSAT 0.9978 21.3 0.0000 8.47EO ANHPRM 0.9721 2.0 0.0000 8.99EO

R~ = 0.9963 PRSA = 1.87EO,CT = 0.8671 WGRMlCI 0.9732 2.0 0.0042 8.79EO

SRD/RCC TEST HALPRM 0.9763 15.0 0.0025 8.61EO

WMICDFLG NA 4.0 0.0000 NA R~ = 0.9741, PRSA = 8.55EO, CT =0.8834

WGRCOR NA 4.0 0.0000 NA

WASTWICK NA 4.0 0.0001 NA

SHPRMASP NA 4.0 0.0120 NA

R~ = NA, PRSA = NA, CT = 0.8697

a Table structure same as described in footnotes to Table 6.
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situations. The dominant variable contributing to the
uncertainty in WAS_PRES1K is WM1CDFLG, with the
regression methods indicating that WMICDFLG ac­
counts for approximately 85% of the uncertainty in
WAS PRES1K. After WMICDFLG, the variable
WGR-COR contributes an additional 10% of the uncer­
tainty to WAS_PRES1K. Owing to the linearity of the
relationships between WMICDFLG, WGRCOR and
WAS PRES1K (Fig. 23), the estimated contributions of
WMICDFLG and WGRCOR to the uncertainty in
WAS PRES1K are approximately the same for all re­
gression methods. Further, the next two most important
contributors to the uncertainty in WASyRES1K (i.e.,
WASTWICK and HALPOR) are also consistently identi­
fied by all the regression methods. However, the ef­
fects of WASTWICK and HALPOR are small relative to
the effects associated with WMICDFLG and WGRCOR
as indicated by the incremental R2 values associated
with individual regressions and the scatterplots in Fig.
23. As indicated by the incremental degrees offreedom
for individual regression models, the nonparametric
regression models are considerably more complex than
the models constructed with the linear regression pro­
cedures.

The SRD/RCC test produces results consistent
with the regression methods in that it identifies
WMICDFLG, WGRCOR and WASTWICK, in that or­
der, as the three dominant contributors to the uncer­
tainty in WASyRES1K. However, the identification
of an effect for SHPRMASP by the SRDIRCC test is
probably spurious.

All of the procedures result in TDCCs close to or
above 0.9. Thus, reproducible results for all procedures
are being obtained for the dominant contributors to the
uncertainty in WAS_PRES1K. However, the large
number of variables with marginal effects selected at
the end of the analysis with PP_REG and the associated
increases in PRESS values suggest that an overfitting
of the data is taking place. Some increases in PRESS
values near the end of the stepwise process also takes
place for LOESS and RP_REG.
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5.2.6 Pressure at 10,000 yr
(WAS_PRES. 10K)

The limitations of linear methods for sensitivity
analysis are shown in the analyses for WAS_PRES.10K
(Table 17). The dominant variable contributing to the
uncertainty in WAS_PRES1OK is BHPRM (Fig. 24)
and provided the illustrative example used for scatter­
plot smoothers in Sect. 3.1. The relationship between
BHPRM is both nonlinear and nonmonotonic. Linear
regression with raw or rank-transformed data is essen­
tially useless in this case and fails to even include
BHPRM in the model when it is clearly the input most
responsible for the uncertainty in the output (Table 17).
While linear regression with raw or rank-transformed
data had final R2 values of about 0.27, the nonparamet­
ric methods and also QUAD_REG had R2 values in the
0.8 - 0.9 range. Because of its limitations in higher
dimensions, LOESS will sometimes include too few
variables in the model, which may be the case here.

The analyses with QUAD_REG, LOESS, GAM,
PP REG and RP REG all had reasonably high R2 val­
ue;- (i.e., 0.85, (}84, 0.79, 0.83, 0.95) and generally
agreed on the four most important variables (i.e.,
BHPRM, HALPRM, BPCOMP, ANHPRM), although
RP REG and PP REG include WGRCOR as the sec­
ond and third variable, respectively, in the model (see
Table 17). All methods indicated that BHPRM was
responsible for about 50% of the uncertainty in
WAS PRES.10K. However, PP_REG had a TDCC of
0.64,-which is low. The analysis with RP_REG has a
high R2 value of 0.95 and a TDCC of 0.86. The analy­
ses with GAM and QUAD_REG have TDCC values of
0.75 and 0.86, respectively, but have lower R2 values
than RP REG. Based on the methods with high R2
values, a-breakdown for percentage contributors to the
uncertainty in WAS_PRES 1OKwould be BHPRM with
50%, BPCOMP with about 10%, HALPRM with 5 ­
10%, WGRCOR with 5 -10%, andANHPRMwith 5­
10%. After that, HALPOR may account for as much as
another 5%. Again, the SRDIRCC test agrees with the
regression methods on the first four variables and has a
high TDCC of 0.91.

As seen in other analyses, jumps in PRESS values
occur for LOESS, PP_REG and RP_REG near the end
of the stepwise process.
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Fig. 23. Scatterplots for pressure at 1000 yr in waste panel penetrated by a drilling intrusion (WAS_PRES1K) for
undisturbed conditions.
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Table 17. Sensitivity Analyses for Pressure at 10,000 yr in Waste Panel Penetrated by a Drilling Intru­
sion (WAS_PRES. 10K) for an E1 Intrusion at 1000 yra

Var R2 df p-value PRS Var R2 df p-value PRS

LIN_REG RANK_REG

HALPRM 0.1188 1.0 0.0000 2.67E2 HALPRM 0.1207 1.0 0.0000 2.00E6

BPCOMP 0.1724 1.0 0.0000 2.53E2 BPCOMP 0.1716 1.0 0.0000 1.90E6

ANHPRM 0.2168 1.0 0.0001 2.41E2 ANHPRM 0.2023 1.0 0.0008 1.84E6

HALPOR 0.2428 1.0 0.0016 2.35E2 BPVOL 0.2258 1.0 0.0030 1.80E6

BPVOL 0.2679 1.0 0.0017 2.28E2 HALPOR 0.2494 1.0 0.0026 1.76E6

R~ = 0.2554, PRSA = 2.28E2, Cr = 0.7730 SHRGSSAT 0.2636 1.0 0.0182 1.74E6

QUAD_REG R~ = 0.2485, PRSA = 1.74E6, C; = 0.8835

BHPRM 0.4550 2.0 0.0000 1.66E2 LOESS

HALPRM 0.5499 3.0 0.0000 1.39E2 BHPRM 0.5312 17.5 0.0000 I. 59E2

BPCOMP 0.6201 4.0 0.0000 1.22E2 HALPRM 0.6332 16.4 0.0000 1.39E2

ANHPRM 0.6873 5.0 0.0000 1.05E2 ANHPRM 0.7444 32.4 0.0000 1.23E2

HALPOR 0.7299 6.0 0.0000 9.52El BPCOMP 0.8371 39.8 0.0000 1.35E2

WGRCOR 0.7713 7.0 0.0000 8.59El R~ = 0.7477, PRSA = 1.18E2, Cr = 0.7733

WMICDFLG 0.8030 8.0 0.0000 7.83El RP_REG

BPVOL 0.8273 9.0 0.0001 7.41EI BHPRM 0.5294 16.0 0.0000 1.69E2

BPINTPRS 0.8456 10.0 0.0018 7.28El WGRCOR 0.6588 26.0 0.0000 1.73E2

R~ = 0.8116, PRSA = 6.92El, Cr = 0.8646 BPCOMP 0.7628 17.0 0.0000 1.45E2

PP_REG ANHPRM 0.8049 8.0 0.0000 1.21E2

BHPRM 0.4992 9.7 0.0000 1.62E2 HALPRM 0.8540 4.0 0.0000 1.70E2

HALPRM 0.5882 4.7 0.0000 1.40E2 WRBRNSAT 0.9230 52.0 0.0000 8.21El

WGRCOR 0.6794 20.5 0.0000 1.45E2 BPINTPRS 0.9495 34.0 0.0007 1.16E2

BPCOMP 0.7181 -15.0 0.0000 1.13E2 R~ = 0.8937, PRSA = 6.74El, Cr = 0.8632

HALPOR 0.8261 24.9 0.0000 1.14E2 GAM

R~ = 0.7955, PRSA = 7.30El, Cr = 0.6399 BHPRM 0.4992 10.0 0.0000 1.61E2

SRDIRCC TEST HALPRM 0.5613 1.0 0.0000 1.42E2

BHPRM NA 4.0 0.0000 NA ANHPRM 0.6305 4.0 0.0000 1.23E2

HALPRM NA 4.0 0.0000 NA BPCOMP 0.6884 2.0 0.0000 1.06E2

BPCOMP NA 4.0 0.0002 NA HALPOR 0.7296 4.0 0.0000 9.46El

ANHPRM NA 4.0 0.0011 NA WGRCOR 0.7564 4.0 0.0000 8.78El

BPVOL NA 4.0 0.0149 NA BPVOL 0.7666 1.0 0.0007 8.47El

R~ = NA, PRSA = NA, Cr = 0.9074 SHRBRSAT 0.7776 4.0 O.oI11 8.30EI

SHRGSSAT 0.7833 1.0 0.0084 8.16El

BPINTPRS 0.7891 1.0 0.0075 7.99El

R~ = 0.7638, PRSA = 7.96EI, Cr = 0.7460

a Table structure same as described in footnotes to Table 6.
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Fig. 24. Scatterplots for pressure at 10,000 yr in waste panel penetrated by a drilling intrusion (WAS_PRES.10K)
for an EI intrusion at 1000 yr.
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6. Observations and Insights

The following observations and insights are based
on the examples described in this presentation. Non­
parametric methods worked quite well for sensitivity
analysis and provide a useful addition to currently em­
ployed sampling-based sensitivity analysis procedures.

The overall best method considered in this study is
RP_REG. In the test cases, it almost always ordered
the input variables correctly and estimated the contribu­
tions to R2 accurately. The drawback is that it gener­
ally takes longer to apply than any of the other meth­
ods.

The GAM and QUAD_REG procedures displayed
good performance on the test data and are fast compu­
tationally. The QUAD_REG procedure can model a
certain degree of interaction while GAM does not.
However, GAM can model more general nonlinearity
than QUAD_REG. Also, multiplicative interaction
terms could be used in GAM to make it a more general
method.

The LOESS and PP_REG procedures exhibited
some problems that could reduce their usefulness for
sensitivity analysis. Specifically, LOESS sometimes
failed to identify important input variables, although it
usually identified the two most important variables. The
PP_REG procedure showed a tendency to err in the
opposite direction and often included insignificant in­
put variables in the model. This tendency was indi­
cated by the jumps in PRESS values that often occurred
near the end of the stepwise implementation of
PP_REG.

The SRD/RCC test also performed well and identi­
fied the dominant variables in all the analyses. The
drawback to this test is that it does not provide the frac­
tion of the uncertainty in the dependent variable ex­
plained by each of the identified independent variables.
However, it has an advantage over the non-parametric
regression procedures in being both conceptually sim­
ple and computationally quick.

Given the nonlinear relationships that can be pre­
sent in analyses with complex computer models, one
should be cautious about using only linear methods for
sensitivity analysis. However, when a linear regression
with raw or rank-transformed data is appropriate, it
should be used as it is the easiest method to implement
and interpret.
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A reasonable analysis strategy is initially to fit lin­
ear regressions with raw and rank-transformed data and
observe the R2 values. If these values are below 0.9,
then fit a QUAD_REG surface. If QUAD_REG also
has an R2 below 0.9, then fit a GAM surface. If the
GAM surface still has a low R2, then fit a RP_REG
model. This approach restricts the use of the more
computationally demanding RP_REG procedure to
situations where its use is necessary. This is important
because real analyses can involve carrying out sensitiv­
ity analyses for hundreds of time-dependent analysis
results (e.g., see the sensitivity analyses summarized in
Ref. 56).

If the resources are not available to carry out the
indicated sequence of nonparametric regressions, then
the SRD/RCC test provides a computationally efficient
way to identify nonlinear relationships. Another analy­
sis possibility is to use the SRD/RCC test to identify the
dominant contributors to the uncertainty in a dependent
variable, and then consider only these dominant vari­
ables in a nonparametric regression analysis.

The authors' experience is that linear regression
with rank-transformed data and examination of associ­
ated scatterplots are usually sufficient to carry out a
successful sensitivity analysis. However, there are
situations where this approach will not be successful.
Then, nonparametric regression procedures can often
provide the needed techniques to determine the rela­
tionships between uncertain analysis inputs and analy­
sis results.

Additional generalized regression procedures also
exist that merit investigation for their potential useful­
ness in sensitivity analysis. For example, additional
procedures for additive modeling include the Alternat­
ing Conditional Expectation (ACE) algorithm'Y' and
the Additivity and Variance Stabilization (AVAS) algo­
rithm l54 (see Ref. 120, pp. 175 - 194, for additional
discussion of the ACE and AVAS algorithms). There
are also more sophisticated forms of recursive partition­
ing such as Multivariate Adaptive Regression Splines
(MARS) (Ref. 155; also Ref. 120, pp. 275 - 277) and
Smoothed and Unsmoothed Piecewise-Polynomial Re­
gression Trees (SUPPORT).156 As the recursive parti­
tioning technique (Sect. 3.3.4) was the best of the pre­
sented nonparametric regression methods, these two
techniques merit investigation for use in sensitivity
analysis. Gaussian process models have also been pro­
posed for use in sensitivity analysis.157-159 A compari­
son of the performance of Gaussian process models and
nonparametric regression models in sensitivity analysis
would be interesting.
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Appendix A: R Code

This document is a supplement to the Sand Report entitled "Multiple Predictor Smoothing Methods for

Sensitivity Analysis". Here we list the R functions and scripts used to generate the analyses in the paper. Although

these functions were written for the R language, they should work in S-Plus as well. R is an open source language

that can be downloaded at http://www . r-proj ect. org/.

1. Example R script

The following R Script will perform a sensitivity analysis on examples 1-4 from the paper. This can be

executed by putting all of the functions listed in Section 3 in a file called funct ions. R and this script in a file

called run_ exampl es . R. Assuming both files are in the present working directory, typing the command

> source('run_examples.R')

at the R prompt will perform the sensitivity analysis and output the results to the files yl_ table. out,

y2_table.out, y3_table.out, and y4_table.out. The content of the file yl_table.out that is

generated is given in Section 2. Equivalently one could copy and paste the lines of the following script at the R

prompt in pieces or all at once. The script should take anywhere from 10 minutes to an hour to run depending on

the computer. You may need to install the R packages locfit and gam if they are not already installed. This can

be accomplished by typing the commands

> install.packages('locfit')
> install.packages('gam')

at the R prompt.

Notice that the first few lines of the run_ exampl es. R script randomly generates data to be used for the

sensitivity analysis. If we were to perform a sensitivity analysis on real data, we would simply replace lines 5-23

with a statement that imports our data. If the data is stored in a tab delimited ascii file called real_data. txt

then the following command will read the file into the data frame sens. dat.

> sens.dat <- read.table('real_data.txt' ,header=T)

Type ?read. table at the R prompt for more help on how to read in the data. The rest of this section is the
run_examples. R script.

##################### run_examples.R ############################

source('functions.R')
library('locfit')
library ( 'gam' )

set.seed(12)

a <- c(O,1,4.5,9,99,99,99,99)

A-I



ans
sin(2*pi*X[,1]-pi) + 7*(sin(2*pi*X[,2]-pi))A 2 +
0.1*(2*pi*X[,3]-pi)A4*sin(2*pi*X[,1]-pi)

<­
<-

}
Y [,3]
Y [, 4]

x <- matrix (runif (3000) ,ncol=10)
Y <- matrix(nrow=300,ncol=4)
Y[,l] <.> 5*X[,1]+(5*X[,2])A4
Y[,2] <- (X[,2]+.5)A4/(X[,1]+.5)A2
ans <- rep(1,300)
for(j in 1:8) {

ans <- ans*(abs(4*X[,j]-2)+a[j])/(1+a[j])

sens.dat <- as.data.frame(cbind(X,Y))
names (sens.dat) <- c(paste("x",l:10,sep=' ') ,paste("y",1:4,sep=' '))
sens.datl «- sens.dat[1:100,]
sens.dat2 «- sens.dat[101:200,]
sens.dat3 «- sens.dat[201:300,J

x.loc <- 1:10
y.loc <- 11:14

################ Perform SA on entire sample of size 300 ###################

sim.true «- true.order()

sim.reg «- sensitivity(sens.dat, x.loc, y.loc, surface='reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=T, CV=T)

sim.rreg «- sensitivity(sens.dat, x.loc, y.loc, surface='rank',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=T, CV=T)

sim.rsreg «- sensitivity(sens.dat, x.loc, y.loc, surface='rs.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=T, CV=T)

sim.addreg «- sensitivity(sens.dat, x.loc, y.loc, surface='add.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=F, CV=F)

sim.locreg «- sensitivity(sens.dat, x.loc, y.loc, surface='loc.reg' ,
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=T, CV=T)

sim.ppreg «- sensitivity(sens.dat, x.loc, y.loc, surface='ppr',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02,
inc.press=F, CV=F)

sim.rpreg «- sensitivity(sens.dat, x.loc, y.loc, surface='rpr' ,
nsplit='gcv', space=3, summary=F, maxterms=20,
crit='pval', alpha=.02, inc.press=F, CV=F)

sim.srdrcc «- srd.sens(sens.dat, x.loc, y.loc, alpha=.02, summary=F)

A-2



############### Perform SA on the 3 subsamples of size 100 #################

sim.regl «- sensitivity(sens.datl, x.loc, y.loc, surface='reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rregl «- sensitivity(sens.datl, x.loc, y.loc, surface='rank',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rsregl «- sensitivity(sens.datl, x.loc, y.loc, surface='rs.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.addregl «- sensitivity(sens.datl, x.loc, y.loc, surface='add.reg' ,
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.locregl «- sensitivity(sens.datl, x.loc, y.loc, surface='loc.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.ppregl «- sensitivity(sens.datl, x.loc, y.loc, surface='ppr',
smooth=' s', span« ' cv', df=' cv', n. terms= ,·cv' ,
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rpregl «- sensitivity(sens.datl, x.loc, y.loc, surface='rpr' ,
nsplit='gcv', space=2, summary=F, maxterms=20,
crit='pval', alpha=.02, CV=F)

sim.srdrccl «- srd.sens(sens.datl, x.loc, y.loc, alpha=.02, summary=F)

#################

sim.reg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval' , alpha=.02, CV=F)

sim.rreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='rank',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rsreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='rs.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.addreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='add.reg' ,
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.locreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='loc.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.ppreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='ppr',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rpreg2 «- sensitivity(sens.dat2, x.loc, y.loc, surface='rpr' ,
nsplit='gcv', space=2, summary=F, maxterms=20,
crit='pval', alpha=.02, CV=F)
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sim.srdrcc2 «- srd.sens(sens.dat2, x.loc, y.loc, alpha=.02, summary=F)

#################

sim.reg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='rank',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rsreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='rs.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.addreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='add.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.locreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='loc.reg',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.ppreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='ppr',
smooth='s', span='cv', df='cv', n.terms='cv',
summary=F, maxterms=20, crit='pval', alpha=.02, CV=F)

sim.rpreg3 «- sensitivity(sens.dat3, x.loc, y.loc, surface='rpr',
nsplit='gcv', space=2, summary=F, maxterms=20,
crit='pval', alpha=.02, CV=F)

sim.srdrcc3 «- srd.sens(sens.dat3, x.loc, y.loc, alpha=.02, summary=F)

###################### Add TDCC to sensitivity objects ######################

sim.reg «- tdcc.list(sim.regl, sim.reg2,sim.reg3, nx=lO,
alt.obj=sim.reg)

sim.rreg «- tdcc.list(sim.rregl, sim.rreg2,sim.rreg3, nx=lO,
alt.obj=sim.rreg)

sim.rsreg «- tdcc.list(sim.rsregl, sim.rsreg2,sim.rsreg3, nx=lO,
alt.obj=sim.rsreg)

sim.addreg «- tdcc.list(sim.addregl, sim.addreg2,sim.addreg3, nx=lO,
alt.obj=sim.addreg)

sim.locreg «- tdcc.list(sim.locregl, sim.locreg2,sim.locreg3, nx=lO,
alt.obj=sim.locreg)

sim.ppreg «- tdcc.list(sim.ppregl, sim.ppreg2,sim.ppreg3, nx=lO,
alt.obj=sim.ppreg)

sim.rpreg «- tdcc.list(sim.rpregl, sim.rpreg2,sim.rpreg3, nx=lO,
alt.obj=sim.rpreg)

sim.srdrcc «- tdcc.list(sim.srdrccl, sim.srdrcc2,sim.srdrcc3, nx=lO,
alt.obj=sim.srdrcc)

#################### Add TDCCw/true to sensitivity objects ###################

sim.reg «- tdcc.list(sim.reg, sim.true, nx=lO, wtrue=T, alt.obj=sim.reg)
sim.rreg «- tdcc.list(sim.rreg, sim.true, nx=lO, wtrue=T, alt.obj=sim.rreg)
sim.rsreg«- tdcc.list(sim.rsreg, sim.true, nx=lO, wtrue=T, alt.obj=sim.rsreg)
sim.addreg «- tdcc.list(sim.addreg, sim.true, nx=lO, wtrue=T,

alt.obj=sim.addreg)
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sim.locreg «- tdcc.list(sim.locreg, sim.true, nx=10, wtrue=T,
alt.obj=sim.locreg)

sim.ppreg«- tdcc.list(sim.ppreg, sim.true, nx=10, wtrue=T, alt.obj=sim.ppreg)
sim.rpreg«- tdcc.list(sim.rpreg, sim.true, nx=10, wtrue=T, alt.obj=sim.rpreg)
sim.srdrcc «- tdcc.list(sim.srdrcc, sim.true, nx=10, wtrue=T,

alt.obj=sim.srdrcc)

##################### Create tables for each output #########################

sens.tables(sim.reg, sim.rreg, sim.rsreg, sim.locreg, sim.ppreg,
sim.rpreg, sim.addreg, sim.srdrcc, sim.true,
ncol=l, Rsq=T, APS=T, CT=T, CTwT=T)

2. Example Output

The script from Section 1 will produce 4 output files, 1 file for each response variable in the sensitivity

analysis. The contents that are written to ri.. table. out are given below.

Var R2 df p-val PRESS
reg

x2 0.7552 1.0 0.0000 1.87E6
RS'LA = 0.7544
PRS A = 1.86E6
C T 1. 0000, C T w/true 0.9294-

rank
x2 0.9774 1.0 0.0000 5.19E4
xl 0.9842 1.0 0.0000 3.66E4
RS'LA = 0.9841
PRS A = 3.64E4
C T 0.9744, C_T w/true 1.0000

rs.reg
x2 0.9789 2.0 0.0000 1.63E5
Rsq_A = 0.9787
PRS A = 1.62E5
C T 1. 0000, C_T w/true 0.9294

loc.reg
x2 0.9999 27.1 0.0000 6.74E2
RS'LA = 0.9999
PRS A = 6.79E2
C T 1. 0000, C T w/true 0.9294-

ppr
x2 0.9999 13.2 0.0000 NA
xl 1.0000 14.4 0.0000 NA
x5 1.0000 25.3 0.0000 NA
x7 1.0000 -18.7 0.0009 NA
x4 1.0000 38.7 0.0000 NA
x10 1.0000 0.1 0.0000 NA
x6 1.0000 -1. 9 0.0000 NA
x9 1.0000 37.8 0.0000 NA
Rsq_A = 1.0000
PRS A = 2.00EO
C T 0.9097, C T w/true 0.9453-

rpr
x2 0.9999 38.0 0.0000 NA
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xl 1.0000 115.0 0.0000 NA
RS<LA = 1.0000
PRS A = 1.20EO
C T 1. 0000, C T w/true = 1.0000-

add. reg
x2 0.9999 15.0 0.0000 NA
xl 1.0000 1.0 0.0000 NA
RS<LA = 1.0000
PRS A = 4.50E1
C T 1. 0000, C T w/true 1.0000-

srd rcc
x2 NA NA 0.0000 NA
xl NA NA 0.0164 NA
RS<LA = NA
PRS A = NA
C T 0.9135, C T w/true 1.0000-

TRUE
x2 0.9999 NA NA NA
xl 0.0001 NA NA NA
RS<LA = NA
PRS A = NA
C T NA, C T w/true 1.0000

3. R functions

The following functions are used by the run_ examples . R script given in Section 1.

############################ functions.R #################################

stand <- function (x) {
# standardize x

return ( (x-mean (x) ) / sd (x ) )

##############################################################################
#

stand. data <- function (X, Min=10E-6, Max=10E6) {
# standardize columns if maxi column I > Max or mini column I < Min

X <- as.data.frame(X)
forti in l:ncol(X)) {

if( (max(abs(X[,i])) > Max) II (min(abs(X[,i])) < Min) )
X[,i] <- stand(X[,i])

}
return (X)

##############################################################################
#

rs.reg <- function (X, y, summary=T){
#calculate a response surface regression

X <- as.matrix(X)
n <- nrow(X)
if(n != length(y))

stop ("y must have length nrow (X) ")
#first center the predictors
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}
else if(length(table(Xc[,i]))==2) {

if (i<nx) {
Xr <- cbind(Xr, Xc[,i]*Xc[,(i+1):nx])
dimnames(Xr) [[2]] <- c(dimnames(Xr) [[2]] [l:old.ncol],

paste (dimnames (Xr) [[2]] [i] ,"*",dimnames(Xr) [[2]] [(i+1) :nx] ,sep=""))

}
Xr <- cbind(l,Xc)
#Compute squares and cross products
for(i in l:nx) {

old.ncol <- ncol(Xr)
if(length(table(Xc[,i]))>2){

Xr <- cbind(Xr, XC[,i]*Xc[,c(i:nx)])
dimnames(Xr) [[2]] <- c(dimnames(Xr) [[2]] [l:old.ncol],

paste (dimnames (Xr) [[2]] [i] ,II*II,dimnames(Xr) [[2]] [i:nx] ,sep=""))

Xc <- X - matrix (colMeans (X) ,nrow(X) ,ncol(X) ,byrow=T)
nx <- ncol(X)
if (length (dimnames (X) [[2]]) == 0) {

dimnames (Xc) [ [2]] <- list ()
dimnames(Xc) [[2]] <- paste ("X", l:nx, sep='"')

}
else

Xr < - Xr [, - (i+1) ]
}
if(ncol(Xr»=n)

stop (vmore variables than rows II)
#Now calculate RSS, PRESS, Rsq, dfmod, and dferr

qrx <- qr (Xr)
y.hat <- qr.fitted(qrx, y)
coef <- as.vector(qr.coef(qrx,y))
lev <- hat (qrx)
r <- y - y.hat
r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.deI A2)

SSTot <- sum((y - mean(y))A 2)
SSReg <- SSTot - SSE
dfmod <- qrx$rank-1
dferr <- n - dfmod -1
APS <- SSE/(1-(dfmod+1)/n)A 2
Rsq <- SSReg/SSTot

if (summary == F)
return(list(SSReg=SSReg, SSE=SSE, dferr=dferr, PRESS=PRESS, APS=APS,

Rsq=Rsq, coef=coef))

else{ # Create summary objects
SSl <- numeric (nx)
SS3 <- numeric (nx)
df1 <- numeric (nx)
df3 <- numeric (nx)
F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.val3 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step. PRESS <- numeric (nx)
prev.model <- list(SSE = SSTot, dferr n-1)

if (rixc-L) {
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for(i in l:nx){
#sequential summary

next.model <- rs.reg(X[,c(l:i)] ,y,F)
SSl[i] <- prev.model$SSE - next.model$SSE
df1[i] <- prev.model$dferr - next.model$dferr
F.stat1[i] <- (SSl[i]/df1[i])/(next.model$SSE/next.model$dferr)
P.val1[i] <- 1-pf(F.stat1[i] ,df1[i] ,next.model$dferr)
frac.var1[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.var1)
step.PRESS[i] <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- rs.reg(X[,-i] ,y,F)
SS3[i] <- r.model$SSE - SSE
df3[i] <- r.model$dferr - dferr
F.stat3[i] <- (SS3 [i]/df3 [i])/(SSE/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)
frac.var3[iJ <- SS3[i]/SSTot

}
else if (nx==l) {

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SSReg/df1)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df1,dferr)
frac.var1 <- frac.var3 <- cum.var <- SS3/SSTot
step. PRESS <- PRESS

}
else{ # nx=Q

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SSl/df1)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df1,dferr)
frac.var1 <- frac.var3 <- SS3/SSTot

Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
MSE <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)
var.table1 <- data. frame (var= dimnames(Xc) [[2]], df1=df1, SSl=SSl,

F=F.stat1, P.val=P.val1,
frac.var=round(frac.var1,4) ,

Rsq=round(cum.var,4), PRESS=step.PRESS)
var.table3 <- data.frame(var= dimnames(Xc) [[2]], df3=df3, SS3=SS3,

F=F.stat3, P.val=P.va13,
frac.var=round(frac.var3,4))

mod.table <- data.frame(Source=c(IModel l,IError"), df=c(dfmod,dferr),
SS=c(SSReg,SSE), MS=c(MSReg,MSE), F=c(F.mod,"I),
P.val=c(P.mod,"I))

return (list (mod. sum = mod.table, Rsq = Rsq, Adj.Rsq=Adj.Rsq, PRESS =
PRESS,

APS=APS, span=NA, seq. sum = var.table1, last.sum=var.table3,
coe f e coe f ) )

##############################################################################
#

reg <- function (X, y, summary=T) {
#calculate a regression
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if (missing (X) )
X <- numeric (0)

X <- as.matrix(X)

}
Xr <- cbind(l,X)

if (nrow(X)==O) {
n <- length(y)
nx <- 0
Xr <- as.matrix(rep(l,n))

}
else{

n <- nrow(X)
nx <- ncol (X)
if(n != length(y))

stop ("y must have length nrow (X) ")
if(nx+1 > n)

warning ("more variables than observations")
if (length (dimnames (X) [[2]]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames(X) [[2]] <- paste ("x" , l:nx, aepe " ")

}
#Calculate RSS, PRESS, Rsq, dfmod, and dferr

qrx <- qr (Xr)
y.hat <- qr.fitted(qrx, y)
coef <- as.vector(qr.coef(qrx,y))
lev <- hat (qrx)
r <- y - y.hat
r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.del A2)

SSTot <- sum((y - mean(y))A 2)
SSReg <- SSTot - SSE
dfmod <- qrx$rank-1
dferr <- n - dfmod -1
APS <- SSE/(1-(dfmod+1)/n)A2
Rsq <- SSReg/SSTot
if (summary == F)

return(list(SSReg=SSReg, SSE=SSE, dferr=dferr, PRESS=PRESS, Rsq=Rsq,
coef=coef, fitted=y.hat))

else{ ############### Create summary objects #############
SSl <- numeric(nx)
SS3 <- numeric(nx)
df1 <- numeric(nx)
df3 <- numeric(nx)
F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.va13 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.PRESS <- numeric (nx)
prev.model <- list(SSE = SSTot, dferr n-1)

if (nxs t ) {
forti in l:nx){

#sequential summary
next.model <- reg(X[,c(l:i)] ,y,F)
SSl[i] <- prev.model$SSE - next.model$SSE
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}
else{

var.names <- "None"
Rsq <- 0
Adj.Rsq <- 0
MSReg <- NA
MSE <- SSE/dferr
F.mod <- NA
P.mod <- NA

df1[i] <- prev.model$dferr - next.model$dferr
F.stat1[i] <- (SSl[i]/df1[i])/(next.model$SSE/next.model$dferr)
P.val1[i] <- 1-pf(F.stat1[i] ,df1[i] ,next.model$dferr)
frac.var1[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.var1)
step.PRESS[i] <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- reg(X[,-i] ,y,F)
SS3[i] <- r.model$SSE - SSE
df3[i] <- r.model$dferr - dferr
F. stat3 [i] <- (SS3 [i] /df3 [i] ) / (SSE/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)
frac.var3[i] <- SS3[i]/SSTot

} }

else if (nx==l) {
SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SSReg/df1)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df1,dferr)
frac.var1 <- frac.var3 <- cum.var <- SS3/SSTot
step. PRESS <- PRESS

}
else{ # nx=O

SSl <- SS3 <- 0
dfl <- df3 <- 0
F.stat1 <- F.stat3 <- NA
P.val1 <- P.va13 <- NA
frac.var1 <- frac.var3 <- cum.var <- 0
step. PRESS <- PRESS

if (nx > 0) {
var.names <- dimnames(X) [[2]]
Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
MSE <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)

}
var.table1 <- data.frame(var= var.names, df1=df1, SSl=SSl,

F=F.stat1, P.val=P.val1,
frac.var=round(frac.var1,4) ,

Rsq=round(cum.var,4), PRESS=step.PRESS)
var.table3 <- data.frame(var= var.names, df3=df3, SS3=SS3,

F=F.stat3, P.val=P.va13,
frac.var=round(frac.var3,4))

mod.table <- data. frame (Source=c ("Model", "Error") , df=c(dfmod,dferr),
SS=c(SSReg,SSE), MS=c(MSReg,MSE), F=c(F.mod,""),
P.val=c(P.mod,""))

return (list (mod. sum = mod.table, Rsq = Rsq, Adj.Rsq=Adj.Rsq, PRESS =
PRESS,

APS=APS, span=NA, seq. sum = var.table1, last.sum=var.table3,
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coef=coef, fitted=y.hat))

#############################################################################

predict. reg <- function (X, object) {

coef <- object$coef
Xr <- cbind(l,X)
yhat <- as.numeric(Xr%*%coef)
return (yhat)

#predict.reg <- function (X, object) {
#
# X <- as.matrix(X)
# yhat <- as.numeric(apply(X, MARGIN=l, FUN=predict1.reg, object))
# return (yhat)
#}

#############################################################################

predict.rsreg <- function (X, object) {

}
Xr <- cbind(l,Xc)
#Compute squares and cross products
for(i in Lr nx l ]

old.ncol <- ncol(Xr)
if(length(table(Xc[,i]))>2) {

Xr <- cbind(Xr, XC[,i]*Xc[,c(i:nx)])
dimnames(Xr) [[2]] <- c(dimnames(Xr) [[2]] [l:old.ncol],

paste (dimnames (Xr) [[2]] [i] ,"*",dimnames(Xr) [[2]] [i:nx] ,sep=""))

coef <- object$coef
#first center the predictors
Xc <- X - matrix(coIMeans(X),nrow(X),ncol(X),byrow=T)
nx <- ncol(X)
if (length (dimnames (X) [[2]]) == 0) {

dimnames (Xc) [[2]] <- list ()
dimnames(Xc) [[2]] <- paste (" X " , l:nx, sep="")

}
else if(length(table(Xc[,i]))==2){

if (i<nx){
Xr <- cbind(Xr, XC[,i]*Xc[, (i+1) :nx])
dimnames (Xr) [[2]] <.> c (dimnames (Xr) [[2]] [1 :old.ncol] ,

paste (dimnames (Xr) [[2]] [i] ,"*",dimnames(Xr) [[2]] [(i+1) :nx] ,sep=""))

} }
else

Xr <- Xr[,-(i+1)]

yhat <- as.numeric(Xr%*%coef)
return (yhat)

#############################################################################

loess. formula <- function(loc.data) {
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#Takes a data frame X and creates a formula for use in loess
# ie. y-names(loc.data) [l]*names(loc.data) [2]) * ...

npred <- ncol(loc.data)-l

#Create a string that contains the appropriate formula

form <- paste (names (loc. data) [npred+l], "-", names (loc. data) [1] )

if (npred>l) {
for(i in 2:npred)

form <- paste (form, "*" names (loc.data) [i])

#Convert string into a formula object
return(as.formula(form))

##############################################################################
#

loc.reg <- function (X, y, span='cv', degree=l, summary=T){
# creates a formula then applies loess (formula) to obtain desired statistics

x <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if(n != length(y))

stop ("y must have length nrow (X) " )
if(nx+1 >= n)

stop ("more variables than observations")
if (length (dimnames (X) [ [2] ]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames(X) [[2]] <- paste("x", l:nx, sep='"')

}
loc.data <- data.frame(cbind(X,y))
l.span <- length (span)
if(l.span==l && span=='cv'){

span <- c (10, . 7 , . 3, . 1, . 07 , . 05 )
l.span <- length (span)

# scan for variables with 6 or less distinct values. Treat them as factors
nfac <- 0
for(i in l:nx) {

if(length(table(loc.data[,i]))<=6) {
loc.data[,i] <- as.factor(loc.data[,i])
nfac <- nfac+1

}
if (nfac==nx) {

cv.span <- NA
form <- as.formula(loess.formula(loc.data))
If.model <- lm(form,data=loc.data,qr=T)
r <- If.model$residuals
lev <- hat (If.model$qr)
r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.del A2)

t.dev <- y - mean(y)
SSTot <- sum(t.devA2)

SSReg <- SSTot - SSE
dfmod <- sum(lev)-l
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dferr <- n - dfmod - 1
APS <- SSE/(1-(dfmod+1)/n)A 2

else if(l.span==l){
cv.span <- span
form <- as.formula(loess.formula(loc.data))

# If.model <- locfit.raw(X, y, alpha=c(.l,span), deg=degree, scale=T,
# kern="gauss", maxk=1000)

If.model <- locfit.raw(X, y, alpha=span, deg=degree, scale=T,
kern="tcub", maxk=1000)

r <- residuals (If.model)
# lev <- diag (hatmatrix (form, data=loc.data, alpha=c(.l,span), deg=degree,
# scale=T, kern="gauss", maxk=1000, ev="data"))

lev <- diag(hatmatrix(form, data=loc.data, alpha=span, deg=degree,
scale=T, kern="tcub", maxk=1000, ev="data"))

r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.del A2 )
t.dev <- y - mean(y)
SSTot <- sum(t.devA2)

SSReg <- SSTot - SSE
dfmod <- sum(lev)-l
dferr <- n - dfmod - 1
APS <- SSE/(1-(dfmod+1)/n)A2

else{ #Perform Generalized Cross Validation to determine optimal span
APS <- lnf

# alpha <- cbind(rep(.l,l.span) ,span)
# APS.vec <- gcvplot(X, y, alpha=alpha, deg=degree, scale=T,
# kern="gauss", maxk=1000)$values

APS.vec <- gcvplot(X, y, alpha=span, deg=degree, scale=T,
kern="tcub", maxk=1000)$values

sort.span <- span[order(-span)]
cv.ind <- order (APS.vec) [1]
cv.span <- sort.span[cv.ind]
model <- loc.reg(X, y, cv.span, degree, summary=F)
SSE <- model$SSE
SSReg <- model$SSReg
dferr <- model$dferr
PRESS <- model$PRESS
SSTot <- model$SSTot
dfmod <- model$dfmod
APS <- model$APS
If.model <- model$lf.model

if (summary F)
return (list (SSReg=SSReg, SSE=SSE, dferr=dferr, PRESS=PRESS, APS=APS,

SSTot=SSTot, Rsq=SSReg/SSTot, dfmod=dfmod, If.model=lf.model))

else{
SSl
SS3
dfl
df3

############### Create summary objects #############
<- numeric (nx)
<- numeric (nx)
<- numeric (nx)
<- numeric (nx)
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}
else if(SSl[i]>O) {

F.stat1[i] <- NA
P.vall [i] <.> 0

F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.va13 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.PRESS <- numeric(nx)
prev.model <- list(SSE = SSTot, dferr n-1)

if (rrx s L) {
forti in l:nx) {

#sequential summary
next.model <- loc.reg(X[,c(l:i)] ,y, span, degree, summary=F)
SSl[i] <- prev.model$SSE - next.model$SSE
df1[i] <- prev.model$dferr - next.model$dferr
if (dfl [i] >0) {

F.stat1[i] <- (SSl[i]/df1[i])/(next.model$SSE/next.model$dferr)
P.val1[i] <- 1-pf(F.stat1[i] ,df1[i] ,next.model$dferr)

}
else if(SSl[i]==0&&df1[i]==0) {

F.stat1[i] <- NA
P.val1[i] <- NA

}
else{ # SSl[i]<O but df1[i]<0 perform lower tailed F test

F.stat1[i]<- (SSl[i]/df1[i])/(next.model$SSE/next.model$dferr)
P.val1[i] <- pf(F.stat1[i] ,-df1[i] ,next.model$dferr)

}
frac.var1[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.var1)
step.PRESS[i] <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- loc.reg(X[,-i] ,y, span, degree, summary=F)
SS3[i] <- r.model$SSE - SSE
df3[i] <- r.model$dferr - dferr
F. stat3 [i] <- (SS3 [i] /df3 [i] ) / (SSE/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)
frac.var3[i] <- SS3[i]/SSTot

} }
else{

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SS3/df1)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df1,dferr)
frac.var1 <- frac.var3 <- SS3/SSTot
cum.var <- frac.var1
step. PRESS <- PRESS

Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
MSE <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)
var.table1 <- data.frame(var= dimnames(X) [[2]], df1=df1, SSl=SSl,

F=F.stat1, P.val=P.val1,
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frac.var=round(frac.var1,4) ,
Rsq=round(cum.var,4), PRESS=step.PRESS)

var.table3 <- data.frame(var= dimnames(X) [[2]], df3=df3, SS3=SS3,
F=F.stat3, P.val=P.va13,

frac.var=round(frac.var3,4))
mod.table <- data. frame (Source=c ("Model", "Error") , df=c(dfmod,dferr),

SS=c(SSReg,SSE), MS=c(MSReg,MSE), F=c(F.mod,""),
P.val=c(P.mod,""))

return(list(mod.sum = mod.table, Rsq = Rsq, Adj.Rsq=Adj.Rsq, PRESS =
PRESS,

APS=APS, span=cv.span, seq. sum = var.table1,
last.sum=var.table3, If.model=lf.model))

##############################################################################
#

predict.locreg <- function (newdata, object){

If.model <- object$lf.model
ans <- as.numeric(predict(lf.model, newdata))
return (ans)

##############################################################################
#

gam.formula <- function (data, method="lo", span=.3, df=6, nd.min=S){

#Takes a data frame X and creates a formula for use in gam
# ie. y-To (names (data) [1]) + 10 (names (data) [2]) + '"

if (method!="lo"&&method!="s")
stop("Smoothing method must be either 10 or s.")

nx <- ncol(data)-l
if (length (span) ==1)

span <- rep (span, nx)
if (length(df) ==1)

df <- rep(df, nx)
if (length(span) !=nxl Ilength (df) !=nx)

stop ("spanjdf must have same length as nx " )

#Create a string that contains the appropriate formula

if (method == "lo"){
nd.i <- length(table(data[,l]))
if (nd. i>nd. min)

form <- paste (names (data) Inx-s t l , "- 10(", names (data) [1], ",
span=", span [1], ")" )

else if(length(table(data[,1]))>=3)
form <> paste (names (data) [nx-i Ll ,"- poly(",names(data) [1] ,",",nd.i-1,

" ) ")
else if(length(table(data[,1]))==2)

form <- paste (names (data) l nx-r L] . "-", names (data) [1] )

if (nxs L) {
for(i in 2:nx) {

nd.i <- length(table(data[,i]))
if (nd.i>nd.min)

form <- paste (form, "+ 10(", names (data) [i], ",span=", span[i], ")")
else if(length(table(data[,i]))>=3)

form <- paste (form, "+ poly(", names (data) [i], ",", nd.i-1, ")")
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else if(length(table(data[,i]))==2)
form <- paste (form, "+", names (data) [i] )

} }
}

else{ # method == "S"
nd.i <- length(table(data[,l]))
if (rid , bnd.min)

form <- paste (names (data) [nx-s L] , "- S(", names (data) [1], ",", df l I l ,
II) II)

else if(length(table(data[,1]))>=3)
form<-paste(names(data) [nx+1], u .; poIy t v , names (data) [1], ",",nd.i­

1, II) II)
else if(length(table(data[,1]))==2)

form <- paste (names (data) [rix-s l.] , "_", names (data) [1] )

if (nxxL) {
for (i in 2: nx) {

nd.i <- length(table(data[,i]))
if (nd. bnd.min)

form <- paste (form, "+ S(II, names (data) [i], ", ", df[i], II) II)
else if(length(table(data[,i]))>=3)

form <- paste (form, "+ poly(", names (data) [i], ",", nd.i-1, 11)11)
else if(length(table(data[,i]))==2)

form <- paste (form, "+", names (data) [ill

} }
}
#Convert string into a formula object
return(as.formula(form))

##############################################################################

add.reg <- function (X, y, smooth="s", span=df, df=ICV", summary=T, CV=F,
step=F, int.terms=F, order, maxit=30, inc.press=F){

}
else

Xr <- Xr[,-(i+1)]
}
if(missing(order))

order <- l:ncol(Xr)
X <- Xr[,order]

}
if (int.terms) { ## Include Multiplicitive Interaction Terms

## first center the predictors
Xc <- X - matrix (colMeans (X) , nrow (X) ,ncol(X) ,byrow=T)
Xr <- Xc
## Now compute cross products
for(i in 1: (nx-1)) {

old.ncol <- ncol(Xr)
if(length(table(Xc[,i]))>=2) {

Xr <- cbind(Xr, Xc [, i] *Xc [, (i+1) :nx])
dimnames(Xr) [[2]] <- c(dimnames(Xr) [[2]] [l:old.ncol],

paste (dimnames (Xr) [[2]] [i] ,1I*1I,dimnames(Xr) [[2]] [(i+1) :nx] ,sep='"'))

# creates a formula then applies gam (formula) to obtain desired statistics
X <- as.matrix(X)
n <- nrow (X)
nx <- ncol(X)
if (length (dimnames (X) [[2]]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames(X) [[2]] <- paste ("X", l:nx, sep="")
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}
else{

df <- nd-l
span <- rep(l,nx)

}
gam. model <- model

nx <- ncol(X)
}
if(n 1= length(y))

stop ("y must have length nrow (X) ")
if(nx+l >= n)

stop ("more variables than observations")
data <- data.frame(cbind(X,y))

## scan for variables with 5 or less distinct values. If all <=5, fit 1m
nfac <- 0
nd <- numeric (nx)
for(i in l:nx) {

nd[i] <- length(table(data[,i]))
if (nd [i] <=5) {

nfac <- nfac+l

}
if (nfac==nx) {

form <- loess. formula (data)
model <- Im(form,data=data,qr=T)
r <- model$residuals
lev <- hat (model$qr)
r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.del A2)

t.dev <- y - mean(y)
SSTot <- sum(t.devA2)

SSReg <- SSTot - SSE
dfmod <- sum(lev)-l
dferr <- n - dfmod - 1
APS <- SSE/(1-(dfmod+l)/n)A 2
Rsq <- SSReg/SSTot
if (step==T) {

df <- c(df,nd[nx]-l)
span <- c(span,l)

else if«is.numeric(df)&&smooth=="s") I I (is.numeric(span)&&smooth=="lo")) {

gam.form <- as. formula (gam. formula (data, smooth, span, df))
gam.model <- gam (gam. form, data=data, control=gam.control(bf.maxit=maxit),

x=T) #x=model.mat)
SSE <- gam.model$deviance
SSTot <- sum«y-mean(y))A 2)
SSReg <- SSTot - SSE
dferr <- gam.model$df.residual
dfmod <- n-dferr-l
r <- gam.model$residuals
APS <- SSE/(l-(dfmod + 1)/n)A2

if (CV) {
r.del <- numeric(n)

cat ("\n")
for(i in l:n) {

cat('\b\b\b\b\b',i)
Xi <- X[-i,]
yi <- Y [-i]
gam.model.i <- add.reg(Xi, yi, smooth=smooth, span=span, df=df,
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summary=F, CV=F, inc.press=F)
y[i]-predict.addreg(X, gam.model.i) [i]
t(as.matrix(X[i,]))
<- y[i]-predict.addreg(xpred, gam.model.i)

r.del [i] <­
### xpred <­
### r.del[i]

}
PRESS <- sum(r.del A2)

}
else

PRESS <- NA

else{ #compute optimal span or df by gcv

APS <- Inf
df.cv <- c(1,2,4,7,lO,15)
sp . cv < - c (10, . 8, . 5, . 3, . 1, . 05 )
if(lstep) { # Cross-validate df/span for all predictors

span.mat <- matrix(rep(sp.cv, times=nx), ncol=nx)
df.mat <- matrix (rep (df.cv, times=nx), ncol=nx)

}
else{ # cross-validate df/span on last predictor only

l.sp <- length(sp.cv)
l.df <- length(df.cv)
span. mat <- matrix (rep (span, times=l.sp), nrow=l.sp, ncol=nx, byrow=T)
span.mat[,nx] <- sp.cv
span.mat <- matrix(as.numeric(span.mat) ,ncol=nx)
df.mat <- matrix (rep (df, times=l.df), nrow=l.df, ncol=nx, byrow=T)
df.mat[,nx] <- df.cv
df.mat <- matrix(as.numeric(df.mat) ,ncol=nx)

forti in l:nrow(df.mat)) {
model.i <- add.reg(X, y, smooth, span=span.mat[i,], df=df.mat[i,],

summary=F, CV=F)
if(model.i$APS < APS) {

APS <- model.i$APS
span <- span.mat[i,]
df <- df.mat[i,]

}
model <- add.reg(X, y, smooth, span=span, df=df, summary=F, CV=CV)
SSReg <- model$SSReg
SSE <- model$SSE
dferr <- model$dferr
PRESS <- model$PRESS
APS <- model$APS
SSTot <- model$SSTot
dfmod <- model$dfmod
r <- model$r
gam. model <- model$gam.model

}
if (smooth=="s")

lsp <- df[nx]
else

lsp <- span [nx]

if (summary == F)
return(list(SSReg=SSReg, SSE=SSE, dferr=dferr, PRESS=PRESS, APS=APS,

SSTot=SSTot, Rsq=SSReg/SSTot, dfmod=dfmod, lsp=lsp,
span.vec=span,

df.vec=df, gam.model=gam.model))

else{ ############### Create summary objects #############
SSl <- numeric (nx)
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SS3 <- numeric (nx)
df1 <- numeric (nx)
df3 <- numeric (nx)
F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.va13 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.APS <- numeric (nx)
step.PRESS <- numeric (nx)
prev.model <- list(SSE = SSTot, dferr n-1)

if (rix s L) {
for(i in l:nx) {

#sequential summary
next.model <- add.reg(X[,l:i] ,y, smooth, span[l:i], df[l:i],

summary=F, CV=inc.press)
SSl[i] <- prev.model$SSE - next.model$SSE
df1[i] <- prev.model$dferr - next.model$dferr
if (dfl [i] >0) {

F.stat1[i] <- (SSl[i]/df1[i])/(next.model$SSE/next.model$dferr)
P.val1[i] <- 1-pf(F.stat1[i] ,df1[i] ,next.model$dferr)

}
else if (SSl [i] >0) {

F. statUi] <- NA
P.vall [i] <- 0

}
else if(SSl[i]==0&&df1[i]==0){

F.stat1[i] <- NA
P.vall [i] <- NA

}
else{ # SSl[i]<O but df1[i]<0 perform lower tailed F test

F.stat1[i] <- (SSl[i]/df1[i] )/(next.model$SSE/next.model$dferr)
P.val1[i] <- pf(F.stat1[i] ,-df1[i] ,next.model$dferr)

}
frac.var1[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.var1)
step.APS[i] <- next.model$APS
step.PRESS[i] <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- add.reg(X[,-i] ,y, smooth,

CV=F)
span[-i], df[-i], summary=F,

SS3[i] <- r.model$SSE - SSE
df3[i] <- r.model$dferr - dferr
F. stat3 [i] <- (SS3 [i] /df3 [i] ) / (SSE/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)
frac.var3[i] <- SS3[i]/SSTot

}
else{

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SS3/df3)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df3,dferr)
frac.var1 <- frac.var3 <- SS3/SSTot
cum.var <- frac.var1
step.APS <- APS
step. PRESS <- PRESS
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Rsq <- 8SReg/88Tot
Adj.Rsq <- 1-((n-1)/dferr)*(88E/88Tot)
MSReg <- 88Reg/dfmod
M8E <- 88E/dferr
F.mod <- M8Reg/M8E
P.mod <- 1-pf(F.mod,dfmod,dferr)

var.table1 <- data.frame(var= dimnames(X) [[2]], df1=df1, 881=881,
F=F.stat1, P.val=P.val1,

frac.var=round(frac.var1,4) ,
Rsq=round(cum.var,4), AP8=step.AP8,

PRE8S=step.PRE8S)
var.table3 <- data.frame(var= dimnames(X) [[2]], df3=df3, 883=883,

F=F.stat3, P.val=P.va13,
frac.var=round(frac.var3,4))

mod.table <- data. frame (8ource=c ("Model", "Error") , df=c(dfmod,dferr),
88=c(88Reg,88E), M8=c(M8Reg,M8E), F=c(F.mod,""),
P.val=c(P.mod,""))

return(list(mod.sum = mod.table, Rsq = Rsq, Adj.Rsq=Adj.Rsq, PRE88 =
PRE88,

} }

APS=AP8, smooth=smooth, seq. sum = var.table1, last.sum=var.table3,
gam.model=gam.model))

##############################################################################
#

predict.addreg <- function (X, object, int.terms=F, order){

X <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if (length (dimnames (X) [ [2] ]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames(X) [[2]] <- paste("x", l:nx, sep="")

}
if(int.terms) { ## Include Multiplicitive Interaction Terms

## first center the predictors
Xc <- X - matrix (colMeans (X) ,nrow(X) ,ncol(X) ,byrow=T)
Xr <- Xc
## Now compute cross products
for(i in 1: (nx-1)) {

old.ncol <- ncol(Xr)
if (length (table (Xc [,i] ))>=2) {

Xr <- cbind(Xr, XC[,i]*Xc[, (i+1) :nx])
dimnames (Xr) [[2]] <- c (dimnames (Xr) [[2]] [1 :old.ncol] ,

paste (dimnames (Xr) [[2]] [i] ,".", dimnames (Xr) [[2]] [(i+1) :nx] , sep=""))
}
else

Xr <- Xr[,-(i+1)]
}
if(missing(order))

order <- l:ncol(Xr)
X <- Xr [, order]
nx <- ncol(X)

}
X <- as.data.frame(X)

gam. model <- object$gam.model
ans <- predict (gam.model, X, type='terms')
constant <- attributes(ans)$constant
yhat <- rowSums(ans)+constant
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return (yhat)

##############################################################################
#

ppr2 <- function (X, y, df="gcv", nterms="gcv", summary=T, CV=F,
maxterms=ncol(X)+l, inc.press=F)

# calls ppr Then obtains desired statistics
# X: matrix of predictors, y: vector of responses,
# nterms: the number of projection terms to include. default"cv" to
# determine by generalized cross validation on l:max.terms.
# df: is degrees of freedom for splines fit to projection terms, default is
# "gcv" which will choose span by GCV while choosing nterms

X <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if(n != length(y))

stop ("y must have length nrow (X) ")
if(nx+l >= n)

stop ("more variables than observations")
if (length (dimnames (X) [[2]]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames (X) [[2]] <- paste ("x", 1 :nx, sep="")

# scan for variables with 5 or less distinct values. Treat them as factors
nfac <- 0
data <- data.frame(cbind(X,y))
forti in l:nx) {

if(length(table(data[,i]))<=5) {
data[,i] <- as.factor(data[,i])
nfac <- nfac+l

} }
if (n f ac e e.nx) {

cv.span <- NA
cv.terms <- NA
form <- loess. formula (data)
model <- lm(form,data=data,qr=T)
r <- model$residuals
lev <- hat (model$qr)
r.del <- r/(l-lev)
SSE <- sum(rA2)

PRESS <- sum(r.del A2)

t.dev <- y - mean(y)
SSTot <- sum(t.devA2)

SSReg <- SSTot - SSE
dfmod <- sum(lev)-l
dferr <- n - dfmod - 1
APS <- SSE/(1-(dfmod+l)/n)A 2
Rsq <- SSReg/SSTot
df.vec <- NA
pp.model <- model

else if(is.numeric(nterms)) {
cv.terms <- nterms
if(is.numeric(df))

pp.model <- ppr(X,
y,nterms=cv.terms,sm.method='spline',df=df,optlevel=2)
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else
pp.model <- ppr(X, y, nterms=cv.terms, sm.method= 'gcvspline ' ,

optlevel=2)

SSE <- sum (pp.model$residuals A2)

SSTot <- sum((y-mean(y))A 2)
SSReg <- SSTot - SSE
dfmod <- sum(pp.model$edf)
dferr <- n-dfmod
APS <- SSE/(max(O,1-(dfmod+l)/n))A2
Rsq <- SSReg/SSTot
df.vec <- pp.model$edf
pp.model <- pp.model

else{ #Cross Validate on nterms using GCV

APS <- lnf
forti in l:maxterms) {

if(is.numeric(df))
pp.model.i <- ppr(X, y, nterms=i, sm.method='spline',df=df,optlevel=2)

else
pp.model.i <- ppr(X, y, nterms=i, sm.method= 'gcvspline ' , optlevel=2)

APS.i<-sum(pp.model.i$residualsA2)/(max(O,1­

(sum(pp.model.i$edf)+1)/n))A 2
#cat("\n nterms =",i," APS =",APS.i)

if (APS . i < APS) {
APS <- APS.i
cv.terms <- i

}
model <- ppr2(X, y, df, cv.terms, summary=F, CV=F)
SSReg <- model$SSReg
SSE <- model$SSE
dferr <- model$dferr
PRESS <- model$PRESS
APS <- model$APS
SSTot <- model$SSTot
dfmod <- model$dfmod
Rsq <- model$Rsq
df.vec <- model$df.vec
pp.model <- model$pp.model

if (CV) {
r.del <- numeric(n)

cat ("\n")
forti in l:n) {

cat('\b\b\b\b\b',i)
xi <- X [-i,]
yi <- Y [-i]
xpred <- t(as.matrix(X[i,]))
pp.model.i <- ppr2(Xi, yi, df, nterms, summary=F, CV=F)
r.del[i] <- y[i]-predict.ppr2(xpred, pp.model.i)

}
PRESS <- sum(r.del A2)

}
else

PRESS <- NA

if ( ! summary) {
return (list (SSReg=SSReg, SSE=SSE, dferr=dferr, SSTot=SSTot, PRESS=PRESS,

dfmod=dfmod, APS=APS, Rsq=Rsq, nterms=cv.terms,df.vec=df.vec,

A-22



pp.model=pp.model))

else{ ############### Create summary objects #############
SSl <- numeric(nx)
SS3 <- numeric (nx)
df1 <- numeric(nx)
df3 <- numeric (nx)
F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.va13 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.APS <- numeric (nx)
step.PRESS <- numeric (nx)
prev.model <- list(SSE = SSTot, dferr n-1)

if (nxs i ) {
for(i in l:nx) {

#sequential summary
next.model <- ppr2(X[,c(1:i)), y, df, nterms, summary=F, CV=inc.press)
SSl[i) <- prev.model$SSE - next.model$SSE
df1[i) <- prev.model$dferr - next.model$dferr
if (dfl [i) >0) {

F.stat1[i) <- (SSl[i)/df1[i))/(next.model$SSE/next.model$dferr)
P.val1[i) <- 1-pf(F.stat1[i) ,df1[i) ,next.model$dferr)

}
else if (SSl [i) >0) {

F.stat1[i) <- NA
P.vall [i) <- 0

}
else if(SSl[i)==0&&df1[i)==0) {

F.stat1[i) <- NA
P.val1[i) <- NA

}
else{ # SSl[i)<O but df1[i)<0 perform lower tailed F test

F.stat1[i) <- (SSl[i)/df1[i))/(next.model$SSE/next.model$dferr)
P.val1[i) <- pf(F.stat1[i) ,-df1[i) ,next.model$dferr)

}
frac.var1[i) <- SSl[i)/SSTot
cum.var[i) <- sum(frac.var1)
step.APS[i) <- next.model$APS
step.PRESS[i) <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- ppr2(X[,-i), y, df, nterms, summary=F, CV=F)
SS3[i) <- r.model$SSE - SSE
df3[i) <- r.model$dferr - dferr
if (dB [i) <0)

dB [i) <- 1
F.stat3[i) <- (SS3 [i)/df3 [i))/(SSE/dferr)
P.va13[i) <- 1-pf(F.stat3[i) ,df3[i) ,dferr)
frac.var3[i) <- SS3[i)/SSTot

}
else{

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SS3/df3)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df3,dferr)
frac.var1 <- frac.var3 <- cum.var <- SS3/SSTot
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step.APS <- APS
step. PRESS <- PRESS

Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
MSE <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)
var.table1 <- data.frame(var= dimnames(X) [[2]], df1=df1, SSl=SSl,

F=F.stat1, P.val=P.val1,
frac.var=round(frac.var1,4) ,

Rsq=round(cum.var,4) , APS=step.APS,
PRESS=step.PRESS)

var.table3 <- data.frame(var= dimnames(X) [[2]], df3=df3, SS3=SS3,
F=F.stat3, P.val=P.va13,

frac.var=round(frac.var3,4))
mod.table <- data.frame(Source=c("Model","Error"), df=c(dfmod,dferr),

SS=c(SSReg,SSE) , MS=c(MSReg,MSE), F=c(F.mod,""),
P.val=c(P.mod, 1111))

return(list(mod.sum = mod.table, Adj.Rsq=Adj.Rsq, seq.sum = var.table1,
last. sum=var.table3 ,SSReg=SSReg, SSE=SSE, dferr=dferr,
SSTot=SSTot, PRESS=PRESS, dfmod=dfmod, APS=APS, Rsq=Rsq,
nterms=cv.terms,df.vec=df.vec, pp.model=pp.model))

##############################################################################
#

predict.ppr2 <- function (newdata, ppr2.obj) {

yhat <- predict (ppr2.obj$pp.model, newdata)
return (yhat)

##############################################################################
#

part <- function (X, y, nfew, space, region){

#calculate the best variable and split point for a linear regression partition
X <- as.matrix(X)
n <- nrow(X)
if(n < 2*nfew)

s t.op Iv t oo few observations")
if(n 1= length(y))

stop (lly must have length nrow (X) II)
nx <- ncol(X)
poss.i <- unique(c(seq(nfew,n-nfew,by=space),n-nfew))

SSE <- Inf
PRESS <- Inf
for(j in l:nx) {

Xs <- as.matrix(X[order(X[,j]) ,])
ys <- y[order(X[,j])]
for(i in poss.i) {

model1 <- reg(Xs[l:i,], ys[l:i], sum=F)
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mode12 <- reg (Xs [(i+l) :n,], ys [(i+l) :n], aume F)
SSEij <- modell$SSE + mode12$SSE

PRESSij <- modell$PRESS + mode12$PRESS
if(is.na(PRESSij))

next;
# if(PRESSij <= PRESS) {

if(SSEij <= SSE) {
SSE <- SSEij
PRESS <- PRESSij
SSEl <- modell$SSE
SSE2 <- mode12$SSE
dferrl <- modell$dferr
dferr2 <- mode12$dferr
PRESSl <- modell$PRESS
PRESS2 <- mode12$PRESS
coefl <- modell$coef
coef2 <- mode12$coef
splt.var <- j
splt .pt <- i

} }
}

ind <- order(X[,splt.var])
indl <- ind[l:splt.pt]
ind2 <- ind[(splt.pt+l) :n]
regionl <- region2 <- region
new.lim <- (X[ind,splt.var] [splt.pt] +X [ind, splt.var] [splt.pt+l])/2
regionl[splt.var,2] <- new.lim
region2[splt.var,1] <- new.lim

return (list (indl=indl, ind2=ind2, coefl=coefl, coef2=coef2, regionl=regionl,
region2=region2, SSE1=SSE1, SSE2=SSE2, SSE=SSE,dferrl=dferrl,
dferr2=dferr2, PRESS1=PRESS1, PRESS2=PRESS2, PRESS=PRESS))

##############################################################################
#

rpreg <- function (X, y, nfew=ncol(X)+2, space=3, cv.space=3, nsplit="gcv",
summary=T, CV=F, inc.press=F){

#calculate a recursive partition linear regression

x <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if(n 1= length(y))

stop ("y must have length nrow (X) " )

aep» " ")

if (length (dimnames (X) [[2]]) == 0) {
dimnames (X) [[2]] <- list ()
dimnames (X) [[2]] <- paste ("x", 1 :nx,

}
part.ind <- list(l:n)
dfmod <- nx
model <- reg(X,y,sum=F)
region <- list(matrix(c(-Inf,Inf) ,ncol=2,nrow=nx,byrow=T))
coef <- list (model$coef)
SSE <- part.SSE <- model$SSE
part.df <- model$dferr
APS <- SSE/(l-2/n)A 2
PRESS <- part.PRESS <- model$PRESS
repeat {
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PRESSdiff <- 0
APSdiff <- 0
flag <- F
for(i in l:length(part.ind)) {

if(length(part.ind[[i]])<2*nfew)
next;

ind <- part. ind [[i]]
modeli <- part(X[ind,], y[ind], nfew, space, region[[i]])
SSE.now <- sum(part.SSE[-i])+modeli$SSE1+modeli$SSE2
df.now <- dfmod+2*nx+l
APS.now <- SSE.now/(1-(df.now+l)/n)A2

# if((part.PRESS[i]-modeli$PRESS) > PRESSdiff) {
if(APS-APS.now > APSdiff) {

part.num <- i
PRESSdiff <- part.PRESS[i]-modeli$PRESS
APSdiff <- APS-APS.now
SSEl <- modeli$SSEl
SSE2 <- modeli$SSE2
dferrl <- modeli$dferrl
dferr2 <- modeli$dferr2
PRESSl <- modeli$PRESSl
PRESS2 <- modeli$PRESS2
indl <- modeli$indl
ind2 <- modeli$ind2
regionl <- modeli$regionl
region2 <- modeli$region2
coefl <- modeli$coefl
coef2 <- modeli$coef2
flag <- T

}
if (lflag){

# warning(IINot enough data to continue partitioning")
break;

part.SSE <- c(part.SSE[-part.num] ,SSE1,SSE2)
part.df <- c(part.df[-part.num] ,dferrl,dferr2)
part.PRESS <- c (part. PRESS [-part.num] ,PRESS1,PRESS2)

# dfnew <- n-sum(part.df)-l
dfnew <- length(part.SSE)*nx + nx*(length(part.SSE)-l)-l
SSE.new <- sum(part.SSE)
APS.new <- SSE.new/(1-(dfnew+l)/n)A 2
PRESS.new <- sum(part.PRESS)
if(nsplit=="cv"&&PRESS.new >= PRESS)

break;
if(nsplit=="gcv"&&APS.new >= APS)

break;
SSE <- SSE.new
dfmod <- dfnew
APS <- APS.new
PRESS <- PRESS.new
nr <- length(part.ind)

part.ind <- c(part.ind[-part.num],
list (part. ind [[part .num]] [indl] ,part. ind [[part .num]] [ind2]))

region <- c(region[-part.num], list (regionl, region2))
coef <- c(coef[-part.num], list(coefl, coef2))

}
if (CV) {

cat ("\n")
r.del <- rep (NA,n)
for(i in l:n) {
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}
else if(SSl[i]>O) {

F.stat1[i] <- NA
P.vall [i] <- 0

cat('\b\b\b\b\b' ,i)
Xi <- X [-i,]
yi <- Y [-i]
xpred <- t(as.matrix(X[i,]))
model.i <- rpreg(Xi, yi, nfew=nfew, space=cv.space, nsplit=nsplit,

summary=F, CV=F)
r.del[i] <- y[i]-predict.rpr(xpred, model.i)

}
PRESS <- sum(r.del A

2 )
}
else

PRESS <- NA

SSTot <- sum«y - mean(y))A 2 )
SSReg <- SSTot - SSE
dferr <- n - dfmod -1
Rsq <- SSReg!SSTot

if ( ! summary) {
return(list(SSReg=SSReg, SSE=SSE, dferr=dferr, SSTot=SSTot, PRESS=PRESS,

dfmod=dfmod, Rsq=Rsq, APS=APS, region=region,
coef=coef, part.ind=part.ind))

else{ ############### Create summary objects #############
SSl <- numeric (nx)
SS3 <- numeric(nx)
df1 <- numeric(nx)
df3 <- numeric(nx)
F.stat1 <- numeric (nx)
F.stat3 <- numeric (nx)
P.val1 <- numeric (nx)
P.va13 <- numeric (nx)
frac.var1 <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.APS <- numeric (nx)
step. PRESS <- rep (NA,nx)
prev.model <- list(SSE SSTot, dferr n-1)

if (nx>l){
for(i in l:nx) {

#sequential summary
next.model <- rpreg(X[,l:i], y,space=space,nsplit=nsplit,summary=F,

CV=inc.press)
SSl[i] <- prev.model$SSE - next.model$SSE
df1[i] <- prev.model$dferr - next.model$dferr
if (dfl [i] >0) {

F.stat1[i] <- (SSl[i]!df1[i])!(next.model$SSE!next.model$dferr)
P.val1[i] <- 1-pf(F.stat1[i] ,df1[i] ,next.model$dferr)

}
else if(SSl[i]==0&&df1[i]==O){

F.stat1[i] <- NA
P.val1[i] <- NA

}
else{ # SSl[i]<O but df1[i]<0 perform lower tailed F test

F.stat1[i] <- (SSl[i]!df1[i])!(next.model$SSE!next.model$dferr)
P.val1[i] <- pf(F.stat1[i] ,-df1[i] ,next.model$dferr)
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}
else if(SS3[i]>0) {

F.stat3[i] <- NA
P.va13 [i] <- 0

} }

frac.var1[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.var1)
step.APS[i] <- next.model$APS
step.PRESS[i] <- next.model$PRESS
prev.model <- next.model

#Last term summary
r.model <- rpreg(X[,-i], y, space=space, nsplit=nsplit, summary=F)
SS3[i] <- r.model$SSE - SSE
df3[i] <- r.model$dferr - dferr
if (df3 [i] >0) {

F.stat3[i] <- (SS3[i]/df3[i] )/(SSE/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)

}
else if(SS3[i]==0&&df3[i]==0) {

F.stat3[i] <- NA
P.va13[i] <- NA

}
else{ # SS3[i]<0 but df3[i]<0 perform lower tailed F test

F.stat3[i] <- (SS3[i]/df3[i])/(SSE/dferr)
P.va13[i] <- pf(F.stat3[i] ,-df3[i] ,dferr)

}
frac.var3[i] <- SS3[i]/SSTot

}
else{

SSl <- SS3 <- SSReg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (SS3/df3)/(SSE/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df3,dferr)
frac.var1 <- frac.var3 <- cum.var <- SS3/SSTot
step.APS <- APS
step. PRESS <- PRESS

Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
MSE <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)
var.table1 <- data.frame(var= dimnames(X) [[2]], df1=df1, SSl=SSl,

F=F.stat1, P.val=P.val1,
frac.var=round(frac.var1,4) ,

Rsq=round(cum.var,4), APS=step.APS,
PRESS=step.PRESS)

var.table3 <- data.frame(var= dimnames(X) [[2]], df3=df3, SS3=SS3,
F=F.stat3, P.val=P.va13,

frac.var=round(frac.var3,4))
mod.table <- data. frame (Source=c ("Model", "Error") , df=c(dfmod,dferr),

SS=c(SSReg,SSE), MS=c(MSReg,MSE), F=c(F.mod,""),
P.val=c(P.mod,""))

return(list(mod.sum = mod.table, Rsq = Rsq, Adj.Rsq=Adj.Rsq, PRESS=PRESS,
APS=APS, span=NA, seq. sum=var. table1, last.sum=var.table3,
region=region, coef=coef))

##############################################################################
#
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summary.rpreg <- function (object) {

cat(paste("Model Summary for Recursive Partitioning Regression \n"))
print (object$mod.sum)
cat ("\n")
cat (paste (IIRsq =",round(object$Rsq, digits=4)))
cat (II ")
cat(paste("Adj-Rsq =",round(object$Adj.Rsq, digits=4)))
cat("\n")
cat(paste("PRESS =",round(object$PRESS,4)))
cat (II ")
cat(paste("Adj-PRESS =",round(object$APS,4)))
cat ("\n")
cat ("\n")
cat ("Sequential Summary\n")
print (object$seq.sum)
cat ("\nLast Variable Summary\n")
print (object$last.sum)
invisible (1)

##############################################################################
#

predictl.rpr <- function (x, object) {

region <- object$region
coef <- object$coef
nx <- length (x)
xr <- c(l,as.numeric(x))
nr <- length (region)
forti in l:nr){

flag <- 1
for(j in l:nx) {

if(x[j]<region[[i]] [j,l] II x[j]>=region[[i]] [j,2]){
flag <- 0
break

}
if (flag) {

reg.ind <- i
break

}
yhat <- t(xr)%*%(coef[[reg.ind]])
return (yhat)

##############################################################################
#

predict.rpr <- function (X, object) {

x <- as.matrix(X)
ans <- as.numeric(apply(X, MARGIN=l, FUN=predictl.rpr, object))
return (ans)

A-29



##############################################################################
#

mars <- function (X/ y/ gcvpen=2, summary=T, CV=F, maxsize=lOO, tol=1.Oe-16,
inc.press=F)

x <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if(n != length(y))

stop ("y must have length nrow (X) ")
if(nx+l >= n)

stop ("more variables than observations")
if (length (dimnames (X) [[2]]) == 0) {

dimnames (X) [[2]] <- list ()
dimnames(X) [[2]] <- paste("x", l:nx, sep="")

# scan for variables with 5 or less distinct values. Treat them as factors
nfac <- 0
data <- data.frame(cbind(X/y))
for(i in l:nx) {

if(length(table(data[/i]))<=5) {
data[/i] <- as.factor(data[/i])
nfac <- nfac+l

}
if (nfac==nx) {

cv. span <- NA
cv.terms <- NA
form <- loess. formula (data)
model <- 1m (form/data=data/qr=T)
r <- model$residuals
lev <- hat (model$qr)
r.del <- r/(l-lev)
SSE <- sum(r"2)
PRESS <- sum(r.del"2)
t.dev <- y - mean(y)
SSTot <- sum(t.dev"2)
SSReg <- SSTot - SSE
dfmod <- sum(lev)-l
dferr <- n - dfmod - 1
APS <- SSE/(1-(dfmod+l)/n)"2
Rsq <- SSReg/SSTot
pm. model <- NA

}
else{

model <- polymars(y, X/
gcv=gcvpen/maxsize=maxsize/tolerance=tol/verbose=F)

SSE <- sum (model$residuals"2)
SSTot <- sum((y-mean(y))"2)
SSReg <- SSTot - SSE
dfmod <- model$model.size
dferr <- n-dfmod
APS <- SSE/(max(0/1-(dfmod+l)/n))"2
Rsq <- SSReg/SSTot
pm. model <- model

r.del <- rep (NA/n)
if (CV) {

cat ("\n")
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}
else if(SSl[i]>O) {

F.statl[i] <- NA
P.vall [i] <- 0

for(i in l:n) {
cat('\b\b\b\b\b' ,i)

Xi <- X [-i,]
yi <- y[-i]
xpred <- t(as.matrix(X[i,]))
model.i <- mars (xi, yi, gcvpen, maxsize=maxsize, tol=tol,summary=F,

CV=F)
r.del[i] <- y[i]-predict.mars(xpred, model.i)

}
PRESS <- sum(r.del A2)

}
else

PRESS <- NA

if ( ! summary) {
return (list (SSReg=SSReg, SSE=SSE, dferr=dferr, SSTot=SSTot, PRESS=PRESS,

dfmod=dfmod, APS=APS, Rsq=Rsq, pm.model=pm.model,
r.del=r.del) )

}

else{ ############### Create summary objects #############
SSl <- numeric (nx)
SS3 <- numeric (nx)
dfl <- numeric (nx)
df3 <- numeric(nx)
F.statl <- numeric (nx)
F.stat3 <- numeric (nx)
P.vall <- numeric (nx)
P.va13 <- numeric (nx)
frac.varl <- rep(O,nx)
cum.var <- numeric (nx)
frac.var3 <- numeric (nx)
step.APS <- numeric (nx)
step.PRESS <- numeric (nx)
prev.model <- list(SSE = SSTot, dferr n-l)

if (nxxL) {
for(i in l:nx) {

#sequential summary
next.model <- mars(X[,c(l:i)], y, gcvpen, maxsize=maxsize, tol=tol,

summary=F, CV=inc.press)
SSl[i] <- prev.model$SSE - next.model$SSE
dfl[i] <- prev.model$dferr - next.model$dferr
if (dfl [i] >0) {

F.statl[i] <- (SSl[i]/dfl[i])/(next.model$SSE/next.model$dferr)
P.vall[i] <- I-pf(F.statl[i] ,dfl[i] ,next.model$dferr)

}
else if(SSl[i]==O&&dfl[i]==O) {

F.statl[i] <- NA
P.vall[i] <- NA

}
else{ # SSl[i]<O but dfl[i]<O perform lower tailed F test

F.statl[i] <- (SSl[i]/dfl[i])/(next.model$SSE/next.model$dferr)
P.vall[i] <- pf(F.statl[i] ,-dfl[i] ,next.model$dferr)

}
frac.varl[i] <- SSl[i]/SSTot
cum.var[i] <- sum(frac.varl)
step.APS[i] <- next.model$APS
step.PRESS[i] <- next.model$PRESS
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prev.model <- next.model
#Last term summary

r.model <- mars(X[,-i], y, gcvpen, maxsize=maxsize, tol=tol,
summary=F, CV=F)

8S3[i] <- r.model$8SE - 88E
df3[i] <- r.model$dferr - dferr
if (df3 [i] >0) {

F. stat3 [i] <- (883 [i] /df3 [i] ) / (S8E/dferr)
P.va13[i] <- 1-pf(F.stat3[i] ,df3[i] ,dferr)

}
else if(883[i]>0) {

F.stat3[i] <- NA
P.va13[i] <- 0

}
else if(883 [i]==0&&df3 [i]==O) {

F.stat3[i] <- NA
P.va13[i] <- NA

}
else{ # S83[i]<0 but df3[i]<0 perform lower tailed F test

F.stat3[i] <- (8S3 [i]/df3 [i])/(88E/dferr)
P.va13[i] <- pf(F.stat3[i] ,-df3[i] ,dferr)

} }
}
else{

881 <- 883 <- 88Reg
df1 <- df3 <- dfmod
F.stat1 <- F.stat3 <- (883/df3)/(88E/dferr)
P.val1 <- P.va13 <- 1-pf(F.stat1,df3,dferr)
frac.var1 <- frac.var3 <- cum.var <- 8S3/88Tot
step.AP8 <- AP8
step.PRE88 <- PRESS

Rsq <- SSReg/SSTot
Adj.Rsq <- 1-((n-1)/dferr)*(SSE/SSTot)
MSReg <- SSReg/dfmod
M8E <- SSE/dferr
F.mod <- MSReg/MSE
P.mod <- 1-pf(F.mod,dfmod,dferr)
var.table1 <- data.frame(var= dimnames(X) [[2]], df1=df1, 881=881,

F=F.stat1, P.val=P.val1,
frac.var=round(frac.var1,4) ,

Rsq=round(cum.var,4), APS=step.APS,
PRES8=step.PRE88)

var.table3 <- data.frame(var= dimnames(X) [[2]], df3=df3, 8S3=S83,
F=F.stat3, P.val=P.va13,

frac.var=round(frac.var3,4))
mod.table <- data.frame(Source=c("Model","Error"), df=c(dfmod,dferr),

S8=c(S8Reg,SSE), M8=c(MSReg,MSE), F=c(F.mod,""),
P.val=c(P.mod,""))

return(list(mod.sum = mod. table, Adj.Rsq=Adj.Rsq, seq.sum = var.table1,
last.sum=var.table3,S8Reg=88Reg, SSE=SSE, dferr=dferr,
SSTot=SSTot, PRES8=PRE88, dfmod=dfmod, APS=AP8, Rsq=Rsq,
pm.model=pm.model, r.del=r.del))

##############################################################################
#
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predict.mars <- function (newdata, mars.obj) {

yhat <- predict (mars.obj$pm.model, newdata)
return (yhat)

##############################################################################
#

{
# performs stepwise response surface and outputs the best model according to
# the specified criterion

step.rs <- function (X, y, surface="rs.reg", smooth="s", span="cv", df="cv",
n.terms="cv", nsplit="gcv", space=l, summary=T, maxterms=20,
crit="pval", alpha=.02, CV=F, int.terms=F, sqr.terms=F,
gcvpen=2, maxsize=lOO, tol=1.Oe-16, inc.press=F, cv.space=l)

nx <- ncol(X)
n <- nrow(X)
if(int.terms) { ## Include Multiplicitive Interaction Terms

## first center the predictors
Xc <- X - matrix (colMeans (X) ,nrow(X) ,ncol(X) ,byrow=T)
if (length (dimnames (X) [[2]]) == 0) {

dimnames(Xc) [[2]] <- list()
dimnames(Xc) [[2]] <- paste("x", l:nx, sep="")

}
Xr <- Xc
## Now compute cross products
for (i in 1: (nx-l)) {

old.ncol <- ncol(Xr)
if(length(table(Xc[,i] ))>=2) {

Xr <- cbind(Xr, XC[,i]*Xc[, (i+l) :nx])
dimnames(Xr) [[2]] <- c(dimnames(Xr) [[2]] [l:old.ncol],

paste (dimnames (Xr) [[2]] l i l , "*",dimnames(Xr) [[2]] [(i+l) :nx] ,sep=""))
}
else

Xr <- Xr[,-(i+l)]
}
X <- Xr
nx <- ncol(X)

if (nx<maxterms)
maxterms <- nx

if(n != length(y))
stop ("y must have length nrow (X) " )

if((surfacel="rs.reg")&&(surfacel="reg")&&(surfacel="rank")&&
(surface!="add.reg")&&(surfacel="loc.reg")&&(surfacel="ppr")&&
(surfacel="rpr")&&(surfacel="rpr2")&&(surfacel="mars"))

stop ("not a recognized surface type")
x.index <- l:nx
## label factors
factor <- rep(O,nx)
for(i in l:nx) {

if(length(table(X[,i] ))<=5) {
factor[i] <- 1

}
keep <- x.index<O
order <- numeric (0)
X.new <- matrix(ncol=O, nrow=n)
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PRESS <- lnf

####### Case 1: surface = (rs.reg), (reg), or (rank) ########

if(surface=="rs.reg"! !surface=="reg"! !surface=="rank"){

if (surface=="rs.reg")
method <- rs.reg

else if (surface=="reg")
method <- reg

else{ #assign ranks to the X columns and y
for(i in l:nx)

X[,i] <- rank(X[,i])
y <- rank(y)
method <- reg

} A

old.model <- list(SSE=sum((y-mean(y)) 2), dferr=n-1)

repeat {
SSE <- lnf
for(i in x.index[!keep]) {

Xi <- cbind(X.new,X[,i])
model <- method(Xi,y,F)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

}
X.new <- cbind(X.new, X[,next.var])
if (crit=="press") {

model <- method (X.new, y, F)
if(model$PRESS < PRESS)

PRESS <- model$PRESS
else

break;
}
else if (crit=="pval") {

new. model <- method (X.new, y, F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- 1-pf(F.stat, dfnew, new.model$dferr)
old. model <- new. model

if(p.val > alpha)
break;

}
else

stop ("crit must be press or pval '' )

keep [next.var] <- T
order <- c(order, next.var)

cat(paste("", next.var))
if (ncol (X.new) == maxterms)

break;
}

cat ("\n")
if (length (order) >1)

model <- method(X[,order], y, T)
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames(X.reg) [[2]] <- list (dimnames (X) [[2]] [order])
model <- method (X. reg, y, T)
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else
model <- reg(, y, summary=T)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=NA,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last.sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object))

############### Case2: surface = add.reg ############################

if (surface=="add.reg") {
old.model <- list(SSE=sum((y-mean(y))A2), dferr=n-l)
if (smooth=="lo"&&crit=="press")

crit <- "gcv"
if (span=="cv" II df=="cv") {

s.span <- .1
l.df <- 15

}
else{

s.span <- span
l.df <- df

}
span.vec <- df.vec <- numeric (0)

repeat{
SSE <- lnf
for(i in x.index[!keep)) {

xi <- cbind(X.new,X[,i))
model <- add.reg(Xi, y, smooth, c(span.vec,s.span) , c(df.vec,l.df),

summary=F, CV=F, step=T)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

} }
X.new <- cbind(X.new, X[,next.var))

if (crit=="gcv"){
model <- add.reg(X.new, y, smooth, c(span.vec,span), c(df.vec,df),

summary=F, CV=F, step=T)
if(model$APS < PRESS) {

PRESS <- model$APS
span.vec <- model$span.vec
df.vec <- model$df.vec

}
else

break;

else if (crit=="pval") {
new.model <- add.reg(X.new, y, smooth, c(span.vec,span), c(df.vec,df),

summary=F, CV=F, step=T)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnews n) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- 1-pf(F.stat, dfnew, new.model$dferr)

}
else if (SSnew>O) {

p.val <- 0
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}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1

}
if(p.val <= alpha) {

old. model <- new.model
span.vec <- new.model$span.vec
df.vec <- new.model$df.vec

}
else{ # SSnew<O but dfnew<O perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- pf(F.stat, -dfnew, new.model$dferr)

}
else

breaki

else if(crit=="press"){
model <- add.reg(X.new, y, smooth, c(span.vec,span), c(df.vec,df),

summary=F, CV=T, step=T)
if(model$PRESS < PRESS) {

PRESS <- model$PRESS
span.vec <- model$span.vec
df.vec <- model$df.vec

}
else

breaki

else
stop ( "cri t must be press, gcv, or pva l ")

keep [next.var] <- T
order <- c(order, next.var)

cat(paste("", next.var))
if (ncol(X.new) == maxterms)

breaki
}

cat (" \n")

if (length (order) >1) {
model <- add.reg(X[,order], y, smooth, span.vec, df.vec,

summary=T,CV=CV,
inc.press=inc.press)

reg (, y, summary=T)

}
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames(X.reg) [[2]] <- list (dimnames (X) [[2]] [order])
model <- add.reg(X.reg, y, smooth, span.vec, df.vec, summary=T, CV=CV,

inc.press=inc.press)
}
else

model <-

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last.sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object))

############### Case3: surface loc.reg ############################

A-36



}
else if (SSnew>O) {

p.val <- 0

}
old. model <- new.model

if (surface=="loc.reg") {
old.model <- list(SSE=sum((y-mean(y))A2), dferr=n-l)

repeat {
SSE <- Inf
for(i in x.index[!keep]) {

Xi <- cbind(X.new,X[,i])
model <- loc.reg(Xi, y, span=c(.l), summary=F)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

} }

X.new <- cbind(X.new, X[,next.var])
if (crit=="press") {

model <- loc.reg(X.new, y, span, summary=F)
if(model$PRESS < PRESS)

PRESS <- model$PRESS
else

break;
}
else if (crit=="gcv"){

model <- loc.reg(X.new, y, span, summary=F)
if(model$APS < PRESS) {

PRESS <- model$APS
}
else

break;
}.

else if (crit=="pval") {
new. model <- loc.reg(X.new, y, span, summary=F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnew>O) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- I-pf(F.stat, dfnew, max(lE-16,new.model$dferr))

}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1
}
else{ # SSnew<O but dfnew<O perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- pf(F.stat, -dfnew, new.model$dferr)

if(p.val > alpha)
break;

}
else

stop("crit must be gcv, press, or pva l '' )

keep [next.var] <- T
order <- c(order, next.var)

cat(paste("", next.var))
if (ncol (X.new) == maxterms)

break;
}

cat ("\n")
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}
else

model <- reg(, y, summary=T)

if (length (order) >1)
model <- loc.reg(X[,order], y, span, summary=T)

else if (length (order) ==1) {
X.reg <- as.matrix(X[,order])
dimnames(X.reg) [[2]] <- list (dimnames (X) [[2]] [order])
model <- loc.reg(X.reg, y, span, summary=T)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last. sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object))

############### Case4: surface = ppr ############################

if (surface=="ppr") {
old.model <- list(SSE=sum((y-mean(y))A2), dferr=n-1)

repeat{
SSE <- lnf
for(i in x.index[!keep]) {

if(ncol(X.new)==l&&factor[i])
next

Xi <- cbind(X.new,X[,i])
model <- ppr2(Xi, y, df=df, nterms=n.terms, summary=F, CV=F)
if (model$SSE<SSE){

SSE <- model$SSE
next.var <- i

}
X.new <- cbind(X.new, X[,next.var])

if(crit=="gcv"){
model <- ppr2(X.new, y, df=df, nterms=n.terms, summary=F, CV=F)
if(model$APS < PRESS)

PRESS <- model$APS
else

break;

else if(crit=="pval") {
new.model <- ppr2(X.new, y, df=df, nterms=n.terms, summary=F, CV=F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnews n) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- 1-pf(F.stat, dfnew, new.model$dferr)

}
else if (SSnew>O) {

p.val <- 0
}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1
}
else{ # SSnew<O but dfnew[i]<0 perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
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p.val <- pf(F.stat, -dfnew, new.model$dferr)
}
old. model <- new.model

if(p.val > alpha)
break;

else if (crit=="press") {
model <- ppr2(X.new, y, df=df, nterms=n.terms, summary=F, CV=T)
if(model$PRESS < PRESS)

PRESS <- model$PRESS
else

break;

else
stop("crit must be press, gcv, or pva L" )

keep [next.var] <- T
order <- c(order, next.var)

cat(paste("", next.var»
if (ncol (X.new) == maxterms)

break;
}

cat("\n")

reg (, y, summary=T)

}
else

model <-

if (length (order) >1)
model <- ppr2(X[,order], y, df=df, nterms=n.terms, summary=T, CV=CV,

inc.press=inc.press)
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames (X. reg) [[2]] <- list (dimnames (X) [[2)] [order)
model <- ppr2(X.reg, y, df=df, nterms=n.terms, summary=T, CV=CV,

inc.press=inc.press)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last.sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object»

################# Case 5: surface = rpr ##########################

if (surface=="rpr") {
old.model <- list(SSE=sum((y-mean(y»A2), dferr=n-1)

repeat {
SSE <- Inf
for(i in x.index[!keep) {

Xi <- cbind(X.new,X[,i)
model <- rpreg(Xi, y, space=space, nsplit=nsplit, summary=F, CV=F)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

}
X.new <- cbind(X.new, X[,next.var)
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if (crit=="gcv"){
model <- rpreg(X.new, y, space=space, nsplit=nsplit, summary=F, CV=F)
if(model$APS < PRESS)

PRESS <- model$APS
else

break;

}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1

}
else if (SSnew>O) {

p.val <- 0

}
else{ # SSnew<O but dfnew[i]<0 perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- pf(F.stat, -dfnew, new.model$dferr)

}
old. model <- new.model

else if (crit=="pval") {
new.model <- rpreg(X.new, y, space=space,

nsplit=nsplit,summary=F,CV=F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnews o ) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- 1-pf(F.stat, dfnew, new.model$dferr)

if(p.val > alpha)
break;

else
atop t u c r i t; must be gcv or pva I.")

keep [next.var] <- T
order <- c(order, next.var)

cat (paste("", next.var))
if (ncol (X.new) == maxterms)

break;
}

cat ("\n")

reg (, y, summary=T)

}
else

model <-

if (length (order) >1)
model <- rpreg(X[,order], y, space=space, nsplit=nsplit, summary=T,

CV=CV, inc.press=inc.press, cv. space=cv. space)
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames (X. reg) [[2]] <- list (dimnames (X) [[2]] [order])
model <- rpreg(X.reg, y, space=space, nsplit=nsplit, summary=T, CV=CV,

inc.press=inc.press, cv. space=cv. space)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last. sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object))
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}
else if (SSnew>O) {

p.val <- 0

################# Case 6: surface = rpr2 ##########################

if (surface=="rpr2"){
old.model <- list(SSE=sum((y-mean(y))A2), dferr=n-l)

repeat {
SSE <- Inf
for(i in x.index[!keep)) {

Xi <- cbind(X.new,X[,i))
model <- rpreg2(Xi, y, space=space, nsplit=nsplit,

summary=F,verbose=F)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

} }

X.new <- cbind(X.new, X[,next.var))

if (crit=="gcv"){
model <- rpreg2(X.new, y, space=space, nsplit=nsplit, summary=F)
if(model$APS < PRESS)

PRESS <- model$APS
else

break;

else if (crit=="pval") {
new.model <- rpreg2(X.new, y, space=space, nsplit=nsplit, summary=F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnew>O) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- l-pf(F.stat, dfnew, new.model$dferr)

}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1
}
else{ # SSnew<O but dfnew[i) <0 perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- pf(F.stat, -dfnew, new.model$dferr)

}
old. model <- new.model

if(p.val > alpha)
break;

else if (crit=="press") {
model <- rpreg2(X.new, y, space=space, nsplit=nsplit, summary=F)
if(model$PRESS < PRESS)

PRESS <- model$PRESS
else

break;

else
s t.op Cvcz Lt; must be press, gcv, or pva l ")

keep [next.var) <- T
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order <- c(order, next.var)
cat(paste("", next.var))

if (ncol (X.new) == maxterms)
break;

}
cat ("\n")

if (length (order) >1)
model <- rpreg2(X[,order] , y, space=space, nsplit=nsplit, summary=T,

CV=CV, inc.press=inc.press, cv. space=cv. space)
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames(X.reg) [[2]] <- list (dimnames (X) [[2]] [order])
model <- rpreg2(X.reg, y, space=space, nsplit=nsplit, summary=T, CV=CV,

inc.press=inc.press, cv.space=cv.space)
}
else

model <- reg (, y, summary=T)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last.sum = model$last.sum,
order=order, surface=surface, crit=crit)

if (summary==T)
summary.rs(object)

return(invisible(object))

############### Case7: surface = mars ############################

if (surface=="mars") {
old.model <- list(SSE=sum((y-mean(y))A2), dferr=n-1)

repeat{
SSE <- lnf
for(i in x.index[!keep]) {

Xi <- cbind(X.new,X[,i])
model <- mars(Xi, y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=F, CV=F)
if (model$SSE<SSE) {

SSE <- model$SSE
next.var <- i

}
X.new <- cbind(X.new, X[,next.var])

if (crit=="gcv") {
model <- mars (X.new, y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=F, CV=F)
if(model$APS < PRESS)

PRESS <- model$APS
else

break;

else if (crit=="pval") {
new.model <- mars (X.new, y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=F, CV=F)
SSnew <- old.model$SSE - new.model$SSE
dfnew <- old.model$dferr - new.model$dferr
if (dfnew>O) {

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- 1-pf(F.stat, dfnew, new.model$dferr)

}
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else if (SSnew>O) {
p.val <- 0

}
else if (SSnew<=O&&dfnew==O) {

p.val <- 1
}
else{ # SSnew<O but dfnew[i]<0 perform lower tailed F test

F.stat <- (SSnew/dfnew)/(new.model$SSE/new.model$dferr)
p.val <- pf(F.stat, -dfnew, new.model$dferr)

}
old. model <- new.model

if(p.val > alpha)
breaki

else if(crit=="press"){
model <- mars (X.new, y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=F, CV=F)
if(model$PRESS < PRESS)

PRESS <- model$PRESS
else

breaki

else
stop("crit must be press, gcv, or pval ")

keep [next.var] <- T
order <- c(order, next.var)

cat(paste("", next.var))
if (ncol (X.new) == maxterms)

breaki
}

cat.t v vn »)

reg (, y, summary=T)

}
else

model <-

if (length (order) >1)
model <- mars (X[,order] , y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=T, CV=CV, inc.press=inc.press)
else if (length (order) ==1) {

X.reg <- as.matrix(X[,order])
dimnames(X.reg) [[2]] <- list (dimnames(X) [[2]] [order])
model <- mars (X.reg, y, gcvpen=gcvpen, maxsize=maxsize, tol=tol,

summary=T, CV=CV, inc.press=inc.press)

object <- list (mod. sum = model$mod.sum, Rsq = model$Rsq, span=model$span,
Adj.Rsq=model$Adj.Rsq, PRESS = model$PRESS, APS=model$APS,
seq. sum = model$seq.sum, last.sum = model$last.sum,
order=order, surface=surface, crit=crit, r.del=model$r.del)

if (summary==T)
summary.rs(object)

return(invisible(object))

##############################################################################
#

summary.rs <- function (object) {
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# Takes a rs or reg object and displays the model and variable summaries along
# with Rsq and PRESS

cat (paste ("Model Summary for surface =", object$surface, "\n"))
cat(paste(" stepwise criterion =", object$crit, "\n"))
print (object$mod.sum)
cat ("\n")
cat (paste ("Rsq =",round(object$Rsq, digits=4)))
cat (" ")
cat (paste ("Adj-Rsq =",round(object$Adj.Rsq, digits=4)))
cat ("\n")
cat(paste("PRESS =",round(object$PRESS,4)))
cat (" II)
cat(paste("Adj-PRESS =",round(object$APS,4)))
cat ("\n")
cat (paste ("span =",object$span))
cat ("\n")
cat ("\n")
cat ("Sequential Summary\n")
print (object$seq.sum)
cat ("\nLast Variable Summary\n")
print (object$last.sum)
invisible (1)

##############################################################################
#

sensitivity <- function (data, x.pos, y.pos, surface="rs",
smooth="s", spane v cvv ,

df="cv", n.terms="cv", nsplit="gcv",
space=l,summary=F,

maxterms=20, crit="pval", alpha=.02, CV=F, gcvpen=2,
maxsize=lOO, tol=1.Oe-16, inc.press=F, cv.space=l)

#data: a data frame
#y.pos: vector of positions of responses to be analyzed in data
#x.pos: vector of positions of predictors in data
#other parameters are as in step.rs

data <- stand. data (data)
X <- data[,x.pos]
out. list <- numeric (0)
forti in y.pos){

yi <- data [, i]
print (names (data) [i] )
object.i <- step.rs(X, yi, surface=surface, smooth=smooth, span=span,

df=df, n.terms=n.terms, nsplit=nsplit, space=space,
summary=summary, maxterms=maxterms, crit=crit,
alpha=alpha, CV=CV, gcvpen=gcvpen, maxsize=maxsize,
tol=tol, inc.press=inc.press)

out.list <- c(out.list, list(object.i))
}
names (out.list) <- names(data)
if (summary)

summary.sens(out.list)
invisible (out.list)

[y.pos]

##############################################################################
#

summary.sens <- function (object, file){
# Takes a sensitivity object ie. a list of step.rs objects and displays the
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}
nrow <- ceiling (nmeth/ncol)

# summaries for all responses (the default) or a subset

if (!missing(file))
sink (file=file)

for(i in l:length(object)) {
cat(paste("\n\n********************* Response:", names (object) [i],

"*********************\n\n"))
summary.rs(object[[i]])

if ( !missing (file) )
sink ()

invisible (1)

##############################################################################
#

summary. table <- function (objects, fname, methods, ncol=3, Rsq=F, APS=F,
PRESS=F, CT=F, CTwT=F) {

#objects: list ofstep.rs objects
nmeth <- length (objects)
if (!missing(fname))

sink (file=fname)
if(missing(methods)) {

methods <- numeric (nmeth)
for(i in l:nmeth)

methods[i] <- objects[[i]]$surface

header <- rep (c ("Var" , "R2" , "df" , "p-val" , "PRESS") , ncol)
cat(header,sep='\t')
cat ( I \n ')
for(i in l:nrow) {

ind.m <- (ncol*(i-1)+1): (min(nmeth,ncol*i))
nvars <- numeric (0)
for(j in ind.m) {

nvars <- c(nvars, length(objects[[j]]$seq.sum$var))
cat("\t\t", methods[j] ,"\t\t\t",sep=' ')

}
cat (' \n' )
for(j in l:max(nvars)) {

for(k in l:length(ind.m)){
if(j<= nvars[k]) {
cat("",as.character(objects[[ind.m[k]]]$seq.sum$var[j]) ,"\t",

sep=" )
cat("",format.pval(objects[[ind.m[k]]]$seq.sum$Rsq[j] ,4),

" \ t" , sep= I I )

cat("",format(round(objects[[ind.m[k]]]$seq.sum$df[j] ,1) ,nsmall=l),
" \ t" , aep« I I )

cat("",format.pval(objects[[ind.m[k]]]$seq.sum$P.val[j] ,4),
" \ t" , sep= I I )

# if(is.na( objects[[ind.m[k]]]$seq.sum$PRESS[j]))
# cat("",scientific(objects[[ind.m[k]]]$seq.sum$APS[j] ,digits=2),
# "\t",sep="")
# else

cat("",scientific(objects[[ind.m[k]]]$seq.sum$PRESS[j] ,digits=2),
"\t",sep="")
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}
cat ( I \n I)

else
cat("\t\t\t\t\t")

}
cat (' \n ')

}
if (Rsq) {

for(k in l:length(ind.m))
cat ("RsCLA = ", format. pval (obj ects [ [ind. m [k] ] ] $Adj . Rsq, 4) ,

"\t\t\t\t\t", aep« I ')

cat ( I \n ')
}
if (APS) {

for(k in l:length(ind.m))
cat ("PRS A = ",scientific(objects[[ind.m[k]]]$APS,digits=2),

"\t\t\t\t\t", sep= I ')

cat ( ' \n ')
}
if (PRESS) {

for(k in l:length(ind.m))
cat("PRESS = ",scientific(objects[[ind.m[k]]]$PRESS,digits=2),

"\ t \ t \ t \ t \ t" , aep« I I )

cat ( I \n ')
}
if (CT) {

for(k in l:length(ind.m)) {
cat t vc T = ",format.pval(objects[[ind.m[k]]]$CT,4),sep=")
if (lCTwT)

cat("\t\t\t\t\t")
else

cat.t v , C T w/true = ",format.pval(objects[[ind.m[k]]]$CTwtrue,4),
"\ t \ t\ t \ t \ t" , sep= I , )

}
if (!missing(fname))

sink ()
invisible (1)

##############################################################################
#

sens.tables <- function( ... , fnames, methods, ncol=3, Rsq=F, APS=F,
PRESS=F, CT=F, CTwT=F){

## ... sensitivity objects

objects <- list( ... )
nmeth <- length (objects)
if(missing(fnames))

fnames <- paste(names(objects[[l]]), '_table.out' ,sep=' ')
flag <- missing (methods)
nvar <- length(objects[[l]])
for(i in l:nvar) {

rs.obs <- list()
for(j in l:nmeth)

rs.obs [[j]] <- objects [[j]] [[i]]
if (flag)

summary. table (rs.obs, fnames[i], ncol=ncol, Rsq=Rsq, APS=APS,
PRESS=PRESS, CT=CT, CTwT=CTwT)
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else
summary. table (rs.obs, fnames[i], methods, ncol=ncol, Rsq=Rsq, APS=APS,

PRESS=PRESS, CT=CT, CTwT=CTwT)
}
invisible (1)

##############################################################################
#

scientific <- function (x, digits=4){

if (is .na (x) )
return (rep ( 'NA' , length (x) ) )

m <- floor(loglO(x))
base <- x/{lOAm)
base <- format (round (base, digits) ,nsmall=digits)
ans <- paste (base, 'E',m,sep=' ')
return (ans)

##############################################################################
#

format.pval <- function (x, digits=4) {

if (is .na (x) )
return ( 'NA')

if (x>=lOA (-digits+1) II x < 5*10A (-digits-1))
ans <- format (round (x, digits), nsmall=digits)

else{
y <- round(x*lOA(digits), 0)
z.string <- '0.'
for(i in 1: (digits-I))
z.string <- paste(z.string,O,sep=' ')
ans <- paste(z.string,y,sep="")

}
return (ans)

##############################################################################
#

get_sens_data <- function (fname, rows) {

header <- scan(fname,nlines=l)
n <- header [1]
if(missing(rows))

rows <- c(l,n)
nx <- header [2]
ny <- header [3]
nv <- nx+ny

## Read in Column Names and # of lines of column names to skip
flag<-l
nlines.cn <- 1
while (flag) {
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colnames <- scan(fname,skip=l,nlines=nlines.cn,what='character'}
if (length (colnames)==nv}

flag <- 0
else

nlines.cn <- nlines.cn+1

## Read in first obs to determine # of lines for each obs
flag<-l
nlines.obs <- 1
while (flag) {

row1 <- scan(fname,skip=nlines.cn+1,nlines=nlines.obs}
if (length (row1)==nv}

flag <- 0
else

nlines.obs <- nlines.obs+1

skip <- nlines.cn+1+(rows[1]-1}*nlines.obs
nlines <- (rows[2]-rows[1]+1)*nlines.obs
data.vec <- scan(fname,skip=skip, nlines=nlines)
data.mat <- matrix(data.vec, ncol=nv, byrow=T}
sens.dat <- as.data.frame(data.mat}
names (sens.dat) <- colnames
return(sens.dat)

##############################################################################
#

srd.test <- function (x, y}
{
# performs SRD test and returns test statistic and p-val for SRD test,
# Spearman Rank test, and joint test.

n <- length(y)
if(n != length(x}}

stop (Illength y must length x " )

###### Perform SRD Test ######
ys <- y[order(x)]
ry <- rank (ys)
Q <- sum((ry[-1]-ry[-n]}A2)

# Determine sigma
if(n>40} sigma <- 1/6
else if(n>10) sigma <- 1/6 - .136/n
else if(n==10} sigma <- .152
else if (n==9) sigma <- .150
else if(n==8} sigma <- .147
else if(n==7} sigma <- .143
else if(n==6} sigma <- .138
else if(n==5} sigma <- .130
else if(n==4} sigma <- .117
else if(n==3} sigma <- .091
else stop (lin <= 2, Get Real! ")

S <- (Q-n*(nA2-1)/6}/(nA(5/2}*sigma)

ps <- pnorm(s}

###### Perform RCC Test ######
rcc <- cor.test(x, y, method="spearman")
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r <- rcc$stat
names(r) <- NULL
pr <- rcc$p.value
names (pr) <- NULL

###### perform combined test ######

chi <- -2*(log(pr)+log(ps))
pc <- 1-pchisq(chi,4)

return (list (s=s,r=r,c=chi,ps=ps, pr=pr, pc=pc))

##############################################################################
#

srd <- function (X, y, alpha=.OS, summary=T) {
# takes a matrix of predictors and performs SRD, RCC, and combined tests
# returns a sorted list of variables whose p.val <= alpha

X <- as.matrix(X)
n <- nrow(X)
nx <- ncol(X)
if(n != length(y))

stop ("y must have length nrow (X) " )
if(nx+1 >= n)

stop ("more variables than observations")
if (length (dimnames (X) [[2]]) == 0) {

dimnames (X) [ [2]] <- list ()
dimnames(X) [[2]] <- paste("x", l:nx, sep="")

}
ps <- numeric (nx)
pr <- numeric (nx)
pc <- numeric (nx)
for (i in 1 :nx) {

test <- srd.test(X[,i] ,y)
ps[i] <- test$ps
pr[i] <- test$pr
pc[i] <- test$pc

table.s <- data.frame(SRD= dimnames(X) [[2]], p.val.1=ps)
table.r <- data.frame(RCC= dimnames(X) [[2]], p.val.2=pr)
table.c <- data.frame(Combined= dimnames(X) [[2]], p.val=pc)

table.s <- table.s[order(table.s$p.val.1),]
table.r <- table.r[order(table.r$p.val.2),]
table.c <- table.c[order(table.c$p.val),]

table.s$p.val <- round(table.s$p.val.1, 6)
table.r$p.val <- round(table.r$p.val.2, 6)
table.c$p.val <- round(table.c$p.val, 6)

table <- cbind(table.s, table.r, table.c)
logical <-

table.s$p.val.1<=alphaltable.r$p.val.2<=alphaltable.c$p.val<=alpha
table <- table [logical,]

## Stuff to just get sens.tables and TDCC to work
## This is needed for the TDCC (a seq.sum$frac.var and order entry)
logical.c <- table.c$p.val<=alpha
order <- as.numeric(row.names(table.c[logical.c,]))
if (length (order) >0) {

frac.var <- length (order) :1
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var <- table$Combined
P.val <- table$p.val
df <- rep(NA,length(var))
Rsq <- rep(NA,length(var))
PRESS <- rep(NA,length(var))
seq.sum <- list (frac.var=frac.var,var=var,P.val=P.val,df=df,Rsq=Rsq,

PRESS=PRESS)
ans <- list (table=table, seq. sum=seq. sum, order=order, APS=NA, Adj.Rsq=NA,

PRESS=NA, surface='srd_rcc')

return (ans)

##############################################################################
#

srd.sens <- function (data, x.pos, y.pos, alpha=.02, summary=T) {
#Performs srd test for all variables in x.pos on all responses in y.pos
#data: a data frame
#y.pos: vector of positions of responses to be analyzed in data
#x.pos: vector of positions of predictors in data
#other parameters are as in step.rs

[y.pos]
}
names (out.list) <- names(data)
if (summary)

summary.srd(out.list)
return(out.list)

data <- stand.data(data)
X <- data[,x.pos]
out.list <- numeric (0)
for(i in y.pos) {

yi <- data[,i]
object.i <- srd(X,yi,alpha,sum=F)
out.list <- c(out.list, list(object.i))

##############################################################################
#

summary.srd <- function(object, file){
# Takes an srd.sens object ie. a list of srd objects and displays the
# summaries for all responses (the default) or a subset

if(!missing(file))
sink(file=file)

for(i in l:length(object)) {
cat(paste("\n\n********************* Response:", names (object) [i],

"*********************\n\n"))
print(object[[i]])
cat("\n")

if(!missing(file))
sink()

invisible (1)

##############################################################################
#
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savage <- function (x) {
nx <- length (x)
ss.val <- ss <- numeric (nx)
for{i in l:nx)

s s c vaLj i l <- sum{l/{i:nx))
ss[sort.list{-x)] <- ss.val
for{i in unique{x[duplicated{x)])) {

which <- x == i
ss[which] <- mean{ss[which])

}
return{ss)

##############################################################################

tdcc <- function{ ... , nx) {
# ... : step.rs objects, typically replicates, with the same predictors
# on the same response variable
# nx: number of predictors in the Sensitivity Analysis
objects <- list{ ... )
nr <- length (objects)
SS <- matrix {numeric (nr*nx) , nrow=nx)

for{j in l:nr) {
frac.var <- rep{-l,nx)
if{length{objects[[j]]$order) >0)

frac.var[objects[[j]]$order] <- length{objects[[j]]$order):l

####### Checking this
# frac.var[objects[[j]]$order] <- objects[[j]]$seq.sum$frac.var
#######

SS[,j] <- savage (frac.var)
}

)/( nrA2 * (nx - sum{l/{l:nx))) )

if{all{SS[,1]<{1+lE-12) & SS[,1]>{1-lE-12))){
warning ("There are no variables selected in the model")
cor.mat <- diag{l,nr)

}
else

cor.mat <- cor{SS)
avg.cor <- (sum{cor.mat)-nr)/{nr*{nr-1))
CT <- {{nr-1)*avg.cor+1)/nr
#CT <- ( sum{{rowSums{SS))A 2) - nrA2*nx

T.stat <- nr*{nx-1)*CT
p.val <- 1 - pchisq{T.stat,nx-1)

return {list {CT=CT, T.stat=T.stat, p.val=p.val))

##############################################################################

tdcc2 <- function {objects, nx) {
# objects: list of step.rs objects
# nx: number of predictors in the Sensitivity Analysis
nr <- length (objects)
SS <- matrix {numeric (nr*nx) , nrow=nx)

for{j in l:nr){
frac.var <- rep{-l,nx)
if{length{objects[[j]] $order) >0)

frac.var[objects[[j]]$order] <- length{objects[[j]]$order):l
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####### Checking this
# frac.var[objects[[j]]$order] <- objects[[j]]$seq.sum$frac.var
#######

SS[,j] <- savage (frac.var)
}

if (all (SS [,1] < (1+lE-12) & SS [,1] > (1-lE-12))) {
warning("There are no variables selected in the model")
cor.mat <- diag(l,nr)

}
else

cor.mat <- cor(SS)
avg.cor <- (sum(cor.mat)-nr)/(nr*(nr-1))
CT <- «nr-1)*avg.cor+1)/nr
T.stat <- nr*(nx-1)*CT
p.val <- 1 - pchisq(T.stat,nx-1)

return(list(CT=CT, T.stat=T.stat, p.val=p.val))

##############################################################################
#

tdcc.list <- function( ... , nx, alt.obj, wtrue=F) {
# ... : sensitivity objects, typically replicates, with the same predictors
# on the same response variables
#alt.obj: optionally will add TDCC stats to "alt.obj" if provided
# Computes the TDCC statistic between ... objects for each response

objects <- list( ... )
ny <- length(objects[[l]])
if(missing(alt.obj)) {

alt.obj <- list()
for (i in 1 :ny)

alt.obj[[i]] <- list()

}
CT.i<- tdcc2(rs.obs.i,nx)$CT
if (wtrue)

alt.obj [[i]]$CTwtrue <- CT.i
else

alt.obj [[i]] $CT <- CT.i

}
nr <- length (objects)
rs.obs.i <- list()
forti in l:ny) {

for(j in l:nr) {
rs.obs.i[[j]] <- objects [[j]] [[i]]

}
return(alt.obj)

##############################################################################
#

## Create a sensitivity object of the truth for variable importance in
## 4 test models
## This is needed for the TDCC a seq.sum$frac.var and order entry)
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true.order <- function() {

order1 <- c(2,1)
var1 <- paste('x',order1,sep=' ,)
frac.var1 <- c(.9999,1.0000)
Rsq1 <- frac.var1-c(0,frac.var1[-2])
df1 <- rep(NA,length(frac.var1))
pval1 <- rep(NA,length(frac.var1))
press1 <- rep(NA,length(frac.var1))
aps1 <- rep(NA,length(frac.var1))
seq.sum1 <- list (frac.var=frac.var1, var=var1, Rsq=Rsq1, df=df1,

P.val=pval1,
APS=aps1, PRESS=press1)

ans1 <- list (seq. sum=seq. sum1, order=order1, Adj.Rsq=NA, APS=NA, PRESS=NA,
surface='TRUE' ,CT=NA, CTwtrue=l)

order2 <- c(2,1)
var2 <- paste('x' ,order2, sep= , ')
frac.var2 <- c(.5196,1.0000)
Rsq2 <- frac.var2-c(0,frac.var2[-2])
df2 <- rep(NA,length(frac.var2))
pva12 <- rep(NA,length(frac.var2))
press2 <- rep(NA,length(frac.var2))
aps2 <- rep(NA,length(frac.var2))
seq.sum2 <- list (frac.var=frac.var2, var=var2, Rsq=Rsq2, df=df2,

P.val=pva12,
APS=aps2, PRESS=press2)

ans2 <- list (seq.sum=seq.sum2, order=order2, Adj.Rsq=NA, APS=NA, PRESS=NA,
surface='TRUE' ,CT=NA, CTwtrue=l)

order3 <- 1:8
var3 <- paste ( 'x' , order3, sep-.' , )
frac.var3 <- c(.7115, .9546, .9891, .9996, .9997, .9998, .9999,1.0000)
Rsq3 <- frac.var3-c(0,frac.var3[-2])
df3 <- rep(NA,length(frac.var3))
pva13 <- rep(NA,length(frac.var3))
press3 <- rep(NA,length(frac.var3))
aps3 <- rep(NA,length(frac.var3))
seq.sum3 <- list (frac.var=frac.var3, var=var3, Rsq=Rsq3, df=df3,

P.val=pva13,
APS=aps3, PRESS=press3)

ans3 <- list (seq. sum=seq. sum3, order=order3, Adj.Rsq=NA, APS=NA, PRESS=NA,
surface='TRUE' ,CT=NA, CTwtrue=l)

order4 <- c(2,1,3)
var4 <- paste('x' ,order4,sep=' ,)
frac.var4 <- c(.4463, .7593,1.0000)
Rsq4 <- frac.var4-c(0,frac.var4[-2])
df4 <- rep(NA,length(frac.var4))
pva14 <- rep(NA,length(frac.var4))
press4 <- rep(NA,length(frac.var4))
aps4 <- rep(NA,length(frac.var4))
seq.sum4 <- list (frac.var=frac.var4, var=var4, Rsq=Rsq4, df=df4,

P.val=pva14,
APS=aps4, PRESS=press4)

ans4 <- list (seq.sum=seq.sum4, order=order4, Adj.Rsq=NA, APS=NA, PRESS=NA,
surface='TRUE',CT=NA, CTwtrue=l)

ans <- list (y1=ans1,y2=ans2,y3=ans3,y4=ans4)
return (ans)

##############################################################################
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