
SANDIA REPORT
SAND2006-3515
Unlimited Release
Printed June 2006

Porting Salinas to the Windows Platform

Garth Reese, Sandia National Laboratories
Christopher Riley Wilson, Tactical Staffing Resources

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

DE
PA

RTMENT OF ENERGY

• •U
N

ITED

STATES OF AM

ERI
C

A

2

SAND2006-3515
Unlimited Release
PrintedJune 2006

Porting Salinas to the Windows Platform

Garth M. Reese and Christopher Riley Wilson
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185

Abstract

The ASC program has enabled significant development of high end engineering appli-
cations on massively parallel machines. There is a great benefit in providing these applica-
tions on the desktop of the analysts and designers, at least insofar as the small models may
be run on these platforms, thus providing a tool set that spans the application needs.

This effort documents the work of porting Salinas to the WINDOWSTM platform. Se-
lection of the tools required to compile, link, test and run Salinas in this environment is
discussed. Significant problems encountered along the way are listed along with an esti-
mation of the overall cost of the port.

This report may serve as a baseline for streamlining further porting activities with other
ASC codes.

3

Contents

1 Introduction 7

2 Requirements 9

3 Initial Configuration 10

3.1 Compiler Selection .10

3.2 Make Environment Selection .11

3.3 Hardware Configuration .11

4 Setting up the Environment 12

5 Compiling Salinas 13

5.1 Missing Header Files .13

5.2 Reading and Writing Text Files .13

5.3 Building Third Party Libraries (TPLs) .14

6 Major Issues in the Process 15

6.1 Compiler Version Incompatibilities .15

6.2 Test Suite .15

7 User Interface 16

References 17

4

Appendix

A Summary of Effort 19

5

6

Chapter 1

Introduction

The Department of Energy ASCI program began development of massively parallel appli-
cations in 1998. Sandia has been actively developing these applications, both within the
SIERRA framework, and others. The primary focus of the development is the “big iron”
type machines – machines with many processors that run huge analysis programs.

To a large extent, this effort has been very successful. For example, many analyses
for weapon systems are now performed using these codes. The state of the art in analysis
has grown tremendously, and verified analysis is now viable for issues which could never
previously be performed. International recognition for these unique capabilities has also
been demonstrated (as in the 2002 Gordon Bell award forSalinas).1 However, significant
issues have developed in the entire analysis process.

We find that many analysts use a smaller, serial code on their WINDOWSTM workstation.
Small design models are developed and analyzed. As the models grow they may get too
large for the desktop. The current process requires the analyst to throw out all the existing
models, and develop and new mesh and model in an entirely different format. Many aspects
of the analysis change, from the pre-processor, through analysis to the post-processing. As
a consequence much effort is lost, and time is wasted. Most importantly, the analysts must
now be expert in both analysis codes. This provides a tremendous burden to analysts, and
is a significant barrier to adoption of ASCI codes throughout our analyst community.

To allay that concern, we began a port ofSalinasto the WINDOWSTM platform. This will
allow analysts to consistently use the same tool from initial design through final analysis.
It will explore aspects of workflow that are difficult to evaluate without this port. By this
we mean to determine if a windows port will provide sufficient capability to meet the needs
of the analysis community.

TheSalinasport is seen as a trail blazing activity for other SIERRA based codes. We
anticipate that many of the hurdles that we have to pass for this port will be similar for
SIERRA tools. Note however, that the windows port for SIERRA tools is significantly more
complex for a large variety of reasons.

7

The port from the Unix environment to WINDOWSTM is not expected to be trivial. There
will be many code changes required. The build environment is impacted, and perhaps
most importantly, the run environment is quite different. However, becauseSalinashas
a serial version running on the Unix platform we anticipate that the porting effort will be
reasonable. We are engaging the SIMBA2 team to assist in the development of a graphical
user environment – clearly a task for which theSalinasteam is not well suited.

8

Chapter 2

Requirements

The following goals were established in the porting process.

• The port must not be too costly.

We estimate the total time to complete this port, including machine setup and con-
figuration, to take about 3 weeks for one person. This assumes one week for initial
configuration, one week porting TPLs, and one week compiling and linking salinas.

• The executable must run without access to any special libraries or DLLs.

• A user should be able to install the new executable using a simple process such as
unzip.

• We must be able to test the port.

• The configuration must be easily archived, so that the build can be repeated on a
different machine with the same tools.

• The focus is on maintenance and support, rather than on performance. This is a con-
venience port, rather than a high performance port. As such, decisions like compiler
selection, will be slanted towards support.

• Eventually we want to access the executables and related files using a graphical user
interface, such as that provided by SIMBA. However, this is beyond the scope of the
current effort.

9

Chapter 3

Initial Configuration

3.1 Compiler Selection

The primary requirement in choosing a Windows compiler suite is that it have both Fortran
and C++ compilers. Many C++ compilers exist on the Windows platform, but there are far
fewer Fortran compilers. The four primary candidates we considered were the following:

• Absoft

• Intel

• PGI

• Open Watcom

We chose to use the Intel v9.1 compilers for a few reasons. First,Salinashas already
been compiled using the Intel compilers on multiple systems. This will cause us to en-
counter fewer compiler incompatibilities, even though operating system incompatibilities
still exist. Intel compilers offer a robust set of supported language features and also gener-
ally produce better optimized executables than the other candidates, though performance is
a secondary concern at this point in the porting process.

Though we do not plan on using it directly, the Intel compilers use various libraries
and header files from Microsoft Visual C++. Since this compiler is relatively inexpensive
compared to the Intel compilers, this is not seen as a large deterrent.

10

3.2 Make Environment Selection

While our primary build system uses the Unix make utility, we also support building with
the SConsutility. SConsis a python based tool that is very versatile and reliable. Since
make is not available on the Windows platform,SConswill be used.∗

Since the configuration files are stored in text format, they can easily be archived in our
cvs repository, and they allow us to replicate our builds on any similar architecture. The
only requirement is that the same compilers are present on the machine as well as a version
of python.

3.3 Hardware Configuration

No unusual hardware was required. The port was done on a standard HP XW4200 Work-
station with 3.8GHz/800 Intel Pentium 4 processor and 2GB of RAM.

∗ One requirement to our port is that the software be easily installed on the analyst’s machines. This
precludes the use of Cygwin for the run time environment which effectively requires the installation of a new
shell.

11

Chapter 4

Setting up the Environment

Once the compiler version issues were overcome (see the Compiler Version Incompatibili-
ties section6.1), the installation and configuration was very easy. Microsoft Visual Studio
was installed first. The only additional configuration performed after initial installation was
to set up the environment variables. Microsoft provides a script calledvsvars32.bat, which
allows you to run its compilers from the command line, but it must be done every time you
compile. All the script really does is set some environment variables, so these values were
added to the static environment using the Advanced tab under System Properties.

After Visual Studio was installed, the Intel compilers came next. They were very easy
to install and even updated the environment variables automatically, so no additional work
was required.

Note that if using theSConsbuild tool, you must make sure the external environment
is propagated to the build environment as this is not the default behavior.

12

Chapter 5

Compiling Salinas

Salinas had been ported to many different platforms before this port was started. It has
also been ported with the Intel compilers, so there were not that many difficulties when
compiling the Salinas source files. Minor code changes were necessary in various files,
which won’t be described here. The larger issues are discussed below.

5.1 Missing Header Files

The most notable code changes were required because WINDOWSTM has no equivalent
header file tounistd.h. As a result, we had to replace the file ”read” and ”write” operations
with the equivalent stream implementation. This was a little time consuming, but not very
difficult because streams have their own read and write operations, which map fairly well
to theunistdversions.

Windows also has nostrings.hheader file. The primary uses for Salinas from this file
were the case insensitive string comparisons ”strcasecmp” and ”strncasecmp.” Windows
does have equivalent versions of these functions with different names. The following lines
were added to Salinas to resolve the issue:

#define strcasecmp(a,b) _stricmp(a,b)
#define strncasecmp(a,b,c) _strnicmp(a,b,c)

5.2 Reading and Writing Text Files

On Unix-like systems, each line of a text file is terminated with a newline character (\n).
However, Windows text files have a carriage return character (\r) in addition to a newline

13

character. When this two character combination is read from a file, an automatic translation
is performed, so that only a newline is returned to the reading program. Only one byte
of data is reported as read, even though in reality two bytes were read from the file. This
discontinuity causes serious problems when using the commands ”fseek” and ”ftell”, which
seek to a specific point in the file or report the current location in the file. Simple uses like
seeking to the start of the file work fine, but any seeking to an offset from the current
location in the file does not work.

Salinas only had two instances offseekthat had to be removed. Both were overcome
by more careful bookkeeping while parsing the file. The other uses offseekare either to
the beginning of the file or to a location directly obtained from a call toftell (as opposed to
an offset from this location).

5.3 Building Third Party Libraries (TPLs)

Most of the TPLs we build rely on a Make system, which is not available on Windows.
However, we were able to use ourSConsbuild tool to compile most of them. Since it was
already set up for our Salinas build, it was fairly easy to write a single configuration file for
each TPL that described which files to compile. Then,SConsused the same build options
we had already set up for the Salinas build. Once the individual files were compiled,SCons
was able to pack them into a library so we can link with them.

Thenetcdflibrary presented the only major exception to theSConsbuild strategy. Be-
causenetcdfhad already been ported to Windows, we chose to use the existing Visual
Studio build environment. Although Visual Studio was used to handle the bookkeeping
tasks, the files were still compiled using the Intel compilers. During installation, the Intel
compilers can integrate themselves into Visual Studio. We simply had to open their project
file (.sln) into Visual Studio, and configure it to use the Intel compilers to produce a static
library.

14

Chapter 6

Major Issues in the Process

6.1 Compiler Version Incompatibilities

We started this port after a new version of the Microsoft compiler had recently been re-
leased. Because Visual Studio 2005 was new, the Intel 9.0 compilers were not yet com-
patible with it. The fact that most retailers stopped selling older versions of the Microsoft
compilers when 2005 was released compounded the issue. We were able to start our ini-
tial port using a beta version of Intel’s 9.1 compiler, which did support the new Microsoft
Visual Studio.

The final version of the Intel 9.1 compilers has since been released and the transition
from beta to release was without issue.

6.2 Test Suite

After the initial port was completed, and we had a Salinas executable, we needed to test for
its correct operation. The original Unix test suite relies heavily oncshscripts, which are
not supported on Windows. There are some implementations of csh-like environments, but
we were unsure if these would work and whether or not they were worth the effort to try.

We considered the option of running our tests using the Sierra based SNtools runtest
utility. However, at the time of this port, the SNtools have not been ported to Windows, so
this was not a viable alternative.

We decided to use the Linux-likeCygwinenvironment for our testing. We definitely
did not want our main port to rely onCygwin, but it was acceptable to use it to run our test
suite. Here, we found no trouble running ourcshscripts and the test suite performed as it
does on all other platforms.

15

Chapter 7

User Interface

As with Unix-like platforms, a standard command line interface is available through Win-
dows’ DOS-like shell. However, most Windows users prefer Graphical User Interfaces over
the command line, so we are pursuing a relationship with the SIMBA2 team to provide a
new interface. SIMBA provides a GUI wrapper for traditionally command line based ap-
plications. This should make Salinas easier to use in the WINDOWSTM environment. The
interaction is illustrated in Figure7.1.

Cubit ParaviewSimba

Salinas

Figure 7.1. GUI interaction model

16

References

[1] Bhardwaj, M., Pierson, K., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J., Farhat,
C., and Lesoinne, M., “Salinas: A Scalable Software for High-Performance Struc-
tural and Solid Mechanics Simulations,” inSupercomputing, Baltimore, MD, Novem-
ber 2002, Gordon Bell Award winner.

[2] Whiteside, R., “Computer Sciences and Information Technologies - SIMBA,” Tech.
Rep. http://www.ca.sandia.gov/8900/simba.php, Sandia National Laboratories.

17

18

Appendix A

Summary of Effort

TableA.1 summarizes the time spent in each of the individual efforts to portSalinasto the
WINDOWSTM platform.

19

Table A.1. Cost of Porting

Activity Cost
Hardware Selection 1 day
Compiler Selection 1 day
Make environment 2 days
Hardware $2000
Computer setup 1 hour
Configuration 4 days
Building TPLS 2 days
Compiling Salinas 2 days
Number of Code changes100 lines
Linking Salinas 1 day

20

DISTRIBUTION:

1 0380 Morgan, Harold S, 1540

1 0847 Wilson, Peter J, 1520

1 0847 Baca, Thomas J, 1523

3 0847 Bitsie, Fernando, 1523

1 0847 Freymiller, James Eban, 1523

1 0557 Griffith, Daniel, 1523

1 0847 Holzmann, Wil A, 1523

1 0847 Kmetyk, Lubomyra N, 1523

1 0847 Miller, A Keith, 1523

1 0847 Rice, Amy E, 1523

1 0557 Simmermacher, Todd W, 1523

1 0847 Tipton, D Gregory, 1523

1 0847 Fulcher, Clay W G, 1526

1 0847 Redmond, James M, 1526

1 0382 Bova, Steven W, 1541

1 0382 Domino, Stefan Paul, 1541

1 0382 Gianoulakis, Steven E, 1541

1 0382 Glass, Micheal W, 1541

1 0382 Lober, Randy, 1541

1 0382 Lorber, Alfred A, 1541

1 0382 Okusanya, Tolulope O, 1541

1 0382 Subia, Samuel, 1541

1 0380 Alvin, Kenneth F, 1542

1 0380 Blanford, Mark L, 1542

1 0380 Crane, Nathan K, 1542

1 0380 Fortier, Harrison, 1542

21

1 0380 Gilmartin, William B, 1542

1 0380 Gullerud, Arne S, 1542

1 0380 Hales, Jason D, 1542

1 0380 Heinstein, Martin W, 1542

1 0380 Key, Samuel W, 1542

1 0380 Koteras, J Richard, 1542

1 0380 Olivas, Bryan Ray, 1542

1 0380 Perschbacher, Brent M, 1542

1 0380 Pierson, Kendall Hugh, 1542

1 0380 Porter, Vicki L, 1542

1 0380 Reese, Garth M, 1542

1 0380 Spencer, Benjamin W, 1542

1 0380 Walsh, Timothy Francis, 1542

5 0380 Wilson, Christopher Riley, 1542

1 0382 Aragon, Kathy, 1543

1 0382 Belcourt, Kenneth, 1543

1 0382 Brown, Kevin, 1543

1 0382 Espen, Peter Karl, 1543

1 0382 Sjaardema, Gregory D, 1543

1 0382 Stewart, James R, 1543

1 0382 Williams, Alan B, 1543

1 9042 Bhutani, Nipun, 8774

1 9042 Jew, Michael D, 8774

1 9042 Kistler, Bruce, 8774

1 9042 Kletzli, Daniel, 8774

1 9042 Revelli, Vera, 8774

1 9159 Whiteside, Bob, 8964

2 9018 Central Technical Files, 8945-1

2 0899 Technical Library, 9616

22

	Porting Salinas to the Windows Platform
	Abstract
	Contents
	Chapter 1 Introduction
	Chapter 2 Requirements
	Chapter 3 Initial Configuration
	3.1 Compiler Selection
	3.2 Make Environment Selection
	3.3 Hardware Configuration

	Chapter 4 Setting up the Environment
	Chapter 5 Compiling Salinas
	5.1 Missing Header Files
	5.2 Reading and Writing Text Files
	5.3 Building Third Party Libraries (TPLs)

	Chapter 6 Major Issues in the Process
	6.1 Compiler Version Incompatibilities
	6.2 Test Suite

	Chapter 7 User Interface
	References
	Appendix A Summary of Effort
	DISTRIBUTION

