
SANDIA REPORT
SAND2006-2487
Unlimited Release
Printed May 2006

An Improved Bi-Level Algorithm for
Partitioning Dynamic Grid Hierarchies

Johan Steensland and Jaideep Ray, Sandia National Laboratories, CA
Henrik Johansson, Uppsala University
Ralf Deiterding, California Institute of Technology

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE : This report was prepared as an account of work sponsored by an agency of
the United States Government . Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights, Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors . The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America . This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S . Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone :

	

(865) 576-8401
Facsimile :

	

(865) 576-5728
E-Mail :

	

reports@adonis .osti .gov
Online ordering: http:/lwwwdoe.gov/bridge

Available to the public from
U.S . Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone :

	

(800) 553-6847
Facsimile :

	

(703) 605-6900
E-Mail :

	

orders@ntis.fedworld .gov
Online ordering : http://www.ntis .govlordering .htm

2

SAN D2006-2487

Unlimited Release

Printed May 2006

An Improved Bi-Level Algorithm for Partitioning
Dynamic Grid Hierarchies

Johan Steensland and Jaideep Ray
Advanced Software Research and Development

Sandia National Laboratory
P.O. Box 969, Livermore, CA 94550-9915, USA

Listeens, jairay } @ca.sandia .gov

Henrik Johansson
Department of Information Technology, Uppsala University

P.O . Box 337, SE-751 05 Uppsala, Sweden
henrikj @it.uu .se

Ralf Deiterding
California Institute of Technology

MC 158-79, Pasadena . CA 91125, USA
ralf@cacr.caltech.edu

Abstract

Structured adaptive mesh refinement methods are being widely used for computer sim-

ulations of various physical phenomena . Parallel implementations potentially offer realistic

simulations of complex three-dimensional applications . But achieving good scalability for

large-scale applications is non-trivial . Performance is limited by the partitioner 's ability to

efficiently use the underlying parallel computer's resources . Designed on sound SAMR prin-

ciples, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the

advantages of both domain-based and patch-based techniques while avoiding their drawbacks.
But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic

applications regards frequently occurr ing bi-levels as "impossible" and fails . This document

describes an improved bi-level partitioning algorithm that successfully copes with all possible

3

hi-levels . The improved algorithm uses the original approach side-by-side with a new, comple-
menting approach . By using a new, customized classification method, the improved algorithm

switches automatically between the two approaches . This document describes the algorithms,
discusses implementation issues, and presents experimental results . The improved version of
Nature+Fable was found to be able to handle realistic applications and also to generate less

imbalances, similar box count, but more communication as compared to the native, domain-

based partitioner in the SAMR framework AMROC.

4

Acknowledgment

The authors thank Manish Parashar and Sumir Chandra at the Center for Advanced Information

Processing . Rutgers University, NJ, USA, and Michael Thuile' and Jarmo Rantakokko at Informa-

tion Technology, Uppsala University, Sweden for scientific collaboration.

5

Contents

I Introduction	 9
2 SAMR with AMROC and Nature+Fable	 10

2 .1 Parallel SAMR — Related Work	 10
2 .2 AMROC	 10
2 .3 Nature+Fable	 11

3 The Improved Bi-Level Algorithm	 12
3.1 The Original Approach	 12
3.2 The Complementary Approach	 13
3.3 The Classification Algorithm 	 14
3 .4 Implementation	 17

4 Experimentation	 19
4.1 Hypotheses	 19
4.2 Experiments	 19
4.3 Results	 22
4,4 Discussion : More Communication . Less Load Imbalance	 22

5 Summary and Conclusions	 25
6 Future Work : A New Bi-Level-to-Processor Mapping 	 25

6 .1 The Current Mapping in Nature+Fable	 25
6 .2 Ideas for a A New Mapping	 26

List of Figures

I

	

Representative AMROC scale-up test for fixed problem size 	 I 1
2

	

The three steps of the original approach (CDA) : I) Separation, 2) Cleaning, and 3)
Blocking	 13

3

	

Two "impossible" bi-levels . Left : The "circular" children pattern . Right : A patch
of atomic unit size Pa with an immediate neighbor Ph,	 14

4

	

The three steps of the complementary approach (PDA) : 1) Cleaning, 2) Blocking,
and 3) Derive kids	 15

5

	

A schematic view over the improved bi-level partitioning algorithm . New func-
tions are yellow and old are green . The figure shows the relationship between the
new and old functions, and how the old functions are re-used by the improved
algorithm	 20

6

	

Upper : Iso-lines of density on refinement levels at the final time step of Ramp2d.
Lower: An enlargement of the relevant triple region 	 21

7

	

Iso-lines of density on refinement levels at different time step of ConvShock2d
show the expansion of the shock wave after the reflection at t 0 .3 in the origin	 31

8

	

The improved bi-level algorithm versus PDA alone for Ramp2d and ConvShock2d
for 16 processors : Load imbalance (Left) and box count (Right) 	 32

9

	

The improved bi-level algorithm versus PDA alone for Ramp2d and ConvShock2d
for 16 processors : Communication volume	 32

6

10 Nature-Fable with the improved bi-level algorithm versus AMROC DB/SFC for
ConvShock2d and 16 processors : Load imbalance (Left) and box count (Right) 	 33

1 1

	

Nature+Fable with the improved bi-level algorithm versus AMROC DBISFC for
ConvShock2d and 16 processors : Communication volume 	 33

12 Nature+Fable with the improved hi-level algorithm versus AMROC DBISFC for

Ramp2d and 16 processors : Load imbalance (Left) and box count (Right) 	 34

13 Naz'_re+Fable with the improved bi-level algorithm versus AMROC DBISFC for

Ramp2d and 16 processors : Communication volume 	 34

14

	

For this simple 1 D hierarchy, Nature+Fable generated a perfect (DB) partitioning 	 35

1 5

	

For this simple 1 D hierarchy, a BD partitioning will probably generate too much
load imbalance . Na:r.re+Fable fails to map all blocks optimally (only the yellow
processor avoids part of its inter-level communication)	 35

List of Tables

1

	

The statistical quantities used for defining the macro predicates used for classifica-
tion of bi-levels	 18

2

	

The definition of these thresholds is a result of lengthy trial-and-error 	 19
3

	

Key properties of the AMROC application traces 	 21
4 Actual total synchronization time, including both communication and wait, in sec-

onds for the two applications on both ACL and SHC using AMROC DB-SFC and
16 processors . Communication volume is increased by the factor f. The row for
f = 0 contains extrapolated values, corresponding to net wait times caused by load
imbalances . Note that f = I indicates using the applications' original ghost cell
buffer width	 23

5 Communication time — assuming perfect load balance — computed as total syn-
chronization time minus the extrapolated net wait times in Table 4. Note that the
communication time for Nature+Fable would roughly correspond to f = 4 as
the communication volume for Nature+Fable was about 4 times higher and load
balance was significantly better as compared to AMROC DB-SFC	 23

6

	

Comparison of the actual total synchronization time for AMROC DB-SFC (top
row) to the estimated synchronization time for perfect load balance but with com-
munication volume increased by a factor of 4 (bottom row) 	 24

7

	

Percent of total run-times spent in synchronization for AMROC DB-SFC 	 24

7

This page intentionally left blank

8

An Improved Bi-Level Algorithm for
Partitioning Dynamic Grid Hierarchies

1 Introduction

Structured adaptive mesh refinement (SAMR) methods are being widely used for numerical so-
lutions to partial differential equations (PDEs) [4] in many simulation areas, including climate

modeling [13] . computational fluid dynamics [4], numerical relativity [6], astrophysics [5], sub-

surface modeling, oil reservoir simulation [311, electromagnetic field simulations [10], and flame

simulations [I 1] . As SAMR leads to uniform operations on regular arrays and exhibits structured

communication patterns, implementations can be efficient.

Parallel SAMR potentially leads to realistic modeling of complex three-dimensional physical phe-

nomena. However, large-scale SAMR applications place vastly diverse requirements on the par-

titioning strategy to enable efficient use of computer resources and consequently good scalability

[28, 29] . Performance is limited by the partitioner's ability to simultaneously trade-off and balance

load, optimize communication and synchronization, minimize data migration costs, maximize grid

quality, and expose and exploit available parallelism.

Traditionally, partitioning techniques for SAMR have been classified as either domain-based or

patch-based . But due to the inherent shortcomings in both of these basic concepts, neither of them

can provide good scalability for a broader spectrum of computer-application combinations . De-

signed on sound SAMR principles, mature+Fable [251 is a hybrid, dedicated SAMR partitioning

tool that brings together the advantages of both concepts while avoiding their drawbacks.

Unfortunately, the original bi-level partitioning approach in Nature+Fable has been proven to

be insufficient as it for some complex and realistic applications considers frequently occurring

bi-levels as "impossible" and fails . This document describes an improved bi-level partitioning al-

gorithm that successfully copes with all bi-levels present in two complex and realistic applications

derived from AMROC [7] . The improved algorithm uses the original approach side-by-side with

a new, complementing approach . By using a new, customized classification method, the improved

algorithm switches automatically between the two approaches . This document describes both the

the original approach and the new approach, as well as the classification method . Moreover, this

document discusses implementation issues and presents experimental results.

9

2 SAMR with AMROC and Nature+Fable

2.1 Parallel SAMR — Related Work

Methods based on SAMR start with a coarse base grid that covers the entire computational domain

and has the minimum acceptable resolution for the given required numerical accuracy of the PDE
solution . As the simulation progresses, local features in the simulation will cause regions in the
domain to exhibit unacceptable numerical errors . These regions are identified and the magnitude

of the errors is reduced by overlaying grid patches with higher resolution . This refinement process

proceeds recursively so that the refined regions requiring higher resolution are similarly identified
and even higher resolution grids are overlaid on these regions [4] . The result is a dynamic adaptive
grid hierarchy . Software infrastructures for SAMR include Paramesh [20], a FORTRAN library

for parallelization of and adding adaption to existing serial structured grid computations, SAMRAI

[32] a C++ object-oriented framework for implementing parallel structured adaptive mesh refine-
ment simulations, and GrACE [22], AMROC [7], and CHOMBO[I] . all of which are adaptive

computational and data-management engines for parallel SAMR.

Parallel SAMR requires repeated partitioning of the dynamic grid hierarchy and subsequent map-
ping of the partitions onto physical processors . Traditionally, partitioners for SAMR can be clas-
sified as patch-based or domain-based . For patch-based partitioners [3, 16] (PB), distribution
decisions are made independently for each newly created grid patch : it may be kept on the local
processor or split and distributed (uniformly) over other processors . The SAMR framework SAM-
RAI [32] (based on the LPARX [2] and KeLP [14] model) supports PB . Domain-based partitioners
[23, 30, 26] (DB) partition the physical domain, rather than the grids . The domain is partitioned in
a recti-linear fashion along with all overset grids on all refinement levels.

Hybrid partitioners [25, 30, 17] combining patch-based and domain-based approaches, can be
used for coping with the shortcomings present in PB and DB, Patch-based partitioners suffer from
communication serialization bottlenecks . while granularity constraints prevent DB methods from

providing acceptable load balance for deep hierarchies and many processors, Hierarchical schemes
have been presented as a successful means to overcome synchronization costs [19] . But to reap the
benefits of a hierarchical design, these methods need to be hybrid.

2.2 AMROC

AMROC (Adaptive Mesh Refinement in Object-oriented C++) is a dimension- and equation-

independent framework for structured mesh adaptation that particularly supports the Berger-Colella

SAMR algorithm [4], including conservative flux correction, on parallel computers with distributed
memory . The parallelization strategy in AMROC is a generalization of the strictly domain-based
space-filling curve approach in GrACE [21] . To derive load balance, the partitions are computed
exclusively on the basis of the root level . Al] patches on higher refinement levels follow this "floor-
plan" . The entire hierarchy is considered by projecting the accumulated work from higher levels

10

1000

100

10
4 8 16 32 64 128 256

CPUs

Figure 1 . Representative AMROC scale-up test for fixed problem size.

onto the root level cells.

The only operations incurring parallel overhead for he Berger-Colella SAMR algorithm using

strictly domain-based partitioning are ghost cell synchronization, redistribution of the SAMR hier-

archy and the application of the flux correction terms . Inter-level operations such as interpolation

and averaging, but in particular the calculation of the flux corrections, remain strictly local [9, 8].

Figure 1 shows a representative scalability test for AMROC . The test application is a three-dimensional

spherical shock wave problem for the Euler equations for a single polytropic ideal gas and employs

Roe's approximate Riemann solver within the multi-dimensional Wave Propagation Method by

LeVeque [18] as efficient single-grid scheme . The test was run on the ASC Linux cluster (ALC) at

Lawrence Livermore National Laboratories that connects Pentium-4-2 .4GHz dual processor nodes

with Quadrics Interconnect . The base grid has 32 3 cells and two additional levels with refinement

factors 2 and 4 . The adaptive calculation uses approx . 7 .OM cells in each time step instead of

16 .8 M cells for a uniform base grid with the equivalent numerical accuray . The calculation on 16

CPUs employs approx. a total of 1 100 grid patches per time-step . Displayed are the average costs

for each root level time step, which involves two time steps on the middle level and eight on the

highest . All components of the dynamically adaptive algorithm, including regridding and parallel

redistribution, are activated to obtain realistic results . The finite volume scheme is incorporated

into the C++ framework as a Fortran 77 routine with full compiler optimization . The fraction of the

time spent in this Fortran routine are 90 .5% on four, still 74 .9% on 16 CPUs, but decrease down

to 33 .0% on 128 CPUs . The mere intra-level synchronization costs increase from 3 .5% (4 CPUs)

to 27.8 % (128 CPUs) l . As the data volume to be communicated actually decreases, this increase
illustrates the influence of rising waiting times due to load imbalances in the core numerical update

routine in the strictly domain-based partitioning approach.

2.3 Nature+Fable

Designed on sound SAMR principles, tdatu :e+Fable (Natural Regions + Fractional blocking and

bi-level partitioning) [25, 27, 15] is a hybrid, dedicated SAMR partitioning tool that brings together

Note that the necessarily increasing costs for setting up synchronization data structures are measured separately.

11

the advantages of both patch-based and domain-based partitioning approaches while avoiding their
drawbacks . It separates homogeneous, un-refined (Hue) and complex, refined (Core) domains
of the grid hierarchy . The Hues contain the portions of the grid hierarchy without refinements:
consequently they contain only parts of the base grid (refinement level 0) . The Cores contain the
portions of the grid where refinements are present . The Cores are separated from the Hues in a
strictly domain-based fashion . i .e ., each Core contains a portion of the base grid and all its overlaid,
refined grids . The Cores are then clustered into bi-levels [251 . A bi-level consists of patches from
two adjacent refinement levels — a patch in the grid hierarchy at level k together with all its
superimposed refinements at level k + 1 . From the bi-levels, coarse "easy-to-block" partitions are
created. Finally, expert blocking algorithms are used for the Hues and the coarse partitions in
the Cores. To enable optimal partitioning for arbitrary application-computer combinations, the
partitioning process is controlled by a large set of parameters.

3 The Improved Bi-Level Algorithm

3 .1 The Original Approach

Nature+Fable groups refinement levels two by two . A bi-level is a patch — a parent — at the
lower level in a group together with all its children . Bi-levels are transformed into coarse partitions,
suitable for blocking . We define the original approach as the child-driven approach (CDA) . The
steps in the CDA are:

I . Separation Separate the children patches from each other : Without cutting any of the chil-
dren, split up the parent in a domain-based fashion so each piece gets a maximum of one
child (Figure 2, Left).

2. Cleaning Remove "white-space" : Cut off excessive parts of the parent if it has a relatively
"small" child (Figure 2, Middle).

3. Blocking Send the coarse partitions to the blacker and let the child (if there is one) dictate
the cuts (Figure 2, Right).

The CDA (illustrated in Figure 2) generally generates high-quality results for all inputs it can
possibly handle . Quality does not deteriorate as the inputs get "harder" . Rather, there is a hard
cut-off beyond where it can not go . Therefore, we wish to keep the CDA as a the corner-stone in
the improved algorithm.

The CDA sometimes fail because the children patches are laid out in a way that makes the separa-
tion step impossible. For example, if the parent is "cluttered" with children, it is unlikely that there
will be any clean cuts for the separation : it will be impossible to cut the parent without simulta-
neously cutting at least one of the children . Another problem is that the occurrence of children of
the smallest possible size — i .e . the atomic unit — may result in that the only possible cuts create
patches smaller than the atomic unit on the parent.

12

ept

Bc1praMDr, y
z

I+I - -
Hi—level domain

. 1

r

	

Coarse partition.

Figure 2 . The three steps of the original approach (CDA) : I) Separation . 2) Cleaning, and 3)

Blocking.

3.2 The Complementary Approach

We can now identify two criteria for a complementing approach : 1) It should cope with all possible
bi-levels (as it will be fed all bi-levels that the CDA could not handle), and 2) it should generate
high-quality results for bi-levels badly suited to the CDA.

To design a successful complementing approach, further analysis of the "impossible" bi-levels is
needed. We list the two basic types of impossible bi-levels:

1. Circular children pattern If the children form a "circular pattern" as illustrated by Figure 3
(Left), there is no possible separation cut that does not cut through at least one of the children.

2. Children of atomic unit size with close neighbors If a child of atomic unit size resides
at the border of the parent and has an immediate neighbor (illustrated by Figure 3, Right),
these two children cannot be separated without creating a piece of the parent smaller than
the atomic unit.

We make the following observation . Though not exclusively, both of the types listed above occur
for many and spread-out children often including small patches . An implication of this observa-
tion is that for "impossible" bi-levels, there is a good chance that the children a) are reasonably
spread-out, b) are many, and c) includes patches of atomicunit size . We design our complementing
approach on the basis of this observation.

The complementing approach should be most efficient for exactly the bi-levels described by our
observation . For now, we leave (c) for later and focus on (a) and (b) from the paragraph above.
We make a further observation : A bi-level having many and spread-out children might not only
be impossible to handle for the CDA . It may also be unnecessary to handle such a bi-level with
the CDA. There may be a simpler way, exploiting the given characteristics . If the children are
many and spread-out, a high-quality result should follow automatically by the following simple
approach, which we define as the parent-driven approach (PDA) (illustrated in Figure 4):

I . Cleaning Make a bounding box around the children and re-use the original cleaning algo-

'r	

inust lay-,l

-- ~Fnesl les't('

13

'Parent

T'hi> cut violates the
atomic unit (> I j on

t

	

the parent

0 Grid cells
on children
level

----Le

Figure 3 . Two "impossible" bi-levels . Left : The "circular" children pattern . Right : A patch of
atomic unit size Pa with an immediate neighbor

rithm (described in the previous sub-section) with the bounding box as the child (Figure 4,
Left).

2. Blocking Block the parent and let the parent alone dictate the cuts . In this step we only re-
gard the children's combined workload . All other aspects of the children — such as position,

size, and number — are disregarded (Figure 4, Middle).

3. Derive kids For each block, re-use the original get Kids function to derive the block's chil-
dren (Figure 4. Right).

Letting the parent dictate the cuts is logical considering the class of input : many and spread-out
children patches . Statistically, this would produce a reasonably well-balanced partitioning . Note

that for the PDA, the result has a different structure compared to the CDA . The PDA generates

bi-level blocks with one parent and potentially multiple children, while the CDA generates bi-
level blocks with one or zero blocks per parent . This poses challenges in data structures and data
handling, as will be discussed in Section 3 .4.

3.3 The Classification Algorithm

Given the PDA, the task is now to design an efficient algorithm that classifies a given bi-level
as suitable for either the CDA or the PDA . This algorithm's job is to switch automatically and

transparently between the two approaches, always producing a high-quality result.

As the CDA generally gives high-quality results, a goal for the classification algorithm is to classify

14

-r-
Cut

Cut

Figure 4. The three steps of the complementary approach (PDA) : 1) Cleaning, 2) Blocking, and
3) Derive kids.

as many bi-levels as possible as suitable for the CDA . A crucial constraint is that it should never

classify an "impossible" bi-level to the CDA as this will cause Nature+Fable to fail . We also want

the classification algorithm to conform to the general Nature+F able algorithm policy regarding

efficiency. i .e ., for significantly complex tasks we prefer powerful heuristics over searching for an

exact or optimal solution.

While deriving and computing mathematical quantities for classifying a bi-level might be possible

and bears the potential of rigorous results, we considered this prohibitively expensive . Instead, we

constructed a conceptually trivial, yet powerful, recursive algorithm:

Classif(bi-level BL)

if (triviallvSui :.ableForPDA(BL)) doPDA(EL);

else if (triviallySaitable :orCDA(BL)) doCDA(BL);

else

{

/'=== This the non-trivial case ===*/

if (split(BL, BLLow, BL_:igh)==FAIL) doCDA(BL);

else

{

/*=== Recursive case

Classi=y(BLLow);

Classifv(BLFign);

}

}

}

15

This algorithm singles out the trivially classifiable hi-levels . If trivial classification fails, the bi-
level is split and both resulting parts are classified recursively . The strength in this classic divide-
and-conquer algorithm is that it simultaneously separates and classifies the input bi-level . It re-uses

the split function used by the CDA, meaning that each split is equivalent to the optimal separation
cut. Thus each recursive call will generate a meaningful break-down (separation) of the input,

effectively decreasing the number of bi-levels that would unnecessarily be classified as impossible.

The challenge inherent in this algorithm is to define the suitable predicates and determine the

numerical thresholds associated with each predicate . First, we consider what is trivially suitable
for the PDA . We identify the following sufficient conditions:

• The children pattern should should be very dense . OR

• There should be a lot of children, exhibiting a not-very-sparse pattern, OR

• The children should be on average very small, exhibiting a not-very-sparse pattern.

The following line of C code implements the above conditions as the macro predicate
triviallySuitableForPDA:

#define triviallySaitable=orPDA \

(VERY_DENSE) II ((A 10T) && !(VERY_SPARSE)) 111
((VERY_SMALL) && !(VERY_SPARSE)))

The above macro, in turn, relies on a set of abstractions, which are implemented as C macro predi-
cates, too . They will be defined below.

Now, we consider what is trivially suitable for the CDA . We identify the following sufficient con-
ditions:

• The bi-level has only one child, which is not of atomic unit size, OR

• The bi-level has very few and large children and there is no patch of atomic unit size.

The following line of C code implements the above conditions as the macro predicate
tr viallvSuitable crCDA.:

#define triv_allySuitableForCDA ` ,.

((kids .number()==1) II ((VERY_FEW) && (VERY_LARSE)))\

&& !existsAtomic)

As for the tr_via11ySu_table= crPDA, the abstractions will be defined below . Note how this
predicate addresses point (c) from Section 3 .2 . i .e ., bi-levels containing children of atomic unit size

16

can not be classified as suitable for the CDA . Instead of automatically and possibly unnecessarily
being classified as suitable for the PDA, the bi-levels that fail this predicate will be split and the
two pieces will be classified recursively.

To define the six above described abstractions as C macro predicates, we rely on the statistical
quantities described in Table 1 . These quantities give information about the children's average
size and so forth, and are derived by looping once through the bi-level's children . We define the
remaining six macro predicates with these lines of C code:

#define VERY SPARSE ((hcwMany<REALLYSPARSE)

(howMany<SPARSE && \

avgSize[RELATIVE]<2*TINY_RELAT : E))

#define VERY DENSE (howMany>DENSE)

//VERY_SMALL means very small out NOT tiny!

#de=fine VERY_SMALL ((avgS_ze[ABSOLJTE]<SMALL_ABSOLUTE &&

avgSize[ABSOLUTE]>TINY_ABSOLUTE)\

II
(avgSize[RELAT :VE]<SMALL_RELATIVE && \

avgSize[RELATIVE]>TINY_RELATIVE))

#define VERY_LARGE ((avgSize[ABSOLUTE]>LARGE_ABSOLJTE) II\

(avgSize[RELATIVE]>LARGE_RELATIVE))

#define VERY FEW ((kids .number ()<FEW_ABSOLUTE))

//A_LOT rr.eans a lot but NOT a myriad!

#define A_LOT ((kids .number ()>MANY_ABSOLJTE && \

kids . number()<MYRIAD_ABSOLUTE))

The six above defined macro predicates use 12 constants, i.e. . thresholds that define what is con-
sidered sparse, dense . and so forth . These constants are listed in Table 2 along with their numerical
thresholds . The numerical values are a results of a lengthy trial-and-error process . Further "tweak-
ing" of the numbers is expected.

3.4 Implementation

Figure 5 offers a schematic view over the improved algorithm, showing the relationship between
the old and new functions, and how the old functions are re-used by the new improved algorithm.
Even though both the PDA and the classification algorithm are new, they required minimal addi-
tional code . The classification algorithm is as described above of trivial divide-and-conquer type.
And as the PDA is comprised of the three steps cleaning, blocking, and derive kids, it re-uses these
function calls as they already exists in Nature+Fable.

The primary data structure in Nature+Fable is the Gr_dBoxL_st : a linear list of elements of the

type GridBox . To accommodate a coarse partition, i .e . . a parent and its child, the Nature+Fable

GridSox has been extended from the standard version in GrACE to include an additional 3Box.

I7

Quantity Value Explanation
kids . nur tber O The number of children

existsAtorr.ic

1 if there exists
an atomic unit-sized

patch and 0 otherwise

ncwMany

(The number of children) /
(The maximum number of

children possible , f. r the parent)

Indication of children
pattern's density

avgSize [ABSOLUTE]

(average child size) 1
(the size of the
atomic unit)

How many times
bigger is the average

child compared to the
smallest possible child

avgSize [RELATIVE]

(average child size) /
(parent size)

How large is the
average child compared

to the parent

Table 1 . The statistical quantities used for defining the macro predicates used for classification of
bi-levels

The choice of this data structure is a result of the original bi-level approach, i .e ., the CDA. As
the PDA — as opposed to the CDA — produces parents having potentially multiple children, the
requirement for the data structures changes . Instead of each GridBox having one additional B3ox,

the logical choice of data structure would be to include an additional B3exIist for each GridBox
in the Gr idBoxL i s :.

In retrospect, Nature+Fable should probably have been designed on the basis of a more general
data structure. But a drastic modification of data structures in a thousands-of-lines software tool
often requires re-engineering large parts of the tool . To avoid the daunting task of re-engineering
Nature+Fable, we searched for an alternative solution.

The solution to the problem with the data structures was simpler than expected : For the PDA, each
child is stored as a separate GridBox and is given the same space-filling curve (SFC) index as its
parent . Having identical SFC indices forces the parent and its children to stay together through
the subsequent partitioning steps (e.g . sorting). Each GridBox has an integer used internally by
Nature--able as a flag. For the PDA, the children and the parent are flagged as MULTI, whereas
for the CDA each GridBox is flagged as SINGLE . The flag is used by the subsequent mapping
routines to correctly identify all kinds of GridBoxes.

18

Constant Threshold Used for
TINY_ABSOLi;TE

TINY _RELATIVE

SMALLF.BSO :,UTE

SMALL_RELATIVE

LARGE ABSOLUTE

LARGE_RELATIVE

FEW_ABSOLUTE

MANY ABSOLUTE

MYRIAD ABSOLUTE

REALLY SPARSE

SPARSE

DENSE

10 .0

0.001

80 .0

0.005

100 .0

0.20

4

5

25

0.002

0.003

0.004

avgSize [ABSOLUTE]

avgSize[RELATI~iE]

avgSize [ABSOLUTE]

avgSize[RELATIVE]

avgSize [ABSOLUTE]

avgSize[RELATIVE]

'.<ids . nu : fiber ()

kids .number ()

kids .r.umber()

:cwMar.y

howMar.y

howMaiy

Table 2 . The definition of these thresholds is a result of lengthy trial-and-error

4 Experimentation

4.1 Hypotheses

We have the following four hypotheses:

HI Using the improved bi-level algorithm, Nature+Fable can now cope with arbitrary and

realistic grid hierarchies.

H2 The improved algorithm — including the automatic switching between the PDA and the
CDA — is "better" than using the PDA alone.

H3 Nature+Fable will generate significantly better load balance than the native AMROC domain-
based SFC partitioner without significantly increasing box count.

H4 As Nature+Fable is a hybrid partitioner, it will separate parent patches from their kids
whenever this mi g ht be justified . Consequently, there will be a significant increase in com-
munication volume as compared to the native AMROC domain-based SFC partitioner.

4.2 Experiments

To determine which of our four hypotheses (if any) could be verified, we used two complex and
realistic applications from the structured adaptive mesh refinement framework AMROC. Using

19

PDA:
Cleaning
Blocking

Derive kids

	 /''

CDA:
Separating
Cleaning
	 Blocking

Level group

Figure 5 . A schematic view over the improved bi-level partitioning algorithm . New functions are
yellow and old are green . The figure shows the relationship between the new and old functions, and
how the old functions are re-used by the improved algorithm.

16 processors . we compared the improved bi-level algorithm to PDA alone, and then compared

Nature-Fable (using our improved algorithm) to the native partitioner in AMROC.

The applications

Two two-dimensional AMROC applications with a topological complexity comparable to the seal-
ability test in Section 2 .2 have been selected for this study . Table 3 lists their key properties.

The first application, Ramp2d, is a double Mach reflection of a Mach-l0 shock wave impinging on
a 30 degree wedge (also used by Berger and Colella X41) . In serial, this application uses 293 grid
patches per time-step on average . There are three additional levels of refinement . Figure 6 depicts
the final state of the hierarchy.

The second application, ConvShock2d, is a converging Richtmyer-Meshkow instability . In this
simulation, a spherically converging Mach-5 shock hits an initially perturbed spherical interface
between two different gases and drives it inward . The shock is reflected around t 0 .3 in the origin

and inverts the direction of motion of the interface as it hits it again . The simulation is motivated
by mixing phenomena related to inertial confinement fusion . Figure 7 shows the early stages of
the simulation : the refinement is clustered around the origin . As a consequence of this refinement

pattern, the application is particularly challenging for the PDA . In serial, this simulation uses 745
grid patches per time-step on average . There are four additional levels of refinement.

getKids Classificatio
&

Automatic
Switchin t

1
Hi–level

	

"Lower°	 level	

"u

Blocking'

Non–trivial split

20

Densay alt . C 2

0.6

Density el t • 02

Figure 6 . Upper : Iso-lines of density on refinement levels at the final time step of Rarnp2d. Lower:

An enlargement of the relevant triple region.

Both simulations use the second-order accurate multi-dimensional Wave Propagation Method with

MUSCL slope limiting in the normal direction [8] in combination with linearized Riemann-solvers

of Roe-type .

Application Tot . levels Ref . factors Avg. boxes Steps

Ramp2d

ConvShock2d

4

5

2,2,4

2,2,4,2

292.6

744 .8

339

228

Table 3 . Key properties of the AMROC application traces.

The SAMR simulator

Load imbalance, box count, and communication amount are derived using software 124] developed
at Rutgers University in New Jersey by The Applied Software Systems Laboratory, that simulates

the execution of the Berger-Colella SAMR algorithm . This software is driven by an application

execution trace obtained from a single processor run . This trace captures the state of the SAMR

21

grid hierarchy for the application at the regrid (refinement and coarsening) step and is independent
of any partitioning . The experimental process allows the user to select the partitioner to he used,
the partitioning parameters, and the number of processors . The trace is then run and the perfor-
mance of the partitioning configuration at each regrid step is computed using the above mentioned
metrics . For each coarse time-step, load imbalance is defined as the load of the heaviest loaded
processor divided by the average load, box count as the average number of boxes per processor,
and communication amount as the maximum number of ghost cells required to be transfered by
any single processor.

4.3 Results

The improved bi-level algorithm vs . PDA alone

As can be seen in Figures 8 and 9, only load imbalance differs significantly . Clearly, the auto-
matic switching has some success in classifying the current bi-level group and selecting the correct
approach to partitioning it.

Nature-I-Fable vs . AMROC DB-SFC

As can be seen in Figures 10 through 13, Nature+Fable with the improved algorithm can cope
with all grid hierarchies . Load imbalance is significantly lower — about half — as compared to
AMROC DB-SFC, while box count on average is similar . Communication volume, on the other
hand, is 4 to 4 .5 times higher for Nature+=able.

4.4 Discussion : More Communication, Less Load Imbalance

The results show that Nature+Fable generates significantly more communication but also signif-
icantly less load imbalances as compared to the native AMROC DB-SFC . To put these results into
perspective, we investigated the impact of perfecting load balance while increasing the amount of
communication for our two applications with 16 processors used on two different parallel plat-
forms: ACL 2 and SHC 3 . The communication volume was increased by a factor f E {l234,5}
by increasing the ghost cell buffer width with the same factor . Note that the partitioning is in-
dependent of f as it disregards ghost cells . Table 4 shows the resulting synchronization times,
including both actual communication time and wait time . The results were extrapolated to create
the numbers for f = 0.

As both platforms have high-performance networks, no significant wait time should occur during
communication for four to eight nodes and perfect load balance . Thus . f = 0 corresponds to
net wait times caused by load imbalances generated by the AMROC DB-SFC . Assuming perfect

Pentium 4 2 .4GHc dual processor nodes with Quadrics High Speed Interconnect.
3 Quad processor, dual core, 2 .2 GHz AMD Opteron, PCI-X 4x Infiniband.

22

f Ramp ALC ConvShock ALC Ramp SHC

	

ConvShock SHC

0 680 1800 510

	

1400

1 766 2263 560 1764

2 900 2884 640

3 986 3715 728

4 1143 4731 817 3404

5 1278

	

5904 908 4284

Table 4 . Actual total synchronization time, including both communication and wait, in seconds
for the two applications on both ACL and SHC using AMROC DB-SFC and 16 processors . Com-

munication volume is increased by the factor f . The row for f = 0 contains extrapolated values,

corresponding to net wait times caused by' load imbalances . Note that f = I indicates using the

applications' original ghost cell buffer width.

load imbalance translates to subtracting the row for f = 0 from all other rows . The result from

this subtraction is shown in Table 5 . These numbers could be viewed as communication times

for a fictitious partitioner generating perfect load balance but f times more communication than

AMROC DB-SFC.

f Ramp ALC ConvShock ALC Ramp SHC ConvShock SHC

0 0 0 0 0

1 86 463 50 364

2 220 1084 130

3 306 1915 218

4 463 2931 307 2004

5 598 4104 398 2884

Table 5 . Communication time — assuming perfect load balance — computed as total synchro-

nization time minus the extrapolated net wait times in Table 4 . Note that the communication

time for Namre-Fable would roughly correspond to f = 4 as the communication volume for

Nature+=able was about 4 times higher and load balance was significantly better as compared
to AMROC DB-SFC.

Table 6 shows a comparison between the actual DB-SFC and the fictitious partitioner generating

perfect load balance but four times as much communication. The table shows that the combi-

nation perfect load balancelfour times more communication is beneficial for Ramp2d but not for

ConvShock2d . This is perhaps due to that ConvShock2d has roughly three times as many synchro-

nizations per time step as Ramp2d . Moreover, ConvShock has a default ghost cell buffer width of

three, whereas Ramp2d has only two.

So far, we have only considered the time spent in synchronization . To put these times into context,

23

Descr.

	

1 Ramp ALC ConvShock ALC

	

Ramp SHC

	

ConvShock SHC

Actual

	

766
SFC

2263 560 1764

f=4
Balanced

	

463
Extrapolated

2931 307 2004

Table 6 . Comparison of the actual total synchronization time for AMROC DB-SFC (top row) to the
estimated synchronization time for perfect load balance but with communication volume increased
by a factor of 4 (bottom row).

they have to he compared to the total run-time . The percent of total run time spent in synchroniza-
tion is listed in Table 7.

Ramp ALC ConvShock ALC Ramp SHC ConvShock SHC
26

	

26

	

27

	

24

Table 7. Percent of total run-times spent in synchronization for AMROC DB-SFC.

The above experiments show that the combination perfect load balance/four times more commu-

nication for a regular Berger-Collela SAMR application such as Ramp2d can reduce the synchro-
nization costs by up to about 50 percent . If the fraction of the time spent in synchronization is
about 25 percent as for our applications, this gain will translate to better than a ten percent im-
provement of overall run time. Conversely, for more complex applications requiring more frequent
synchronization and has a higher communication-to-computation demand, the partitioning focus
needs to be on the communication volume . An increased communication volume by a factor of
four would for these applications be devastating to parallel performance.

Before relating the above reasoning to Nature+Fab-e, we must consider that Nature+Fable does
not generate perfect load balance . Hence, it would perform slightly worse than the fictitious parti-
tioner . On the other hand, the bulk of the communication increase for Nature+Fable comes from
introducing inter-level communication, whereas only intro-level communication was increased
in the experiments . As inter-level communication generally requires larger data sets in fewer
packages than intra-level communication, Nature+Fable is expected to perform slightly better
than the fictitious partitioner. Assuming that one minus and one plus roughly cancel each other,
Nature+Fable is expected to perform in the neighborhood of the fictitious partitioner.

The conclusion is that the performance of Berger-Collela-type applications, like Ramp2d, can be
significantly improved by using Nature+Fable , However, Nature+Fable needs to improve in
communication to be considered a solution to scalability problems for general SAMR applications.

24

5 Summary and Conclusions

As a result of the improved bi-level partitioning algorithm presented in this document, Nature+Fable
now successfully copes with realistic applications . The recursive classification algorithm divides

the bi-levels and automatically switches between the parent-driven or the child-driven partitioning

approach.

As compared to the native AMROC DB-SFC partitioner, Na :are+Fable generates significantly

less load imbalance, similar box count . but 4-4.5 times more communication.

As we move away from strictly domain-based partitioning, we introduce inter-level communica-
tion. This component exists for Nat ure+Fab-e but not for SFC . Thus, it is non-trivial to quantify

the impact of the actual numbers. For some computer-application combinations, like the Ramp2d

on ALC and SHC. Nature+Fable is expected to improve performance . For other combinations,

using the AMROC DB-SFC or some other technique that better optimizes the pertinent metrics,
gives better performance.

To be considered a solution to the scalability problem for general SAMR applications, Na: are+Fable
must lower the generated communication volume.

6 Future Work: A New Bi-Level-to-Processor Mapping

For some computer-application combinations, communication pattern needs to be specifically
addressed and optimized . The current mapping between bi-level partitions and processors in
Nature+Fable is insufficient as it clearly cannot compete with the domain-based partitioners.
This section discusses how to improve the block-to-processor mapping in Nature+Fable.

6.1 The Current Mapping in Nature+Fable

Consider the simple I D SAMR hierarchy in Figure 14 . Level 0 and level I constitute the bottom
level group, and level 2 and level 3 constitute the top level group . Assume four processors and note
that the SFC mapping in ID translates to the ID grid coordinates.

In this figure, the bottom level group (level 0 and 1) is split up in four pieces, one per processor.
These pieces are ordered according to the SFC . This means that they are ordered simply left to
right (red, green, blue, and yellow) . Then, the top level group is treated analogously : It is split
up in four pieces, and these pieces are ordered according to the very same SFC (left to right : red,

green, blue, and yellow).

The particular characteristic of this hierarchy is that the top level group is similar in composition
and spacing to the lower level group . Due to this similarity, the SFC mapping is highly successful
(optimal) as no inter-level communication is introduced.

25

Now, consider another simple 1 D SAMR hierarchy depicted in Figure 15 . In contrast to the previ-
ous hierarchy, the particular characteristic of this hierarchy is that the top level group is dissimilar
to the bottom level group . The partitioning procedure is exactly the same as for the previous hier-
archy : Nature+Fable splits the level groups in four pieces and orders these pieces according to
the SFC.

For this hierarchy, only the blocks for the yellow processor were optimally mapped . Studying
the figure, we realize that it would have been better to switch places in the top level group be-
tween the green (or red) and the blue processor pieces . This switch would eliminate inter-level
communication for half of the data on the blue processor.

The problem with "misplaced" blocks is addressed by a heuristic re-mapping algorithm [27] . We
note a few things:

• The SFC only orders blocks (relative to each other) within a level group.

• Blocks are mapped to processors exclusively based on this order (SFC index is disregarded).

• The two points above are the reason for the occurrence of sub-optimal mappings as in the
second example above.

• Realistic hierarchies are 2D or 3D . As the dimensionality increases, the proximity preserva-
tion property of the SFC decreases . Thus, the two hierarchies and partitionings described
above can be viewed as best-case scenarios for 2D and 3D.

• Even with an optimal SFC mapping we still incur large amounts of inter-level communica-
tion between level groups in the second example . This inter-level communication is between
blue and red, and between yellow and green processors.

• The implication of the point above is : The price we pay for leaving DB partitioning is
increased communication volume. For every single block we "orphan", we may gain load
balance but lose in communication . This is inevitable and independent of the SFC used.

• Even in the light of the above, or perhaps because of the points made above, there is need to
create a new or improve on the present SFC mapping algorithms in Nature+Fable.

6.2 Ideas for a A New Mapping

Studying the sub-section above, we note that

1. In the first example, Nature+Fable created a strictly DB partitioning.

2. In the second example, a strictly DB partitioning would probably have given unreasonable
load imbalance .

26

From (I) and (2) above we draw the following conclusions.

1. An optimal mapping in Nature+Fable should be such that a strictly DB partitioning is

automatically generated for suitable grids.

2. For grids not suitable for strictly DB partitioning, an optimal mapping in Nature+Fable

should guarantee a minimal amount of "orphaning" given the current bi-levels blocks.

The current mapping in '•;ar.Lre+Fable does not guarantee (1) . Regardless of the quality of the
SFC, there is no guarantee that the blocks on the higher levels will be mapped to beneficial proces-
sors if the composition and location of the boxes are not identical . On average, the more dissimilar
these refinement patterns are, the more the mapping will differ.

For exactly the same reasons as for (1), the current mapping in Nature+F able cannot guarantee

(2) either. But the remapping function significantly improves on the results.

The conclusion so far is that it is not the quality of the current SFC implementation that causes
the problems . Rather, the problems arise from the way the SFC mapping is used . Also. note that

the problems discussed are independent of whether the SFC mapping is fully or partially ordered.
Again, the problems arise in the mapping of the bi-levels to processors, based on the SFC ordering.

So the first remedy is not to implement an SFC index generator with perhaps better proximity
preservation properties for general SAMR (even if this will perhaps be necessary eventually).

Rather, the remedy should address how the SFC is used.

Below, we sketch two strategies for a remedy:

Strategy 1 : Instead of letting the SFC order blocks (bi-levels) relatively to each other, we could
look for ways to let the SFC tie blocks to processors . Put differently : Now, the mapping is block

relative . It should really be more processor absolute . So instead of a mapping from N x M -+ NM
(and do the processor assignment based on the resulting order), we should look for a more direct
mapping N x M -+ P, where P is the number of processors . Such a mapping would guarantee that
a block straight on top of another block will be mapped onto the same processor regardless of the
refinement patterns on these levels.

There are numerous problems with this strategy . The most prominent one is that it in its simplest

form will always generate strictly DB partitionings . Thus, there must be a way to re-map after (or

refine) this initial mapping . Performing these steps, in turn, is ridiculous as this strategy would be
equivalent to standard SFC DB partitioning followed by a refinement step.

Strategy 2 : We could use a SFC of higher dimensionality (tailored to the specific SAMR hierar-
chical structure) . Then we should not map level group by level group, but rather bi-level by bi-level
block as ordered by the (new) SFC.

This strategy also has numerous problems. The most prominent one is that the hierarchy should

be mapped in a level (group) be level (group) fashion as the SAMR algorithm executes in a level

27

by level fashion (patches on level l are advanced before patches on level 1 + I) . Disregarding the

computational order will allow for "perfect" load balance, which in practice is meaningless.

To conclude, we note that both strategies seem to hold great promise but are also inherently prob-

lematic. We hope to address this problem thoroughly in the future.

References

CHOMBO. http :llseesar.lbl_govlanaglchornbo/, NERSC, ANAG of Lawrence Berkeley Na-

tional Lab. CA, USA, 2003.

[2] Scott B . Baden, Scott R . Kohn, and S . Fink. Programming with LPARX . Technical Report,

University of California, San Diego . 1994.

[31 Dinshaw Balsara and Charles Norton . Highly parallel structured adaptive mesh refinement

using language-based approaches. Journal ofparallel computing, (27) :37-70, 200].

[41 M . J . Berger and P. Colella . Local adaptive mesh refinement for shock hydrodynamics . Jour-
nal of Computational Physics, 82 :64-84, 1989.

[5] G . Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology . Computing in
Science and Engineering, pages 46-53 . 1999.

[6] Mattew W. Choptuik . Experiences with an adaptive mesh refinement algorithm in numerical

relativity . Frontiers in Numerical Relativity, pages 206-221, 1989.

[7] Ralf Deiterding . AMROC. http:l/amroc .sourceforge .netl VTF, California Institute of Tech-

nology, CA, USA, 2003.

[8] Ralf Deiterding . Parallel adaptive simulation of multi-dimensional detonation structures.
PhD thesis, Brandenburgische Technische Universitat Cottbus, Germany, 2003.

[9] Ralf Deiterding . Construction and application of an amr algorithm for distributed memory

computers. volume 41, pages 361-372 . Springer Verlag, 2005.

[10] Fredrik Edelvik and Gunnar Ledfelt . A comparison of the GEMS time domain solvers . In

Fredrik Edelvik et al ., editors, EMB 01—Electromagnetic Computations Methods and Ap-
plications, pages 59-66, Uppsala, Sweden . November 2001 . SNRV.

[1 1] Jaideep Ray et al . Triple flame structure and dynamics at the stabilization point of an unsteady
lifted jet diffusion flame . In Proceedings of the Combust. Inst. 2000, 25(1) :219-226 . 2000.

[12] Jiuxing Liu et al . Performance comparision of mpi implementations over infiniband, myrinet

and quadrics . In Proceedings of Supercomputing. 2003.

[13] T. Wilhelmsson et al . Increasing resolution and forecast length with a parallel ocean model.

In Operational Oceanography — Implementation at the European and Regional Scales . El-

sevier . 1999 .

28

[14] Stephen J . Fink, Scott B . Baden, and Scott R . Kohn . Flexible communication mechanisms

for dynamic structured applications . In Proceedings of IRREGULAR '96, pages 203-215,

1996.

[15] Henrik Johansson and Johan Steensland . A characterization of a hybrid and dynamic parti-

tioner for SAMR applications . In Proceedings of PDCS2004, 2004.

[16] Z . Lan . V. Taylor, and G . Bryan . Dynamic load balancing for structured adaptive mesh

refinement applications . In Proceedings of ICPP 2001, pages 571-579, 2001.

[17] Z . Lan, V. Taylor, and G . Bryan . Dynamic load balancing of SAMR applications on dis-

tributed systems . In Proceedings of Superromputing 2001, pages 36-48, 2001.

118] R. J . LeVeque . Wave propagation algorithms for multidimensional hyperbolic systems . J.
Comput. Phvs ., 131(2) :327-353, 1997.

[19] X. Li and M . Parashar. Hierarchical partitioning techniques for structured adaptive mesh

refinement applications . Journal of Supercomputing . 28(3) :265-278, 2004.

[20] Peter MacNeice et a] . PARAMESH : A parallel adaptive mesh refinement community toolkit.

Computer physics communications, (126) :330-354, 2000.

[21] M. Parashar and J . C. Browne . On partitioning dynamic adaptive grid hierarchies . In Pro-
ceedings of the 29th Annual Hawaii International Conference on System Sciences, 1996.

[22] Manish Parashar and James Browne . System engineering for high performance computing

software: The HDDAIDAGH infrastructure for implementation of parallel structured adap-

tive mesh refinement . IMA Volume on Structured Adaptive Mesh Refinement (SAMR) Grid
Methods, pages 1-18, 2000.

[23] Jarmo Rantakokko . Data Partitioning Methods and Parallel Block-Oriented PDE Solvers.
PhD thesis, Uppsala University. 1998.

[24] Mausumi Shee . Evaluation and optimization of load balancing/distribution techniques for

adaptive grid hierarchies . M .S . Thesis, Graduate School, Rutgers University . NJ, 2000

http :/lwww.caip .rutgers.edulTASSL1Thesislmshee-thesis .pdf, 2000.

[25] Johan Steensland . Efficient partitioning of dynamic structured grid hierarchies . PhD thesis,

Uppsala University, 2002.

[26] Johan Steensland, Sumir Chandra, and Manish Parashar . An application-centric characteri-

zation of domain-based SFC partitioners for parallel SAMR . IEEE Transactions on Parallel
and Distributed Systems, December : 1275-1289, 2002.

[27] Johan Steensland and Jaideep Ray. A heuristic re-mapping algorithm reducing inter-level

communication in SAMR applications . In Proceedings of The 15th TASTED International
Conference on Parallel and distributed computing and systems PDCS03, volume 2, pages

707-712. ACTA PRESS . 2003 .

29

[28] Johan Steensland and Jaideep Ray . A partitioner-centric classification space for SAMR par-
titioning trade-offs : Part I . In Proceedings of LACSI 2003, Los Alamos computer science
symposium on CD-ROM, 2003.

[29] Johan Steensland and Jaideep Ray . A partitioner-centric classification space for SAMR par-
titioning trade-offs : Part II . In Proceedings of the 2004 international conference on parallel
processing workshops, pages 231-238 . IEEE Computer Society, 2004.

[30] M . Thune. Partitioning strategies for composite grids . Parallel Algorithms and Applications.
11 :325-348, 1997.

[31] P. Wang, I . Yotov, T. Arbogast, C . Dawson, M . Parashar, and K. Sepehrnoori . A new gen-
eration EOS compositional reservoir simulator : Part I - formulation and discretization . Pro-
ceedings of the Society of' Petroleum Engineerings Reser v oir Simulation Symposium, Dallas,
TX, pages 31-38, June 1997,

[32] Andrew M . Wissink et at . Large scale parallel structured AMR calculations using the SAM-
RAI framework . In proceedings of Supercomputing 2001, pages 6-6, 2001.

30

Density at t . 0 .6

\

	

t

f

0.2

	

0.4

	

0 .6

	

0.8

	

1

	

1 .2

	

1 .4

	

1 .6

	

1 .8

	

2

Da,*, d t . 2.1

s

u

Figure 7. Iso-lines of density on refinement levels at different time step of Com'Shock2d show the

expansion of the shock wave after the reflection at t

	

0 .3 in the origin.

31

50

a 40~
oa
Ct

To

E 30

Das
0
c 20
m
0

0• 10

0

Load Imbalances for Two Applications

ConvShock2D

	

Ramp2D

	

0

	

ConvShock2D

	

Ramp2D

IC Au, PD&GOA II
PDA

120
ax

.s:)° 100
0
• 80
E
c 60
a)

• 40m

140

• 20

Box Count for Two Applications
AU.ta PCAGDA

_ PCA	

Figure 8 . The improved hi-level algorithm versus PDA alone for Ramp2d and ConvShock2d for
16 processors : Load imbalance (Left) and box count (Right).

X

1 g,ommunication Volume for Two Applications
5 o Amo PCACCA

_ PDA

c 4-
0Ct

U

J 3-
E
E
0
o
0 2r
0)
co

>

0
Ramp2DConvShock2D

Figure 9 . The improved hi-level algorithm versus PDA alone for Ramp2d and ConvShock2d for
16 processors : Communication volume .

32

40

,20

1 :0

40

20

200

	

250
00

ConvShock2d Load Imbalance Comparison
350

300 •N+F Avg load imbalance : 28.3994
SIIC Avg load imbalance : 65 .2696

250-I

1 1I
U za2

1I
C

_

	

I.

	

11 1 1,

I

	

fl I!

	

I~

	

I
111l

	

I11 ili~11I

	

` Itiif~i1 111 ~1~

	

i

	

I

	

II'~

	

l i~q l

	

14 1 1

	

III!

	

I111
Ili IJ1

'

Il

'I
o
0

	

50

	

100

	

16:

Time step

ConvShock2d AVG Box Count Comparison
— Ne=
--- SFC

N+F Avg box count : 70 .582
SFC Avg box count : 68 .0608

50

	

100

	

150

	

202

Time step

5,F
SFC

250

Figure 10 . Nature+Fable with the improved hi-level algorithm versus AMROC DBISFC for
ConvShock2d and 16 processors : Load imbalance (Left) and box count (Right).

CpnvShock2d AVG Communication Comparison

;-N+F Avg communication : 8795869 .17
SFC Avg communication : 1841030 .28

a)
E

0
> 5-

N .F I lire vel
N .F To:a.=I1l0 I.T.:2

SFC I,n2leve
SFC role)

0

so 100

	

150

Time step
200

	

250

Figure 11. Nature+Fable with the improved hi-level algorithm versus AMROC DBISFC for
ConvShock2d and 16 processors : Communication volume.

33

'1 .F
	SF0i

m

Ramp2d Load Imbalance Comparison

N+F Avg load imbalance : 35 .0474
2 5 SFC Avg loan imbalance : 64 .0491

205-
a.)
U

15:
-CI
E

Ramp2d AVG Box Count Comparison
Eo

50N+F Avg box count : 35 .0315
SFC Avg box count : 31 .9436

	

~

(kW-

, y

yy

N a0 it

	

1 I1,
6i 11

	

wlA t yN.

x

	

rNa

icD

— N .-
SFc

< 20

it

50

300

	

350,00

	

150

	

200

	

250
Time step

00

	

50

	

105

	

150

	

200

	

250

	

300

	

350
Time step

Figure 12 . Nature+Fable with the improved bi-level algorithm versus AMROC DBISFC for

Ramp2d and 16 processors : Load imbalance (Left) and box count (Right).

50

	

100

	

15,

	

200

	

250

	

300

	

350
Time step

Figure 13 . Nature-Fable with the improved bi-level algorithm versus AMROC DBISFC for
Ramp2d and 16 processors : Communication volume.

,,0 .Ramp2d AVG Communication Comparison
N,5 150.1. .1
N.F To1x6 oar_ia!a

N+F Avg communication: 4707203 .55

	

5FC15vale.el
	 SFCTo:al

SFC Avg communication : 1627660 .74

y ti'+~ f i`I
.! .

	

i.l '11.1

	

~li 1

	

h

34

3
2

1
0

SFC index:

	

2

	

4

	

10 12

SFC index: 0

	

4

	

8

	

12

Figure 14. For this simple ID hierarchy . Nature -Fable generated a perfect (DB) partitioning.

3

SFC index : 8

	

10

	

12

	

14

	

2

1
0SFC index :

	

0 4 8

	

12

Figure 15 . For this simple ID hierarchy, a BD partitioning will probably generate too much load
imbalance . Nature-Fable fails to map all blocks optimally' (only the yellow processor avoids part
of its inter-level communication) .

35

DISTRIBUTION :

4 M9159

J. Ray and J . Steensland, 08964

R. Deiterding

California Institute of Technology

2 S . Chandra and M . Parashar

28 CoRE, Department of Electrical

& Computer Engineering

MC 158-79, Pasadena, CA 91125,

USA

Rutgers, The State University of
New Jersey

94 Brett Road,

	

Piscataway,

	

NJ

2 MS 9018
Central Technical Files, 8940-I

08854-8058 2 MS 0899

3 M. Thune, J. Rantakokko and H.

Johansson

Technical Library, 9616

Department of Information Tech-

nology

Uppsala University, Box 337, SE-

751 05 Uppsala, Sweden

1 MS 9021

Classification Office, 8511, for

Technical Library, MS 0899, 9616
DOE/OSTI via URL

36

	An Improved Bi-Level Algorithm for Partitioning Dynamic Grid Hierarchies
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 SAMR with AMROC and Nature+Fable
	2.1 Parallel SAMR — Related Work
	2.2 AMROC
	2.3 Nature+Fable

	3 The Improved Bi-Level Algorithm
	3 .1 The Original Approach
	3.2 The Complementary Approach
	3.3 The Classification Algorithm
	3.4 Implementation

	4 Experimentation
	4.1 Hypotheses
	4.2 Experiments
	4.3 Results
	4.4 Discussion : More Communication, Less Load Imbalance

	5 Summary and Conclusions
	6 Future Work: A New Bi-Level-to-Processor Mapping
	6.1 The Current Mapping in Nature+Fable
	6.2 Ideas for a A New Mapping

	References

