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Abstract

In this report we present the formulation of the physically-based Evolving Microstructural
Model of Inelasticity (EMMI) . The specific version of the model treated here describes the
plasticity and isotropic damage of metals as being currently applied to model the ductile
failure process in structural components of the W80 program . The formulation of the EMMI
constitutive equations is framed in the context of the large deformation kinematics of solids
and the thermodynamics of internal state variables . This formulation is focused first on de-
veloping the plasticity equations in both the relaxed (unloaded) and current configurations.
The equations in the current configuration, expressed in non-dimensional form, are used to
devise the identification procedure for the plasticity parameters . The model is then extended
to include a porosity-based isotropic damage state variable to describe the progressive dete-
rioration of the strength and mechanical properties of metals induced by deformation . The
numerical treatment of these coupled plasticity-damage constitutive equations is explained
in detail . A number of examples are solved to validate the numerical implementation of the
model.

Keywords : finite deformation plasticity, internal state variables, parameter identification,
isotropic damage, numerical integration.
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1 . Introduction

The Evolving Microstructural Model of Inelasticity (EMMI) is a physically-based inter-
nal state variable model suitable to describe the temperature– and rate–dependent finite
deformation behavior of metals . This model has been developed as an enhancement of the
well-known BCJ model [Bammann, 1984], [Bammann, 1990], to improve on the description of
the physics of metal plasticity, including rate effects and recovery mechanisms . The complete
version of the model has a number of state variables to represent the main microstructural fea-
tures typically observed during the plastic deformation of metals : (i) isotropic and kinematic
hardening variables whose evolution equations account for hardening/recovery effects due to
generation/storage/annihilation of dislocations and formation of dislocation sub-structures,
(ii) a porosity-based isotropic damage variable to model the ductile failure mechanisms due
to nucleation/growth/coalescence of microvoids, (iii) a structure tensor variable to capture
texture-induced anisotropy due to large deformation processes (anisotropic plasticity), (iv) a
modified flow rule to describe dislocation drag effects present in high strain rate applications,
and (v) microstructural variables (grain size and volume fraction of recrystallized grains) to
model recrystallization and grain growth . Such general versions of the EMMI model are cur-
rently being developed and treated elsewhere [Regueiro, et al., 2005], [Brown & Bammann,
2005], [Winters, et al., 2005], [Chiesa, et al ., 2004].

In this document, we mainly present the formulation of the model version that accounts
for aspects (i) and (ii) (void growth) above . Specifically, the EMMI model treated here
introduces a "dynamic" yield surface whose evolution is governed by temperature, strain
rate, and damage state . The evolution of the isotropic and kinematic plastic state variables,
which model the size and location of this yield surface, follows a hardening minus recovery
format, while the evolution of the isotropic damage state variable is based upon the growth of
spherical voids in a power–law creeping material . In addition, the elastic moduli exhibit linear
dependence on both temperature and damage . This model formulation is complemented
with the development of the identification procedure for the plasticity parameters and the
numerical integration of the model equations . At present, this identification procedure and
numerical implementation of the model are supporting the work on the prediction of ductile
failure of structural components in the W80 program.

The presentation proceeds by describing the large deformation kinematics and thermo-
dynamics used to formulate the constitutive equations of the model . This is followed by the
development of the plasticity model equations in both the relaxed and current configura-
tions. The equations written in the current configuration are expressed in nondimensional
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1 . INTRODUCTION

form and then used to develop a gradient-based optimization technique to determine the
plasticity parameters of the model . Next, the extension of the model to include an isotropic
damage state variable (void volume fraction) is explained, which is followed by a detailed
description of the numerical integration of the coupled plasticity-damage constitutive equa-
tions in the context of nonlinear finite element applications. This numerical implementation,
coded as both a material point simulator and a material routine in a finite element code, is
validated by solving a number of simple problems.

The work uses Gibb's (direct) notation [Gurtin, 1981] to express tensor quantities and
their mathematical operations . Consider for example the two second order tensors A and B
and the fourth order tensor C . Tensor operations between the tensors A and B are indicated
as AB for the inner product (a second order tensor), AO B for the dyadic product (a fourth
order tensor), and A:B for the scalar product (a scalar), while the contraction operation
over two indices between the fourth C and the second A order tensors are represented as
C :A (a second order tensor) . Any other particular tensor notation used in the development
will be either clear from the context or noted in the text.

12



2 . Kinematics

In this section we describe the kinematics of finite-strain elasto-plasticity using an ex-
tended multiplicative decomposition of the deformation gradient that accounts for tempera-
ture effects . Such description is physically motivated by the mechanisms underlying plastic
flow in crystal plasticity. Using this decomposition we introduce explicit expressions defin-
ing and relating elastic, plastic and thermal strain measures and their corresponding rates.
A number of these relationships will then be used in the next sections to formulate the
thermodynamics and the constitutive equations of the EMMI model.

As mentioned above, we describe the large thermo-mechanical deformation of metals
using an extended multiplicative decomposition of the total deformation gradient F into
elastic, F e , plastic, FP and isotropic thermal, FB = F9 1, components, i.e .,

F = FeFPF B ,

	

detFe = Je > 0,

	

detFP = 1,

	

detFB = Fa

	

(2 .1)

with detF = J= Jell?). This decomposition introduces two local intermediate configurations
between the undeformed and deformed (current) configurations, Bo and B, respectively.
These intermediate configurations will be denoted here as 13 (defined by F°) and Xi (defined
by FPFB ) . Of particular interest in this development are the configurations B and B, both
of which will be used to write the constitutive equations of the EMMI model . For this
purpose, we conveniently group the plastic and thermal components of F into a thermal-
plastic deformation gradient, F*, and write the kinematics (2 .1) as

F* = FPFB

	

—

	

F = F eF*

	

(2 .2)

With the above deformation gradient components, we can define the following stretch tensors,

C = FTF, CP = FPTFP , CB = F0TF0 , Ce = FeTFe, C* = F*TF*

	

(2.3)

and the corresponding strain tensors,

E = 2 (C— 1), E- P=2 (Cp 1), EB=2(CB 1), E e=2 (Ce 1), E*=2 (C*—1) (2 .4)

which are related by the additive relationships with respect to configuration Bo,

E = F*TE eF* + E*,

	

E* = F0TEPFB + Eo	(2 .5)

13



2. KINEMATICS

These additive properties can also be referred (pushed forward) to configuration 8, i .e ., from
Eq. (2 .5) 1 ,

FF* EF*
= Ee + F*—TE*F* —1

	

—} E = Ee + E *

	

(2 .6)
E

	

E'

and from Eq .(2.5) 2i

E* = FP—TE- PFP—1 F*—TEeF*—1

	

E* = EP + E B	(2 .7)
Ep	E B

where we have used FP-1= F BF*-1 . The tensors E (or E), E* (or E* ), and Be as well as
their additive property, Eq .(2 .6), will be used below to help define the relationship between
the rate of deformation tensors in configurations 8 and B.

Using Eq.(2.2), we can also compute the velocity gradient 1 in B as

l = FF—1 =
FeFe—1

+ FeL*F e—1 , L* = F*F*—1 =
FPFP—1 + FPF BF 9—1FP—1 (2.8)

or equivalently

l = l e + l*, l* = FeL*F e—1 = lP + l B (2 .9)

where

(2.10)l e = FeF e—1

lP = FeLPFC—1 , LP = FPFP—1 (2.11)

l B = Fe FPL~FP—JF e—1= FeLBFe—1 LB =
FBFB—1=

Fe
1

	

L B = F8 1 (2 .12)

LB
Fe ,

	

Fe

Note that we can decompose any of the above velocity gradients into its symmetric and
skew parts, e .g ., 1 = d + w, with d = sym(l), w = skew(l) . The pullback of Eq .(2 .9) to
configuration B can be expressed as

L = F e—1lFe = L e + L* ,

	

L* = LP + LB

	

(2 .13)

where Le= Fe-1Fe . Here, we can also decompose the bar velocity gradients in Eqs .(2.13)
into their symmetric and skew parts, i .e ., defining D = sym(L), and W = skew(L), we can
write Eq.(2.13) as

D = D e + l7* ,

	

D* = DP + DB

	

(2.14)

W = W e + W* , W* = WP + W B

	

(2 .15)

and
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2 . KINEMATICS

where D (0) = sym(L(0) ) and -W (e) = skew(L (e)), with (•) = (e, *,p, 8) . Note that W9 = 0
due to the assumed isotropy of P.

It is important to note here that the rate of deformation tensors in 8 (e .g . D, D e , D * )
are not related to their counterparts in 8 (e .g . d, de , d*) by simple push-forward / pull-back
operations, as can be seen, for example, for D and d,

D = sym(L) = sym(F e-ilFe )

= FeT sym(Fe—TFe-l l) F e —f D Fe"d Fe

	

(2.16)

od
To obtain such relationships, we consider first the time derivative of the strain tensors
E, E*, Ee as related to some rate of deformation tensors expressed in either B (d, d e ) or
B (De , D* ),

E=
2atC=

2(FTF+FTF)

=FT 2(lT +l)F

	

—> E=FT sỳm()F

	

(2 .17)

d

* 2 at C* =
1

(F
*T

E
=

	

F* + F*TF*
)

	

= F*T
2

(L*T + L*)F*

	

= F*T sym(L * ) F*

	

(2.18)

D*

e

	

a
--C c = 1(FCTE =

	

Fe + FeTF e )
2 at

	

2

= FeT 2 (l eT + l e)F e

= -(L eT FeTFe + F eT FeL e )

2 {LeT (2E e + 1) + (2Ee + 1)Le ]

Ee= sym(Le ) +LeTE e + EeLe

	

(2 .20)

De

Next, we consider the Lie time derivative of the (covariant) strain tensors E, Ee and
E* that live in S . The general form of the Lie derivative for a covariant tensor in this
configuration (defined by F*) can be equivalently expressed as

E e = FeT sym(le) F e

de

(2 .19)

g(•) b = F*-T - [F*T(a) b 1 F,*-1
at

g(•) '' = (.)b + L*T (•) b + (•) b L*

	

(2.21)or
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2 . KINEMATICS

where (•) b stands for covariant tensorial quantities written in B . Using definition (2 .21) 1 ,
and Eqs.(2 .17) and (2 .18), we can relate the Lie derivatives of E and E* to the rate of
deformation tensors d and D* , respectively, as (dropping the superscript b)

GvE = F*-Tat [
F*

T (E)F* 1 F*-1

E
_ (Fe-1F) -TE(Fe-1F) -1

= Fez' F TF-1 Fe

	

—> GvE = FeTd Fe

	

(2.22)

d

GvE* = —[F*T(e)F*]F*-1

E'

= F*-TE*F* -1 (2 .23)

D*

Also, using Eq .(2.20), together with definition (2 .21) 2 and Eq.(2.13)1 , we can relate the Lie
derivative of B e to the rate of elastic deformation tensor be as

Ee=De + (L-L*)TEe + Ee(L-L* )

	

GvEe = De + LTEe + EeL

	

(2 .24)

With the derived expressions above, we can now relate the deformation rates d and D.
This relationship can be obtained by taking the Lie derivative of Eq .(2 .6)2i and substituting
Eqs.(2 .22)-(2.24) and Eq.(2 .14) 1 to yield

GvE = G*Ee + GvE* 	 > FeTd Fe = D + LTEe + EeL

	

(2.25)

Similarly, by equating Eqs .(2.19) and (2 .20), one could establish the relationship between
the rate of deformation tensors de and D e as

FeTdeFe = be + LeTEe + EeLe

	

(2 .26)

Finally, by combining expressions (2 .25) and (2 .26) and using Egs .(2.13) 1i (2 .14) 1 , and the
symmetric part of Eq .(2 .9) 1 , we can relate the rate of deformation tensors d* and D* as

FeTd*Fe = D* + L*TEe + EeL*

	

(2 .27)

Note that by virtue of Eqs.(2.9)2,(2 .13)2 and (2 .14)2 , this last expression also establishes the
relationship between (dP+de ) and (DP +D9) . However, because the thermal deformation is
isotropic, this equation can be explicitly reduced to relate dP and DP as

FeTdPF = DP + LPTEe + EeLP

	

(2.28)
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2. KINEMATICS

Remark1 . Consider the mapping of second order tensors between configurations Xi and B
which are related by Fe or Fe-1 . Depending on the characteristics of the tensor (contravari-
ant or covariant), the push forward of tensors in B, say A, to tensors in B, say a, is given
by

	

Aa = Fe-laIFe-T,

	

A b = FeTa bF,e

	

(2.29)

where ( .)ti and ( .) b indicates contravariant and covariant second order tensors, respectively.
We assume that the norm, the trace and the deviator of these tensors in B are defined as

	

II Aa II= (All : A4)1/2 ,

	

Tr'-(A°) = A :1,

	

DevA0 = A° - 3Tr(A 0 )1

	

(2 .30)

	

AL' II= (Al' : Ab )1/2 ,

	

Tr(A b ) = Ab :1,

	

DevA b = Ab - 3Tr(A b )1

	

(2 .31)

With these definitions, the corresponding norm, trace and deviatoric operators in configura-
tion B will then be expressed as

a° II= (
be-1a °

: a ° be-1)1/2 , tr(a 0 ) = a s : be-1 , devaa =

	

- 3tr(a a )be (2.32)

a b II= (b eab : ab b e )1/2 , tr(a b) = ab : be , devab = a b - 3tr(ab)be-1 (2.33)

where b e = FeFCT (a contravariant tensor) . Also the time derivative of tensors in ,t3 are
related to the elastic Lie time derivative of tensors in B by

Aa = Fe-1(J aq)Fe-T,

	

A b = F,eT(~v ab)F,e

where the elastic Lie time derivatives are defined by

gall = Feat[Fie-1agFe-T]FeT = a0 -lea d - a pleT

,Cvab = Fe—T
8

{FeTabFe1Fe—1 = a b + leTab + ab l e

	

(2 .36)

To simplify the notation, in the following sections we will drop the superscripts # and b except
for the cases where the norm, the trace, the deviatoric and the Lie time derivative operators
are invoked for second order tensors living in B.

Remark 2 . Define the (contravariant) second Piola-Kirchhoff stress in 13 as

S = JeFe-laFe-T = Fe-1TFe-T

	

(2 .37)

where o and T=Je cr are the (contravariants) Cauchy stress and Kirchhoff stress, respectively.
The spherical (volumetric/isochoric) and deviatoric components of S are defined as

p= 3Tr(S),

	

DevS=S-p1

	

(2 .38)

(2 .34)

(2 .35)
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2. KINEMATICS

where Tr(S) = 5:1 . Using Eq.(2 .37) one could obtain the corresponding spherical and
deviatoric components of r as

pT = 3tr(Ttt ),

	

dev(T 1 ) = r — prbe

	

(2.39)

where tr(T O ) =T:be—1 . Note that p=p, = Jep with p = 3tr(o- ) . Also, note that by taking
the trace of Eq.(2.39)2 we obtain

tr[dev(-r )] = tr(T lt ) — prtr(belt ) —> tr[dev(T)] = dev(T 1t ) :be-1 = 0

	

(2 .40)

which shows that expression (2 .39) 2 is a physically correct definition of the deviatoric Kirch-
hoff stress in B.

Remark 3 . The stress power Pint is defined as

Pint =J o :1dV= lB Pa.:1dV

	

(2 .41)

Pint

where we have used dV = JedV, with dV and dV being the elemental volumes in B and B,
respectively. In the above equation, pint, the stress power per unit reference volume in B,
can be expressed as

pint = r: l = Fe SFeT : sym(l) = S: F eTsym(l)F e

	

pint = S : GvE

	

(2 .42)

GvE

Substituting Eqs . (2.25) 1i (2 .23), (2 .14)2 and (2 .12) 3 into Eq .(2.42)2i we can then write the
specific stress power pint as

pint = S: GvE e + S :DP +
3 Fe ddBe p 9

	

(2 .43)

fe

where the Lie derivative GvEe could be equivalently expressed using Eq .(2 .21) 2 or Eq.(2 .24) 2 ,
and fe is a temperature-dependent function defining the thermal expansion characteristics
of the material . Using definition (2 .21)2 , together with Eqs .(2.13)2 and (2 .12)3, one could
also express the above equation as

pint = S: Ee + (DP + LPTE e + EeLP ) + (S:C e )fe8

	

(2 .44)

Note that pint can be expressed in terms of quantities referred to the current configuration
B . For this purpose, we use Eqs .(2.37),(2.19),(2.28), and (2 .3) 4 to write Eq .(2 .44) as

pint =Tide + T: dP + T: (fe B 1)

	

—~

	

pint = T : d

	

(2 .45)

dB

where d = de + dP + d e .
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3 . Thermodynamics

A thermodynamic approach with internal state variables as proposed in [Coleman &
Gurtin, 1967] is used here to describe the underlying irreversible (dissipative) effects govern-
ing plastic deformation. For this purpose, consider the local form of the first law (energy
balance) and second law (entropy inequality) of thermodynamics written in configuration 8,

ev+evTr(L*)—S :gE+V•QRv=0

	

(3.1)

ill, + qv Tr'(L *) >	 B — 6
7 .Q + 8 Q•vB

where ev and fly are the specific (per unit volume) internal energy and entropy, Q is the
heat flux per unit area, and Rv is the heat source per unit volume. Note here that using
Eqs.(2 .13) 2 and (2 .12) 3 , we can write in Eqs(3.1)—(3 .2), Tr(L*)=Tr(LB)=3f9 O since plastic
deformation is isochoric (Ir(Lp) = 0) . Also, consider the Helmholtz free energy function 'v
measured per unit 8-volume as related to the internal energy and entropy,

z/>vev—Bfly,

	

v=ev—Br7v—B ;Iv

	

(3 .3)

The Clausius-Duhem (or dissipation) inequality which expresses the assumption that the
local entropy production in non-negative, can be obtained by substituting the expression for
Rv from Eq.(3 .1) into Eq .(3 .2), and using relation (3 .3)2,

—v—vTr(L* ) —B~Jv+ : C
z
E ~Q•vB > 0

	

(3 .4)

We assume here that the Helmholtz free energy function depends on a number of independent
state variables : the applied elastic strain B e , a set of strain-like internal state variables Z,
and temperature 0, i .e .,

v = Ov(Ee, z, 0)

	

(3 .5)

Physically, the set Z is incorporated to represent the irreversible mechanisms of the inelastic
material behavior, and hence it will model the state of the evolving internal structure of
the material during plastic deformation. Limiting for now the description to structural
changes due to plastic slip (dislocation motion), we select two internal state variables which
are assumed to be associated with the internal (micro) elastic strain fields induced by the
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3. THERMODYNAMICS

presence of dislocations created by deformation . These state variables are denoted here
as Es, a scalar variable, and /3, a symmetric deviatoric tensorial variable . Because the
increasing strong interaction between these individual dislocation strain fields and those
of neighbouring dislocations impedes further dislocation motion (material hardening), one
could phenomenologically associate Es and with hardening variables . In this context,
Es represents induced non-directional (isotropic) hardening, while /3 gives the direction-
dependent (kinematic) hardening effects . Thus, assuming Z = {Es , /3}, we can compute
the material time derivative of 0v as

" v —

	

cEe + — Es + acv •Q +acv 8
aE

	

aEs	ap •

	

00

Then, substituting Eq .(3.6) and (2 .44) into Eq.(3.4) yields

[S — a0v ] :E e + [ — acv — iv — 3fo'bv + feS:C e ]
aE e	aB

where ks and a, defined by

+S: (D' + LPT Ee + E eLP ) — av :,Q — acv S - -0.V0 > 0 (3.7)
OEs

a

	

n s

abv
s- =

abv
a=

0Es ' ap '

are the internal stress-like work-conjugate quantities to the kinematic-like variables Es and
/3, respectively. As such, i and a will represent the internal stress fields generated by the
dislocation structures formed during plastic deformation . Following standard arguments,
one can obtain from Eq .(3.7) the constitutive laws for g and fly,

aE e 71v- = - 00v — 3fe v + f9 S:Ce

Hence, specific constitutive equations for Si , 1iv, [3, and Es will follow from the assumed form
of the free energy 0 using Eqs .(3.8) and (3 .9) . The dissipation inequality, Eq .(3 .7), is now
reduced to

S: (DP + LPTEe + EeLP ) — (a :0- + g 9 Es ) —
1
Q•v0 > 0

	

(3 .10)

plastic dissipation

	

internal work

where the first term represents the dissipation from plastic work due to irreversible disloca-
tion motion and the second and third terms give the internal work or nonrecoverable retained
energy associated with the field of the residual microstresses which accompany the increase
in defect density. Notice that on the right of Eq.(3 .9)2, the second term arises because the
thermodynamic laws are written per unit reference volume, while the third term appears as
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3. THERMODYNAMICS

a consequence of the explicit inclusion of the thermal deformation in the kinematics, Eq .(2 .1).

Remark4. The heat equation can be derived by an appropriate combination of some of the
above equations . Thus, using Eqs. (3 .8) and (3 .9) in the expression for the time derivative of
the free energy, Eq .(3.6), one obtains

=S:E+a:0+Rs +( — ~7v — 3feOv+feS : Ce ) 9 (3 .11)

Substituting this equation into Eq.(3 .3)2 , and using both the resulting expression for ev and
Eq.(2 .44) in the energy equation, Eq.(3 .1), one obtains

—S: (D P +LPTEe+E eLP ) + a:,Q + Musks + 3fe ?7v O6 + B77v — Rv + V •Q = 0 (3 .12)

The material time derivative of the entropy, ilv, can be obtained from Eq .(3 .9)2. The result-
ing expression, after some algebra, is

acv

	

a(S:Ce )

	

a22bv l • e
i7v = — [3feoEe — ,9 aE e + o0oBe

:E

aov 02bv1

	

aov a2 v

	

a77v
— [3,fe a„s + aeaEsl S — [3fe ap + aeap~ `~ + ae e (3.13)

where the last term can be obtained from the definition of the heat capacity per unit volume,
Cv,

Cv = aev = a
—(7/)v + 9flv)

	

—~
ae ae

	

8—= Cv + 3fev — feS:Ce

	

ae

	

(3 .14)

Then, combining Eqs.(3 .12)—(3.13) and using Eqs . (3 .8), (3 .9) 1 and (3 .14) 2 yields

—~•Q = ( Cv+3feev — feS:Ce ) B — S :(DP +LPTE e +EeLP )+a :/3+is&'s—Rv

e

	

albs
11

.

	

as l-0[3foS+ a8 — fo a 	aE	 )] :Ee—0[3fans+
ae ]es —

e[3foa+ aB] :t3 (3 .15)

thermomechanical coupling

which is the heat equation accounting for plastic dissipation, mechanical internal work and
thermomechanical coupling.

Remark 5 . The temperature rise of a medium subjected solely to mechanical dissipation
(adiabatic heating) can be obtained from the above equation . Plastic deformation under
adiabatic conditions is generally present for strain rates greater than 1s -1 , with the atten-
dant temperature rise having a profound effect on the constitutive behavior of the material.
In particular, the increase in temperature will induce thermal softening, and consequently
may lead to shear instability. To obtain the equation for the temperature evolution during
adiabatic heating, we can set V •Q = 0 and Rv = 0 in Eq .(3.15), yielding after arranging
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3 . THERMODYNAMICS

some terms

thermoelastic coupling

(Cv+3 feev — feS:Ce)9 = (DP + LPTE e + EeLP) + 9 [fog+
a8 — fe Ce: C e , :P e

— [(1—39fo)a—0	
aB j

:,13— [(1—3BMks—00;1'4

	

(3 .16)

internal work + thermoplastic coupling

where we have defined (Ce= a3/OEe , a fourth order tensor which will be identified with the
isotropic elasticity tensor in the following section . In the above equation, we have tagged
the contribution to the temperature increase from both the thermoelastic coupling and the
(total) change of the internal variables (internal work plus thermoplastic coupling) . Note
that the last term in Eq. (3 .16) arises from changes in energy and entropy caused by changing
internal variables, and may represent up to 80% of the plastic dissipation, depending on the
material, temperature, and extent of deformation.

The above equation can be mapped to the current configuration B by substituting
Eqs. (2 .28), (2.37) and (2 .19) into Eq.(3 .16), as well as using the expressions presented in
remark 1 above relating either covariant tensors (e .g . E e , ,Q) or contravariant tensors (e.g.
S, a) living in configurations 13 and B. The resulting equation for the temperature evolution
during adiabatic loading is then

Je(cv + 3fe ev — fer:1)9 = xr:dP — 0(fer — 09 — fo ce:1) :de (3 .17)

with

Oa

	

P
x={r:dP—[(1—39fe)a—8a8] : .GeO—[(1—30fo)rc9—8aB1e

IC
r . d

-1 (3 .18)

where the tensor ce=(Fe®F e ) :(C e :(F'®F e )T is the pushed forward of the fourth order tensor
ce to B, and cv and ev are, respectively, the specific heat and internal energy per unit current
volume. The factor 1 — x is the ratio of the rate of total change of the internal variables to
the rate of plastic work . In general, the range 0 .8 < x < 1 is typical for most engineering
metals .
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4. EMMI Constitutive Equations:
Plasticity

In this section the constitutive equations of the EMMI model are derived with respect
to both the intermediate B and the current B configurations. The mapping between these
two configurations (push-forward and pull-back operations) is defined by the relationship
presented previously in remark 1 . From a numerical perspective, it is the version referred
to the current configuration that is typically used in finite element applications . As such,
at the end of this section we will only derive the non-dimensional (normalized) form for the
constitutive equations written in this configuration.

4.1 Model Equations in Intermediate Configuration B.

We assume that the applied and internal elastic strains (E e ,, ) are small, an assumption
typically valid for metals . Then, a quadratic form for the Helmoltz free energy is adequate
to describe the thermodynamic state of the material,

4~V = 3 es, 0)
= 2

Ee : cCe:Ee + cap

	

+ co e s + O(B)

	

(4 .1)

where ca and c,c are dimensionless material constants, G is the portion of the free energy
specifying part of the constitutive equation for the entropy, and C is the isotropic fourth
order elasticity tensor given by C = 2µ]l + [1C — sµ] 1 ® 1, where II and 1 are the fourth
and second order identity tensors, and p and IC are the shear and bulk modulus . Here, it is
assumed that p, and IC are temperature dependent, i .e., µ=,uoµ(B), IC=ICo1C(B), with µo and
)C 0 being the shear and bulk modulus at reference temperature Bo . It is worth noting here
that explicit inclusion of thermal strains in Eq .(4.1) is not needed since they will naturally
arise in the formulation from the kinematics, Eq .(2 .1).
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4. EMMI CONSTITUTIVE MODEL

Based on Eq .(4.1), the constitutive equations of the model can be derived using Eqs .(3 .8)
and (3.9), yielding

DevS = 2 p DevEe	(4 .2)

T, = 1C Tr(E e )

	

(4 .3)

a=2ca µ,0

	

(4 .4)

Rs = 2 /i s

	

(4 .5)

where

E e = 2~,8 (FP_TCFP_ 1 — F21) ,

	

C = FTF

	

(4.6)

expression obtained from Eqs.(2 .3)—(2 .7) . Note that the effect of thermal deformation is
included above through the thermal function Fe . The evolution equation for FP is obtained
from Eq.(2 .11) 2 as

FP = LPFP ,

	

LP = DP + WP

	

(4 .7)

Since texture-induced anisotropy is not included in the present model (isotropic plasticity),
we set the plastic spin WP = O . The plastic rate of deformation DP evolves according to
Eq.(2.28), i .e .,

D P = FeTdPF e — LPTE e — EeLP

	

(4 .8)

with the plastic rate of deformation tensor FeTdPF e given by the flow rule

FeTdPF e = 2 eN,

	

"= f [sinh((	
s I-Y — 1))]

where is the equivalent plastic strain rate, and

~eq =
3

1V =
2 U 'eq

= DevS — 3

	

(4 .10)

The functional form of the kinetic equation, Eq .(4.9) 2 , is motivated from creep studies where
a "sinh" term to a power "n" has been used to model power—law creep and power—law
breakdown in metals [Frost & Ashby, 1982] . To describe the material state, the above
equations are complemented with evolution laws for the internal state variables /3 and lbs.

For the EMMI model, these evolution equations are cast into a hardening minus recovery
format, with ,Q experiencing only dynamic recovery, while ks experiences both dynamic and
static recovery,

,(3 = hFeTdPFe—rd73 iiaii

	

(4 .11)

k s = (H — RD Es) e — RS es sinh(QS es)

	

(4 .12)
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4.2 . MODEL EQUATIONS IN CURRENT CONFIGURATION B.

where, for convenience, we have assumed that /3 hardens along the direction defined by
FeTdPFe , and recovers along the /3—direction . In general terms, these evolution equations
assume that material hardening processes such as storage of dislocations (isotropic hard-
ening) and formation of cells and cell boundaries (kinematic hardening) are balanced by
recovery processes such as dislocation cross slip and dislocation climb.

The nine temperature-dependent material functions f, n, Y, rd , h, RD , H, Rs, Qs, appear-
ing in Eqs . (4 .9), (4 .11)—(4.12) are given in Table 4 .1, where ci , i = 1, . . ., 10 and Q i , i = 1, . . ., 5
are material parameters.

Table 4.1 : Plasticity Material Functions of EMMI Model.

i—equation ,3—equation k-5 —equation

f = c2 exp(— ~) rd = C3 exp(— 02) RD = c5 exp( — ~)

n=~+c 1

Y = 2poc8 Y(0)

h=c4 Hco

Rs = C7 exp(—g-01)

Qs = clo exp(—)

The nondimensional functions µ(9), K(0) and Y(8) which describe the temperature de-
pendence of the shear modulus, the bulk modulus, and the initial yield strength of the
material, respectively, are expressed as:

µ(B) = 1 + c9~
0

0M0O ,

	

cBP
µo dB

< 0

1C(8) = 1 + c8K8 — Bo

	

BM di(

BM

	

CBK = Ko
Wi

< 0

Y(0) =	
ml	

1 [1 + tanh(m4(m5 — e))]

	

(4 .15)
1 + m2 exp(—~) 2

where mi , i = 1, . . ., 5 are material parameters, and 0M is the melting temperature . The 20
material parameters ci, Qi , and m i (c c, and c,c are taken as constants) are used to fit the
predicted plastic behavior of the EMMI model to experimental stress-strain response for a
particular material obtained at different temperatures and strain rates.

4 .2 Model Equations in Current Configuration B.

The constitutive equations presented above can be mapped to the current configuration
B using the expressions presented in remarks 1 and 2 . Through this process, we will express
the elasticity law, Eqs .(4 .2)—(4 .3), in rate form and write the hardening evolution laws,
Eqs.(4 .11)—(4 .12), in terms of the internal stresses a and ic .

(4.13)

(4.14)
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4. EMMI CONSTITUTIVE MODEL

We begin by computing the time derivative of DevS to obtain

DevS = Fe-1devr Fe-T

	

-~

	

-DevS = Fe-1 (Gedevr 0 )Fe-T

	

(4.16)

Similarly, using Eq .(2.19), i .e ., Ee = FeTdeF e , one can derive the following expression for
the time derivative of DevE e

DevEe = E e - 3TrEe1

	

—}

	

Dt
DevE e = FeT (devdeb )F e	(4 .17)

Then, using Eqs .(4.16) 2 and (4 .17) 2 , and accounting for the temperature dependence of the
shear modulus, p, one can obtain the deviatoric part of the elasticity law in B by taking the
time derivative of Eq.(4.2) to yield

Gvdevr 0
= devra

	

+ 2.t bedevdebb e	(4 .18)

The volumetric component of the elastic relationship can be obtained by a straightforward
time differentiation of Eq .(4 .3) to produce

pTdi(
7r = K d9 9

+ 1Ctr(deb )

	

(4 .19)

where we have used Eq .(2 .19) . The kinematics, Eq .(4.6)-(4 .8), can be replaced by Eq .(2 .9),
conveniently written as

devd eb = devdb - dP ,

	

tr(d eb) = tr(d b ) + tr(d° b )

	

(4 .20)

= w e + wP + w e ,

	

wP = 0,

	

w e = 0

	

(4 .21)

where we have used devd 9b = 0 (isotropic thermal expansion) and tr(dPb ) = 0 (isochoric
plastic deformation) . Also, Egs .(4 .21) 2i (4.21) 3 reflect the condition of isotropy in the plastic
and thermal deformations . As noted before, the volumetric thermal strain rate tr(d° t )

has been incorporated naturally in Eq .(4 .20) 2 due to the presence of FB in the kinematic
decomposition (2 .1). Besides, tr(d b ) = J/J, with J= JeFB , and tr(dG b)

= 3f9 O.

On the other hand, the tensorial state variables a (contravariant) and /3 (covariant) can
be related to their counterparts a and ,Q by the push forward operations

a = FeaFeT ,

	

,Q = Fe-T/3Fe-1,

	

(4.22)

expressions that can be used in Eq . (4 .4) to obtain the relationships

a = 2Capbe ,Qbe ,

	

Gva°
=d8

8 + 2Caµbe (L /3 )b e

	

(4.23)

The evolution law for ,Q can also be pushed forward to B to obtain

Gv,ob = h dP - rd
e' 3 Il pb l1 A

	

(4 .24)
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4.2 . MODEL EQUATIONS IN CURRENT CONFIGURATION B.

Then, combining Eqs.(4.23) and (4 .24) one can derive the following evolution law for the
kinematic stress-like state variable a,

Gva° = a
dµ

B + 2caµh bedpbe —	
rd

X1/2 II ca ll a

	

(4.25)
µ d9

	

2caµ

The corresponding evolution law for the isotropic stress-like state variable ~s (_ gs), the
strength, can be obtained by substituting Eq .(4.12) in the expression for the time derivative
of Eq.(4 .5), yielding

ks

	

d9 B +
(2c,cpH — RD ,cs ) — Rsns sink(	 Qs

ics)

	

(4.26)
µ kµ

Finally, the push forward of the flow rule, Eq .(4.9), to 13 results in the expression

b edpbe =

	

Vin,

	

W' = f [sink (\ +
Y — 1 )) Js

(4.27)

where

3
=n

		

,

	

a eq =
2 Ue Q 2 II

	

II,

	

= dev'r a — 3a

	

(4 .28)

In summary, then, the EMMI model in configuration B consists of Eq .(4.20)—(4.21), (kine-
matics), Eqs .(4 .18)—(4.19), (elastic law in rate form), Eq .(4.27) (flow rule), and Eqs(4 .25)—
(4.26) (evolution laws of the stress-like hardening state variables).

Remark 6 . The rate form of the elastic constitutive law, Eqs .(4.18)—(4.19), can also be
expressed in term of the (contravariant) Cauchy stress . For this purpose, we note the ex-
pressions,

devr° = Jedevo' Ii ,

	

p,- = J ep

	

(4 .29)

whose time derivative can be written as

Gvdevr° = Jedevo 0 + JeGvdever°,

	

pT = Jep + J ep

	

(4 .30)

Upon substituting the above equations into Eqs . (4 .18)—(4 .19), respectively, we obtain the
following elastic relationships for the deviatoric and isochoric components of the Cauchy
stress

Gvdevor° = devo' da

	

	 Liu 8 +
Je

bedevdebbe —
Je

devo

	

(4 .31)
p

e

p K d8 0 +
Je tr(d eb ) — Jep

	

(4.32)

Although other formulations use the Cauchy stress in the elastic relations, in this work we
will continue using the Kirchhoff stress due to the additional simplifications introduced in the
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4. EMMI CONSTITUTIVE MODEL

elastic law. However, when comparing model predictions with experimental data or using
the model in the context of finite elements, one still needs to compute the Cauchy stress once
the constitutive equations (4 .18)-(4 .19) and (4.25)-(4.28) have been numerically integrated.

Remark7. The elastic law could also be expressed in total form in B. For this purpose
consider the Eulerian elastic strain e e , defined in terms of be-1 (a covariant tensor) and
related to Ee through the expressions

ee = 2 (1 — be—1 )

	

Be = FeTeeFe

	

(4 .33)

Note that the elastic Lie time derivative of this tensor can be related to the elastic rate of
deformation tensor d e by the expression

Gve eb = de

	

(4 .34)

which is obtained by taking the time derivative of Eq .(4 .33) 2 and using Eq .(2 .19) . Then,
upon substituting Eqs .(4.33)2 and (2 .37) into Eqs .(4.2)-(4 .3) yields for the total form of the
constitutive elastic law in B

devr4 = 2µ bedeve eb be ,

	

p, . = 1Ctr(e eb )

	

(4 .35)

In the context of typical finite element applications, rate quantities such as the velocity
gradient l are usually available to the constitutive integration routines . Hence, the rate form
of the elastic law is frequently favored when implementing constitutive models for numerical
applications.

4.3 Dimensionless Form of Model Equations in B.

It is believed that experimental data from mechanical characterization tests plotted using
properly normalized quantities will show similar features for materials of the same class or
group, i .e . for materials having the same crystal structure and similar atomic bonding . As
such, the use of normalized constitutive models may play an important role in extrapolating
the fitted response of a particular material to other materials of the same group . In addition,
the use of a normalized model will reduce the constitutive equations to a simpler form (no 0
terms), simplify the fitting parameter procedure and increase the robustness of the numerical
solution using constitutive integration schemes (variable values will be of the same order of
magnitude) . Because of these advantages, applications of the EMMI model will be carried
out with the nondimensional form of the equations given in the previous section.

The parameters to normalize the variables in the constitutive equations are [Frost &
Ashby, 1980] : twice the shear modulus µ, the bulk modulus IC, the melting temperature
OM , the Burger's vector b, and the lattice diffusion at melt temperature Dv , with D„ =
Do„ exp(-Qv/R0M ) ; here, Do„ and Q,, are material constants and R is the universal gas
constant. A normalized variable a will be denoted as a . Also, a characteristic time, its
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4.3 . DIMENSIONLESS FORM OF MODEL EQUATIONS IN B.

normalized form and the corresponding normalized time derivative can be defined/denoted
as,

b2

	

t

	

d(:)

	

d(:)
tC = Dv ,

	

t = to '

	

(')=

	

_

	

dt

	

to dt

Using these normalizing variables, we can then write the nondimensional form of the stress
quantities appearing in the model as

devT d	a
deer =	

Zµ ,

	

a = 2µ i

ryj

	

PT

	

Ics
CT =

	

,

	

1c8 = rdµ
the normalized velocity gradient and deformation rate variables as

el =tole ,

	

de = t, de ,

	

dP = tc dP ,

	

e= tc ',

	

f= tcJe,

	

(4 .39)

the total and elastic spins as

a.; = tcW,

	

We = tc we,

and some normalized temperatute-related quantities as

B

	

t
9 = 8M ,

	

fg = O Mfe,

	

B= 8M 0

Also, the elastic Lie time derivative of (contravariant) stress-like deviatoric second order
tensors as well as the time derivative of the scalar variables p and n can be derived as

Gv(e)''
=

	

[(') —ie() — ()ieT+(4.42)
µd8

(4.36)

(4.37)

(4.38)

(4.40)

(4 .41)

~,j

	

K * PTdlC
PT = tc [PT + de ks

	

tµ[ks+µ dB BJ

	

(4 .43)

where ,cv(•) II is the normalized elastic Lie time derivative for contravariant tensors . Using
the above expressions, the nondimensional form of the EMMI constitutive model referred to
the current configuration B, Eqs.(4 .18)—(4.19), (4 .25)—(4 .28), can be written as

£ dev'r b = bedevdeb be

	

(4.44)

PT = tr(deb)

	

(4 .45)

7,6 4 = cah b'ri ' be - -I'd E 3 I a'' II a

	

(4.46)

n s = (c,tif — RDks ) —Rsks sinh( s ks)

	

(4.47)
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4. EMMI CONSTITUTIVE MODEL

where

devdeb = devdb — d ,

	

tr(deb) = tr(d ) — 3fe B,

	

w = LJ e

	

(4.48)

n

	

'e= f [sinh(Cs 	aeq
	 — ))r+ I'

with

3

	

-0
~e q =

	

2 11

	

11 ,

	

= deer — 2 (4.50)
eq

Note that the dimensional Kirchhoff stress T and Cauchy stress o can be computed from
the nondimensional quantities dev* and pT as

T = 2µ dev* a + X b e ,

	

cr = je T,

	

J e =
F3

	

(4.51)
F9

The nondimensional material functions and corresponding normalized parameters of the
model are given in Table 4.2. Note that the nondimensional yield function Y is now expressed
as

(B)

		

ml -m'3) 2 [1 + tanh(rn4(m 5 — 8)),

	

(4 .52)
1 + m2 exp(

9 )

where 1721 = m1 i rn2=m2, m3=m3/9M, rn4 = m40M , and m5=m5/9M.

4.4 Temperature Evolution During Adiabatic Defor-

mation.

The temperature evolution under abiabatic heating, given by Eq .(3.16) or Eq .(3.17), can
be expressed in the current configuration B in a more convenient way . For this purpose, we
write first the expressions for the thermoelastic coupling and the total stored energy given
in Eq.(3.16) as

9 (fes+ a8 — fe ce: C e) :Ee = (— Ofe + d8) Dev3:DevEe

	

+(— 0
.4 + 1C dB)

p_r(Ee ) — 38foch(Ee)

	

(4.53)

- (700;] :f3. + [(1 — 30 fe)is — B aB ] ~s

(1 — 30fe
—µdB)

(a
:a

.	+ ksk.$)

	

(4 .54)

bed?be = (4.49)

[(1_30f9 )a
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4.4 . TEMPERATURE EVOLUTION DURING ADIABATIC DEFORMATION.

Nondimensional Material Parameters of EMMI Model*
E—equation

*
a—equation

*
k3 —equation

f = C2 exp(—

	

1 ) 1d = C3 exp( —02 ) RD = C5 exp(— 8 )
C2 = tc C2, Q1 = C3 = C3, Q2 = C5 = C 5) Q3 =

7l=

	

+Cl tG=C4 H=cg

Cl = cis. , Cg =

	

C
C4 = C4 Cg = Cg

Y = CsY,)

	

R s = 67 exp( — C4 )
11 (0 )

Cg = Cg C7 = tc C7, Q4 =

Qs = 610 exp(

	

95)

C10 = C 10 , Q5 - -

where we have used Eqs.(4 .2)—(4 .5) . Upon substituting these expression into Eq .(3.16), and
mapping the resulting expression to configuratin 13 using the relations given in remark 1, we
obtain

Je (cv + 3fe e, - -r :1)B = x devr 4:dr + (— 0fe +
9 de ) dev~r- 4 : devd eb

0 elk
+(— Bfe + K d8) prtr(deb ) — 38f0Ktr(de

	

(4.55)

where the factor x is given by

x = [devr4:dp — (1 — 30 fe -461	
(a

: L,eBb + isgs) ] (devr 1 :dr)

	

(4 .56)

To normalize Egs .(4.55)-(4.56), we first note the relation between the nondimensional
stress-like and strain-like internal state variables in 13,

a = C«be ,Ob e ,

	

ks = C ec C s

	

(4 .57)

from which one can easily obtain

CvCx = cabeZ,'f4e,	k s= c,c es

	

(4.58)
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4. EMMI CONSTITUTIVE MODEL

where we have use the fact that L b ell = 0. These relations together with the normalized
quantities shown above are then used in Eqs .(4.55)-(4 .56) to obtain

Je (6,1 + 3fB e„ — f—AT:1) B = Xdev* : ci' + (— B fB + c!- 8) devT : devd
e

µ(B)

+ (— Bfe + .Fv Kee) B)prtr(d e b ) — 3Bfe.P„tr(d e b )

	

(4 .59)

X = [dev :~ ' — (1 — 3df- -ce' B) (a : Gv,(3 b + ks 'js
) J

(devT a :i) -1

	

(4 .60)
µ(B)

where

T = dev* + .JvjTb e

µ(B) = 1 + co (9 — Bo),

	

1e(d) = 1+c9K (B—Bo)

_ K _ 1 + v

	

BM

	

_ BM

2µ 3(1—2v)'

	

c"—c"2µ'

	

e„—e"

Remark 8 . The parameter estimation procedure to be developed for the EMMI model will
consider the following simplified evolution equation for temperature

*
Je d, 8= X devT~ :d '

	

(4.64)

where the factor is taken as the material constant 6 11 with values in the range 0 .8 <
6 11 < 1 .0. A more comprenhensive analysis considering the full form of the equations will
be developed in a future work.

4.5 The Case of Small Elastic Strains.

Typically in metals the elastic strains are orders of magnitude less than plastic strains
in well-developed plastic flow . Because of this, the above version of the EMMI model is
specialized here to the special case of small elastic strains . For this purpose, consider the
polar decomposition of F e

Fe = Vene

	

(4.65)

where Re and Ve are the elastic rotation and the elastic left stretch tensors, respectively.
The small elastic strain assumption is introduced through V e as

Ve=1+Ee,

	

Ve—1=1—Ee + 0(II Ee 1I 2),

	

IIEe II«1

	

(4.66)

and, hence, we can write for b e = FeFeT and its inverse, b e—1 , the expressions
be = Ve2 = 1 + 2E

e + 0(11 6e 112),

	

be—1 Ve—2 = 1 — 2Ee + 0(II
Ee

11 2 )

=x,

(4.61)

(4.62)

(4.63)

(4.67)
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4.5 . THE CASE OF SMALL ELASTIC STRAINS.

With these approximations, many of the expressions used in the nondimensional EMMI
model can be simplified . Consider for example,

tr(d e ) = de be = de 1

	

2d ce :1

	

0(11+

	

+

	

ee 11 2 ) tr(deb ) de 1 (4.68)

beefbe = dP + 2(efe e +

	

0 (11E'er) +

	

ee 11 2 ) b e fb e dP (4.69)

II

	

11 2 = be-la :abe-1=

	

4'x:aee

	

0 (11a

	

cx :ex –

	

+

	

ee 11 2 ) II
a0

III
(a:cx)

1 ~ 2 (4.70)

where we have neglected the higher order terms 0(I e e 1 1 2 ) and 0(11 e e 11 2 ), and terms such
as deee , dP e e and a:ae e in comparison to de , dP and a:a, respectively. Once these approx-
imations are introduced in the constitutive equations (4 .44)—(4.50) and (4 .59)—(4.60), the
nondimensional EMMI model for small elastic strains and adiabatic temperature evolution
can be formally written as

kinematics :

	

devde = devd — of ,

	

tr(de ) = tr(d) — 3 fa 0,

	

w = w e (4.71)

elastic law :

	

L dev* a = devde (4.72)

pT= tr(d), (4.73)

flow rule :

	

dP

	

e n,

	

e

	

— 1)) ]=

	

= f [sinh(" (4.74)
s

	

Y

''hardening rules :

	

4'

	

= ca h

	

—

	

3
II

	

II ael)

	

—
c,

mss=
RD i~ s )

	

ks)(c,£H —

	

—Rss sinh( Qs

(4.75)

(4.76)
ck

B

	

Je Cc,„+3

	

60---r.

	

0

	

9

	

devT CvdevTadiabatic

	

:

	

fo

	

e

	

:1)

	

= Xdevr:dP +

	

:(— fa +
µ
ceµ

(8)
)

+(— fe + ~vK(B))pTpT -3BfoTz, (4.77)

*

=1—(1_3of_-±-\

	

BB~(6
:f,

	

+ks

	

)(devT :f) (4.78)

(4.79)

µ(0)

	

ca	c, c

with

3

	

s,

I I

	

I I,

	

= dev7- - 2n

	

3

	

,

	

Oeq =

	

2

	

a= \/--- -
2 °eq

Note that we have dropped the supersripts and b in the expressions for the norm, deviatoric
and trace operators since their definitions for covariant and contravariant tensors will now
be the same . However, we still keep such symbols for the Lie derivative.
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4. EMMI CONSTITUTIVE MODEL

In essence, then, the nondimensional EMMI model, Eqs.(4 .71)—(4 .78), consists of five
coupled, nonlinear ordinary differential equations for the evolution of the state variables
(dev*, pT , k, 8) . In the following sections, these normalized constitutive equations will
be used to develop the parameter identification procedure of the model.
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5 . Parameter Identification for the
EMMI Model

As any physically-based phenomenological material model that is formulated in the con-
text of continuum approaches, the EMMI model contains a number of material parameters
that reflects our incomplete knowledge of the detailed aspects of the deformation mechanisms
in the plasticity of metals . The particular version of the plasticity model treated here has 21
material constants . These constants are typically determined by fitting the predicted stress
response of the model to experimental stress-strain data obtained from materials characteri-
zation tests under different strain rates and temperatures . Typical mechanical tests include
uniaxial tension / compression tests, creep and stress relaxation tests, cyclic tests, among
others. Since the quality of the model predictions will depend on the precise determination
of the material constants, it is emphasized here the main role that the fitting procedure (or
parameter identification) plays in model development.

Mathematically, this identification is usually posed as an inverse problem : find the pa-
rameter set giving the best fit between experimental data and model response (objective
function) . This leads to the solution of a nonlinear optimization problem . One of the major
concerns when solving this optimization problem is to provide such experimental data that
ensure a unique solution of the problem, i .e ., several parameter sets may (locally) minimize
the objective function for the tests considered . In particular, this local minima may depend
on the initial estimate (guess) of the parameters . One way to alleviate this nonuniqueness
is to add new experimental data to discriminate between various solutions . Of course, this
aspect brings about the question of number of experimental tests and the types of tests
needed for the unique estimate of the constants, questions that although important are not
addressed here.

Also, statistical analysis of the computed parameters such as mean values, standard
deviations, correlation matrices and confidence intervals are important ingredients to any
comprehensive fitting analysis . However this kind of analysis demands for an extensive
experimental data base which currently is not available for the materials of interest, and
hence no such analysis will be carried out here.

In what follows, we present a systematic methodology using gradient-based optimization
techniques to compute the material parameters of the EMMI model . Gradient information
is provided by computing analytically the sensitivity coefficients from the model equations
using the direct differentiation method . Although the implementation of this methodology
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5. PARAMETER IDENTIFICATION

could use any optimization software, here we follow the approach used in [Patillo II &
Bammann, 2003] and implement the fitting procedure in matlab . It is important to note
that the derivation of the equations will assume adiabatic deformation, however the specific
applications presented at the end of the section considered only the isothermal case.

5 .1 The Fitting Procedure.

The particular fitting procedure used here is based on a functional which evaluates, for
a given parameter set, the distance between the model predictions and the experimental
observation . The minimization of this functional, taken here as a discrete nonlinear least
square expression, leads to a constrained optimization problem with respect to the set of the
normalized material parameters {ak } of the model . The constrained minimization problem
is then formulated as

ff

	

ll
2

min ~(ak )
= 2 E E L dr(ak) tee.

i=1 j=1

	

ii

subject to : akB < ak < ak B

where M is the number of tests, and N is the number of experimental points recorded for
each test, Q is the normalized scalar stress (metric) computed by numerically integrating
the EMMI evolution equations (called the direct problem), and Qexp is the normalized scalar
stress recorded from the tests . The values akB and akB correspond to the lower and upper
physical bounds of the material parameters . Since we will use gradient-based optimization
techniques, the search procedure in parameter space for the optimum set {ak } will require
the partial derivatives of c(ak) with respect to each of the fitting parameters ak . These can
be computed as

OCak) — M N

	

OU(ak)Q(ak) — Q expOak

	

Jij \ (~ak )iji=l j=

In the present methodology, the (sensitivity) coefficients a6-/Oak are computed by integrating
the corresponding evolution equations (called the sensitivity problem) . These equations
are obtained by direct differentiation of Eqs .(4.71)-(4.78) . Note that because the evolution
equations for deer, fir , a, ks and 0 are coupled, the corresponding evolution equations for
the sensitivity coefficients Odev*/Oa k, Op,/Oak , Ocx/Oak, Olds/Oak , and OO/Oa k will also be
coupled, and hence, they need be integrated simultaneously.

In this report, we will mainly deal with experimental data obtained from uniaxial tension
/ compression tests, and hence the full 3-D evolution equations will be reduced accordingly
to this simple case. The sensitivity equations will also be derived for this particular case by
differentiating the reduced set of equations of the direct problem.
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5 .2 . THE DIRECT PROBLEM - UNIAXIAL LOADING.

5 .2 The Direct Problem - Uniaxial Loading.

Consider first the elastic law, Eq .(4 .35) . The assumption of small elastic strains, gives
e e ee . For uniaxial loading along 1-axis, one can then show that (no shear components)

EZ = E3 =

	

J e = detVe 1 + (1 — 2v)Ei,

	

Ti = Eel

	

(5 .4)

where E and v are the elastic modulus and poisson's ratio, and r1 is the only non-zero
component of the Kirchhoff stress tensor . Since from Eq.(4.34), d e = Gve eb E e , we will
assume that relation (5 .4) 1 also holds for the rates de , i .e ., d2 = d3 = —vdi . Then,

tr(de ) = (1 — 2v)di,

	

devde = 3 (1 + v)d
i

1[D,

	

]m =
1

	

0

	

0

0 -2 A
.

	I

	

(5.5)
_0

	

0

	

2J

On the other hand, denoting sT = dev*, one can write for the deviatoric stress quantities
under uniaxial loading conditions,

'ST = sT i1D f

	

a = a l ]0 ,

	

4 = (s l - -61)D,

II 6 II=1I~I a1~,	II 4 II_
2„— 3-all

which can then be used to obtain

3 sign (sTi — 3 al) ID,

	

a') = dP ] D

f

	

2~

*

	

2 v *

	

n r 3 ST1—ail

	

J
_~ sign(sTi — 3a i),

	

-0= f sink —	 3	 _I)l
2 s +

Note that ems= Idpl and *:i = devT :d = PTA . Also, for an applied deformation rate d

with components

	

d2 = d3 0, we have

devd = devcde + sir

	

—>

	

3 (d i — d2 ) = 3 (1 + v)di +

	

(5.10)

tr(d) = tr(de) + 3ff B

	

dl + 2d2 = (1 — 2v)di + 3f8 8

	

(5 .11)

from which we obtain the expected result

d1=di+d'+ fa e, (5.12)
1

d2 =d3 =—vdi— 2dP+fe9
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5. PARAMETER IDENTIFICATION

Finally, the elastic Lie derivative £6(:) p can be approximated by (l e = cle , we = 0)

(i) 1 — 2(4) 1 41

	

0

	

0

0

	

-0)1 +2v(')ldi1 0

_

	

0

	

0

	

-2[(')1 +2v(')ld i~

Here we will neglect the second term in the each component of the Lie derivative shown
above. Then, we can write

(5.13)

reg!tr = STi D,

	

L eal = arl D , (5 .14)

Upon substituting the above relations into the EMMI constitutive equations yields for the
uniaxial loading case under adiabatic conditions —with a simplified evolution equation for
temperature (see remark 8),

sr].

*

PT

*
al (5 .15)cc, hcI —

rd
IdPI 62

sign(a i)
C«

*
Ics (ckH — RD ks)I d I — Rsics sinh(Qs ics)

0 =
2Jc71 srid

where

Ir

	

~
dp = f sinhn

[
(—3	 zsail

-1)]
sign(gri — 2 61 )

2 in s +Y

	

3
*

dl = d 1 — dP — fe 8,

	

Je = 1 + (1 — 2v)Ei,

(5 .16)

E e =
Sri +	 PT

1 + v 3(1 — 2v)

The numerical integration of Egs .(5.15) will give the normalized stress and state variables,
(sTl, CT, k, 0) for a given uniaxial strain rated and an initial deformation temperature
do . The dimensional Kirchhoff and Cauchy stresses can then be computed as

(5.17)

Tl = 2µsT1 + KPT, al =
Je

	

(5 .18)

For convenience, we will normalize 71 and v1 with twice the shear modulus p, and write
Eq.(5.18) as

T1

	

K ry~

	

O i

	

Tl
Tl =

	

= STl + 2 Pr,

	

0 12

	

= —
µ

	

tt

	

2µ Je
(5 .19)
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5 .3 . THE SENSITIVITY PROBLEM - UNIAXIAL LOADING.

Recall that in the above equations, there are 21 material constants that need be determine
from experimental data . These are,

ak = [61, 62, 63, 64, 65, 6 6, 67, 68, 69, 610, 611, Q1, Q2, Q3, Q4, Q5, ml , M'2) M3) M'4) M5]

The current version of the model, assumes Qs = 1 (610 = 1, 05 = 0), and hence the set ak

reduces to 19 material parameters . To compute these parameters, we will first determine m 1
to rn5 by fitting Eq .(4 .12) to reported yield stress—temperature data . These values will then
be used to determine the other 15 parameters by fitting the predicted stress response from
Eqs.(5.15) to experimental stress—strain data.

*
Remark 9 . For the isothermal case 0= 0, 9 = Bo . Also, from Egs .(5 .15) 1 _2i we can obtain

3(1 — 2v) *

	

µ
2(1 + v) S 1= K sr]. YT = K S T1 (5.20)

and hence

3„
Tl = 2sT1, J e = 1 + —sT ,

'Ti
Q1 =

Je
(5.21)

Therefore, for the isothermal case we will only need to solve the direct problem, Egs .(5 .15),
for (s, 1 , a, k, 9) . If needed, pT could be computed from Eq .(5 .20) 2 .

5 .3 The Sensitivity Problem - Uniaxial Loading.

The sensitivity equations are derived by direct differentiation of the EMMI constitutive
equations . For this purpose consider for example the sensitivity coefficient for the stress a T
(dropping the subscript 1):

asT	as,. a(•)
Oak 0(i) Oak

(5 .22)

where

(4 ) = [h, f, Y , Td, Ii , Rd, H, Rs, ?C]

Because a(o)/aa k can be computed directly from the expressions in Table 4 .2, the sensitivity
problem reduces to compute the coefficients asT/O(:) . Here, we will use the notation 5(6) E _
[at/a(:)]6(:) to represent the sensitivity of t to changes S( :) in the material functions (6).
Therefore, for a function G having an implicit dependence on the stress and state variables
(s-, pT , a, k, 9), and an explicit dependence on the material functions ( :), i .e,

G = G(sT, pT, a, ks, B1('))

	

(5.23)
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5. PARAMETER IDENTIFICATION

its total sensitivity to changes in ( :) can in general be expressed as

6( ; )G = a( : )G + as 8(i) :9",
+ 0p,

S( .)PT + as
8(i)6 + —arcs

S(')
is

+ aB 6 ( i ) o

	

(5 .24)

where 0(4)G is the explicit sensitivity due to the explicit dependence of G on (i) . Following
a similar format, we can then compute the evolution equation for the sensitivity coefficients
6(4) s,, 6(i)Pr, S( ; ) a, 8(;)ks, 8 (4) 0 by differentiating Eqs .(5.15) to obtain

S( .)sT = 2 ( 1 + v) S( .) de + 3 de aB
S (.) 9

S( .)PT• = (1 — 2v) S( . )de — 2de
aB

6( . ) 9

S(.)a• = cad') 0( .)h — 1 IdP la2sign(a) 0(4) 61 — 2 r-d 1 dP lasign(a) S(. )a
Ca

	

ca

+ [aii — ry- a2 sign(a) sign(dP )] 6( . ) dP + ~T8 (.) B

	

(5 .25)
ca

c,c ldP IO( . )H — ks IdPI0( . )RD — ks sinh(Qs i 8 )
a( . )Rs

+[ — RD k1 —Rs(sinh( Qs ins)+ Qsinscosh(Qsks))] S( .)ks
*

+(c,~H — RDic) sign(dP ) 8( . )dP +
aBs

6 ( .)0
*

	

P

	

3 k'
S(
.) = 2 T a( .) X _ 2 X J

	

S( .) Je+
2

Je

(sT S( ;) dP + dP S( ;) STl
+ a B S( .) 0

v

	

v

	

cv

	

J 00
with the total sensitivity of de , dP and Je are computed from Eqs .(5 .16)—(5.17) as

S :d

		

S :d— afa s,0—S .e

	

(5 .26)
00

S(:)dP = a( ;)dP +
adz'

6(4),14.7- +
a S(')PT + aaP

8 (40 + a	 S( :)ks + aBP S( ; ) 0

	

(5 .27)	 k,s

1—2v

	

1

	

3s- Ov
S(. ) Je =

1 + v
S (.) sT + 3 S( .)PT — (1 + v)2 aB S

( . ) B

	

(5 .28)

where the explicit sensitivities a( . )dP are obtained from the flow rule, Eq.(5.16), as
r

	

_ 2~

	

l
a~dP = dP ln{ {sixth [( 3I	sT	 Sal — 1)]

	

o

	

=

	

(5 .29)
111

	

2 ks+ y

	

J

	

f

OYdP = — hecoth
[(2IT
	 3	

_ 1)] I
sT	 3 a~

2

	

3 + Y

	

(k3 + Y)

a;.d ? = 0, ah 1 =0, aRD dP =0, 011dP =0, 01-ts dP =0, OXdP =0

	

(5.31)

(5.30)
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5.3 . THE SENSITIVITY PROBLEM - UNIAXIAL LOADING.

while the partial derivatives adP/asT, adP/apT , adP/aa, adP/aks are also computed from the
flow rule yielding

adP	3 -

	

[(-
3lsr-_

	

11

	

2

	

-1

	

2
n dP Goth

	

Y - 1
/ ] [(k3 + Y) sign(sT - 3a)]

	

(5 .32)
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adP	adP	2 adP	ad P

	

3 1s ,- y adP	2
sign(sr - -

3
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(5 .33)
apT	as

	

3 MT

	

albs

	

2 ks + Y asr

In the above expressions, the partial derivatives 0v/00, 0dP/00, ax/00, s/00, 09/00 are
determined from the equations

av

	

9µ1C (1 NC 1012
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2 (11 + 31:) 2

	

ae tt 00
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00

	

ae f ae Y ae
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ksI dPl

	

—ks sinh(—in s )	 + (c,ti- RD k)sign(dP)— (5 .37)
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00

	

ae*
ae _ 3 „ sTdP aJe 3 Xs, adP	0J e	av_
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2X Je2cv ae + 2 Pc„ ae '

	

ae

	

(1 + v)2 ae

where the derivative of the elastic constants (µ,1C) and the plasticity material functions
(n, f , Y, Td, h, RD , H, RS ) with respect to temperature are computed from Eqs .(4.13)-
(4.14), (4.52) and Table 4.2, respectively. The system of ordinary differential equations
(ODEs), Egs .(5.25) 1 _5i consists of 5 x 9 coupled evolution equations for the sensitivity coeffi-
cients (b ( . )sT , 8 ( .)PT , 6( . )a, 8( . ) re s , 5 (.) 8) which are numerically integrated together with the 5
coupled ODEs for (sr, pr , a, e), Egs .(5 .15) 1 _ 5 . Once the direct and sensitivity problems
have been solved, the sensitivity coefficients 8 ( . ) T and 800 6 can be determined from Eq .(5 .19)
as

	

(.)T=b(.)sr+ 3(1-2v) 8( .)pT+ (1-2v)2 ag 8(,)0,

	

Soo =
Je [8

(.) - Je b (.) Je ]

	

(5 .39)

The coefficients 6(0- are then used to compute 6 ( .4, Eq.(5 .3).

Remark 10 . For the isothermal case, we only need to integrate Egs .(5 .25) 1 _4 together

with Eqs .(5 .26)-(5.33), where we set 6(. ) e = 0 and 6 (.) 8= 0 . Also, since for this case
b( . ) sr = KS(. )pT , we just need to solve for the sensitivity coefficients (6 ( . ) s-, 6( . ) a, 8 ( ,) ks ),

(5 .34)

(5 .35)

P

[cash — 7-a2sign(dP) sign(a)]
8d

	

(5 .36)
Ca

(5 .38)
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5. PARAMETER IDENTIFICATION

and then compute S( . )pT . In addition, the sensitivity of the Cauchy stress can be determined
with the following relations derived from Eqs .(5.21)

6 ( .) 7' = 2
5 ( . ) S T , S( . ) Je =

K
S(. ) sT

	

S(.)o- =
2Je L 1

	

K JeJ S
( . )sT

	

(5 .40)

5 .4 The MATLAB Implementation.

The foregoing equations for the direct and sensitivity problem have been implemented in
matlab for the specific case of isothermal loading (611=0) . This implementation uses mainly
three supplied matlab functions : lsqnonlin, odel5s, and interpl . The function lsqnonlin
carries out the minization of the least squares expression using the trust region method
in combination with the Newton method. The function odel5s is a stiff multistep solver
for ODEs that integrates the nonlinear one-dimensional evolution equations for the state
variables and their sensitivity coefficients . The last function, interpl, interpolates the com-
puted response to obtain the stress level at the corresponding experimental strain value (for
comparison purposes with the experimentally-determined stresses) . This implementation is
tested in the following section by estimating the material parameters of the EMMI model
for 6 materials of interest to the W80 program.

5 .5 Application of the Parameter Identification Proce-
dure.

The matlab implementation is used in this section to fit the EMMI model response to a
set of experimental stress-strain curves obtained from uniaxial tension experiments at room
temperature (298K) and at different strain rates [Dawson, et at., 2005] . These experiments
were performed on smooth cylindrical specimens of the following 6 materials : A17075-T651,
A17075-T7351, A16061-T651, PH13-8, A286 and SS304L . The units of the material param-
eters used to normalize the EMMI consitutive equations are given in Table 5 .1, and the
corresponding values used for each material are listed in Table 5 .2, [Frost & Ashby, 1982].

As mentioned previously, the parameter estimation is approached by fitting first the 5
constants 7ii in Y(0), Eq.(4.52), using yield stress—temperature data reported in the hand-
book MIL-HDBK-5J [DoD Handbook, 2003] . The fitting to such data is presented in Fig .5 .1,
and the corresponding computed values of 17"Li are displayed in Table 5 .3 . Note that since this
fitting is based on an algebraic equation, the parameter estimation was carried out using only
the function lsqnonlin, where the needed gradient information was computed numerically by
matlab using finite differences.

The determination of the other model parameters (6i, Qi ) is carried out using the
experimentally—determined uniaxial stress—strain curves presented in Figs .5 .2-5 .3 . For A17075-
T651 and A17075-T7351, the data show the response for two specimens cut from a rolled
plate with the specimen axis oriented along the rolling (RD) and normal (ND) directions.
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5.5. APPLICATION OF THE PARAMETER IDENTIFICATION PROCEDURE.

	Table 5.1: Units for Material Parameters .
Property

	

Notation

	

Units

Table 5.2: Values of the Material Parameters.
Property

	

Aluminum

	

PH13-8Mo

	

A286

	

SS304L

Table 5 .3: Parameters i>h of Yield Function Y(8).

Likewise, the data for SS304L are for two specimens cut at 0° and 45° from the rolling direc-
tion, respectively. Because the version of the EMMI model presented in the previous section
does not consider texture-induced anisotropy, we will compute two different set of parame-
ters for each specimen of these materials . We also note here that the data used for fitting
the material parameters will consider only the curve before the instability point . Besides,
some of the tests at the highest rate seem to show temperature-induced softening (adiabatic
heating), aspect that the current matlab code does not account for . Hence, where needed,
the data will be cut at a reasonale strain that allows for an adequate fitting of the response.

The fits obtained with the EMMI model to the stress-strain data shown in Figs .5 .2-5 .3
are displayed in Figs .5 .4-5.5. The corresponding nondimensional parameters of the model

Burgers Vector
Melting Temperature

Shear Modulus (µ) at 300K
Temperature dependence of µ

Bulk Modulus (1C) at 300K
Temperature dependence of 1C
Lattice Diffusion (prefactor)

Lattice Diffusion (activation energy)

m
K

MPa
0
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0

m2/s
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b

Om

{~o
cI
'CO

cK
Do,

Qv

b
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lao
c/h
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Dov

Qv

2 .86 x 10- 10

933
2 .54 x 10 4

-0 .50
6 .62 x 10 4

-0 .36
1.7 x 10 -4
142 x 10 3

2.48 x 10- 10

1753
8.1 x 10 -4

-1.09
17.55 x 10 -4

-0 .36
1.9 x 10 -4
239 x 103

2 .48 x 10- i0

1665
8.1 x 104

-0 .72
17.55 x 10 4

-0 .36
1.8 x 10 -5
270 x 10 3

2 .58 x 10- 10

1680
8 .1 x 10 4
-0 .85

17.55 x 10 4
-0 .36

3.7 x 10 —5

280 x 10 3

rn 1Material m5m4m2 rn 3

AL6061
AL7075
PH13-8

A286
SS304L

1.5997
1.3147
1.1941
1.3851
1.2854

0.7576
0.4165
0.5428
0.7748
2.6999

0 .0895
0.1186
0.1988
0.1178
0.3659

9.2123
10.3377
6.4673
19.8885
16.1413

0 .5663
0 .5094
0 .4840
0 .7000
0 .6784
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are given in Tables 5 .4-5.6 . Two important points regarding this fitting should be mentioned
here . First, the experimental data are limited to one testing temperature . In this respect, to
avoid a nonunique determination of the constants 6 9 and Q i , i = 1, . . ., 4 (thermal activation
like material parameters), we have set them to zero . In the same lines, the static (thermal)
recovery coefficient c 7 in the evolution equation of ks, which should be typically "on" at
high temperatures, has been set to zero as well . With these simplifications, the temperature
dependence of the model for the 6 materials involved in this estimation is then limited to
the temperature dependence of the shear mudulus, bulk modulus and yield strengh, all of
which has been consistently determined based on reported data from the literature . Second,
reverse loading tests were not performed during the mechanical characterization experiments.
Because the back stress controls the unloading response and data for this loading path are
not available, the constants 6 3 and c4 defining the material functions h and rd in the evolution
equation of have also been set to zero . Note that this state variable has a short-transient
behavior that results in a smoother "knee" in the transition from elastic to elastic-plastic
response in a uniaxial stress-strain curve . Thus, could have been used here to smooth out
this knee in the model response, however, without ensuring a unique value for the respective
material constants . Keeping in mind these two points is that we have set up the matlab
fitting program to determine only the five material constants cl, c 2 , 65i c6 , and c8 , whose
values are shown in the referred tables.

Table 5 .4: Non-Dimensional Material Constants - Aluminum (1).
Constant AL6061-T651 AL7075-T651 (RD)

	

AL7075-T651 (ND)
218.34

3 .9651 x 10- 9
0 .0
0.0

19 .675
1.2803 x 10- 2

0.0
3.1778 x 10- 3

0.0
0.0
0.0
0.0
0.0

222.82
1 .3383 x 10- 9

0.0
0.0

16 .631
2.0922 x 10-2

0.0
5.5067 x 10-3

0.0
0.0
0.0
0.0
0.0

222 .80
3.6648 x 10—io

0.0
0.0

69.950
8.3236 x 10-2

0.0
4.2195 x 10- 3

0.0
0.0
0.0
0.0
0.0
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Table 5 .5: Non-Dimensional Material Constants - Aluminum (2).
Constant

	

AL7075-T7351 (RD)

	

AL7075-T7351 (ND)

	Table 5.6: Non-Dimensional Material Constants - Steels .
Constant PH13-8Mo A286 SS304L (0°) SS304L (45°)

Cl 89.034 232.24 20.289 20.094
C2 4.5354 x 10-9 1.3184 x 10-9 3.3483 x 10- 10 5 .8211 x 10-10
C3 0.0 0.0 0.0 0 .0
C4 0.0 0.0 0.0 0.0
C5 35 .630 9.1443 1 .7912 1.4894
C6 5 .1072 x 10-2 2.3434 x 10-2 8.0131 x 10-3 7.0400 x 10-3
C7 0.0 0.0 0.0 0.0
68 2 .5064 x 10-3 3.2661 x 10-3 1.0977 x 10-3 1 .1390 x 10-3
C9 0.0 0.0 0 .0 0 .0
Q1 0.0 0.0 0 .0 0 .0

Q2 0.0 0.0 0 .0 0 .0

Q3 0.0 0.0 0 .0 0 .0
Q4 0.0 0 .0 0 .0 0 .0

220.56
3.2320 x 10-9

0.0
0.0

23.991
3.7805 x 10-2

0.0
4.5399 x 10-3

0.0
0.0
0.0
0.0
0.0

220 .34
3.3769 x 10-9

0 .0
0 .0

24.928
3 .7734 x 10-2

0 .0
4.5698 x 10-3

0 .0
0 .0
0 .0
0 .0
0 .0
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Figure 5 .1 : Fitting of yield function Y(9) to reported yield strength—temperature data [DoD
Handbook, 2003] for 5 metals .
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6 . Extension of the EMMI Model:
Plasticity and Isotropic Damage

Polycrystalline ductile metals subjected to large deformation undergo irreversible mi-
crostructural changes (damage) which decrease their strength and mechanical properties.
Under elastic-plastic deformation and creep conditions, this damage accumulation is in the
form of voids or cavities that nucleate and grow under the applied stresses until they link or
coalesce, leading to the fracture of the structural component . Continuum inelasticity models
which account for the presence and growth of these voids are then of interest for studying
the ductile failure mechanisms in metals and alloys.

In this section we extend the plasticity EMMI model to include isotropic damage as
represented by the scalar state variable cp, the volume fraction of voids . Only the growth of
voids will be accounted for in this extension, leaving the nucleation/coalescence modeling of
the failure process for a future work. As presented in previous sections, we will proceed by
summarizing the kinematics and thermodynamics of the extended model, and then present
the model equations written in both the intermediate B and current configurations B, with
the equations in B been given in nondimensional form . This nondimensional model will be
used in the next section to develop its numerical integration procedure for finite element
applications.

6 .1 Kinematics and Thermodynamics.

The kinematics of finite deformation presented previously is extended here to account
for isotropic damage . This extension is carried out by including the damage deformation
gradient Fd = (1 — (p)-31 as an additional component in the multiplicative decomposition
of the total deformation gradient F. Hence, the extended kinematics can be written as

F = FeFdFPFO ,

	

detF d =	
1

1—co

with J = Jell" (1 — (p) -l . This added component introduces an additional intermediate
configuration B defined by FPFa , besides the two intermediate configurations 13 and 13
presented previously, the latter being defined now by FdFPFB . As before, the constitutive
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6 . EXTENSION OF THE EMMI MODEL

model will be written with respect to configurations B and B . For convenience, the above
kinematics is expressed in terms of the thermo-plastic-damage deformation gradient F* as

F* = FdFPF9 ,

	

F = FeF*,

Using this equation, the velocity gradient L in configuration B can then be derived as

L = Fe-1lFe = Le + L* ,

	

L* = L d + LP + LB

(6.2)

with

Ld = EdFd—1
= 3(1 co)

1

LP = F'LPFd-1 ,

	

LP = FPFP-1

LB = FdLBFd—1 ,

	

LB = FPL BFP—1 ,

	

L B = F BFB—1 = fee 1

	

(6 .6)

The corresponding expression for the velocity gradient l in the current configuration is ob-
tained by the push-forward of Eq.(6.3) to B, yielding

l = r + l * ,

	

l* = F eL*Fe-1 = l d + lP + l e

	

(6 .7)

where

ld
= FeLdFe—1 = 3(1 co )

1

	

(6 .8)

lP = FeLPFe-1 ,

	

LP = LP = FPFP—1

	

(6 .9)

le = FeL GF e—1 = fe O 1

	

(6 .10)

Note that, as before, Eqs.(6.3) and (6.7) could be decomposed in symmetric and skew-
symmetric (spin) parts . The point to note here is that the spin tensors

W* Wd +WP +W e =0, w*=wd +wP +we =0

	

(6 .11)

due to the assumed isotropy of damage, plasticity and thermal deformations, i .e., W(') = 0
and w ( ' ) = 0, with (•) = (d, p, 0) . The relationship between the rate of deformation tensors
in t3 can be obtained from Eqs .(2.22),(2.23), (2 .24) 2 and (2 .25) 1 as

FeTd Fe = GvE e + D* ,

	

£ Ee = De + LTEe + EeL

	

(6 .12)

where L is given by Eq .(6.3), and D* = sym(L* ) = Dd +DP +De . Note here that due to
the isotropy of Fd , the expression relating dP and DP , Eq.(2.28), is still valid . Using these
relations, together with Eqs .(6.4) and (6 .6), the internal power per unit reference volume in
B can be written as

pint = S:GvE = S: Ee + S:(DP + LPTEe + EeLP ) + (	 + fhi S:Ce (6 .13)
3(1 — cp)
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6 .2 . EMMI MODEL IN CONFIGURATION B.

To describe the material state, the set of internal state variables is extended to include
isotropic damage, i .e ., Z = {es , 0, (pi. , and hence, the Helmholtz free energy function will
have the assumed functional form

4 V = Y'V (Ee 0, Es, (io , 0)

	

(6.14)

Then, by using Eqs .(6 .13)—(6 .14) in the Clasius-Duhem inequality, Eq .(3 .4), one can derive
the general constitutive equations

S= acv

	

__acv
_3fe v+feS : Ce ,

	

s= acv ,

	

a= a

	

(6.15)
aEe' qv—aB

	

aes

	

Op-

with the dissipation inequality being reduced to

s: (DP + LPTE e + E eLP ) — a:4)— ks es

— [ v— 15':C e +(1—cp) a	 	 - 1 Q•ve>0

	

(6.16)
3

	

aco

	

— cp 8

	

—

internal work due to damage

where the contribution of damage to the internal work has been pointed out . From Eq.(6.16),
one could obtain the expression giving the temperature increase due to adiabatic heating as

(cv+3feev — fei:Ce)9 = ,S:(DP+LPTE e +EeLP ) + 9 [fe+ — fo C: Ce] :Ee

—[(1—30fe)a—o

	

]
:,C3— [(1 -30fe)is —0-01;s ] ES

— [Ev— d S:C+0(11

	

e — yo) a7]v]
acp1—cp

	

(6 .17)

6 .2 EMMI Model in Configuration B.
As before, we assume a quadratic form for the free energy, an assumption typically valid

for small elastic (applied and internal) strains,

-e e -e
= v(Ee a, es, co , 9) = 2

E

	

:E + caµ+ cmµ es + 0(9)

	

(6 .18)

where the damage dependence of the free energy is introduced through the dependence of
the elastic constants p, and 1C on the void volume fraction co, i .e.

µ = µ(9 , co) = µou(o)µ(cP), K = (O, co) = KoK(e)K(co) (6 .19)

with the temperature dependent functions E.c(0) and K(9) given by Eqs .(4.13)-(4.14), while
the damage dependent functions µ(ca) and /C(p) expressed as

µ(co ) = 1— cwµ(P,

	

k(v) = 1 — cocco

	

(6 .20)
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where and c,K are material constants . The formulation of the constitutive equations in
the intermediate configuration L is based on the above equations, and follows similar steps as
those presented previously in section 4.1 . The added features with respect to Eqs .(4 .2)—(4 .12)
will be (i) the presence of damage in the kinematics to capture volumetric effects due to void
evolution, (ii) the use of damage dependent elastic moduli to degrade the elastic behavior,
and hence, affecting the applied and internal stress fields, (iii) the inclusion of damage in the
flow rule to enhance plastic flow by concentrating the stress in the matrix material, and (iv)
an explicit evolution equation representing the growth of voids (void nucleation and void
coalescence are not included in this work) . The summary of the model equations is then
given by

kinematics :

	

Ee = (Ce — 1), C e = (1
—
	 '20)6 FP—T CFP—1 , C = FTF

	

(6 .21)
Fl

elasticity : DevS = 2 ii( co, 0) DevE e	(6 .22)

= K ((p , 0 ) Ti(E e )

flow rule :

	

FP = LPFP ,

	

LP = DP + WP

DP = FeTcFFe — LPTE e — EeLP ,

	

WP = 0

FeTdPF e =

	

,

	

e' = f [sinh((	 )	

(6 .23)

(6 .24)

(6.25)

(6.26)

hardening:

	

a = 2 e~ µ(co, 0) ,0,

	

= h FeTdPF e — rd ?'
V 3 II ,3 II a

	

(6.27)

ks = 2 c,c µ( co , 0) Es

	

(H — RD Es) e' — Rs es sinh(Qs es)

	

(6 .28)

void growth :

	

cp = =(1 — cp) G(CreQ , p, co) P

	

(6.29)

[	 1	 — 1

	

[2(2m — 1) (p)1
G(creq, pT, cP) — 3 (1 — cp) +1

1 sinh 2m + 1

	

Jeq
(6.30)

Note that Eq.(6.29) represents a general form for the evolution equation for void growth,
with the function G specifying the particular void growth model being used. The specific
model given above, Eq .(6 .30), is due to Cocks & Ashby [Cocks & Ashby, 1980] . As shown,
this void growth model displays a "sinh"—dependence on the triaxility factor (p)/EreQf as well
as introduces an additional material parameter into the EMMI model, m, besides the initial
porosity coo needed as initial condition for the void evolution law . Also note that the above
consitutive equations do use a pressure-independent yield function (veq is deviatoric) . This
feature typically results in a constitutive model with a non-associative flow rule [Marin &
McDowell, 1996] .
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NDIMENSIONAL EMMI MODEL IN CONFIGURATION B.6.3 . NO

sional EMMI Model in Configuration B.6 .3 Nondimen

The push-forward of the above constitutive equations to the current configuration B
and the corresponding normalization of the resulting equations follow similar steps as those
used previously in section 4 . Hence, in this section we will skip these steps and present
mainly the non-dimensional model in B . Note here that, because the elastic moduli are now
temperature— and damage—dependent, the dimensional and non-dimensional elastic Lie time
derivative for contravariant tensors are related by

Gv(•)

	

2tµ [re(•)It + (•) \ aµ
9 + aA (p

)
JaB

	

a~
(6.31)

nship between the dimensional and non-dimensional time derivative for thewhile the relatio
e isotropic hardening (strength) is given bypressure and th

K l ae e + a

	

) ' .5 =

t

2A [!;

,
ks +—	

(

ae

e + a

	

) ]

	

(6.32)
K

*
where we have defined cP= tecP, the normalized time derivative for damage . With the help of
the above expressions, we can then write the nondimensional form of the EMMI constitutive
model for small elastic strains, isotropic plasticity, isotropic damage and isotropic thermal
deformations, as

GvdevTa = devde

*

	

e
p, = tr(d )

r *
Gvix a = cah dP — a E

ca

(6.33)

(6.34)

(6.35)
2

11 6'11 6

*
k s = (ck .g — RD k s ) E —Rsks sinh(Qs ks)

ck
(6 .36)

(P _ -(1 — cp) G(6-eQ ,PT~ (P) (6 .37)

where

devde = devd — dP ,

	

tr(de ) = tr(d) —	
cp —

3f- 8,

	

w = w e

	

(6 .38)
1

dP =

C (6-eq,Pr, (P) = 3 L(1 — cp) ra + 1

* eQ
[sinh

\\(1+Y) —

	

n
	1>)]

	

(6 .39)

— 1] sinh [2(2m — 1)
.Fv (v,-)1

J

	

(6 .40)
2m + 1

	

Qeq
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with

Ueq =
= 2 °e q

2
= devi'- - -a (6.41)

Note that volumetric strains due to damage (void growth) arise naturally in the formulation
due to the inclusion of Fd in the kinematics . Also, the damage parameter m and the initial
porosity coo are obtained by fitting the model response to experimental load–displacement
data obtained from notched tensile specimen tests . The presence of notches typically induces
a wide range of triaxilities to be present in the experimental data, and hence, these exper-
iments are adequate to determine material parameters of void growth models that show a
strong dependence on triaxiality. This parameter determination should be carried out using
finite element simulations .
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7. Constitutive Integration Procedure
for the EMMI Model

In the context of finite element formulations, the EMMI constitutive equations will pro-
vide the material properties at each computational point of a finite element model . Given
then a prescribed deformation history, these properties are determined by integrating the
evolutionary differential equations of the model . To illustrate how the integration of the
EMMI model fits into a general implicit solution by finite elements, consider the momemtun
balance equations of a deforming body under quasi—static and isothermal conditions, written
in the spatial configuration Bt at time t

Vo + b = 0 in Bt (7 .1)

to := on = to on atBt (7 .2)

= on a,I,Bt (7 .3)

a. = &(ti) ; state) in Zit (7 .4)

where b is the body force per unit volume, to is the traction along the boundary atBt with
unit normal n and where the prescribed traction to is given, and di is the mapping defining
the current configuration Zit , with a,f,Z3t being the boundary where the body geometry is
prescribed. The stress state, defined by the constitutive model, is represented by Eq .(7.4).
The weighted residual of Eqs .(7 .1)—(7 .3) can be written as

R(Q, r)) = f a.:Vri dv — f b•r~ dv — f tnrl dly = 0

	

(7 .5)
t

	

t

	

tst

where 77 is a weighting function . The numerical solution of Eq .(7.5) by the finite element
method is aimed at finding the stress a and the configuration ' such that R(cr, q) = 0

is satisfied at each point along the loading path . This solution is typically carried out
incrementally over a time interval [0, tmax] = U1 [t n , to+ 1 ] . In each time increment At =
to —tn+1, satisfaction of Rn+1(on+l, r/) = 0 is enforced through a global iterative procedure
(equilibrium iterations), with the Cauchy stress o-n+1 computed by a local iterative scheme
(constitutive iterations).

The equilibrium iterations are performed using a Newton—Raphson (N—R) procedure
devised using the residual R. During the iterative scheme, at any iteration (k), one solves a
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sequence of linearized problems

R (an+1, 7l) + DR[u]

	

( k ) = 0Q=fin}1 un+1

until the residual vanishes to within a prescribed tolerance . Using Eq.(7.5), this linearization
can be written as

1t [cr (k) 1 : (Vun+T V71) + Vrl : n+1 :Vu
n
k+ l ] dv = -R(a

n+l,
71)

	

(7.7)

where ceP is the stress Jacobian (algorithmic moduli) whose expression is obtained by lin-
earizing the integrated constitutive equations for the stress update . With the computed
un+1, the body configuration is updated using cl'n+1) = I. nk+l + u12+ . It is important to
note here that, as opposed to explicit finite element analysis where the stress Jacobian is not
needed, in implicit simulations ceP arises naturally as an important contributor for improving
the rate of convergence of the N-R equilibrium iterations.

On the other hand, the constitutive iterations, performed using the integrated form of
the constitutive model, Eq.(7.4), are carried out at each integration point of a finite element
model to (i) update the stress and material state (crn+i, state,,,,+1), and (ii) compute the stress
Jacobian 47)+1 . The input to this integration is the velocity gradient 1n+1 (or do+i, wn+1)
and the stress and material state at tn , (an, staten).

In this section, we develop the constitutive integration procedure for the nondimensional
EMMI model, Eqs .(6.33)-(6 .37), as well as derive the corresponding algorithmic moduli for
implicit finite element analysis . The numerical implementation of the procedure is then
validated by solving a number of problems.

7.1 Integration of .Cv(:) O for Small Elastic Strains.

The elastic Lie derivative is a corrotational rate that is typically used in the formulation
of rate-type constitutive equations for tensorial quantities to render a frame-indifference
constitutive model . In a numerical setting, its correct integration (objective integration
procedure) will then properly account for rigid body rotations during the numerical solution
of finite deformation problems . In this section, we proceed with the standard integration of
this rate as applied to the EMMI model, in particular, to the tensorial variables dev* and ix.
For this purpose, consider the definition of the elastic Lie time derivative of (contravariant)
second order tensors written as

Feat[Fe-1(4)Fe-T]FeT = Ze (6)'

	

(7.8)

where (6) = (dev'r, a) . Using a finite difference approximation for the time derivative, the
integration of this equation in the time increment Ai ' = to+1 - to can be written as

to+1
e-1

	

e-T = e-1

	

e-T

	

e-1 e

	

e-T
F'n+1(')n+1F n+1 - Fn (i )nFn +

	

r' G v (') F di' (7.9)
to
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or equivalently

t,,, +1(

	

= Fe Fe—1

	

Yie—TFeT

	

e

	

e—1 e

	

e—T

	

eTv )n+1

	

n+1 n ( )n n

	

n+l + r' n+1 (

	

F Gv (~) F

	

dt) F,n+ l

AFe

	

AFeT

(7 .10)

The elastic deformation gradient F e can be obtained by integrating its evolution equation,
Eq. (2 .10), expressed in nondimensional form

*
Fe= 1 Fe (7 .11)

_te )—1(

	

Ot ,,e
Fen+1 = 1 - -1

	

1 + -1 )F'2n+1

	

2 n+1

	

n

*
where we have used a finite difference representation for F e and a mid point rule approxima-
tion for F e . Here, we introduce the small elastic strain assumption, as given by Eqs .(4.65)-
(4.66), i .e .,

Fe= V 6R6 ,

	

Ve=1+Ee,

	

Ve—1=1—Ee+0(IIEe112),

	

IIEe lI<< 1

	

(7 .12)

With these approximations, we can evaluate OFe as

ofe = e

	

e—1 =
(1 + En+1)Rn+1RnT(1 — + (9(11 E

e 2
Fn+1Fn

	

En

	

II ))

= ~Re — ORr <n + En+1ARe — E,en+1AR6En + 0(11 Ee 11 2 ) (7.13)

Here we neglect the terms AR 6 Ene and En+1ARe with respect to ARe , as well as the high
order terms <+1AReEn and 0(11E' 112) . Then, from the above equation we can approximate
AF e as

OFe = Fn+1Fn 1 Rn+1R~ = ARe

	

(7.14)

In the same lines, in Eq .(7.10) we can also use the approximations

e

	

e

	

(
Fn+1 '` ' Rn+1e ,

	

Fn '~ Rn

	

1 7.15)

Using the above relationships, Eq . (7 .10) can then be written as

t„+1

(i )n+1 = ARe(i)nOR'T + Rn+1(f ReT.v(6 ) 11R8 dt) R 1

	

(7.16)

On the other hand, Eq .(7.11) can additionally be reduced by noting that l e = de+iv ' , with

de ~veeb NE=

	

6, we = w (wP = 0, isotropic plasticity) . Hence, using the approximation

1 ± ZOt Ee= 1 ± ZOEe ti 1, we can write Eq .(7.11) as

twn+1Y.Rn+1 = (1 — O2 ) (1
+ Ot 2n+1) Rn

	

AR' = exp(Otw n+1)

	

(7.17)

exp (Otiwn+l)
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7. CONSTITUTIVE INTEGRATION

As pointed out above, Egs .(7 .16)—(7 .17) will treat properly the rigid body rotations during
the numerical integration of the EMMI constitutive equations in a time increment At. It
is important to note here that the outcome of the second term on the right of Eq . (7 .16)
will depend on the approximation used for the integrand, i .e ., for the terms used in the
constitutive equations defining g(i)II . Consider for example the cases where the integrand
contains the rate of deformation tensor d and the back stress tensor a, and assume that these
integrands are evaluated at 47,+1 and in , respectively. Then, for these cases, the integration
above gives

to+1

Rne+1 (f ReT dRe dt) Rne+1 = Rn+1(Rn+lAidn+lR +1) Rn'+ 1 = Atdo+1

	

(7 .18)
to

in+1
Re (f ReT&Re di) ReT _ Re (RTL R ) Rez _ Ot ARea AReT

n+1

	

n+l

	

n+1

	

n

	

n n n+l
to

(7.19)

Note that result (7 .19) produces the proper rigid body rotation for an in Ai . In the following
section, we will represent the tensor Re as a general rotation tensor Q.

Remark 11 . Under small elastic strains, the integration of the spatial, rate—constitutive
equation for tensorial variables leads to the discrete equation (7.16), with the second term on
the right hand side evaluated as given by Egs .(7.18) or (7.19) . We note here that the above
integration steps are equivalent to pulling back the rate equation to a rotation neutralized
configuration defined by 1 Re , carrying out a time—stepping algorithm of the equation in this
configuration, and then pushing forward the discrete equation to the original configuration.
As mention by many authors, this procedure leads to an incrementally objective integration
scheme, i .e ., one that preserves the objectivity of the integrated tensorial quantities.

Remark 12 . The first term on the right hand side of Eq .(7.16), i .e ., the rigid body rota-
tion of tensorial quantities at in , can be computed in a number of ways, depending of the
approximation required . To illustrate this, consider the expansion

first order update

ORe = exp(Otw n+1) = 1 + AtCJn+ 1 + 20t W2n+1 + . . .

	

(7.20)

second order update

where the order of approximation selected depends on the specific problem to be solved.
Typically, the second order update is used when large strains are developed in a few time
steps (high velocity impacts) as well as in implicit solutions with large strains in each step.
With the second order update scheme, the first term in Eq .(7.16) reads as

first order update

ARe(i)nAReT (i)n + Ot CJn+1 (')n + Ot (i)n 6)71+1

(''+
1 — 2wn+1(4 )nwn+1 +Wn+1(')n)

	

(7.21)
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7.2. INTEGRATION OF THE EMMI CONSTITUTIVE EQUATIONS.

To improve the accuracy of the above operation, finite element implementations of Eq .(7.21)
(e .g. the is-dyna finite element code) may use the mid-point value of the spin Ln+2, instead
of the end-point spin LJn+ 1 . Other approximation procedures to treat the above rigid body
rotation have also been developed [Weber, et al ., 1990], [Simo & Hughes, 1998], [Doghri,
2000].

7 .2 Integration of the EMMI Constitutive Equations.

To integrate the constitutive equations of the EMMI model, Eqs .(6 .37)—(6 .38), we use a
finite difference approximation for the time derivative of the stress and state variables, which
yields

to+~
devTn+ 1 = AQ dev* AQT + Qn+l (f QTGvdev* 0 Q dt) Qn+1

	

(7 .22)
to

ryry~~

	

i n+1*~~

CTn+l

	

TP n +

	

77f 1'T dt
to

IT

	

(7.23)

tn+1

an+1 = AQ an AQT + Qn+l (f QT Gvdev& Q dt) Qn+l

	

(7.24)
o

tn'+1 *
(Pn+l = con + f co dt

	

(7.26)
to

where the results obtained in the previous sections, Eq.(7.16), have been used. Different
approximation schemes can be used to evaluate the integrand in the above equations . Here,
we choose to solve for the deviatoric response, Eqs . (7 .22), (7.24), (7.25), using a semi-implicit
integration procedure [Moran, et al., 1990], while the volumetric response, Eqs . (7 .23), (7 .26)
is integrated using a backward Euler scheme (fully implicit) . The semi-implicit procedure is
characterized for being implicit in the incremental equivalent plastic strain and explicit in

the flow direction and other variables . Hence, denoting &At = AO', and using the expression
specifying dP (flow rule), Eq .(6 .39) 1 , we obtain for the integrands IT and la

IT = devdn+1 Ot — 2 4n+l (All An \QT)

	

(7.27)

Ia = FCa h0E+l (AQ nn AQT) —
3 cd

DES+l I IAQ an AQT
(I (AQ an ZQT ) (7.28)

a

Denote

dev*n = AQ dev'rn AQT ,

	

oen = AQ an / QT,

	

nn = AQ nn AQT

	

(7.29)

1'n-F1 *
ksn+l = ksn +

	

k s dt
to

Ia

	

(7.25)
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7. CONSTITUTIVE INTEGRATION

as the tensorial variables at to rotated to the (current) configuration at to+1 • Then, the inte-
grated equations for devTn+i, an+1, and lsn+1 using the semi-implicit integration procedure
can be written as

devTn+l = devTn+1 — 2nn0n+1
YYY

an+l = a*
n+1 + Xan0En+1

ks 72+1 = ks n+l + Xs n'64-1-1

where the quantities CO)* are the elastic predictor values

(7.30)

(7.31)

(7.32)

devTn+1=devTn + Otdevdn+l, an+1= an insn+1= ins n — OtRs s nsinh C
Qs

ic s
nJ

(7.33)

while the quantities Xa n and X,n are conveniently defined by

Xc, n = 2calnn —
V -3 cd

II an II an,

	

~4cn = c,~H— RDksn

	

(7 .34)~l

	

a

To solve for AO', we use the nonlinear equation obtained by inverting the kinetic equation,
Eq.(6.39) 2 , the so-called "dynamic yield condition" , written as a residual,

DEP
RE =o'n+1 — ( 1—ion+1)(sn+1+Y ) [1+sinh ' ( Qtfl) /1=0

	

(7 .35)

where vn+l and ks n+l, with 6-n+1=~ II devTn+l — an+III, are evaluated from Eqs .(7 .30)—
(7.32).

On the other hand, applying a backward Euler rule to the integrands in Eqs .(7.23),(7 .26)
yields the following residuals for pressure and damage (void volume fraction)

3]R~

	

(

	

P
"'P = Pi —Prn+1 + ~G lPrn+l, con+l, DEn+l) 6'0n+1 = 0

3 1/

R,P = con+1 —ion — ~( 1— Can+1) G(Prn+l, Pn+l, En+l) n+1

where pTn+1, an elastic predictor quantity, is defined by

=0

(7.36)

(7.37)

Prn+l = Prn + At tr(dn+l) — 3 At On (7.38)

Equations (7.35)—(7.37) represent three nonlinear algebraic equations in the unknowns (DEn+1,
pr n+1, con+1)• Typically a full Newton-Raphson (N—R) method could be used to solve such
system of equations. However, in this work we choose to reduce this system by using Eq . (7.35)
to express DEn+1 as a function of (prn+1, con+1) and solve the resulting system using the N—R
method. Since Eq .(7.35) is usually nonlinear, this reduction must be done numerically, i .e .,
we need to solve Eq. (7 .35) for AP using also an iterative scheme . Algorithmically, these
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7.3 . THE TWO—LEVEL ITERATIVE ALGORITHM.

solution procedure leads to a two level iterative scheme . To represent schematically this
scheme, we drop the subscript (n + 1) used to represent quantities evaluated at to+1 and
denote

X = (x, co),

	

= (4, k)

	

(7 .39)

Using this notation, the nonlinear system of Eqs .(7 .35)—(7 .37) can be symbolically expressed
as

RE = E(A ,)=0

= Z'' (AO, X) = 0

and the corresponding solution procedure can be summarized by

1. From It%(0O', X) = 0

	

—*

	

Get :

	

=A P(k).

2. F r o m Z(0 , X) = 0

	

—+ Solve : Z(AE2)(X), X) = *(X)=0

The details of this solution scheme is presented in the next section . The summary of the
constitutive integration procedure for updating the stresses and state variables is given in
Box 1.

7 .3 The Two—Level Iterative Algorithm.

Due to the nonlinearity of the equations, the numerical solution procedure proposed above
generates to a two-level iterative scheme . This scheme consists of the following sequence of
operations:

1. Assume that an approximate solution X (k) has been obtained, where the upper index
(k) refers to the first iteration loop. Then we solve the equation in Ar(k) ,

RE ( k) = RE(Ae(k), X (k) ) = 0

Since the solution can not be obtained analytically, a numerical technique such as a
second N—R iteration loop is used . Then

(a) Assume that an approximate solution DE(Yk) has been obtained, where the subindex
(i) refers to this second iteration loop.

Check if iRE() ( = IRE (Ae)k) , X (k) )I < TOL[AP].

If YES then Ae(k) = A€i()k) . GO TO step 2.

If NO, solve the linearized equation in SOE'( k)(x+1)

aoPRE()) = 0'4 (O(k)' x(k))aAEp RE ) +
[

LIAEP ALE
(k
(i)

)-

(7 .40)

(7 .41)

(i) SoE(z+~ ) -0,
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7. CONSTITUTIVE INTEGRATION

(b) Update: 1 p( k) = Ae~k) + 8Ae(k) )
(c) GO TO (a)

2. Check if :

	

1Z* (k) ~ = Z*(X(k))I = 1Z(AEP(k) , X(k))I < TOL[k]

If YES then AE = Ae(k) , = X(k) . EXIT.

If NO, solve the linearized equation in OX (k+l )

z*(k) + [ak,i*(k)lAk(k+l) = 0, aXz*(k) _ az (op(x(k'),k(k) )
ax

where the matrix (Jacobian) al,. *(k ) can be computed as

a z
*(k) _ az + azODEP

aX OAR aX

with the term OAP/OX' derived from the residual RE as

RE (0~, IC' ) =

	

5 0, x) = 0

The Jacobian used above is then

ODE'

	

OR, -1 OR,

ax''

	

C 0603 ) ok

aX Z*(k) _ [ aZ _ OZ
(9LP)

Me -1 aRE I

OX

	

(LS.E''(k), k( k ))
aDEP	ax J

3. Update : X (k+1) = x(k) + OX(k+1)

4. GO TO step 1.

The derivative information needed to determine the Jacobian aX Z*(k) can be derived from
the residuals

RE = R E (0t'', PT,c ),

	

Rp'' =— Rp''

	

PT, ,

	

RP R~P(,

	

(7.42)

to give

aRP
az _ aoEP

OAP 01=4
0AeP

(7.43)
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where

OR E

	

_ 3

	

2

	

all

	

1 07-1
aA~

	

2 n :n

_

	

n -
3 n:n - On, .L -

Ata

OR E	aRE

	

07-i

apT =O'

	

= acp

(7.44)

(7.45)

0RP__ 3

OAP - _L 2
rn :rnn 1	 og At + ag

aQeq

	

a
(7.46)

ORp

	

1 of ag aRP = At—0g=

	

+

	

,
pT

	

apT acp

	

acp

aR aid, aR

	

ag
aAE _

-(1- (10) aA
app _ -At(1- (p)apT'

as = 1+Atg(p) ag
a(p

with n = nn+1 and
*

71 = e, cP) = ( 1 - co ) (k s +Y) [1 + sink-1 l—J

	

Jf
* 3/?

	

_0,y(Qeq,

	

pn cp )
—

	

4,g = 2-G(6eq'PT'
'it'

)

where G is given by the Cocks-Ashby void growth model, Eq .(6.40). The initial guess for
A~'Piki and X(k) in step (1) above are obtained using a Taylor series expansion (forward gra-
dient method) of the residuals, Eqs .(7.35)-(7 .37) . Also, a line search procedure is introduced
in the N-R methods for both iteration loops to help the local convergence of the method.
Note that the two-level iterative procedure couples the deviatoric and volumetric responses.

An alternative integration scheme may be devised by uncoupling the solution of the
deviatoric and volumetric responses, i .e ., computing .64+1 by the semi-implicit integration
technique using the values (pn , (pn), and then solving for (pn+i, cpn+1) by the backward Euler
scheme using the computed APn-f-1 . As shown in the examples solved in the next section,
this uncoupled integration scheme is suitable for applications where very small time steps
are used.

7 .4 Consistent Elastoplastic Tangent Moduli.

The (material) tangent moduli plays an important role in implicit finite element pro-
cedures, where its use is essential to preserve the quadratic rate of convergence that char-
acterizes Newton's method during the equilibrium iterations . In this section, we derive an

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)
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7. CONSTITUTIVE INTEGRATION

approximate closed form solution of the tangent moduli by a consistent linearization of the
integrated EMMI constitutive equations . The work "approximate" reflects the fact that the
derivation will not consider the linearization of both the rotation tensor Q and the elastic
Jacobian Je .

In this work, the tangent moduli can be defined as

cep – 1 do-n+1 – 1 dTn+1
At ddn+1 Jest ddn+1

cep

	

1 dTn+1 (7.52)
Jest ddn+1

where it has been assumed that Je is constant in st. The "dimensional" Kirchhoff stress at

to+1 can be written as

Tn+1 = 2tt devT n+ 1 + 1C fir ,,+1l

	

(7.53)

where the expressions for the "non-dimensional" quantities devTn+I and pr n+1 are given by
Eqs. (7 .30), (7 .36) and Eq .(7.38), respectively. Hence, Tn+l can be written as

Tn+1 = Tn + stc e :dn+1 — y o%Gsr,+lnn –

	

1CGSEn +1 1 – 31Cfenst 9 n 1

	

(7.54)

with

Tn = 2a devTn + 1C,ror n1,	c e = 2µI + 1C 1 ® 1

	

(7 .55)

The linearization of Eq .(7.53), assuming a constant rotation tensor Q, can be expressed as

dTn+1 = stce — v6-1.1 nn
® dAEn+1 — 3 K 1®(	 dG AE

+ G
dAEn+I l

ddn+1

	

ddn+I

	

\ddn+1
n+I ddn+I J

Since the integration procedure is driven by the applied rate of deformation tensor do+1 i we
can assume an implicit dependence of the primary variables (AEn+l,prn+1, gon+I) on do+1,
i .e .,

–
A4+1 = AP(dn+1),

	

pr n+1 = pr(dn+l),

	

(Pn+1 = (P(dn+1)

	

(7.57)

Also, based on the definition of the equivalent stress 6-7+1 and Egs .(7.30),(7.33), one notes
that Qn+l has an explicit dependence (through devTn+l) and implicit dependence (through
AEn+I) on 4+ 1 , Hence, the functional dependence of the void growth function G on do+1
can be written as

G — G (6' En+l,15rn+1) (Pn+l ; do+l)

Then, the total derivative of G with respect to 4+1 (linearization) is expressed as

dG _ ad

	

aG dOEp ad dpr	ad 4'
ddn+1 adn+1 + asEn+1 ddn+1 + uPn+1 ddn+1 + a(Pn+1 ddn+ 1

(7.56)

(7.58)

(7.59)
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where

aG

	

-At aG n
n (7.60)

2 aQ+ 1adn+1
aG _ ad aon+1

	

aUn+l

	

3

	

22 .,

	

naoEn+1 a~+1 aDE~+1 '

	

a0~+ 1
- 2n :nn — 3n : (7 .61)

with the partial derivatives a0/aQn+ 1 , aG/apn+1, 00/acpn+ 1 obtained from the specific ex-
pression for the void growth model, G . To compute the derivatives dA P/ddn+1 6T/ddn+1
dcplddn+l, we employ the residuals (nonlinear algebraic equations) obtained from the inte-
gration of the constitutive model . These residuals given by Eqs . (7 .35)—(7.37), are represented
here as Ri , i = 1, 2, 3, respectively. Denote

1'64+13 en+l~ (Pn+1 l
I —~ (7 .62)Y = Y (dn+1)

where we have used Eq .(7.57), then we can write the following functional dependence for the
residuals Ri

Ri = Ri (DEn+l ) YTn+l > (Pn+1) (7 .63)Ri = Ri(dn+1, Y (dn+l))

where the explicit dependence comes from the expressions for an+1 (through devI-* ) andn+l
pT n+1 • Hence the required derivatives can be obtained from the linearization of the residuals

dRi

	

	aRi	aRi_

ddn+1 adn+1 1' aY
dY

=0
do+l ddn+l Y

	

(7.64)
-1

dY _ aRi	aRi
ddn+1

	

aY do+l adn+1

Note that Jig = aRi/aY can be computed from Egs .(7 .44)—(7.49) and are the components of
the local Jacobian to be used in a full N-R scheme for the solution of (DEn+1, pTn+l, (Pn+l) dur-
ing the integration of the constitutive model . On the other hand, the derivatives aRi/adn+ 1
at constant Y are computed as

3 s,

—At h,

	

,,	 =Ott+AtTn,
adn+1

(7.65)
0R3 = _ Ot (1— con+1)'lCn

adn+1

with T _ V27/40EP 00/awn+1 . Then, from Eq.(7.64) we obtain

dAP
=At (airy + b11),	 dpT At (a 2n + b 2 1),

ddn+1

	

ddn+1
= At (a 3n + b31) (7.66)

dcp

ddn+1

which are used in Eq.(7.59) to yield

dG = At (Al n + A21) (7.67)
ddn+1
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where

al =--- (7.68)

a2 = (7.69)

a 3 = — (7.70)

2Ji11—TJ121 +(1 —cpn+1) TJ131 '

-2 21J-1 — TJ 21 + (1 — cpn+1) TJ231 ,

2J311—TJ321 +( 1—con+1) TJ33 1 ,

and

	 aG

	

aG

	

aG

	

aGAi = al	 + a 2 	 + a3 	
OA E n+1

	

apn+1

	

a~n+1

	

2 awn
eq
+1

+ (7.71)

A2 = bl	
ad

+ b2	
aG +

b3	
aG

0DEnn+1

	

apn+1

	

a(Pn+1

Therefore, upon substitution of Eqs .(7.66) 1 —(7.67) into Eq.(7.56), we obtain the following
expression for the algorithmic moduli c eP given by Eq .(7.52) 2 ,

(7.72)

JeceP =ce— P 1 nn®n—r2nn® 1—F3 1®7i,—F4 1®1 (7.73)

where

At al (7.74)F1 =

1 ' 2

	

= (7.75)

F 3 = -1C (A0'A 1 + G al) (7.76)

I' 4

	

= -1C (OPA2 + G b1) (7.77)
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Box 1 . Integration Procedure for EMMI Model
1. Normalized known quantities:

do+i, wn+1, Jn+11 (deVTn,Arn) an ksn, (Pn, En, On)(C, en)

2. Compute incremental rotation tensor:

AQ = Qn+1Qn
T

= exp(Otibn+1)

3. Rotate tensorial variables at to to Zan+ 1 :

devTn = OQ devTn 6.QT , an = OQ an / QT

4. Compute elastic predictor quantities:

devTn+ 1 =devTn + Otdevdn+l, k
s
n+1= ks n — LtRsk s nsinh (k8 )*

641 =an, prn+l = Arn + Ot tr(dn+1) — 3ffnLt Bn

5. Compute trial effective stress:

e = devTn+1
S
an+1,

	

eq = \/i II n+l II, nn ;n+l/ IIcn+1ll

6. Check yielding : Is Qeq < (1 — (pm ) (insn+1 +

	

[1 + sink -1 ( /f ) 1/n]

(
YES : ELASTIC, then

(Arn+1)

	

Wm) n)

	

(Arn+1, ksn+1, (on+1, E +1),

devTn+1 —* devTn+i,

	

an+1 —' an+1,

`J,2+1 = Jn+1(1 — con)/Fin , 4+10-n+1 = 2µ dev*n+1 + Pr n+1 1 )

ce = 2µI + 1C 1 ®1, EXIT

NO : INELASTIC, then CONTINUE

7. Solve for (DEPn+1 , prn+1, cpn+i) using the two-level iterative algorithm:

RE = RE(Aen+1 , kn+1) = 0,

	

Z = (Aen+1, Xn+1) = 0

where kn+l = (prn+l, (ion+1),

	

= (hp, hp)

8. Update variables

devTn+1 = devTn+l 01InZS,Pn+l) an+1 = an+1 + yy°`'an0n+1,

ks n+1= ksn+1 + "+4nn+1, Sn+1= devTn+1 — 3 an+1,

Jne +1 = Jn+1(1 — (pn+l)/Fin , 46+1 Crn+1 = 2µ devTn+1 + KArn+1 1

9. Compute the algorithmic tangent moduli:

4+1 cep = ce —P I In ® nn+1 — F2 7Ln ® 1— P 3 1 ®nn+1— P4 1 ® 1, EXIT

nn+1= n+1/ IIn+1II,
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8 . Validation of the Constitutive
Integration Procedure

The foregoing integration scheme has been coded as both a material point simulator
(mps), and a material routine in the finite element code is-dyna [LS-DYNA, 2005] . These
two implementations are validated here by solving a number of simple problems involving
(i) the response of material points to different deformation histories (mps), (ii) the behavior
of a single element under uniaxial tension (ls-dyna), and (iii) the response of a circumfer-
entially smooth tensile specimen under tension (ls-dyna) . We mainly focus on studying the
performance of the numerical implementation, without pursuing any comparison with ex-
perimental data. A more comprehensive study to validate the predictions of the EMMI
model is underway, where the numerical simulation results are being correlated with experi-
mental data obtained from a number of mechanical tests (uniaxial tension of smooth, single
notched and double notched specimens, can crush tests, etc) . Results from this study will
be documented in another Sandia report [Dike, 2005], [Ostien, 2005].

The material parameters to be used in the simulations are given in Tables 5 .4-5 .6. As
mentioned before, with these parameter values, the back stress effect is not included in
the calculations and the temperature-dependent effects of the model are limited to that of
the shear modulus, bulk modulus and initial yield strength . Also, with some exceptions
(indicated in the text), the simulations assume that the loading is applied at a constant
temperature of 0 = 300K.

8 .1 Material Point Simulator Runs.

The material point simulator evaluates the response of material points subjected to ho-
mogeneous deformation histories . In this section, we validate the integration scheme and
the corresponding computer code (mps) by calculating the response of material points under
a number of deformation paths, as prescribed by the non-zero components of the velocity
gradient 1.

The first example solves for the material response to a stress relaxation test during
uniaxial loading at two temperatures : 300K and 1000K . A velocity gradient with non-zero
components 1 11 = 1 .0 s -1 , 122 = 133 = -0.5 s -1 (effective deformation rate of E e = 1 s-1 , with

Ee = 6dij dij ) is applied for 1 s up to a strain of unity, after which the applied velocity
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8. VALIDATION OF CONSTITUTIVE INTEGRATION

gradient is reduced to zero . The material response is then tracked for an additional 0 .5 s.
The computations are performed with the material properties of SS304L-0° and using three
time steps : At = 0 .01 s, 0 .001 s, 0 .0001 s . The predicted response for the effective stress o-eg
and strength i as time evolves is presented in Fig .8 .1, where the corresponding results from
the matlab implementation are also given as a reference solution . It is noted that the results
from the mps converges to that of matlab as the time step is decreased.
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Figure 8 .1 : Comparison between the mps and matlab predictions for stress relaxation test
(uniaxial loading) . The mps computed results converges to that of matlab as the time step
is reduced.

The following two examples evaluate the performance of the integration scheme for cyclic
loading and strain rate changes for SS304L-0°. In the former case, the material is subjected
to uniaxial cyclic loading using the applied velocity gradients : 111 = 1 .0 s —1 , 122 = 133 =

-0 .5for0<t<0.15s,0.45s<t<0.85s,and1 11 =-1 .0s -1 ,1 22 =1 33 =0.5s -1 , for
0 .15 s < t < 0 .45 s . This simulation is carried out using two time steps : At = 5 x 10 -3 s, 5 x
10 -5 s. In the latter case, a material point is subjected to simple shear loading while the
applied velocity gradient (strain rate) is changed from 1 13 = 10-4 s—1 to 1 13 = 102 s—1 at
time 50 x 103 s (shear strain of ry = 0 .86) . In this case, the time steps used for each
strain rate are given, respectively, by At = 0 x 10 3 s and At = 0 x 10-3 s, which are
equivalent to a constant shear strain increment of A -y = 0 .17. The computed results for
the cylic loading case is presented in Fig .8 .2A (Q11-ell) while for the rate-change test is
given in Fig .8 .2B (o-e4 --y and k-7) . These figures show a well-behaved material response for
both loading cases . Note here that, based on the strain-rate change test, the EMMI model
does not exhibit strain-rate sensitivity of structure development since, after the strain-rate
change, the effective stress jumps and merges with the curve at the higher strain rate . This
is also reflected by a unique evolution curve for the strength ic during deformation.

The last example examines the performance of the integration scheme when the solution
procedure for the deviatoric response (semi-implicit integration) and volumetric response
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Figure 8 .2 : Performance of mps for (A) uniaxial cyclic loading and (B) strain-rate changes
under simple shear loading . Note that y = O e .

(backward Euler integration) are staggered without iterating between both responses (un-
couple scheme) . For this problem, we input a velocity gradient with non-zero components:
1 11 = 1 .0 s -1 , 1 22 = - 0 .5 s -1 , and 1 33 = -0 .2 s —1 (~ E = 0 .945 s —1 ) . We also use four time
steps : At = 0 .01, 0 .005, 0 .002, 0 .0001 s and the material properties corresponding to those of
A286. In addition, we prescribe an initial porosity of cpo = 0 .02 and take a damage exponent
of m = 8 .5. The computed results for the equivalent stress ueq, strength K, porosity cp and
pressure p as a function of total effective strain Ee are given in Fig .8 .3. The reference solution
is taken as that obtained from the computed responses using the described coupled-iterative
procedure with a time step of At = 0 .01 s . It is noted from the figure that, with respect to
the coupled solution and for the given deformation rate, the response from the uncoupled
procedure deteriorates as the time step is increased, deterioration that is more pronounced in
the volumetric response . In the context of finite element applications, this seems to indicate
that the uncoupled procedure is suitable for computations using very small time steps, as it
is in the case of explicit finite element simulations (time steps on the order of 10 —8 s).

8 .2 LS—DYNA Simulation Runs.

The above computer program (mps) has been incorporated into the finite element code
is-dyna as a material routine . This finite element implementation is being tested in this
section by solving for the response under uniaxial tension of (i) a single element (without
and with damage) and (ii) a circumferentially smooth tensile specimen . Both the explicit
and the implicit capabilities of Is—dyna are used . The explicit runs are usually carried out
using the uncoupled integration scheme as explained above, while the implicit simulations

B
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Figure 8 .3: Comparing predictions between solution procedures that couple / uncouple the
deviatoric and volumetric responses . In general, the response predicted by the uncouple
scheme deteriorates as the time step is increased.

are performed using the coupled integration procedure and the derived algorithmic material
moduli . In the last example, an additional explicit run is also carried out using the coupled
integration scheme . In all the simulations, the constant stress solid element available in the
is-dyna code is used . Also, it is important to note here that the code allows the user to
prescribe a critical level of damage (porosity) :,o cr. as a means to model ductile failure . This
critical porosity is the value at which the material is taken to fail completely, so that elements
having co > cycr are removed (killed, eroded) from the calculations. This element-vanishing
technique is used in the last example.

In the first example we validate the is-dyna implementation without damage by com-
paring the solution of the uniaxial tension of a single element (side of lo = 1mm) with the
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Figure 8 .4: Comparing predictions of mps, matlab and Is-dyna (explicit and implicit) imple-
mentations for the uniaxial loading test of a 3-D single finite element.

solutions obtained from the raps and matlab (taken as reference solutions) . For the is-dyna
runs, we impose symmetry boundary conditions along three faces of the cube (-x, -y, -z
faces) and apply a displacement boundary condition along the +y face such as to obtain a
constant deformation rate of 50 s -1 in the time interval of 0 .01 s (u = lo(exp( egt) - 1)). In
the explicit simulation, a typical time step was on the order of 10 -7 s (using approx . 78,000
increments) while the implicit run was performed using a constant time step of 10 -4 s (using
100 increments) . For the mps, we prescribe 1 11 = 50 s -1 , 122 = 133 = - 25 s-1 (ee = 50 s -1 ),

and use a time step of 10 -4 s while for the matlab implementation, which has the 1-D reduced
equations, we just input a strain rate of 50 The material properties used in these runs
are for PH13-81MIo . The predicted response for the equivalent stress o- eg , strength t and
pressure p as a function of time is presented in Fig .8 .4 . This figure shows a good agreement
among the computed responses from the four simulations . Note that pressure could not be
computed from the mps since the applied l is deviatoric.

In the next example, we use the previous single element tensile test to compare the solu-
tions of the explicit and implicit simulations when damage is included . The single element,
now with the material propeties of AL6061-T651, is again deformed at a constant strain
rate of 50 s-1 during the time interval of 0.01 s . An initial porosity of :po = 5 x 10 -2 and a
damage exponent of m = 6 .0 are used. As before, for the explicit runs, a typical time step
of 10 -7 s is used by the code, while for the implicit runs we prescribe a constant time step
of 10 -4 s. The computed results from these runs are presented in Fig 8 .5, which shows the
time history of the variables : Qeg, k, p, ;p, cp, P, and P . One can observe from this figure
that the solutions from both simulations compare very well.

The last example examines the response of a circumferentially smooth tensile specimen
during incipient necking . The specimen has a diameter of do = 6 .35 mm (2 .5 in) and a gauge
length of 2l 0 = 31 .115 mm (1 .225 in) . Due to symmetry (in geometry and loading), only 1/8
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Figure 8 .5: Comparison of the is-dyna computed results between the implicit and explicit
simulations of the uniaxial tension of a 3-D single element with damage included.

of the specimen is considered in the analysis . Fig. 8.6 presents the finite element mesh used,
which contains 15Th constant stress (eight-noded) brick elements . Displacement boundary
conditions are applied incrementally on the top surface along the y-direction such that a
constant strain strain rate of 50 s -1 is imposed during the time interval of 0 .01 s . To induce
necking, a geometric imperfection is introduced by prescribing a tapering starting from the
middle plane along the axis of the specimen of approximately 1/2000 (radius at the top
surface is 6 .426 mm) . The material properties correspond to those of AL7075-T651 (RD)
and the damage parameters 'pa and m selected for the study are 10 -4 and 6 .0, respectively
[Dike, 2005] . For the implicit runs a constant time step of 2 x 10 -4 s is prescribed (500
increments), while in the explicit simulations the code selects the time step (typically in the

76



8.2 . LS—DYNA SIMULATION RUNS.

order of 10 —8 s).
Two set of runs are carried out, the first one with cp,,. = 0.99 and the second one using

cps,. = 0.20. These simulations were planned mainly to test the performance of the integration
schemes (coupled and uncoupled) at (unrealistic) high levels of damage as well as to track
the specimen response during the erosion process of elements once they reached the critical
level of damage.

The results from the first set of runs (cp s,,. = 0.99) are presented in Figs . 8 .7—8 .8 for both
the implicit and the explicit (coupled and uncoupled schemes) simulations. Although all the
simulations run to completion (t = 0 .01 s), the plots only show the specimen response up to
a time of t = 0 .0042 s . In particular, the global behavior of the specimen, represented here
by the load-time or load-displacement response, is given in Fig . 8.7, while the local response,
as represented by the time history behavior of aeq, p, ~, e' , go and cP at specific material
points, is displayed in Fig . 8 .8 . For the local response, the selected point is located at the
center of the element 11675 shown in Fig . 8 .6 (the most critical point) . In general, one can
observe from these figures that (i) the curves from the explicit runs using both the coupled
and uncouped integration schemes are on top of each other, and (ii) the responses from both
the explicit and the implicit runs differs only slightly (the agreement could be improved by
decreasing the time step in the implicit calculations).

Is is important to note here that Fig . 8.7 indicates that the specimen starts to neck at
approximately t = 0.0013 s (point of maximum load), which corresponds to a y-displacement
of uy = 1 .045 mm or, equivalently, to an averaged axial strain of e a = 0.065, where Ea =

ln(1 + uy/lo) . At this time, the local response at the element 11675 is characterized by the
stresses Qeq = 624 MPa and p = 225 MPa (triaxility factor of 0 .36) and a damage level of
go = 0 .00014 . From this point on, and due to the triaxial state of stress that develops in the
neck region, these local quantities start to increase until damage is high enough to induce a
softening response . With a high value for cp c , ., this softening is characterized by a smooth
decrease in the values of creQ and p to levels close to zero, levels at which the material point
has completely lost its stress-carrying capability (note that at t = 0.0042 s, Qeq = 16 MPa,
p = 0.0005 MPa, and go = 0.842) . At this point, one can assume that the specimen has
fractured . Note that the value cps,. = 0.99 is never reached in the calculations.

In practice, however, fracture occurs at smaller levels of damage, say cp c,. = 0 .15—0 .2. For
this reason, a second set of similar runs with cp s,. = 0 .2 were carried out in order to exercise
the element—vanishing feature of is-dyna driven by the EMMI material routine . From Fig . 8 .8
one can deduced that this critical level of damage will be reached just after t = 0 .00265 s,
time at which the average axial strain and triaxility factor have respectively the values of
0.13 and 0 .77. This can be clearly seen from Figs . 8 .9—8.10, which shows details on how
the element erosion takes place at the middle plane of the specimen between t = 0 .0026 s
and t = 0.00285 s, as the critical value of damage is reached in these elements . These
same figures also show how the redistribution of Ueq (Fig . 8.9) and go (Fig. 8.10) happens in
the specimen as the elements are being killed. We note here that these results are from the
explicit simulations . The implicit simulations could not reproduce this behavior since is—dyna
stopped after the first group of elements were killed . However, the predicted distribution of
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8 . VALIDATION OF CONSTITUTIVE INTEGRATION

field quantities throughout the specimen obtained from both simulations before the implicit
calculation stops were the same, as shown in Figs . 8 .11—8 .12. Figs. 8.11 displays the contour
plots of Oeq at t = 0.0026 s, i .e ., just before the erosion of elements starts, while Figs . 8 .12.
presents the time history (local response) of Ueq, rc, p, and cp at three material material
points along the axis of the specimen (see Fig . 8 .6) . From this last figure one can note that
as deformation proceeds after the onset of necking (t = 0.0013 s), the material points away
from the middle plane start an unloading process, as shown by the constant values of rc and
cp at element H710 .
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8.2 . LS-DYNA SIMULATION RUNS.

UNIA)4AL SMOOH TENSILE SPECIMEN

Figure 8 .6 : Finite element mesh selected for the analysis of the circumferentially smooth
tensile specimen . The mesh contains 1575 eight-noded brick elements (Is-dyna's constant
stress solid elements) .
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8 . VALIDATION OF CONSTITUTIVE INTEGRATION

Figure 8 .8: Local response at the center of the circumferentially smooth tensile specimen
(element H675, Fig . 8 .6) . Prescribed critical porosity :per = 0.99.
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8 .2 . LS—DYNA SIMULATION RUNS.

Figure 8 .9 : Contour plots of equivalent stress aeq during the erosion process of elements
located at the midplane of the specimen . Prescribed critical porosity (pc,. = 0 .20.
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Figure 8 .10 : Contour plots of void volume fraction cp during the erosion process of elements
located at the midplane of the specimen . Prescribed critical porosity (p c, = 0.20.
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Figure 8,11 : Contour plots of equivalent stress o-eq at time t = 0 .0026 s obtained from both
implicit and explicit simulations .
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9 . SUMMARY

The formulation of the Evolving Microstructure Model of Inelasticity (EMMI) has been
presented. This continuum internal state variable model is suitable to model the rate–,
temperature– and damage–dependent large deformation of metals . Specific features of the
model version described in this document are:

1. The elastic moduli has a linear dependence on temperature and damage,

2. The plasticity response, described by the standard isotropic-kinematic hardening vari-
ables, models the hardening and recovery mechanisms characterizing the dislocations
and cell structures formed during plastic deformation, and

3. The damage representation is porosity-based and modeled by an scalar state variable
whose evolution equation accounts only for void growth . The particular void growth
model used here is due to Cocks & Ashby [Cocks & Asbhy, 1980].

The EMMI model was developed in the context of large deformation kinematics and
thermodynamics of internal state variables . It was naturally derived in the intermediate
unloaded configuration, and then mapped to the current configuration where the resulting
equations were expressed in nondimensional form. This dimensionless model was then used
both to devise the parameter identification procedure for the plasticity parameters and to
develop the corresponding numerical integration scheme . The determination of the plasticity
parameters used gradient-based optimization techniques together with analytical sensitivity
coefficients . It was implemented in matlab and applied to determine the model parameters
for a number of materials of interest to the W80 program. The integration scheme, on the
other hand, was based on a two level iterative technique that couples the volumetric and
deviatoric response . The deviatoric part of the model (', a, it) was integrated using a
semi-implicit integration scheme, while the volumetric part (p, co) used a backward Euler
procedure. It was noted that by uncoupling these two responses, one could devise an al-
ternative solution scheme that was dubbed "uncoupled procedure" and which seems to be
adequate for explicit simulations . Also, an "approximate" material tangent modulus consis-
tent with the developed integration scheme was derived . This tangent modulus is typically
used in implicit simulations.

The integration scheme was implemented as both a material point simulator and a user
material routine for finite element codes. This implementation was validated by solving
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a number of problems comprising the deformation of material points under diverse loading
paths, the response of a 3-D single finite element under tension, and the behavior of a circum-
ferentially smooth tensile specimen during necking . For the finite element simulations, both
the coupled and uncoupled integration schemes were tested using the explicit and implicit
simulation capabilities of is-dyna. It was observed that numerical results from both types
of simulations were similar, emphasizing the fact that the uncoupled procedure is adequate
for very small time steps (explicit simulation) while the coupled procedure is applicable for
larger time steps (implicit analysis) . The element vanishing technique, provided by is-dyna
and driven by the value of a prescribed critical porosity cp s, ., was exercised during the simula-
tion of the circumferentially smooth tensile specimen . At present this element death feature
is being applied to model ductile failure in structural components of the W80 program.

A number of issues can be identified in this report that need further investigation . Among
these are:

1. Study the effect of adiabatic heating on the material response, as was observed in some
of the experimetal results presented in section 5 .5 . Although an expression for the tem-
perature increase during adiabatic deformation was obtained, and partially included
in the derivation of the equations needed for the parameter identification procedure, it
was neither used in the fitting procedure nor in the finite element simulations.

2. Perform the fitting of the EMMI material parameters with a more extensive exper-
imental database . These experimental data should include stress-strain response of
specimens tested under different loading paths (e .g. cyclic loading) and different tem-
peratures. This will allow a user to generate a complete set of values for the material
constants of the EMMI model, and hence, exercise its full potential to describe plas-
ticity and damage in metals under diverse loading conditions (only a limited number
of parameters different from zero were used in this report).

3. Develop a systematic fitting procedure for the model damage constants (cpo, m) using
finite element simulations . Experimental data from both smooth and notched tensile
specimens could be used for this fitting process.

4. Improve the description of ductile failure by using a complete representation of the
porosity-based failure process in metals (nucleation/growth/coalescence of voids) as
well as by accounting for void shape and void distribution (anisotropic damage / non-
local damage).

5. Enhance the numerical robustness of the coupled integration scheme in the context
of implicit applications . As noted in the text, the program is-dyna stops when the
element killing process began during the implicit simulation of the circumferentially
smooth tensile specimen. Besides, some problems of convergence were detected during
these simulations when using different time steps.

Finally, as mentioned before, work focused on validating the predictive capabilities of
the EMMI model using experimental data from a number of mechanical tests is in progress
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[Dike, 2005], [Ostien, 2005] . This work is also addressing some of the topics mentioned above,
such as the inclusion of adiabatic heating, the use of a void nucleation model [Horstemeyer
& Gokhale, 1999], and the fitting procedure of the damage parameters . Results from this
validation work will be reported in the near future.
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