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Executive Summary

Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our
nation’s infrastructure, especially in large internal facilities, external flows, and water distribution
systems. Because physical security can only be enforced to a limited degree, deployment of early
warning systems is being considered. However to achieve reliable and efficient functionality,
several complex questions must be answered: 1) where should sensors be placed, 2) how can
sparse sensor information be efficiently used to determine the location of the original intrusion, 3)
what are the model and data uncertainties, 4) how should these uncertainties be handled, and 5)
how can our algorithms and forward simulations be sufficiently improved to achieve real time
performance? This report presents the results of a three year algorithmic and application
development to support the identification, mitigation, and risk assessment of CBR contamination
events. The main thrust of this investigation was to develop 1) computationally efficient
algorithms for strategically placing sensors, 2) identification process of contamination events by
using sparse observations, 3) characterization of uncertainty through developing accurate
demands forecasts and through investigating uncertain simulation model parameters, 4) risk
assessment capabilities, and 5) reduced order modeling methods. The development effort was
focused on water distribution systems, large internal facilities, and outdoor areas.

Efficient inversion methods were developed in an attempt to make use of sparse sensor
information to determine the location and character of the intrusions. The general idea is to
reconstruct these initial conditions so that accurate forward predictions can then be issued. A least
squares formulation constrained by convection-diffusion is solved using large scale optimization
methods. In all three flow domains, a convection-diffusion system represents the transport of the
contaminant. The velocity field is calculated in each flow domain by considering appropriate
dynamics, such as hydraulics in the case of water networks and Navier Stokes equations in the
case of internal and external flows. The challenging aspect of this least squares problem is
primarily related to the computational expense of solving the large number of inversion and state
variables, which exist at each discretization point of the flow domain. We make use of
simultaneous analysis and design methods to solve this constrained problem as efficiently as
possible. In an attempt to achieve real time performance, special solution methods were
developed consisting of subdomain decompositions for water systems, off-line/on-line
approaches for internal facilities, and multigrid preconditioners for external flows. Although
many technical issues still need to be addressed, the implementation of our algorithms and
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methods using prototype datasets demonstrate sufficiently scalable and efficient performance to
suggest the potential of real time performance.

Assuming that only a few sensors can be installed, the question of where to appropriately place
sensors must be addressed. Integer programming and combinatorial methods are used to perform
optimal sensor placement. We focused our efforts on water distribution systems because these
systems can easily be mapped to mathematical graphs so that current integer programming
solution methods can be leveraged. Difficult issues however need to be addressed ranging from
extensions to dynamical systems, identifying appropriate formulations, and compensating for
uncertainties. A mixed-integer programming (MIP) formulation for sensor placement
optimization is developed that precisely characterizes the temporal impact of contamination
events. Our experiments demonstrate that exact and heuristic solvers can be effectively applied
with reasonable computational effort to sensor placement problems for networks with ten
thousand junctions, which is at least an order of magnitude larger than problems commonly used
in the water distribution community literature. The general goal of providing maximum levels of
protection can be formulated in a number of ways such as minimum detection time, maximum
consumer protection, minimize installation and maintenance cost. We developed mixed-integer
linear programming models over a range of design objectives. Using two real-world water
systems, we show that optimal solutions with respect to one design objective are typically highly
sub-optimal with respect to other design objectives and that robust algorithms must carefully and
simultaneously consider multiple, disparate design objectives.

Both the inversion and sensor placement algorithms assume ideal conditions consisting of known
boundary conditions, accurate historical records of consumption rates (for water networks),
correct representation of the underlying physics and perfect sensor measurements. In order for
our algorithms to eventually be considered for operational use, the management of model and
data uncertainties need to be addressed. The complete quantification of model and data
uncertainties of all three flow domains however was beyond the scope of this project,and we
therefore limited our investigation of uncertainties to water distribution systems. Several
uncertainty issues are investigated including the use of robust algorithms for sensor placement,
inaccuracies with the chemical transport simulation, the variability of demands, and the
refinement of the regularized source inversion solution. First, our algorithms make use of a
network simulator that approximates the transport of chemical transport. We demonstrate through
high fidelity simulation and laboratory validation that simulation models cannot assume perfect
mixing in certain geometric configurations and even though these network simulators have been
used successfully for general operational management, modifications will be necessary to use
these tool for mitigating contamination events. Second, we use robust optimization algorithms to
solve sensor placement problems which are formulated as mixed integer problems for which the
objective coefficients are not known with certainty. The computational complexities of solving
these problems are illustrated. Third, we investigate the use of demand prediction tools which are
based on detailed field observations, to show that the time scale at which hydraulic demands are
discretized can influence solute transport behavior in simple dead-end mains. Furthermore
simulations of the flow and solute transport in a water distribution system show that flow across
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the system as a whole is less sensitive to changes in the demand discretization than flow along
dead-end mains. Fourth, we developed mixed integer quadratic program (MIQP) solutions to
refine the multiple node solution that results from the solution of the regularized constrained least
squares formulation. A regularization term is added to the least square formulation so that an
undetermined problem can be solved uniquely. The solution however is a smoothed
approximation which for water network results in the identification of multiple neighboring nodes
as possible locations where the intrusion could have originated. The MIQP methodology can
efficiently reduce the injection possibilities and more importantly can distinguish between single
and multiple injections.

Development of efficient algorithms is critical to eventually support the decision making process
at appropriate time scales associated with the particular contamination scenario. In water
distribution systems, a subdomain method was developed to address large network datasets. By
applying the source inversion algorithm to just the infected nodes we are able to successfully
invert for the source of an intrusion, provided our subdomain contains enough sensors. Under
these assumptions, we are able to invert in real time for any size dataset using minimal
computational compute resources. For internal spaces, we developed steady state solutions and
investigated the sensitivity of the level of detail of the discretization to the solution. Special
quadratic programming solvers were applied. Also, for internal facilities, we developed an
online-offline capability which also provides a real time source inversion capability using
minimal compute resources. Although, the velocity field calculation could be considered an
off-line calculation, an efficient implementation is still critical in providing support for mitigation
procedures. We investigated algebraic multilevel domain decomposition preconditioners for
solving linear systems associated with Newton-Krylov methods. We show excellent scalable
results for 1024 processors. In the case of external flow, we solved the inversion problem with a
null space method in which the primary solve involves a reduced Hessian. We developed a
scalable geometric multigrid preconditioner that resulted in a reduction of linear solves with
increased grid resolution and sufficiently reduced the overall solution time for real time decision
making. However a significant number of processors are still required to achieve real time
performance and in order for these methods to be considered for operational use, the
computational requirements must be reduced ideally to a single processor. This operational
requirement motivated the investigation of model reduction methods. We developed an approach
for determining a projection basis that uses a goal-oriented, model-based optimization framework.

Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our
nation’s water supplies against attack and contamination. Specifically, the Public Health Security
and Bioterrorism Preparedness and Response Act of 2002 established requirements for each
community water system serving more than 3300 people to conduct an assessment of the
vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating
system vulnerability is the threat assessment, which is the process by which the credibility of a
threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there
is insufficient experience and/or data to quantify the associated probabilities. For this reason, an
alternative approach was developed predicated on Markov Latent Effects (MLE) modeling, which
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provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy
mathematics. We developed a MLE approach and demonstrated the utility of this method within
the context of water supply system threat assessment.
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Chapter 1

Introduction

Bart van Bloemen Waanders

1.1 Background

Chemical, Biological or Radiological (CBR) contamination events pose a considerable risk to national
security through immediate and long term impact on human health, the pollution of the
environment/facilities, complications associated with mitigation procedures and the long term impact on
our local and national economy. Large internal facilities, water distribution systems, and external flow
regions are especially vulnerable to intentional or accidental releases of harmful agents. Currently our
nation’s infrastructure is relatively unprotected and there are no real-time warning systems available other
than general observations of human illnesses reported by health facilities during a contamination event.
History has demonstrated the destructive nature of contaminations such as the outbreak of
cryptosporidiosis in Milwaukee, the Union Carbide pesticide manufacturing plant explosion in Bhopal, and
the sarin gas release in a Tokyo subway. In addition there are numerous accounts of the devastation caused
by biological and chemical warfare. The outbreak of cryptosporidiosis in Milwaukee was one of the largest
contamination event in the history of water distribution system in the US. An estimated 403,000 persons
became ill, of whom 4,400 were hospitalized. The number of deaths were estimated at about 100. The cost
associated with decontamination, equipment upgrades and legal suites were on the order of $100M. In
1984, The Union Carbide pesticide manufacturing plant exploded in Bhopal, India, releasing a huge cloud
of toxic gas that caused 8,000 deaths within a few days. An estimated half a million people suffered
injuries. Over the last two decades, more than 20,000 additional people have died as a result of the original
exposure, and an estimated 120,000 still suffer significant health impacts. In Tokyo, intentional releases of
sarin gas in subway station caused 5 fatalities and hospitalization of 565 people. Although this was a
relatively small scale attack, the ramifications were significant.

Several researchers have developed flow simulation tools to predict the transport of contaminations events.
The primary motivation for providing timely predictions of the contamination spread is to identify the



safest evacuation routes, reroute vehicles, propose decontamination strategies, and implement flow control
(for water distribution and internal flow systems). The National Atmospheric Release Advisory Center’s
(NARAC) simulation tools have provided support for several large scale contamination events, such as
nuclear releases, battlefield situations, accidental toxic releases, and volcanic eruptions, by using
particle-in-cell models [158]. In addition, high fidelity simulation capabilities have been developed to track
contaminants in urban canyons [128]. Although very little technical detail is available, it appears that a
sophisticated range of primarily forward modeling capabilities have been developed to address different
types of contamination events at a range of spatial scales. NARAC’s capabilities are focused on the
prediction mode, although reconstruction capabilities are being explored [217]. The air quality group at
Los Alamos National Laboratories has developed a multilevel transport capability to track contaminants in
urban canyons [243, 165, 58, 124]. This capability provides a multilevel approach to the transport
predictions, in which high fidelity CFD models are used to track contaminants around buildings and
appropriate dynamics compensated with weather conditions are used certain vertical distances away from
the urban canyons. Aliabadi et al. has also developed sophisticated CFD modeling capabilities to track
contaminants in Urban canyons [20, 21]. Their capabilities are limited to incompressible Navier Stokes
with LES-based turbulence models. Fast discretization methods have been developed to handle large
datasets. Significant work has been conducted in the area of predicting pollutant transport in internal
facilities [150, 199, 213, 98]. These methods are primarily based on nodal, multizone network models that
assume simplified dynamics for performance issues. For the most part these models have been used in
prediction mode assuming initial conditions and source terms. Reconstruction of initial conditions and
source terms has been attempted through Bayesian framework techniques [216]. However, these methods
do not scale to large systems and only small datasets have been used in numerical experiments with nodal
models. Very little work had been done in the area of characterizing contamination events for water
distribution systems. The primary goals of managing water distribution systems consist of maintaining
water quality, designing expansions to growing demands, ensuring adequate pressure for fire fighting
services, and providing uninterrupted service to consumers. Sophisticated simulation capabilities have
been developed to address the general operations of water distribution[179]. Optimization methods have
been applied to address water quality maintenance, design problems [184, 167, 53, 227].

All these forward prediction capabilities assume values for initial conditions, boundary conditions, and
source terms. In the event of a contamination, the lack of exact location, magnitude, and characteristics of
the contaminant introduces significant uncertainty in the forecasts. Without this important information,
response strategies are forced to issue predictions with considerable uncertainty until the simulations can
be validated by modifying the initial conditions and manually matching predictions with field observations.
It is difficult to achieve real time performance with such an iterative procedure. In addition, most forward
simulators were developed either to manage general facility operations (in the case of water distribution),
or provide very efficient but approximate predictions (in the case of internal facilities). For security
applications, the goal of the forward simulation is to predict the movement of contaminants at sufficient
levels of fidelity so that maximum number of people and key components of the infrastructure can be
protected (such as hospitals in water distribution networks and exits in internal facilities), in addition to
effectively installing sensors, and providing accurate information to support decontamination procedures.

The implementation of early warning systems has been the subject of significant research and development
in an attempt to improve protection measures. The general concept is to instrument internal facilities and
distribution systems with sensors that can detect harmful agents in real time and sound an alarm. In the
case of external contamination events, a variety of measurement methods are being considered, such as



deploying sensor systems in unmanned vehicles, weather balloons, satellite imagery. A number of difficult
issues arise however as a result of considering the use of an early warning system, such as: 1) where should
sensors be placed, 2) how can sparse sensor information be efficiently used to determine the location of the
original intrusion, 3) what are the model and data uncertainties, 4) how should these uncertainties be
handled, and 5) how can our algorithms and forward simulations be sufficiently improved to achieve real
time performance? The goal of this project was to develop algorithms to address these issues. An important
aspect of these developments is to be able to assess the value of early warning systems and supporting
algorithms to the overall security of our infrastructure. To this end we have committed effort to the
development of a risk assessment methodology. Fundamental algorithms based on probability and risk
were developed and applied to a prototype water network. It should be noted that these tools can easily be
applied to internal and external flow domains.

1.2 Project Goals

The goal of this project was to develop algorithms, methods, and numerical simulation capabilities in
support of the identification and mitigation of contamination events. We focused on key components
consisting of 1) source inversion and reconstruction of initial conditions for internal, external, and water
distribution networks using sparse sensor information, 2) integer programming and combinatorial methods
for sensor placement 3) development of online-offline, scalable preconditioners and reduced order methods
in an attempt to achieve real time capabilities, 4) improving incompressible Navier Stokes fluid flow
simulation for large internal facilities, 5) improvement of forward simulation to address model
uncertainties, and 6) development of risk assessment tools. The following sections describe in further detail
the goals for each of these topics. Although this project concentrated primarily on applications in support
of contamination events, these methods and algorithms are applicable to many other application domains
and problem types.

1.2.1 Source Inversion

Current numerical tools to support the characterization of contamination events are based on predicting the
transport characteristics of a contaminant in certain flow domains. These forecasts however often exclude
accurate information about the initial conditions and source terms. The location and character of the initial
contamination event are typically not known and consequently the accuracy of the forward predictions is
compromised. The determination of initial conditions and source terms is the goal of the inverse problem.
Given some sparse concentration information from sensors, can we invert for the location and character of
the contamination event? The goal is to use a least square formulation constrained by the transport
dynamics to minimize the difference between observations and predictions. Because inversion parameters
are imposed at every discretized point in the domain, the challenge and the goal is to develop algorithms
and methods that can solve this problem robustly and efficiently. To address the large number of inversions
in combination with the complex dynamics in the constraints, we appeal to intrusive optimization methods
[233, 18]. The general strategy is to solve for state and design (inversion) parameters simultaneously and
solve the inverse problem merely at the cost of a few forward solutions.



A range of implementation strategies could be considered and is somewhat dependent on the problem
formulation in addition to the underlying dynamics. Several implementations and methods are
demonstrated for different flow domains. For internal facilities, we concentrate on decoupling the
calculation into an offline and online computations and making use of direct sensitivities. For the external
flow inversion, we use adjoint based sensitivities which requires all online calculations. This in turn
requires the consideration of special preconditioning techniques to achieve efficient performance. In the
case of water distribution systems, we make use of a Newton based algorithm, even though the formulation
requires a simpler quadratic program solution method. Our justification for pursuing a more general
Newton solver is based on future extensions to handle a nonlinear problem, such as velocity inversion or
the control of a contamination event. We translate chemical transport into a set of algebraic equations,
making this calculation scalable to large datasets.

1.2.2 Sensor Placement

Assuming that early warning system eventually will be able to detect a range of contaminants and
assuming that only small numbers of sensor can be installed, the critical question becomes: where should
these sensors be installed. If a large number of sensors are available and logistically there are no
installation limitations, the location of sensors are less critical to our ability to efficiently interpret the data.
However the flow domains that are of interest are spatially distributed over a large geographic are,
especially in the cases of water distribution and external flow areas. In the case of internal facilities, the
installation is less problematic but still the instrumentation of the entire space is not practical. Therefore
the goal is to optimally place sensors in an attempt to provide maximum levels of protection by using a
limited number of sensors.

The optimal sensor placement problem is inherently a discrete problem and therefore be posed as a mixed
integer program, which lends itself to graph based theory and combinatorial experimentation methods. For
the sensor placement problem we have therefore focused our efforts on water distribution networks, since
these datasets can be mapped conveniently to graphs. Although an obvious criteria to use in sensor
placement is our ability to efficiently perform source inversion, the formulation for such a problem is not
obvious. Instead we have focused on alternative, but related criteria such as minimum detection time and
maximum population protection. We focus on three specific areas: 1) extending static MIP formulations to
dynamics applications, 2) selection of different criteria for the sensor placement formulations, and 3)
handling of modeling and data uncertainties in a robust optimization methodology. Significant amount of
work has been done in this areas using static formulations. Unfortunately, static formulations fail to model
the time-varying flow characteristic and only approximate temporal variations. The focus of this work is on
dynamic methods so that the dynamics of chemical transport can be adequately represented. Our
formulation is identical to the well-known p-median facility location problem [155]. MIP solver techniques
for the p-median problem can therefore be leveraged. One of the fundamental issues associated with sensor
placement is selecting the appropriate criteria fort the minimization formulation. The goal is to evaluate a
range of criteria, ranging from population expose to extent of the contamination. Our goal is evaluate
different objectives and test different sensor budgets on real-world datasets. Model and data Uncertainties
need to be addressed in our analysis. We leverage robust optimization methods which seek a solution that
minimizes some measure of worst performance with respect to uncertainty in the data. We make use of
mixed integer linear program models (MILP).



Both internal and external flow scenarios are simulated by three dimensional continuous domains and
cannot be easily mapped to a particular flow graph. Sensor placement is therefore still an open question for
these types of flow domains. These criteria and others that have been tested are all related to the underlying
velocity fields, which ultimately dictate contaminants transport. The source inversion algorithm is
constrained by the transport and therefore there is strong connection to the sensor placement criteria.

1.2.3 Forward Modeling

The underlying fluid flow dynamics can be described by the convection-diffusion (CD) equation:

dc(x,t)
ot

—kAc(x,t) +v(x,1) - Vy(x,t) =0 (1.2.1)

where y represents concentration, k is the diffusion coefficient, and v is the velocity field. The calculation
of the velocity field represents the main difference for the flow characteristics of the different transport
mechanisms for internal, external and water distribution flows. For water distribution systems, simple
hydraulic relationships between pressure, velocity and friction coefficients are used. For internal facilities,
velocity field are calculated using incompressible Navier Stokes. Ideally weather models need to provide
the velocity fields for external flow domains. For this project we used incompressible Navier Stokes as a
first order approximation.

The goal of the forward modeling project was to develop efficient and accurate solutions of relatively
complex fluid flow. We choose to focus our efforts on high fidelity, turbulent models for internal facilities,
recognizing that these techniques could also be applied external flows and even for small geometric
components in water distribution system. In addition to creating detailed models and representing the fluid
flow as accurately as possible, it was equally important to investigate efficient solution techniques. A
special multi-level preconditioning scheme was developed and testing on large datasets involving turbulent
flow.

For water distribution systems, we concentrated on the prediction of demand information, which
essentially are source and sinks for simulation models. In these network models a demand value is assigned
to practically each node which represents consumption rates for that part of the dataset. This can represent
a household, but in the case of most real datasets, it most likely represents a collection of taps within a
neighborhoods. Naturally, these demands can vary considerably and the flow characteristics are highly
dependent on the accuracy of this data. Although utility companies attempts to collect demand
information, this is a considerable data management issues and as a result, most utilities only have course
demand information covering limited amount of time periods. Our goal was to develop prediction tools for
demand information in the absence of reliable demand measurements.



1.2.4 Uncertainties

Developing numerical algorithms to support an early warning system is a significant undertaking requiring
the development of complete software infrastructure capable of continuously monitoring data streams,
discriminating between false and positive readings, and performing in real time a range of functionality. In
addition, this software needs to be sufficiently robust so that it is insensitive to model and data
uncertainties. Although a comprehensive study of all possible uncertainties was beyond the scope of this
project, the goal was to start investigating significant sources of uncertainties, initiate the development of
robust algorithms to reduce these uncertainties and identify possible strategies for future work. This
investigation was conducted in the context of water distribution systems consisting of 1) evaluating the
forward chemical transport model in EPANET, 2) developing demand generation forecasting methods, 3)
evaluation of source inversion with variable demand information, 4) refinement of the regularized solution
using a MIQP method, 5) robust sensor placement strategies with data variations.

1.2.5 Risk Assessment

Haimes and others [108] reviewed needs and opportunities to reduce the vulnerability of public water
systems to willful attack. They developed a hierarchical holographic model [107] to better understand the
complexity and interconnectedness that characterizes the security of water distribution systems. This
model was also used to explore different approaches to hardening (as described in terms of security,
robustness, resilience, and redundancy) water distribution systems against attack. Subsequent to this work,
Ezell and others introduced an infrastructure risk analysis model [89] and applied it within the context of a
municipal water distribution system [90]. The model provides an analytical methodology for quantifying
risk that involves decomposition of utility operations along the dimensions of function, component,
structure, state and vulnerability. Potential threats are identified through scenario modeling, while
conditional and expected losses for each scenario are calculated via Asbeck and Haimes [25] partitioned
multi-objective risk method.

The events of September 11, 2001 had the effect of broadening and accelerating efforts to safeguard the
nation’s water utilities against terrorism and other threats. In particular, the Public Health Security and
Bioterrorism Preparedness and Response Act of 2002 (PL 107-188) was enacted that added new drinking
water security and safety requirements. The law required almost 8000 community water systems serving
more than 3300 people to complete vulnerability assessments and prepare or update their emergency
response plans. The required vulnerability assessments were intended to help water utilities evaluate the
risk posed by potential threats and identify corrective actions that could reduce or mitigate the
consequences of these adversarial actions [197]. Vulnerability assessments were to serve as a guide to the
water utility by providing a prioritized plan for security upgrades, modification of operational procedures,
and/or policy changes to mitigate risks. This was intended to be a dynamic process in which the utilities
review their vulnerability assessments periodically to account for changing threats or changes to the water
system.

In an attempt to quantify the impact of certain technologies on the protection of our infrastructure, some
effort was devoted to the development of a risk assessment methodology. Our vision was to assess the
overall risk factors associated with certain flow domains and demonstrate the potential reduction of risk by
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installing early warning systems coupled to numerical algorithms. Assessing the risk of a contamination
event is an important analysis to help determine the most vulnerable component of a system so that better
protected can be applied, or possibly components can be redesigned. We investigate the use of Markov
Latent Effect methods to calculate the cumulative possibility measure of attack likelihoods. The intent was
to develop a framework to help assess the baseline risk and calculate the reduction in risk as a result of
sensor installation and the use of numerical algorithms.

1.2.6 Real Time Performance

The need for real time performance is critical for the use of our algorithms in a practical and operational
environment. All of our algorithms, such as source inversion and forward predictions must be capable of
executing on relatively low budget computer resources so that this technology can be considered for
general deployment to utilities and different response organizations. In addition, these tools must be
capable of performing at a time scale equivalent to the decision making process. For internal facilities, this
probably means order minutes, in the case of external flows and water distribution this can mean order tens
of minutes or order hundreds of minutes depending on the size of the flow domain and flow conditions.

Our thrust has been to investigate a range of methods to exploit as many different solution strategies.
Forward modeling and source inversion are the two primary targets for real time functionality, although
manual sampling to help validate predictions can also be considered a real time functionality. The primary
challenge for source inversion is the large number of state and inversion parameters that one needs to deal
with. Typically, there are as many inversion parameters as there discretization points. In three dimensions
the overall number of unknowns can easily reach well beyond order tens of millions of parameters
(spatial-temporal-inversion parameters). To solve these types of systems efficients, requires algorithms that
scale with large numbers of processors but also are designed to fully leverage the internal linear algebra of
the forward model. In this report we investigate several strategies: 1) calculating sensor dependent
components during the online phase and pre-processing everything else in an “off-line” mode, 2)
developing scalable multigrid and multilevel preconditioners to handle large linear solves, and 3)
developing reduced order modeling strategies that can handle optimization.

1.3 Future Work

Delivering robust countermeasure tools will ultimately require coupling our algorithms to sensors and
demonstrating real time performance in an automated environment. The functionality requirement of such
a production system is considerable and, although we believe that all the fundamental technologies are
available, a complete and robust implementation still requires effort in the areas of real time performance,
uncertainty quantification, control, decontamination, and general software infrastructure development.

Our transport models are currently based on unstructured and structured finite element incompressible flow
and transport capability. Our effort has focused mostly on the use of these codes to demonstrate the
importance of accuracy through detailed discretized models and complete physics. We were able to
leverage existing technology and quickly demonstrate that detailed discretizations and turbulence models
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play a critical role in predicting the transport of contaminants. The resulting size of these problems
required special solution technique and by implementing multi-level preconditioning schemes we
demonstrated excellent speedup improvements. These performance observations are directly tied to all the
underlying technologies of existing software and to accomplish the robust and real time functionality on
small compute resources, we may have to investigate different technologies to manage these partial
differential equations (i.e.finite volume with explicit time-stepping). In addition, even if we implement the
most efficient algorithms to solve these systems, it is anticipated that the computer resources required to
solves sufficient levels of detail are in excess of what may be available in the general community. To
implement efficient and accurate flow and transport models along with source inversion capabilities for the
response to, and possible control of, contaminant release events, the high fidelity continuum simulations
described above (gas phase transport) must be reduced with a systematic methodology to representations
that are computable in real time with reasonable computing resources. Mathematical reduced order
modeling (ROM) techniques to provide these capabilities are potential technologies that can be leveraged.
These methods differ from current operational modeling techniques, such as lower spatial resolution
models (zonal models) or hierarchical physics based models (e.g. Gaussian plume dynamics) , in that they
are defined by abstract mathematical procedures from pre-computed off-line high fidelity simulation
models. These techniques include for example proper orthogonal decomposition (POD) (also termed a
Karhunen-Loeve expansion (KL)) and Centrodial Voronoi tessellation (or k-mean clustering) techniques.

Reliable and efficient numerical tools must be deployed to 1) identify the location of an attack, given
sensor observations, 2) design nearly optimal sensor placement strategies, 3) control the HVAC systems in
the event of an internal attack, and 4) support the clean up phase by providing simulation based
decontamination designs. We have developed prototype capabilities that determine the location of a
malicious attack event in internal facilities and external urban canyons. Our methods consist of special
optimization methods applied to implicit convection-diffusion models that are explicitly coupled to Navier
Stokes (NS) and hydraulic models for velocity field calculations. Considerable amount of prototyping work
remains, including numerical experimentation to test quality of the solution and execution performance as a
function of dataset size and problem complexity. Additionally, for the external source inversion problem
appropriate flow physics for urban canyon simulations need to be accounted for.

Uncertainty quantification methods need to be investigated to take into account errors and variations
associated with model parameters and measurements. One possible approach is to quantify uncertainties
and perform optimization under uncertainty in attempt to provide a solution with some statistical
characterization. Several formulations can be considered ranging from sampling to surrogate based
methods. The selection of the appropriate method will depend on the target optimization goal and also on
the type of inherent uncertainties. Another approach is to consider robust optimization where the goal is to
minimize a cost function subject the maximum disturbances. This min-max problem can be reformulated
as a regular minimization problem with inequalities, which in turn could be solved by an interior point
method.

Optimization under uncertainty and robust optimization are growing areas of research and our strategy is to
investigate several solution techniques. Several promising areas that appear to be suitable to our intrusive
optimization methods and that may prove to be most efficient for large design spaces are multiperiod
optimization, stochastic finite elements, and robust optimization. Our prototyping activities assume ideal
sensor performance but clearly performance and characteristics of field measurements need to be
incorporated into our computational models. Currently machine precision concentrations are reported to



our inversion algorithms whereas field sensors depend on a threshold value and are affected by
measurement uncertainties. These operating conditions and uncertainties need to be identified and
quantified so that they can be either characterized or accounted for in the final solution. Similar to sensor
technologies, the threat needs to be accurately characterized in terms of flow properties, magnitudes, and
uncertainties. Numerical prototyping has assumed ideal gas properties, but certain agents may require
completely different representation in the physics models. CBR threats need to be characterized and
accounted for in our operational models.

It should be noted that the development of these algorithms have far reaching benefits to other applications
and problems. Large scale optimization problems arise in shape optimization, parameter estimation,
complicated design issues, image processing, control of large plant facilities, environmental pollutant
tracking, oil reservoir management, fire spread control, just to name a few. A significant number of these
applications also require real time performance and have to deal with all the above mentioned issues. As a
result of the interest in this area, several funding sources will provide the means to continue these activities.
The reduced order modeling activities has been funded by our CSRF office. A decontamination proposal
has been funded by the LDRD office. Uncertainty quantification for large design problems has funded
some of our external collaborators (with some travel money to Sandia). A relatively large project is
currently being funded by the EPA to transition some of these tools in an operational setting for water
distribution systems.

1.4 Outline of the Report

This report is organized into two main algorithmic development parts for 1) water distribution systems and
2) internal/external flow domains. The first half of the report is devoted to algorithmic development for
water distribution systems, starting with three chapters on source inversion. This is followed by a series of
chapters on sensor placement problems using integer programming and combinatorial methods. The next
three chapters discuss the development of demand data prediction and the effect of variable demands on
source inversion. Risk assessment is the subject of the subsequent two chapter and the first half of the
report is concluded with a discussion of the accuracy of chemical transport in the standard network
simulator. The second half of the report is dedicated to internal and external flows, starting with a chapter
on multilevel domain decomposition preconditioners for incompressible flow. The next two chapter
discusses source inversion for the steady state and transient cases. The transient source inversion chapter
discusses off-line and on-line methodologies in an attempt to achieve real time performance for large
datasets. Real time reconstruction of initial condition for external flows is discussed in the next chapter and
presents scalable results for a multi-grid preconditioning scheme. Finally, the report concludes with a
chapter on reduced order modeling that is sensitive to a goal oriented performance objective.



Chapter 2

Contamination Source Determination for
Water Networks

Carl D. Laird (Carnegie Mellon University), Lorenz T. Biegler (Carnegie Mellon University), Bart G. van
Bloemen Waanders, Roscoe A. Bartlett

2.1 Background

The threat of accidental drinking water contamination is not new. More recently, however, concern over
intentional contamination of municipal water networks has required us to consider novel protection
measures. Drinking water networks are especially vulnerable to biological and chemical attack due to the
large land area encompassed by the network and the number of access points. Any water outlet, such as a
fire hydrant or even a household water faucet, can be an access point for backflow contamination into the
network. As an alternative to physical security alone, sensors could be installed in the network to detect
contaminant and initiate a means of protection from within the network itself. It is assumed that these
sensors would be costly to purchase, install, and maintain, making it unreasonable to place sensors at every
network node. Instead, it is desirable to consider as few sensors as possible. Should these sensors detect
contaminant, it is important to provide an accurate measure of the source of the contamination. In this
work, a nonlinear program is formulated to estimate the time and location of contamination sources, using
time varying concentration data from an installed sensor grid.

Inverse problems like this one, are fundamentally different in nature from standard simulation problems.
Traditional water quality simulations [147, 182, 181, 246, 210] assume injections of secondary species are
known. They solve the network problem forward in time to find the propagation of these species through
the network. This simulation of the output state of a model based on known inputs is referred to as the
forward problem. By contrast, inverse techniques attempt to find the unknown inputs that give rise to a
partially known output state. In the contamination source determination problem, injections are unknown.
Instead, they are estimated using concentration measurements from the network. These inverse problems
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are inherently ill-conditioned and pose unique difficulties not present in the forward problem
[17, 235, 139, 177].

Nonlinear programming provides a framework for this inverse problem, which is formulated as a least
squares minimization subject to the differential and algebraic constraints of the network water quality
model. Unknown time dependent injection terms are introduced at every network node, and the solution of
the nonlinear program provides an estimate of the time and location of contamination sources. The network
water quality model contains partial differential pipe equations that are a function of both time and
displacement. A naive discretization of this system in time and space produces a large scale, nonlinear
math programming problem that is unreasonably large for current optimization tools. To overcome this
difficulty, an origin tracking algorithm based on the Lagrangian technique of [147] is developed to
reformulate the partial differential pipe expressions into a set of algebraic time delay constraints, removing
the need to spatially discretize along the length of the pipes.

The effectiveness of this formulation is demonstrated on a small numerical test problem and a real
municipal water network model.

2.1.1 Problem Formulation

Water distribution systems are often described (see, e.g., [180]) by a network of links and nodes, where
links represent pipes, pumps, or valves, and nodes represent sources, tanks, or junctions. Usually, model
size is reduced by collapsing regions of the network into single network nodes. Hydraulic calculations and
water quality calculations are decoupled and, following dynamic hydraulic calculations, the resulting flow
profiles are specified as known inputs to the water quality model. The water quality solution can then be
determined by a variety of existing techniques [147, 182, 181, 246, 210]. Traditional water quality
simulation methods can be classified as Eulerian or Lagrangian [181]. Eulerian methods discretize the
network model in both time and space, tracking the concentration at fixed points or volumes within the
pipe. Lagrangian methods discretize in time alone and track the concentrations of discrete volume elements
as they move through the network. This work assumes that the flow profiles are known (or estimated) from
flow measurements, hydraulic simulations, historical data, or some combination.

The water quality model is developed using P, J and S to refer to the complete sets of all pipes, junctions,
and storage tanks respectively, ¢;(x,),i € P to represent the concentration in the pipes, and é(z),k € N to
represent the concentration at the nodes, where Al = 7 U S is the complete set of all nodes, including
junctions and storage tanks. Here, ¢ € [0..1¢] is time, and x > 0 is the displacement along a pipe. The
notation for designating pipe boundaries is based on flow direction, as shown in Figure 2.1, where x=1I;(t)
refers to the boundary where fluid is entering pipe i and x=0;(t) refers to the boundary where fluid is
leaving pipe i. The index k;(t),i € P refers to the node connected at the inlet boundary (in the case of Figure
2.1, this is node A). Note that these designations are time dependent and change with the flow direction.

The following assumptions and simplifications are made. Pumps and valves are modeled as zero length
pipes, reservoirs are modeled as junctions with known external sources. Plug flow is assumed for all pipes,
and complete mixing occurs in all network nodes. Contamination is assumed to occur only at (modeled)
network nodes, where an unknown, time dependent injection term is added to the model. All known
sources are modeled as contaminant free. Contaminated sources will manifest in the new injection term
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Figure 2.1. Link Boundary Designation. [;(¢) indicates the inlet
of the link, based on the current flow direction, while O;(¢) indi-
cates the outlet of the link. The index k;(r) always refers to the
node connected at the inlet.

added to these nodes. It is further assumed that flow rates of contaminations are negligible and do not affect
existing network flow rates. The model is written with contaminant free initial conditions, although it could
be formulated with initial concentrations as unknowns. The model is also written without decay reactions
for the contaminant, although they can easily be included in the formulation. All but simple first order
reactions will make the discretized constraint equations nonlinear. However, in this work, a nonlinear
optimization package is used to solve the final problem and the inclusion of nonlinear reaction terms does
not invalidate the approach.

Using the notation described in Table 2.1, the continuous problem is defined as,
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my(t) >0, (2.1.8) Vke .

Here the objective function (2.1.1) seeks to minimize the difference between measured sensor data and
values calculated from the network model. Equations (2.1.2-2.1.4) model the network pipes, equation
(2.1.5) models the junctions, equations (2.1.6) and (2.1.7) model the tanks, and (2.1.8) bounds the injection
terms to be positive. Equation 2.1.6 is derived by first separating the overall mass accumulation term,
My (1) 2500 g (1) 20,

Since the hydraulic information is a specified input, the only unknowns are the pipe and node
concentrations, ¢;(x,?), and ¢ () respectively, and the mass injections, m(¢). The traditional forward
problem is that of setting the mass injections, my(¢), and solving (using (2.1.2-2.1.7)) for the network
concentrations. In the inverse problem (2.1.1-2.1.8), the optimization solution gives the complete time
profiles for the observed concentrations. The values of the injection terms, m(¢), are the profiles of
interest, where significantly positive values at a particular node indicate a potential contaminant source
location. Problem (2.1.1-2.1.8) presents an infinite dimensional optimization problem subject to algebraic,
ordinary differential, and partial differential constraints.

2.1.2 Solution Techniques

Solution approaches for dynamic optimization problems can be separated into two general classes, direct
and indirect [39]. Indirect methods use a variational approach to write the first order optimality conditions
as a boundary value problem. Direct methods, on the other hand, apply optimization tools directly to a
discretized form of the differential model. Categories of direct methods differ in their treatment of model
constraints and algorithms exist to solve the model constraints sequentially, simultaneously, or by some
blend of the two.

Direct Sequential methods discretize the independent variables (control variables or inversion parameters)
only. Given an initial guess for the profiles of these variables, standard solution techniques for the forward
problem are used to evaluate the model at each iteration of the optimization and calculate values for the
objective function. Derivative information is required with respect to the independent variables at each of
the discretized points and can be calculated by various techniques, including sensitivity equations, adjoint
equations, or finite differences. The optimization problem itself is in the space of the independent variables
only and is small by comparison. However, calculation of derivative information can be computationally
expensive.

Direct Simultaneous methods fully discretize all the unknown variables in the problem and solve the
resulting system as a large scale optimization problem with algebraic constraints. Unlike the sequential
technique, the forward problem is converged only once, along with the optimality conditions. Accurate
analytical derivatives are often straightforward and efficient to calculate, and significant computational
gains over the standard sequential approach are possible using this more intrusive technique. A review of
direct and indirect techniques as applied to optimization of differentially constrained problems can be
found in [68].
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In previous work by [230], a direct sequential technique was used for problem (2.1.1-2.1.8), solving the
small scale optimization problem with a standard successive quadratic programming tool. The model
constraints representing the forward problem, (2.1.2-2.1.7), were solved at each iteration using the existing
water network simulation package, EPANET [179] and, although the Lagrangian formulation used by
EPANET provided efficient solution of the forward problem, it was not clear how to efficiently calculate
derivatives so finite differences were used. The unreasonable computational cost of calculating finite
differences across the model prevented complete discretization of the time dependent injection terms,
my(t). Instead, the time discretized profiles were reduced to single scalar parameters, allowing solutions for
constant injection or initial condition contaminations only. Nevertheless, this approach demonstrated the
potential for optimization techniques on this contamination source determination problem. In this current
work, a direct simultaneous approach is used to overcome the difficulties encountered with the sequential
method and solve the fully time dependent problem.

Straightforward application of the direct simultaneous method to problem (2.1.1-2.1.8) is not reasonable
because of the size of the resulting nonlinear program. The pipe concentrations, as written, require a
discretization in both time and space. (This is essentially the same as using an Eulerian technique to
formulate the optimization constraints. ) A simple discretization in both variables for all pipe
concentrations will produce a nonlinear program that is too large for current optimization tools. The
Lagrangian technique provides efficient simulation, but it is not obvious how to efficiently calculate
derivative information, or even how to formulate this model in a simultaneous setting.

Fortunately, equations (2.1.5-2.1.7) only require pipe concentrations at the boundaries, and the objective
(2.1.1) is dependent on node concentrations only. Spatial dependence is only introduced through the pipe
expressions and a reformulation is sought that removes the need to discretize along the length of the pipes.
In particular, a model reformulation should have the following properties:

e The water quality model is embedded within an optimization problem with additional constraints.
As such, any reformulation should produce a straightforward mathematical representation.

e The resulting discretized model must be a reasonable size for current large scale nonlinear
programming tools. This likely requires a reformulation of the pipe constraints that removes the
need to discretize in space.

e Applications may require expressions for many nodes at many points in time. In particular, problem
(2.1.1-2.1.8) requires expressions at all sensor nodes and all sample times. Any model preprocessing
should be efficient for a large number of both source and output nodes.

The particle backtracking algorithm, proposed by [246], and extended by [210], characterizes the time
delays associated with particular paths through the network. The algorithm tracks a particle, in reverse
time, from an output node, back through the network, to source nodes. Calculating impact coefficients, the
algorithm produces a set of algebraic equations describing the concentration of selected output nodes as a
function of network sources and tank concentrations. Although this technique satisfies the first two criteria
of our model reformulation, it does not scale well to a large number of output and source nodes. Instead an
origin tracking algorithm is proposed that considers the time delays of each pipe individually and scales
efficiently to large networks when considering all nodes in the network model.
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Figure 2.2. Origin Tracking Algorithm. This figure illustrates
the flow of a single volume element through a pipe. Tracking these
element allows us to determine relationships for the boundary con-
centrations at each point in time.

2.2 Origin Tracking Algorithm

The goal of the origin tracking algorithm is to reformulate the partial differential pipe equations,
(2.1.2-2.1.4), into a set of algebraic constraints that describe the time delays between pipe boundary
concentrations and connected nodes. Based on the water quality method presented by [147], the origin
tracking algorithm exploits the efficiency of the Lagrangian technique. While traditional Lagrangian
methods track the actual concentration value of fluid elements as they move through the network, the origin
tracking algorithm instead tracks the origin of each fluid element in the pipe. Any element of fluid in the
pipe originated from one of three possible sources; either it entered from one of the two connected nodes,
or it was present in the pipe initially. The algorithm tracks the origin of each fluid element as it enters the
pipe. As flow conditions push the element past a pipe boundary, knowledge of the origin of the element is
sufficient to write an expression for the concentration at that boundary.

To illustrate this idea, Figure 3.2 shows pipe i with flow conditions from left to right. Let © be the set of
discretized time steps. For each timestep, [ € ©, expressions for the concentration at the pipe boundaries
are needed. At timestep /=1, a fluid element is created at the left boundary and its originating node is
recorded as “A” and its originating timestep as “1”. The concentration at this end of the pipe is equal to the
immediate concentration from node A, that is ¢;(x=1I;(t1),t;) = ¢(#1). The concentration at the right
boundary of the pipe is equal to the initial loading in the pipe, ¢;(x=0;(t;),#;) = 0. As time progresses, the
element advances through the pipe. Assuming the element is pushed from the pipe at some timestep, say
[=5, the pipe concentration at the left boundary is still equal to the current value from node A,
¢i(x=1I(ts),ts) = ¢a(ts). The concentration at the right boundary, however, is now the same as the
concentration from node A at timestep 1, ¢;(x=0;(ts),t5) = éa(t1).
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The linear relationships in Figure 3.2 describe the concentration of the pipe boundaries as a function of the
concentrations of connected nodes. Choosing any appropriate time discretization, [ € ©, and letting T; be
the originating timestep of the element bracketing the outlet of pipe i at timestep [, these expressions can be
generalized as,

C_i(x:Ii(tl),ll) = Eil(tl) = ék‘.(,])(ll) Vie?P, €0, (2.2.9)

Cr. () (T; if 1 t at outlet
0 (1)) = {C"I(W( @) if an element at outle VieP, o, (2.2.10)

0 if no element at outlet

Equation (2.2.9) links the concentration at the pipe inlet boundary to the connected node and is uniquely
determined by flow direction and network structure alone. Equation (2.2.10) describes the time delays for
the pipe outlet boundary concentrations. This linear system, (2.2.9-2.2.10), then replaces equations
(2.1.2-2.1.4) in the optimization problem, removing the spatial dependence.

The origin tracking algorithm formalizes the basic idea presented above, defining expressions for all
network pipes under varying flow conditions. In developing this algorithm, the Lagrangian method of Liou
and Kroon is simplified in two ways. First, it is assumed that the set of discrete points in time, ©, is known
and fixed. This allows us the flexibility to work with any discretization scheme selected for the differential
tank equations. Second, the analysis is performed on a pipe by pipe basis, not on the network as a whole.
The processing and memory requirements are then linear with the number of pipes and efficient for large
networks. Although these simplifications introduce estimation errors in the time delays associated with
paths through the network, they provide efficient scaling and favorable sparsity in the model.

A description of the origin tracking algorithm is shown below, where i is the current pipe, and [ is the
current timestep. For each volume element, the algorithm stores the originating node, the originating
timestep, and the current position of each of the element boundaries within the pipe. At each iteration of
the inner loop, the algorithm identifies the expressions (2.2.9) and (2.2.10) for pipe i and timestep /.

Algorithm 1. Origin Tracking Algorithm

Step 0. Initialize Overall Algorithm
- let i = 0, the first pipe in the network
Step 1. Initialize Pipe Iterations

- clear the list of tracked volume elements
- letl=0

- write the expression: ¢;(x=1;(t;),t=t;) = ¢;(x=0;(t;),t=t;) =0
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Step 2. Advance Elements
- Ax=ui(t) - (1 —1-1)

- advance all currently tracked elements by Ax
Step 3. Add New Elements

- create a new element at the top or bottom of the list depending on flow direction

- record the originating node as k;(#;), the current “inlet” node
- record the originating timestep as /

Step 4. Write Time Delay Expressions

- if stagnant flow,

- write the expression: ¢(x=1;(t;),t=t;) = (expression from last timestep)

- write the expression: ¢(x=0;(1;),t=t;) = (expression from last timestep)
- otherwise,

- write the expression: ¢(x=1I;(t),t=t;) = &y, (t1)

- if there is no element bracketing a pipe boundary

- write the expression: ¢(x=0;(1;),t=t;) =0
- otherwise,

- read the data from the element bracketing the pipe boundary, store the originating
node as “n” and the originating timestep as T

- write the expression: ¢(x=0;(t;),t=t;) = ¢é,(tr)
Step 5. Crop Elements

- remove any elements that have advanced outside the pipe boundary

- crop the length of any overhanging element
Step 6. Continue with the next timestep

cl=I1+1

- if t; <ty, goto Step 2.
Step 7. Continue with the next pipe

ci=i+1
- if i € P, goto Step 1.

The origin tracking algorithm completely describes the linear system (2.2.9-2.2.10). The computational
cost of the algorithm is linear in the number of pipes yet describes relationships for all pipe boundaries at
all discretized points in time. Note that this algorithm requires flow data and network structure only and is
performed with no prior knowledge of the source terms, m(z). This resulting linear system provides a
straightforward mathematical representation that characterizes the time delays and can easily be included
in the discretized optimization problem, where junction mixing and storage tank dynamics are modeled.
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2.3 Discretized Nonlinear Program

Using the reformulation of the pipe constraints from the origin tracking algorithm, problem (2.1.1-2.1.8) is
discretized in time alone, producing a reasonably sized nonlinear program. Although the origin tracking
algorithm allows the use of any discretization scheme, accuracy requirements on the pipe time delays tend
to govern the stepsize and little benefit is gained from a higher order method. In this chapter, a simple
backward Euler technique is used, however, more advanced techniques, like orthogonal collocation on
finite elements [26], have been implemented with similar results.

Discretizing over / € © with equally spaced intervals, h=t; —t;_1, problem (2.1.1-2.1.8) is written as,

. 1 N -
ming, ) &1(;,).20,).,) YO = 2@ 29\,& S wi(tr) (G(tr) = &)’ (2.3.1D)
re®s keN;

s.t.

el (1) = ) () Vie®P, 10, (2.3.12)

1) = Cri(ry) (Tir)  if an element at outlet VieP lco 23.13)
! 0 if no element at outlet ’ ’

( Z Q,-(t/)E,-(xO,-,t[)>+mk(t/)

icly(n)

& (1) =0, Vked, €O, 1+0, (2.3.14)
( > Qi(’l))+Qix’(tz)+QZ"’(tz)
i€y ()
\%4 inj A
PO S o) | 0 )+ 0 )| )
i€y (t141)
V(tH,]),: . = y—(): =
- &) — N Qiltie1)E(x=0t111) | —mi(tiy1) =0 VkeS, 1€0,140, (2.3.15)
i€y (t141)
& (1=0) =0, VkeS, (2.3.16)
m (1) > 0, VkeN,l€0O. (2.3.17)

Difficulty arises when all flows to a junction are stagnant. In this case, equation (2.3.14) is replaced with
ék(t) = Gk(ti—1) or éx(to) = 0, if required. With known flow information as inputs, problem (2.3.11-2.3.17)
forms a convex quadratic programming problem. As such, any solution is a global minimum, but not
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necessarily a unique minimizer.

To illustrate this, consider a simple two node network with flow from node A to node B and a sensor at node
B only. Assume, given current flow rates, that the travel time between the nodes is one hour. If the sensor at
node B registers concentration ¢* at time ¢, it is clear that the contamination could have been injected at
node B at time ¢*. But it could also have been injected at node A at time t* minus one hour. In fact, with the
possibility of multiple injections allowed, any linear combination of these two injections summing to ¢* is a
possible solution, indicating infinitely many solutions to the optimization problem. In order to force a
unique solution for this problem, a general regularization term is introduced in the objective.

Defining,
cilx=1I(t),t ci(x=0;(1),t, ;
o ( .(1) 1) 0 ( .(1) 1) | vieo, 23.18)
: : VI € 0.
| aln) my(1r) Vk € N,
c—[ 3 ]m—[ E ' Vieo (2.3.19)
problem (2.3.11-2.3.17) is described as,
. Lo T s 1 7
MiNgr 206 5 [e—¢ ) Wle—é ]—i—pim Rm (2.3.20)
st. ¢l —Ple=0, (2.3.21)
% — PO =0, (2.3.22)
Ne+Né+Mm=0, (2.3.23)
m >0, (2.3.24)

where P! and P° will be matrices of zeros and ones with, at most, a single nonzero entry per row. The
regularization term, % Zken m! Rm, is included in the objective to force a unique solution to the quadratic
program, where R is a positive definite regularization matrix. The exact form of R will depend on the type
of regularization used, and for numerical tests presented here, R = I. Any positive value for p is sufficient
to guarantee a unique solution to the optimization problem, but this solution will approximate a linear
combination of possible solutions. The junction and tank equations are grouped together and [ N N M | is
the Jacobian of the discretized node equations, (2.3.14-2.3.16). W is the diagonal matrix of flow based
weights for the concentration errors and will only have nonzero entries corresponding to sensor nodes at
sample times. These weights are all positive, so, in general, W is a positive semidefinite matrix. In the
unusual circumstance where there is a sensor at every node and data is sampled at every timestep, W will
be nonsingular and positive definite.

This regularized formulation is a well-posed quadratic program that can be solved with existing
optimization tools. In the next section the effectiveness of this formulation is demonstrated on some
numerical examples.
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2.4 Numerical Results

A software tool has been developed to formulate the discretized nonlinear program. First, a transient
contamination scenario is simulated using EPANET [179]. After specifying the sensor configuration, time
horizon, and integration time, the software tool reads the network structure, dynamic hydraulic
information, and concentration results (as sensor measurements) from EPANET and formulates the
discretized nonlinear program in AMPL [95]. AMPL is a modeling language for optimization that provides
both first and second order derivative information using automatic differentiation. The nonlinear program
is then solved with IPOPT, a nonlinear interior point optimization package [237]. Further description of
this code can be obtained from www.coin-or.org and associated links. Interior point methods are
appropriate for problems with many bound constraints (introduced by equation (2.3.17)). Although
problem (2.3.11-2.3.17) forms a quadratic program, the general nonlinear optimization package, [IPOPT,
performs well and allows for future inclusion of nonlinear constraints (i.e. reaction terms). To verify the
effectiveness of the formulation, the solution profile for the injection terms, m, is compared against the
actual injection profiles used in the simulated contamination.

All examples have been formulated using a 5 minute integration timestep and a 5 minute sample interval.
Since the sampling interval is equivalent to the integration timestep, the regularization matrix is set to
R =1, approximating ¢ féf my (t)?dt. For a sampling interval longer than the timestep, regularization of

dt
between sampling intervals. The regularization parameter, p, is set to 1-10~*. Fortunately, the numerical
results are reasonable over a wide range of values for p and no specific tuning is required to find solutions
for the different injection locations studied.

2
the form, ¥ féf <d . (l)) dt, can be used to impose a smoothness condition on the injection profiles

2.4.1 Example 1. Symmetric Grid Network

A simple grid network is shown in Figure 4.1, where flows are in the directions indicated, consumption
demands exist at the boundary nodes only, and the single known external water source is a reservoir at node
26. The time delays between the nodes range from approximately half an hour to five hours. The shaded
nodes indicate installed sensors, and, with sensors at every second node, this example is symmetric about
the diagonal from node 1 to node 25.

As a contamination scenario, a 30 minute long injection at time =30 minutes is simulated from node 13.
The optimization problem is formulated at hour 4, considering only the previous 4 hours of sensor and flow
data. Figure 2.4 shows the solution profiles for all injection terms with significant values. Even though the
regularized problem is guaranteed to have a single unique solution, this single solution indicates multiple
possible injection scenarios. One possibility is the exact simulated contamination, a 30 minute injection
from node 13 at r=30 minutes. However, the solution also indicates other possible injection locations,
including nodes 8, 9, 12, and 17. A second possibility is a simultaneous contamination at nodes 8 and 12 at
just over 2 hours. Although it is not available from the solution profiles in Figure 2.4, the network
symmetry shows that this must be a simultaneous contamination at both nodes. Simultaneous injections
may seem unlikely, but the formulation makes no restriction on the number of injections or the injection
time. With the specified network structure, sensor configuration, and flow direction, it is impossible to
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Figure 2.3. Grid Network Example A small symmetric grid net-
work with sensors installed at every second node, indicated by the
shading.

distinguish the actual injection node 13, from injections at nodes 8 and 12, and these two possibilities are
expected. A third, more surprising, possibility is a simultaneous contamination at nodes 9 and 17 at
approximately 5 minutes.
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Figure 2.4. Grid Network Solution 1. Solution for an injection at

node 13 using a 4 hour time horizon.
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Figure 2.5. Grid Network Solution 2. Solution for an injection at
node 13 with an 8 hour time horizon. Note that nodes 9 and 17 are
now excluded as possible injection locations.

A simultaneous injection at nodes 9 and 17 could also produce the measured concentrations at sensor nodes
8 and 12, and it would then be expected that sensors at nodes 4 and 16 would also measure contaminant.
On the other hand, zero measurements at nodes 4 and 16, over a sufficiently long period of time, would rule
out injections at nodes 9 and 17; this requires an estimation time horizon long enough to confirm these
effects. Here, the time delays associated with links 17 - 16 and 9 - 4 are just over 4 hours and, hence, an
optimization problem formulated with only 4 hours of previous measurements has insufficient information
to observe concentration measurements at nodes 4 and 16.

Using the same simulated injection, but running the optimization at hour 8, considering the previous 8
hours of simulation data, produces the solution shown in Figure 2.5. Here, fluid flow through nodes 9 and
17 are now observed by the sensors at nodes 4 and 16, and, since these sensors do not encounter any
contaminant, nodes 9 and 17 have now been excluded as possible injection locations. This simple example
shows the importance of null concentration measurements and sufficient time horizons.
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2.4.2 Example 2. Real Municipal Network Model

The formulation has also been tested on a model of a real municipal water network with 469 nodes
(including 4 storage tanks) and 635 links. Four injection locations are considered, shown in Figure 2.6.
Location A is along a major feed line to the network, while locations B and C are interior to the network.
Contaminant spreads readily through the network from these three locations. Location D, on the other
hand, exhibits minimal spreading of contaminant through the network. For each of the four locations, a 16
hour time segment is simulated, using a 30 minute injection at hour 8. An attack or accidental injection
would likely be significantly longer than 30 minutes, but this short injection time illustrates the algorithm
performance on a difficult injection scenario.
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Figure 2.6. Municipal Water Network Injection Locations. Four
simulated injection locations, A through D, are shown in the dia-
gram of the network model.
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Visually inspecting each of the profiles, like those shown in Figures 2.4 and 2.5 is impractical for a large
number of test examples. Instead, a single scalar measure of the effectiveness is used. After running the
optimization the solution profiles for all the injection terms are integrated, y; = ffio my(t)dt, and the nodes
are sorted in descending order of y,. This provides a ranking of each node in the network, defined by the
injection profile from the optimization solution. It is desirable for the actual injection node to be ranked first
(i.e. the optimization solution estimates the most prominent injection at the node where the actual injection
occurred). Unfortunately, because of the sparse sensor grid and non-uniqueness, this may not be possible.

While measuring the effectiveness of the formulation, it is important to consider two key indicators.

1. The Number of Installed Sensors: A good algorithm should identify injection locations using as few
sensors as possible. The placement of installed sensors will likely be critical in reducing this number.

2. Identification Time: The time required for the contaminant to reach installed sensors, plus the
additional time required to accrue enough information for the optimization to be effective should be
short. Note, this does not refer to the time for an optimization to execute, but rather constitutes the
total elapsed time, following a contamination, before the system can make a reasonable estimate of
the injection location.

Figure 2.7 shows the results of numerical tests for each of the four injection scenarios. The y-axis shows
the number of randomly placed contaminant sensors. The same random seed was used for each sensor
configuration (e.g. when the number of randomly placed sensors are increased from 70 to 80, only 10 new
sensors are placed and the previous 70 sensors remain at their original location). All test runs were
performed using an 8 hour time horizon. The x-axis shows the time, following the simulated injection, at
which the optimization was formulated and run. For example, the optimization test result at hour 2 was
formulated using a time horizon beginning 6 hours prior to the injection and finishing 2 hours following the
injection. This gives us an example of the effectiveness of the algorithm in a real scenario, 2 hours
following an injection. With the 5 minute integration stepsize and 8 hour time horizon, each optimization
problem is a large scale nonlinear program with approximately 210,000 variables, 165,000 equality
constraints, and 45,000 inequality constraints and solves in less than 2 minutes on a 2.2 GHz Pentium 4
machine. Figure 2.7 shows the results of these tests (over 1000), plotting the rank of the solution profile for
the simulated injection node, shown by the shading scale to the right.
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Figure 2.7. Rank of Optimization Solution for Simulated Injec-
tion Node. This figure illustrates the effectiveness of the formula-
tion in determining the correct injection node for simulated injec-
tions A through D. The rank of the injection node is shown with
the shading to the right of each contour plot. A low ranking in-
dicates that the formulation has been effective at identifying the
injection location.
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The hashed regions indicate tests where none of the installed sensors had yet registered any contaminant
and thus there is no information to run the optimization. At ¢ = 0 hours, the time of the simulated injection,
no sensors have measured contaminant, and no result is expected for this entire column. In the top row of
each contour plot, sensors are installed at every node, and a ranking of 1 is observed for each of the
simulated injection scenarios, as expected.

The formulation is very effective for locations A through C, where it determines the injection location with
a short identification time and few sensors. The effectiveness of the sensor grid is influenced dramatically
by the flow patterns at the injection location. The formulation is less effective for location D. The flow
conditions from injection location D do not cause significant spreading of the contaminant through the
network, and a higher requirement on the number of installed sensors is expected. Nevertheless, once there
are enough sensors to detect the contamination, the formulation is extremely effective at determining the
correct injection location. Optimal sensor placement should reduce the number of required sensors.

2.5 Conclusions and Future Work

In the event of an accidental or intentional contamination of a municipal drinking water network, it is
important to identify the time and location of contamination sources. This chapter has presented an
optimization formulation for this inverse problem, estimating time dependent contamination injections for
every network node.

Some areas of future work include:

- The results for location D illustrate the importance of determining optimal sensor locations. It is also
desirable to choose sensor locations that reduce the non-uniqueness in solutions. Current work in
this area [31, 32, 163] is useful for detection systems, but the objective measures used may not be
appropriate for the contamination source determination problem. It may be important to reduce the
number of possible injection locations to make a guarantee of uniqueness for optimal sensor
placement.

- No analysis has yet been done to test the reliability of this formulation in the face of sensor failure or
noise in flow rates and sensor measurements. An actual implementation would likely need to include
a robust estimation phase that could remove potential outliers in the measurement data and quantify
the uncertainties associated with the data.

- Many contaminants will experience decay as they propagate through the network. Reaction terms
can be included in pipe and tank constraints. Of course, this now requires that the sensors correctly
identify the contamination species to include the correct rate expressions.

- It is necessary to examine the performance of this formulation for much larger community networks.
Since the time delays associated with large water networks are often large, it is reasonable to assume
that the contamination source determination problem could be formulated on a subset of the entire
network
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Table 2.1. Notation for Continuous Formulation: Equations
(2.1.1-2.1.8)
Variable | Comments
P?.9,5 the complete sets of all pipes, junctions, and storage tanks
N the complete set of all nodes (i.e. AL=JU.S)
1 €10..t7] time
x>0 displacement along a pipe
ci(x,1),i € P contaminant concentration in pipe i at displacement x and time ¢
(1), k € N contaminant concentration of node k at time ¢
m(t),k € N unknown contamination mass flow rate
N; € N, 0 the set of nodes with installed sensors and the set of all sample times
élf (t),ke N measured contaminant concentrations, these values will not be known continuously in time, but rather at discrete
sampling points, ?,,r € O
wi(t),k € Ns time dependent weight for the concentration errors. A flow based weighting function is used, shifting the error
measure from a concentration basis to a mass basis
Ty (t),ke N the set of all pipes flowing into node k at time ¢

I,'([),O[(I)JE P

displacement along pipe i where fluid is entering and leaving the pipe respectively, these designations are time
dependent and change with the flow direction

ki(t),ie P the index of the node connected at the inlet of pipe i, this designation is time dependent and changes with the flow
direction
u;(t) known fluid velocity in pipe i
0i(t),ie P the known volumetric flow rate in pipe i at time ¢

0" (1), ke N

the volumetric flow rate for known external sources (e.g. reservoir flow)

0 (1), ke N

the volumetric flow rate of the unknown contaminant mass injection, my(¢), in practice this value will not be
known and they are set to a small quantity relative to other network flow rates

Vi(t),ke S

the volume in tank k at time ¢

3()

Dirac delta function

In conclusion, the origin tracking algorithm successfully reformulates the partial differential pipe
expressions into a set of algebraic constraints with time delays, removing the need to discretize in space.
The cost of this algorithm is linear in the number of pipes and the reformulation time is a small portion of
the overall solution time. This reformulation allows the use of a direct simultaneous technique for
discretizing the continuous problem. With the network model studied, solution times for the optimization
were under two minutes on a 2.2 GHz machine, making it suitable for a real-time setting, a result that was
not possible with the direct sequential technique. The effectiveness of the source determination formulation
has been demonstrated on a real municipal network model and it produces a reasonable estimate of the
injection location with a limited number of network sensors.
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Chapter 3

Real-time, Large Scale Optimization of
Water Network Systems using a Subdomain
Approach

Carl D. Laird (Carnegie Mellon University), Lorenz T. Biegler (Carnegie Mellon University), Bart G. van
Bloemen Waanders

3.1 Background

Certain classes of dynamic network problems can be modeled by a set of hyperbolic partial differential
equations describing behavior along network edges and a set of differential and algebraic equations
describing behavior at network nodes. In this chapter, we demonstrate real-time performance for
optimization problems in drinking water networks. While optimization problems subject to partial
differential, differential, and algebraic equations can be solved with a variety of techniques, efficient
solutions are difficult for large network problems with many degrees of freedom and variable bounds.
Sequential optimization strategies can be inefficient for this problem due to the high cost of computing
derivatives with respect to many degrees of freedom [230]. Simultaneous techniques can be more efficient,
but are difficult because of the need to solve a large nonlinear program; a program that may be too large for
current solver. This study describes a dynamic optimization formulation for estimating contaminant
sources in drinking water networks, given concentration measurements at various network nodes. We
achieve real-time performance by combining an efficient large-scale nonlinear programming algorithm
with two problem reduction techniques. D’ Alembert’s principle can be applied to the partial differential
equations governing behavior along the network edges (distribution pipes). This allows us to approximate
the time-delay relationships between network nodes, removing the need to discretize along the length of
the pipes. The efficiency of this approach alone, however, is still dependent on the size of the network and
does not scale indefinitely to larger network models. We further reduce the problem size with a subdomain
approach and solve smaller inversion problems using a geographic window around the area of
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contamination. We illustrate the effectiveness of this overall approach and these reduction techniques on an
actual metropolitan water network model.

3.1.1 Contamination Source Determination

The vulnerability of municipal drinking water networks to intentional and accidental contaminations
requires efficient systematic protection measures. Distribution networks cover a very large area, including
private locations, making it impossible to use physical security alone to prevent drinking water
contamination. If a contamination occurs, it is important to quickly identify the magnitude, time, and
location of the contamination source to stop the spread of contaminant and devise a control strategy. Here,
we describe an approach for identifying contamination sources in water networks using concentration
measurements from a set of installed contaminant sensors. Assuming that the cost of these sensors is high,
contaminant source must be effectively identified using few network sensors. It is also important to solve
the inversion problem as quickly as possible. Since the inversion may be one component of an overall
control strategy, it must be efficient and solve in real-time for large water distribution networks.

Using known network flowrates and concentration measurements, we formulate a least squares dynamic
optimization problem subject to the constraints of the water quality model and unknown contaminant
injection sources. Solving this dynamic optimization problem for the unknown, time dependent source
terms identifies both the time and location of possible contaminant injections.

A number of different techniques can be used to solve the dynamic optimization problem, progressing from
minimal interfacing with an existing simulator to a more intrusive fully simultaneous technique. Although
the fully simultaneous discretization technique produces a very large nonlinear program, in many cases it
can be significantly more efficient than sequential techniques [230, 229, 68]. Because of the large number
of degrees of freedom and the high cost of calculating derivatives for the time discretized injection profiles,
sequential techniques are not appropriate for the solution of the time dependent network source
determination problem. A straightforward application of the simultaneous approach is not possible since a
naive discretization of the network model produces a nonlinear program that is too large for general
nonlinear programming tools. Instead, we recently developed a reformulation of the pipe constraints,
allowing the use of a simultaneous technique for solving the time dependent problem [134]. In that study,
efficient numerical results were presented for a network model of approximately 500 nodes, with solution
times under two minutes wall clock time for all test scenarios. However, this approach performs the
optimization over the space of the entire network and does not scale to significantly larger networks. The
bottleneck in addressing very large systems is the need to find solutions for large linear systems at each
iteration of the optimization algorithm. Since processing and memory requirements are not linear in the
number of variables, increasing the problem size can cause a dramatic increase in solution times.
Furthermore, with direct factorization techniques, memory limitations place restrictions on the overall size
of the linear system, thus restricting the number of network nodes and the number of timesteps that can be
considered.

To consider larger metropolitan water networks, we apply a network subdomain approach to reduce the
problem size further. Since the time delays associated with paths through water networks are typically
long, a rapid source inversion method should identify contamination sources before the contaminant
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spreads significantly through the network. Therefore, the optimization problem can be formulated on a
subset of the overall network. The required subdomain size is not dependent on the size of the entire
network, so this approach can deal with large municipal drinking water networks very efficiently.
Moreover, the location and size of the subdomain need not be fixed and tracking the spread of the
contaminant and implementing a control strategy allows straightforward extensions of this approach to
moving subdomains. While the primary purpose of the subdomain technique is to reduce computational
effort, evidence suggests that this technique may also improve solution quality by allowing a finer
discretization in time. To demonstrate this subdomain approach we consider the source inversion problem
for a network model that describes the distribution system for a large city. We examine the quality of the
inversion solutions under varying subdomain sizes. Our results indicate that, shortly following an injection,
this subdomain approach is an effective problem reduction technique, and that the overall algorithm is an
efficient method for contaminant source detection.

Section 3.2 presents the formulation of the contamination source determination problem and describes
solution techniques for this problem. In particular, we consider an origin tracking algorithm that converts
the PDE-constrained problem into a differential-algebraic optimization problem. This problem can then be
discretized in time and solved with large-scale nonlinear programming methods. We then develop an
alternative formulation that applies to any selected subdomain of the network. Section 3.3 applies the
subdomain approach on a real municipal water network model. This approach considers hydraulics and
sensor measurements from the entire network, selects a subdomain for the optimization, and solves the
optimization problem in the space of these selected network nodes only. A case study illustrates the
effectiveness of this approach and the effect of subdomain size on computational effort and solution
quality. Section 3.4 then concludes the chaper and offers a number of directions for future work.

3.2 Dynamic Optimization Formulation

Before developing the optimization formulation for the subdomain approach, we first describe the
formulation for the full network model as given in [134]. Water distribution systems can be represented as
networks with nodes and edges. The nodes represent zero volume junctions, storage tanks, or reservoirs
(n