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ABSTRACT 

We present new methods for resolving IFSAR ambiguities and SAR layover. The 

analytic properties of these techniques make them well suited for reliable, efficient 

computation. 
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1. Introduction 
 

This investigation studies the advantages of using multiple phase center IFSAR 
(interferometric synthetic aperture radar) to resolve IFSAR phase ambiguities and SAR 
layover. For an approximate “point” target, the phase of the complex coherence factor, 
computed from a two-phase center antenna, equals the principal or wrapped value of the 
return signal’s angle-of-arrival from the reflector. Since the terrain elevation at that 
location is proportional to the unwrapped phase, we must unwrap the phase to estimate 
the height. A number of algorithms for phase unwrapping have been proposed (Ghiglia 
[1]), but the most reliable methods require additional information. It is known that a 
three-phase-center IFSAR system can be used to remove, with fairly high probability, the 
ambiguity in phase (see Jakowatz et al. [2] or Bickel and Hensley [3]).We show that a 
fourth phase center can be used to significantly reduce the error probability for removing 
IFSAR phase ambiguities; in fact, for complex Gaussian noise, the error probability 
decreases approximately as the square of the error probability for the corresponding 
three-phase-center IFSAR. In addition, we show that a three-phase-center system can be 
used to detect and compute the angle-of-arrival for two point targets that are projected 
into a single range-azimuth resolution cell of the slant plane (SAR layover). 

 

Roughly, three broad classes of IFSAR operation can be used to collect data for the 
methods presented in this study. The first class employs a three or four phase-center 
antenna placed orthogonal to the flight path of the aircraft (see Fig. 1). Here, we consider 
an IFSAR antenna combined with one or two monopulse antennas to be approximately 
equivalent to a three or four phase-center antenna, respectively. A second class employs a 
single IFSAR antenna and two separate passes of the aircraft with slightly different 
grazing angles (see Martinez et al. [4]). In this multi-pass approach, each of the IFSAR 
antennas act as a pair of phase centers, and assuming that the two images are sufficiently 
coherent, the two IFSAR antennas can be combined to form a third pair of phase centers 
(see Figure 1). A third class uses an IFSAR antenna operated at different frequencies. By 
operating at different frequencies, the baseline to wavelength ratio of the antenna 
changes, in effect producing a different pair of phase centers. We note that multi-phase-
center IFSAR may also be viewed as multiple baseline IFSAR. 
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The basic idea in SAR interferometry is to construct a phase difference map from the 
complex images produced by a pair of phase-centers. A mathematical description of the 
complex correlation or coherence of a pair of phase-centers in an interferometric imaging 
system is provided by the Van Cittert-Zernike Theorem (Goodman [5]). We show that, 
for two point targets projected into a single range-resolution cell, the Van Cittert-Zernike 
Theorem takes the form 

 

 ( ) ( ) ( ) ( )1 2

1 2 1 2

exp exp expl l l l
I Ik jk s jk d jk d

I I I I
µ

⎡ ⎤
≈ − +⎢ ⎥+ +⎣ ⎦

 (1.1) 

 

                       ( ) ( )expl l lk j k s tµ ⎡ ⎤≈ +⎣ ⎦ , 
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where ( )lkµ  ( 1,2,3l = ) equals the complex coherence factor for one pair of phase-
centers, and 

 ( )11 1

1 2 1 2

, tan 1 2 tanl l l
I It t d k d

I I I I
−⎛ ⎞ ⎛ ⎞

= = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
. (1.2) 

 

We assume that 1 2 3k k k> > , 1 2 3k k k= + , and we define: 

 2 /l l ck bπχ λ= , 

 lb = baseline length 

  cλ = center wavelength,  

  iθ  = signal’s angle-of-arrival from point ip (see Figure 1),  

  ( )1 2/iI I I+  = relative intensity of the point target at ip  

  ( )1 2sin sin / 2s θ θ= +  

  ( )2 1sin sin / 2d θ θ= −  

  1 or 2χ =  depending on whether the antenna is used in the 
standard mode or multiplex mode, respectively. 

 

Here, we adopt the convention that the points are labeled in such a way that 
2 12 sin sin 0d θ θ= − ≥ .The last expression in Eq. (1.1) is the coherence factor given 

in polar form. The key idea is to use the three nonlinear equations, derived from the 
arguments of three coherence factors, to solve for the three unknowns s , d  and 

( )1 1 2/I I I+ . 

 

In this report, we assume that the noise variates are uncorrelated random variables. Since, 
in addition to assuming that the terms are uncorrelated, we also assume that the noise is 
complex Gaussian (Goodman [5]); it follows that the noise variates are actually 
independent. 
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The problem of solving for the angle-of-arrival from arbitrary point targets has received 
considerable attention, see Stoica [6] and Kay [7]. It is known that the Maximum 
Likelihood Estimator provides a nearly optimal solution (Kay [7] and Ziskind [8]), but, 
because of its high computational cost, this approach is not considered to be practical. 
This has led to the introduction of a variety of suboptimal spectral techniques with 
reduced computational costs, Stoica [6]. These methods, however, require a large number 
of samples or “looks” to produce a variance that is close to the Cramer-Rao lower bound, 
Kay [7], Bickel and DeLaurentis [9]. We present a direct or phase method that may 
overcome both of these obstacles. Since our approach involves, essentially, estimation of 
parameters in an analytic expression, this method may provide an efficient technique for 
estimating the unknowns as well as providing a variance that may be closer to the 
Cramer-Rao lower bound. 

 

In the next section, we derive the form of the Van Cittert-Zernike Theorem for two point 
targets projected into a single resolution cell. The third section presents our phase method 
for resolving two point targets by using the phase of three coherence factors. Also, we 
show that the solution is unique provided the difference values, d , are bounded below. 
The fourth section presents a method that uses the magnitude and phase of two coherence 
factors to resolve two point targets. In the fifth section we derive the reduced error 
probability for IFSAR phase ambiguities when a fourth phase-center is employed. Aside 
from these practical considerations, the methods presented may have intrinsic value in the 
analysis of multi-phase-center imaging and communication.  
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2. Complex Coherence 
The mutual intensity in the observation region takes the form (Goodman [5]) 

 

 ( )
( )

( )2
2, expl m m l

cc c

J I j r r dS
r

κ πχ
λλ ∑

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫∫q q  (2.1) 

 

where Σ  represents a section of the imaging surface that is projected into a single 
resolution cell of the slant plane, I equals the intensity, dS denotes a surface element, cλ  
is the center wavelength, cr  denotes the distance from the midpoint of the baseline to the 
scene center, and 1χ =  or 2  depending on whether the antenna is used in the standard 
mode or multiplex mode respectively, see Figure 1 (here and in the following we use 
boldface letters to denote a vector). For the baseline corresponding to 1b , the paraxial 
approximation yields for the approximate point target at 1p , 

 

 0 0
3 1 0 1 0 1 0 1 0 1

0 0

/ 2 / 2 .... ....
2 2

r r r r
r r

− = + − − = + • + − + • +r rr b r b b b  (2.2) 

                            ( )0
1 1 1

0

sinb
r

θ≈ • = −r b  

 

where 3 3 1= −r q p , 3 3r = r , 1 1 1= −r q p , 11 r=r , 1 3 1= −b q q , 11 b=b , 

2/2/ 12110 brbrr −=+=  , 00 r=r , and 1θ  is the angle of arrival from the point 
reflector at 1p  (see Figure 1). A similar result holds for the approximate point reflector or 
point target at 2p . A paraxial approximation for the other baselines can be derived in a 
similar fashion; this allows us to replace 1b  in Eq. (2.2) by lb . We adopt the convention 
that the points in a cell are labeled in such a way that 0sinsin 12 ≥− θθ . 

 

For point reflectors, the intensity )(pI  takes the form 

 
 ( ) ( ) ( )1 1 2 2I I Iδ δ≈ − + −p p p p p  (2.3) 
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This corresponds to the case in which the resolution cell contains one or two point 
targets. The mutual intensity may be rewritten as 

 

 ( ) ( )1 3 1 1 1 2 1 22, exp( sin ) exp( sin )
( )c c

J I k I k
r

κ θ θ
λ

≈ +q q  (2.4) 

 

 

where 1 12 / ck bπχ λ= .  

 

Normalizing by ( )1 1,J q q , we obtain the complex coherence factor, 

 

 ( ) ( )
( )

( )3 1
1 3

1
1 1

2exp
,
,

c

I j r r dS
J

k
J I dS

πχ
λ

γ
∑

∑

⎛ ⎞
− −⎜ ⎟
⎝ ⎠= =

∫∫

∫∫
q q
q q

 (2.5) 

 

                                  ( ) ( )1 2
1 1 1 2

1 2 1 2

exp sin exp sinI Ijk jk
I I I I

θ θ= +
+ +

. 

 

A similar argument applied to the other baselines yields 

 

 ( ) ( ) ( )1 2
1 2

1 2 1 2

exp sin exp sinl l l
I Ik jk jk

I I I I
γ θ θ= +

+ +
 (2.6) 

 

where 2 /l l ck bπχ λ= and 1 2 3k k k> > . For 1 2≠p p , this expression represents the Van 
Cittert-Zernike Theorem for two point targets projected into a single range-azimuth 
resolution cell (in Eq. (2.5) we replaced the approximately equals symbol by equality to 
simplify the notation). 
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We may rewrite ( )lkγ  as 

 

 ( ) ( ) ( ) ( )1 2

1 2 1 2

exp exp expl l l l
I Ik jk s jk d jk d

I I I I
γ

⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

 (2.7) 

 

where ( ) 2/sinsin 21 θθ +=s  and ( ) 2/sinsin 12 θθ −=d . (We note that, for small angles,  
( ) 2/21 θθ +≈s  and ( ) 2/12 θθ −≈d ). In polar coordinates, the preceding, Eq. (2.7), 

becomes 

 
 ( ) ( ) ( )expl l l lk k j k s tγ γ ⎡ ⎤= +⎣ ⎦  (2.8) 

where 

 

 ( )11 1

1 2 1 2

, tan 1 2 tanl l l
I It t d k d

I I I I
− ⎡ ⎤⎛ ⎞ ⎛ ⎞

= = −⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.9) 

 

 

Setting 0=d  in either Eq. (2.7) or Eq. (2.8), we obtain the Van Cittert-Zernike Theorem 
for a single target in a resolution cell (see Jakowatz et al. [10]), 
 ( ) ( )expl lk jk sγ =  (2.10) 

 

where θsin=s  and θ  denotes the angle-of-arrival from the point target. In this way, we 
may use Eq. (2.7) or Eq. (2.8) as a representation of ( )lkγ  for a scene in which either one 
or two approximate point targets reside in a single resolution cell. 
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3. Phase Method 
In this section we present a direct method for analyzing the SAR layover problem. 
The two-phase-center IFSAR assumes that each range-azimuth bin contains at most 
one target, but in scenes where the height changes abruptly, the return signal may be 
the superposition of two signals from different height targets which have been 
mapped into the same range bin; SAR layover, see Fig. 1. We propose a direct or 
phase method that uses a three-phase-center IFSAR to resolve this problem. The key 
idea is to show that the three unknowns (two angles and a relative intensity) may be 
derived from the intersection of a surface with a line. 

 

We recall from Eq. (2.7) that the coherence factor, µ , is given by 

 

 ( ) ( ) ( )1 2
1 2

1 2 1 2

exp sin exp sinl l l
I Ik jk jk

I I I I
µ θ θ= +

+ +
 (3.1) 

 where 1 2 3k k k> > , 1 2 3k k k= + , and ( )lkµ  ( 1, 2,3l = ) equals the coherence factor for 
one pair of phase-centers with: 

 2 /l l ck mbπ λ= , 

 lb = baseline length 

  lλ = center wavelength,  

  iθ  = angle-of-arrival of the signal from point ip (see),  

  ( )1 2/iI I I+  = relative intensity of the point target at ip  

             1 or 2χ =  depending on whether the antenna is used in the 

                                            standard mode or multiplex mode respectively.  

 

Here, we adopt the convention that the points in a cell are labeled in such a way that 
2 12 sin sin 0d θ θ= − ≥ . 
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In polar coordinates (see Eq. (2.8)) the coherence factor ( )lkµ  becomes 

 ( ) ( ) ( ) ( )1 2

1 2 1 2

exp exp expl l l l
I Ik jk s jk d jk d

I I I I
µ

⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

 (3.2) 

  ( ) 1

1 2

exp ,l l l
Ik j k s t d

I I
µ

⎡ ⎤⎛ ⎞⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

where 

  ( )
( ) ( ) ( )

( )
2 2

2 1 2 1 2
2 2 2

1 2 1 2 1 2

2 cos 2l k
I I I Ik k d

I I I I I I
µ ≡ + +

+ + +
 (3.3) 

  ( ) ( ) ( )1, tan 1 2 tanl lt kα β α β− ⎡ ⎤= −⎣ ⎦  (3.4) 

  ( )1 2sin sin / 2s θ θ= +  (3.5) 

  ( )2 1sin sin / 2d θ θ= −  (3.6) 

 

In this section we assume that the unwrapped phase of ( )lkµ , given by  

 

 ( )( )1 1 2/ ,l l ly k s t I I I d= + + ,                   1, 2,3l =  (3.7) 

 

is known. We show that the preceding equations are sufficient to enable us to solve 
for the three unknowns: s , d  and ( )1 1 2/I I I+ . We begin by presenting a criterion for 
detecting the presence of two targets, next we consider the case 

( ) ( )1 1 2 2 1 2/ / 1/ 2I I I I I I+ = + = , and finally we examine the more difficult case 

( ) ( )1 1 2 2 1 2/ /I I I I I I+ ≠ + . 

 

From the expression for the magnitude squared, we see that ( ) 1lkµ < if and only if 
two targets are present in the same range resolution cell. Here, we assume that there 
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are at most two targets in the same range bin. This provides us with a criterion for 
detecting the presence of a second target, namely, if ( ) 1lkµ < , we assume that two 
targets are present (in this paper we only address the case for which at most two 
targets reside in the same range-azimuth bin). 

 

Assuming that two targets have been detected, it can be shown that for, l mk k> , 

 1

1 2

sgn sgn 1 2m
l m

l

k Iy y
k I I

⎧ ⎫ ⎧ ⎫
− = −⎨ ⎬ ⎨ ⎬+⎩ ⎭⎩ ⎭

 (3.8) 

where { }, 1, 2,3m l ∈ and 

  { }
1, 0

sgn 0, 0
1, 0

x
x x

x

− <⎧
⎪= =⎨
⎪+ >⎩

 

In particular, if sgn 0m
l m

l

k y y
k

⎧ ⎫
− =⎨ ⎬

⎩ ⎭
 it follows that ( ) ( )1 1 2 2 1 2/ / 1/ 2I I I I I I+ = + = .  

In this case, we can solve for d  from the magnitude squared (see Eq. (3.3)) to obtain 

 ( )( )211 cos 2 1l
l

d k
k

µ−= −  (3.9) 

where ( )lkµ is a measured quantity. Since, the sum s  is given by 

 1
l

l

s y
k

=  (3.10) 

We turn now to the case ( ) ( )1 1 2 2 1 2/ /I I I I I I+ ≠ + . 
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Figure 2 b:  In both figures ( )1 1 2/ .25I I I+ =  ( )2 1sin sin / 2 1d θ θ= − ≈ and 

( )1 2sin sin / 2 0s θ θ= + = , 

for Figure 2a 1 2 31., .55, .45k k k= = =   and in Fig. 1b 1 2 31., .8, .2k k k= = = . 
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Let us assume that ( ){ }sgn / 0m l l mk k y y− > so that ( )1 1 21 2 / 0I I I− + > or 

( )1 1 20 / 1/ 2I I I< + < . The case, ( ){ }sgn / 0m l l mk k y y− < , is similar. We introduce 
the surface S  defined by (see Figure 2a and Figure 2b) 

 

 ( ) ( ){ }1, | 0 1/ 2, 0 / 2S kα β α β π= < < < <Z  (3.11) 

where 

        ( ) ( ) ( ) ( )( )1 2 3, , , , , ,z z zα β α β α β α β=Z  (3.12) 

                      ( ) ( ) ( )( )1 1 2 2 3 3, , , , ,y t y t y tα β α β α β= − − − = −y t  

 

and ( ),lt α β is defined by Eq. (3.4). (Since, by assumption ( )1 1 20 / 1/ 2I I I< + <  , we 
need only consider values for α  between 0  and 1/ 2 . Also, we assume that the 
difference d  satisfies the inequalities ( )10 / 2d kπ< < , so that we only need to 

consider values for β between 0 and ( )1/ 2kπ .) The unknown parameters can be 
determined from the unique intersection of the surface S  with the line 
segment L defined by 

 

 ( ) ( ){ }1 2 3, , |L k k k aη η η η η η= = = <r k  (3.13) 

 

where ( )1 2 3, ,k k k=k and a  is an upper bound for s . At the intersection of S and L , 
we have 

 

 ( ),l l lk y tη α β= − , for 1,2,3l =  (3.14) 

 

Let us denote by α̂ , β̂ , and η̂  the values of α , β , and η , respectively, at the 
intersection. Since the intersection is unique (see D & B [] ), it follows that 
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 ( )1 1 2 ˆ/I I I α+ =  (3.15) 

 ˆd β=  (3.16) 

and 

 ˆs η=   (3.17) 

 

as desired. The figures (Figure 2a and Figure 2b) display the surface S , the line 
segment L and their intersection for two different choices of the parameters: 1 2,k k and 

3k .  

 

To provide for a computationally efficient method of searching for the intersection, it 
is helpful to represent the surface in standard form. For this, we choose a coordinate 
system that enables us to represent S  in the form 

 ( )( ) ( ){ }1 2 1 2 1 2, , , | ,S z z g z z z z D= ∈  (3.18) 

 

for some domain D  and function ( )1 2,g z z . This is possible because the Jacobian 
matrix of Z has rank two (see [32]); in particular, we may use the coordinate system 
defined by  

 ( ),l l lz y t α β= − ,     1, 2l = . (3.19) 

 

The functions ( )1 2,z zα and ( )1 2,z zβ , defined implicitly by Eq. (3.19), satisfy 

 

 ( ) ( )
( )

( )
( )

2 2 1 1
1 2

2 1

tan tan1 1, 1 1
2 tan 2 tan

y z y z
z z

k k
α

β β
⎡ ⎤ ⎡ ⎤− −

= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.20) 

and 

 ( ) ( )
( )

( )
( )

2 2 2
1 2

1 1 1

tan tan
, , 0

tan tan
k y z

G z z
k y z

β
β

β
−

≡ − =
−

 (3.21) 
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for the domain 
( ) ( ) ( ){ }1 2 2 2 1 1 2 1, : 0 / 2, 1,2, tan / tan /l lD z z y z l and y z y z k kπ= < − < = − − < . (Here, 

the function ( )1 2, ,G z z β , used to define β , is obtained by rearranging the last two 

expressions in Eq.(3.20).) The function ( )1 2,z zβ is defined implicitly by Eq.(3.21), 

and, in turn, is used to define ( )1 2,z zα  via Eq. (3.20).  We note that ( )1 2, ,G z z β  is a 
strictly decreasing function of β  with 2 1/G k k→  as β  decreases to zero, and 

0G →  as β  increases to ( )1/ 2kπ . It follows that ( )1 2,z zβ  is defined for every 

ordered pair ( )1 2,z z  in the domain D . It can be shown that the function 

 

 ( ) ( ) ( )( )1 2 1 2 1 2, , , ,z z z z z zα β=u  (3.22) 

 

is one-to-one on the domain D . In this coordinate system, we have 

 

 ( )1 2, , 1, 2l l lz y t z z l= − =u , (3.23) 

and the function  ( )1 2,g z z  is given by 

 

 ( ) ( )1 2 3 3 1 2, ,g z z y t z z= − u , (3.24) 

 

By inserting the map u  into Eq. (3.12), we obtain 

 

 ( ) ( )( )1 2 1 2 1 2, , , ,z z z z g z z=Z u . (3.25) 

 

We have produced the standard representation for the surface S . 
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We note that it is not necessary to compute the ( )1 2,z z -coordinate system. We may 

plot the surface S  using the definition of ( ),α βZ  given by Eq. (3.12) and then find 

the point ( ),α βZ that is closest to the line segment L . We have introduced the 
coordinate transformation as a means of providing for an alternative approach to 
finding the intersection. Also, this change of variables gives us an explicitly defined 
method for representing S in standard form. 

 

The figures show the intersection of S  and L  for the case when the separation 
between the two targets is approximately two thirds the distance required by the 
Rayleigh criterion. Here, the intensity ratio ( )1 1 2/I I I+  equals .25 . In Fig. 1a, the 
smaller baselines are nearly equal; 1 21, .55k k= = and 3 .45k = . In Fig. 1b, the 
smallest baseline is one-fifth the length of the longest baseline; 

1 2 31, .8, .2k k and k= = = . In either case, the intersection is clearly discernable; 
however, the difference in the “slopes” at the intersection is greater for the case 
involving the longer baselines. This agrees with the intuitive conjecture which asserts 
that the longer baselines are less sensitive to noise. 

 

We still need to show that the intersection is unique. To simplify this discussion we 
prove uniqueness only for the case md β≥  where 

( ) ( ) ( ) ( ) ( )2 2 2 2
2 3 1 3

2
2 3 2

sin sin sin sin
min | / 4 ,m

k k k k
k

k k k
β β β β

β β β π
⎧ ⎫− −⎪ ⎪= ≥ ≥⎨ ⎬−⎪ ⎪⎩ ⎭

;      

that is, we assume ( )1/ 2m kβ β π≤ < .We explain our choice for mβ  in the following. 
(The proof of uniqueness for the more general case is left as a subject for future 
study.) 

 

To prove uniqueness for ( )1/ 2m kβ β π≤ < , we consider the curve Γ  formed by the 
intersection of the surface S  with the vertical plane P containing L .; that is, 

S PΓ = ∩  where P is orthogonal to ( )2 1/ , 1,0k k= −w , more 

precisely ( ){ }1 2 3, , 0P z z z= = =z w zi . The curve Γ  is given parametrically by 

 

( )( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 3 3, , , , , , ,y t y t y tα β α α β α α β α β α β= − = − − −Z y t  (3.26) 
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where ( )β α  is defined implicitly by the equation 

 

( )( ) ( ) ( ) ( )2 2
1 2 1 2

1 1

, , , 0k kH y y t t
k k

α β α α β α β
⎛ ⎞

− = − − − =⎜ ⎟
⎝ ⎠

w y ti . (3.27) 

 

Since / 0H β∂ ∂ < , it follows that Eq. (3.27) has a unique solution for every α such 

that 
1

, 0
2

H
k

πα
−⎛ ⎞⎛ ⎞

⎜ ⎟ <⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. It can be shown that ( )β α  is defined over an interval so that 

Γ  is connected. We note that Γ  can also be defined by ( )( )1 2 1 2, , ,k k g k kη η η η , see 
Eq.(3.25)  

 

We prove that the intersection is unique by showing that the tangent vectors to the 
curve Γ  are never parallel to the line segment L . Since the curve Γ and L  lie in the 
same plane, it follows, from the mean value theorem for derivatives, that if Γ crosses 
L  twice then, at some point between the intersections, the tangent to the curve Γ  
must be parallel to L . If the tangent lines are never parallel to L  then Γ  can not 
cross L  more than once. 

 

Let us consider the tangent vectors T  defined by 

 

 1 1 2 2 3 3T T T= + + = ×T e e e N w  (3.28) 

 

where ( )1 1,0,0=e , ( )2 0,1,0=e , ( )3 0,0,1=e and N  is normal to the surface S . We 
define N  by 

 ( )
( )

( )
( )

( )
( )

2 3 1 3 1 2
1 2 3

, , ,
, , ,

t t t t t t
α β α β α β α β

∂ ∂ ∂∂ ∂= × = − +
∂ ∂ ∂ ∂ ∂

Z ZN e e e , (3.29) 

where  
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( )
( ) ( ) ,,

2 1 2
,

l l

l m l ml m

m m l m

t t
k k At t

t t B B
α β

β α
α β

α β

∂ ∂
∂ ∂ ∂

= −
∂ ∂∂
∂ ∂

, (3.30) 

 ( ) ( ), sinc 2 sinc 2l m m lA k kβ β= − , (3.31) 

 ( ) ( )21 4 1 sinn nB kα α β= − − . (3.32) 

 

Here, the symbol ⋅  denotes the determinant and ( )sinc sin /x x x . For l m< , we 

have / 2m lk kβ β π< < , so that , 0l mA >  and ( ) ( ), / , 0l mt t α β∂ ∂ > .  

 

The tangent vector T  is not collinear with k if and only if 0× ≠k T . Using the 
identity ( ) ( )× × ⋅ ⋅a b c = a c b - a b c  we have, since k is orthogonal to w , 

 

 ( ) ( ) ( )× × × ⋅ ⋅ = − ⋅k T = k N w = k w N - k N w k N w . (3.33) 

 

It follows from Eq. (3.33) that we need only show that 0⋅ ≠k N . We note that this 
result is independent of the curve Γ . We could have chosen any curve of the form 
S P∩  (for some plane P ) provided the intersection is connected and the resulting 
curve is differentiable. 

 

We need to show that 0⋅ ≠k N , in fact, we show that 

 

 ( ) ( )1 2 3
2,3 1 1,3 2 1,2 3

1 2 3

2 1 2
0

k k k
A B A B A B

B B B
β α−

< ⋅ = − +k N . (3.34) 
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It follows that we need only show that the expression inside the second set of 
parentheses is positive. Using the definition of lB , Eq. (3.32), and the fact 
that 1,3 1,2 2,3A A A= + , we have 

2,3 1 1,3 2 1,2 3A B A B A B− + = . (3.35) 

                        ( ) ( ) ( ) ( )( )2 2 2
2,3 1 1,3 2 1,2 34 1 2 sin sin sinA k A k A kα α β β β− − − + . 

We have reduced the problem to showing that the expression inside the second set of 
parentheses is negative. Using the definition of ,l mA , Eq. (3.31), and rearranging 
terms, we obtain 

 

( ) ( ) ( )2 2 2
2,3 1 1,3 2 1,2 3sin sin sinA k A k A kβ β β− + . (3.36) 

                                           ( ) ( ) ( )2,3 1 1,3 2 1,2 3sinc 2 sinc 2 sinc 2C k C k C kβ β β= − +  

where 

 ( ) ( )2 2
, sin sinl m l mC k kβ β= − . (3.37) 

 

Now, we use the definition of mβ to obtain the inequality, 

 

 ( ) ( )
( ) ( )

2 2
2,3 2 3 2 3 3

2 2
1,3 1 3 2 2

sin sin
1

sin sin
C k k k k k
C k k k k

β β
γ

β β
− −= ≥ = −
−

. (3.38) 

 

for ( )1/ 2m kβ β π≤ < . The lower bound mβ was defined so that the slopes of the 

chords of the function 2sin x  would satisfy Eq.(3.38). Since 1 2 3k k k= + , the 
inequality given in Eq.(3.38) implies 

 ( ) 2 3
1 3 2 3 2 3 2

2

1 k kk k k k k k k
k

γ γ γ
⎛ ⎞−+ − = + ≥ + =⎜ ⎟
⎝ ⎠

. (3.39) 

Finally, using Eq. (3.39)and the fact that ( )sinc 2x is a concave, decreasing function, 
we arrive at the desired result 



 - 24 - 

 

( ) ( ) ( ) ( )( ) ( )1 3 1 3 2sinc 2 1 sinc 2 sinc 2 2 1 sinc 2k k k k kγ β γ β γ β γ β β+ − < + − ≤  (3.40) 

 

provided ( )1/ 2m kβ β π≤ < . This inequality (Eq. (3.40)) asserts that the right-hand 
side of Eq. (3.36) is negative which, in turn, implies that 0 < ⋅k N . It follows that T is 
not collinear with k and the intersection is unique for ( )1/ 2m kβ β π≤ < . The key 

idea in the proof is to use the fact that the function ( )sinc 2x  is concave and 

decreasing over the interval ( )0, / 2π . This completes the proof that the intersection 
is unique provided the noise is negligible. 

 

The introduction of noise into the system causes a translation in the surface and, in 
turn, produces a shift in the location of the intersection. This effect is a subject for 
future study. In particular, it would be interesting to compare the variance of the 
direct method with the Rao-Cramer lower bound. Further study may also provide 
insights that would enable us to optimize the design parameters of a multi-phase-
center IFSAR. In addition to providing a practical method for resolving the layover 
problem, this method may prove to be a useful tool for analyzing the IFSAR 
resolution limits in the presence of noise. 
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4. Magnitude of the Complex Coherence 
In this section we show that all three unknowns, two angles and a relative intensity 
(assuming that the IFSAR phase ambiguity has been removed), can be determined, at 
least in principle, by using both the magnitude and phase of two complex coherence 
factors. The coherence factors may arise from, say, the same pair of phase-centers 
operated at two different frequencies. The basic idea is to use the magnitudes to 
determine the unknown difference, d , and relative intensity, ( )1 1 2/I I I+ ; the sum, s , can 
then be derived from the phase.  

 

As in the preceding section, we use the criterion ( ) 1lkγ <  to determine when two 
targets reside in the same resolution cell. Also, we assume that the unwrapped phase 
of ( )lkµ is known; that is, we are given, 

 
 ( )( )1 1 2/ ,l l ly k s t I I I d= + +  (4.1) 

 

for 1,2l = . As before, to determine if ( )1 1 2/ 1/ 2I I I+ = , ( ) ( )1 1 2/ 0,1/ 2I I I+ ∈ , or 

( ) ( )1 1 2/ 1/ 2,1I I I+ ∈ , we use the fact that 

 

 2 1
1 2

1 1 2

sgn sgn 1 2k Iy y
k I I

⎧ ⎫ ⎧ ⎫
− = −⎨ ⎬ ⎨ ⎬+⎩ ⎭ ⎩ ⎭

 (4.2) 

If 2
1 2

1

sgn 0k y y
k

⎧ ⎫
− =⎨ ⎬

⎩ ⎭
 it follows that ( ) ( )1 1 2 2 1 2/ / 1/ 2I I I I I I+ = + = , and we may 

compute d  and s  as in the preceding section (see Eqs. (3.9) and (3.10)). Since the case 

( ){ }2 1 1 2sgn / 0k k y y− <  is similar, we need only consider the case 2
1 2

1

sgn 0k y y
k

⎧ ⎫
− >⎨ ⎬

⎩ ⎭
, 

in other words, we assume ( )1 1 20 / 1/ 2I I I< + < .  
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We show that the unknowns d and ( )1 1 2/I I I+  can be completely determined from the 
magnitudes; in turn, the remaining unknown, s , can be computed from the phase of one 
of the coherence factors. We note that, in this approach, we use the phase from both 

coherence factors only to determine the sign of 2
1 2

1

k y y
k

− . 

 

The magnitude squared of the complex coherence factor ( )lkγ  equals (see Eq. (3.3)) 

 

 ( )
( ) ( ) ( )

( )
2 2

2 1 2 1 2
2 2 2

1 2 1 2 1 2

2 cos 2l l
I I I Ik k d

I I I I I I
µ = + +

+ + +
 (4.3) 

 

For each fixed k , let us consider the curve, ( ), kβ α , defined implicitly by the equation 

 
 ( ) ( ) ( ) ( ) ( )22, , 1 2 1 cos 2 0f k k kα β α α α α β ξ= + − + − − =  (4.4) 

 

where ( )kξ  is defined for 21 kkk ≥≥  by 

 

 ( ) ( )
( ) ( ) ( )

( )
2 2

2 1 2 1 2
2 2 2

1 2 1 2 1 2

2 cos 2I I I Ik k kd
I I I I I I

ξ µ= + +
+ + +

 (4.5) 

 

By assumption (see Eq. (4.3)), the point ( ) ( ) ),/(, 211 dIII +=βα  lies on both of the 
curves ( ) 0,, =kf βα , 21, kkk = . The key step, in this approach, is to recover 

( ) ),/( 211 dIII +  by solving for the intersection of the two curves defined 
by ( ) 0,, =kf βα , 21, kkk = . 

 

Towards this end we introduce an explicit expression for the function, ( ), kβ α ,  
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 ( ) ( ) ( )
( )

22
1 11, cos

2 2 1
k

k
k

ξ α α
β α

α α
−
⎛ ⎞− − −
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (4.6) 

 

where the range of ( )z1cos−  is [ ]π,o . Here, we solved ( ) 0,, =kf βα  for β , assuming 
that α  lies in the domain of ( )k,αβ . We recall that the labels for the points 1p  and 

2p (see Figure 1 and Eq. (3.6)) are chosen so that 0≥d ; this allows us to use the branch 
of ( )z1cos−  with range [ ]π,o . 

 

The next lemma shows that in order for the argument in Eq. (4.6) to remain in the interval 

[ ]1,1−  we must restrict α to the interval ( ) ( )1 1 1 1,
2 2 2 2

k kµ µ⎡ ⎤− +⎢ ⎥⎣ ⎦
. We see, from 

Eq.(4.6) that ( )k,αβ  is symmetric about 2/1=α . Also, we note that at 2/1=α , 

 

 ( )( ) ( )( )21 11 1 1, cos 2 1 cos 2 1
2 2 2

k k k
k k

β ξ µ− −⎛ ⎞ = − = −⎜ ⎟
⎝ ⎠

 (4.7) 

 

It follows from Eq. (4.7) that the values ( )1,2/1 kβ  and ( )2,2/1 kβ  can be computed from 
the magnitude of the coherence factors ( )1kµ  and ( )2kµ , respectively. Also, since 

( )kξ  is a decreasing function of k ( ( ) 0' <kξ ), we have ( ) ( ) ( )1 2k k kξ ξ ξ≤ ≤  and 

( ) ( ) ( )1 2k k kµ µ µ≤ ≤ . 

 

The basic idea is to find the roots of the equation 

 
 ( ) ( )1 2, , 0k kβ α β α− =  (4.8) 

 

The following lemma shows that if ( ) ( )21 ,2/1,2/1 kk ββ = , Eq. (4.8) has a unique 
solution, but if ( ) ( )21 ,2/1,2/1 kk ββ < , Eq. (4.8) has exactly two solutions. We defer the 
proof of the lemma to an appendix. 
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Lemma 1.  Let us assume that 2
1 2

1

sgn 0k y y
k

⎧ ⎫
− >⎨ ⎬

⎩ ⎭
, ( )1 lkµ> , 1, 2l = , π<< dk120 , 

1 2k k k≥ ≥ , and 1 2 0k k> > . If we set the domain of ( )k,αβ  equal to the interval 

( ) ( )1/ 2 / 2,1/ 2 / 2k kµ µ⎡ ⎤− +⎣ ⎦ , the function ( )k,αβ  is well defined and has range 

( ) ( )[ ]kk 2/,,2/1 πβ .  The function ( )k,αβ  is strictly decreasing on ( )1 1 1,
2 2 2

kµ⎛ ⎞−⎜ ⎟
⎝ ⎠

, 

strictly increasing on ( )1 1 1,
2 2 2

kµ⎛ ⎞+⎜ ⎟
⎝ ⎠

, and has a unique minimum at 2/1=α . We have 

that Eq. (4.8) has exactly two solutions *α  and *1 α−  with ( )1
1 1 1*
2 2 2

kµ α− ≤ < . The 

solution satisfies 

 
 ( ) ( )1 2*, *,k d kβ α β α= =  (4.9) 

 

where ( )1 2 2* /I I Iα = + . 

 

 

The Lemma asserts that d  can be determined from two pairs of phase centers; but, an 
ambiguity in the intensity ratio ( )211 / III +  occurs when 2/1* ≠α . By using phase 
information we have removed this ambiguity. The following Theorem summarizes our 
combined magnitude, phase method for solving the SAR layover problem.  

 

Theorem 1. Let us assume that 2
1 2

1

sgn 0k y y
k

⎧ ⎫
− >⎨ ⎬

⎩ ⎭
, ( )1 lkµ> , 1, 2l = , 

π<< dk120 , and 1 2 0k k> > . The curves ( )( )1, ,kα β α and ( )( )2, ,kα β α  intersect 

exactly once on the interval ( )1
1 1 1,
2 2 2

kµ⎡ ⎞− ⎟⎢⎣ ⎠
; that is, Eq. (4.8) has a unique solution, 

*α , such that ( )1
1 1 1*
2 2 2

kµ α− ≤ < . We have 

 



 - 29 - 

 ( ) ( )1 2*, *,d k kβ α β α= =  (4.10) 

 
 ( )1 2 2/ *I I I α+ =  (4.11) 

and 

 1
1 1

1 2

t ,Is y d
I I

⎛ ⎞
= − ⎜ ⎟+⎝ ⎠

 (4.12) 

where 1
1

1 2

t ,I d
I I

⎛ ⎞
⎜ ⎟+⎝ ⎠

 is defined by Eq. (2.9). 

 

Proof.    According to Lemma 1 the intersection is unique, and since the point 
( )( )1 1 2/ ,I I I d+  must lie on both curves, it follows that this is the point of intersection. 

Given ( )1 1 2/I I I+  and d , we solve for s  from Eq. (4.1).     

 

Since there are three unknowns, two angles and a relative intensity (assuming that the 
IFSAR phase ambiguity has been removed), we expect to need both the magnitude and 
phase of the two complex coherence factors to be able to solve for the unknowns. The 
theorem asserts that, in principle, the magnitude and phase of the two complex coherence 
factors are indeed sufficient to determine all three unknowns. The drawback to this 
approach, however, is that the magnitude measurements may be unreliable (see Bickel 
and Hensley [3]). 
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5. IFSAR Phase Ambiguities 
In this section we treat the case in which the phase wraps have not been removed; but, 
only one target resides in a range-azimuth resolution cell. More precisely, we assume the 
vector t  to be negligible, the longer baseline has phase wraps, and the noise terms can 
not be neglected. We show that the error probabilities associated with resolving IFSAR 
phase ambiguities can be significantly reduced if an additional phase center is used. We 
illustrate this point by comparing the error probabilities for two pairs of phase-centers 
with the error probabilities for three pairs of phase-centers. This occurs in the case of an 
IFSAR antenna with one or two monopulse antennas, respectively. In the four phase-
center case, we are given three pairs of complex coherence factors, ( )lkγ  3,2,1=l , where 
the error in the longer baseline ( 1k ) is assumed negligible, but the error terms for the 
smaller baselines ( 2k  and 3k ) can not be neglected. For the three-phase-center antenna, 
we are given only the complex coherence factor for the longer baseline and one of the 
smaller baselines. The longer baseline may involve phase wraps; but, the smaller 
baselines are assumed small enough that no phase wraps occur, see Figure 3. At the end 
of this section we indicate a technique for removing the phase wraps when all the 
baselines have phase wraps. 

 

 

2p  

1p  

Σ  

2θ  

1b  

2b  

3b  

0r  

Figure 3. Multi-Phase-Center IFSAR 

cr  

1θ
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The image of the phase plus error term, ( ) ( )s s= +y x ε , defined by Eq. (2.8) with 

( )1 2 3, ,t t t= =t 0 , is a three dimensional map ( )sy  from [ ],a a−  into [ )3,ππ−  given by, 

 
 ( ) ( ) 12s s s nπ= + = − +y x ε k e ε  (5.1) 

 

where ( ) 12s s nπ= −x x k e , ( ) ( )1 / 2n k s π π⎢ ⎥= +⎣ ⎦  ( r⎢ ⎥⎣ ⎦  denotes the greatest integer less 

than or equal to r ), ( )321 ,, kkk=k , ( )0,0,11 =e , and ( )32 ,,0 εε=ε . For the baseline ib , 
we have  
 2 /l l ck bπχ λ=  (5.2) 

where i ib = b , 1 2 3k k k> +  and χ equals 1 or 2 depending on whether the IFSAR 
antenna is operated in the standard or multiplex mode, respectively ( 1χ =  for a 
monopulse antenna), see Figure 3. The map, ( )sy , consists of an error vector, ε , plus the 
“wrapped” line segments 12 ek ns π− (here s  is treated as a parameter) that lie on the plane 
orthogonal to 1= ×w k e , see Figure 4. By assumption, the error term 1ε  is zero. Also by 
assumption, we have [ ] ,l l l lk s k sπ πε ε

−
+ = +  for 2,3l =  (here [ ] ,

z π π−
 denotes the number 

z  modulo[ ),π π− ). Our goal is to estimate the number of wraps, n , in Eq. (5.1). Using 

this estimate we can solve for ( )1 2sin sin / 2s θ θ= +  (the parameter 

( )2 1sin sin / 2d θ θ= −  is computed by using the magnitude, see Eq. (3.9)). 
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The main idea is to set n  equal to the number of wraps associated with the line segment 
that is closest to y . This is accomplished by projecting y onto the line orthogonal to the 
line segments 12 ek ns π− , see Figure 4. For this we set 

 

 ( ) ( )( )1
1 1 1` 2 3 1 2 1 32

22 2 2 , ,k k k k k k kππ π π
⎛ ⎞

= − − − • = − = − +⎜ ⎟⎜ ⎟
⎝ ⎠

v e e u u u e
k k

 (5.3) 

 

where kku /= , ( )321 ,, kkk=k  and k  is the norm of k . We note that vector, v , is 
orthogonal to k  and equals the vector emanating from the origin to the closest point on 
the line segment with one wrap. We define 

 

 ( )( ) ( )2 2 2 2
2 3 1 2 1 3 2 3/ , , /k k k k k k k k⊥ = = − + +u v v k  (5.4) 

 

w  

u
 

x ε  

y = x + ε  

⊥ ⋅u y  

  Figure 4  The graph of ( )sx  
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where 2 2
2 32 /k kπ= +v k  equals the distance between the line segments.  Also, we 

define an estimator for the number of wraps by, 

 

 1ˆ int{ }n = u y
v
i  (5.5) 

where }int{ς  denotes the integer closest to ς . It can be shown that this estimator chooses 
the number of wraps associated with the line segment that is closest to the point y .  

 

 

Lemma 2.  We obtain for the projection of ( ) ( )s s= +y x ε  onto ⊥u  

 
 n⊥ ⊥= +u y v u εi i  (5.6) 

 

where /⊥ =u v v , ( )( )1 12 /kπ= −v k u e , 2 2
2 32 /k kπ= +v k equals the distance 

between line segments and ⊥u  is orthogonal to ( )1 2 3, , /u u u= =u k k . If  

/ 1/ 2⊥ <u ε vi , we have 

 

 1ˆ intn n ⊥⎧ ⎫⎪ ⎪= ≡ ⎨ ⎬
⎪ ⎪⎩ ⎭

u y
v

i  (5.7) 

where n  equals the number of wraps. 

 

 

Proof. We have 

 
 12s n nπ⊥ ⊥ ⊥ ⊥ ⊥= − + = +u y u k u e u ε v u εi i i i i  (5.8) 
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The vector v  is orthogonal to u  since it is the projection of 12 eπ  onto the line orthogonal 
to u so that ⊥u is orthogonal to u . It follows from Eq. (5.8), since / 1/ 2⊥ <u ε vi , 

 

 1 1int int n n⊥ ⊥⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

u y u ε
v v

i i  (5.9) 

 

as desired.  

 

 

The following theorem gives a formula for the probability that the estimator equals the 
actual number of wraps (see Eq.(5.7)). 

 

 

Theorem 2. The probability that n̂  equals n (the number of wraps) is given by, 

 
 ( ) ( )( )2 2

2 2 3 3 2 3 1ˆ /P n n P k k k k kε ε π= = + < +  (5.10) 

 

where 2ε  and 3ε  are independent identically distributed random variables with 
continuous distributions. Given that nn =ˆ , we obtain for the parameter s , 

 

 1

1

ˆ2ˆ x ns s
k

π+=  (5.11) 

where { }ˆ int /n n ⊥= ≡ u y vi  

 

 

 

Proof.  By Lemma 2 we have 
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 ( )1
2 2 3 32 2

2 3

kn n k k
k k

ε ε⊥ ⊥= + = + +
+

u y v u ε v
k

i i  (5.12) 

 

Now using the fact that 2 2
2 32 /k kπ= +v k , we obtain from Eq. (5.12), 

 

 ( ) ( )1
2 2 3 32 2

2 3

1
2

kn k k
k k

ε ε
π

⊥ = + +
+

u y
v

i  (5.13) 

 

This shows that /⊥u y vi  equals the number of wraps n  plus an error term. We have 
from Eq. (5.13) and the definition of our estimator, 

 

 ( ) ( ) ( )1
2 2 3 32 2

2 3

1 1 1ˆ
2 22

kP n n P n P k k
k k

ε ε
π

⊥
⎛ ⎞⎛ ⎞
⎜ ⎟= = − < = + <⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

u y
v

i  (5.14) 

                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +<+=
1

2
3

2
2

3322 k
kkkkP πεε , 

 

We use that assumption that 2ε  and 3ε  are independent identically distributed random 
variables with continuous distributions in the first step of Eq. (5.14).Given nn =ˆ , we 
obtain, from the definition of 1y , namely nskxy π2111 −==  (see Eq. (5.1)), 

 

 1

1

ˆ2y ns
k

π+=  (5.15) 

as desired.  
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The theorem provides a formula for estimating the probability that the projection ⊥u yi  is 
closest to the correct number of multiples of v  (see Figure 4). Using Theorem 2, we 
obtain for the probability that ŝ  differs from the true value of s , the expression, 

 
 ( )( ) ( )( )2 2 2 2

2 2 3 3 2 3 1 2 2 3 3 2 3 11 / /P k k k k k P k k k k kε ε π ε ε π− + < + = + > +  (5.16) 

 

This is the error probability for the number of wraps in an IFSAR antenna. 

 

For 2ε  and 3ε  independent Gaussian variables with mean zero and variance 

( ) 12 −−= snrN Lσ , we have that 3322 εε kk + is Gaussian with mean zero and variance 

( )( ) 12
3

2
2

2 −−+= snrNkk Lσ , where LN  equals the number of looks and snr  equals the 
signal-to-noise ratio. It follows that error probability is given by 

 

 ( )( )
2 2
2 32 2

2 2 3 3 2 3 1 0
1

/
k k

P k k k k k P
k

ε ε π ε π
σ

⎛ ⎞+
⎜ ⎟+ > + = >
⎜ ⎟
⎝ ⎠

 (5.17) 

 

where 0ε  is normally distributed with mean zero and variance one. For sufficiently large 
1−σ  we have (Feller [11]) 
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For 32 kk ≈ , this expression simplifies to 
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A similar calculation for two pairs of phase centers, say 1k  and 2k , yields for the 
probability of an IFSAR error 
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 (5.20) 

 

where ε  is normally distributed with mean zero and variance one. We notice that the 
exponent in Eq. (5.20) contains a factor of 2/1  that is missing from Eq. (5.19). It follows 
that the exponential term in Eq. (5.19) decreases as the square of the exponential term in 
Eq. (5.20). Roughly, the error probability for resolving phase ambiguities, in the four-
phase-center IFSAR, decreases approximately as the square of the error probability for 
the corresponding three-phase-center IFSAR. 

 

We note that if phase wraps occur in the smaller baselines then the wrapped line 
segments 12 ek ns π−  lie on a set of affine planes that are orthogonal to 1= ×w k e , see 
Figure 4. To remove the phase wraps, we determine which affine plane is closest to the 
point y  (this determines the number of wraps in the smaller baselines) and then apply the 
method presented in this section. 
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6. Summary 
We have presented new methods for resolving IFSAR ambiguities and SAR layover. The 
key idea in the phase method for solving the SAR layover problem is to find the 
intersection between a surface and a line segment. The basic idea in removing IFSAR 
phase ambiguities or in determining the number of wraps is to find the wrapped line 
segment that is closest to the measured phase. The analytic characteristics of these 
methods make them well suited for efficient, reliable computation. A more general 
treatment of the effect of noise on these methods requires additional study. 
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8. Appendix 
Proof  of Theorem 1  

 

We begin by showing that the domain of β  is given by ( ) ( )1/ 2 / 2,1/ 2 / 2k kµ µ⎡ ⎤− +⎣ ⎦ . 

The partial derivative of the argument in Eq. (4.6) is given by 
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The right hand side of Eq. (A1) changes from positive to negative at 2/1=α  for 
10 << α . Since ( )kξ  is strictly decreasing ( ( ) 0' <kξ ) and ( ) ( ) 12

2 <≤ kk γξ , it follows 
that the argument ( )kh ,α  is strictly increasing on (0,1/2), strictly decreasing on (1/2,1), 
and has a maximum at 2/1=α . The function ( )kh ,α  equals –1 at ( ) 2/2/1 kγα ±=  

and ( ) 12 2 −kγ  at 2/1=α . To restrict the range of ( )kh ,α  to the interval [ ]1,1− , so 

that z1cos−  is defined, we must restrict α to the interval ( ) ( )[ ]2/2/1,2/2/1 kk γγ +− ; 

this is the domain of ( )k,αβ . Now, since z1cos−  is strictly decreasing it follows that 
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1 , and has a minimum at 2/1=α . The range of ( )k,αβ  is given by 

( ) ( )( )( ) ( ) ( )( )kkkkk 2/,,2/1,2/2/1,,2/1 πβγββ =+ . 

 

We need to show that ( )221 / III +  lies in the domain of ( )k,αβ ; this implies tha t d  
belongs to the range of β . For this we notice 
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Here, we used the fact that ( ) ( )1 1 2 2 1 2/ 1 /I I I I I I+ = − + , the assumption 
π<< dk120 and the inequality ( ) 12cos −>kd . It follows from Eq. (A2) that 

( ) ( ) ( ) 2/2/1/2/2/1 211 kIIIk γγ +<+<−  and since, by assumption 
π<<< dkkd 1220 , we have that d lies in the range of ( )k,αβ ; that is, 

( )( ) ( )( )22111211 ,/,/ kIIIdkIII +==+ ββ . This shows that Eq. (4.8) has at least one 
solution. 

 

 We turn now to the problem of determining the number of solutions to Eq. (4.8). The 
partial derivative of ( )k,αβ  with respect to α  is given by 
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where 
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The second derivative of ( )k,αβ  at 2/1=α  is given by 
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From the above we have ( ) ( )kk 2/,0 παβ <<  for ( ) ( ) ⎟
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Here, we also use the fact that zz <sin  for 0>z . It follows from Eq. (A6) that g is a 
strictly increasing function of k. 

 

Let us suppose that the curves ( )1, kαβ  and ( )2,kαβ  intersect at *αα = . If 2/1* >α , 
we have since ( ) ( )21 *,*, kk αβαβ =  and g is strictly increasing 

 

 ( ) ( ) ( )( )
( )

( ) ( )( )
( )

( )1 1 2 21 22 * 1 *, , 2 * 1 *, ,*, *,
2 * 1 * 2 * 1 *

g k k g k kk kα β α α β αβ α β α
α α α α α α

− −∂ ∂
= > =

∂ − − ∂
(A7) 

 

 

Similarly, if 2/1* <α , we have 
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This shows that if the curves touch at a point *α such that 2/1* ≠α  then ( )1, kαβ  must 
cross ( )2,kαβ  from below. It follows that if ( ) ( )21 ,2/1,2/1 kk ββ >  then the curves 

( )1, kαβ  and ( )2,kαβ  do not intersect. Since Eq. (4.8) has at least one root, we must 
have that ( ) ( )21 ,2/1,2/1 kk ββ ≤ . 

 

The fact that ( )1, kαβ  must cross ( )2,kαβ  from below, implies that if 
( ) ( )21 ,2/1,2/1 kk ββ <  then Eq. (4.6) has a unique solution on each of the intervals 
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1 , namely *α  and *1 α− . 

 

 

Let us suppose that ( ) ( )21 ,2/1,2/1 kk ββ =  so that Eq. (4.8) has a root at 2/1* =α . We 
want to show that this solution is unique. From Eq. (A.8) we obtain, 
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This inequality, together with the fact that ( ) ( ) 0/,2/1/,2/1 21 =∂∂=∂∂ αβαβ kk , asserts 
that ( ) ( )21 ,, kk αβαβ >  in some deleted neighborhood of 2/1=α . Since ( )1, kαβ  can 
cross ( )2,kαβ  only from below for 2/1≠α , it follows that 2/1* =α  is the only root of 
Eq. (4.8). Now, by assumption ( )1 1 2* / 1/ 2I I Iα = + ≠  is a solution, so we must have that 

( ) ( )21 ,2/1,2/1 kk ββ < . Using the uniqueness of the solutions we obtain Eq. (4.9).    
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