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Abstract

Carbon nanotubes (CNT) are unique nanoscale building blocks for a variety of materials
and applications, from nanocomposites, sensors and molecular electronics to drug and vac-
cine delivery. An important step towards realizing these applications is the ability to con-
trollably self-assemble the nanotubes into larger structures. Recently, amphiphilic peptide
helices have been shown to bind to carbon nanotubes and thus solubilize them in water.
Furthermore, the peptides then facilitate the assembly of the peptide-wrapped nanotubes
into supramolecular, well-aligned fibers. We investigate the role that molecular modeling
can play in elucidating the interactions between the peptides and the carbon nanotubes in
aqueous solution. Using ab initio methods, we have studied the interactions between water
and CNTs. Classical simulations can be used on larger length scales. However, it is dif-
ficult to sample in atomistic detail large biomolecules such as the amphiphilic peptide of
interest here. Thus, we have explored both new sampling methods using configurational-
bias Monte Carlo simulations, and also coarse-grained models for peptides described in the
literature. An improved capability to model these inorganic/biopolymer interfaces could
be used to generate improved understanding of peptide-nanotube self-assembly, eventually
leading to the engineering of new peptides for specific self-assembly goals.
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Chapter 1

Introduction

In this introductory section, we briefly describe the background and original goals for this
LDRD project. We then describe the difficulties involved in achieving these goals, and
outline the areas we decided to focus on. The results are given in the following chapter.

1.1 The original goal

Since their discovery in 1991, there has been great interest in using carbon nanotubes for a
wide variety of applications. Single-wall carbon nanotubes (SWNTs) are unique nanoscale
building blocks for a variety of materials and applications, from nanocomposites, sen-
sors and molecular electronics to drug and vaccine delivery. Carbon nanotubes exhibit
environment-sensitive electrical properties that range from metallic to semiconducting, de-
pending on tube diameter and helicity. SWNTs also have enormous Youngs moduli, which
ideally could lead to light, very strong nanocomposites. However, because they are ex-
tremely hydrophobic, nanotubes typically aggregate strongly. They thus form insoluble
aggregates that are difficult to assemble. The key challenge for being able to use carbon
nanotubes in practical materials is to be able to solubilize them and subsequently to assem-
ble them in a controlled manner.

Up until very recently, carbon nanotubes were solubilized in water by covalently bond-
ing various functional groups to the nanotubes, a difficult process with low yields and which
changes the nanotube electrical properties, or by using surfactants, which limits the acces-
sible concentrations. In 2001 O’Connell and coworkers [1] demonstrated that water soluble
polymers could wrap around SWNTs and solubilize them. A possibly better solution to the
problem of solubilization is to utilize the nanoscale self-assembly properties of biological
molecules. More recently, Zheng and coworkers discovered that single-stranded DNA (ss-
DNA) binds strongly to SWNTs [2, 3]. To date, these systems have not been shown to lead
to further self-assembly of the polymer/SWNT hybrids.
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Another set of biological molecules that could conceivably solubilize nanotubes are
proteins or peptides. Amphiphilic α-helices are known to promote self-assembly. Dieck-
mann and coworkers [5] recently designed and synthesized an amphiphilic helical peptide
called nano-1 that binds to SWNTs, solubilizes them in water, and furthermore facilitates
assembly of the peptide/SWNT complex into fibers. The diameter of the fibers can be
controlled by the salt concentration in solution. The group performed some preliminary
molecular modeling using energy minimization, which showed that six nano-1 helices were
sufficient to surround an individual (8,8) SWNT. No modeling or theory was done to de-
scribe the self-assembly of the peptide-wrapped SWNTs.

We had proposed to investigate the mechanism for the peptide-nanotube assembly using
molecular modeling. First we had planned to compare results between molecular dynamics
simulations and ab initio calculations to verify the accuracy of the force fields used. We
were then going to use molecular simulations to determine the optimum geometry for the
bound peptides and the charge state of the system. The various contributions to the energy
determined from the simulations were to be used as input to a theory of the thermodynamics
of self-assembly of the peptide-wrapped nanotubes.

1.2 Modeling peptide/nanotube interactions

The original goals for this project, as outlined above, turned out to be overly ambitious
for a one year project. This became apparent after some initial research into the various
modeling possibilities. Ideally, one would like to explore the interactions of the peptide
with the CNT in atomistic detail. One might anticipate that the peptide would deform in
some way by being next to the CNT, and it would be very useful to be able to sample
the various possible conformations of the peptide near the CNT and evaluate its lowest
energy conformations. Below we outline what would be necessary to perform these kinds
of calculations. Our efforts along these lines form the rest of the report.

1.2.1 Force fields

To perform classical atomistic simulations, the first requirement is an adequate force field.
Because of the great interest in biological molecules, there are adequate force fields in the
literature to describe peptides in water, along with any necessary counterions or salt. How-
ever, there are no force fields specifically designed for the interactions of these species with
carbon nanotubes. We have thus adapted a force field developed by Werder et al. [4] for
the interaction of water with graphite. Lennard-Jones interaction parameters between the
graphite carbon atoms and the water oxygens were determined in order to reproduce the ex-
perimentally observed value of the contact angle of a water drop on graphite. From Werder
et al.’s data we were able to extract appropriate values to fit with the CHARMM water
model, finding values for the carbon-carbon LJ parameters of εCC = 0.07437 kcal/mol and
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σCC = 3.4414 Å. The CNT/water interactions given by these values are somewhat weaker
than those used in previous work which found water “wires” inside carbon nanotubes. We
have used these parameters in all simulations to date, although we may modify them in the
future based on results of quantum calculations (see below).

The next step was to implement the force fields and create initial configurations of the
systems. This has been done in the Monte Carlo code Towhee. The code can create starting
coordinates for any single-walled carbon nanotube given the chiral vectors (m,n) and the
number of unit cells desired. It can also generate starting configurations for biological
molecules such as peptides and nucleic acids.

1.2.2 Ab initio calculations

Recently, there has been some controversy about the interaction of water with carbon nan-
otubes. We have calculated the interaction strength for the binding of carbon nanotubes
with water in vacuum using ab initio techniques. As mentioned above, there has been con-
siderable excitement over the theoretical prediction that water enters pristine CNTs and
forms an ordered chain. Water has been found to either enter or escape the tubes, depend-
ing on small changes in 1 force-field parameter describing tube-water interactions. Since
the tubes used in experiments are generally contaminated with hydrophilic material, it is
unclear how attractive the water-tube interaction actually should be to represent a pristine
system. Therefore we investigated the binding energy of water with the interior of a CNT
using the best ab initio techniques available to us.

Accounting mainly for the electrostatic interactions only between a (6,6) CNT and a
water molecule, we find a modest attractive interaction energy of -3.4 kcal/mol. With such
a weakly attractive interaction, water would most likely not enter a carbon nanotube. Since
CNTs are hydrophobic, it is important to estimate the effect of weakly attractive disper-
sion interactions due to long-range electron correlation between water and the tube. The
best way to do this using ab initio methods is to apply an expensive perturbation correction
to the uncorrelated Hartree-Fock result. This required purchasing and installing a parallel
version of the quantum code onto a machine with more than 3 terabytes of disk space. This
calculation produced a stronger interaction energy of -7.8 kcal/mol between the tube and
water. These calculated interaction strengths are known to be upper bounds. An estimate
of the error due to overlap of basis functions (another very large calculation) indicates that
our best predicted interaction energy is slightly stronger than the strength of the average
hydrogen-bond interaction, namely -6.6 kcal/mol. In future work, we will adapt the clas-
sical force fields to give this interaction energy and then examine the behavior of water
interior to the carbon nanotubes.

Following the same procedure as above, we have calculated the interaction of water
with the exterior of the CNT. The geometry-optimized structure is shown in Fig. 1.1. We
obtain almost the identical interaction energy when just electrostatic effects are taken into
account, indicating that confinement in a large tube has little effect on interaction energy.
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Figure 1.1. Geometry optimized ab initio structure of water bind-
ing to the outside of a (6,6) CNT fragment terminated wtih hydro-
gen atoms.

We expect that dispersion effects significantly strengthen the interaction, just as they did
for water inside the tube. This calculation is in progress. In the future, the ab initio binding
energies will benchmark classical force field results for the interaction of water with carbon
nanotubes.

1.2.3 Previous modeling work

Dieckmann and coworkers [5] did some initial modeling of the interactions of nano-1
with an (8,8) CNT, using energy minimization. Nano-1 forms an amphiphilic α-helix,
a secondary protein structure that is stabilized by hydrogen bonds. Amphiphilic helices
consist of peptides in which one face of the helix consists of hydrophobic residues and
the other face of more polar, hydrophilic residues. These peptides have surfactant-like
qualities and spontaneously self-assemble in aqueous solution. The nano-1 sequence is
Ac-E(VEAFEKK)(VAAFESK)(VQAFEKK)-(VEAFEHG)-CONH2, where Ac indicates
acetylation of the N-terminus, CONH2 indicates amidation of the C-terminus, and the
parentheses denote heptad repeats. The peptide was designed to be amphiphilic, with the
hydrophobic residues along one side and polar residues along the other side.

Dieckmann et al. built up a system of 6 nano-1 helices arranged in a bundle that could
surround a CNT. This was done essentially by hand using the commercial modeling pro-
grams Insight II and Discover. They put two of these 6-helix bundles together end-to-end,
and inserted an (8,8) nanotube into the center. They then added a 5 Å shell of water, and
minimized the energy of the system.
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From this model building and minimization one obtains some basic geometrical in-
formation. It shows that geometrically, 6 nano-1 helices will fit conveniently around the
circumference of an (8,8) CNT, and that these 6 helices can be matched up end-to-end with
another set of 6 helices further along the axis of the nanotube. This would allow the CNT to
be wrapped by peptide along its length. However, this amount of modeling does not prove
that this is a stable or preferred arrangement for the peptide around the CNT, only that it
is a plausible one. It tells us nothing about the free energy of binding of the peptide to the
nanotube, nor the detailed conformations of all the side chains at equilibrium.

1.2.4 Improved atomistic modeling

However, improving on this initial kind of modeling is quite difficult. This is because het-
eropolymers like a peptide have a large number of possible conformations, which are dif-
ficult to sample adequately in a simulation. Furthermore, including the water is of critical
importance because the solvent changes all the effective interactions in the system. There
are two main simulation techniques one might use on this problem, molecular dynamics
(MD) and Monte Carlo (MC). MD simulations are difficult because a macromolecule like
nano-1 will diffuse very slowly, especially when surrounded by water. Most of the compu-
tation time is used to move the water, rather than the peptide. Also, many conformational
changes in peptides or proteins happen on rather slow time scales that are not accessible
to MD. MD is thus best suited to asking questions about very local changes in the peptide,
starting from an initial set of coordinates obtained from experiment.

MC simulations of large biomolecules are also difficult. In MC one has access to a
wider variety of moves that can radically change the conformation of the peptide, such
as configurational bias regrowth moves or pivot moves. These work in vacuum but are
much less likely to be accepted in a dense solvent such as water. Also, until recently these
moves could not adequately sample complex architectures such as the cyclics often found
in biomolecules (e.g. in some amino acids such as tryptophan). For this LDRD, we decided
to implement some new algorithms for configurational-bias MC (CBMC) that would allow
the regrowth of these cyclic pieces of peptides and improve the acceptance rate of CBMC
moves. This work is described below in Chap. 2.

1.2.5 Coarse-grained models

Finally, another approach to modeling proteins is to use a coarse-grained model. Many
of these have been developed in the literature, and they have been useful in understanding
some of the basic physics involved in the problem of protein folding. A recent review of
coarse-grained models can be found in Ref 5. As pointed out by Kolinski and Skolnick in
this review, there are several choices that must be made in constructing a reduced model of
a protein. One must decide on the description of the protein chain itself, whether the model
will exist in continuous space or on a lattice, the interactions between the coarse-grained
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sites in the protein (the force field), and finally the simulation method. Different decisions
are appropriate depending on the question of interest.

The simplest models reduce a peptide to a bead-spring type polymer consisting of two
types of beads, representing hydrophobic and polar residues. Originally this model was
solved on a lattice, and is termed the HP model [7]. The main weakness of this kind of
model is that is cannot produce any secondary structure. Thus these very simple models
would not be helpful in modeling nano-1, since this peptide is helical. To model the inter-
actions of nano-1 with a CNT using a reduced model, it would probably be necessary to use
an off-lattice simulation with a relatively detailed force field that could mimic the interac-
tions of the side chains with the CNT at some level. Ideally such a model would include the
solvent in an implicit way so that efficient sampling of the peptide conformations could be
done using e.g. Monte Carlo simulations. A variety of such models have been described in
the literature. Fairly coarse models that treat each residue with two united atoms have been
studied by Klimov and Thirumalai [8]. A relatively atomistic model that has been used to
model the conformations of polypeptides in solution and near surfaces such as semicon-
ductors is a rotational isomeric states (RIS) model of Lustig and coworkers [9, 10]. They
kept bond lengths and angles fixed, and sampled continuous torsion angles using a Monte
Carlo technique. Future work on the interactions of nano-1 or similar peptides with CNTs
would benefit from using these kinds of reduced protein models.
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Chapter 2

Improved intramolecular sampling in
configurational-bias Monte Carlo

In this chapter, a new formulation of configurational-bias Monte Carlo that uses arbitrary
distributions to generate trial bond lengths, angles, and dihedrals is described and shown
to provide similar acceptance rates with substantially less computational effort. Several
different arbitrary trial distributions are studied and a linear combination of the ideal dis-
tribution plus Gaussian distributions automatically fit to the energetic and ideal terms is
found to give the best results. The use of these arbitrary trial distributions enables a new
formulation of coupled-decoupled configurational bias Monte Carlo that has significantly
higher acceptance rates for cyclic molecules. The chemical potential measured via a mod-
ified Widom insertion is found to be ill defined in the case of a molecule that has flexible
bond lengths due to the unbounded probability distribution that describes the distance be-
tween any two atoms. We propose a simple standard state that allows the computation of
consistent chemical potentials for molecules with flexible bonds. Finally, we demonstrate
that the chemical potential via Widom insertion is not computed properly for molecules
with coulombic interactions when the number of trials for any of the nonbonded selection
steps is greater than one.

2.1 Introduction

Configurational-bias Monte Carlo (CBMC) was originally developed as a method for com-
puting the chemical potential of polyatomic molecules on a densely populated lattice [11].
It was recast as a Monte Carlo move in continuous space [12, 13] and the chemical po-
tential measurement was generalized to continuous potentials [14]. CBMC was then com-
bined [15] with the Gibbs ensemble [16, 17, 18] triggering a research boom for the compu-
tation of polyatomic molecule vapor-liquid coexistence curves. The success of the method
is due to its ability to find relatively low intermolecular energy conformations when in-
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serting or regrowing a molecule in a dense phase. The early work using this algorithm
was performed utilizing linear molecules [19, 20, 21, 22, 23], defined as molecules whose
atoms are all bonded to no more than two other atoms. The Boltzmann rejection proce-
dure [24] was a popular and proper method for generating trial bending and dihedral angles
in linear molecules and this method was originally adopted for simulation of branched
molecules [25, 26, 27, 28, 29], defined as a molecule that contains any atoms that are
bonded to three or more other atoms. It was subsequently discovered that the Boltzmann
rejection technique does not generate the correct distribution of bending angles and torsions
for branched molecules [30]. Two new strategies were developed in response to this revela-
tion. The Macedonia and Maginn method [31] performs a presimulation in order to tabulate
sets of molecule fragments that have the correct bending angle distribution and these tables
are used to generate trials during the true simulation. The coupled-decoupled method [32]
instead generates trials according to the ideal distributions and then incorporates the energy
terms into the CBMC acceptance rule.

These two methods both overcome the sampling obstacles for branched molecules, but
have different strengths and weaknesses. The Macedonia and Maginn method is compu-
tationally expedient because much of the work is performed before the actual simulation
and the database of fragments can be reused in subsequent simulations at the same tem-
peratures. However, this method cannot be used in conjunction with other intramolecular
sampling schemes (such as single atom translation) because the move is only reversible if
the current fragment distribution is present in the table of fragments. The computational
advantage is also mitigated somewhat for large, heterogeneous molecules as the amount of
memory required to store the fragment tables becomes substantial and eventually requires
either a large amount of RAM, or file input and output. In contrast, the coupled-decoupled
configurational-bias Monte Carlo (CD-CBMC) algorithm uses an insignificant amount of
RAM, but requires a substantial number of bond length, bending angle, and dihedral angle
trial attempts (in the range of 100 to 1000) in order to achieve a good acceptance rate. A
large number of trials is required because the true distribution (including the phase space
terms and the energies) is narrow compared to the ideal distribution, and therefore many of
the trials have extremely high energies and a correspondingly low acceptance probability.
This is the reason that the bond lengths and bending angles are decoupled from the rest of
the terms in the original CD-CBMC formulation as otherwise those selection steps become
prohibitively expensive.

This chapter describes a new approach to coupled-decoupled CBMC that uses arbitrary
distributions (subject to some mathematical constraints) to generate trial bond lengths,
bending angles, and dihedral angles. This new method overcomes much of the com-
putational cost of the original CD-CBMC and enables experimentation with alternative
coupled-decoupled formulations. In the course of testing this new method we discovered
several problems that occur when CBMC is used to compute the chemical potential for
molecules with flexible bonds, coulombic interactions, or fixed-endpoint biasing terms.
Solutions to some of these chemical potential CBMC problems are proposed and discussed.
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2.2 Algorithms

The concept of arbitrary trial distribution CBMC is based upon the energy bias schemes
pioneered by Snurr [33] to improve the sampling of adsorption into porous materials. They
presented several specific implementations to bias the grand canonical insertion positions
and orientations of molecules in porous materials, but their method is generally applicable
to any trial generation and selection step during a CBMC move. A particular trial position
(ri) is generated and selected for further growth during step k of the CBMC procedure
according to the selection probability:

Pselect(ri) =
parb

trial(ri)×
pideal

trial (ri)
parb

trial(ri)
exp[−βu(ri)]

Wk
(2.1)

Here u(ri) is the energy of the trial position, parb
trial(ri) is an arbitrary distribution that is used

to generate the trial position, pideal
trial (ri) is the distribution of trials that would be observed

for an ideal system (a system where u(ri) = 0 for all ri), and Wk is the Rosenbluth weight
of step k. This Rosenbluth weight contains the Boltzmann weight and a ratio of the trial
distribution probabilities.

Wk =
nk

trial

∑
j=1

pideal
trial (r j)

parb
trial(r j)

exp[−βu(r j)] (2.2)

nk
trial is the number of trials that are generated during step k of the CBMC growth procedure.

A CBMC growth consisting of nstep growth steps is accepted with the following probability:

Paccept = Min

[
1,

∏
nstep
k=1 W new

k

∏
nstep
k=1 W old

k

]
(2.3)

The standard CBMC procedure is followed [12, 13] where the new Rosenbluth weight is
computed by performing the growth and using random numbers to select a site with the
appropriate probability during each step while the old Rosenbluth weight is computed by
setting the first trial site of each step to the old position and this trial is always selected so
that the old conformation of the molecule is retraced.

The ideal distribution (expressed in cartesian coordinates) for the trial generation of any
atom is a uniform distribution with a normalization constant of inverse volume. However,
it is often useful to transform this distribution from Cartesian coordinates into a different
coordinate system that allows the bond vibration, bending angle, and dihedral angles to be
considered separately.

16



The natural coordinate system to use for bond vibration interactions is the bond length.
The ideal trial distribution for bond lengths is

pideal
trial (l) = Cideal

bondl2 (2.4)

where l is the bond length and Cideal
bond is the normalization constant. This normalization con-

stant is not well defined in a molecular simulation as the bond length is not truly bounded
for the infinite system represented by periodic boundary conditions and therefore Cideal

bond
goes to zero as the maximum bond length goes to infinity. Even for finite systems it is
inconvenient to have a bond length distribution that depends upon the box size as this con-
stant will affect the measurement of the chemical potential. We have responded to this
problem by setting Cideal

bond = 1.0 in our simulations.

We consider several arbitrary trial distributions for generating bond lengths. The first is
a bounded ideal distribution that has a probability density of

pb.i.
trial(l) =

l2

(l3
high− l3

low)/3
(2.5)

on the range[llow, lhigh] and zero otherwise. Given the variety in the equilibrium values of
bond lengths in a simulation we generally express the high and low bond length bounds
as a fraction of the equilibrium bond length (lequil.). There is some danger using this trial
generation scheme because simulation ceases to satisfy microscopic reversibility if any
”old” bond length is ever outside of these bounds. This can happen when CBMC is used
in conjunction with other conformation sampling moves (such as single atom translation
moves), or when extremely poor conformations for cyclic molecules are generated in a
previous CBMC move. Therefore, you want to set the bounds broadly enough that there
is essentially zero probability of accepting a bond length outside of the bounds (due to
the high energies from the bond length potential). Conversely, there is pressure to set
the bounds as narrowly as possible because Pideal

trial favors long bond lengths and therefore
setting a large range for the bounds means you are generating many bond lengths that are
infrequently selected due to their high energies. In previous work [34], we found values of
llow = 0.85 lequil. and lhigh = 1.15 lequil to be a reasonable compromise of these competing
desires.

We also consider a Gaussian distribution for bond lengths with an arbitrary trial distri-
bution of

pGauss
trial (l) =

1
CGauss

bond σGauss
√

2π
exp

[
−1

2

(
l− xGauss

σGauss

)2
]

(2.6)

where xGauss and σGauss are the mean and standard deviation of the Gaussian distribution,
and CGauss

bond is an integration constant that accounts for the finite range of the Gaussian
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distribution when generating bond trials in a simulation.

CGauss
bond = 0.5 [erf(lmax)− erf(0.0)] (2.7)

Here lmax should be set to a relatively large value, but less than half of the minimum box
dimension that will occur in the simulation. We typically set lmax to the value of the non-
bonded cutoff. Two variations of the Gaussian distribution are considered in this work. We
originally implemented a ’global Gaussian’ version [35] where the mean is set to the equi-
librium bond length, and a global standard deviation is utilized regardless of the mean. We
have subsequently developed an ’autofit Gaussian’ version where the mean and standard
deviation are both numerically fit to a discretized form of the true distribution for bond
lengths, independent of all other interactions.

ptrue
bond(l) = Ctrue

bondl2 exp [−βubond(l)] (2.8)

The value of Ctrue
bond is irrelevant because we are only fitting the mean and standard deviation

of this distribution and then accounting for the normalization using Equation 2.7.

As described previously [32], we break the bending angle selection into two steps. Part
A generates bending angles relative to the atom we are currently growing from (ifrom) and
another atom that has previously been grown that is bonded to ifrom (iprev). Part B then
rotates the newly generated atoms ixgrow about the ifrom− iprev axis in a manner similar to
dihedral trial generation. These two steps require different growth strategies. The ideal
probability density for part A trials is

pideal
trial (θiprev,ifrom,ixgrow) =

1
2

sin(θiprev,ifrom,ixgrow) (2.9)

on the range [0,π]. The Gaussian distribution is a reasonable choice for generating bending
angle trials with an arbitrary trial distribution of

pGauss
trial (θiprev,ifrom,ixgrow)=

1
CGauss

bendAσGauss
√

2π
exp

−1
2

(
θiprev,ifrom,ixgrow− xGauss

σGauss

)2
(2.10)

where xGauss and σGauss are the mean and standard deviation of the Gaussian distribution,
and CGauss

bendA is an integration constant that accounts for the finite range of the Gaussian
distribution when generating bending trials in a simulation.

CGauss
bendA = 0.5 [erf(π)− erf(0.0)] (2.11)

Again we use two different procedures to generate the means and standard deviations. The
’global Gaussian’ approach used in previous work [35] sets the equilibrium bending angle
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as the mean and specifies a global standard deviation. Here we also consider the ’autofit
Gaussian’ approach where the mean and standard deviation are fit to the true distribution
of each angle, independent of all other interactions.

ptrue
bendA(θiprev,ifrom,ixgrow)=Ctrue

bendA sin(θiprev,ifrom,ixgrow)exp
[
−βubendA(θiprev,ifrom,ixgrow)

]
(2.12)

Where we do not need to know the value of the normalization constant (Ctrue
bendA) in order to

fit the mean and standard deviation.

The bending B trials have an ideal distribution that is uniform on [−π,π]. In contrast,
the true bend B distribution is now more complicated and often contains multiple maxima.

ptrue
bendB(φiygrow

−φi1grow
) = exp

[
−βubend(θi1grow,ifrom,iygrow

)
]

(2.13)

Where φiygrow
− φi1grow

is the pseudo-dihedral angle between the iygrow atom grown during

this step and the first atom that is grown during this step (i1grow) relative to the ifrom− iprev
axis, and θi1grow,ifrom,iygrow

is computed from the bond lengths, bend A angles, and the relative
pseudo-dihedral angles. The Gaussian distributions we have used for the bond and bend A
generation are not generally appropriate to represent a distribution that has more than one
maximum. However, we can modify this distribution by breaking the [−π,π] region into
several subregions and then describing each subregion using a Gaussian distribution. The
probability density at any point then becomes the product of the probability of selecting
a particular region times the probability distribution inside of that region. This modified
Gaussian distribution is

pm.g.
bendB(φ) = preg.(φlow( j),φhigh( j)) (2.14)

×
√

2[
erf
(
φhigh( j)

)
− erf(φlow( j))

]
σ( j)

√
π

exp

[
−1

2

(
φ− x( j)

σ( j)

)2
]

Our “global Gaussian” implementation for the bend B trial selection assigns subregions and
means according to the hybridization pattern of the ifrom atom as described in Table 2.1. The
standard deviation is set globally for all of the angle types and subregions in the simulation.
The subregions are selected uniformly with a probability density of 1/nreg.

bendB. While this
procedure works reasonably well, it does require assignment of hybridization for all atoms
in the simulation and also a determination of boundary and mean parameters for any new
central atom hybridizations that might be encountered in future work. The ’autofit Gaus-
sian’ implementation rectifies these problems by automatically determining the maxima
and minima in Equation 2.13 under the constraints that the bond lengths and bending A
angles are set to their equilibrium values. The minima are used to determine the boundary
regions, and then the mean and standard deviation is computed in each of the subregions for
use during the simulation. If insufficient extrema are found then a uniform distribution is
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Table 2.1. Part B bending angle region boundaries and means
used with the global Gaussian option as a function of the hy-
bridization of the central atom (ifrom) in a bending angle. Hybrid
patterns not listed here utilize a uniform distribution instead of the
multiple Gaussian distribution.

Hybrid Pattern nreg.
bendB j φlow( j) φhigh( j) x( j)

sp3 2 1 −π 0.0 −2π/3
2 0.0 π 2π/3

sp2 1 1 0.0 2π π

aromatic 1 1 0.0 2π π

used instead of the multiple Gaussian distribution. In this work the probability of selecting
each subregion was uniform with a probability density of 1/nreg.

bendB.

The dihedral angle selection is very similar to the bending angle B selection. The
ideal distribution is uniform with a probability density of 1/2π. The multiple Gaussian
distribution for dihedral trials is

pm.g.
dihed(φ) = preg.(φlow( j),φhigh( j)) (2.15)

×
√

2[
erf
(
φhigh( j)

)
− erf(φlow( j))

]
σ( j)

√
π

exp

[
−1

2

(
φ− x( j)

σ( j)

)2
]

where the boundaries and means for the ’global Gaussian’ implementation are listed in
Table 2.2, and the standard deviation is set globally by the user.

Similar to the bending angle B selection, the dihedral ’global Gaussian’ requires specifi-
cation of the hybridization of each atom in the simulation. This is inconvenient to maintain
so we have also implemented an ’autofit Gaussian’ version that fits multiple Gaussian peaks
automatically to the true dihedral distribution

ptrue
dihed(φ) ∝ exp [−βudihed(φ)] (2.16)

under the constraints that the bond lengths and bending angles are set to their equilibrium
values. The minima in this distribution are used to break the 2π region into subregions
that are then each fit to a Gaussian distribution. In both the ’global Gaussian’ and ’autofit
Gaussian’ cases the subregions are chosen uniformly with a probability density of 1/nreg.

dihed.

A Gaussian distribution is analytically positive over its entire range, however it goes
numerically to zero in a computer simulation roughly 38σ away from the mean. While this
is a large deviation from the mean, it can occur during a molecular simulation if the confor-
mation is extremely poor. This is an unfortunately common occurrence for molecules that
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Table 2.2. Dihedral angle region boundaries and means used with
the global Gaussian option as a function of the hybridization of the
two central atoms (ifrom and iprev) in a dihedral angle. The ordering
of the two central atoms is not important. Hybrid patterns not listed
here utilize a uniform distribution instead of the multiple Gaussian
distribution.

Hybrid Pattern nreg.
dihed j φlow( j) φhigh( j) x( j)

sp3− sp3 3 1 −2π/3 0 −π/3
2 0 2π/3 π/3
3 2π/3 4π/3 π

sp2− sp2 4 1 3π/4 5π/4 π

2 −3π/4 −π/4 −π/2
3 −π/4 π/4 0
4 π/4 3π/4 π/2

arom−arom 2 1 π/2 3π/2 π

2 −π/2 π/2 0
sp3− sp2 6 1 5π/6 7π/6 π

2 −5π/6 −3π/6 −4π/6
3 −3π/6 −π/6 −2π/6
4 −π/6 π/6 0
5 π/6 3π/6 2π/6
6 3π/6 5π/6 4π/6
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contain complex cyclic geometries, as the algorithms are not always sufficient to ensure
loop closure. An arbitrary trial distribution of zero is fatal to the move as it creates a sit-
uation where a move is not reversible, and therefore the CBMC procedure is not provably
correct. In order to avoid this problem one can use an arbitrary trial distribution that is a
linear combination of other arbitrary trial distributions.

pl.c.(z) = pdist.a
select× pdist.a(z)+(1− pdist.a

select)× pdist.b(z) (2.17)

Here z is the interaction being generated (bond length, bending angle, or dihedral angle),
pdist.a

select is the probability of selecting distribution a, and pdist.a(z) and pdist.b(z) are the nor-
malized probability densities for distributions a and b, respectively. Combining an ideal
distribution with a Gaussian distribution realizes the benefits of the targeted distributions
while removing the numeric zero probability problem.

We utilize additional biasing when regrowing cyclic molecules, or the interiors of large
molecules. This fixed-endpoint biasing was originally proposed for lattice polymers [36]
and subsequently generalized to continuous space molecules [37]. An additional biasing is
employed when we are growing an atom that is on a path that is one ungrown atom (two
bonds) or two ungrown atoms (three bonds) away from connecting with an already existing
atom (rexist). This biasing is combined with the arbitrary trial distribution method at an
appropriate stage of the coupled-decoupled CBMC growth and Equations 2.1, 2.2, and 2.3
are replaced by

Pselect(ri) =
parb

trial(ri)×
pideal

trial (ri)
parb

trial(ri)
× pbias(ri,rexist)exp[−βu(ri)]

Wk
(2.18)

Wk =
nk

trial

∑
j=1

pideal
trial (r j)

parb
trial(r j)

pbias(r j,rexist)exp[−βu(r j)] (2.19)

Paccept = Min

[
1,

∏
nstep
k=1 W new

k

∏
nstep
k=1 W old

k

× ∏
nstep
k=1 pbias(rs,rexist)old

∏
nstep
k=1 pbias(rs,rexist)new

]
(2.20)

where pbias(ri,rexist) is a probability that depends upon the distance between the trial site
and all existing atoms in the molecule, and pbias(rs,rexist) are the additional biasing prob-
abilities for the atoms that were selected during the growth procedure. This method of
incorporating an additional biasing and then removing it in the acceptance rate is funda-
mentally the same as that followed for anisotropic atom growth [38], dual-cutoff [39], and
long range corrections like the Ewald sum [40]. In common with those methods, it no
longer computes the chemical potential properly unless all of the trial positions (whether
selected or not) have the same biasing value.
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We consider several options for the two bond biasing, where the atom being grown (rg)
is separated by two bonds that pass through one atom that has not yet been grown (rx) in
order to contact one atom that has already exists (re). This is the second to last step in
the closing of a ring. In all of the cases mentioned we employed a minimum bias value
(10−40) in order to make sure the biasing was always nonzero. The analytic Boltzmann
using angles (aBua) two-bond biasing depends upon the distance between the atom being
grown and the existing atom (lg,e). If lg,e is less than the sum of the equilibrium values of
the two missing bond lengths (lequil.

g,x + lequil.
x,e ) then

paBua
bias (ri,rexist) = exp(βubend(θg,x,e)) (2.21)

where θg,x,e is described by lg,e, lequil.
g,x , and lequil.

x,e . Otherwise the bias is set to

paBua
bias (ri,rexist) = exp(β

[
ubend(θg,x,e)+ubond(lg,x)+ubond(lx,e)

]
) (2.22)

where θg,x,e = π, lg,x = lequil.
g,x lg,e/(lequil.

g,x + lequil.
x,e ) , and lx,e = lequil.

x,e lg,e/(lequil.
g,x + lequil.

x,e ).

We have previously used [34] an analytic Boltzmann dihedral energy sum (aBdes) as
the two-bond bias probability. If lg,e > lequil.

g,x + lequil.
x,e then the biasing is set to the minimum

biasing, otherwise

paBdes
bias = exp

(
β
[
udihed(φf,g,x,e(1))+udihed(φf,g,x,e(2))

])
(2.23)

where φf,g,x,e(1) and φf,g,x,e(2) are the two possible solutions given the constraints that lg,x,
lx,e, and θf,g,x are all set to their equilibrium values.

We also considered two variations of a single Gaussian distribution based upon the lg,e
distance. The first used a mean and standard deviation that was automatically determined
by fitting to the true distribution of this distance considering only the bond lengths and
angles.

pfit(lg,e) = l2
g,xl2

x,eθg,x,e exp
(
β
[
ubond(lg,x)+ubond(lx,e)+ubend(θg,x,e)

])
(2.24)

This computation is done at the beginning of the simulation by sampling the bond lengths
uniformly on [0.5lequil.,1.5lequil.] and the bond angle uniformly on [0,π]. The self-adapting
fixed-endpoint method [41] is efficient for refining this Gaussian distribution as only the
sum of the observed distances and the sum of the observed distances squared are required
to self-adapt the mean and standard deviation for all of the two-bond interactions in the
system.

The three-bond biasing procedure is dependent upon the positions of the atom being
grown (rg) in this step, the atom it is growing from (rf) and the estimated positions of the
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missing atoms (rx and ry) that bridge between the growing atom and the existing endpoint
atom (re). The three-bond biasing probability utilized in previous work [34] is a compli-
cated analytic function dependent upon the estimated maximum and minimum lx,e distance.
The maximum (lmax

x,e ) and minimum (lmin
x,e ) distances are estimated by using the rf, rg, and

re positions and the equilibrium values for lg,x and θf,g,x. They are then compared with the
equilibrium lx,e distance, computed by using the equilibrium values of lx,y, ly,e, and θx,y,e.
If lequil.

x,e > lmax
x,e then the bias is a penalty for compressing the x-y-e angle

pa24
bias(l

equil.
x,e , lmin

x,e , lmax
x,e ) = exp

(
βubend(θ

compress
x,y,e )

)
(2.25)

where θ
compress
x,y,e is computed using lmax

x,e , lequil.
x,y , and lequil.

y,e . If lmin
x,e > lequil.

x,e then the biasing
is an expansion penalty analogous to Equations 2.21 and 2.22. Otherwise the three-bond
biasing is set to one.

We also combined the maximum and minimum distance approach with the automati-
cally fit Gaussian from the two-bond bias schemes. lmax

x,e and lmin
x,e are computed as before

and then used as the integration bounds for the two-bond Gaussian probability.

pug24
bias (lmin

x,e , lmax
x,e ) =

Z lmax
x,e

lmin
x,e

1
CGauss

2b σGauss
2b

√
2π

exp

−1
2

(
l− xGauss

2b

σGauss
2b

)2
dl (2.26)

Here xGauss
2b , σGauss

2b , and CGauss
2b are the mean, standard deviation, and normalization constant

for the two-bond Gaussian biasing.

The final three-bond biasing we employed is a single self-adapting Gaussian distribu-
tion based upon the lg,e distance. The initial mean and standard deviation are fit to the
dihedral distribution, using the equilibrium bond lengths and bending angles. These values
are periodically updated based upon a linear combination of the previous settings and the
mean and standard deviations observed during the course of the simulation.

Two different coupled-decoupled strategies are compared in this report. The first is the
original formulation [32] extended to work for flexible bond lengths [34]. The second is an
alternative formulation that couples the bond stretch, bending angles, and dihedral selection
steps to a new selection step that occurs immediately before the nonbonded selection. Both
methods are summarized in Table 2.3.

2.3 Results

In this section we describe some preliminary evaluations of the new algorithms. There are
three criteria to consider. The first, and most important, is that the new algorithms provide
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Table 2.3. Summary of the two coupled-decoupled
configurational-bias methods employed in this work. Each
step is either decoupled from all subsequent steps, or is coupled to
a single subsequent selection step.

Selection Step Original [32, 34] Coupled to pre-nonbond
Bond length decoupled pre-nonbond

Bend angle A decoupled pre-nonbond
Bend angle B decoupled pre-nonbond
Dihedral angle nonbond pre-nonbond
Pre-nonbond N/A nonbond

Nonbond decoupled decoupled

the same answers as previously developed algorithms. The second, is a rough measure of
the computational cost and sampling efficiency of the new algorithms relative to previous
algorithms. The third is a measure of the robustness of the algorithms, with a focus on
suggesting the optimal settings for a broad spectrum of molecules and force fields. All of
the results shown here were generated using version 4.12 of the freely available MCCCS
Towhee Monte Carlo simulation program [42].

First, we calculated the distribution of C-C bond lengths for a single molecule of Gro-
mos 43A1 [43] united-atom ethane in a 30Å cubic box observed from 100,000 Monte Carlo
moves using one of several variants of ATD-CBMC or the Metropolis [44] single atom
translation move. The distribution of bond lengths is clearly independent of the type of
Monte Carlo moves employed. The canonical insertion chemical potential of Gromos 43A1
ethane was computed in an empty 30Å box at 300 K. This chemical potential contains all of
the energetic terms (intramolecular and intermolecular), but does not contain any number
density terms. The NVT insertion chemical potentials using the autofit Gaussian with the
default standard deviation [549.4993K/kB], autofit Gaussian with double the default stan-
dard deviation [549.92K/kB], r2 with bounds of (0.0,2.0 lequil.) [549.79K/kB] and r2 with
bounds of (0.85 lequil.,1.15 lequil.) [549.54K/kB], where the subscripts indicate the stan-
dard deviation in the final digits, are all statistically identical. For the acceptance rate as
a function of the number of bond trials, we find that the autofit Gaussian using the default
standard deviation is already above 99% when using a single trial, while the r2 with bounds
methods still have not quite reached that level when using 10,000 trials. The autofit Gaus-
sian method with the default standard deviation fitted to Equation 2.8 provides the same
answers and a higher acceptance rate with a few orders of magnitude less effort.

We explore the sampling algorithms for part A of the bending angle selection by study-
ing a single molecule of TraPPE united atom [45] propane at 300 K in a 30Å box. We
compared the C-C-C angle distribution observed by numerically integrating Equation 2.12
to determine Ctrue

bendA, with Monte Carlo simulations utilizing several different bend A trial
distributions for 1,000,000 CBMC moves and 100 bending trials. The distributions are in
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excellent agreement, with the notable exception of the automatically fit Gaussian using a
standard deviation scaled by 0.5 as that method results in poor agreement in the tails of
the angle distribution. This illustrates the danger of generating trials from a distribution
that is narrow compared to the actual distribution. This problem is eliminated by using a
linear combination of the ideal distribution and the automatically fit Gaussian distribution
to generate trial distributions for bending angle A. We find that an ideal fraction of 0.001
is sufficient to converge to the correct distribution for the TraPPE-UA propane case studied
above, but we consider an ideal fraction of 0.01 a reasonable compromise of acceptance
rate and sampling accuracy.

Finally, we used the new algorithm to build the peptide that was the original focus of
this work, the nano-1 peptide of Dieckmann and coworkers. To do so, we used a similar
structure from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/). The nano-1 peptide
is based on a previously designed peptide called coil-VaLd , whose crystal structure has
been determined [46] and entered into the PDB (PDB id 1COI). The sequence of nano-1 is
identical to that of coil-VaLd , with the exception that the leucine residues in the “d” position
of the heptad of coil-VaLd are replaced by phenylalanine residues in nano-1. To build a
starting configuration, we downloaded the structure of coil-VaLd from the PDB. We created
an initial set of coordinates that contained only the backbone units. Configurational-bias
MC as implemented here was then used to grow in all the side chains of the peptide. The
new algorithms were able to successfully grow all the side chains, including the cyclic side
chains of phenylalanine (Phe) and histidine (His) which are both present in nano-1.

We also built an (8,8) CNT using the carbon nanotube builder implemented into Towhee.
We placed the nano-1 peptide next to the CNT in vacuum using a dielectric constant of 80
to mimic that of water. We used the Charmm-27 force field for the peptide and CNT-
Charmm-27 force field for the peptide/tube interactions as described in Sec. 1.2.1. Because
nano-1 carries a net charge of −2, we included two sodium counterions in the simulation.
We ran a few simulations, all at a temperature of 300K, and utilizing the new CBMC moves
as well as atom translations for the peptide and sodium ions, and molecule center-of-mass
translations and rotations for the peptide. We kept the CNT fixed at all times.

In general, the CBMC moves were fairly successful, and were able to regrow the peptide
with acceptance rates greater than 2% for fragments up to 12 atoms long. Regrowth for
segments up to 7 atoms all occurred with acceptance rates greater than 17%, and we had
some regrowth of long fragments up to 28 atoms long in some of the runs. Thus, we are
able to sample the side chains of the peptide.

The peptide did associate with the CNT in vacuum, although we did not achieve a
configuration similar to that constructed by Dieckmann et al. [5] in the current set of sim-
ulations. We ran several simulations in a rather small box of dimensions 40×40×61.525
Å. In these simulations, the box was too small so that the peptide associated with the tube
on one end, and the periodic image of the tube on the other end of the peptide. We then
placed the system in a larger box of dimensions 100× 100× 61.525 Å and ran another
simulation for 50,000 MC cycles. In that time, the peptide did not rotate around to become
parallel to the CNT. Nevertheless, in all our simulations we found that the peptide appeared
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Figure 2.1. The nano-1 peptide (helix) next to an (8,8) CNT,
with two sodium counterions shown in dark blue. The helix is
colored according to residue type: yellow is nonpolar, blue basic,
red acidic, and green polar.

to associate with the CNT through the phenylalanine (Phe) residues, as it was designed to
do. In Fig. 2.1 we show a snapshot from the last set of simulations, showing the α−helical
peptide next to the CNT, along with the two sodium counterions. One end of the peptide
appears to be bound to the nanotube. A close-up of the bound region is shown in Fig. 2.2.

Given more time, we could in principle explore further simulations of this system, to
attempt to verify the energy-minimized model built by Dieckmann et al. We expect that
a judicious initial condition with the peptide aligned along the axis of the tube, followed
by CBMC simulations, would very likely find similar configurations as those in Ref. 5.
However, we note that including the solvent is extremely important in protein simulations,
and in particular we would expect solvent effects to be critical for nano-1 since it is an
amphiphilic peptide. Further algorithmic advances will be needed to perform efficient sim-
ulations of peptides in explicit water.
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Figure 2.2. A close up of the nano-1 peptide next to the CNT.
The side chains are now shown, colored by residue. One of the
Phe residues (dark purple) is closest to the tube, with the aromatic
ring of the Phe nearly flat to the tube.
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Chapter 3

Conclusion

We began by investigating the force fields available in the literature to simulate peptide/CNT
interactions, and implemented these in the Monte Carlo code Towhee. Ab initio calcula-
tions focused on understanding the interaction between water and CNTs, due to controversy
in the field about this interaction. We have calculated the interaction of water with the ex-
terior of the CNT and find a similar value to that for water inside a CNT. Because of the
complexity and large size of the nano-1/CNT complexes, a brief survey of the literature
on coarse-grained models for peptides was conducted. There have been many different
approaches to modeling peptides explored in the literature. Most of these models would
require too much time to implement than was available for the current project, but a knowl-
edge of them is useful for future work.

The major accomplishment for the year was the development and implementation of
new algorithms to sample peptide conformations. A new formulation of configurational-
bias Monte Carlo using arbitrary distributions to generate trial bond lengths, angles, and
dihedrals was developed and shown to provide similar acceptance rates with substantially
less computational effort. When combined with an alternative formulation of coupled-
decoupled configurational bias Monte Carlo, significant improvements in the acceptance
rate are obtained for cyclic molecules. This allows the simulation of complex biomolecules
such as polypeptides and DNA as these both contain a significant number of cyclic subunits.
When tested on the peptide nano-1, we were able to grow the side chains using the new
algorithms given an initial configuration for the backbone atoms. Thus, we expect the
algorithm to be useful in future simulations of complex molecules such as biomolecules,
particularly if combined with a good implicit solvent method.
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