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Abstract 

The goal of this project was to examine the protein-protein docking problem, especially as it 
relates to homology-based structures, identify the key bottlenecks in current software tools, and 
evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This 
report describes the current challenges in the protein-protein docking problem: correctly 
predicting the binding site for the protein-protein interaction and correctly placing the sidechains. 
Two different and complementary approaches are taken that can help with the protein-protein 
docking problem. The first approach is to predict interaction sites prior to docking, and uses 
bioinformatics studies of protein-protein interactions to predict theses interaction site. The 
second approach is to improve validation of predicted complexes after docking, and uses an 
improved scoring function for evaluating proposed docked poses, incorporating a solvation term. 
This scoring function demonstrates significant improvement over current state-of-the art 
functions. Initial studies on both these approaches are promising, and argue for full development 
of these algorithms. 
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Executive Summary 

The goal of this project was to examine the protein-protein docking problem, especially as it 
relates to homology-based structures, identify the key bottlenecks in current software tools, and 
evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This 
report describes the current challenges in the protein-protein docking problem: correctly 
predicting the binding site for the protein-protein interaction and correctly placing the sidechains. 
Two different and complementary approaches are taken that can help with the protein-protein 
docking problem. The first approach is to predict interaction sites prior to docking, and uses 
bioinformatics studies of protein-protein interactions to predict theses interaction site. The 
second approach is to improve validation of predicted complexes after docking, and uses an 
improved scoring function for evaluating proposed docked poses, incorporating a solvation term. 
This scoring function demonstrates significant improvement over current state-of-the art 
functions. Initial studies on both these approaches are promising, and argue for full development 
of these algorithms. 



Nomenclature 

PDB 
CAPRI 
Homology models 
Pose 
Decoy 
Ro tamer 
FDPB 
RMSD 
Vdw 
A 
Native 
Decoy 

Protein Data Bank 
Critical Assessment of prediction of interactions 
Protein structure prediction modeled from protein with similar sequence 
Term used to describe the combined docked orientation and conformation 
Term used to described an incorrect docked pose 
Sidechain conformation 
Finite difference Poisson-Boltzman 
Root mean square deviation 
Van der Waals interactions 
Angstrom units 
“correct77 pose found in the X-ray crystal complex 
Pose with low score but not in native orientation (usually far away) 
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Developing Algorithms for Predicting Protein-Protein 
Interactions of Homology Modeled Proteins 

Background 

As the complete genomes of numerous species are now being determined, the next major 
challenge in biology is to examine the proteins encoded in these genomes, and how the proteins 
interact with each other. A key component of this understanding is to model how proteins 
interact at the atomistic level. This is often referred to as the protein-protein “docking” problem, 
analogous with a ship docking into a port. By studying the structural details of how proteins 
interact, we can elucidate their fimctional properties. This can lead to important biological 
applications in the biodefense and pharmaceutical industries. For example, modeling how a 
protein toxin from a threat bioagent binds to its receptor protein in humans would provide a 
starting point for the rapid development of therapeutics, in the form of small molecules that 
block that protein-protein interaction. Furthermore, it is becoming increasingly possible to 
perform large-scale docking studies to predict protein-protein interactions, to understand cellular 
networks by predicting which proteins may bind to each other. These types of studies can 
complement and refine high-throughput predictions made using only sequence information of the 
proteins involved. 

The Docking Problem 

The protein-protein docking problem can be broken down into three components: predicting the 
site of interaction or binding site on each protein, predicting how the proteins will orient with 
respect to one another to bind at these sites of interaction, and predicting how the three- 
dimensional shape of each protein (the protein conformation) will modify itself upon binding. 
Although the docking problem is related to the protein folding problem, in practice the docking 
problem requires its own specialized algorithms. The focus in protein-protein docking is largely 
on solving the relative orientation of two interacting proteins, and the challenge is to identify 
how protein-protein binding domains (large surface “pockets” of interaction that do not 
necessarily resemble the packing motifs found within a protein) bind and form an active complex 
configuration. The protein-protein docking problem is solved for the trivial case when the three- 
dimensional structures of both proteins are known in the binding conformation. In ths  case it is a 
simple 3-D jigsaw problem. However, predicting how the proteins will interact when only the 
individual unbound structures are known is a difficult problem, because of changes in protein 
conformation upon binding (referred to as “induced fit”). This was evidenced in a recent CAPRI 
(Critical Assessment of PRediction of Interactions) contest, an international competition to 
predict the final docking interaction of two proteins given their unbound 3-dimensional 
structures [l]. In this contest, in two out of seven of the protein-protein docking test cases, not 
even the binding site on each protein, much less the binding orientation between the two 
proteins, was correctly identified. 



Docking to Homology Modeled Proteins 

As the protein-protein docking problem is not yet solved, an even greater challenge is predicting 
protein interactions in proteins whose exact structure is uncertain. High resolution x-ray crystal 
structures do not exist for many proteins of biological interest, especially those h m  threat 
bioagents. Lower resolution models can be generated for many of these proteins, by looking at 
structures with similar amino acid sequences and assuming they will have similar three- 
dimensional structures, in a process called homology modeling. About 30% sequence identify is 
usually sufficient to generate a reasonable homology model. As there are currently over 34,000 
protein crystal structures solved in the Protein Data Bank (PDB) and this number is growing 
rapidly [2], it is increasingly possible to generate homology structures for non-membrane target 
proteins. However docking to these homology models is an even greater challenge than docking 
to crystal structures, due to the large potential errors in the model structures, particularly in 
sidechain placement (see Figure 1 .) 

Figure 1. Clystal structure of a docked complex. The Mhc Class II Protein HL-Drl 
(blue-green) is complexed with the superantigen sec3 protein toxin (red-orange). 
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Addressing Current Challenges in Protein-Protein Docking 

Thus, the current biggest challenges in protein-protein docking are: correctly predicting the 
interaction site for the protein-protein binding, and correctly placing the protein sidechains, 
which is especially important with homology modeled structures where initial sidechain 
positions may be incorrect. Most sidechain placement strategies involve discretizing the possible 
conformations of the sidechains into a set of low energy “rotamers,” which are usually 
determined fi-om statistical analysis of the PDB structures [3]. The sidechain placement problem 
thus becomes a search problem through the set of all rotamers at each sidechain position. In this 
report we develop algorithms to address both the binding site identification problem and the 
sidechain placement problem. In the first part we develop a novel method to identify protein- 
protein interaction sites prior to docking, using constraints based on knowledge gleaned from 
protein-protein interaction databases. We show how this can correctly identify interacting surface 
patches in known protein complexes. In the second study, we develop and validate a new scoring 
function for evaluating protein complexes that incorporates a more physically realistic solvation 
term. We demonstrate significant improvement over current methods in discriminating correct 
binding orientations from a set of “decoy” orientations. This function could be used as a post- 
filter to re-rank docking predictions, or combined with a rotamer search strategy to identifl 
correct sidechain positions. For the latter purpose, we also show how this function can be 
decomposed into a form that is a pairwise combination of sidechain rotamers, that can lend itself 
to more powerful and exhaustive search strategies such as Integer Programming [4]. 

11 
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Algorithm for Predicting Protein-Protein Interacting 
Domains in Protein Complexes 

Given the structures of the proteins involved in a protein complex, the protein - protein docking 
problem consists of modeling the structure of the complex by determining the most favored 
molecular interactions. In the common “lock and key” analogy, the protein docking problem is 
that of finding the part of one protein corresponding to the key and finding the part on the second 
protein corresponding to the lock. Even in the simplest case in which each protein is treated as a 
rigid body, this process is complicated by the enormous conformational space that must be 
searched. Here we propose a method for determining the most likely interacting domains in a 
protein complex, with the goal of reducing the size of the conformational search space and thus 
increasing protein-protein docking efficiency. 

The approach taken for predicting protein domain interactions is taken fi-om our recent work on 
predicting whether two proteins are likely to interact [5].  Here we extend that work to the 
prediction of the domains within a pair of interacting proteins that specify the protein-protein 
interaction. 

Methods 

Support Vector Machines 

SVMs are classifiers (there are also SVMs that perform regression [6]) that are described 
thoroughly by their inventor [7]. SVMs are very adaptable and have been applied successfully to 
a wide variety of problems. Recently, there has been interest in the application of SVMs to 
biological problems such as classification of gene expression data [8], homology detection [9] 
and prediction of protein-protein interaction [lo], as well as many additional problems. For an 
introduction to SVMs, see Burges [ l  11 and Cristianini and Shawe-Taylor [ 121. To describe an 
SVM precisely, suppose our data are given as pairs {(xi, y,  )} c 0 ” x { +1} ((xi, yi)) . In other 
words, suppose our data consist of two classes (1 and -1, or in our case binding and nonbinding 
protein pairs). Using this notation an SVM assumes the form f (x) = Ca,y,k  ( xi, x) + b , where 

f : D ” + 17 is a decision function (x belongs to class 1 if f (x) is greater than some threshold t, 

or to class -1 otherwise), k : Ll ’ I  x 0 ’ I  -+ 0 is a kernel function, otherwise known as a dot product 
in some vector space, and the constants b and ai are obtained by solving a quadratic 
programming problem [ 1 11 . The threshold t is typically 0, although it may be varied to obtain 
classifiers that are more or less accurate on positive predictions. SVMs have several advantages 
over other classifiers although we do not discuss them here. Instead, we refer to Vapnik [7] and 
Bennett and Campbell [ 131, among others. To implement the SVMs in this study we used the 
SVMlight algorithm [ 141 with a custom kernel based on signature. 
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Signature Molecular Descriptor 

ClassifLing protein domains as either interacting domains or non-interacting domains requires 
the use of a suitable method for encoding protein sequence information in an appropriate vector 
space. In this case, the challenge was to represent variable length protein domains as vectors 
containing the information necessary to best predict whether two protein domains are likely to 
interact. 

The sequence information coding strategy used here was to use a specific instance (height 1) of the 
more general signature molecular descriptor [ 15-1 81 as described by Martin et al. [5]. The 
molecular signature is formulated as a function 
s : {variable length amino acid sequence} -+ F defined by s(A) = co,z, , where A is an amino acid 

sequence, Zi is a basis vector in the signature space F E 0 Nand Oi is the number of occurrences of 
Zi in A .  A signature consists of an amino acid and its neighbors, and the signature space consists of 
all possible signatures. A height 1 signature consists of a root (the middle letter) and its two 
immediate neighbors-one amino acid residue in either direction, ordered alphabetically. 

As an example, consider the six-letter amino acid sequence LVMTTM. The height 1 signatures 
correspond to the four trimers in this sequence: LVM, VMT, MTT and TTM. Thus, the 
signatures corresponding to the four trimers are V (LM), M(T V ), T (MT ) and T (MT ), so that 
s(LVMT TM) = V (LM)+M(T V )+2T (MT ). Notice that MTT and TTM generate the same 
signature (due to symmetry) and therefore contribute two occurrences to the sums ( A )  = aizi . 
This is actually a very simple usage of signature, and that signature can be extended to handle 
longer subsequences (height 2,3, . . .), as well as non-linear sequences. In fact, signature was 
originally developed to describe molecules in cheminformatics. Recently, however, signature has 
also been used successfully in applications to HIV protease- 1 peptide prediction [ 171 and inverse 
design of LFA-l/ICAM-l peptides [18]). Signature has the following advantages over other 
descriptors [15, 161: (1) signature has been shown to be competitive with other descriptors (e.g. 
Molconn-Z) in terms of deriving quantitative structureactivity relationships and predicting 
various properties; (2) signature is canonical in the sense that it can often be used to derive other 
descriptors (in the case of amino acid sequences we note that descriptors such as hydrophobicity 
[used in Bock and Gough [lo]] are encompassed using signature with a smaller alphabet; (3) 
signature encodes information about structure as well as sequence by keeping track of 
neighborhoods. Thus, signature is information rich, and, in particular, enables the solution of 
inverse problems. 

Signature has been a useful descriptor in the past, and has the important practical advantage for 
us that it provides a vector representation of an amino acid sequence. We exploit ths  fact to 
develop a signature-based SVM for use in the prediction of protein-protein interaction. 



Signature Kernel 

As mentioned previously, signature can be used to obtain vector representations of variable 
length amino acid sequences. This is, of course, the minimum requirement for the application of 
an SVM to our problem. It is more computationally efficient, however, if we use the fact that 
SVMs do not actually require the storagehe of these very long sparse vectors. SVMs only 
require dot products between the vectors. Since this dot product is the composition of the 
standard Euclidean dot product with the signature function, we call it the signature kernel. The 
signature kernel is given as k: {variable length amino acid sequences}2 +. D , where 
k( A, B )  = s ( A )  * ( B ) .  

Here, we note that our kernel is very similar to the string kernels in Leslie et al. [9]. For us, the 
only real difference is that we used a symmetric formulation, while Leslie et al. do not, primarily 
due to problem domain. In fact, the string kernels in Leslie et al. could potentially improve the 
performance of our algorithm, as these kernels allow comparisons of sequences with 
mismatches. On the other hand, mismatches in subsequences of length 3 would be of negligible 
value, and while we could have used longer subsequences, we did not find this to be necessary. 
In fact, we did some experiments (on the H. pylori data) where we tried longer subsequences: we 
found that these subsequences did not provide any improvement in performance and therefore 
discontinued their use. In the end, we focused more on the product signature formulation 
(discussed in the next section), and chose to use our simpler string kernel based on signature. The 
signature kernel elegantly combines signature with SVMs and thus incorporates all of the 
advantages of the two methods. Most importantly, the SVMs allow the use of a very large 
number of signatures (up to 100 k in the applications we consider later). This would be 
unfeasible with other methods [e.g., multilinear regression, as used previously in Visco et al. 
[15]; Faulon et al. [16, 171; Churchwell etal. [18]. 

Product Signa ture 

The signature kernel SVM, as presented above, will only work with data points that consist of a 
single amino acid sequence. This is a problem since our data points are, in fact, pairs (protein- 
protein pairs) of amino acid sequences. To overcome this difficulty, we must define signature for 
pairs of amino acid sequences, and we must also provide a kernel that gives the inner product 
between two protein-protein pairs. To define signature for protein-protein pairs, we use the 
notion of a tensor product between vectors (this can be found in many standard texts on linear 
algebra). For our purposes, we define the tensor product between a =(a,,.-. ,a,,)T E 0 ” and 

b=(b, ,*- . ,b ,L)T E O  ’Iz to be aOb=(albl,a,b, ,..., albn,,a,bl ,..., a,,b,,,) E O  l t n l ,  andweobserve that 

the entries in a 0 b are the same as the entries contained in the outer product abT. Using this 
definition, the signature for pairs, or the signature product, s 0 s : {amino acid sequences}2 + 

F 0 F E CI N 2 ,  is taken to be s 0 s ( A ,  B )  - s ( A )  0 s ( B )  . Using this definition of signature 
product, we can now apply an SVM to our problem by specifying a kernel 

k : ( F  0 F )  x ( F  0 F )  + D that gives a dot product in the signature product space. 

T 

I 
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We use the standard Euclidean inner product so that the signature product kernel is defined 

We are now in a position to apply an SVM to the problem of predicting protein-protein 
interaction. Computationally, however, there is one final obstacle to overcome. Specifically, the 
use of the signature product effectively squares the complexity of the calculation. This is easily 
seen when we observe that F E !I so that F 8 F z !I N' . In reality, the complexity does not 
increase according to N but rather according to the lengths of the amino acid sequences involved. 
Nevertheless, the computational complexity is squared, and this causes a problem that must be 
addressed if we are to process large datasets. 

Fortunately, there is a simple way to fix this problem. If we write (for clarity) a = s ( A ) ,  

b = s ( B )  , c = s( C) and d = s ( D )  a = s(A), then we can see that 

k ( (  A, B),( C,D))  = (s ( A )  6 s ( B ) )  .( s (c) 0 s (.)) 

= trace ((ab') ( cd' r)  
= trace ( ab'dc' ) 
= ( bTd) trace ( acT ) 
= ( bTd) ( aTc) 

= k ( A , C ) k ( B , D )  
where trace (X) is the sum of the diagonal elements of a square matrix X, and k is the signature 
kernel. Equation (1) shows that to compute the signature product kernel of two protein-protein 
pairs, we need only to compute the signature kernel between combinations of the individual 
proteins. Thus, we have removed the squared computational complexity. 

Symmetric Signature Product 

We can obtain an additional improvement in the signature product by enforcing symmetry in the 
protein-protein order. In other words, we can make a protein pair (A, B) equivalent to protein 
pair (B, A).  This symmetry is easily achieved by defining the symmetric signature 
product I? ( A ,  B )  = s ( A )  0 s ( B )  + s ( V )  8 s ( A ) .  The associated symmetric signature product 

kernel is then y((A,B) , (C,D))  = 2(k(A,C)k(B,D)+k(A,D)k(ByC)) .  

Normalized Signature Product 

Next, we can use a normalized dot product to compensate for potential differences in the length 
of the amino acid sequences involved in our calculations. In particular, a normalized version of 
the signature kernel can be implemented as k ( A ,  B ) / , / m  . Tlus kernel extends 

directly to the signature product kernel and is only slightly more complicated in the case of the 
symmetric signature product. 



Other Adjustments 

As mentioned previously, SVMs are very flexible, and we found that we could occasionally 
achieve minor (2%) improvements in performance by adjusting kernels or using preprocessing 
techniques. In particular, we found that preprocessing by removal of signatures occurring only 
once in the dataset occasionally resulted in better performance. This improvement was used in 
the case of the yeast SH3 data. We also found that using a Gaussian kernel in combination with 
the product signature kernel could result in better performance. In particular, we used the 

k ( A ,  A )  - 2 k ( A ,  B )  + k (B ,  B )  , where k is the product signature as described 

previously, and y was chosen to be 0.5. 

Structural Comparisons 

Crystal structures of the complex of cyclophilin A with the N-terminal domain of HIV-1 capsid 
(PDB ID: 1AK4) and the histocompatibility complex (PDB ID: 1AGD) were taken fiom the 
Protein Data Bank (PDB). Our sequence based predictions of the interacting domains were 
compared to crystal structures by mapping the predicted interacting domains onto the structure of 
the complex using the visual molecular dynamics (VMD) program (Humphrey et al., 1996). 

Resu I ts 

Training 

The support vector machine was trained on the human database of interacting proteins (DIP). 
The DIP database catalogues experimentally determined interactions among proteins, and 
combines information from a variety of experimental sources to create a single, consistent set of 
protein - protein interactions. The human DIP contains 898 proteins and 1379 documented 
protein - protein interactions based on 1998 distinct experiments. 
Since databases of protein domain interactions are unavailable, we trained the SVM on the full- 
length sequences of interacting protein pairs. Protein pairs for which no documented protein - 
protein interactions exist were assumed to be protein pairs that do not interact and were used as 
negatives in the SVM training. 

The SVM model was validated using ten-fold cross-validation in which 90% of the data are used 
to create the model. The model is then tested using the remaining 10% of the data. This 
procedure is repeated 10 times and the average accuracy is calculated over the 10 cross- 
validations. The average accuracy, [defined as (True' + True-)/(True' + True- + False' + False-)] 
for predicting protein - protein interactions in the human DIP was 73.1 %. This accuracy 
compares favorably to the 70 - 80% accuracy previously reported for H. Pylori, human and 
mouse datasets [ 5 ] .  

Testing 

To test whether the SVM built fiom full-length sequences is capable of predicting interactions at 
the protein domain level, we extracted the sequence from a set of 20 human protein complexes 
for whch the X-ray structure was available in the protein data bank (PDB). 
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Each sequence was then split into domains of width N amino acids spaced M residues apart by 
sliding a window of length N across the sequence, offsetting each window by M residues. Pairs 
of the resulting pairs of N-mers were then scored using the S V M  trained protein interaction 
classifier. 

Human Cyclophilin A Bound to N-Term Domain of HIV-I Capsid 

Each of the two proteins of the complex of human cyclophilin A and the N-terminal domain of 
HIV-1 capsid was split into domains of 30 amino acids with a one amino acid offset, and all 
possible pairs of 30 amino domains were scored using the SVM trained on the human DIP. The 
scores for the possible interacting domains between human cyclophilin A and the N-term domain 
of HIV-1 capsid are presented graphically Figure 2, in which the color range runs fiom dark red 
(hlghest score) to cyan (lowest score). 

The maximum in this plot occurs at position (75,77), which corresponds to the interaction 
between residues 75 to 105 of human cyclophilin A and residues 77 to 107 of the N-terminus of 
HIV-1 capsid. The dark red region around this point indicates that the most likely interactions 
occur among several domains adjacent to these two domains. Figure 3 shows the domains 
corresponding to this region mapped onto the three dimensional structure of the complex. This 
mapping of the predicted interacting domains onto the crystal structure shows that the predicted 
domains are larger than expected under the assumption that the most important domain 
interactions are those in which atoms are in very close proximi@. Thus, the signature product 
may either be picking up longer range interactions or portions of these domains may be the result 
of false positive predictions at the protein domain level. 

Figure 2. Colormap of interaction score$ for cyclophilin A with HlV-1 capsid. The interaction scores 
for 30 amino acid long domains taken h m  cyclophilin A (x-axis) and the N-terminal domain of HIV-1 
capsid (y-axis). Dark red corresponds to the highest scoring domain pairs and cym corresponds to the 
lowest scoring domain pairs. 
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Figure 3. Mapping of the predicted interacting domains fmm human cyclophilin A (yellow) and 
the N-terminus of HW-1 capsid (orange) onto the X-ray structure of the complex (PDB ID: 1AK4). 

Human Histocompatibility Complex 

We performed the same analysis on the human histocornpatihility complex using our SVM 
trained on the human DIP. The predicted interacting domains for the histocompatibility complex 
(1AGD) are shown in Figure 4. As with the human cyclophilin A, the predicted interacting 
domains are larger than what might be expected, but the domains in direct contact appear to have 
been recovered. Again, the signature product may in fact be predicting larger interacting 
domains, because it may be picking up longer range interactions. 

Discussion 
Our goal in extending the signature product approach kom predicting protein - protein 
interactions to predicting the interactions at the protein domain level was to reduce the size of the 
conformational search space during protein docking. Based on the results shown in 
Figure 3 and Figure 4, our predictions are capable, at a minimum, of determining the most likely 
large interacting surfaces. In the context of the protein -protein docking problem, this is 
valuable information in that it serves to reduce the size of the conformational search by 
eliminating large faces of the two proteins that are very unlikely to interact significantly. 

The fact that the predicted interacting domains are larger than those that are indicated by 
measures such as changes in solvent accessible surface area (ASA) upon complex formation or 
inter-domain distances, suggests that the signature product accounts for other important longer 
range interactions such as electrostatics. Alternatively, the larger number and larger size of 
predicted interacting domains may indicate a propensity for the descriptor to produce false 
positive interactions. 
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Figure 4. Mapping of the predicted interacting domains ftom human histocompatibility 
complex onto the X-ray structure of the complex (FDB ID: 1AGD). 

These arguments point to two important points that should be made regarding this approach to 
predicting interacting protein domains. First, the SVM was trained using full-length amino acid 
sequences but was applied to sequence segments containing only 30 amino acids. This approach 
was necessitated by the lack of a convenient experimentally verified data set of protein - protein 
interactions compiled at the protein domain level. The consequence of this disconnect between 
the protein level training set and the domain level predictions may in part explain the tendency to 
predict large disconnected interacting domains. Second, validation of predicted results given the 
structure of a protein complex is difficult. Determining the important interacting domains from 
the 3D structure of the complex is not as straightforward as one might expect. Clearly, the 
residues in direct contact (van der Waals interactions) are important contributors; however, the 
important longer range interactions such as electrostatic interactions are not as easy to determine. 

Nevertheless, as discussed, the ability to predict only the interacting “sides” or large domains of 
the proteins in a complex provides a means for greatly reducing the computational expense 
involved in docking proteins. Accurate prediction of the most important domain or amino acid 
level interactions will require the creation of an experimentally validated domain level training 
set and more accurate methods for determining the interacting domains h m  solved structures of 
protein complexes. 
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Validation of a Novel Scoring Function for Protein-Protein 
Complexes: Significant Improvement over Existing Scoring 
Schemes 

Introduction 

Although there are now a number of successful protein-protein docking programs [ 19-26], the 
problem is far from solved. This was most notable in the CAPRI contest, a blind contest for 
predicting protein-protein complexes based on unbound crystal structures, where in rounds 1 & 2 
[l], there were no predictions even close to the correct binding orientation for 2 out of 7 of the 
target proteins. Even in more recent rounds 3-5, no single program could correctly identify the 
overall orientation for all 9 of the targets [27]. Several approaches have been taken to address 
this problem by post-filtering docked orientations, to identify correctly docked poses from 
“decoys”: combining multiple scoring functions [28], surface patch approaches [29,30,3 13, and 
analyzing docking energy landscapes [22]. To evaluate scoring and post-filtering functions, one 
can examine their ability to discriminate correctly docked structures fiom mis-docked (or 
“decoy”) complexes. 

For example, in a recent paper on the rosettaDock program [20], researchers analyzed a 
benchmark set of 54 structurally unique protein complexes [32]. They created a set of 1000 
“decoys” for each complex, starting from the bound backbone conformations of the proteins (but 
allowing sidechains to vary for each complex), and running them through their docking protocol. 
%le many of the native complexes were correctly identified with this scheme, in 10 out of 54 
of the structures the program was were unable to distinguish the native binding orientation from 
one of the decoys. They published their entire decoy set to challenge the community to develop 
better scoring schemes (http://graylab.jhu.edu/docking/decoys/). Our goal was to develop a more 
physically accurate scoring scheme, and evaluate it on these same decoy sets. This scoring 
scheme could be used as a complementary scheme to post-filter docking results, or could be 
directly incorporated into a docking algorithm such as rosettaDock, which has a separate module 
for sidechain placement and refinement of docking poses. 

Many scoring functions have been developed over the years for evaluating protein-protein 
interactions, including free-energy based methods [2 11, empirical methods [20] and statistical 
potentials [33-351. For purposes of speeding the time of the calculation, most of the existing 
force-field based functions employ a simple approximation for their solvation term based on 
atomic surface areas [36, 371 or atomic contact energies [38]. To create a more accurate model of 
binding energy, we developed a free-energy based scoring function that incorporated a more 
physical solvation term based on a finite difference Poisson-Boltzman (FDPB ) model, 
considered the “gold-standard” for implicit solvation calculations. We used the ZAP Toolkit [39] 
to calculate the solvation energy, and incorporated it into an AMBER 95 force-field [40]. Unique 
to the ZAP FDPB calculation is the use of atom-centered Gaussians, which is both significantly 
faster than original FDPB implementations, making it tractable for use in doclung scoring 
functions, and also solves many of the known problems with the FDPB approach with respect to 
discrete edge effects. 
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The results are both more physically realistic and more numerically stable [41]. Zap has been 
successfully added to both CHARMM and AMBER molecular dynamics packages [42]. We 
incorporated the Zap toollut into the PDock program, for use with our AMBER-based scoring 
scheme in docking calculations. PDock is a Sandia software tool for docking implementing 
algorithms from DOCK 4.0 [43] and Sandia's Coliny [44] optimization suite. We validated the 
scoring scheme in PDock against the rosettaDock "decoy" test set and showed considerable 
improvement on discriminating native from decoy structures, correctly identifying all native 
complexes, as compared to 44 out of 54 fiom the rosettaDock function. 

Along with its potential use as a final step in protein-protein docking, we wanted to see if our 
PDock scoring function could be useful for optimizing the sidechain positions in a docking 
orientation, to possibly replace the sidechain refinement step in a protein-protein docking code or 
as a stand-alone code. Sidechain rotamers are a set of low energy conformations of each 
sidechain, usually taken from a statistical analysis of all structures in the PDB [3]. In the 
sidechain optimization problem, the goal is to search among all rotamers of all sidechains in a 
protein-protein interface for the combination of rotamers that has the lowest energy. There are a 
number of search methods that can be used to identify the lowest combination of rotamers (for an 
overview of search methods see [45]), ranging from random search methods, such as monte carlo 
or genetic algorithms, to more powerful and exhaustive searches such as the pairwise-self- 
consistant field method (SCMF), dead-end elimination (DEE), and integer programming. These 
last methods require that a scoring function be decomposable into a form that can be treated as a 
pairwise combination of sidechain rotamers. We developed a pairwise decomposition for the 
PDock scoring function, so that we could take advantage of the powerful integer programming 
algorithms available at Sandia such as PIC0 combinatorial optimization library [46]. We 
validated that the pairwise formulation gave the same energy as the original implementation, and 
can be used for these search strategies. 

Methods 

PDock Scoring Function 

The form for our scoring scheme is as follows: 

Where AG,,,~ex is the free energy of the complex and AGp,.otl+p,.ot~ is the free energy of the 
unbound proteins. The individual terms of the scoring function are as follows: 

Where AGvdw is the non-bonded van der Waals energy, AG,,,, is the solvation ftee energy, 
calculated using the FDPB approach, AGes is the electrostatic energy, and AG,,, is the cavitation 
fi-ee energy. 



Substituting equation (2) into equation (1) gives: 

In the final form for comparing protein-protein docking poses, we approximate that unbound 
proteins are in the same conformation (or energetically comparable conformations) as the bound 
state conformation. In this case the intramolecular components of the van der Waals energy and 
electrostatic energies for the complex cancels the contribution from the unbound proteins, and 
we calculate only the intermolecular energy termS-AGy~w,~n~e,.ac~ and AGes,interact (a practice 
commonly used in scoring functions for ligand-protein docking calculations). Note: we neglect 
AG,,, p,.ot~+prot~, as this cancels when comparing different orientations of the same two proteins. 

(4) AGbind = AGvdw,interact -k “es.iiiter.act + AGsolv,corrrplex + AGcav,coniplex - AGsolv,protl+prot2 

Equation (4) can be used to compare multiple different docked poses of two proteins and discern 
which pose is most likely to be the actual biological one, assuming that the intramolecular 
interactions of the docked poses have previously been optimized. When optimizing a single 
docked pose of two proteins, we need to include the intramolecular terms for the flexible 
portions of the two proteins (e.g. for the sidechains that are allowed to rotate during the 
opt~ization) AGvdw8e.x and AGesj7ex - 

The van der Waals parameters and radii and the partial charges for the coordinates are from the 
parm96 set of the Amber8 force-field [40,47], using united atom parameters for the carbon 
atoms from the DOCK4.0 parameter set [43]. “United charges” were generated for the non-polar 
hydrogens by adding their partial charges back into their attached carbon atoms. United atom 
parameters were used because we have found in practice with ligand-protein docking that these 
parameters “soften” the scoring function, so that it converges more easily and consistently upon 
minimization. We used the same charges and radii for the calculation of the FDPB solvation 
term, which was calculated by calling the “zap binding()” macro fkom the ZAP library, 
interfaced to the PDock program. We calculated the cavitation term separately from the ZAP PB 
term, using the SURF program [48]. The dielectric was set to ZAP defaults-2.0 inside the 
proteins and 78.5 outside. 

Finally, when minimizing a sidechain conformation or protein pose, for scoring with equations 
(4) or (5), we use a fast evaluation function where we replace the solvation and electrostatic 
terms with a electrostatic term with a distance-dependent dielectric of 4.0, and also calculate the 
intramolecular electrostatic and van der Waals terms for the flexible portions of the proteins. 
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Optimizations were performed using the coliny patternsearch optimizer [44] with a convergence 
set to 0.001, maximum evaluations set to 1000, and exploratory - move adaptive. 

Once optimized we re-scored with equation (4) or (5) as appropriate. 

Pairwise Decomposition of the Pdock Scoring Function 

We developed a pairwise decomposable version of the PDock scoring function that could be 
used in searches of sidechain rotamers to optimize a given docking pose. The coulomb 
electrostatic and van der Waals terms are already painvise, as their functions depend only on 
interactions between two atoms. The solvation term is not, as it is mherently multibody. Several 
groups have looked at how to approximate a solvation term into a pairwise function [49, 501, 
although in these cases they were approximating solvation with atomic surface area potentials, 
and developing pairwise approximations for calculating surface area, whereas our function has a 
Poisson-boltzman term in it as well as a surface-area based cavitation term. However, many of 
the ideas fiom these painvise decompositions can be applied to our solvation function. Both 
pairwise functions for calculating surface area treat surface as a single sidechain approximation 
that is simply a summation over all individual sidechains, plus a correction term that is a 
summed over sidechain pairs. 

In Street and Mayo’s approach [49 1, the sidechain correction factor estimates the sidechain 
“overlap,” based on a parameterized scaling factor times the difference between the surface area 
of sidechain pairs and the individual sidechains, all taken in the presence of the backbone. 

Here Ai is the exposed surface area of sidechain i alone, and Aij is the surface area of sidechains i 
and j. The double sum term is an “overlap” term, subtracting a portion of the area of overlap of 
the sidechains, with the parameterized scaling factor s, whch had 3 terms depending on location 
of the sidechain in the protein. This model was improved by Zhang et al. [49, 501, who used 
“generic sidechains” to replace sidechains in all positions protein backbone outside of the 
rotamer i (or i j  for pair terms) in the calculation. The generic sidechains consisted of either 1 or 
3 spheres with a parameterized location and radius. They used the same single sidechain 
approximation as 7a (with generic sidechains at all other positions ), and a pairwise correction 
term as: 

i j t i  

which represents the difference in area of sidechain i in the presence of j versus in the presence 
of a generic sidechain. They parameterized the scaling factor and found that s=l worked best. 
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For our solvation function, we approximate both the FDPB solvation term and the cavitation 
terms (based on surface area), and so we calculate energy (E) instead of surface area (A), but the 
functional form stays analogous. Instead of generic sidechains, we used alanines to replace 
sidechains on the protein backbone, which are similar to the single sphere that was found to be 
effective in the generic side chain approach. Since we are only interested in sidechains at the 
protein-protein interface, we only sum over sidechains at this interface, and hence only replace 
these interface sidechains with alanines in the protein backbone. We refer to this construct as the 
“scaffold.” We calculate the solvation energy of the scaffold alone, the scaffold with its interface 
sidechains placed back individually(Ei) or in pairs (Eij). Our final function has a single sidechain 
approximation with a pairwise correction term as follows: 

‘singie-sidectmin-swn = scafiold + (Ei - scafiold) 
i 

We note that in this form, we can ignore the painvise correction term for any given sidechains .i 
and j, and it will still sum up correctly to approximate the overall solvation energy. To save 
calculation time, we take a quick evaluation of the interaction between sidechain rotamers at 
positions i and j, using the van der Waals term and an electrostatic term in a distance-dependent 
dielectric of 4.0, which is a faster calculation, and only calculate the pair term if the absolute 
value of the interaction is above a cutoff. 

Results 

Comparison of PDock Scoring Function to roseffaDock on Decoy Dafasef 

We evaluated our scoring function on the rosettaDock decoy set, focusing on the 10 pathological 
test cases for which rosettaDock failed to distinguish correctly docked complexes from decoys. 
For cases where rosettaDock performed well, our scoring function did as well, as seen in the 
1 ACB example in Appendix 1. In Appendix 1, (and summarized in Table 1) we plotted score 
versus root-mean square deviation (RMSD) for all these test cases. For cases where a scoring 
function is working, we expect to see a scoring “funnel” where the native and near-native decoys 
(rrnsdc2A) all score considerably lower than the remaining decoys. 

This is the case for 1 ACB, included for illustrative purposes. For the 10 pathological test cases, 
not only do we not see a scoring “funnel” in the rosettaDock scores, but in all but the 2KAI case, 
there are few or no near-native decoys generated. In the 2KAI example, there are many low-rmsd 
decoys, but there are several high-rmsd decoys scoring considerably lower. As this could be 
either a sampling problem with the algorithm, or a scoring problem, we looked at the scores for 
two types of native complexes - the native crystal minimized using the rosettaDock scoring 
function, and the native crystal structures with sidechains repacked and re-minimized 50 times, 
which is equivalent computationally to the decoys. Both of these are highlighted in the graphs in 
Appendix 1. In both sets of native complexes, the score was considerably higher (worse) than the 
decoys, implying the problem was primarily with the scoring scheme. 
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Table 1. Comparison of rosettaDock vs PDock’s ability to distinguish native from decoy conformations. 

Name of PDB 
Complex rosettaDock Score PDock Score 

Number Decoys 
Number decoys Scoring Number Decoys 

(rmsd>2A) Scoring (rmsd >2 8) Below (’2 A) Scoring Below 
Below Native Min ReDacked Min2 Native Min’ 

1 ACB 

1 BVK 

1 E08 

1 FQI 

1 GLA 

1 JHL 

1 MDA 

1 WEJ 

2KAI 

2VIR 

3HHR 

0 

989 

123 

981 

51 

265 

error 

8 

0 

984 

55 

437 

230 

222 

979 

154 

131 

640 

269 

566 

56 

50 

0 
0 
0 
0 
0 
0 
0 

0 
3 

0 

0 

Crystal structure of complex minimized with corresponding scoring scheme. 
2Crystal structure of complex with sidechains re-packed and minimized 50 times. 

I 

We compared this against PDock score for the native and decoys. For the PDock native, we 
performed minimization of the native structure to resolve any vdw clashes as described in 
methods for equation 6 ,  and then re-scored with the final evaluation function (equation 4). We 
also re-scored all the decoys using the PDock scoring scheme in equation 4, and compared to the 
score of the minimized native complex structure (note: minimizing the decoys structures did not 
affect their PDock score, presumably as they had previously been optimized in the rosettaDock 
with a scoring scheme that included van der Waals and electrostatic potentials). In all but 1 case 
(2KAI), the native complex scored considerably lower than all the decoys (see Appendix 1). In 
the case of 2KAI, three decoys were found with scores lower than the native complex using the 
2.0 A cutoff (Table l), but all three of these decoys were within 2.5 A of the native score. And 
the plot rms vs PDock score for 2KAI does show a scoring “funnel,” albeit shallower than many 
of the other test cases. We note that the positive scores for the PDock score are because we are 
not subtracting the cavitation term for the unbound proteins ( AG,,, p,.o.ot~+p,.o.ot2), as it should be the 
same for all poses. 

Validation of Pairwise Decomposition Scheme 

To validate the painvise decomposition of our scoring scheme, we looked at a number of protein 
complexes and calculated the pairwise solvation score using equation 10 summed over all 
interface sidechains, versus the solvation portion of the PDock score calculated for the entire 
complex at once. We also looked at the sensitivity of this formulation to optimization functions. 



Specifically, we optimized the sidechain rotamers, simultaneously in the case of the entire 
complex, and individually in the case of the painvise score, allowing each sidechain torsional 
angle to rotate a maximum off 10 degrees. Optimizations were performed using the coliny 
patternsearch optimizer [44] with a convergence set to 0.001 , maximum evaluations set to 1000. 
The results are summarized in Tables 2-4. In Table 2 we show the errors in approximating the 
solvation score as a simple addition of single sidechain scores (equation 10a only). In Table 3 we 
show how the pair term (adding equation 10b to loa), corrects most of this error. In Table 4 we 
test compare the scores whle allowing the optimization of the sidechain torsions. 

Table 2: Comparison of PDock score vs. summation of single approximation of PDock solvation score 
with no (pairwise) correction term. 

Name of PDB PDock Solvation Summation of Single Absolute 
Complex Score PDock Solvation Scores Difference 
1 BVK 378.8 377.9 1 .o 
1 E08 494.0 494.5 0.4 
1 FQ1 571.8 571.9 0.1 
1 GLA 631.4 631.5 0.0 
1 JHL 368.2 369.0 0.9 
1 MDA 627.0 626.0 1 .o 
1 MLC 353.6 356.4 2.8 
1 WEJ 370.2 379.0 8.8 
2KAI 307.6 307.5 0.1 
2VI R 496.9 495.0 1.9 
3HHR 467.9 464.7 3.2 

Table 3. Comparison of PDock score vs. summation of pairwise approximation of PDock solvation 
score with correction term. 

Summation of 
Name of PDB PDock Solvation Pairwise PDock Absolute 
Complex Score Solvation Scores Difference 

1 ACB 

1 BVK 

1 E08 

1 FQI 

1 GLA 

1 JHL 
1 MDA 

1 MLC 

1 WEJ 

2KAl 

2VI R 

3HHR 

31 9.9 

378.8 

494.0 

571.8 

631.4 

368.2 

627.0 

353.6 

370.2 

307.6 

496.9 

467.9 

319.9 

378.2 

493.3 

571.7 

631.3 

368.4 

627.5 

351.6 

369.5 

306.0 

496.9 

467.4 

0.0 
0.6 

0.8 

0.0 
0.1 

0.2 
0.5 

2.1 

0.7 

1.5 

0.0 

0.5 
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Table 4. Comparison of PDock score vs painvise PDock score with torsional optimization of sidechains. 
Sidechains allowed to rotate k10 degrees, optimization procedure as described for equation 6 in methods. 

Name of PDB PDock Summation of Pairwise Absolute 
Complex Solvation Score PDock Solvation Scores Difference 

1 ACB 

1 BVK 

1 E08 
1 FQ1 

1 GLA 

1 JHL 

1 MDA 

1 MLC 

1 WEJ 

2KAI 
2VIR 

3HHR 

319.6 

373.6 

492.1 

569.7 

626.3 

362.8 

625.2 

342.8 

359.5 

305.1 

490.1 

455.3 

320.5 

371.8 

489.5 

567.4 

626.2 

363.7 

625.2 

343.5 

362.2 

304.0 

490.1 

453.2 

0.9 

1.9 

2.6 

2.3 

0.1 

0.9 

0.1 

0.7 

2.7 

1 .o 
0.1 
2.1 

Discussion 

That the PDock scoring function performed much better than the rosettaDock function is 
striking, especially since the PDock function is a first-principal based scoring scheme, and the 
rosettaDock one is based on logistical fitting of a parameterized function to a variety of 
complexes, including 38 out of 54 of the very complexes used in their study! Additionally, the 
PDock scoring scheme uses a simplified set of only 4 unique terms, whereas the rosettaDock 
function includes 11 functional terms. 

Not only does PDock distinguish native from decoy complexes, but in most cases it strongly 
distinguishes them with a large relative difference in energies to the next lowest non-nativelike 
(i.e. rmsd > 2.014) decoy energy value (see Appendix 1). To evaluate whether the very low scores 
PDock generates for the native structures are an artifact due to starting with x-ray crystal 
structures, we looked at the values in the individual terms of the scoring function of the native 
versus the decoys. We looked to see if any term, in particular the van der Waals, was out of 
proportion in the crystal complexes versus the decoys, which could happen if the rosettaDocking 
procedure did not sufficiently optimize for van der Waals interactions. We did not find any 
single term dominating the energy values, or outside the range of what is found in the decoy set 
(i.e. there were many decoys with van der Waals score equal or better than the crystal score). Nor 
could any single term discern correctly docked from mis-docked structures by itself, such as van 
der Waals alone or electrostatics alone. Further, in cases where rosettaDock did generate near 
native structures, such as 1 ACB, we found that some of these structures have a lower PDock 
score than the minimized crystal complex structure, implying there is no bias in the score for the 
crystal complex itself. 



We believe the two factors that help generate such a strong predictive function in PDock are the 
use of a highly accurate FDPB function for evaluation of solvation terms, and the use of “united 
atom” parameters for the vdw portion of the scoring scheme, which softens the interaction 
boundaries, avoiding a lot of noise in the vdw potential during minimization. We realize that this 
is not a complete demonstration for the use of the PDock scoring scheme in generating dockmg 
poses, for although we have demonstrated we can distinguish incorrect poses generated from the 
rosettaDock function, it is possible the PDock function could generate additional mis-docked 
poses that would be difficult to distinguish from the native poses. However, we do believe that 
because of the overwhelming ability of this function to correctly discern docked from mis- 
docked poses, at the very least the PDock scoring scheme could be used as a complementary 
post-evaluation function of docked poses generated from rosettaDock, and may possibly be 
useful as a replacement in the sidechain refinement module. 

For using our scoring function in refining docked structures with flexible sidechains and/or 
backbone structures, we would have to include the intramolecular van der Waals and 
electrostatic terms for the flexible portions of the proteins, at least to minimize and identify low 
energy conformations of sidechain rotamers. Although we tested the scoring scheme without 
including these intramolecular terms (equation 4) in discerning docked from “decoy” structures, 
we note that these poses already had been optimized for intramolecular energy, as the 
rosettaDocking function included intramolecular terms in its minimization procedure. The 
scoring function in equation 5,  which includes intramolecular terms, can be used with many 
sidechain optimization algorithms. 

We also developed a pair-wise approximation to our scoring function (equation 10) that can be 
used with more exhaustive sidechain rotamer search strategies, such as integer programming and 
dead-end elimination techniques. We validated the pair-wise approximation for the solvation 
score, by comparing the pair-wise score summed over the entire protein-protein interface, to the 
solvation PDock score on the entire complex. (We did not need to validate the vdw and coulomb 
components, as their functions are mathematically pair-wise). We tested the summation of 
individual sidechain contributions to solvation score (equation 1 Oa alone) in Table 2, and saw 
that our pairwise correction (equation 1 Ob added to 1 Oa) improves the error in this approximation 
considerably. 

We showed that our pair-wise approximation for solvation is reasonably robust to allowing small 
torsional optimization of the sidechain rotamers, increasing the search space covered using 
discrete sidechain rotamers to *10 degrees for each torsional angle in that rotamer. As the PDock 
scoring function has been shown to be very predictive as a post-filter of docking complexes, the 
next step is to test its ability to within a docking protocol, in particular in sidechain refinement 
using either the functional form with intramolecular terms (equation 5) or the pair-wise 
functional form (equation 1 Oa, 1 Ob) as appropriate for the rotamer search strategy employed. 
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Appendix 1 : Comparison of PDock Score Versus 
rosettaDock Score for 11 Protein-Protein Complexes 
Here is a complete plot of the set of 10 pathological complexes from the rosettaDock decoy 
collection, plus one correctly predicted complex (1 ACD) for illustration, comparing rosettaDock 
scoring scheme with the PDock scoring scheme. The RosettaDock scores and were taken directly 
from the web site [51]. For each complex we plot the score vs the rmsd of that decoy from the 
native complex. The title of each complex is the name of the complex in PDB [2]. The scores for 
the crystallographic complexes are highlighted as follows: red diamonds for the minimized 
native complex, and magenta square [rosettaDock score only] for the minimized native with 
sidechains repacked and minimized 50 times using the rosettaDock protocol. We note that the 
positive scores for the PDock score are because we are not subtracting the cavitation term for the 
unbound proteins, as it is the same for all poses. As seen in these plots, the PDock score always 
has the lowest score for the minimized native complex (or close nativelike “decoys”), whereas 
the rosettaDock scoring function is unable to distinguish the crystallographic conformation from 
the decoys in these cases. 
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