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Abstract 

Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differ- 
ential equations (PDEs) solved on large computational domains by clustering mesh points only where 
required by large gradients. Previous work has indicated that fourth-order convergence can be achieved 
on such meshes by using a suitable combination of high-order discretizations, interpolations, and fil- 
ters and can deliver significant computational savings over conventional second-order methods at en- 
gineering error tolerances. In this paper, we explore the interactions between the errors introduced by 
discretizations, interpolations and filters. We develop general expressions for high-order discretizations, 
interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order 
SAMR implementation. We derive a formulation for the necessary interpolation order for given dis- 
cretization and derivative orders. We also illustrate this order relationship empirically using one and 
two-dimensional model problems on refined meshes. We study the observed increase in accuracy with 
increasing interpolation order. We also examine the empirically observed order of convergence, as the 
effective resolution of the mesh is increased by successively adding levels of refinement, with different 
orders of discretization, interpolation, or filtering. 
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Using high-order methods on adaptively refined 
block-structured meshes - discretizations, 

interpolations, and filters 

1 Introduction 

Numerical solution of space-time, partial differential equations (PDEs) is a very common undertaking. Us- 
ing the method of lines and possibly fi nite-difference techniques applied to the spatial operators, one solves 
a large system of ordinary differential equations (ODES). A critical aspect of solving these sometimes enor- 
mous problems is the effi ciency of the spatial discretization. Ideally, one fi rst establishes an error tolerance 
requirement for the simulations and then sets about the task of fi nding the method that will reliably deliver 
this tolerance at the minimum cost. In general, there are two simple guiding ideas to consider; high-order 
methods become relatively more effi cient as error tolerances are reduced and grid points should be allo- 
cated more generously to less smooth parts of the solution. Combining these two in simple geometries, 
we will consider high-order spatial discretizations in conjunction with adaptive mesh refi nement (AMR) for 
solution of PDEs having substantial spatial variation in smoothness. In particular, we will use Structured 
Adaptive Mesh Refi nement (SAMR) [l, 21, where a layered hierarchy of rectangular uniform-mesh patches 
is used to discretize the domain. While this approach resolves a domain effi ciently by refi ning a grid only 
where required, one would also like to minimize the number of mesh levels and this is facilitated by higher- 
order methods. Large multiphysics problems are typically solved on distributed memory parallel computers. 
These require that the domain of the solution be decomposed amongst processors in a load-balanced manner. 
If one tries to achieve a given spatial error tolerance by refi ning repeatedly, one gets localized regions of very 
high mesh density, distributed within an otherwise coarse mesh. This strongly inhomogeneous grid poses 
a challenge to domain-decomposition parallel load-balancing algorithms, which frequently fail to achieve a 
scalable decomposition. Thus, while AMR does allow one to concentrate mesh density in regions of interest, 
a certain moderation in its use adds tremendously to the ease and speed of computation. 

Although adaptive mesh spatial discretizations are not new, high-order (i.e. > 2) versions of them are 
not common. If one forgoes domains with intricate geometries, one may use block-structured adaptive 
meshes and exploit the mesh's regularity to consider high-order fi nite difference methods. [3] addresses the 
problem of solving the Poisson equation to fourth order accuracy on block-structured adaptively refi ned 
meshes. Starting with a classical Mehrstellen method, the authors develop and test a fourth order solution 
methodology for the Poisson equation in 2D and 3D. Tests were done on an adaptive mesh (coarse base 
mesh with one extra level of refi nement) and fourth order convergence was predicted theoretically and 
demonstrated empirically. Interpolations at coarse-fi ne boundaries were done using a sequence of high- 
order 1D interpolations, some fourth and others sixth order accurate, depending upon the confi guration of 
patches. Their method requires that the refi nement ratio between successive levels be four. 

While differentiations and interpolations in structured AMR may be done using wavelets, we follow the 
approach of [4, 5 ,  6, 7, 81 where they are performed in physical space. [6] points out that AMR is more 
effi cient than a traditional single grid method only when the higher wavenumber content of the flowfi eld is 
relatively nonuniform and resides within smaller regions of the domain. Because integration variables on 
each grid are eventually the result of interpolations based on local polynomials, one cannot differentiate this 
interpolated data indefi nitely. Interpolated data based on an order A interpolant, which is differentiated k 
times (differentiation order), results in a fi eld with maximum differentiation order of R - k +  1, i.e. CPIpk+' 
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(see appendix C). Therefore if, e.g., viscous terms are included in Navier-Stokes computations using inter- 
polants and derivative operators of identical order, one may observe an order reduction to order, po - 1, 
depending on the signifi cance and resolution of the viscous terms. Alternative approaches to high-order 
AMR are discussed by Holmstrom [9] where wavelets are often central to the AMR procedure. 

A key element of typical AMR constructions is that the more accurate solution from the finest grids is 
periodically interpolated onto the coarser ones and solutions from the coarse mesh are used at coarse-fi ne 
interfaces. The coarse-fi ne interface takes the form of a “halo” of celldgrid points around fi ne patches where 
the solution is interpolated from the underlying coarse mesh. Thus, an important issue in high-order AMR 
is dealing with the potential for the Runge phenomenon associated with interpolation on uniform grids. 
A key result of Trefethen and Weideman [lo] is that for spatial modes of the grid variables, the error in 
interpolation of modes, exp(i@), decreases to zero as the grid density tends to infi nity if and only if 6 is 
small enough to provide six grid points per wavelength. This implies that high-order interpolation will only 
succeed if there is active control of the spatial wavenumbers that live on the computational grid. Central to 
doing this are robust refi nementkoarsening criteria combined with careful addition of numerical dissipation 
for an otherwise low-dissipation numerical method. This robust refi nementkoarsening strategy might act 
to ensure that the energy content of a grid variable above some chosen cut-off wavenumber is essentially 
zero. This also places the requirement that reliable spatial error estimates be available. Wavelets are one 
of the means for doing this [ 111. One could, alternatively, employ right-hand-side (RHS) evaluations using 
stencils of different spatial accuracies to compute a relative error measure. One could also carry on two 
simultaneous computations, one on an “actual” grid and a second one on a “ghost” grid with a factor-of- 
two coarser resolution. The difference of the two solutions gives an estimate of the spatial discretization 
error [ 11. However, approximate error estimation techniques based on fi rst and second derivatives are more 
commonly used [12]. To facilitate the interpolations required in both refi nement and coarsening, several 
approaches to high-wavenumber dissipation may be utilized. Filtering grid variables may be done directly 
using stand-alone fi lters. Indirectly, it may be accomplished by using upwinded derivative operators rather 
than centered-difference approximations in evaluating the RHS or a hyperviscosity term may be added. A 
robust refi nementkoarsening strategy along with control of numerical dissipation is essential to an effi cient 
high-order AMR method, but one does not appear to fully exist currently. 

Several other outstanding issues must be considered when contemplating high-order AMR. One is the 
proper specifi cation of interpolant boundary closures. It is well known that elaborate boundary closures 
must be used if one seeks uniformly high-order, fi nite-difference, fi rst-derivative operators and time-stable 
integration[ 13, 14, 15, 161. What is less clear is what, if anything, is required of fi nite-difference interpolant 
boundary closures above and beyond satisfying accuracy requirements. Do interpolant boundary closures 
affect time stability of the overall method? The literature offers no guidance on this matter. Another topic 
that may affect the effi ciency of an AMR procedure is the selection of the LevelO grid spacing. Large initial 
grid spacings imply more grid levels, more interpolations, but fewer total grid points. Lower grid point count 
can be advantageous for expensive source terms like chemical reaction rates, more so if the chemical mech- 
anism is stiff. If the refi nementkoarsening apparatus is of high quality, interpolations are relatively cheap, 
and the domain decomposition is good then a relatively larger LevelO grid spacing seems appropriate. On 
the other hand, to the degree to which these three items are not met, a smaller LevelO grid spacing seems 
more prudent. When determining the number of mesh levels, one must also remember that the smallest 
acceptable grid spacing on any grid level is a function not just of the governing equations but also of the 
numerical dissipation. 

Although AMR with high order discretizations is appealing and potentially useful, it complicates the time 
integration strategy. Each mesh level has its own grid spacing and consequently the stiffness of the convec- 
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tive and diffusive eigenvalues vary inversely and inversely squared with the grid spacing, respectively. If 
convection and diffusion are treated explicitly in time, then there will be a large range in stepsizes corre- 
sponding to the stability limit based upon convection and diffusion on each grid. One may approach this by 
integrating all grids with a uniform stepsize. In this way, the formal order of traditional ODE integrators is 
maintained, however, the global timestep is restricted by the stability constraint on the fi nest grid. Alterna- 
tively, a “time-refi ned” approach can be used, where different time step sizes are employed for each mesh 
level [2]. Typically, this requires recursive integration on the various mesh levels, starting with the coarsest 
level (at a timestep determined by the stability constraint of the mesh level itself), followed recursively by 
the integration of its children mesh levels, which are processed more often but at their (smaller) stability- 
constrained timesteps. For example, in a viscous CFL dominated problem on a 4-level SAMR mesh, the 
fi nest grid takes 2 steps for every one on the coarsest. Generally, this approach constitutes what is known 
as subcycZing.but may also be approached more rigorously using partitioned multi-rate [ 171 methods. This 
approach constitutes partitioning of the right-hand-side (RHS) at the mesh level. Applying a non-multirate 
integrator in a multirate context may often return less than the formal rate of convergence. One may further 
optimize the integration strategy by treating convection, diffusion, and reaction using different integration 
methods. A partitioning like this is often referred to as an additive partitioning 1181. Alternatively, A- and 
L-stable [ 191 implicit schemes may ignore stability restrictions and select step-sizes based exclusively on 
accuracy and iteration concerns. Such methods usually result in linear systems which are solved by iterative 
techniques. 

In [20] we demonstrated, using a 1D FitzHugh-Nagumo equation, that fourth-order convergence could be 
achieved on block-structured adaptively refi ned meshes. Details of the choice of interpolations and fi lters, 
and the interactions between them, were omitted; instead we extended our method to more realistic problems 
by solving (on 28 processors) a coupled system of 10 reaction-diffusion equations modeling the ignition of 
H2 in air. The goal of this paper is to demonstrate high-order spatial convergence in multidimensions on 
adaptively-refi ned Cartesian grids by using fi nite difference differentiation, interpolation, and dissipation. It 
is beyond the scope of the paper to address all of the topics relevant to an effi cient, high-order spatial scheme 
- for example, we will not address high-order temporal discretizations or time stable boundary closures for 
interpolant operators. Instead, we focus on demonstrating methods that give high-order convergence, and 
begin to address effective strategies for retaining high order but avoiding Runge phenomena. Runge phe- 
nomena are avoided by using dealiasing fi lters. In Sec. 2 we discuss specifi c numerical and computational 
issues associated with SAMR constructions and establish the stencil coeffi cients of the derivatives, inter- 
polants, and filters. In Sec. 3 we use these tools in different problems (the Korteweg-de Vries, and the 
Kuramoto-Sivashinsky equations in 1D and a 2D FitzHugh-Nagumo equation) and analyze their effi cacy. 
We draw our conclusions in Sec. 4. 

2 Structured Adaptive Mesh Refi nement 

Structured Adaptive Mesh Refi nement (SAMR) [ 1, 21 is a particularly appealing approach to geometrically 
simple spatial domains. The starting point for the method consists of laying a relatively coarse Cartesian 
mesh over a rectangular domain. Based on some suitable metric, regions requiring further refi nement are 
identifi ed, and the grid points are flagged and collated into rectangular children patches on which a denser 
Cartesian mesh is defi ned. The refi nement factor between parent and child mesh is usually kept constant for 
a given problem. In this work, it is always specifi ed as 2. The procedure is done recursively, so that one 
ultimately obtains a hierarchy of patches with different grid densities, with the fi nest patches overlaying a 
small part of the domain. This hierarchy will be referred to henceforth as a Grid Hierarchy or the Mesh; 
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individual patches will be termed grids or parches. Individual patches may be viewed as a wireframe laid 
over a rectangular domain with the dependent variables of a PDE defi ned at the intemection of the“wires” 
(referred to as “vertex-centered grids”) or as a division of a domain into small cells, with the variables stored 
at cell centers (“cell-centered” grids). We will only study veflex-centered grids in this paper. Such grids 
have the property that the fi ner mesh grid points lie either on top of the coarse mesh grid points or at their 
geometric midpoints. This may be seen in Fig. 1 where large circles correspond to the coarse mesh, and fine 
mesh points are denoted by small triangles, squares, and circles requiring lD, 2D, and 3D interpolations, 
respectively. The solution at these edge-centered (triangles), face-centered (squares) and body-centered 
(small circle) points, at coarse4 ne interfacedhalos, are interpolated from the underlying coarse mesh (the 
large circles) using a variety of interpolations techniques. 

Figure 1. A vertex-centered grid. The large circles are the coarse mesh, 
and the fine mesh points at edge-centers, face-centers and body-centers 
are represented by triangles, squares and a (small) circle. 

If a constant refi nement factor is used (e.g. 2), the number of grid points rises rapidly as one refines. When 
used with time-refi ned explicit integration, SAMR-based simulations spend almost all their time in the 
finest levels. Further, in parallel simulations, the requirement of keeping parents and children on the same 
processor results in poor domain-partitioning by conventional partitioners. Thus, in practice, time-refi ned 
simulations usually have shallow hierarchies (e.g. 4 deep) with a fairly dense “coarse” grid. The resulting 
timestep size, determined by the stability constraints of the fine “coarse” grid is relatively small. To date, 
second-order spatial discretizations have been typical for SAMR simulations on vertex- and cell-centered 
grids. Accuracy has been achieved mainly by increasing mesh density, which has exacerbated the problem 
of a rather fine starting mesh (henceforth called Level0 mesh) or resulted in deep hierarchies. The high- 
order spatial discretizations employed in the present work will remedy this situation, reducing the requisite 
resolution requirement on the LevelO mesh. 

High-order SAMR has a tremendous potential to reduce resolution requirements to achieve a given level of 
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accuracy. Jameson[2 1 ] has attempted to quantify the relative effi ciencies of different orders-of-accuracy in 
one-dimension. Table 1 in [20] contains a listing of the number of grid points needed by centered derivative 
operators of various order to resolve a particular wavenumber mode to a given error tolerance; a similar table 
for high-order interpolants is in Table 1. In both cases, we see that a modest increase in order (from second 
to fourth) reduces the resolution requirements by a factor of three at 1% accuracy; at tighter tolerances a 
factor of 20 is achieved and at higher orders, one achieves almost 2 orders of magnitude. These savings are 
magnifi ed as one proceeds to higher spatial dimensions. 

E 2E 

22.20 
39.49 
70.24 
124.9 
222.1 
395.0 
702.5 

4E 

7.666 
10.29 
13.76 
18.39 
24.55 
32.76 
43.70 

6E 

5.381 
6.597 
8.055 
9.810 
11.93 
14.48 
17.57 

8E 

4.486 
5.262 
6.144 
7.153 
8.308 
9.635 
11.16 

10E 

4.006 
4.577 
5.205 
5.900 
6.671 
7.530 
8.488 

Table 1. Number of grid points per wavelength required to obtain a 
chosen relative error tolerance E using explicit, centered-difference, mid- 
point, interpolant operators of orders two through ten. See table 13 for 
stencil coefficients. 

However, the use of high-order discretizations and interpolants is not without its drawbacks. SAMR in- 
terpolant operators are evaluated using a linear combination of as many as p t  (where PI is the order of 
accuracy and d is the dimensionality) values and their respective coeffi cients. While this renders high-order 
interpolants at each grid point far more expensive compared to bilinear or biquadratic (trilinear and tri- 
quadratic for 3D) interpolations, results in [20] indicate that the computational savings from the sparser 
grids may far outweigh the heavier per-gridpoint computational requirement in high-order methods. Nev- 
ertheless, high-order discretizations and interpolants do lead to certain complications. They may need to 
be closed to lower order at domain boundaries to preserve time-stability when coupled with explicit time- 
marching algorithms. Further, they may require smaller timesteps for stability, though this reduction is often 
not too consequential. 

In this study we examine empirically high-order spatial convergence on a multiple-level SAMR mesh to 
identify correct discretization-interpolation-dissipation sets in conjunction with appropriate refi nementkoarsening 
procedures. As a fi rst step in that direction, we develop the expression for high-order discretizations, inter- 
polants and fi lters which will be used in Sec. 3. 

2.1 Derivatives 

Finite-difference differentiation operators are constructed for the purposes of providing high-order deriva- 
tives as well as potentially adding dissipation via upwinding. In the case of arbitrary skewed stencils rep- 
resenting the path-order accurate approximation to the kth-derivative on a uniform stencil of width Ax, we 
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may write the derivative at grid point i as [22] 

c~f i -3  b~fi-2 a~f i -1  rfi a~f i+ t  b~fi+2 +-+... c K f i + 3  
..+- +- +-+- +- +- 

( A x ) ( k )  (Ax)@) (Ax)@)  (Ax)@) (Ax)@) (Ax)@) (Ax)@)  

where f i  is the value of the function at point i, and f,'") is the value of the k-derivative at that point. Following 
Kennedy and Carpenter [22] we use a, P, . . ., to denote coeffi cients of the derivative terms ik) that are one, 
two, e . . ,  grid points on either side of point i, with R and L subscripts denoting the right and left directions 
on either side of point i respectively. We use a,  b, similarly for the coeffi cients of the function terms fj 
for j = i f  1, i f  2,. e ,  and I' for the coeffi cient of $. The Fourier image of this discrete derivative is given 
by 

f [r + ( a R + a L )  cos(5) + ( b ~ + b ~ )  cos(25) + ( C R + C L )  COS(35) + . . . I  + 

or, after expanding the sine and cosine functions as a Taylor series, 

where 5 is the Fourier dual variable, and "(5) is the approximation of the derivative in Fourier space [22,23]. 

For the k-th derivative, and a po-th order accurate derivative discretization, we must now solve ( p o  + k) 
simultaneous equations; ~k = ( i ) k  (for k even), W k  = (i)-' (for k odd), and vl = 0, I = 0,1,--. , ( p o  + 
k -  1),1 # k, in ( p o + k )  unknowns; ( ~ ~ ~ , ~ ~ , a ~ , a ~ , ~ ~ , ~ ~ ~ , c ~ , b ~ , a ~ , a ~ , b ~ , c ~ , ~ ~ ~ } .  Table 2 lists various 
values obtained from solving these equations fork = 1 (a/&) along with their leading-order truncation errors 
(L.O.T.E.). The suffi x E is used to denote explicit centered, U is for upwind, UU is for doubly upwind, D is 
downwind, and the prefi x denotes the order of accuracy. It is interesting to inspect these stencils further. On 
uniform grids, the difference operators may be considered as linear combinations of centered fi rst-derivative, 
difference operators plus low-order approximations to higher derivatives. Singly upwinded stencils may be 
readily decomposed as 

where A denotes the derivative operator, the northwest superscript is the order of the derivative, the south- 
east subscript is the order of the accuracy, the northeast superscript denotes (c)-centered, (+)-upwind, or 
(-)-downwind, and the subscript outside of the parentheses denotes the grid point at which the difference 
operator is acting. We illustrate this with an example. 
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Name 
2E 
4E 
6E 
8E 
3 u  
5 u  
7 u  
4 u  
6U 
4 u u  
3 u u  
5 u u  
3DUU 
SDUU 
4DUU 

bL 
0 

1/12 
3/20 
12160 

0 
1/20 
1/10 
0 

1/30 
0 
0 
0 

d L  CL 

0 0 
0 0 
0 -1160 

11280 -41105 
0 0 
0 0 
0 -1110.5 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 
3/70 
5142 

-314 314 
-415 415 
-216 -112 
-418 -113 

-6110 -114 

-25112 
-1116 

-115 -13112 
-3110 -19130 615 

-16135 -37184 817 
-617 5/12 4121 

b R  

0 
-1112 
-3120 

- 12/60 

-218 
-3110 
- 112 
- 112 
-3 

-312 
-1 

- 116 

-3110 
-5114 
3/14 

CR 

0 
0 

1 I60 
41 105 

0 
1/30 
1/15 
1/12 
2/15 
413 
113 
113 

1/30 
81105 
-212 1 

d R  

0 
0 
0 

-11280 
0 
0 

-11140 
0 

- 1/60 
- 114 
0 

- 1/20 
0 

-11140 
1/84 

Table 2. Stencil coefficients for centered and upwinded a/& operators 
on uniform grids. 

L.O.T.E. 

-(i/30)e5 
+(i/140)g7 
-(i/63O)g9 

-(i/60)e6 
-(i/280)5' 

+(i/105)e7 
-(i/5)e5 
+(i/4)t6 
+(i/30)g6 

-(i/105)e6 
-( 2iI35)p 

-(i/6)53 

-(ill 2)c4 

+(i12o)e5 

-(i/2o)g4 

Consider stencil 3U in Table 2. By Eq. 4, (n  = 2) its stencil coeffi cients can be obtained from those of a 
centered stencil (4E, Table 2) and by scaling those of a second-order fi lter (4E, Table 12) by - 1112. We can 
verify this by simply reading the stencil coeffi cients from the tables and performing the scaling. 

More elaborate upwinding stencils may be decomposed as 

It may be seen that the even-order, noncentered operators include dispersive components (e.g. Eq. 6; 4UU 
in Table 2). Other operators have only dissipative components but of both signs (e.g. Eq. 7; 3UU in Table 2) 
which can amplify errors. It is thus prudent to only consider odd-order, singly-upwinded derivative operators 
to add dissipation. Note that the reason for the alternating sign in front of the dissipative term is related to the 

M = (-1)"e2". Similarly, for dispersive terms one fi nds 
(- 1)n i p + 1 .  
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To close the boundaries for these fi rst-derivative operators when insuffi cient grid points are available for 
centered-difference operators, Table 3 lists lower-order closures. For situations where d2/dx2 is needed, cen- 

CL bL UL. I' UR b R  CR L.O.T.E. 
0 0 0 -1 1 0 0 -(1/2)52 
0 0 0 -11/6 3 -312 1/3 +(1/4)k4 
o o -1/3 -112 1 -116 o -(1/12)g4 
0 0 -1 1 0 0 0 +(1/2)52 

-1/3 3/2 -3 11/6 0 0 0 -(1/4)t4 
0 1/6 -1 1/2 113 0 0 +(1/12)t4 

Table 3. Boundary stencil coefficients of lower-order, a/dx operators. 

tered interior stencil coeffi cients are given in Table 4 along with their leading-order truncation error. Finally, 

Table 4. Stencil coefficients for centered a2/dx2 operators on uniform 
grids. 

lower-order boundary stencils to accompany the stencils listed in Table 4 are given in Table 5. Stencils for 
a,, a,,, and a,,, on vertex-centered grids are in Table 6- 11. The lower-order boundary stencils are also 
provided. a, and a,, are used in Sec. 3 to investigate the Korteweg-de Vries and Kuramoto-Sivashinsky 
equations [24]; a,, could be used to perform a similar investigation for the Kawahara equation. 

dL CL bL UL r LZR b R  CR dR L.0.T.E. 
0 0 0 0 1 -2 1 0 0 -t3 
0 0 o 11/12 -5/3 1/2 113 -1/12 o -(1/12)g5 
0 0 1 -2 1 0 0 0 0 +t3 
0 -1/12 113 1/2 -513 11/12 0 0 o +(1/12)t5 

0 0 0 0 35/12 -26/3 19/2 -14/3 11/12 +(5/6)C5 

11/12 -1413 19/2 -26/3 35/12 0 0 0 0 -(5/6)t5 

Table 5. Coefficients of a2 /ax2  operators near boundary points. 
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Table 6. Stencil coefficients for centered d3/dx3 operators on uniform 
grids. 

b~ 
0 

0 
0 

-1/4 

0 

U L  a~ bR CR dR eR L.O.T.E. 
0 -1 3 -3 1 0 0 +(3/2)c4 

0 -17/4 71/4 -118/4 98/4 -41/4 7/4 -(15/8)c6 
-7/4 25/4 -34/4 22/4 -7/4 1/4 0 -(1/S)e6 
-1/4 10/4 -14/4 7/4 -1/4 0 0 +(1/8)G6 

-1 3 -3 1 0 o o +(112)5~ 

Table 7. Coefficients of d3/dx3 operators near left boundary points. 

Table 8. Stencil coefficients for centered d4/dx4 operators on uniform 
grids. 

2.2 Filters 

Finite-difference fi lters are a useful adjunct to a numerical method lacking spectral accuracy [22, 251. In 
a non-AMR context, they are used simply to remove high-wavenumber spatial information that is not re- 
solvable by the numerical method. However, in an AMR context, they may additionally be used to ensure 
that the high-order interpolants do not encounter the Runge phenomenon. Several criteria exist for a useful 
fi Iter. Low wave-number information that is resolved should be virtually untouched while the relatively 
unresolved, high wave-number information should be removed. This constitutes dissipation. Dispersion, 
which is often introduced by the fi Iter boundary closures making for a non-symmetric dissipation matrix, is 
to be avoided if possible. 

As a fi ltering function in Fourier space, we seek a function that is equal to 
at e = 0. A simple function to satisfy this is [ 1 - sin2n (5/2)]. To create this 
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b L  U L  a R  b R  CR d R  e R  f R  L.O.T.E. 
0 0  1 -4 6 -4 1 0 o +2i55 
0 1  -4 6 -4 1 0 0 0 +iC5 
0 0 3516 -18616 41116 -48416 32116 -11416 1716 -(7i/2)C7 
0 1716 -8416 17116 -18416 11116 -3616 516 o -(2i/3)c7 

516 -1816 2116 -416 -916 616 -116 0 0 -(i/6)t7 

Table 9. Coefficients of d4/dx4 operators near left boundary points. 

Name r U R =  -UL b R = - b L  C R =  -cr, d R =  - d L  e R =  - e L  f R = - f L  L.O.T.E. 
2E 0 512 -2 112 0 0 0 -(i/3)5 ’ 
4E 0 2916 -1313 312 - 116 0 0 - ( 1 3 i / 1 ~ ) < ~  
6E 0 323148 - 1312 87/32 -19136 131288 0 -( 139il6048)c 
8E 0 10391126 -3385314032 301 11756 -312513024 1211756 -139112096 -(37i/6480E13 

CL 

0 
0 
0 
0 
0 
0 

- 116 

~ 

~ 

b L  

0 
0 
-1 
0 
0 

-1016 
-216 

Table 10. Stencil coefficients for centered d5 /d2  operators on uniform 
grids. 

U L  r U R  b R  

0 -1 5 -10 
-1 5 - 10 10 
5 -10 10 -5 
0 -4616 29516 -81016 

-2516 15416 -40516 59016 
5516 -12616 15.516 -11016 
2716 -7016 8516 -5416 

CR 

10 
-5 
1 

123516 
-5 1516 
4516 
1716 

d R  

-5 
1 
0 

-1 13016 
27016 
- 1 016 
-216 

e R  

1 
0 
0 

62116 
-7916 
116 
0 

f R  
0 
0 
0 

- 19016 
1 016 
0 
0 

0 
2516 

0 
0 
0 

-( 1/2)56 

+(5/3)58 
+( 35/6)5 

+( 1 1/144)58 
-( 1/6)e8 

Table 11. Coefficients of d5/ax5 operators near left boundary points. 

16 



fi nite-difference stencils, one may utilize scaled values of the symmetric (2n)th-order derivative of a function 
f, 

w h e r e a = a L = a R ,  b=bL= bR,etc ..., w i t h y  = ~ + 2 a c o s ( ~ ) + 2 b c o s ( 2 ~ ) + 2 c c o s ( 3 ~ ) + ~ ~ ~ .  Solvingfor 
the stencil coeffi cients for the second-order accurate version of this operator, f /ax2", i.e. Y = (- ,)"e2" + 

the Fourier image is given by = (- 1)" ks in  (i)] . Actual stencil coeffi cients for the p / d +  
operator, up to eighth-order, are given in Table 12. Alternatively, one could develop these second-order 
accurate stencils for arbitrary n using Pascal's triangle. 

2" 

Table 12. Stencil coefficients for centered a2n/i3x2n operators on uni- 
form grids. 

These symmetric stencil coeffi cients are the interior elements of the dissipation matrix. Stencils of order 
2n give rise to a fi lter of order, = 2n. For the interior, the absolute value of the stencil coeffi cients is 
simply equal to 2n!/((2n - i ) ! i ! )  where i runs from 0 to 2n. For i = n, Irl is retrieved. At i = n f  1 one 
gets  la^ = UR = ai, at i = n f 2 one gets lbL = bR = bl, etc. By a slight rescaling of the dissipation matrix, 
the fi ltered value of U may be seen to b e 0  = (1 - a~D)u, where 6 is the fi ltered vector and QI must be 
given by (- l)n+12-2n. At the boundaries where d2"/dxZn cannot be approximated using symmetric stencils, 
one may either implement skewed stencils and risk dispersive fi lter errors, or implement 8/dY rather than 
d2n/dx2n in the fi lter matrix D. We have chosen to adopt the second approach, even though it introduces 
errors of O(AI?+~) at the boundaries while the fi lter error at interior points is O(Aa?+2). Filter coeffi cients 
and other details may be found in the literature [22, 251 but are given using the negative of the stencils 
described in Sec. 2.1 so that 6 = (1 + aDD)U.  

Simulations involving fi ltering of the solution require a degree of care while filtering. For example, in a 
multistage time-integration method, fi ltering the stage value destroys the temporal accuracy of the scheme 
- fi ltering can only be done after the step is completed. Further, fi ltering changes the solution by removing 
the high wavenumber spectrum of the solution; thus high order fi lters are to be preferred since their cutoff 
wave-number is high. High-order fi lters have wide stencils, which pose a practical diffi culty in adaptive 
mesh schemes since this requires the patches to be at least as wide as the fi lter stencil. In our studies, we 
impose a "halo" of grid points n wide around each patch. This ensures that all the "valid" grid points on the 
patch (Le. the grid points whose refi nement is dictated by the requirements of the physics being simulated) 
are considered "interior" points by the fi lter matrix. This is not satisfi ed at the domain boundaries and fi ne 
patches abutting the domain boundary incur fi lter errors of O(&ff2) at certain points. 
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2.3 Hyperviscosity 

While not used here, we present the following brief comments on hyperviscosity. Beyond using upwinding 
to apply high-order dissipation during construction of the right-hand-side (RHS) of the governing equations 
or applying stand-alone fi lters to remove high wavenumbers from the U-vector itself, one can add a hyper- 
viscosity term to the RHS to both dealias the numerical method and to forestall Runge phenomena. The 
term would appear as , L L H ( V ~ ) ~ U  and may be readily constructed using the symmetric dissipation matrices, 
D2n, used in the fi Iters. To avoid interfering with the order of the overall method, p ,  it necessary to use 
2n = p~ 2 p .  One may then write V2nU = (DI’) + DP) + D?))”U. It is not clear that, for the purposes 
in mind, this much effort needs to be expended. One could effectively assume that dissipation matrices 
commute and reduce workload. This would transform 

to 

To further reduce work, one could ignore cross-terms and simply approximate V2”U M (DL2n) + DY’  + 
DY’)U. The remaining diffi culty is to select an appropriate value fo rm.  

The use of hyperviscous terms in explicit time-marched schemes can be problematic. Since the temporal 
stability of the explicit schemes varies as Ax2”, high order hyperviscosity can lead to very small timesteps on 
fi ne patches. This problem is removed if one uses implicit schemes on such meshes. Thus, while hypervis- 
cosity appears to be an elegant means of controlling high wavenumber oscillations, practical considerations 
make fi lters more attractive. 

2.4 Interpolants 

Interpolations, in a vertex-centered AMR environment, are used to fi 11 up the coarse-fi ne interface or “halo” 
that is kept around all patches. This “halo” enables the the use of symmetric stencils for discretizations 
and fi lters uniformly on all patches, except near the domain boundaries. As the order of the filters and 
discretizations are increased, the width of the “halo” is increased accordingly. The solution in this halo 
region is not calculated using the equations being solved; rather they are interpolated from the underlying 
coarse mesh. Since the halo is additive i.e. it is added around the “valid” points whose refi nement is dictated 
by resolution requirement, these interpolations are obtained from coarse grid points where the solution is 
deemed suffi ciently resolved. 

Interpolation requirements for structured AMR using a vertex-centered grid arrangement include as many as 
seven distinct fi nite-difference subinterpolations for up to three Cartesian coordinate directions. All neces- 
sary coarse-to-fi ne interpolations may be accomplished by using one-dimensional interpolants in the x-, y-, 
and z-directions, two-dimensional interpolants in the xy-, yz-, and zx-directions, and three-dimensional in- 
terpolants in the xyz-direction. Two dimensional simulations require three, say, x-, y-, and xy-interpolations. 
Three dimensional simulations require all seven to interpolate the 33 - 23 = 19 points inside a unit cube. 
Twelve interpolations require 1D interpolants (the triangles in Fig. I), six require 2D interpolants (the 
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squares in Fig. 1), and one requires a 3D interpolant (the small circle). Since all Z 3  = 8 coarse grid points are 
also fi ne grids points, interpolation from fi ne-to-coarse is merely an injection and requires no special fi nite 
difference stencils. Coarse-to-fi ne interpolations, however, do need specifi c stencils. Each of these stencils, 
whether it be for one-, two-, or three-dimensions, interpolates from the coarse grid data to to its geometric 
midpoint where the fi ne grid point lies. Although implicitness in fi nite-difference derivative and interpolant 
operators provides better high-wavenumber resolution, their added cost makes them ultimately less effi cient 
than explicit methods unless their implicit solves can be made quite economical. Hence, all interpolants 
considered here will be explicit. 

Stencil 2"d-order 41h-order 61h-order Sth-order 
a 112 9116 1501256 122512048 

C 0 0 31256 4912048 

e 0 0 0 0 

-24512048 b 0 -1116 -251256 

d 0 0 0 -512048 

2.4.1 1D - Interior 

10th-order 
39690165536 

2268165536 

35165536 

-8820165536 

-405165536 

The stencils in the interior of the domain can symmetrically utilize equal numbers of grid points on either 
side of the point being interpolated. Hence, the stencil coeffi cients are identical on each side, 

and give its Fourier image by 

ca 

Y =  { 2a  COS(^/^) + 2b c0~(35/2)  + 2' ~ 0 ~ ( 5 5 / 2 )  + } = Cvi5'. 
I=O 

To achieve order P I ,  we require ~0 = 1 and = 0, with 1 = 1,2, ... , ( p r  - 1). Symmetric interior stencils 
are listed in Table 13 along with their leading-order truncation error. It will be useful to also cast these 

Table 13. Coefficients of one-dimensional, vertex-centered, midpoint 
interpolants in terms of 5. 

stencils in Fourier space as 



(17) 
-1 
5 12 

16384 

yy4 = -~0~(5 /2 ) [ -762+299~0~(5 )  - 5 4 ~ 0 ~ ( 2 5 )  + 5 ~ 0 ~ ( 3 5 ) ] ,  

Y:O(") = +1cos(5/2)[+25609 - 11528cos(5) +2708cos(25) - 4  .,;os(35) +35cos(45)x18) 

for the x-direction. In the y-  or z-directions, these expressions are modifi ed by simply replacing 5 with 17 ( y )  
or c ( z ) .  Using Mathematica [26], one may readily convert between trigonometric and exponential functions 
using TrigToExp [ I  to retrieve the stencil coeffi cients. 

2.4.2 1D - Boundaries 

As boundaries are approached, in 
Stencils are now considered as 

:rpolant stencils must become asymnletrical if higher-order is desired. 

with a Fourier image given by 

Again, to achieve order P I ,  we require wo = 1 and = 0,Z = 1,2,. . . , ( p ~  - 1). As the stencils are skewed, 
we use Y:(x) to denote the fourth-order interpolant in the x-direction that is shifted one grid point to the 
right, i.e. the nonzero stencil coeffi cients are {A, a,  b, c}. Shifting two grid points to the right at sixth-order 
produces YE(') with a stencil determined by {A, a,  b, c, d ,  e } .  To fully close the interpolant boundaries at 
orders four, six, eight, and ten, the stencils as computed from the Mathematica script provided in Appendix A 
are required. In the y- or z-directions, these expressions are modifi ed by simply replacing 5 with either q 
or 5. For stencils shifted to the left rather than the right, the Fourier image expressions should have each 
occurrence of I replaced with -I and the lowercase letter used to denote the degree of skewness should be 
replaced with the uppercase version of that letter. 

2.4.3 2D - Interior 

Before discussing multidimensional stencils, it will be useful to develop a reasonably clear and compact 
notation in which to convey both stencils and their coeffi cients. Let { r, la = -pT, -p; + 1, . . . , p;  - 1, p ; )  = 
{... ,C,B,A,a,b,c,..) be the stencil coefficients associated with grid points {...,i- (5/2),i- (3/2), i-  
(1/2), i+ (1/2), i+ (3/2),i+ (5/2),.--}. Using this, the stencil coefficient associated with the point (i- 
(1 /2), j + (1 /2)) would be Aa. With this, the preceding symmetric, one-dimensional stencil may be written 
as 
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where pT = (PI  - 1)/2. For a two-dimensional stencil and its Fourier image, 

where we require U/O,O = 1 and y ~ , ~  = 0, with Z,m = 1,2, ... , ( p z  - 1) to achieve order PI .  Symmetry 
reduces the number of independent stencil coeffi cients from $ to p ~ ( p I  + 2)/8. For instance, certain off 
diagonal stencil coeffi cients satisfy the relations ce = CE = Ce = CE = ec = Ec = eC = EC, while diagonal 
coeffi cients satisfy cc = CC = Cc = CC. These interior stencils may be cast in Fourier space quite simply as 

where the one-dimensional stencils are given in Eq. 14- 18. Values for the unique stencil coeffi cient are 
listed in Table 14 for even orders from two to ten. 

y p )  = yyy;(Y) $4 = y ; ( " ) y ; ( Y ) ,  y;(4 = y ; ( 4 y ; ( Y ) ,  y;()'v) = y ; ( 4 y ; ( Y , ,  y ; o ( d  = y ' O ( X ) y ; ' " Y )  Z 
5 

Stencil 
aa 
ba 
bb 
ca 
cb 

da 
db 
dc 
dd 
ea 
eb 
ec 
ed 
ee 

cc 

2"d-order 
114 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4th-order 
811256 
-91256 
+1/256 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-(31128)t4 
-(3/128)q4 

6th-order 
22500165536 

625165536 
450165536 
-75165536 

9165536 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-(5/1024)56 
-(511024)q6 

- 3 75 0165 5 3 6 

8'h-order 
15006251222 
-300 1 25/222 

600251222 
600251222 

- 1 2005/222 
24011222 

-61251222 
1225/222 
-245/222 

251222 
0 
0 
0 
0 
0 

-(35132768)5' 
-( 35132768)~ 

1 Oth-order 
1575296 1 001232 
-3500658001232 

777924001232 
900169201232 

-200037601232 
51438241232 

- 160744501232 
35721001232 
-9 1 ~ 4 0 1 2 ~ ~  
1640251232 

1389 150/232 
-3087001232 

793 80/232 
- 1 4 1 7 ~ 2 ~ ~  

1225/232 
-(63/262 144)5 lo 

-(631262144)q lo 

Table 14. Coefficients and truncation errors of two-dimensional, vertex- 
centered interpolants in terms of 5 and q. 

2.4.4 2D - Boundaries 

Boundary stencils to two-dimensional interpolants may be constructed in Fourier space by simply multiply- 
ing together the proper one-dimensional interpolants. At orders p z  = { 2,4,6,8, lo}, one needs to close the 
interior method with {0,2,5,9,14} = pz (pz+  2)/8 - 1 unique boundary stencils if one wishes to preserve 
overall order. At fourth-order, when x and y are chosen as the two directions, these are given by 
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2.4.5 3D - Interior 

Similar to the derivation of two-dimensional stencils, for three-dimensions we use 

along with its Fourier image 

where we require ~ O , O , O  = 1 and y ~ l , ~ , ~  = 0, 1, m, n = 1,2,. . . , (PI - 1) to achieve order PI .  Stencil coeffi cients 
may be computed by either solving for the many conditions placed on y ~ l , ~ , ~  or by constructing the stencils 
in Fourier space and then converting the trigonometric functions to exponential functions using Y:(q) = 

6 ( 4  6 ( Y )  6 ( 4  y;(d = y ; ( 4 y ; ( Y ) y ; ( z ) ,  y ; o ( v )  = y y y ; ( Y ) y ; ( Z ) ,  y;("y) = y ; ( . )y ; (Y)y ; (z ) ,  Y,"("Y) = 

y;w y ' O ( Y ) y  I ;'('). The pr(p~ + 2)(pr +4)/48 unique stencil coeffi cient values are listed in Table B.l  in the 
'yr y1 TI ' 

appendix for orders PI = {2,4,6,8,10}. 

2.4.6 3D - Boundaries 

Boundary stencils to three-dimensional interpolants may be constructed by a slight extension of the two- 
dimensional results, by simply multiplying together the proper three one-dimensional interpolants rather 
than two. At orders {2,4,6,8,10} one needs to close the interior method with {0,3,9,19,34} = p1(p1 + 
2)(p1+ 4)/48 - 1 unique boundary stencils if one wishes to preserve overall order, where each stencil has 
p; stencil coeffi cients that may or may not be unique. At fourth-order the unique stencils are given by 
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3 Test Problems 

In this section we will address two issues 

1. Given a PDE to solve on a block-structured adaptive mesh, with a discretization of order P O ,  what is 
the order of the interpolations ( P I )  that needs to be used for prolongations and restrictions. 

2. Once a correct (PO,  P I )  pair have been identifi ed, can the tools developed in the previous section be 
combined to achieve high order on adaptively refi ned meshes ? 

For the purposes of this paper, we will specify a refi nement pattern and not adapt the mesh. The issues 
regarding the criteria for refi ning-derefi ning a mesh point will not be addressed here. 

3.1 Appropriate interpolation orders 

As described in Sec. 1 and 2, the solution on any patch in a Grid Hierarchy is the result of interpolations 
from fi ner meshes (restrictions) and/or interpolations from the solution on coarser meshes at a coarse-fi ne 
boundary (prolongations). In this paper, since we address vertex-centered meshes, restrictions are mere 
injections and do not involve interpolations; however prolongations do involve interpolations at coarse-fi ne 
boundaries. 

The position of the coarse-fi ne boundary is determined by the refi ning-derefi ning criteria. These are usually 
based on an threshold on solution error [l, 21 or a threshold on the gradient [12]. Thus, there exists a small 
but non-zero gradient at a coarse-fi ne boundary and an interpolation error is incurred there. Ideally the 
gradient should be small enough that the interpolation error is negligible vis-a-vis the discretization error 
regardless of the interpolation chosen, but this is diffi cult to achieve in practice and still have an effi cient grid 
(we run the risk of refi ning large areas of the domain and losing the advantage of concentrating resolution 
only where needed). Since these interpolated values cannot be differentiated indefi nitely and still preserve 
order, it becomes critical to choose an appropriate interpolation order. 

In 1201, we conducted a study of the appropriate interpolation order P I  given a discretization of order p~ = 4. 
The tests were done with the FitzHugh-Nagumo equation in 1D (where the highest spatial derivative is am) 
and we concluded that PI 2 ( p ~  + 2) was suffi cient. In Appendix C, we present a derivation of the requisite 
interpolation order PI for a given order of discretization and arbitrary derivative order. In this analysis, we 
fi nd that R 2 ( p o  + HD) should be suffi cient, where 6 is the highest spatial derivative in the equation. We 
illustrate this empirically by using the Korteweg-de Vries equation (highest spatial derivative is a=) and the 
Kuramoto-Sivashinsky equation (am). 

3.1.1 Korteweg - de Vries equation 

The KdV equation is written as 
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Figure 2. A soliton solution of Eq. 26 at f = 0 and 1. Symbols are used 
to plot the solution on Lo and lines on LI . The red line shows the solution 
at t = 1.0. Inset: A detail of the LI solutionwe see that the movement of 
soliton during the simulation is small vis-a-vis its size. 

Under the assumption that U, + 0 as x + f-, we get a traveling wave solution U = 2kz(cosh{k(x-xa - 
4kZt)})-’ where k is a wavenumber and the amplitude and velocity of the traveling wave are 2kZ and 4kz 
respectively. 

We solve Eq. 26 on a two-level Grid Hierarchy (i.e with a Level0 and Levell, abbreviated as a   LO,^} 
mesh), with a factor of refi nement of 2. The domain is 0 5 x 5 100 with 3 = 50, i.e. the initial condition 
is a soliton placed at the center of the domain. The region 30 5 x 5 56 is refi ned to a 4 mesh. We use 
p~ = 4. The width of the halo around the fi ne patches was kept at 6. Runge phenomenon was not observed 
and we did not use filters. Fig. 2 shows the initial condition on in symbols and the L I  solution as a solid 
line. The solution is marched explicitly in a “timerefi ned” manner, using a classic fourth order explicit 
Runge-Kutta integrator up to time f = 1.0 using a timestep (on the coarse mesh) of At0 = 1.0 x Such 
a small timestep was used to keep the temporal content in the discrepancy between the numerical and exact 
solutions small compared to the spatial content. Fig. 2 (inset) shows the movement of the profi le. We see 
that there is a non-zero gradient at the coarse4 ne boundary. Such a situation might arise in practice if one 
is not extremely rigorous about the refi nement-derefi nement criteria. The solution at t = 1.0 is also shown. 

In Fig. 3 we show the RMS error in the RHS i.e. -(6UU, + Urn) with respect to the analytical solution on 
L I .  The x-axis is the resolution of the LO mesh. The choice of the RHS for convergence analysis is made 
in order to bring out clearly the effect of interpolation errors, which are best seen in the higher derivatives. 
We plot solutions obtained with PI = 4,6 and 8. A uniform mesh solution, i.e. without using interpolations, 
is also plotted as a guide for an ideal fourth-order convergence slope. We see that with JJI = 4 and 6 the 
slope is shallower than fourth order, while p, = 8 achieves a greater slope. Thus, using p~ = 8 should enable 
pD-order convergence. 
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Figure 3. Convergence of the 'tight-hand-side"of the KdV equation 
on LI with p~ = 4 and p ,  = 4,6 and 8. The time is t = 1.0. A uniform 
mesh run is plotted as a guide for the convergence slope. p, = 8 shows a 
convergence steeper than fourth order while the others do not. Note that 
the resolution here is & resolution: LI i s  a factor of 2 finer. The effective 
resolution of a & = 50 run is a uniform mesh of 100 and is compared 
with a uniform mesh 1w1 corresponding to the effective resolution. El  is 
the RMS error (with respect to the exact solution) on Levell; Eo is the 
error for the uniform mesh run. 

Note that a {L&} mesh has an e@cfive resolution that is twice the LO resolution and should be compared 
with a uniform mesh solution that is equally resolved. This is done in Fig. 3 where the uniform mesh error 
plotted against an Lo resolution of 50 was obtained on a mesh of 100 grid points. Further, the uniform 
mesh run is uniformly more accurate since the entire domain is well resolved; in the adaptive mesh case, we 
purposely limit the refinement to 30 I x 5 56 to see the effect of the ioterpolants. 

3.1.2 Kuramoto-Sivashinsky equation 

The Kuramoto-Sivashinsky (KS) equation can be written as 

u, + uu,+ u,+ u, = 0 

Under the assumption that U, --f 0 as x + f-, we get a traveling wave solution 

15 u = --k(11H3-9H2+2), 19 k=E 
" = tanh(i(x-xo-:kf)) 
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figure 4. A traveling wave solution of Eq. 27 at f = 0 and 0.5. Symbols 
are used to plot the solution on Lo and lines on Lt . The red line shows 
the solution at f = 0.5. 

As in [20], we solve Q. 27 on a two-level Grid Hierarchy with a factor of refi nement of 2. The domain 
is 0 5 x 5 50 with xo = 29. The region 20 5 x 5 29 is refined to a 4 mesh. p~ = 4 is used. The width 
was the halo was kept at six. Runge phenomenon was not observed and we did not use filters. Fig. 4 
shows the initial condition on LO in symbols and the LI solution as a solid line. The solution is marched 
explicitly using a fourth order Runge-Kutta integrator to time f = 0.5 using a timestep (on the coarse mesh) 
of Afo  = 5.0 x 

In Fig. 5 we show the error in the RHS, i.e. -(UUx + U, + U,) with respect to the analytical solution 
on LI  . The x-axis is the resolution of the LO mesh. We plot solutions obtained with p ,  = 6 and 8. An ideal 
fourth-order convergence plot is provided as a guide. We see that with P I  = 6 the slope is shallower than 
fourth order, while p ,  = 8 achieves a greater slope. Thus, using P I =  8 should enable pD-order convergence. 
However, the choice of interpolant order is also dependent on the position of the coarse-fi ne boundary. We 
repeated these runs with a refi nement region of 20 5 x 5 38. In this case, the gradient at the coarse-fi ne 
boundaries is small and both PI  = 6 and 8 provided fourth order convergence. 

Combining the results obtained above with those in [20], we observe that P I  2 ( p ~  +HD)  is sufficient to en- 
sure ( p ~ ) ' ~  order spatial accuracy in block-structured adaptive meshes, even when there exists a substantial 
gradient at a coarse-fi ne boundary. This expression is seen to hold true at least for &,dm and 3, using 
fourth-order discretizations. We will use it to achieve high-order convergence in 2D below. 

A similar study, performed using the Kawahm equation, could verify the relationship between p l , p ~  and 

This solution is also shown. 

HD for HD = 5. 
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Figure 5. Convergence of the 'tight-hand-side"of the KS equation 
on L I  with p~ = 4 and p ,  = 6 and 8. The time is f = 0.5. A ideal 
fourth-order convergence plot is provided for guidance. P I  = 8 shows a 
convergence steeper than fourth order while the others do not. Note that 
the resolution here is & resolution; LI is a factor of 2 finer.El is the RMS 
erroron Levell. 

3.2 Achieving high-order convergence 

In this section we combine the tools developed in Sec. 2 to empirically achieve high order convergence on 
block-structured adaptive meshes in two-dimensions. Tests will be carried out in 2D using the FitzHugh- 
Nagumo equation. We choose a Level0 resolution that leads to the Runge phenomenon, because of the 
coarse effective resolution, thus necessitating the use of fi Iters. 

The FitzHugh-Nagumo (FN) equation in 2D is 

U, = DV2U + AU( 1 - U )  (U -a) 

We look for traveling wave solutions to Fq. 29, similar to the 1D case [27]. We assume that a solution of the 
form U = U ( t + s t )  exists where 5 = x +  py-  c. We can derive the expression for V2U and U, in terms of 
U' and U". Under the assumption that 

where U + 0 as + --and U --t 1 as 5 +-we get 
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and 

u = -  l+tanh - 2 ( (3) =: (I+tanh(&)) 

The last expression was obtained by solving the differential equation Eq. 30 and completes the solution of 
Eq. 29. Sf, a measure of the front thickness, is defi ned as S, = l/a. 

We solve Eq. 29 on a unit square. We specify D = 1,c = 0.5 and p = 1. A is set such that 6 j  = 0.02. Eq. 31 
evaluated at f = 0 provides the initial condition, and is also used to specify Dirichlet boundruy conditions 
on the unit square. The analytical solution, Eq. 31, is also used to evaluate the numerical e m r  (difference 
between the exact and the numerical solutions) for convergence tests, etc. The region 0 5 x 5 0.7,O 5 y 5 0.7 
was refined (see Fig. 6). The meshes on successive levels were refi ned by a factor of two. 

3.2.1 Fourth-order approach 

Eq. 29, when solved with fourth-order discretizations ( p ~  = 4) and sixth-order interpolants (pr = 6), led to 
Runge phenomenon (see Fig. 6). This was not observed in a 1D context in [20], which also supplied the 
particular choice of ( p 0 , p l ) .  Thus fi ltering was required. 

0.5 
X 

Figure 6. Runge phenomenon on a 2-level block-structured mesh. The 
patch outlined in black is the Levell patch. Level0 is a 100 x 100 mesh 
on a unit square. The solution is at f = 5 x and was computed 
with p~ = 4 and p~ = 6. The correct solution should not contain the 
stIucture/oscillations one observes at southeast'and northwest comers of 
the Levell patch. 

In order to choose fi lter of the comct order (m), we conducted a series of tests (see Fig. 7). A (p~ ) ' '  order 
fi lter is a (m)'* spatial derivative in the interior points of the mesh implemented with a centered stencil that 
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Figure 7. Numerical emrs (calculated using the exact solution) for the 
FitzHugh-Nagumo equations solved using fourth-order discretizations. 
Numerical solutions computed with pF = 6,8 and 10 on grid hierarchies 
with up to 3 levels of refinement are plotted with 0, A and v respec- 
tively. ( p ~ ) ' *  and (pF)'h-order convergence are plotted with solid and 
dashed Lines respectively. p p  = 6 , s  and 10 are represented by red, blue 
and black respectively. For pp 2 8, we see fourth-order convergence 
as filter e m  are smaller than discretization errors. The y-axis has the 
Level0 RMS error (EO) and the 'Ldeal"emrs if the discretization or the 
filter errors dominate. 

is of second order accuracy. The Level0 mesh is kept at 100 x 100. The solution was advanced to time 
f = 4 x The width of the halo is kept at 6. The temporal component in the 
RMS difference between the numerical and the exact solution is expected to be negligible with respect to the 
spatial component. In Fig. 7, we plot the Level0 RMS error using symbols, though tests were done with zero, 
one, two and three levels of refi nement (zero levels of refi nement is a uniform mesh run). Lines are used 
to plot the ideal convergence (for the purpose of comparison) at both ( p ~ ) ' *  and ( p ~ ) "  order. For PF = 6, 
it is clear that the numerical errors converge at 6lh order; thus the errors introduced by fi ltering overwhelm 
the discretization errors. For p~ = 8,10, the convergence of the numerical error is clearly ( p ~ ) ' ~  as long as 
we refine the grid. Also, the difference between the & = 8 and PF = 10 runs are small (and gets smaller 
as levels of refi nement are introduced) indicating that the fi lter errors are insignificant. The clear exceptions 
are the uniform mesh runs, where the numerical errors do not seem to fall on either on the ( p ~ ) ' *  or (p~)' '  
order convergence plots, but are somewhere in between. Thus, at a 100 x 100 resolution, the discretization 
and fi lter errors are comparable. However, the magnitude of the fi lter errors (on the uniform mesh runs) 
decrease with the order of the fi Iters. 

Based on Fig. 7 we choose p~ = 8 and conduct convergence tests on 50 x 50, 100 x 100 and 200 x 200 
Level0 meshes (see Fig. 8). Numerical errors calculated one each level are plotted, as levels of refi nement 
are allowed. We see that the RMS errors on each of the levels are very similar, as might be expected since 
the solution is restricted from the finer to the coarser meshes. Further, as more levels of refi nement are 

using a Level0 At = 
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HguR 8. Numerical (RMS) errors observed when @ D  = 4 , p ~  = 8). 
Solutions were done on 50 x 50 (black), 100 x 100 (red) and 200 x 200 
(blue) meshes with different levels of refinement. Errors on Level 0, 1, 
2 and 3 are plotted with 0, A, v and 0 respectively. Ideal fourth-order 
convergence is plotted using solid lines. Apart frnm the 50 x 50 uniform 
mesh NO, the errors follow the ideal convergence closely. Ei, i = 0,. . .3 
refer to the RMS error on level i. 

allowed, fourth-order convergence is observed. The only outlier is the 50 x 50 uniform mesh mn; the grid 
is too coarse to resolve the traveling front and the errors are excessive. 

3.2.2 Sih -o rde r  approach 

In this section, we address the question of using p~ = 6 instead of pD = 4 as was done in Sec. 3.2.1. In Fig. 7, 
it was seen that (pD)'*-order convergence was observed only with levels of refi nement, when discretization 
errors dominated the temporal and fi Iter errors (since it is the RMS difference between exact and numerical 
solutions that we plot). Since sixth-order stencils are expected to be more accurate than fourth-order ones, 
we study the interaction between fi Iter and discretization errors in a simplified sening, with no interpolations 
and no variation in spatial resolution, viz. on a uniform mesh. 

In Fig. 9, we plot the RMS difference between exact solutions and numerical solutions computed with p~ = 6 
along with filters of order I;F = 8,lO and 12. An unfi ltered experiment is also plotted for comparison. Runs 
are done on N x N grid where N = 100,200 and 400 with & = The problem was integmted up to time 
f = 4 x as in Sec. 3.2.1. We see that without fi Itering, the errors converge ideally (8") order as N is 
increased. Filtering introduces a significant error and the behavior of the error for fi ltered runs lies between 
PD and PF. It is only at N = 400 that the p~ = 12 run approaches the unfi ltered runs in accuracy. Thus, it is 
unlikely that a counterpart of Fig. 8 could be plotted, as can be seen in Fig. 9, fi ltering errors would dominate 
the discretization ones unless one started with a Level0 mesh of 400 x 400 - at which point, the solution will 
be resolved well enough on the Level0 mesh not to result in Runge phenomenon (and consequently, there 
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Figure 9. The RMS difference between numerical and exact solution 
for the FitzHugh-Nagumo equations solved on a N x N uniform mesh 
using p~ = 6 with filters of order p~ = 8,10 and 12. Errors from runs 
without filtering are also plotted. A, v, 0 are used to denote p~ = 8,10 
and 12 results; 0 is used for runs without filtering. 

would be no need for fi ltering). 

However, the choice of p~ in a scientific simulation will probably be made on grounds of accuracy andor 
resolution requirements rather than the ability to show the theoretical convergence. Consequently, we redo 
the problems in Sec. 3.2.1 with p~ = 6, with the same fi lters and compare with the = 4 runs. At is 
kept the same, but p, = 6 is used, in keeping with the fi ndings in [20]. Using = 8 with p~ = 4 made 
no difference in the results. In Fig. 10 only errors on Level0 are plotted; errors on other levels are very 
similar, as seen for ( p ~ ) ' *  runs in Fig. 8. On a uniform 100 x 100 mesh, the fi Iter errors dominate and 
there is little difference between the p~ = 4 and 6 runs. As levels of refi nement are added, both the fi Iter 
and discretization errors decrease, but at different rates. Even at one level of refi nement, the discretization 
emors dominate for the p o  = 4 runs and the difference between the ( p ~  = 4 , p ~  = 8) and ( p ~  = 4 ,  p~ = 10) 
are insignificant. Not surprisingly, a fourth-order convergence is seen. This is not the case in the pa = 6 
results; there is a significant difference in the results computed with po = 8 and 10, indicating that the fi Iter 
errors are dominant. It is only at three levels of refi nement that the results become comparable. However, 
except for the Level0 run, p~ = 6 errors are mostly smaller than p~ = 4 errors, thus recovering some of the 
advantages of using a high-order method. 
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Figure 10. Comparison of the RMS difference between exact and nu- 
merical solutions of the FitzHugh-Nagumo equations when computed 
with p~ = 4 , p ~  = 8 and p~ = 6,p,= 8 and filtered with filters of order 
p p  = 8 and 10. At = 
Results are plotted for a uniform mesh and meshes with 1 to 3 levels of 
refinement with a LevelO mesh of 100 x 100. A and v indicate p p  = 8 
and 1 0  dashed l ies  indicate p~ = 4 and solid ones p~ = 6. Eo is the 
RMS error on LevelO. 

and the problem is integrated till f = 4 x 

4 Conclusions 

We have developed expressions for high-order discretizations, interpolations, and fi Iters, in multiple dimen- 
sions, using a Fourier approach. This particular choice, as opposed to the traditional Taylor series approach, 
enables implementation of these high-order operations in higher dimensions with relative ease. We also 
provided a brief Mathematica [26] program that produces the necessary code for all these high-order oper- 
ations. We demonstrated the implementation of these high-order constructions on three model problems in 
one and two-dimensions. 

We also derived a formulatiodrule for the requisite interpolation order for given discretization and derivative 
orders. We examined this rule empirically by pairing high-order stencils and interpolations on SAMR grid 
hierarchies and examining high-order convergence where analytical results were available. Achieving such 
a convergence q u i r e s  care in the choosing of the fi lters and interpolants. 

For the simple boundary conditions used here time-instability near the boundaries was not observed, 
at least with the fourth and sixth order approaches investigated in th is  paper. 

Oscillations in the solution caused by high-order interpolants, due to insufficient resolution, was in- 
deed a problem. As a part of the solution procedure, solutions are generated at all grid points on all 
levels, even though the solution in the overlaid areas is later discarded (during restrictions). During 
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this process, oscillatory interpolated values were generated by the high order interpolants, usually on 
Level1 and Level2, leading to the Runge phenomenon. Filters remove this problem but introduce 
dissipation errors, and consequently need to be chosen with care. In some cases they may dom- 
inate the discretization errors, depending on the grid resolution and discretization order. Since in 
block-structured AMR there will be patchedgrids with low resolution, fi lters may turn out to be as 
important a factor in determining accuracy as the discretizations. 

Combined with [20], this paper presents an alternative approach to the one developed in [3]. Our method, 
vis-a-vis [3] ,  trades off one complexity versus another. While the high-order 1D interpolations in [3] are 
far simpler than our multi-dimensional ones, their application requires book-keeping viz. tracking (a) patch 
confi gurations and (b) tangential and normal directions to a coarse-fi ne boundary, whereas we use our inter- 
polations uniformly. Also, unlike [3],  we have no requirement in principle that the refi nement ratio between 
levels be any particular value, although the practical complexities of deriving and implementing the high- 
order multidimensional interpolations have led us to use a fi xed refi nement factor of 2 in the present work. 
This also ensures that the difference in (resolvable) wavenumber spectra between successive levels of refi ne- 
ment are kept manageable. While this is not much of a problem in vertex centered grids where restrictions 
(interpolating the fi ne mesh solution to the coarse mesh) are mere injections, cell-centered grids require 
interpolations to be performed and care must be taken not to transfer high wavenumbers’ energies to lower 
ones while interpolating. This is obviously simpler if the wavenumber spectra are not too different. How- 
ever, the ramifi cations of the choice (2 versus 4) of the level-to-level refi nement factor, within the context of 
high order AMR, needs a systematic study. Furthermore, as shown in Sec. 3, our interpolations have con- 
sistently provided high-order convergence even when the coarse-fi ne boundary was placed, on purpose, in a 
region of high gradient. While such an eventuality is not likely in an AMR simulation, the threshold-based 
refi nement-derefi nement criteria does not guarantee against it and the high-order interpolations serve as a 
fallback in borderline resolution cases. 

In conclusion, high-order methods, coupled with AMR, hold the potential to perform high-accuracy simu- 
lations economically. These methods, as presented in this paper, are quite general - discretizations, fi hers 
and interpolations of any order n may be generated using the expressions developed here. There are neither 
special cases nor assumptions and/or constructions predicated on a specifi c choice of stencils. Replace- 
ments of interpolations etc are effected simply by replacing subroutines. [20] presented a comparison of 
the computational work, i.e. the floating point operations required for the same problem with second and 
fourth-order discretizations. The difference between the two, even at modest accuracy requirements (0.1 - 
1 %), is signifi cant in favor of the fourth order approach. At tighter accuracies, the difference is startling. 
This is observed in [3] too. A degree of care needs to be exercised when choosing the interpolants and 
fi lters needed in such computations, and we have indicated some principles in this paper. We see that errors 
introduced by fi lters may become the determining factor as far as accuracy is concerned, but this will happen 
at high discretization orders. 
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A Stencil coeffi cient computation 

Below is a Mathematicar261 program that may be used to generate a FORTRAN77 fi le containing all bound- 
ary and interior stencils discussed in this paper. On a workstation having dual 2.2GHz processors, fourth-, 
sixth, eighth-, and tenth-order stencils require approximately 1, 8, 29, and 189 seconds to compute. First, 
write individual stencils as functions. 

( *  Second-Order * )  
Psi21 [a_] :=Cos [a/21 ; 
Psi2a [a_] : = (Cos [a1 tI*Sin [a1 ) * (Cos [a/21 +I* (-2*Sin [a/21 ) ) ; 

( *  Fourth-Order * )  
Psi41 [a_] : =Cos [a/21* (-5+cos [a1 ) /4 ; 
Psi4a [a_] : =  (cos [a] tI*Sin [a] ) * (5*cos [a/2]+3*Cos [3*a/21 t 
I* (-lO*Sin[a/21 -2*Sin [3*a/21 1 )  / 8 ;  
Psi4b[a-I :=Cos [2*a] +I*Sin[2*a] ) * (7*Cos [a/21 -15*Cos [3*a/21 t 
I* (-28*Sin[a/21+20*Sin[3*a/21 1 )  / 8 ;  

( *  Sixth-Order * )  
Psi61 [a-I :=Cos [a/21* (89-28"Cos [a1 t3*Cos [2*al) /64; 
Psi6a [a_] := (Cos [a] tI*Sin [a] 1 * (70*Cos [a/2]+63*Cos [3*a/2]-5*Cos [5*a/21 t 
I* (-140*Sin [a/21 -42*Sin[3*a/21+2*Sin [5*a/21 ) ) /128; 
Psi6b [a-I :=Cos [2*al tI*Sin [2*al) * (42*COS [a/21 -135*COS [3*a/21 -35*Cos [5*a/21 t 
I* (-168*Sin [a/21+180*Sin [3*a/21 t28*Sin [5*a/21 ) ) /128; 
Psi& [a-I : =  (Cos [3*al tI*Sin [3*al ) * (198*Cos [a/2] -385*COS [3*a/21+315*Cos [5*a/21 t 
I* (-1188*Sin [a/21+770*Sin [3*a/21 -378*Sin [5*a/21 ) ) /128; 

( *  Eighth-Order * )  

Psi81 [a_] :=Cos [a/21* (-762+299*Cos [a] -54*Cos [2*alt5*Cos [3*al /512; 
Psi8a [a-I : =  (Cos [a1 tI*Sin [a] ) * (525*Cos [a/2]+567*COS [3*a/21 -75*Cos [5*a/21 
7*COs [7*a/21 +I* (-1050*Sin [a/21 -378*Sin [3*a/2] t30*Sin [5*a/2] - 
2*Sin [7*a/21) ) /1024; 
Psi8b [a-I :=Cos [2*al +I*Sin [2*al ) * 
(231*Cos [a/2] -891*Cos [3*a/21 -385*Cos [5*a/2] +21*Cos [7*a/21 t 
I* (-924"Sin [a/21+1188*Sin [3*a/21 t308*Sin [5*a/21 -12*Sin [7*a/21 ) ) /1024; 
Psi8c [a-I :=(Cos [3*al tI*Sin[3*al) * (429*COS [a/21 -lOOl*Cos [3*a/21+1365*Cos 
231*Cos [7*a/21 +I* (-2574*Sin [a/21+2002*Sin[3*a/2] -1638*Sin [5*a/21 - 
198*Sin[7*a/2] ) ) /1024; 

5*a/21 t 

PsiEd [a-I :=Cos [4*al tI*Sin[4*al) * (3575*Cos [a/2] -7371*Cos [3*a/2] +5775*Cos [5*a/21- 3003*Cos [7*a/21 +I' 
3432*Sin [7*a/21 ) ) /1024; 

( *  Tenth-Order * )  
Psi101 La-] :=Cos [a/21* (25609-11528*Cos [a1 +2708*Cos [2*a]-440*Cos [3*al t 
35*Cos [4*al ) /16384; 
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PsilOa [a-I :=  (Cos [a] +I*Sin [a] ) * (16170*Cos [a/21+19404*Cos [3*a/21 - 
33oo*cos [5*a/21+539*cos [7*a/2]-45*cos [9*a/2] +I* (-32340*Sin [a/21- 
12936*Sin [3*a/21+1320*Sin [5*a/2]-154*Sin [7*a/2] +10*Sin [9*a/21 ) ) /32768; 
PsilOb [a-I :=- (Cos [2*al +I*Sin [2*al ) * (6006*Cos [a/2]-25740*Cos [3*a/21 - 
14300*Cos [5*a/21+1365*Cos [7*a/21 -99*Cos [9*a/21 +I* (-24024"Sin [a/21 t 
34320*Sin [3*a/21+11440*Sin [5*a/2]-780*Sin [7*a/2] +44*Sin [9*a/21) ) /32768; 
PsilOc [a-I :=(Cos [3*al +I*Sin[3*al) * (7722*cos [a/2]-20020*C0s [3*a/21 t 
35100*Cos [5*a/21+10395*Cos [7*a/2]-429*Cos [9*a/21 +I* (-46332xSin [a/21+ 
40040*Sin [3*a/2]-42120*Sin [5*a/2]-8910*Sin [7*a/2] +286*Sin [9*a/21) /32768; 
PsilOd[a-l :=- (Cos [4*al +I*Sin[4*al) * (24310*Cos [a/21 -55692*Cos [3*a/21+ 
56100*Cos [5*a/21 -51051*Cos [7*a/21 -6435*Cos [9*a/21 +I* (-194480*Sin [a/21+ 
148512*Sin [3*a/2]-89760*Sin [5*a/21+58344*Sin [7*a/21+5720*Sin [9*a/21 ) ) /32768; 
PsilOe [a_] :=(Cos [5*al tI*Sin [5*al ) * (293930*Cos [a/21 -639540*Cos [3*a/21 t 
554268*Cos [5*a/21 -285285*Cos [7*a/2]+109395*Cos [9*a/21 +I* (-2939300*Sin [a/21+ 
2131800*Sin [3*a/21 -1108536*Sin [5*a/21+40755O*Sin [7*a/21 -121550*Sin [9*a/21 ) ) /32768; 

Next, set desired parameters. This is the only section of the code that needs to be modifi ed by the user. In 
the following example, we wish to compute a fourth-order stencil for a point shifted from the center by zero 
grid points in x, Ye('), one in y, Y$'), and two in z, Y;('), or Y:iy). 

( *  Specify stencil * )  
order = 4; 
Psi = Expand [ TrigToExp [ Psi41 [XI *Psi4a [yl *Psi4b [zl 1 1 ; 
ix = 0 ;  iy = 1; iz = 2; 

Alternatively, we could compute the stencil Y$$) by writing 

( *  Specify stencil * )  
order = 8; 
Psi = Expand TrigToExp Psi8b [XI *Psi8c [yl *Psi8d [zl I I ; 
ix = 2; iy = 3; iz = 4; 

Now the actual stencil coeffi cients are computed and printed to the screen in FORTRAN77 format. 

( *  Compute stencil * )  
leftx=- (order-1) +2*ix; 
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lefty=- (order-1) +2*iy; 
leftz=- (order-1) t2*iz; 
psi = Expand[ Factor[ Normal[ Series[ Psi,{x,O,order},{y,O,order},{z,O,order}lll 1; 
Print [I1 psi = II, psi ] ; 
psilistx = CoefficientList[ psi - l,x] / .  {y - >  0,  z - >  o}; 
psilisty = CoefficientListE psi - l,y] / .  {x - >  0, z - >  o}; 
psilistz = CoefficientListI psi - I,Z] / .  {x - >  0, y - >  o}; 
actualorder = Sum[ (psilistx[ [il I tpsilisty[ [il I tpsilistz [ [ill ) , {i, 1,order-l}l ; 

Do 
Print [IIDo loop counter = 'I, kl ; 
Do [ 
Do [ bnd [ i , j , k] = ExpToTrig [ Expand [ 
Psi*Exp[-I*(leftxt2*(i-l))*~/2] *Exp[-I*(leftyt2*(j-1) )*y/2] *Exp[ 
,{i,l,order}l ; 

Do[ bnd[i,j,kl = Part[ bnd[i,j,kl, 1 I;, {i,l,order}l; 
,{j,l,order}l; ,{k,l,order}l; 

x = 3; y = 17; z = 9973; 

I* (leftzt2* (k-1) *z/2111 ; 

denominator = Part [ {8,2^ (12) ,2^ (24) ,2^ (33) ,2^ (48) ,2^ (58)}, order/21 ; 
letters = {I,a, b,c,d,e,f}; 
Do [ bnd [i, j , kl = Factor [ denominator*bnd [i, j , kl 1 ; , 
{i, l,order}, {j, l,order}, {k, l,order}l ; 
Do[ Print [ I 1  bndIl,order,Part [letters,ix+l] ,Part [letters,iytl] ,Part [letters,iz+ll , 
I1 ( I I , ~ ,  1 1 ,  1 1 ,  j, 11 11 

{i, l,order}, {j, 1, order}, {k, l,order}l ; 
If actualorder == 0, Print [IIStencil is correct"], Print ["Stencil is wrong"] 1 ; 

I t ,  k 1 1 )  = 11 , bnd [i, j , kl , #I. do/" ,denominator, I!. do" 1 ; , 
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B Interior S,zncils for 3D interpolants 

Stencil 
aaa 
baa 
bba 
bbb 
caa 
cba 
cbb 
cca 
ccb 

daa 
dba 
dbb 
dca 
dcb 
dcc 
dda 
ddb 
ddc 
ddd 
eaa 
eba 
ebb 
eca 
ecb 
ecc 
eda 
edb 
edc 
edd 
eea 
eeb 
eec 
eed 
eee 

W N , N , N S ~ Y ~  5" 

ccc 

2nd-order 
1 I8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-( 1/8>S2 
-( 1/8)lp 
-( lB)p 

4th-order 
729/212 
- 8 112' 

9/212 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-( 31 1 28)e4 
-( 3 1 1 2 8 ) ~ ~  
-(3/128)<4 

-11212 

6'h-order 
3 3 7 5000/224 
-562500/224 

93750/224 
- 1 5625/224 
67500/224 

- 1 1250/224 
1 875/224 
1 350/224 
-225/224 

27/224 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-(5/1024)56 
-(5/1024)q6 
-( 51 1024)p 

ath- order 
1 838265625/233 
-367653 1 2 ~ 2 ~ ~  

73530625/233 
-14706125/233 
73530625/233 

-14706125/233 
294 1 225/233 
294 1 225/233 
-588245/233 
1 17649/233 

-7503 125/233 
1500625/233 
-300125/233 
-300125/233 

60025/233 
- 12005/233 
30625/233 
-6 125/233 
1225/233 
- 125/233 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-(35/32768)S8 
-( 35132768)~ 
-(35/32768)c8 

loth-order 
62523502209000/248 

-138941 1 1602000/248 
3087580356000/248 
-686 1 28968000/248 
357277 1 554800/248 
-793949234400/248 
176433 163200/248 
204 1 5 8 3 745 60/248 
-45368527680/248 
1 1666192832/248 

-637994920500/248 
141776649000/248 
-3 1505922000/248 
-36456852600/248 

8101522800/248 
-2083248720/248 
6510152250/248 

- 1446700500/248 
372008700/248 
-66430125/248 

55135363500/248 
- 12252303000/248 

2722734000/248 
3 150592200/248 
-70013 1600/248 
1 80033840/248 

-562605750/248 
125023500/248 
-32 148900/248 

5740875/248 
48620250/248 

- 10804500/248 
2778300/248 
-496 1 2 ~ 2 ~ ~  

42875/248 
-(63/262144)5'0 
-(63/262144)q lo 

-(63/262144)<" 

Table B.l. Coefficients of three-dimensional, vertex-centered inter- 
polants in terms of c, q, and (. 
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C Rules for pairing a derivative and an interpolation stencil 

In this section we determine a rule to pair a spatial derivative stencils of order P with an interpolation of 
order Q given that the higher spatial derivative that needs to be evaluated is R. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L -  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I H2 

Figure c.1. Two overlaid patches GI and G2. G2 is finer and has a 
halo H2 around it to facilitate the evaluation of discrete derivatives via 
stencils. Points A and B lie on the finer G2 patch. 

Let $(R)  be the Rth derivative of 41 in the domain a ,  the patch G2 in Fig. C. 1. Let 05“’ be a discrete operator 
(a stencil) that, when applied at a point in a evaluates the derivative with an error proportional to (AX)‘ .  We 
will analyze only in the x-direction where points are indexed using i; the results will carry over to higher 
dimensional space. 

Applying this at point B in Fig. C. 1 poses no problems, 

as long as the stencil has enough points on the left and right. At A however, the stencil “spills” over into the 
coarser G1 patch. 

Typically, in order not to use skewed stencils, one keeps a halo H2 of points around G2, where data is 
interpolated from G1 with an interpolant of order Q. Let these interpolated $ be called i.e 
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Thus we evaluate $F’ as 

That ~1 (M) and & 3 ( h Q P R )  be of the same order requires 

Q = P + R .  (34) 

This is sufficient to allow Ph order convergence of $@). Note that ~1 exists over a while ~3 exists only 
along a A ,  its boundary, a domain of dimension one less than a. 

However, the requirement above can be relaxed. Often, errors are measured, integrated and analyzed in a 
certain area. This was also the case in this paper. Thus, 

if a is 2D. If a is 3D, the right hand side is 
same convergence rates, 

+ E~(AxQ-~-’  ). In order that El and E3 have the 

Q = P + R -  1. (36) 

Strictly speaking, Eq. 36 will ensure Pth order convergence of in a global sense if aa is one grid point 
in thickness. For our high-order discretizations, this is not the case; interpolations are done in a thin region 
of half the stencil width. Thus it is unclear whether Eq. 34 or Eq. 36 is preferable, but Eq. 34 should be 
suffi cient. 
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