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Abstract

As information systems become increasingly complex and pervasive, they become
inextricably intertwined with the critical infrastructure of national, public, and private
organizations . The problem of recognizing and evaluating threats against these complex,
heterogeneous networks of cyber and physical components is a difficult one, yet a
solution is vital to ensuring security . In this paper we investigate profile-based anomaly
detection techniques that can be used to address this problem . We focus primarily on the
area of network anomaly detection, but the approach could be extended to other problem
domains. We investigate using several data analysis techniques to create profiles of
network hosts and perform anomaly detection using those profiles . The "profiles" reduce
multi-dimensional vectors representing "normal behavior" into fewer dimensions, thus
allowing pattern and cluster discovery . New events are compared against the profiles,
producing a quantitative measure of how "anomalous" the event is.

Most network intrusion detection systems (IDSs) detect malicious behavior by searching
for known patterns in the network traffic . This approach suffers from several weaknesses,
including a lack of generalizability, an inability to detect stealthy or novel attacks, and
lack of flexibility regarding alarm thresholds . Our research focuses on enhancing current
IDS capabilities by addressing some of these shortcomings . We identify and evaluate
promising techniques for data mining and machine-learning . The algorithms are "trained"
by providing them with a series of data-points from "normal" network traffic . A
successful algorithm can be trained automatically and efficiently, will have a low error
rate (low false alarm and miss rates), and will be able to identify anomalies in "pseudo
real-time" (i.e., while the intrusion is still in progress, rather than after the fact).

We also build a prototype anomaly detection tool that demonstrates how the techniques
might be integrated into an operational intrusion detection framework.
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1 Introduction
As information systems become increasingly complex and pervasive, they become
inextricably intertwined with the critical infrastructure of national, public, and private
organizations . The problem of recognizing and evaluating threats against these complex
heterogeneous networks of cyber and physical components is a difficult one, yet a
solution is vital to ensuring security.

Detection of an intrusion is the first step towards assuring the network security against
the threat from malicious actions . There are two basic approaches to intrusion detection:
misuse detection and anomaly detection. Most current intrusion detection systems (IDSs)
are based on misuse detection : they detect malicious behavior by searching for known
patterns of intrusive behavior and raising an alarm when a known violation is detected.
This is also known as pattern-based intrusion detection, since it works by performing
pattern matching between current data and a database of known attacks. But a
sophisticated and determined attacker cannot be expected to rely on known attacks – he
will attempt to infiltrate a system with stealthy, sophisticated attacks using behavior that
won't be detected by a static pattern-based scheme.

In contrast to the signature-based approach, anomaly detection measures the deviation of
a group of activities from an established behavior baseline . If the deviation reaches a
specified threshold, an alarm is generated . Anomaly detection techniques, therefore, have
the potentials to detect new and unforeseen types of attacks . In addition, activity that may
appear to be normal, in terms of the contents of the network messages, could still be part
of an attack performed by an insider who is abusing their privileges . Anomaly detection
can be used to detect this type of threat, where the anomaly isn't in the contents
(payloads) of the network traffic, but perhaps the time of day, or the host or user that is
accessing the information.

Traditionally, IDSs focus on a single component, such as physical security, or network
security at the border firewall . As evolving technologies allow these components to be
increasingly interconnected, we can no longer look at systems in isolation . Many IDS
systems output a simple yes/no result – either an event raises an alarm, or it does not.
There is often limited ability to adjust the alarm threshold, so the result is either too many
false alarms, or failure to detect real attacks . An anomaly detection system allows the
triggering threshold to be adjusted according to conditions, and can also enable
combining threat levels from multiple components to make more intelligent decisions
about whether to raise an alarm.

The objective of this research is to establish profile-based anomaly detection techniques
that can be used to recognize the threats in the complex network . The "profiles" will
reduce multi-dimensional data vectors representing "normal behavior" into fewer
dimensions, thus enabling pattern and cluster discovery . New events will be compared
against the profiles, producing a quantitative measure of how "anomalous" the event is . A
set of criteria will be developed and used to determine whether an event is abnormal.
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The goal of this project is to research techniques for profile-based network anomaly
detection that can be used to address some of the problems outlined above . The anomaly
detection approach is to distinguish between the abnormal events in a large event space
and in a constantly changing environment . It is impossible to establish the baseline
behavior profiles for host computers or networks with a priori patterns. The profiles
should be formed from those data that represent the host and network behaviors . To
achieve this, an unsupervised learning approach should be used . Unlike supervised
learning, which requires a priori knowledge in its learning process, unsupervised learning
establishes its categories, patterns or classes, according to the similarity of the data . When
the profile, consisting of the patterns or classes which reflect the relative relationships
among the data attributes and frequencies of records is built, knowledge of the observed
object can be discovered from the formation of such profile.

Much of the academic research in network anomaly detection relies on publicly available
"test datasets", including the 1998 and 1999 DARPA Intrusion Detection Evaluation Data
Sets and the KDD Cup 1999 Data from The Third International Knowledge Discovery
and Data Mining Tools Competition . These datasets are not necessarily ideal ; for
example, anomalies within the data are not clearly demarcated in the DARPA data, which
makes training problematic . Many times the approach used in other research was
artificially modified to accommodate for the test data.

The network data used in this project were collected from a Sandia-developed tool,
NetState. NetState passively collects, and stores in a database, information about the host
computers on a target network, including versions of operating system, applications on
each host, and the high-level details (ports, IP addresses, times, amount, and direction of
data transferred) about each host's network activities (Durgin et al ., 2005).

One of the unique aspects of our approach is the dataset we focused on . Much of the current
anomaly detection research have been focusing on examining low-level data (packet
payloads or system logs) while we will focus on high-level session data . The low-level
datasets tend to have tens or hundreds of features to examine, while our datasets can be
limited to at most a few dozen features . This subtle difference should positively impact the
results, even when employing similar data analysis algorithms . Furthermore, we assume that
our profile-based anomaly detection system would be used in conjunction with packet and
session-based systems, so we do not try to discover anomalies that are reliably found by those
tools. The focus is on unsupervised learning techniques – that is, the training data will
contain examples of "normal" events only, rather than both abnormal and normal events . In
this work, we will not be inclined to make unnatural adjustments to analysis techniques to
compensate for less than ideal data for our accessibility of the source of the data.

The rest of this report is organized as follows: In Section 2, we discuss background and
related work. In Section 3 we discuss our work with Self-Organizing Maps . In Section 4 we
discuss background on Adaptive Resonance Theory (ART), and in Section 5 we discuss
our application of ART to the anomaly detection problem . In Section 6, we discuss our
anomaly detection results from our ART prototype . Finally, in Section 7 we summarized
the results obtained from this research and discussed the work needed in future.

8



2 Background
2.1 Related Work
Several anomaly detection techniques based on machine-learning or statistics based
approaches have been developed for the purpose of network security, but the basic
challenge still remains and needs to be clearly and adequately addressed : how to
accurately model a subject's normal behavior while it changes over time in a continuous
manner known as concept drift (Liao et al ., 2004). The network activities and the users'
behavior could alter over time caused by various changes such as application, mission,
job assignment and et al . Modeling a host computer or a network's normal behavior in
the presence of concept drift is a difficult task because the underlying data distribution is
not known a priori, unexpected changes may happen at any time, and therefore a long
term `normal behavior' may not be strictly predicted and can't be expected that will be in
the scope of the current `normal behavior'.

An effective anomaly detection system should be capable of adapting to normal
behavioral changes while still recognizing anomalous activities . Otherwise, a large
number of false alarms would be generated if the model failed to change adaptively to
accommodate the new behavior patterns (Maxion and Townsend, 2002) . Continuously
modifying the normal behavior model through adding normal behavior patterns seems
obvious if one applies the anomaly detection in the practical environment . However, this
may not be computationally feasible with the current techniques for their high cost in
generating and storing models, for example, the approach mimicking the organism's
immune system (Warrender et al ., 1999).

The rule learning based adaptive approaches uses the rule learning concept, for anomaly
detection in the dynamic environment: inductively generating sequential patterns (Teng et
al ., 1990), creating a nearest neighbor classifier (Land and Brodley, 1998), developing
probabilistic model with mixture models (Eskin et al ., 2000), using reinforcement
learning method (Cannady, 2000), combining classification models and mining
architecture with fuzzy association rule (Hossain and Bridges, 2001).

EMERALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
from SRI (Stanford Research International) is a statistics based and ambitious project that
has yielded mixed results in terms of adaptively detecting anomaly in network traffic
data. EMERALD combines signature-based methods with statistical profiling, and
consists of a set of modules which can be distributed throughout a network and
individually tuned. EMERALD uses the method of aging a use profile to move a time
window in which the most recently observed behavior is to compare with and update its
profile . However, the user's recurring behavior can cause unnecessary update along with
its complex statistical model.

Both statistical and rule-learning based approaches for anomaly detection, as mentioned
above, are generally supervised learning processes, requiring a priori knowledge of the
underlying data . In other words, supervised learning requires presenting training data that
represents both anomalous and normal cases, which necessarily requires knowing what
an "anomalous" case (an attack) looks like . To detect unknown attacks and the
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unforeseen behavior of host computers, the recent attention in developing anomaly
detection systems has been focused on the use of unsupervised learning processes, to
establish profiles with no requirement for a priori knowledge.

2 .2 Algorithm Evaluation
To select the promising techniques for profiling the host/network behavior, we first tested
and evaluated a number of algorithms that have been used in data mining and machine-
learning with emphasis on unsupervised learning algorithms.

The K-means algorithm is a method of cluster analysis (Orengo et al ., 2002). It is an
unsupervised learning algorithm that tries to uncover patterns in the set of input fields.
Records are grouped so that records within a group or cluster tend to be similar to each
other, but records in different groups are dissimilar . This algorithm works by defining a
set of starting cluster centers derived from data . It then assigns each record to the cluster
to which it is most similar, based on the record's input field values. After all cases have
been assigned, the cluster centers are updated to reflect the new set of records assigned to
each cluster. The records are then checked again to see whether they should be reassigned
to a different cluster, and the record assignment/cluster iteration process continues until
either the maximum number of iterations, or the change between one iteration and the
next fails to exceed a specified threshold. The K-means (sometime called X-means)
algorithm seems suitable for creating profiles, but the scale-up and adaptive difficulties in
K-means limits its application in our case, which involves a large dataset and has the goal
to develop a tool that can adaptive to continuously changing host behavior.

The Two-step algorithm is another unsupervised learning method for clustering (Burges,
1998) . It first compresses the data into a manageable number of small sub-clusters, then
uses a statistical clustering method to progressively merge the sub-clusters into clusters,
then merging the clusters into larger clusters, and so on, until the minimum desired
number of clusters is reached . Again, difficulties of scale-up, stability and plasticity in
applying this algorithm disqualify Two-step as a candidate for this project.

The C5 algorithm is a technique that is used to build up a decision tree or a rule set for
the purpose of predicting (Dunham, 2002) . This model splits the records based on the
field that provides the maximum information gain . The lower layer records, meaning
after the previously split, is split again depending on the selected field . The process
repeats until the split can't be continued . Then, the lowest level splits are recursively
reexamined and those that do not contribute significantly to the value of the model are
removed. A set of rules is also associated with the decision tree . Apparently, C5 can't be
used for profiling and anomaly detection in this case : the data used here to describe the
host computer's behavior covers a large space and the differences among the data in a
field can be ten orders of magnitude, thus the size of the tree (depth and number of
branches of the tree) will be too large to be practically applied.

Methods based on artificial neural networks generally use supervised learning methods
and are not suitable for profiling the network/host behavior . However, the two techniques
we tested, Self-Organizing Map (SOM, Kohonen, 2001) and the Adaptive Resonance
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Theory (ART, Carpenter, 1976), adopt the concepts used in artificial neural network, but
they use unsupervised learning methods . These two algorithms have the capabilities of
scale-up and dimension reduction as well as having the features of plasticity and stability,
thus, they were selected for further detailed evaluation . Ultimately, an ART algorithm
was employed to develop an anomaly detection prototype in this project.
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3 Profiling with Self-Organizing Maps
The Kohonen Self-Organizing Map (SOM) (Kohonen, 2001) is an unsupervised learning
technique for data classification . SOM uses the "winner take all" strategy in its learning
process, while continuously modifying the winner and its neighbor to build clusters that
allow the records in the dataset to be classified into the clusters . A winner is one of the
nodes in a user defined two dimension map. The combination of the clusters provides a
profile describing the object which provides the data for SOM learning . If data from a
new object can be distributed into the previously built profile corresponding to that of the
original object, the new object can be considered similar to it . The concept here is used to
build a profile of the behaviors of each individual host computer.

SOM is of particular interest here for its efficiency and its ability to express topological
relationships. There are a number of reports on SOM applications in the area of
cognition : sound filtering, hand-writing recognition and design flaw detection . A recent
report indicates the potential of using SOM in detecting network intrusion by viruses
(Lichodzijewski et al ., 2002). However, there are few reports on SOM profiling
network/host behavior found in the literature.

The general algorithm used to develop host profiles using SOMs is outlined in Figure 1.
We developed an individual profile (map) of each host by selecting a set of training data
for that host, normalizing the data, and then building a SOM for that particular host.
After the SOM is validated it can be used as a profile of "normal" behavior in an anomaly
detection system.
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Data selection

Data normalization

Initialization of SOM

Initial training

Final training

Validation of SOM Model

4
Application of SOM model for

anomaly detection

Figure 1 . Procedure for building profiles with SOM.

3.1 Data Preparation for SOM Training and Testing
Several datasets used in this project were extracted from the database associated with
NetState and represent the `normal behaviors' of those host computers operating in a period
of time. In each data set, a record for a host computer is the activity occurring between two
computers, where the host of interest is either the source or the destination for that session.
The following features (attributes) are included in a record for each session:

start date/time
end date/time
source IP address
destination IP address
bytes of input
bytes of output
port number

A subset of the features available in the NetState data is selected to be used in the SOM
training datasets . From the fields of in/out data size, start/end of connection date/time we
derived a series of numerical inputs for model training and testing:

bytes_in

	

bytes per second
bytes_out

	

bytes per second
bytes_in per event
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bytes_out per event
time interval per event
number of transaction per event
frequency of the host serving as a client hourly
frequency of the host serving as a client daily
frequency of the host serving as a server hourly
frequency of the host serving as a server daily

It should be pointed out that not all of the features derived are used in all of the SOM
model training.

Several data normalization methods have been tested for the data . The Logarithm Scale
was selected for data normalization for SOM training . The data values in some fields
vary in a wide range and the Logarithm Scale brings the data in the range of negative
singles to positive tens . Other methods such as a statistic-based method were also tested.

3.2 SOM Model Training

3 .2.1 Clementine Datamining Tool Bench

The Kohonen model tool in Clementine (Clementine 8 .0, SSPS, www .ssps .com) was
initially used to train a model with the selected normalized data . There are a number of
basic training parameters that can be selected for the training process . The outputs of the
tool give each record two integers that position the record in the trained SOM profile
(model) . The density of the points in the map is the number of `hits' to a node, where that
node was selected as the winner, in the map . The location and the density of the records
consist of the patterns of the dataset for a host computer and the patterns are considered
as the behavior of the host.

An example in Figure 2 shows the different distributions of records (`hits') in four maps
from four different hosts . Among the four maps, the upper left map is the SOM map for
the test dataset from the same host as the original training dataset for that map . From the
distribution of the nodes in the map and the density of the `hits' in the nodes, which
represent the patterns of a host's behavior, the upper left map clearly differs from the
other three, which were built from training datasets from three other host computers . For
example, the map at the left bottom does not show the `hits' in the nodes of the third
column, thus the behavior represented by this map is different from that at the upper left
map. This illustrates that the SOM method is capable of distinguishing the behavior of
one host from others, and that it has the capability to reduce the multi-dimensional data
into a two dimensional map, thus making it easy to visualize and understand . Another
way to describe this is that if the behavior of the host changes, the distribution of records
on the trained SOM map will be different, or show abnormal behavior.
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Figure 2. Distribution of data from four host computers into a trained SOM profile. 

However, the Clementine tool has a limited capability in SOM training parameter 
selection and the output from this tool can’t be easily deployed for data analysis and 
result interpretation. Plus, a long computation time is required for training and testing. 
Therefore, other tools were investigated. 

3.2.2 SOM training with SOM Toolbox and SOM-PAK on MATLAB 

SOM-PAK, a group of classes in C for SOM training, and SOM Toolbox, a package of 
programs for SOM written in MATLAB, were developed by a research group in Helsinki 
University (SOM Toolbox for MATLAB, http://www.cis.hut.fi/pro_iects/somtoolbox/). 
Both packages can be executed individually. The SOM-PAK routines, which are 
compiled from C, can also be called directly from the MATLAB SOM Toolbox package. 
This decreases executions times significantly compared with using the MATLAB SOM 
Toolbox routines. 

As recommended by T. Kohonen (Kohonen, 2001), the “hexes” topology for constructing 
a map has been used. Map training was linearly initiated. 

Two phases of training, coarse and fine, were conducted. 

First phase of training: 

Dimensions: X and Y are initialized to the range of 10 to 70, however, there is a 
function in SOM-PAK or SOM Toolbox that can initiate the dimensions of the 
map and other training parameters 
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Length of interaction: depending upon the number of records in the training set,
as general rule, it is equal to or close to the number of records

Learning rate : 0.7 – 0.9

Distance from the central point : less than the X or Y dimension number

Second phase of training:

Length of interaction: 1000 times of the product of X and Y

Learning rate : 1/20 to 1/30 of the learning rate used for the first phase

Distance from the central point : 2 is generally used

Two properties were used to measure the quality of a trained map:

data representation accuracy
data set topology representation accuracy

The first one, data representation accuracy, is measured using average quantization error
between data vectors and their BMUs (Best Match Unit) on the map . For dataset
topology representation accuracy, several measures have been proposed : the topographic
error measure and the percentage of data vectors for which the first and second BMUs are
not adjacent units . Both methods are implemented in the SOM Toolbox and are used in
our SOM training processes.

In this map training process, the quality of the trained map is also measured by the ratio
of the distance between a training data (or test data) vector and the "winner" in the
trained map. The "winner" here is the neuron node that is "closest" to the training data
vector, meaning it is the node whose data vector has the shortest distance to the training
data vector. Thus each training record (the vector of data) is assigned to the nearest
neuron. A well trained SOM is expected to have 90% of the data records in the training
dataset within a pre-set threshold distance from the corresponding winner.

3.2.3 Data for training, testing and validating

The training datasets were generated by randomly extracting records from the entire
dataset . Since the available dataset for some hosts were larger than for others, the size of
the training datasets for a particular host depends on the size of the original dataset for
that host. Generally, there were 3,000 records for a training dataset . For a host dataset
with less than 2,000 records, 50% of the records are taken for the training dataset.
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In addition to the training dataset, test and validation datasets were also built by randomly
sampling from the original dataset . The records in those datasets were generally different
from that in the training datasets.

3.2.4 Results and Discussion

The data in Table 1 can be considered as a 4x4 matrix which is used to demonstrate the
capability of the trained map in describing itself and distinguishing itself from other maps
for different hosts. The values are the percentages of records in the test datasets that have
an acceptable distance (1 .5 of the distance unit used here) from a node (winner) in a
trained SOM map . The test datasets are sampled from datasets A, B, C and D and are
compared against the SOMs built for A, B, C and D . Ideally, the values in the diagonal
(as bolded in the first matrix below) should be high and rest of it should be low.

Table 1 . Percentages of records in the four test datasets classified into the four SOMs that were
trained with the corresponding four host computers data.

Test Data set A Test Data set B Test Data set C Test Data set D
SOMA 100 70 0 0
SOM B 95 75 5 0
SOM C 5 15 95 70
SOM D 5 5 80 100

The following graph (Figure 3) may further help to describe the argument made above . If
a map is well trained, it means the map is able to describe the hosts' behavior and capable
of detecting any other data points that do not belong to its own host . Only four columns
(model A: data A, model B : data B, model C : data C and model D: data D) should be the
dominants (higher than 90%) . From the graph, one can observe that Model A and B can
clearly distinguish themselves from C and D and vice versa . However, Model A and B
can't distinguish each other very clearly . Model C and D can not only distinguish
themselves from A and B they can also distinguish between each other very clearly . The
similar observations seem to be true to most of the experimental results in above data
matrixes .
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Figure 3. Rates (in %) of data points lower than 1.5 distance units. 

From the results of these experiments, a trained SOM can generally be used as a tool to 
profile a host computer behavior and to detect behavior that does not agree with that host. 
However, the sensitivities of the trained SOM maps may not be high enough in 
distinguishing the behaviors of the host computer from others. If the behaviors of host 
computers A and B are similar, the maps should generate similar profiles. Note that there 
weren’t an adequate number of data records available for dataset B to have enough 
records for map training and testing, therefore the quality of the map B is uncertain. 

In general, from these preliminary SOM experiments we can conclude that the SOM is 
capable of profiling behavior for host computers but not sensitive enough to clearly 
distinguish the behavior profiles among the host computers. One reason for this is that the 
experimental set-up was overly simplified in dealing with data that have such high 
dimensions (attributes) and a very large number of records. Some attributes that are 
highly important in determining the behaviors may be over shadowed by the large 
number of attributes. A multi-layer SOM hierarchical framework may be the solution in 
which features that have an internal connection can be grouped together for a SOM 
building and then at a higher level a SOM can be built with the sublevel SOMs’ data. 
Thus, the effects of important attributes will not be over shadowed in constructing the 
behavior profiles. 
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4 Adaptive Resonance Theory (ART)

4.1 Background

Adaptive Resonance Theory (ART) was introduced as a theory of human cognitive
information processing (Carpenter and Grossberg, 1987) . The theory has since led to an
evolving series of real-time neural network models for unsupervised category learning
and pattern recognition. These models, including ART!, ART2, ART3, ARTMAP, Fuzzy
ART and Fuzzy ARTMAP, are capable of learning stable recognition categories in
response to arbitrary input sequences . ART 1 can stably learn to categorize binary input
patterns in an arbitrary order . ART2 can stably learn to categorize either analog or binary
input patterns presented in an arbitrary order . ART3 is based on ART2 but includes a
model of the chemical synapse that solves the memory search problem of ART system
embedded in network hierarchies . It can carry out parallel search of distributed
recognition codes in a multilevel network hierarchy . ARTMAP can rapidly self-organize
stable categorical mappings between m-dimensional input vectors and n-dimensional
output vectors . Fuzzy ART, which incorporates computation from fuzzy set theory into
the ART neural network, is capable of rapidly and stably learning to recognize categories
in response to arbitrary sequences of analog or binary patterns . Fuzzy ARTMAP, the
combination of ARTMAP with Fuzzy ART, can rapidly learn stable categorical
mappings between analog or binary input and output vectors (Carpenter et al ., 1991).

4.2 Fuzzy ART

Fuzzy ART is a member of the ART algorithm family that incorporates fuzzy set theory
into adaptive resonance theory . This combination enables the unsupervised categorization
learning and pattern recognition processes which are faster and more stable for ART
algorithm in responding to arbitrary input sequences (Carpenter et al, 1991).

Fuzzy ART clusters input vectors into patterns based on two separate distance criteria,
match and choice . For input vector X and pattern j, the match function is defined by:

1XAw 1 1

I x I

where W is the weight vector associated with pattern j . The fuzzy AND operator A is
defined by :

(X AY) i min(x i , y1 ),

and the norm l .l is defined by
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The choice function is defined by
IXAWi.I

a+ W.

where a is a small constant.

For each input vector X, Fuzzy ART assigns it to the patternj that maximizes T)(X) while
satisfying S 1 (X) p where p is the vigilance parameter, 0 p 1 . The weight vector W

is then updated according to the equation:

Winew = /3(x A Wfold )+ (1— fl)W0ld

where /3 is the learning rate parameter, 0 <_ /3 <.1 . If no such pattern can be found, a new
pattern node is created . This learning and categorizing procedures is illustrated in Figure
4 .

Initialize weights : W, = 1 .0

Read Input vector : X = (X,, X2 , . . X .)

TJ ( X

Calculate Choice functions : T,(X)

Max (T)
Reset T; = 0

No

No
Reset all T;

Yes
Yes

Update weight W,

	1

Create new pattern

Figure 4. Fuzzy ART learning algorithm.

In order to avoid the pattern proliferation problem, Fuzzy ART used a complement
coding technique to normalize the inputs . The complement of vector X, denoted by XC , is
defined as :
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For an n-dimensional original input X, the complemented coded input X to the Fuzzy
ART system is the 2n-dimentional vector:

X =(X,Xc)=(x,,x2, . . . .xn,,x2, . . .xn).

Using the ART model in profiling the behavior of a host computer for the purpose of
anomaly detection may help to establish a pattern network with unsupervised learning for
the dataset that contains unknown number of patterns . More importantly, through
adjusting the value of vigilance, the parameter in controlling ART learning process, the
generality of the network can be adjusted to recognize objects in various specific levels:
recognize a dog from other animals and also recognize the dog from its brothers . It
should be pointed out that most above description of Fuzzy ART are taken from
Carpenter et al . (1991) and Liao et al . (2004).

23



This page intentionally left blank.

24



5 ART Anomaly Detection Prototype
5 .1 Data Preparation for Fuzzy ART Profile Training
In addition to the four host datasets used for SOM training, several more datasets were
added to the Fuzzy ART exercises . The new datasets were also from NetState . The
numerical values representing the host computer's activities are required to train an ART
model . Five features are derived from the datasets for each of the applications:

bytes_in
bytes_out
duration
hour_work
day_work

input bytes for an event
output bytes for an event
seconds of an event
operation hour, 1- 24
operation day, 1- 7

The host computer's applications are categorized based on the destination port numbers.
By reviewing the frequency of application in most datasets used, six application
categories were developed (application (port number(s)):

http(80, 443), ssh(22), smtp(25), ftp(21), pop(109), other(any other port numbers)

It should be pointed out that the application categories can be extended to make the
training dataset more generic . In this project, the first five are the most frequent in the
datasets, thus more representative to the host computer's behavior . Any other
applications represent a small proportion of the activities and lumped into the `other'
category.

Thus, the dataset for an ART model learning, testing and validating test contains 6 x 5
columns for each record . Since there is only one application for a particular record, five
numerical values are assigned to an application and the rest of the 25 columns contain the
value of zero as showing the example in Table 2

Table 2 . Sample data format used for building host computer behavior profile (11 of 30 columns).
http ssh smtp
Byte_in Byte_out Duration Time_work Day_work Byte_in Byte_out Duration Time_work Day_work Byte_in

112 123 122 22 3 0 0 0 0 0 0
0 0 0 0 0 45 456 667 12 7 0

By arranging the dataset format like this, it allows ART to learn the host computer's
behavior for separate application and establish a profile that contains any cluster that the
training dataset may have . For example, if the training dataset contains six applications,
among them 99% of the records might belong to http with the rest of them distributed
into the other five applications, with at least one record for each application . The profile
established by the ART learning process includes at least six clusters that correspond to
each of the six applications, assuming there is no other significant difference among the
records of an application . When the trained profile is applied for anomaly detection, if the
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tested dataset contains a significant amount of applications that only can be classified into
the cluster of `other', the relative portion of `other' will increase in the profile and an
abnormal behavior can be detected.

Another reason for selecting this data format is that data normalization is required for
training ART framework to establish profile . The typical form used for data
normalization is :

d

	

v,	-vm ;

; – vmax m

where vm,,, and v„ X are the minimum and maximum values for a attribute . It is more
proper to normalize the input data within that application . For example, the minimum and
maximum values for bytes_in and bytes_out in HTTP may not be comparable to those
expected for SMTP.

5.2 The Fuzzy-ART Program and Interface Development
The open source package of Fuzzy-ART Neural Network Implementation was developed
by A. Garrett (v 1 .0, 2002, wv,ww.matim ork .com/matlahcentral/t'llce \change) at
Jacksonville State University . This package was written in the MATLAB language and
consists of two ART models : Fuzzy ART and ARTMAP. Modifications have been made
to allow the methods in the package to take input that is different in format from what the
package expects . A series of utility methods have been developed for data normalization,
model training, testing and result calculation and reporting.

MATLAB has been designed for mathematical computation . In particular, the built-in
matrix operations make data input easy, since it is in the format of a table, with the
columns representing the attributes and each row representing a record . MATLAB simply
reads the table in as a matrix . Since MATLAB is built as matrix-based to conduct
computation, many matrix manipulation functions in MATLAB make the Fuzzy ART
training and application efficient to implement and execute.

Training Parameters:

Unlike other learning algorithms, Fuzzy-ART or any other ART algorithms need only
two parameters to control the learning process : the vigilance, and learning rate . For
vigilance, p, in general, the lower value of vigilance leads to a coarse learning process
and high vigilance value will lead to establish a profile that can distinguish more detail of
an object . But the tradeoff includes a higher learning time and higher level of noise . The
learning rate is set to 1 .0, the value typically used for Fuzzy ART training.

5.3 Datasets for Training, Testing and Validating
A set of three datasets were used for Fuzzy-Art training, testing and validating,
respectively . The records in the datasets were randomly extracted from the raw dataset of
a host computer . The records in the three sets, although coming from the same host
computer dataset, were different from each other.
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The size for the training, testing and validating datasets are: lO,OOO, 1,000 and 2,000. 
These sizes were selected based on a series of preliminary tests. 

5.4 Representative of Behavior Profile 
A profile obtained from the Fuzzy ART learning process is an array of patterns in which 
each of the patterns is a collection of records with similar features. The number of 
patterns and the distribution of the patterns’ sizes in a profile characterize the observed 
object, in this case, the behavior of the host computer. Figure 5 shows an example of a 
profile. The bar graph shows that there are a total 18 patterns in the profile and the 
distribution of the patterns in the profile. The X axis of this graph represents the number 
of patterns in the profile and the Y axis is the measurement of the relative proportion of 
each pattern in the profile. 

Figure 5. Example of profile of a host computer behavior 

Considering the behavior of a host computer and the way used to establish the profile 
with Fuzzy ART, a pattern can carry the information that describes the activities with a 
particular application (e.g., http), that is similar in the amount of information exchange 
(bytes in and out), similar in operation time (duration) and time and date the host 
computer operation (time of day and date of a week). If another computer operates 
similarly to the host computer, it should have the similar number of patterns and the 
similar distribution of pattern sizes in the profile when its dataset is used to get a profile 
with the same Fuzzy ART set-up. By comparing the two profiles, the differences will be 
used to evaluate whether an anomaly has occurred. 

5.5 Criteria Se I ec t i o n for Norm a I/A b norm a I M eas u rem en t s 

To distinguish anomalous behavior from the normal behavior of a host computer, the data 
collected from a period of time will be used to establish a profile against the profile that 
Fuzzy ART generates with the normal behavior data. Each of the records in the new 
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dataset will be evaluated to determine whether it has the same features as that of any
pattern in the normal behavior profile . Through this, all records in the new dataset are
accepted or rejected by the profile . The record distribution of the new dataset becomes a
profile and can be used to compare against the normal behavior profile . If the difference
between the two profiles is significant enough, then an alarm can be issued for possible
occurrence of anomaly.

However, determination of the significance between the two profiles is arbitrary.
Depending upon the problem, one only can develop the measurement through
experimental tests for specific application. In this project, three categories are used to
measure the similarity between two profiles:

Percentage of Passed Records (PPR), this is the percentage of the records in the new
dataset that can be classified into one of the patterns in a normal behavior profile.

Sum of Difference of Profiles (SDP), this the sum of the absolute differences of the two
corresponding patterns between the two profiles.

Spearman Coefficient (SC), this is a statistical measure for rank correlation between two
sets of values :

61d z

r=1-
n(n2 -1)

where d, is the difference between the ranks of corresponding values and n is the number
of pairs of values . If the two groups are identical, the Spearman Coefficient is 1.

5.6 Prototype development

The anomaly detector for the network/host computer prototype consists of a set of
graphical user interfaces (GUIs) . The basic architecture of the network/host computer
anomaly detector prototype is shown in Figure 6.

Host/network

computers

v

Data

preparation and

Behavior

profile

Machine-

learning

Figure 6 . Anomaly Detection Architecture.
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The host or network traffic data are collected and stored using NetState . Then the data is
formatted and used for machine-learning through the Fuzzy ART algorithm to generate a
behavior profile . When the profile is tested and validated, it will be used to compare
against the host/network traffic data. If an abnormal behavior is detected, an alarm will be
raised and the detailed information for the alarm will be sent to network security
personnel for evaluation, and the section of the traffic data that caused the alarm will be
stored in a buffer zone . If it turns out that the abnormal behavior is not a threat and is
caused by a behavior change, the Fuzzy ART algorithm will be used to retrain the
behavior profile in which the new normal behavior will be included . A mechanism can be
developed to atomize the processes of training, testing, applying and retraining, thus to
atomize adaptation of this system.

5 .7 GUI Development for Anomaly Detector Prototype

The anomaly detector prototype is composed of a series of graphic user interfaces (GUIs)
which were developed with the MATLAB GUI development tools . These GUIs have the
functionalities of learning the behavior from a selected host computer, establishing a
profile based on it, testing the profile and retraining the model if necessary, applying the
model to the data sent by the host to detect abnormal behavior and reporting the results.
The functionality of monitoring a host on-line, or so-called pseudo-real time monitoring
is also built to demonstrate that the potential application of the tool on live network
traffic.

The algorithm used in this tool is the Fuzzy ART as described in Section 4 .2 . When
building a profile, the user selects a target host he or she wishes to monitor . The values
of vigilance and learning rate used in Fuzzy ART algorithm can also be changed from the
defaults . In this prototype, a group of training datasets are listed, representing various
host computers' behaviors . The profile of a host computer's normal behavior is displayed
in a bar chart (Figure 7) . The bar chart shows the number of patterns and the distribution
of the percentages of records in the dataset for each of the patterns of the behavior
profile .
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Figure 7. Anomaly detection prototype for host selection, training and profile display. 

The user has the options to test the profile (model) or to use the trained profile in 
anomaly detection. If the Test the Model button is selected, a model testing GUI will 
display. A group of test datasets is listed for selecting. Testing results are displayed 
numerically in three categories: percentage of records in the test dataset that can be 
classified into the patterns of the trained model, the Spearmen coefficient and the 
cumulative value of the differences in records distribution in the patterns. In addition, a 
double bar graph visually shows the distribution of records in the patterns of the profile 
under the normal behavior and the one for testing; and another graph demonstrates the 
absolute differences (positive or negative) of records distribution in each pattern of the 
trained profile and the test datasets (Figure 8). If the user is not satisfied with the trained 
profile, this GUI gives the user the option to retrain the profile: reselect the vigilance and 
learning rate values. 
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A model validation GUI was developed to use a dataset from the host computer but with 
different records than those used for training and testing the model. The feature of the 
host computer behavior is known: normal or abnormal. This GUI is to validate whether 
the profile is capable of distinguishing between them (Figure 9). A profile retraining 
option is given if the profile needs to be modified. If the profile is not validated, the user 
can choose to retrain the profile. 
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This GUI can also be used to check the normal/abnormal behavior for a host computer in 
a time period for which the data is saved in an individual dataset, if the user accepts the 
profile as the normal behavior profile for the host. The user can select a dataset and then 
press the “Checking the Host” button, the normal behavior will be reported as 
“Validated” in the current status report area, In Figure 10, an anomaly detection is 
performed with the trained profile (new-003-train) against the dataset (new-003-1000). 
“Validated” indicates that the host computer’s behavior is normal during the time period 
covered by the dataset. 

The function called “Pseudo-Real Time” demonstrates the concept of applying the tool to 
real time or near real time on-line data. If it is selected, the trained profile will be 
continuously and automatically used to test against the datasets that represent the real- 
time or near real-time behavior of the host. The GUI will report the results when the 
detection process is in progress by updating the fields of graphs, current status, and the 
three numerical categories, as shown in Figure 1 1. A list window will display the 
historical status of the host computer’s behavior along with the time period and three 
numerical categories. 
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Historical 
behavior status 

Figure 11. Pseudo real-time anomaly detection GUI. 

The above GUIs were developed with the MATLAB interface development tools. The 
user interaction functionalities included in the MATLAB GUI tools may be limited as 
compared with tools, such as Java Swing. A better, more user-friendly GUI could be 
developed if the concepts outlined in the MATLAB prototype were incorporated into a 
more sophisticated GUI environment. 
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6 Anomaly Detection Results 
6.1 Normal vs. Abnormal Behaviors of a Host Computer 
The behavior profile used in the prototype was trained with the data collected under 
normal operation conditions. If the behavior of the host computer does not change, the 
data collected at any time should construct a profile that should be similar to that with 
normal behavior. However, if the host computer operates differently, e.g., changes in the 
characteristics of its normal behavior, the prototype will issue an alarm. To demonstrate 
this, the following two graphs (Figure 12) are obtained by using the same normal 
behavior profile to compare against different datasets. The left diagram uses the data 
obtained from the same host computer (Host 003) without significant behavior change. 
Visually, one can observe that two groups of bars, representing the profiles from training 
and testing datasets, or representing the behaviors under normal operation conditions and 
the behavior to be tested, are almost identical. The differences of each pattern between 
the two profiles are very small. In contrast, the right one was obtained when the dataset 
obtained from a different host computer (Host 012) which has a different application 
from the one used to train the profile. This dataset for Host 12 is assumed (for purposes 
of this example) to be from the same host computer (Host 3), which has changed its 
normal behavior. From the left double bar graph, the distributions of patterns in the two 
profiles are not the same and several significant differences of the individual patterns 
between the two profiles are found from the graph at the right side. Numerically, only 
1.75% of the records that can be distributed into the patterns of the trained profile, the 
sum of differences is large, 158, and the Spearman Coefficient is far away from 1. 
Therefore, this tested computer behavior is different from the normal behavior, an 
anomaly is detected, and the ‘Not Validated’ in the field of Current Status indicates the 
abnormal behavior. 
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6.2 Effect of category values on anomaly detection

As described previously, determination of an abnormal behavior depends upon three
categories : Percentage of Passed Records (PPR), the sum of differences between
distributions of records in the tested profile against the profile obtained under normal
operation (SDP) and the Spearman's Coefficient (SC) . However, the challenge is
determining the values assigned to the three factors that can sensitively and correctly
detect an anomaly from normal behavior, and thus maintain a low rate of both false
positives and false negatives . In principle, with a high of PPR, a low SDP and a SC close
to 1, the prototype will have a high sensitivity to distinguish abnormal from normal
behaviors. Because the profile built with Fuzzy ART is approximate-based, data in a
pattern are similar but not necessarily same . A degree of tolerance for data deviation has
to be allowed when the prototype classifies the records to its patterns . If PPR is set to
100%, SDP to 0 and SC to 1, the prototype will essentially recognize every group of
records as abnormal if it is not identical or very similar to the training dataset . On the
other hand, if the settings are too far from their ideal values, the prototype is not able to
distinguish the abnormal from normal.

Choosing the thresholds for the three values should be based on a number of experimental
results using data from normal and abnormal behaviors . The objective of this project is to
develop an algorithm and prototype that can sensitively determine any deviation from the
normal behavior . The adjustment of the sensitivity and correctness of the prototype will be
left to future users because the optimal values will likely be host and network-specific.
Detailed experiments were not conducted to determine the correlation between the values
of the three factors and the sensitivity of the prototype in anomaly detection.

The following two examples demonstrate the effect of the thresholds of the three factors
in determining whether an anomaly will be detected . The behaviors of the host computer
during this time period were classified as `Abnormal' by using three sets of combined
values used to determine the `normal/abnormal' behavior:

1 . PPR >= 90 and SDP <= 30 and SC >= 0.7
2. PPR >= 90 and SDP <= 80 and SC >= 0.9
3. PPR >= 90 and SDP <= 50 and SC >= 0.8

If the evaluated result for a particular dataset can't satisfy any of the above threshold sets,
then behavior is classified as `Abnormal' .
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Figure 13. Anomaly detection using ; multiple sets of category values. 

Figure 13 illustrates the behavior difference when two datasets are compared against a 
trained profile and the ‘NormaVAbnormal’ behavior is determined by three sets of preset 
category values. The values of PPR, SDP and SC at the left hand graph are 95.9,74.67 
and 0.91, respectively, which satisfy the second set. It is classified as a ‘normal’ 
behavior. The values for the right hand graph are 65,60.43 and 0.98, respectively. None 
of above three set of values can be satisfied; even though two out of three values in the 
right hand side graph are better than that in the left hand side, it is still considered as 
‘Abnormal’. This example demonstrates the importance of rationally setting the values 
for the three factors in evaluate the host computer’s behavior. 

6.3 Effect of the Resolution of a Profile 
The resolution of a profile can be thought of as the number of patterns in a profile. If the 
resolution is high, the individual records in a pattern share a high degree of similarity, as 
compared with a lower resolution profile. 

The effects of the profile resolution on the determination of the host computer behavior 
are illustrated in Figure 14. Here, the same host dataset is evaluated using two profiles 
that were trained with the same dataset, but with values of vigilance of 0.5 and 0.75, 
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respectively. When the vigilance of 0.5 is used, the trained profile (left) contains 18 
clusters. In this case the dataset to be tested shows small differences from the trained 
profile and there is no anomaly detected. When the vigilance is increased to 0.75, a 
profile with 52 clusters is generated. The same dataset used previously for 0.5 is tested 
against the trained profile and classified as ‘Abnormal’. Obviously, the clusters in the 
high resolution profile contain the records with higher similarity as comparing with those 
in the low resolution profile. The sensitivity of the profile in anomaly detection increases 
with the increase of the profile resolution, but so does the noise level. A proper selection 
of vigilance, thus, is important to the effectiveness and quality of the anomaly detector 
and the selection is system specific and can only be determined by a series of 
experiments under various scenarios: normal/abnormal behaviors and/or witMwithout 
intrusion or internally abuse and etc. 

6.4 Real-time Application 
The ultimate goal of developing this prototype is to apply anomaly detection techniques 
to detecting the internal and external threats in real-time or near real-time, to timely 
prevent or reduce the damage of those threats. Keeping this in mind, a feature was 
developed that demonstrates the concept of real-time application. In the following 
example shown in Figure 15, the prototype continuously and automatically evaluates the 
incoming data and reports the host computer’s behavior status and also keeps the records 
of the behaviors. Note that both the current and previous host status is displayed. In this 
prototype, data that was collected at different time periods is stored in the datasets. 
However, an interface can be built to allow the prototype to directly interact with host 
computer and collect data using an appropriate protocol. 

Figure 15. Example of real-time application of the anomaly detection prototype. 
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7 Summary and Discussion
Application of anomaly detection is relatively new to network security . Although there
has been much research in the last decade to develop various approaches for intrusion
detection and virus prevention, there is no a workable system based on anomaly detection
for network security.

The approaches we reported here focus on a technique that uses of self-organizing and
unsupervised learning, because of the difficult nature of evolving attacks and insider
threats . In order to establish the behavior-based profile, the high-level session data, only
containing a limited number of attributes, were used to avoid sheltering effects from the
large quantity of attributes from the low level network traffic data.

After evaluating several data-mining algorithms, the Kohonen self-organizing map
(SOM) and the fuzzy adaptive resonance theory (Fuzzy ART) algorithms were evaluated
in detail and a prototype of anomaly detector based on Fuzzy ART was developed.

Both SOM and Fuzzy ART algorithms show promise in detecting network abnormal
behaviors. The sensitivity of Fuzzy ART seems much higher as compared with that of
SOM.

The algorithms and prototype of Fuzzy ART anomaly detection developed in this
research are not only limited to being applied to network traffic data, but are ready to be
used to evaluate the similarity and difference of datasets that feature a large volume of
data in high dimensions . Although not reported here, this prototype has been applied to
other non-network traffic datasets and successfully demonstrated its capability for
anomaly detection in different systems.

The results from this research are preliminary and a number of issues remaining to be
addressed:

We have demonstrated the capability of the algorithms in detecting anomalies, but we
have not tested datasets that contains real intrusions or used it to identify abnormal
behaviors that pose a threat to the network security;

The selection of criteria and their values used for Fuzzy ART algorithm to measure the
behavior of a host computer is still somewhat arbitrary . More research is needed to select
the highly representative criteria for measuring the differences between two profiles.
These areas would be a good focus for future anomaly detection research .z
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