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Abstract

The original LDRD proposal was to use a nonlinear diffusion solver to compute
estimates for the material temperature that could then be used in a Implicit Monte
Carlo (IMC) calculation. At the end of the first year of the project, it was deter-
mined that this was not going to be effective, partially due to the concept, and
partially due to the fact that the radiation diffusion package was not as efficient as
it could be.

The second, and final year, of the project focused on improving the robust-
ness and computational efficiency of the radiation diffusion package in ALEGRA.
To this end, several new multigroup diffusion methods have been developed and
implemented in ALEGRA. While these methods have been implemented, their ef-
fectiveness of reducing overall simulation run time has not been fully tested.

Additionally a comprehensive suite of verification problems has been devel-
oped for the diffusion package to ensure that it has been implemented correctly.
This process took considerable time, but exposed significant bugs in both the previ-
ous and new diffusion packages, the linear solve packages, and even the NEVADA
Framework’s parser.

In order to manage this large suite of problem, a new tool called Tampa has
been developed. It is a general tool for automating the process of running and
analyzing many simulations.

Ryan McClarren, at the University of Michigan has been developing a Spherical
Harmonics capability for unstructured meshes. While still in the early phases of
development, this promises to bridge the gap in accuracy between a full transport
solution using IMC and the diffusion approximation.
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Chapter 1

Introduction

The original LDRD proposal was to use a nonlinear diffusion solver to compute
estimates for the material temperature that could then be used in a Implicit Monte
Carlo (IMC) calculation. At the end of the first year of the project, it was deter-
mined that this was not going to be effective, partially due to the concept, and
partially due to the fact that the radiation diffusion package was not as efficient as
it could be.

The second, and final year, of the project focused on improving the robust-
ness and computational efficiency of the radiation diffusion package in ALEGRA.
To this end, several new multigroup diffusion methods have been developed and
implemented in ALEGRA. While these methods have been implemented, their ef-
fectiveness of reducing overall simulation run time has not been fully tested.

Additionally a comprehensive suite of verification problems has been devel-
oped for the diffusion package to ensure that it has been implemented correctly.
This process took considerable time, but exposed significant bugs in both the previ-
ous and new diffusion packages, the linear solve packages, and even the NEVADA
Framework’s parser.

In order to manage this large suite of problem, a new tool called Tampa has
been developed. It is a general tool for automating the process of running and
analyzing many simulations.

Ryan McClarren, at the University of Michigan has been developing a Spherical
Harmonics capability for unstructured meshes. While still in the early phases of
development, this promises to bridge the gap in accuracy between a full transport
solution using IMC and the diffusion approximation.
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Chapter 2

The Diffusion Method

The radiation diffusion package in ALEGRA uses a Galerkin finite element method
with linear continuous shape functions on isoparametric elements. The details of
the method, including the discretization, linearization, and details of the algorithm
are outlined here.

Some details are omitted here; specifically how the radiation couples to other
physics, such as hydrodynamics and magnetohydrodynamics.

2.1 The Diffusion Equation

The diffusion equation is an approximation to the Boltzmann transport equation
for radiation transport [3]. The photons couple to the materials through absorp-
tion and emission processes. The materials emit and absorb photons at different
rates for different photon energies, which leads to an energy dependent diffusion
equation.

2.1.1 The Energy Dependent Equations

The photon energy dependent diffusion equation and the equations describing
each material are

1

c

∂Er(ε)

∂t
−∇ ·D(ε)∇Er(ε) =

M∑

m=1

αmσa,m(ε)(B(Tm, ε) − Er(ε)) +
1

c
Sr(ε) (2.1.1)

∂um

∂t
=

∫ ∞

0

αmcσa,m(ε) (Er(ε) −B(Tm, ε)) dε+Qm, (2.1.2)
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whereEr and um are the radiation and material energy densities, ε is the photon en-
ergy, M is the number of materials, Sr and Qm are external power density sources,
c is the speed of light, σa is the absorption opacity with units of inverse length,
Dm is the diffusion coefficient with units of length, B(Tm, ε) is the Planck (or black
body) function, Tm is the material temperature which is a function of um, αm is
the material volume fraction, and D(ε) is the diffusion coefficient. It is assumed
there is a mixture of materials at each point, and that volume fraction averaging
the opacities is reasonable. The angle integrated Planck function is defined as

B(Tm, ε) =
8π

h3c3
ε3

eε/kTm − 1
(2.1.3)

For regular diffusion, the diffusion coefficient is defined as

D(ε) =
1

3
∑M

m=1 αmσt,m(ε)
(2.1.4)

where σt,m is the total opacity (scattering plus absorption). This choice for the
diffusion coefficient can allow the radiation flux

F = −cD∇Er (2.1.5)

to be greater in magnitude than Er, which implies that more energy is flowing
through a surface than exists at the surface. This problem typically arises when the
gradients are very sharp. The diffusion coefficient can be modified in many ways
to limit the radiation flux. The Larsen flux limiter[23, 29] is available in ALEGRA,
and it defines the the diffusion coefficient to be

D =
1

[
(3σt)n +

(
|∇E|

E

)n] 1
n

, (2.1.6)

where n is an arbitrary parameter. The value of n = 2 works well for most cases,
but the behavior of most other flux limiters can be captured with other values of
n. Many more flux limiters have been developed and are included in the code, but
only for comparison purposes.

2.1.2 Boundary Conditions

In radiation transport and in real-world experiments systems are driven by inter-
nal energy sources and the energy that enters the system through the boundary.
The term Sr in Eq. 2.1.1 is the arbitrary internal energy sources that are not mod-
eled elsewhere in ALEGRA; these are primarily used for testing purposes. At the
boundaries, physically we can only specify the angular distribution entering the
system. Unfortunately, the diffusion equation only works with angle-integrated
quantities namely the energy density Er and the flux F, so that the best that we
can do is make sure certain integral quantities are conserved at the boundaries.
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2.1.2.1 Partial Fluxes

The radiation intensity I(x,Ω, ε, t) can be written in terms of the quantities in the
diffusion approximation as [21, 19, 24, 3]

I(Ω) =
c

4π
Er +

3

4π
Ω ·F (2.1.7)

where Ω is the unit cosine vector the defines the direction of travel of the photons.

The flux F can also be computed from I using

F =

∫

4π

ΩI dΩ . (2.1.8)

Since we only know the information for the incoming I(Ω′), we can integrate I(Ω′)
over the incoming angles to get constraints on Er and F. If we have some surface
with an outward unit normal n̂, then for the incoming angles the following is true

Ωin · n̂ < 0. (2.1.9)

The outgoing angles are then
Ωout · n̂ > 0. (2.1.10)

With the angles defined, we can now define an incoming and outgoing flux to
be

Fin =

∫

Ω · n̂<0

ΩI dΩ and (2.1.11)

Fout =

∫

Ω · n̂>0

ΩI dΩ , (2.1.12)

and F = Fin + Fout. Since we don’t need (or want) to deal in vector quantities, we
can write

Fin = −n̂ ·Fin = −
∫

Ω · n̂<0

n̂ ·ΩI dΩ (2.1.13)

Fout = n̂ ·Fout =

∫

Ω · n̂>0

n̂ ·ΩI dΩ (2.1.14)

Inserting Eq. 2.1.7 we get

Fin = − 1

4π

∫

Ω · n̂<0

n̂ ·Ω (cEr + 3Ω ·F) dΩ (2.1.15)

Fout =
1

4π

∫

Ω · n̂>0

n̂ ·Ω (cEr + 3Ω ·F) dΩ (2.1.16)
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Without loss of generality, we can assume that n̂ is the pole of Ω, yielding

Fin = − 1

4π

∫ 0

−1

∫ 2π

0

µ (cEr + 3µFn̂) dϑ dµ (2.1.17)

Fout =
1

4π

∫ 1

0

∫ 2π

0

µ (cEr + 3µFn̂) dϑ dµ (2.1.18)

Doing the integration gives us

Fin =
c

4
Er − 1

2
n̂ ·F (2.1.19)

Fout =
c

4
Er +

1

2
n̂ ·F (2.1.20)

Note that Fin and Fout are usually positive. They are strictly nonnegative for in the
transport equation, but the diffusion approximation doesn’t ensure that I(Ω) is
positive. We can see that here because if F is large, it can change the sign of either
Fin or Fout.)

2.1.2.2 Actual Boundary Conditions

With this machinery, we can specify any type of boundary condition that we want.
It turns out that all boundary conditions for diffusion can be written in the form

AcEr + Bn̂ ·F = Cc (2.1.21)

Dirichlet boundary conditions specify the energy density on the boundary, namely

Er(xboundary) = E0. (2.1.22)

These are not useful physically, but are useful for testing purposes.

For vacuum boundaries we know that there is no radiation entering the system,
but we do not know how much radiation is leaving. This means we can specify Fin

but not Fout. So

Fin = 0 =
c

4
Er − 1

2
n̂ ·F. (2.1.23)

Writing this in terms of Eq. 2.1.21 and setting B = 1, we get

− c
2
Er + n̂ ·F = 0 (2.1.24)

A source boundary again specifies the incoming flux Fin, but sets it to some-
thing nonzero. If we know that the radiation entering the system is being emitted
from a large hot body of temperature T , the incoming distribution essentially looks
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like a black body function. We can insert this into Eq. 2.1.11 to get what we should
specify

Fin = −
∫

Ω · n̂<0

n̂ ·ΩcB(T )

4π
dΩ =

c

4
B(T ) (2.1.25)

With this, our boundary condition is

c

4
Er − 1

2
n̂ ·F =

c

4
B(T ) (2.1.26)

or
− c

2
Er + n̂ ·F = − c

2
B(T ) (2.1.27)

In some problems, you don’t really want to model the entire physical system,
but you do know that a certain fraction of the radiation crossing the boundary will
be reflected back into the system. If we define the albedo α as the reflected fraction
of energy back into the system, we know that

Fin = αFout (2.1.28)

Using the expressions for these, we get

c

4
Er − 1

2
n̂ ·F =

cα

4
Er +

α

2
n̂ ·F (2.1.29)

Simplifying some we get

−1

2

1 − α

1 + α
cEr + n̂ ·F = 0 (2.1.30)

Here we know that Fin = Fout, which should look a lot like the α = 1 case for
the albedo boundary condition. The reflection boundary condition is

n̂ ·F = 0 (2.1.31)

Table 2.1 lists the factors A, B, and C for all the different boundary conditions
in the form of Eq. 2.1.21 listed here.

2.1.3 Miscellaneous Quantities

The Planck function [21, 26] is defined as

B(Tm, ε) =
8πε3

h3c3 (eε/kT − 1)
. (2.1.32)

where k is Boltzmann’s constant, and h is Planck’s constant. This normalization for
the angle integrated Planck function in Eq. 2.1.32 makes B(Tm, ε) have the same
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Boundary Condition A B C
Dirichlet 1 0 E0

Vacuum −1/2 1 0
Source −1/2 1 −2Fin = −B(Tsource)/2

Reflection 0 1 0
Albedo −1

2
(1 − α)/(1 + α) 1 0

Table 2.1. Coefficients for the diffusion boundary condi-
tions.

units as the radiation energy density Er. Integrating Eq. 2.1.32 over all photon
energies yields

B(Tm) =
8π5k4

15h3c3
T 4

m = aT 4
m (2.1.33)

where a is called the black body constant. When the material is in equilibrium with
the radiation field, the energy density is equal to the Planck function, or Er(ε) =
B(Tm, ε).

The radiation flux F (Eq. 2.1.5) is used to calculate the net power though a
surface, namely

Psurface =

∫

S

∫ ∞

0

cF(ε) · dε dA (2.1.34)

where S is the surface and dA is a surface area element which points outward.

Another quantity, the radiation temperature, is defined as

Tr =

(
1

a

∫ ∞

0

Er(ε) dε

) 1
4

. (2.1.35)

2.1.4 The Multigroup Approximation

In order to deal with the energy dependence of the diffusion equation, Eq. 2.1.1 is
typically integrated over an photon energy ranges to define new diffusion equa-
tions for groups of photon energies. Each term in the integrated equation is defines
integrated quantities that will be used. Integrating Eq. 2.1.1 yields

∫ εg+1

εg

[
1

c

∂Er(ε)

∂t
−∇ ·D(ε)∇Er(ε) =

M∑

m=1

αmσa,m(ε)(B(Tm, ε) − Er(ε)) +
1

c
Sr(ε)

]
dε.

(2.1.36)
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2.1.4.1 Group Integrated and Averaged Quantities

We can use Eq. 2.1.36 to come up group integrated and averaged quantities that
make the group equations as close the to integrated equation as possible.

The energy integral can be pushed through the time derivative as follows:

∫ εg+1

εg

1

c

∂Er(ε)

∂t
dε =

1

c

∂

∂t

∫ εg+1

εg

Er(ε) dε. (2.1.37)

This defines a new quantity

Eg =

∫ εg+1

εg

Er(ε) dε (2.1.38)

where Eg is the radiation energy density in group g. Similarly the group inhomo-
geneous source, Sg, can be defined as

Sg =

∫ εg+1

εg

Sr(ε) dε. (2.1.39)

Because Er(ε) = B(Tm, ε), it is convenient to define a group black body value as

Bg(Tm) =

∫ εg+1

εg

B(Tm, ε) dε. (2.1.40)

We can define a group averaged opacity by ensuring that the group averaged
terms is consistent with the integral terms in Eq. 2.1.36. This leads to

∫ εg+1

εg

σa,m(ε)B(Tm, ε) dε = σa,g,mBg(Tm) (2.1.41)

or

σa,g,m =

∫ εg+1

εg
σa,m(ε)B(Tm, ε) dε

∫ εg+1

εg
B(Tm, ε) dε

(2.1.42)

This is also known as the Planck-averaged opacity. If the material is in equilib-
rium with the radiation field, this average would also make the the removal term
σa,mEr exact. However, this is not normally the case, and we should define another
opacity average using

σ′
a,g,m =

∫ εg+1

εg
σa,m(ε)Er(ε) dε

∫ εg+1

εg
Er(ε) dε

(2.1.43)

However, we don’t know the details of the energy density since that’s what we’re
solving. Typically, Eq. 2.1.42 is used as an approximation.
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We would also like to define a group-averaged diffusion coefficient so that

Dg∇Eg =

∫ εg+1

εg

D∇Er(ε) dε, (2.1.44)

but this is impossible to do because we cannot know Er. Assuming again that the
equilibrium condition Er = B(T, ε) holds, we get

Dg∇Bg =

∫ εg+1

εg

D∇B(T, ε) dε, (2.1.45)

and T is some average material temperature. (Exactly how to get this average isn’t
important, because we’re not going to use it anyway.) Using the chain rule on the
gradient of B, we get

Dg
∂Bg

∂T
∇T =

∫ εg+1

εg

D
∂B(T, ε)

∂T
dε∇T. (2.1.46)

And finally we get

Dg =

∫ εg+1

εg

DfB dε (2.1.47)

where

fB =
∂B(T,ε)

∂T
∂Bg

∂T

(2.1.48)

is the normalized derivative. Eq. 2.1.47 is the best approximation possible, and
we can compute this approximation exactly for one material problems without a
flux limiter. Further approximations must be done when using flux limiters and
multiple materials. Generally, the flux limiter argument is assumed to be constant
over the group, namely

χ(Er,∇Er, σt) ≈ χ(Eg,∇Eg, σ
g
t ) (2.1.49)

where σg
t is some group averaged total opacity, which is about to be defined. Once

we make the approximation in Eq. 2.1.49, Eq. 2.1.47 reduces to

1

σg
t

=

〈
1

∑M
m=1 αmσt,m

〉

g

=

∫ εg+1

εg

fB∑M
m=1 αmσt,m

dε (2.1.50)

where σg
t is a Rosseland weighted total opacity. Typically the code only has access

to the Rosseland opacities for the individual materials, namely

1

σg
t,m

=

〈
1

σt,m

〉

g

=

∫ εg+1

εg

fB

σt,m

dε (2.1.51)

where σg
t,m is a Rosseland weighted total opacity for the single material. These

need to be combined multi-material cells in such a way to preserve certain proper-
ties. If the materials have identical detailed opacities, the average of the individual
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opacities should be the same as the average of the combination. For example, for
two materials and for σt,1 = σt,2 = σ, then Eq. 2.1.50 becomes

∫ εg+1

εg

fB

α1σ + α2σ
dε =

∫ εg+1

εg

fB

σ
dε =

〈
1

σ

〉

g

=
1

σg
(2.1.52)

Also, if any of the volume fractions are zero, we would like the multi-material av-
erage to be the average of the remaining opacities. For example, for two materials
and α1 = 1 and α2 = 0, then Eq. 2.1.50 becomes

∫ εg+1

εg

fB

σt,1

dε =

〈
1

σt,1

〉

g

=
1

σg
t,1

(2.1.53)

Finally, if any of the opacities are zero, the correct thing should happen. Again,
using our two material example, but now σt,2 = 0, Eq. 2.1.50 becomes

∫ εg+1

εg

fB

α1σt,1

dε =

〈
1

α1σt,1

〉

g

=
1

α1σ
g
t,1

(2.1.54)

An approximation that meets these three conditions is

σg
t ≈

M∑

m=1

αmσ
g
t,m (2.1.55)

While it looks like we went through a lot of work to define something simple, there
are several other simple averages that would not have been appropriate.

The simple volume fraction averaging of the individual Rosseland averages is
an approximation. Depending on the detailed energy dependence of the opacities,
it is possible to get an extremely inaccurate total opacity, especially for one group
calculations.

With these approximations, the estimate for the group diffusion coefficient (Eq. 2.1.47)
is

Dg =
χ(Eg,∇Eg, σ

g
t )

σg
t

. (2.1.56)

For problems with void, the diffusion coefficient can be infinite. In practice, this
value is limited to some large value that allows the problem to be solved numer-
ically without changing the answer too much. (Typically the large value is about
one hundred times the physical problem domain.)

Many approximations were made to get the group averaged material values.
This is why multigroup simulations are very important. It is impossible to define
an exact integrated equation. Using many groups reduces the error of all of the
approximations made to an acceptable level.
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2.1.4.2 The Multigroup Equations

Using all the group averaged quantities from the last section, we can approximate
Eq. 2.1.36 as

1

c

∂Eg

∂t
−∇ ·Dg∇Eg =

M∑

m=1

αmσa,g,m(Bg(Tm) − Eg) +
1

c
Sg. (2.1.57)

The material equation becomes

∂um

∂t
= Qm +

∑

g

αmcσa,g,m (Eg −Bg(Tm)) . (2.1.58)

Note that the energy groups are only coupled to each other through the material
equation. This is a nonlinear system of equations.

2.1.4.3 The Multigroup Planck Function

The work in this section is a summary of the work presented in [12, 7], and is in-
cluded for completeness. In the multigroup equations, the Planck function, Eq. 2.1.3,
integrated over the energy group appears as

Bg(T ) =

∫ εg+1

εg

8π

h3c3
ε3

eε/kT − 1
dε. (2.1.59)

Introducing a change of variables, ε = ε/kT , yields

Bg(T ) =
8πk4T 4

h3c3

∫ εg+1

εg

ε3

eε − 1
dε. (2.1.60)

To compute the integral, we will introduce another change of variables, namely

z = e−ε, (2.1.61)

to give us ∫ εg+1

εg

ε3

eε − 1
dε =

∫ zg+1

zg

(ln z)3

1 − z
dz (2.1.62)

Computing the integral gives us
∫ zg+1

zg

(ln z)3

1 − z
dz =

π4

15
+ (ln z)3 Li1 z − 3(ln z)2 Li2 z + 6(ln z) Li3 z − 6 Li4 z

∣∣∣∣
zg+1

zg

(2.1.63)
where Lin z is the polylog function defined by

Lin z =
∞∑

k=1

zk

kn
. (2.1.64)

28



In practice, Eq. 2.1.63 is evaluated only for large ε > 2.061981, which implies small
z. In this limit, we can evaluate the first several terms of the series that defines
the polylog functions, Eq. 2.1.64. For small ε, where it is difficult to evaluate the
polylog, we expand the exact integral as

∫ εg+1

εg

ε3

eε − 1
dε ≈ε

3

3
− ε4

8
+
ε5

60
− ε7

5040
+

ε9

272160

− ε11

13305600
+

ε13

622702080
− 691ε15

19615115520000

+
ε17

1270312243200
− 3617ε19

202741834014720000

+
43867ε21

107290978560589824000
+O

(
ε23
) ∣∣∣

εg+1

εg

.

(2.1.65)

Additionally, the derivative with respect to temperature of the group integrated
Planck function is also needed,

∂Bg(T )

∂T
=

8πk4T 3

h3c3

[
4

∫ εg+1

εg

ε3

eε − 1
dε+

ε4
g

eεg − 1
− ε4

g+1

eεg+1 − 1

]
(2.1.66)

where the Leibniz Integration Rule has been applied since the integration limits, ε,
also depend on temperature.

2.2 Nodal Finite Elements

The NEVADA framework centers material properties on element centers. The
discretization used for the diffusion is based on node centered variables using a
Galerkin finite element method with linear continuous shape functions on isopara-
metric elements.

The code is meant to support different diffusion approximations and even dif-
ferent physics. Instead of working with the specific instance of Eq. 2.1.57, a general
diffusion equation will be used.

2.2.1 The Generalized Diffusion Equation

We will assume that there are G diffusion equations that can be coupled together
through some sort of inelastic scattering process (or something that acts like it. The
general diffusion equation we will use is

∂Eg

∂t
= ∇ ·Dg∇Eg − σgEg +

∑

g′
σg′→g

s Eg′ + Sg (2.2.1)
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The notation here is very similar to that of Eq. 2.1.57, but the terms are slightly
different. In this form, the σ’s have units of inverse time and represent reaction
rates. Note that the group to group source includes within-group scattering, the
σg removal term should contain a removal term equivalent to this source.

2.2.2 The Discretization of Energy Density

The radiation energy density, Eg, is assumed to have the form

Eg(x, t) =

nnodes∑

j=1

Ej(t)φj(x). (2.2.2)

where the shape functions φj are linear basis functions that cover the domain, and
have a value of one at node j linearly decreasing to zero at each of the neighboring
nodes.

2.2.3 The Integration of the Diffusion Equation

First we multiply the diffusion equation, Eq. 2.2.1, by an arbitrary weight function
and integrate over the entire problem domain D, yielding

∫

D

w
∂Eg

∂t
dV =

∫

D

w

[
∇ ·Dg∇Eg − σgEg +

∑

g′
σg′→g

s Eg′ + Sg

]
dV. (2.2.3)

Integrating by parts and using the divergence theorem on the diffusion term yields
∫

D

w
∂Eg

∂t
dV =

∫

S

wDg∇Eg · dA +

∫

D

[
w
∑

g′
σg′→g

s Eg′ − (∇w) · (Dg∇Eg) − wσgEg + wSg

]
dV

(2.2.4)

where dA is a differential surface area and points outward from the element and
S is the surface of the domain D. The next step is to insert the approximate form
of Eg expressed in Eq. 2.2.2 into Eq. 2.2.4 and divide the integral the entire domain
into a sum of volume integrals over each element in the problem; this yields

∑

e

∑

j

∫

De

w
∂

∂t
E

g
jφj dV =

∑

e

∑

j

∫

Se

wDg∇E
g
jφj · dA +

∑

e

∫

De

wSg dV

+
∑

e

∑

j

∫

De

[
w
∑

g′
σg′→g

s E
g′
j φj − (∇w) · (Dg∇E

g
jφj) − wσgE

g
jφj

]
dV. (2.2.5)
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All the weight functions φi are linearly independent, so using them as the
weight functions w will give us nnodes linearly independent equations that we can
solve for the nodal values of the radiation energy density E

g
j . Inserting φi for w

yields

∑

e

∑

j

∂

∂t
E

g
j

∫

De

φiφj dV =
∑

e

∑

j

E
g
j

∫

Se

φiDg∇φj · dA +
∑

e

∫

De

Sgφi dV

+
∑

e

∑

j

∫

De

[
∑

g′
σg′→g

s E
g′
j φiφj − (∇φi) · (Dg∇E

g
jφj) − σgE

g
jφiφj

]
dV. (2.2.6)

Because the weight functions are zero everywhere except in the elements sur-
rounding the node to which they belong, the sum over all elements and all nodes
can be reduced to a sum over all elements adjacent to node i and to a sum over
nodes j in this restricted set of elements. Additionally, all the integrals on the in-
ternal surfaces of the elements cancel except on the boundary of the domain. We
will compute these integrals over the weight functions in normalized coordinates,
so dV is replaced by |J(ξ)| dξ and similarly for the surface integral; |J(ξ)| is the Ja-
cobian of transformation between the real coordinates and the normalized coordi-
nates. The NEVADA framework provides these Jacobians, along with convenient
quadrature integration mechanisms. (This needs to be better documented.)

2.2.4 Boundary Conditions

The boundary term in Eq. 2.2.6 does not have to be evaluated directly. We can
break the boundary conditions listed in Section 2.1.2 into two classes: Dirichlet
and all the others. We implement Dirichlet boundary conditions by modifying the
matrix rows associated with the nodal value E

g
i on the boundary so that E

g
i = E

g
0,

where E
g
0 is the prescribed boundary value.

All the other boundary conditions can then be written in the form of Eq. 2.1.21
with B set to one. Just as we did for the diffusion equation, we multiply Eq. 2.1.21
by a weight function and integrate over a surface. Integrating Eq. 2.1.21 over the
boundary face of the element yields

−
∑

j

DgE
g
j

∫

Γs

φi∇φj · dA = Cg

∫

Γs

φin̂ · dA −
∑

j

AgEj

∫

Γs

φiφjn̂ · dA. (2.2.7)

where the values of Ag and Cg are set according to Table 2.1. We can use the right
hand side of Eq. 2.2.7 to compute the surface integration term in Eq. 2.2.6.
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2.2.5 Lumped Mass Matrix

All of the terms in Eq. 2.2.6 and Eq. 2.2.7 that have a φiφj factor contribute to part
of the linear system called the mass matrix. The mass matrix for an element cou-
ples all the nodes of that element together, but typically these terms describe local
processes such as absorption, for instance. This can lead to unphysical instabili-
ties in the solution. The mass matrix can be lumped by summing each row and
placing the sum on the diagonal of the matrix. The off diagonals are then zeroed.
This procedure is called lumping. With the mass matrix terms lumped, Eq. 2.2.6
becomes
∑

e

∂

∂t
E

g
i

∫

De

φi dV =
∑

e

∑

j

E
g
j

∫

Se

φiDg∇φj · dA +
∑

e

∫

De

Sgφi dV

+
∑

e

∑

g′
E

g′
i

∫

De

σg′→g
s φi dV−

∑

e

∑

j

E
g
j

∫

De

(∇φi) · (Dg∇φj) dV−
∑

e

E
g
i

∫

De

σgφi dV.

(2.2.8)

The boundary conditions, Eq. 2.2.7 should also be lumped to yield

−
∑

j

E
g
j

∫

Γs

φiDg∇φj · dA = Cg

∫

Γs

φin̂ · dA −AgEi

∫

Γs

φin̂ · dA. (2.2.9)

The left hand side of Eq. 2.2.9 is also in Eq. 2.2.8; the right hand side of Eq. 2.2.9 is
substitute for this term at the boundaries of the system.

Lumping the equations is also critical to conserving energy. Integrating the ma-
terial equation (done below) using the approximation in Eq. 2.2.2 results in emis-
sion and absorption terms that are exactly the ones found in Eq. 2.2.8, but not
Eq. 2.2.6. This needs to be proved more rigorously.

2.2.6 Energy Tallies

If we set w = 1 in Eq. 2.2.5, we get an equation that defines energy conservation
for our problem. This defines several processes that we can tally for the user. The
power emitted by the source is

Psource =
∑

e

∫

De

Sg dV. (2.2.10)

The source power Psource can be further broken down into various sources, such
as the power from black body emission or arbitrary external sources. Radiation is
absorbed by the material with the power

Pabsorb =
∑

e

∑

j

∑

g

∫

De

σgE
g
jφj dV. (2.2.11)
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The total energy in the radiation field is a sum over all elements e

Êrad =
∑

e

∫

De

∑

i

∑

g

E
g
iφi dV (2.2.12)

This leaves the net leak rate from the entire surface of the problem. The most
accurate (and convenient) way to calculate this is to use the other terms, namely

Pnet leak = Psource − Pabsorb − Ên+1
rad − Ên

rad

∆t
(2.2.13)

2.2.6.1 Flux Through Arbitrary Surfaces

The net radiation power through a surface is defined by Eq. 2.1.34; in multigroup
form this equation is

Psurface = −
∫

S

∑

g

Dg(∇Eg) · n̂ dA (2.2.14)

where n̂ is the orientation of the surface. In our discretized system, Dg is an ele-
ment centered variable and can be discontinuous at the surface of interest. Addi-
tionally, the gradient, ∇Eg, is discontinuous at the surface because of the shape
of our basis functions φi. These two problems make it difficult to do the sur-
face integral accurately, so something more complicated than the simple integral
in Eq. 2.2.14 is needed to calculate the power accurately.

We can change the open surface integral into a closed surface integral with the
same result by multiplying by some function w that is equal to one on the original
open surface and zero on the rest of the surface.

Psurface = −
∫

S′

∑

g

wDg(∇Eg) · n̂ dA (2.2.15)

where S ′ is the closed surface that contains S. Figure 2.1 shows the original surface
one which the flux tally is requested, and the augmented surfaces added to make
it a closed surface.

The function w is still unspecified on the interior of the closed surface, but it
should have reasonably nice properties in order to proceed. Inspecting Eq. 2.2.4,
we notice that the right hand side of Eq. 2.2.15 is the sum over all groups of one of
the terms. Solving for this term in Eq. 2.2.4 gives us the surface power in terms of
volume integrals, namely

Psurface = −
∑

g

∫

D′
w
∂Eg

∂t
dV

+
∑

g

∫

D′

[
w
∑

g′
σg′→g

s Eg′ − (∇w) · (Dg∇Eg) − wσgEg + wSg

]
dV (2.2.16)
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Original surface

Augmented surfaces

Figure 2.1. The blue curve is the surface on which the flux
tally is requested. The original surface is augmented with
extra surfaces in order to create a closed surface. The func-
tion w is set to one on the blue surface and zero on the green
surface. Ideally w would be zero on the two red surfaces
at the end, but this is not possible because w must be rep-
resentable by a finite element expansion (Eq. 2.2.2). There
will be some contribution to the tally by flux crossing the
red surfaces. In some cases this can lead to a considerable
error.

where D′ is the volume enclosed by the surface S ′.

In order to actually perform the integration, w must be defined. Because this is
a finite element method, we must restrict our choice of w to something that can be
represented in a finite element expansion, Eq. 2.2.2. This however, means that we
cannot exactly represent the w that makes the Eq. 2.2.15 true; we can only use a w
that makes this expression approximate. We will use

w =
∑

{k:nodes on S}
φk, (2.2.17)

where k is the set of nodes on the original surface S ′. There will some contribution
of particles leaving the volume out the “ends”, where w is decreasing from one to
zero in an element.

In addition to the net flux across the surface, we also want to calculate the
positive and negative going components of the flux. There are two terms in the
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partial flux expressions, Eq. 2.1.19 and Eq. 2.1.20.

Fin =
1

4

∑

g

Eg +
1

2
n̂ ·

∑

g

Dg∇Eg (2.2.18)

Fout =
1

4

∑

g

Eg − 1

2
n̂ ·

∑

g

Dg∇Eg, (2.2.19)

The first term is simply the energy density; we can perform a simple surface inte-
gral for this. The other term is the net flux we’ve already calculated.

2.3 Linearized Semi-Implicit Solution

The coupled radiation diffusion equations, Eq. 2.1.57 and Eq. 2.1.58, are nonlinear.
In many cases linearizing these equations is sufficient. The first step is to assume
that all material properties are evaluated at the beginning of the time step. Even
so, we are still left with the nonlinear function Bg(Tm) in the equations. What
follows linearizes this term as well. The radiation energy density is still solved for
implicitly; only the material quantities are explicit.

Rewriting Eq. 2.1.57 and Eq. 2.1.58 again as

1

c

∂Eg

∂t
−∇ ·Dg∇Eg =

1

c
Sg +

∑

m

αmσa,g,m(Bg(Tm) − Eg) (2.3.1)

∂um

∂t
= Qm +

∑

g

αmcσa,g,m(Eg −Bg(Tm)), (2.3.2)

We can now discretize in time using first order implicit differencing to yield

1

∆t
(En+1

g − En
g ) −∇ · cDg∇En+1

g = Sg +
∑

m

αmcσa,g,m(Bg(T
n+1
m ) − En+1

g ) (2.3.3)

ρmCv,m

∆t
(T n+1

m − T n
m) = Q′

m +
∑

g

cσa,g,m(En+1
g −Bg(T

n+1
m )), (2.3.4)

where um = ρmCv,mTm, ρm is the material density, Q′
m = Qm/αm, and Cv,m is the

heat capacity. All quantities, unless otherwise notated by a superscript, are evalu-
ated at the beginning of the time step.

Because Bg(T ) is the only term which is always nonlinear (the opacities could
be constant), we will linearly expand it around the old temperature in order to
evaluate it at the new temperature to get

Bg(T
n+1
m ) ≈ Bg(T

n
m) +

∂Bg(T
n
m)

∂T
(T n+1

m − T n
m) = B�

g(Tm). (2.3.5)
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We will solve forB�
g(T

n
m) using Eq. 2.3.5 and Eq. 2.3.4. We will then be able to insert

this expression for B�
g(T

n
m) into Eq. 2.3.3. The resulting equation will be linear.

To do this, we will first solve for the new material temperature and insert into
Eq. 2.3.4 yielding

ρmCv,m

∆t

B�
g(Tm) −Bg(T

n
m)

B′
g(T

n
m)

= Q′
m +

∑

g′
cσa,g′,mE

n+1
g′ −

∑

g′
cσa,g′,mB

�
g′(Tm), (2.3.6)

where B′
g(T

n
m) is the temperature derivative of Bg(T

n
m). Expanding B�

g′(T
n
m) and

inserting the temperature difference solved from Eq. 2.3.5 yields

ρmCv,m

∆t

B�
g(T

n
m) −Bg(T

n
m)

B′
g(T

n
m)

= Q′
m+

∑

g′
cσa,g′,mE

n+1
g′ −

∑

g′
cσa,g′,mBg′(T

n
m)−B

�
g(Tm) −Bg(T

n
m)

B′
g(T

n
m)

∑

g′
cσa,g′,mB

′
g′(T

n
m)

(2.3.7)

This last step eliminated the sum over groups on B�
g′(T

n
m), allowing us to solve for

B�
g(T

n
m). Before doing this, however, we will define some new variables to make

life easier:

τ =
1

∆t
κm =

[
∑

g′
cσa,g′,mB

′
g′(T

n
m) +

ρmCv,m

∆t

]−1

(2.3.8)

Finally solving for B�
g(T

n
m) yields

B�
g(Tm) = Bg(T

n
m) +B′

g(T
n
m)κm

(
Q′

m +
∑

g′
cσa,g′,mE

n+1
g′ −

∑

g′
cσa,g′,mBg′(T

n
m)

)
.

(2.3.9)
Finally inserting all of this into the diffusion equation (Eq. 2.3.3) give us

(
τ +

∑

m

αmcσa,g,m

)
En+1

g −∇ · cDg∇En+1
g = Sg + τEn

g

+
∑

m

αmcσa,g

(
Bg(T

n
m) +B′

g(T
n
m)κm

[
Q′

m +
∑

g′
cσa,g′,mE

n+1
g′ −

∑

g′
cσa,g′,mBg′(T

n
m)

])

(2.3.10)

Eq. 2.3.10 is an equation for energy group g, and it is coupled to the other group
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equations. We can now define the terms of Eq. 2.2.8 as

Eg = En+1
g (2.3.11)

Dg = cDg (2.3.12)

Sg = Sg +
∑

m

αmcσa,g

(
Bg(T

n
m) +B′

g(T
n
m)κm

[
Q′

m −
∑

g′
cσa,g′,mBg′(T

n
m)

])

(2.3.13)

σg =
∑

m

αmcσa,g,m (2.3.14)

σg′→g
s =

∑

m

αmcσa,gB
′
g(T

n
m)κmcσa,g′,m (2.3.15)

The σg′→g
s terms couple each group equation to all other groups. Additionally, the

full linear system is non-symmetric.

It is also possible to decouple the group equations by evaluating some of the
energy density terms at the beginning of the time step. We define an estimated
temperature change as

∆Test = κm

(
Q′

m +
∑

g′
cσa,g′,mE

n
g′ −

∑

g′
cσa,g′,mBg′(T

n
m)

)
. (2.3.16)

We can then use Eq. 2.3.16 in Eq. 2.3.10 to define another set of coefficients for
Eq. 2.2.8 as

Eg = En+1
g (2.3.17)

Dg = cDg (2.3.18)

Sg = Sg +
∑

m

αmcσa,g

[
Bg(T

n
m) +B′

g(T
n
m)∆Test

]
(2.3.19)

σg =
∑

m

αmcσa,g,m (2.3.20)

σg′→g
s = 0 (2.3.21)

This approximation makes the equations much simpler to solve. Each group be
solved separately, and the linear system is symmetric.

Once the radiation energy densities have been solved for using one of these
two approximations, the estimated temperature difference can be computed using
Eq. 2.3.16 by using the appropriate energy density, either En+1

g or En
g for the fully

coupled problem or the decoupled problem, respectively. Once ∆Test is calculated,
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the energy increments can be calculated using

δum = ∆tQm + ∆t
∑

g

αmcσa,m,gE
n+1
g

− ∆t
∑

g

αmcσa,m,gBg(T
n
m) − ∆t

∑

g

αmcσa,m,gB
′
g(T

n
m)∆Test. (2.3.22)

2.4 Solution Methods

In this section, the heart of the new ideas developed with LDRD are presented.
Several different solution techniques for solving the system of equations defined
by Eq. 2.2.1 are presented. Most methods in the past have used simple, Richardson-
like iteration methods to converge the between group coupling. Morel [22] presents
this history as well as proposes another advanced method. Morel’s method should
be compared against the ones presented here as well as with a full nonlinear solve.

The methods below have been implemented and correctly solve the equations,
but significant testing to determine their effectiveness still needs to be done.

2.4.1 Operator Form

Eq. 2.2.1 is a system of equations for the energy densities in each group. We can
rewrite Eq. 2.2.1 in term of operators as

Dgxg +
G∑

g′=1

Cg,g′xg′ = bg, (2.4.1)

where
Dg = −∇ ·Dg∇ +

1

∆t
+ σg, (2.4.2)

Cg,g′ = −σg′→g
s , (2.4.3)

xg = Eg, (2.4.4)

and

bg = Sg +
En−1

g

∆t
. (2.4.5)

The time derivative has also been discretized implicitly using backward Euler. The
discrete forms of these operators, defined by Eq. 2.2.8, can also be used. While,
when coupled with the material equation, this system is nonlinear, typically some
linearizion is used so that a linear system can be solved instead. In the following
discussion, we will assume some linearizion.

38



We can define a large block structured linear system as

Ax = b, (2.4.6)

where

x =

⎛

⎜⎜⎜⎝

x1

x2
...
xG

⎞

⎟⎟⎟⎠ (2.4.7)

is the vector of unknown energy densities,

b =

⎛

⎜⎜⎜⎝

b1
b2
...
bG

⎞

⎟⎟⎟⎠ (2.4.8)

is the right hand side, and

A =

⎛

⎜⎜⎜⎝

D1 + C1,1 C1,2 . . . C1,G

C1,2 D2 + C2,2 . . . C2,G
...

... . . . ...
C1,G C2,G . . . DG + CG,G

⎞

⎟⎟⎟⎠ (2.4.9)

This large linear system can be solved several ways, two of which are outlined
below.

2.4.2 Large System Solve

The obvious method would build the linear system in Eq. 2.4.6 and solve it directly.
The Cg,g′ terms make A asymmetric, so some method such as GMRES must be
used. With a Krylov method such as GMRES, using a preconditioner is critical
to getting good performance. Two preconditioners are suggested here, and are
implemented in ALEGRA using the Trilinos solver suite [14].

2.4.2.1 Diagonal Preconditioner

The Cg,g′ terms can be small since they come from a linearizion. This suggests
one preconditioner, namely a block diagonal approximation to A that ignores the
coupling terms, or

A ≈ Mdiag =

⎛

⎜⎜⎜⎝

D1

D2

. . .
DG

⎞

⎟⎟⎟⎠ . (2.4.10)
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2.4.2.2 Approximate Grey Preconditioner

If the group to group coupling are non-negligible, another preconditioner can be
developed that estimates this coupling. Summing Eq. 2.4.1 over groups yields

G∑

g=1

Dgxg +
G∑

g=1

G∑

g′=1

Cg,g′xg′ =
G∑

g=1

bg. (2.4.11)

We can define a new solution variable,

x̃ =
∑

g

xg (2.4.12)

where x̃ is gray, or one group, energy density. We can also define

ηg =
xg

x̃
(2.4.13)

so that xg = ηgx̃. Inserting this into Eq. 2.4.11 yields
[
D̃ + C̃

]
x̃ = b̃ (2.4.14)

where the average diffusion operator D̃ is

D̃ =
G∑

g=1

Dgηg, (2.4.15)

the summed right hand side b̃ is

b̃ =
G∑

g=1

bg, (2.4.16)

and the group coupling C̃ is

C̃ =
G∑

g=1

G∑

g′=1

Cg,g′ηg′ . (2.4.17)

Eq. 2.4.14 is again a nonlinear system because ηg depends on the solution at the
end of the time step. However, if the spectrum does not change much from time
step to time step, we can use old time step information to approximate it, namely

ηg ≈ ηn−1
g =

xn−1
g

x̃n−1
(2.4.18)

to linearize the system. Another possibility would be to linearize the system by
using a normalized Planck spectrum instead of ηg. This might be easier to assume
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when there is no good initial guess, but the nonlocal information in ηg will be a
better approximation than a normalized black body spectrum.

Once we solve for x̃, the group equations, Eq. 2.4.1, are decoupled and each
group can be solved for separately using

xg = D−1
g

[
bg −

G∑

g′=1

Cg,g′ηg′x̃

]
. (2.4.19)

2.5 Conclusions and Future Work

While new method has been developed and implemented, extensive testing of the
method has not been completed. Construction of the matrix is considerably faster
than in previous versions of the code. The solution for a given time step may
be more expensive than the previous version, much larger time steps should be
possible, reducing run time. This will be tested on several benchmarks and user
problems.
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Chapter 3

The Verification Suite

A suite of problems has been developed to test the radiation diffusion package in
ALEGRA. All problems and data analysis are run automatically, so that much of
this document can be generated for any version of the code. An error history is also
kept so that improvements (or regressions) in the algorithms can be identified.

The test suite includes twenty one different problems. Ten of these are simple
analytic solutions to the one dimensional Cartesian geometry diffusion equation,
and test different terms in the equation, including material discontinuities. Two
more problems are one dimensional solutions to the diffusion equation in cylin-
drical and spherical geometry and can be used to test the multi-dimensional code.
Eight problems are based on the method of manufactures solutions. These test the
code in situations where it is difficult to get an analytic solution, specifically in the
cases of varying material properties, nonlinear flux limiters, the multigroup equa-
tions, and coupling with the material energy equation. One test does not test the
diffusion code, but rather the Implicit Monte Carlo package.

A six convergence studies are run on each of these problems with a rectilinear
Cartesian mesh, a randomized mesh, and the highly skewed Kershaw Z-Mesh in
both two and three dimensions. In total, 685 simulations are run as part of this test
suite.

3.1 Tampa

A new tool, named Tampa, has been developed to manage the verification suite.
Tampa is designed to automate the processes of running a large number of simula-
tions, do the analysis of the results, and finally make a document with the results.
It is not specific to the radiation package, and only loosely coupled to ALEGRA. A
full users manual will be written to explain the usage of Tampa. Already, several
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others are beginning to use Tampa for their own verification suites within ALE-
GRA.

Tampa is a collection of tools, written in Python, that build input decks for
ALEGRA given a problem specification and several different parameters to run
that problem with. Typically, this is a given problem on different mesh refinements,
but one could also vary material properties, time step sizes, convergence norms,
etc. Once the specific combinations of problems and parameters have been made,
Tampa will run ALEGRA on each combination. Tampa can use the testAlegra
script to run these problems on workstations or clusters.

After all the simulations are completed, Tampa will run a post processing script
of the user’s choice, allowing great flexibility in how the analysis is accomplished.
Several sets of tools are provided to do the analysis used in the radiation veri-
fication suite. These compute various error norms for the computed solution on
different meshes. The convergence rate is then computed. All of this data is plotted
to be included in a document later on. Additionally, the errors for each problem-
parameter combination and the convergence rates are stored in a history file. The
histories can also be plotted so that improvements or regressions to the algorithm
can be detected.

Once all the analysis is finished, Tampa will build a document incorporating
the results. The results and document can then be archived; the radiation suite
stores the latest plots, histories, and document in a CVS repository.

3.2 Simplifications

The energy dependence of Eq. 2.1.1 is usually handled by integrating the equation
over an energy range, or group, and solving a coupled set of diffusion equations. In
the extreme case, the equation is integrated over all energies, and a single diffusion
equation needs to be solved. Most of the following tests are one-group, designed
to check the core functionality of the diffusion solver. Several multi-group tests are
then performed to check the group to group coupling.

If we ignore both the energy dependence and the coupling with the material
equation, we get the one-group, or gray, diffusion equation, namely

1

c

∂E

∂t
− 1

3σt

∇2E = −σaE +
1

c
S (3.2.1)

where E is the energy integrated radiation energy density, S is external power
density source, c is the speed of light, σa is the absorption opacity, and σt is the total
opacity. Since many of the problems are one dimensional, we can also simplify the

44



boundary conditions, Eq. 2.1.21, to

ArE − BrD
∂

∂x
E = Cr (3.2.2)

AlE + BlD
∂

∂x
E = Cl (3.2.3)

where Eq. 3.2.2 is applied at the right boundary and Eq. 3.2.3 is applied at the left
boundary.

3.3 One Dimensional Cartesian Steady State Problems

These tests are designed to test the diffusion solver with various boundary con-
ditions on various meshes. While reflective and periodic boundary conditions
are never explicitly tested in any of the problems listed here, to run all of these
problems in two or three dimensions will require the use of reflective or periodic
boundary conditions.

3.3.1 Only Scattering: Linear Solutions

The simplest diffusion equation eliminates nearly all the terms in Eq. 3.2.1 so that
just the diffusion operator is tested, namely

∂2E

∂x2
= 0, (3.3.1)

where it has been assumed that σa = 0, σt = σs, and S = 0. In this case, we have a
linear solution for E, namely

E(x) = ax+ b, (3.3.2)
where a and b are to be determined by the boundary conditions. Inserting Eq. 3.3.2
into Eq. 3.2.2 and Eq. 3.2.3 yields

Ar(axr + b) − BrDa = Cr (3.3.3)
Al(axl + b) + BlDa = Cl (3.3.4)

Solving for a and b yields

a =
ArCl −AlCr

D(ArBl + AlBr) −AlAr(xr − xl)
(3.3.5)

b =
D(BrCl + BlCr) + AlCrxl −ArClxr

D(ArBl + AlBr) −AlAr(xr − xl)
(3.3.6)

Since we have a second order method in space, we expect to recover the exact
solution regardless of the mesh spacing. This is a general expression for arbitrary
boundary conditions. Two specific combinations of the boundary conditions will
be shown next.

45



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Position (m)

R
ad

ia
tio

n 
E

ne
rg

y 
D

en
si

ty
 (

J/
m

3 )

(a) Analytic Solution

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0.001  0.01  0.1  1

N
or

m
al

iz
ed

 L
2 

E
rr

or

Average mesh spacing, h

ZmeshRotated-2D, p=-0.0945, r=0.725
Rectilinear-2D, p=-0.233, r=0.744
Rectilinear-3D, p=-1.96, r=0.995
Zmesh-2D, p=-0.186, r=0.786

Random-2D, p=-0.000735, r=0.405
Random-3D, p=-0.715, r=0.784
Zmesh-3D, p=-0.687, r=0.997

(b) Convergence Study

Figure 3.1. Steady state solution in a slab with the Dirichlet
condition E(0) = B(T = 5000 K) and the vacuum condition
at xr = 1 m with σt = σs = 1 m−1. This second order diffu-
sion method should get this exactly, so there is no expected
convergence.

3.3.1.1 Dirichlet and Vacuum

If we set the left boundary with a Dirichlet boundary condition E(0) = B(T ) and
a vacuum boundary at xr = 1, we get

E(x) = B(T )

(
1 − 1

1 + 2D
x

)
= B(T )

(
1 − 3σt

3σt + 2
x

)
(3.3.7)

Figure 3.1 shows the solution to this problem for a specific set of parameters.

3.3.1.2 Source and Albedo

If we have a source boundary at xl = 0 and an albedo boundary at xr = 1 we get

E(x) = B(T )
(α− 1)x+ 1 − α+ 2D(1 + α)

1 − α+ 4D
(3.3.8)

or
E(x) = B(T )

(α− 1)x+ 1 − α+ 2D(1 + α)

1 − α+ 4D
(3.3.9)

If α = 1, we have a reflective boundary and

E(x) = B(T ). (3.3.10)
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(b) Convergence Study

Figure 3.2. Steady state solution in a slab with the source
condition Fin(0) = B(T = 1000K)/4 and the albedo con-
dition at xr = 1 m with α = 0.25 and σt = σs = 100 m−1.
This second order diffusion method should get this exactly,
so there is no expected convergence.

If α = 0, we have a vacuum boundary and

E(x) = B(T )
1 + 2D − x

1 + 4D
(3.3.11)

Figure 3.2 shows the solution to this problem for a specific set of parameters.

3.3.2 Absorption and Scattering

We can reintroduce absorption to test that term as well as the diffusion operator in
Eq. 3.2.1. In steady state we have the simplified diffusion equation

∂2E

∂x2
− 3σtσaE = 0. (3.3.12)

Eq. 3.3.12 implies that E(x) has the form

E(x) = a eλx + b e−λx (3.3.13)

where

λ =
1

L
=

√
3σtσa (3.3.14)
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where L is the characteristic length of the problem (sometimes called the diffusion
length). The derivative of E(x) is

∂E

∂x
= aλ eλx − bλ e−λx (3.3.15)

Inserting the assumed solution into the boundary conditions gives us

Ar(a eλxr + b e−λxr) − BrD(aλ eλxr − bλ e−λxr) = Cr (3.3.16)

Al(a eλxl + b e−λxl) + BlD(aλ eλxl − bλ e−λxl) = Cl (3.3.17)

Solving for a and b for arbitrary boundary conditions yields

a =
Cl e

λxl(Ar + λDBr) − Cr eλxr(Al − λDBl)

e2λxl(Al + λDBl)(Ar + λDBr) − e2λxr(Al − λDBl)(Ar − λDBr)
(3.3.18)

b =
eλ(xl+xr)[Cr eλxl(Al + λDBl) − Cl e

λxr(Ar − λDBr)]

e2λxl(Al + λDBl)(Ar + λDBr) − e2λxr(Al − λDBl)(Ar − λDBr)
. (3.3.19)

3.3.2.1 Dirichlet and Vacuum Boundaries

For the specific case when on the left (xl = 0) we have a vacuum boundary and on
the right we have a Dirichlet boundary E(xr) = B(T ), the coefficients a and b in
Eq. 3.3.15 are

a = B(T )
1 + 2λD

eλxr(1 + 2λD) − e−λxr(1 − 2λD)
(3.3.20)

b = −B(T )
1 − 2λD

eλxr(1 + 2λD) − e−λxr(1 − 2λD)
(3.3.21)

Figure 3.3 shows the solution to this problem for a specific set of parameters.

3.3.2.2 Source and Albedo Boundaries

If instead we have on the left (xl = 0) an albedo boundary and on the right (xr) a
source boundary, the coefficients in Eq. 3.3.15 are

a = B(T )
1 − α+ 2λD(1 + α)

8λD coshλxr + 2(1 − α+ 4λ2D2(1 + α)) sinhλxr

(3.3.22)

b = B(T )
α− 1 + 2λD(1 + α)

8λD coshλxr + 2(1 − α+ 4λ2D2(1 + α)) sinhλxr

. (3.3.23)

For α = 1 we get

a = b = B(T )
1

2 coshλxr + 4λD sinhλxr

. (3.3.24)
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(b) Convergence Study

Figure 3.3. Steady state solution in a slab with the Dirichlet
condition E(1 m) = B(T = 5.0e6 K) and the vacuum condi-
tion at xr = 0m with σs = 1m−1 and σa = 6m−1.

This makes sense since we must be symmetric about the origin. For α = 0 we get

a = B(T )
1 + 2λD

8λD coshλxr + (2 + 8λ2D2) sinhλxr

(3.3.25)

b = B(T )
−1 + 2λD

8λD coshλxr + (2 + 8λ2D2) sinhλxr

(3.3.26)

Figure 3.4 shows the solution to this problem for a specific set of parameters.

3.4 Steady Steady Cylindrical and Spherical Problems

One dimensional problems in curvilinear coordinates can be used to test the two
and three dimensional versions of the code. These problems are one material with
a source boundary condition on the outside of the cylinder or sphere. Both absorp-
tion and scattering will be included.

3.4.1 A Cylinder

In cylindrical coordinates, the one dimensional diffusion equation is

1

r

∂

∂r

r

3σt

∂

∂r
E = σaE. (3.4.1)

49



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Position (m)

R
ad

ia
tio

n 
E

ne
rg

y 
D

en
si

ty
 (

J/
m

3 )

(a) Analytic Solution

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1

N
or

m
al

iz
ed

 L
2 

E
rr

or

Average mesh spacing, h

ZmeshRotated-2D, p=1.8, r=0.959
Rectilinear-2D, p=2, r=1
Rectilinear-3D, p=2, r=1
Zmesh-2D, p=1.99, r=1

Random-2D, p=1.98, r=1
Random-3D, p=2, r=1
Zmesh-3D, p=1.29, r=0.95

(b) Convergence Study

Figure 3.4. Steady state solution in a slab with the source
condition Fin(1 m) = B(T = 300 K)/4 and the albedo condi-
tion at xr = 0m with α = 0.75, σs = 1m−1 and σa = 6m−1.

We will impose the source boundary condition a some radius r0, namely

−1

2
E(r0) +D

∂E(r0)

∂r
= −1

2
B(T ). (3.4.2)

In the center, the energy density must be finite. Expanding the derivative in Eq. 3.4.1
yields

r
∂2

∂r2
E +

∂

∂r
E = rλ2E. (3.4.3)

The generic solution to this is

E(r) =
a√
π

K0(λr) + b I0(λr) (3.4.4)

where In(x) is the modified Bessel function of the first kind and Kn(x) is the mod-
ified Bessel function of the second kind. Since the energy density must remain
finite, we must have a = 0 since limr→0 K0(r) = ∞. Using a = 0, the derivative of
E(r) is then

∂E(r)

∂r
= bλ I1(λr) (3.4.5)

The source boundary implies

b [I0(λr0) + 2λD I1(λr0)] = B(T ) (3.4.6)

So finally

E(r) =
B(T )

I0(λr0) + 2λD I1(λr0)
I0(λr) (3.4.7)

Figure 3.5 shows the solution to this problem for a specific set of parameters.
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Figure 3.5. Steady state solution in a cylinder with the
source condition at r0 = 1 m of B(T = 10000 K) with
σs = 1 m−1 and σa = 1 m−1. A convergence study with this
problem still needs to be set up and done.

3.4.2 A Sphere

In spherical coordinates, the one dimensional diffusion equation becomes

− 1

ρ2

∂

∂ρ
ρ2 ∂

∂ρ
E = −λ2E, (3.4.8)

where ρ is the distance from the origin. The source boundary condition imposed
at ρ0 is

−1

2
E(ρ0) −D

∂E(ρ0)

∂ρ
= −1

2
B(T ). (3.4.9)

Expanding the derivative in Eq. 3.4.8 yields

ρ2 ∂
2

∂ρ2
E + 2ρ

∂

∂ρ
E = λ2ρ2E. (3.4.10)

The generic solution of this equation is

E(ρ) = a
cosh(λρ)

ρ
+ b

sinh(λρ)

ρ
. (3.4.11)

Since the solution must remain finite, which implies that a = 0 because

lim
ρ→0

cosh(λρ)

ρ
= ∞. (3.4.12)
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Figure 3.6. Steady state solution in a sphere with the source
condition at r0 = 1m of B(T = 6000K) with σs = 2m−1 and
σa = 3m−1. A convergence study with this problem still
needs to be set up and done.

Inserting the generic solution into the source boundary condition gives us

b

[
sinh(λρ0)

ρ0

+ 2D

(
λ cosh(λρ0)

ρ0

− sinh(λρ0)

ρ2
0

)]
= B(T ). (3.4.13)

And finally we can solve for the energy density as a function of radius,

E(ρ) = B(T )
ρ0

sinh(λρ0) + 2D
(
λ cosh(λρ0) − sinh(λρ0)

ρ0

) sinh(λρ)

ρ
. (3.4.14)

Figure 3.6 shows the solution to this problem for a specific set of parameters.

3.5 External Sources

The problems in this section test the external source term in the diffusion equation.

3.5.1 Constant Uniform Source: Constant Solution

Consider infinite slab with a constant, uniform source and absorption opacity.
Eq. 3.2.1 implies

E =
1

cσa

S (3.5.1)
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Alternatively, coupled to the material equation, we expect

E = B(Tm) = aT 4
m. (3.5.2)

This test can be run with periodic, reflective, and Dirichlet boundary conditions,
as well as both with and without the flux limiter.

3.5.2 Constant Uniform Source: One Dimensional Quadratic So-
lution

Consider a slab with vacuum boundaries and a uniform source of photons. The
governing diffusion equation, without absorption, in this case is

∂2

∂x2
E = −3σt

c
S (3.5.3)

The generic solution is
E(x) = ax2 + bx+ d (3.5.4)

Inserting this into the diffusion equation gives us the value of the coefficient a,
namely

a = −3σt

2c
S (3.5.5)

Vacuum boundaries at xl and xr helps us determine the other two coefficients.
Inserting the generic solution into the boundary conditions gives us

−(ax2
r + bxr + d) − 2

3σt

(2axr + b) = 0 (3.5.6)

−(ax2
l + bxl + d) +

2

3σt

(2axl + b) = 0 (3.5.7)

After solving for b and d and simplifying, the final form of the energy density is

E(x) =
S

c

[
(xr − xl) +

3σt

2
(x− xl)(xr − x)

]
. (3.5.8)

Since we have a second order method, we expect to get this solution exactly for all
meshes, regardless of mesh spacing.

Figure 3.7 shows the solution to this problem for a specific set of parameters.

3.5.3 Varying Source

In a slightly more complicated case, we will allow a spatially varying source such
that the governing equation is

∂2

∂x2
E = −3σt

c
S0 e−Ax. (3.5.9)
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(b) Convergence Study

Figure 3.7. Steady state solution in a slab with a uniform
source of S = 1 × 1010 W/m3 and σt = σs = 1m−1.

We will impose Dirichlet boundary conditions on each side of the slab so that

E(0) = E0 (3.5.10)
E(1) = E1. (3.5.11)

The solution for the energy density is

E(x) = E0 + (E1 − E1)x+
3σtS0

cA2

[
1 − e−Ax − x

(
1 − e−A

)]
. (3.5.12)

3.6 Two Material Steady State Problems

These tests involve a system with two distinct materials. The solution is essentially
a solution of two problems, one in each material. At the material interface, the en-
ergy density, E, and the energy flux, n ·F, must be continuous across the material
interface. Since the boundary conditions are tested elsewhere, we will use Dirichlet
boundaries on the problems.

In all of the following problems, El(xl) = E0, El(xi) = Er(xi) and Er(xr) = E1,
where xl, xi, and xr are the left, interface, and right boundaries respectively. The
left (or inner) slab has material properties σl

a and σl
t. The right (or outer) slab has

material properties σr
a and σr

t .
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Figure 3.8. Convergence rates of the absolute relative error
on various meshes for the nonuniform source problem with
σt = σs = 1.0, S0 = 1.0e10, A = 10, E0 = B(5000), and
E1 = B(10000).

3.6.1 Cartesian With Only Scattering

In one dimensional Cartesian coordinates with σa = 0, we have the two general
solutions for the energy density in the left and right materials, respectively:

El(x) = alx+ bl (3.6.1)
Er(x) = arx+ br (3.6.2)

Applying the Dirichlet boundary conditions along with the interface conditions
gives us a linear system to solve for the constants al, ar, bl, and br, namely

alxl + bl = E0 (3.6.3)
arxr + br = E1 (3.6.4)

alxi + bl = arxi + br (3.6.5)

− 1

3σl
t

al = − 1

3σr
t

ar. (3.6.6)
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(b) Convergence Study

Figure 3.9. Steady state solution in a two material slab with
the Dirichlet conditions E(0) = 0 and E(1 m) = B(200 keV)
with σl

s = 0.02 m−1, σr
s = 5.0 m−1, and xi = 0.5 m. These

parameters were chosen to test a thick material followed by
a near vacuum. This method should get this solution ex-
actly, so there is no expected convergence on the regular
meshes. There is some error in mixed material cells, how-
ever, so there is first order convergence on skewed or ran-
domized meshes.

Solving for the coefficients yields

ar = −(E0 − E1)
σr

t

σl
t(xi − xl) + σr

t (xr − xi)
(3.6.7)

al = −(E0 − E1)
σl

t

σl
t(xi − xl) + σr

t (xr − xi)
(3.6.8)

br = E1 + (E0 − E1)
σr

txr

σl
t(xi − xl) + σr

t (xr − xi)
(3.6.9)

bl = E0 + (E0 − E1)
σl

txl

σl
t(xi − xl) + σr

t (xr − xi)
(3.6.10)

Figure 3.9 shows the solution to this problem for a specific set of parameters.

3.6.2 Cartesian With Scattering and Absorption

With absorption reintroduced, in one dimensional Cartesian coordinates we have
the following two general solutions for the energy density in the left and right
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materials:

El(x) = al e
λlx + bl e

−λlx (3.6.11)

Er(x) = ar eλrx + br e−λrx (3.6.12)

The Dirichlet boundary conditions and the interface conditions impose four con-
straints that we can use to determine the parameters, namely

El(xl) = El (3.6.13)
Er(xr) = Er (3.6.14)

El(xi) = Er(xi) (3.6.15)
1

σl
t

∂El(xi)

∂x
=

1

σr
t

∂Er(xi)

∂x
. (3.6.16)

Applying these conditions yields the following matrix equation for the unknown
parameters:

⎡

⎢⎢⎣

eλlxl e−λlxl 0 0
0 0 eλrxr e−λrxr

eλlxi e−λlxi − eλrxi − e−λrxi

λl

σl
t
eλlxi −λl

σl
t
e−λlxi −λr

σr
t
eλrxi λr

σr
t
e−λrxi

⎤

⎥⎥⎦

⎡

⎢⎢⎣

al

bl
ar

br

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

El

Er

0
0

⎤

⎥⎥⎦ . (3.6.17)

This is solved numerically for the coefficients that are then used in Eq. 3.6.12.

Figure 3.10 shows the solution to this problem for a specific set of parameters.

3.6.3 One Vacuum Material

While not well defined in a vacuum, the diffusion approximation is frequently
used in this regime because it is cheap to compute, so this needs to be tested as
well. We can extend the problem in Section 3.3.1.1 to include a vacuum region in
the problem. The answer in the slab should remain the same, as well as all tallies,
since we’re simply adding on a vacuum region outside the vacuum boundary. The
solution to this will be a bit like the two material solution; we will ignore the fact
that the opacity is zero for a while.

In Section 3.3.1.1 there was a Dirichlet boundary at xl and a vacuum boundary
at xr. In the augmented problem the vacuum region will extend from xr ≤ x ≤ xv,
with a vacuum boundary at xv. The boundary and interface conditions are

Em(xl) = B(T ) = El (3.6.18)
Em(xr) = Ev(xr) (3.6.19)

1

3σm

∂Em

∂x
(xr) =

1

3σv

∂Ev

∂x
(xr) (3.6.20)

−1

2
Ev(xv) − 1

3σv

∂Ev

∂x
(xv) = 0, (3.6.21)
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(b) Convergence Study

Figure 3.10. Steady state solution in a two material slab
with the Dirichlet conditions E(0) = 0 and E(2 m) =
B(200 keV) with σl

s = 5 m−1 , σl
a = 20 m−1 , σr

s = 0.01 m−1 ,
and σr

a = 0.01 m−1. These parameters were chosen to test an
optically thin material followed by a thick one. The exces-
sive convergence rates of about O(3) are only because there
were problems in converging the solution on the coarse
meshes. The reason for this is currently unknown.

where the m and v subscripts indicate quantities in the material and vacuum, re-
spectively. The general solutions are

Em(x) = amx+ bm (3.6.22)
Ev(x) = avx+ bv (3.6.23)

Applying Eq. 3.6.18 implies that bm = El, if xl = 0. We get the following linear
system for the remaining coefficients

amxr − avxr − bv = −El (3.6.24)
σvam − σmav = 0 (3.6.25)

3σv(avxv + bv) + 2av = 0 (3.6.26)

The solution is

am = −El
3σm

2 + 3σmxr + 3σv(xv − xr)
(3.6.27)

bm = El (3.6.28)

av = −El
3σv

2 + 3σmxr + 3σv(xv − xr)
(3.6.29)

bv = El
2 + 3σvxv

2 + 3σmxr + 3σv(xv − xr)
(3.6.30)
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or if σv = 0, we get

am = −El
3σm

2 + 3σmxr

(3.6.31)

bm = El (3.6.32)
av = 0 (3.6.33)

bv = El
2

2 + 3σmxr

(3.6.34)

and finally

Em(x) = El

(
1 − 3σm

2 + 3σmxr

x

)
(3.6.35)

Ev(x) = 2El
1

2 + 3σmxr

(3.6.36)

Indeed, Eq. 3.6.35 is the same as Eq. 3.3.7 if xr = 1. In the vacuum, the radiation
is not “free streaming”, or beam-like, but rather the flux is determined by what
leaves the boundary of the material through Eq. 3.6.20. The flux throughout the
problem is

F =
cEl

2 + 3σmxr

(3.6.37)

Figure 3.11 shows the solution in Eq. 3.6.35 and Eq. 3.6.36 for a given set parame-
ters.

3.7 Time Dependent Problems

All of the tests so far have been time independent. The two problem here are
pulsed sources in a slab geometry. The first problem is a infinitesimally thin plane
source, which tends to be difficult to implement numerically. The second problem
is a slab source of finite thickness slab source, which can be simulated much easier.

3.7.1 A Plane Source

In in one dimensional Cartesian geometry without sources, the diffusion equation,
Eq. 3.2.1, is

1

c

∂E

∂t
− 1

3σt

∂2E

∂x2
= −σaE. (3.7.1)

In an infinite medium, the initial condition is

E(r, t = 0) = E0δ(x), (3.7.2)

59



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Position (m)

R
ad

ia
tio

n 
E

ne
rg

y 
D

en
si

ty
 (

J/
m

3 )

(a) Analytic Solution

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1

N
or

m
al

iz
ed

 L
2 

E
rr

or

Average mesh spacing, h

ZmeshRotated-2D, p=3.68e-06, r=0.142
Rectilinear-2D, p=-0.000838, r=0.811
Rectilinear-3D, p=-0.000843, r=0.811
Zmesh-2D, p=0.717, r=1

Random-2D, p=1.28, r=0.995
Random-3D, p=1.18, r=0.996
Zmesh-3D, p=1.18, r=0.993

(b) Convergence Study

Figure 3.11. A problem with a void region. The material
region on the right extends from x = 0 to x = 0.5 m with
σs = 70 m−1 and σa = 0. The vacuum region extends from
x = 0.5 m to x = 1m. A vacuum boundary condition is
applied at x = 1 and a Dirichlet boundary condition on the
left of E(0) = B(50000 K)

where E0 is a total energy and E0δ(x) is an energy density. This initial condition is
equivalent to a pulsed source. Performing a Laplace transform on Eq. 3.7.1 yields

sÊ − E0δ(x) − c

3σt

∂2Ê

∂x2
= −cσaÊ (3.7.3)

where

Ê(x, s) =

∫ ∞

0

e−stE(x, t) dt and E(x, t) =
1

2πi

∫ c+i∞

c−i∞
e−stÊ(x, s) ds. (3.7.4)

Fourier transforming Eq. 3.7.3 yields

sẼ − E0√
2π

+
ck2

3σt

Ẽ = −cσaẼ (3.7.5)

where

Ẽ(k, s) =
1√
2π

∫ ∞

−∞
e−ikxÊ(x, s) dx and Ê(x, s) =

1√
2π

∫ ∞

−∞
eikxẼ(k, s) dk

(3.7.6)
We can easily solve Eq. 3.7.5 for Ẽ, namely

Ẽ =
E0√

2π(s+ ck2

3σt
+ cσa)

(3.7.7)
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Performing first the inverse Laplace transform then the inverse Fourier transform
yields

E(x, t) = E0

√
3σt

4πct
e−cσat e−

3σtx2

4ct (3.7.8)

Note that this is a Gaussian that both spreads out, due to the scattering, and decays,
due to the absorption, in time.

3.7.2 A Slab Source

We can use the plane source solution of Eq. 3.7.8 as Green’s functions to build a
slab source of finite thickness. Assuming that the energy density is initially E0 in
the range −x0 ≤ x ≤ x0, we can integrate multiple plane sources at each location
in this range to get the total energy density for the slab source, namely

E(x, t) =

∫ x0

−x0

E0

√
3σt

4πct
e−cσat e−

3σt(x−x′)2
4ct dx′. (3.7.9)

Performing the integration we get

E(x, t) =
E0

2
e−cσat [erf (a(x+ x0)) − erf (a(x− x0))] (3.7.10)

where a =
√

3σt

4ct
. For x0 = 0.1 and a ≥ 6.666, E(x, t) is numerically zero.

3.7.2.1 A Nicer Solution

The slab source problem is difficult to analyze because the energy density is very
small ( or even zero ) in some parts of the problem some of the time. If we assume
that there is no absorption, we can get a nonzero solution everywhere. Without the
source, any arbitrary energy density, E1 is also a solution in the infinite medium.
Because this is a linear problem, we can add that to Eq. 3.7.10 to get

E(x, t) =
E0

2
[erf (a(x+ x0)) − erf (a(x− x0))] + E1 (3.7.11)

Even with this addition, there are still some difficulties with this problem. Specif-
ically, the discontinuity in the initial conditions makes it difficult to converge the
problem, and we may not be in the asymptotic regime, making the order of con-
vergence not valid.
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Figure 3.12. Pulsed slab source problem. The discontinu-
ity in the initial conditions makes it difficult to converge the
problem, and we may not be in the asymptotic regime, mak-
ing the order of convergence not valid.

3.8 Polynomial Solutions

In Sections 3.5.1, 3.3.1, and 3.5.2 we have already shown constant, linear, and
quadratic solutions, but only in one dimension aligned with the coordinate sys-
tem and mesh. If we use the same system parameters as before, for example
steady state without absorption for the linear case, we can get other polynomial
solutions. If we pick the constants in the solutions, we can drive the problem by
setting Dirichlet boundary conditions. This is a very simplified view of [17].

3.8.1 Constant

In an infinite medium with constant material properties, the radiation temperature
should be also be uniform and the same as the material temperature.
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Figure 3.13. Uniform infinite medium problem. This sec-
ond order diffusion method should get this exactly within
the linear solver tolerance, so there is no expected conver-
gence.

3.8.2 Linear

Extending Section 3.3.1 to three dimensions, the steady state diffusion equation
without absorption looks like

∇2E = 0. (3.8.1)

This has a linear solution
E = a ·x + b. (3.8.2)

We can pick the values for a and b so that on the domains of interest the solution
stays positive.

3.8.3 Quadratic

In three dimensions with only scattering and a source, the appropriate diffusion
equation is

∇2E = −3σt

c
S. (3.8.3)
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Figure 3.14. Linear problem with Dirichlet boundary con-
ditions. This second order diffusion method should get this
exactly within the linear solver tolerance, so there is no ex-
pected convergence.

The general solution to this is

E = ax2 + by2 + c′z2 + dxy + eyz + fxz + gx+ hy + iz + k (3.8.4)

We can pick the constants, a through k, so that on the meshes that we will use, the
energy density stays positive. Additionally we have the constraint that

2(a+ b+ c′) = −3σt

c
S. (3.8.5)

If we arbitrarily set b = 2a and c′ = 3a, we get

a = −σt

4c
S, (3.8.6)

Setting d = e = f = g = h = i = 0 yields

E = −σtS

4c
(x2 + 2y2 + 3z2) + k (3.8.7)

If we want a positive energy density over −1 < x, y, z < 1, then

k >
3σtS

2c
. (3.8.8)
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Figure 3.15. Quadratic problem with Dirichlet boundary
conditions.

3.9 Manufactured Solutions

The diffusion equation can only be solved analytically for relatively simple prob-
lems, but one would like to verify the code is working on more complicated (and
realistic) problems as well. The Method of Manufactured Solutions (MMS) is a rel-
atively simple way to test the code on very complicated problems[25, 15, 20]. The
idea is to assume some function for the solution, for example the solution varies
linearly with space. The assumed solution is then inserted into the equation, and
the equation is solved for the external source that is needed to support that solu-
tion. This source is then used as input into the code, and the code should recover
the solution that you assumed.

A key part of doing MMS is to convergence studies of the code; even if the
errors in the code are of a reasonable magnitude, if the code does not converge at
the expected rate, there may be an error. Salari[15] recommends a test problem
where all features of the code are tested simultaneously. While this is important,
simpler tests are also useful in pinpointing problems in the code.

The error[15] of a given solution can be computed using an L2 norm of the
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relative error integrated over the entire domain, namely

ε =

√
1

V

∫

D

(
Ecode − Eanalytic

Eanalytic

)2

dV (3.9.1)

On a regular grid where all the zones are the same size, the volume integral can
be replaced by a summation solution at the computational points (nodes, zone
centers, etc.) using

ε =

√√√√ 1

N

N∑

i=1

(
f(xi) − F̃i

f̃(xi

)2

, (3.9.2)

where N is the number of grid points, f(xi) is the exact solution, and F̃i and the
simulated result, at all the grid points, xi. Eq. 3.9.2 is only valid for regular grids
and is not used here.

Once in the asymptotic regime, the order of accuracy p can be computed with
as few as two simulations using

p =
log εcourse

εfine

log ∆xcourse
∆xfine

, (3.9.3)

where ∆x is a characteristic grid length.

Four main aspects of the code have not been tested by the simple problems in
the previous sections. These include the flux limiters, material coupling, arbitrarily
varying material properties, and photon energy dependence. One problem will be
devised to test each of these along with fifth problem that will test all features of
the code at once.

3.9.1 A Flux Limiter Test

Staring with Eq. 3.2.1 with cold, constant, uniform materials, we can solve for the
source term

Sr = c (σaE −∇ ·D∇E) (3.9.4)

A Gaussian shaped solution in space as a function of radius is not one that the
diffusion equation approximation will get exactly correct and tests the multidi-
mensional features of the code, But manipulating a Gaussian solution in Eq. 3.9.4,
namely

EFL = E0 e−κr′2 , (3.9.5)

is relatively straight forward. Here, r′ is the distance from the origin, and the exact
form depends on the coordinate system. For two dimensional Cartesian coordi-
nates, we define a cylindrically symmetric solution, where

r′ = r =
√
x2 + y2. (3.9.6)
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The two dimensional Cartesian and cylindrical versions of the code can be used
to compute the cylindrically symmetric solutions. We can also define a spherically
symmetric solution, where

r′ = ρ =
√
x2 + y2 + z2 =

√
r2 + z2, (3.9.7)

which can be used to test the two dimensional cylindrical and the three dimen-
sional Cartesian versions of the code.

Inserting these into Eq. 3.9.4 for regular diffusion yields

S3D POD = c

[
σa +

2κ

3σt

(3 − 2ρ2κ)

]
EFL (3.9.8)

and

S2D POD = c

[
σa +

4κ

3σt

(1 − r2κ)

]
EFL. (3.9.9)

Using the Larsen 2 flux limiter instead, gives us

S3D L2 = c

[
σa +

16ρ2κ3(1 − ρ2κ) + 18κ(3 − 2ρ2κ)σ2
t

(4ρ2κ2 + 9σ2
t )

3/2

]
EFL. (3.9.10)

and

S2D L2 = c

[
σa +

8r2κ3(1 − 2r2κ) + 36κ(1 − r2κ)σ2
t

(4r2κ2 + 9σ2
t )

3/2

]
EFL. (3.9.11)

For the Larsen limiter, we can write down a metric for the amount of flux lim-
iting that is being done, namely

C1 =
|∇E|
E3σt

=
2κr

3σt

. (3.9.12)

At r = 0 the limiter is turned off. At some arbitrarily large value, say C1 = 100, it
is almost completely flux limited. Eq. 3.9.12 can be used to choose a consistent set
of problem parameters that tests the entire range of the flux limiter.

3.9.2 Coupling to a Uniform Material

In thermal radiation transport, the radiation energy density is coupled to the ma-
terial through the following equations

∂E

∂t
− c

3σt

∇2E = cσa(B(T ) − E) + S (3.9.13)

ρCv
∂T

∂t
= −cσa(B(T ) − E), (3.9.14)
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Figure 3.16. Regular diffusion MMS test.

where T is the material temperature, and B(T ) is the black body function. Instead
of solving for T , we’d like to change variables to B(T ) = aT 4, assuming one group
diffusion. With a change of variables, Eq. 3.9.14 then becomes

ρCv

4aT 3

∂B

∂t
= −cσa(B − E). (3.9.15)

We will now assume the solution for B to be

BMC(x, t) = aT0 e−τt−κr2

, (3.9.16)

where r = |x|; equivalently, the material temperature is

T (x, t) = T0 e−
1
4
(τt+κr2

(3.9.17)

Inserting this into Eq. 3.9.15 and solving for E yields

EMC(x, t) =

[
1 − ρCvτ

4acσaT 3

]
BMC(x, t) (3.9.18)

In order to simplify taking the derivatives on EMC in Eq. 3.9.13, we would like
to make the multiplier in Eq. 3.9.19 to be constant in space. This can be done by
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Figure 3.17. Larsen-2 flux limiter MMS test.

choosing ρCv = αT 3; This form of the specific heat is used by Pomraning in several
of his test problems. With this, Eq. 3.9.18 becomes

EMC(x, t) =

[
1 − ατ

4acσa

]
BMC(x, t). (3.9.19)

The results are very similar to the last section, with the addition of a time
derivative term in the source. For regular diffusion we get

S3D POD = c

[
σa − τ

c
+

2κ

3σt

(3 − 2ρ2κ)

]
EMC (3.9.20)

and

S2D POD = c

[
σa − τ

c
+

4κ

3σt

(1 − r2κ)

]
EMC. (3.9.21)

We need to choose these parameters so that the coupling between the equations
is strong enough. To do that, we’d like the terms in the inhomogeneous source
in Eq. 3.9.13 to be roughly the same magnitude. For 3D regular diffusion, the
inhomogeneous source is

Sinhomogeneous =

([
σa − τ

c
+

2κ

3σt

(3 − 2ρ2κ)

] [
1 − ατ

4acσa

]
+ σa

[
ατ

4acσa

])
BMC(x, t)

(3.9.22)
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Setting these terms equal implies
[
σa − τ

c
+ 2κ

3σt
(3 − 2r2κ)

] [
1 − ατ

4acσa

]

[
ατ
4ac

] ≈ 1 (3.9.23)

or [
1 − τ

cσa

+
2κ

3σtσa

(3 − 2r2κ)

] [
4acσa

ατ
− 1

]
≈ 1. (3.9.24)

We would also like the radiation energy density to be positive, which implies

0 <
ατ

4acσa

< 1. (3.9.25)

Finally, we would also like to have the flux limiter, if we were using one, to vary
significantly, so C1 in Eq. 3.9.12 should be chosen large enough.

We now have three equations to help us choose our constants, namely

2κr

3σt

= C1 (3.9.26)

ατ

4acσa

= C2 (3.9.27)
[
1 − τ

cσa

+
2κ

3σtσa

(3 − 2r2κ)

] [
4acσa

ατ
− 1

]
= C3, (3.9.28)

where 0 < C2 < 1 and C3 ≈ 1. Nature determines a and c. We choose C1 = 10,
C2 = 1

4
, C3 = 1

2
, κ = 5, and α = 3.026306806045420251×10−14. (α is chosen to be the

same in the Su-Olsen benchmarks, and is a multiple of the black body constant.)
Solving for σa, σt, and τ in Eq. 3.9.26 through Eq. 3.9.28 yields

σt =
2rκ

3C1

(3.9.29)

σa =
α
4a
C1(C2 − 1)(3 − 2r2κ)

C2r(C2 − 1) − r α
4a

(C2 + C2C3 − 1)
(3.9.30)

τ =
cC1C2(C2 − 1)(3 − 2r2κ)

C2r(C2 − 1) − r α
4a

(C2 + C2C3 − 1)
. (3.9.31)

For the chosen set of parameters at r = 1, we get σt = 1
3
, σa = 120, and τ = 9× 1011.

This implies that σs = σt − σa < 0, which is unphysical, but since σs never appears
in the equations, this doesn’t matter. Nothing about a manufactured solution or
its problem specification needs to be physical, but traps in the code that test for
certain physical conditions should not be activated.

This problem can be run both single and multigroup, as well as with logically
different materials, from the code’s point of view, even if all the materials behave
the same. It is also possible, without modification, to use a varying absorption
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Figure 3.18. Radiation energy density results in a MMS test
with coupling to a uniform material using regular diffusion.
This problem does not converge as expected and is still be
investigated.

opacity while holding the total cross section constant. While this does not test the
flux limiter’s dependence on varying materials, it does test the material coupling
in that situation.

This problem does not converge as expected and is still be investigated.

3.9.3 Nonuniform Opacities

The assumed solution to the energy density is similar to the last section, namely

ENO(x, t) = A e−τt−κr2

, (3.9.32)

and the total opacity has the following form

σt(r) = σa(r) = σ0 eλr, (3.9.33)
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Figure 3.19. Material temperature results in a MMS test
with coupling to a uniform material using regular diffusion.
This problem does not converge as expected and is still be
investigated.

where σ0 and λ are arbitrary parameter that can be used to adjust the shape of the
flux limiting parameter,

χ =
2κr

3σ0

e−λr. (3.9.34)

Again, it is important to test the entire range of the flux limiter, namely 0 < χ <
100. Some parameters that do this are κ = 10, λ = 8, σ0 = 0.005 on the range
0 < r < 1.

Inserting the same assumed energy density and this opacity into the diffusion
equation without material coupling, we get sources needed to support it. For reg-
ular diffusion

S3D POD = c

[
σ0 eλρ − τ

c
− 2κ

3σ0 eλρ

(
2ρ2κ+ λρ− 3

)]
ENO (3.9.35)

and

S2D POD = c

[
σ0 eλr − τ

c
− 2κ

3σ0 eλr

(
2r2κ+ λr − 2

)]
ENO (3.9.36)
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Figure 3.20. MMS test with spatially varying opacities and
regular diffusion.

For the Larsen 2 flux limiter, we get

S3D L2 = c

[
σ0 eλρ − τ

c
+

16ρ2κ2(κ− ρ2κ2) + 18σ2
0 e2λρ(3κ− 2ρ2κ2 − ρλκ)

(4ρ2κ2 + 9σ2
0 e2λρ)

3/2

]
ENO

(3.9.37)
and

S2D L2 = c

[
σ0 eλr − τ

c
+

8r2κ2(κ− 2r2κ2) + 18σ2
0 e2λr(2κ− 2r2κ2 − rλκ)

(4r2κ2 + 9σ2
0 e2λr)

3/2

]
ENO

(3.9.38)

3.9.4 Multigroup

We’ll assume the following form of the energy density:

EMG(t, ε) = E0 e−τt−αε−κρ2

. (3.9.39)
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We will also assume an opacity with the following form:

σt = σa = σ0 e−βε, (3.9.40)

where 0 < β < α. Inserting these into Eq. 2.1.1 and solving for the source in the
plane diffusion, three dimensional case without material coupling gives us a result
very similar to Eq. 3.9.8

S3D MG = E0 e−τt−κρ2

[
−τ e−αε + cσ0 e−(α+β)ε +

2κc

3σ0

(3 − 2ρ2κ) e−(α−β)ε

]
(3.9.41)

We can integrate this source over an energy group g, with εg ≤ ε < εg+1 to get

S3D MG,g = E0 e−τt−κρ2

[
cσ0

e−(α+β)εg − e−(α+β)εg+1

α+ β

+
2κc

3σ0

(3 − 2ρ2κ)
e−(α−β)εg − e−(α−β)εg+1

α− β

− τ
e−αεg − e−αεg+1

α

]
(3.9.42)

Similarly for two dimensions we find

S2D MG,g = E0 e−τt−κr2

[
cσ0

e−(α+β)εg − e−(α+β)εg+1

α+ β

+
4κc

3σ0

(1 − r2κ)
e−(α−β)εg − e−(α−β)εg+1

α− β

− τ
e−αεg − e−αεg+1

α

]
(3.9.43)

Normally there is an approximation in the multigroup equations because the
exact spectrum of the energy density is unknown and usually approximated with
a Plank spectrum. Since we know the energy density spectrum, we can compute
an exact group average opacity that will make the group equations exact, namely

σa,g =

∫ εg+1

εg
σaEMG dε

∫ εg+1

εg
EMG dε

= σ0

[
α

α+ β

] [
e−(α+β)εg − e−(α+β)εg+1

e−αεg − e−αεg+1

]
. (3.9.44)

Similarly, the Rosseland mean opacity is

σr,g =

[∫ εg+1

εg

1
σt
EMG dε

∫ εg+1

εg
EMG dε

]−1

= σ0

[
α− β

α

] [
e−αεg − e−αεg+1

e−(α−β)εg − e−(α−β)εg+1

]
. (3.9.45)

The group-wise energy density is

EMG,g = E0 e−τt−κρ2

[
e−αεg − e−αεg+1

α

]
. (3.9.46)
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Figure 3.21. MMS test of the multigroup equations in-
tegrating all groups. Because of the opacities, the higher
groups are optically thin, and an automatic diffusion coef-
ficient limiter kicks in to keep the matrix well-conditions.
This causes it to diverge from the correct answer, however.

There are two main limitations with this test. The first is the fact that this spec-
trum and opacity are far from what is typically used in the the code. The second
is that it does not couple with the material, and consequently the groups are not
coupled to each other. Running the test that does couple with the material in multi-
group mode alleviates some of this concern, but not entirely because that opacity
doesn’t change with energy.

3.10 Transport Tests

The IMC should stay in equilibrium with a material in a box uniformly filled with
a material at a given temperature. The radiation temperature should be the same
as the material temperature. This is mostly a test of energy conservation, but many
parts of the code need to be working in order for this to work. We will also check
convergence of the radiation temperature field to the known solution as the num-
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Figure 3.22. MMS of Multigroup, looking at only the
second group’s results. Without the influence of the thin
groups, this converges as expected.

ber of photons increases. The convergence should be

ε =
C√
N

(3.10.1)

where ε is the error in the simulation, C is some constant, and N is the number of
photons.
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Figure 3.23. A hot, uniform box calculated using Implicit
Monte Carlo. As the number of particles (N ) increases, the
error should be proportional to 1/

√
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3.11 Meshes

Since most of the analytic solutions are one dimensional, each problem is run on
different meshes to stress the solution method. Below, in Figures 3.24-3.25 each of
the meshes is shown.

3.12 Conclusions and Future Work

The tests outlined above verify that the radiation diffusion package in ALEGRA is
mostly working correctly. There are a few cases where the linear solver failed to
converge, creating erroneous results. This behavior still needs to be investigated,
but several fixes and new features are being implemented by the Trilinos team that
may address these issues.

Currently these tests are only being run one way. Different things can be done
as sanity checks to increase the confidence in the code. These include:

• Fill mesh with varying degrees of two (or more) materials that are really the
same, should get one material answer. This should be both all cells uniformly
filled with different volume fractions as well as something like a a pie shape
inserted on a square mesh. This could test any number of materials per ele-
ment. Each fraction of material should behave the same as the other parts in
the element.

• Fill mesh with varying degrees of multiple materials that are different, should
get same as average value. I’m not so sure about the material response here.

• Use periodic boundaries.

• Also compute analytic flux tallies across various surfaces and compare to the
code.

• Run some diffusive problems with the IMC. It should be possible to get the
diffusion result. Boundary differences between diffusion and IMC probably
limit this to infinite medium or MMS solutions.

• Wave-like problem with “real” specific heats and opacities as a function of
temperature. Since this is one of the primary modes of running the code, it
would be good to develop a test for it.

Many benchmark problems have been described in the literature. Most are
analytic solutions to one-dimensional problems, and suffer many of the same limi-
tations as the earlier problems in this document. The manufactured solutions tests
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(a) CircleCircle (b) CircleMap (c) CirclePaved (d) Dbar

(e) EquatorWedge (f) Hbar-2-MMS (g) Hbar (h) Hbar1

(i)
Po-
lar-
Wedge

(j) Random-1 (k) Semicir-
cle

(l) TwoMat

(m)
Vbar

(n) WedgePave (o) Zmesh-1 (p) ZmeshRot-1

Figure 3.24. Two Dimensional Meshes
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Figure 3.25. Three Dimensional Meshes, part 1.

80



in Section 3.9 are more comprehensive than most these problems, from a software
implementation point of view. These tests may be more physical problems that
improve the confidence level of the code on particular problems. The tests are:

• Su-Olson Marshak [30], an analytic solution to the diffusion equation cou-
pled to the material with a very unphysical form for the specific heat.

• Su-Olson Source region [31], a diffusion and transport solution to a source-
driven problem that is coupled to the material temperature.

• So-Olson Picket Fence [32], a multigroup test with an analytic answer.

• Frank Graziani at LLNL is working on a different multigroup benchmark
test.

• Barry Ganapol has developed many benchmarks, and are mostly solution of
transport equation.[9, 11, 10]
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Chapter 4

Spherical Harmonics

Riemann solvers have been extensively researched as methods for the numerical
solution of problems in computational fluid dynamics (CFD). 1 These methods re-
spect the finite propagation speed and non-dissipative nature of hyperbolic con-
servation laws (e.g. the Euler equations or the transport equation). The success of
Riemann solver based finite volume schemes in the CFD community has spurred
the research into the application of these methods for radiation transport [4, 5, 6, 8].
These methods performed well in capturing steep-gradients, and [4, 5, 6] utilized
explicit time integration while [8] solves steady-state problems.

The development of implicit time-integration methods for Riemann solvers
became the next logical step in developing practical computer codes. However,
one obstacle in this endeavor is the nonlinear nature of high resolution Riemann
solvers, a characteristic that arises out of the necessity that slope reconstruction be
nonlinear to achieve better than first order accuracy. To accomplish implicit time
integration, it is therefore necessary to solve a system of nonlinear equations at
each time step. Solving nonlinear systems seems somewhat of a bugbear in the
transport community and some have even suggested that Riemann solvers were
inherently explicit [34]. Due to the advent of Newton-Krylov methods [16] it is
now possible to efficiently solve nonlinear systems. Using one such method we
have developed an implicit Riemann solver for time-dependent transport.

We also have investigated the properties of Riemann solvers in problems of a
“diffusive” nature, that is, in problems where scattering interactions dominate. At
steady-state these problems are described by an elliptic diffusion equation, which
is an approximation to the full transport equation in the limit of asymptotically
small absorption and small sources. In radiation transport the steady-state solution
to diffusive problems varies on a length scale characterized by the diffusion length
L = 1/

√
3ΣtΣa which is much larger than a mean-free-path 1/Σt. As is well known,

1See [18] for a detailed discussion
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time dependent diffusion is governed by a parabolic equation, and that, unlike
hyperbolic problems, parabolic equations are characterized by infinite propagation
speed of information. They are also characterized by dissipation: they produce
smooth solutions even from non-smooth sources and initial data.

This presents a challenge: Riemann solvers are specifically designed to solve
hyperbolic equations and to upwind information flow at finite speed in a mini-
mally dissipative way. Riemann solvers will give good results for cells that are on
the order of 1/Σt or smaller, but to resolve the solution in a diffusive problem a
cell on the order of L should be sufficient. For robustness we would hope that a
Riemann solver would capture this diffusive solution on a spatial grid that only
resolves the diffusion length L. A method that has this robustness property is said
to have a diffusion limit.

We will show that the standard Roe-type Riemann solver for the Pn equations
does not have a diffusion limit. Because of this a mean-free path must be resolved
to obtain a good steady solution even in diffusive problems. An asymptotic anal-
ysis of the problem reveals that the main impediment to a diffusion limit in a Rie-
mann solver is the numerical dissipation present in the scheme. This grid-size-
dependent dissipation is present in a Riemann solver to make it upwinded and
thus maintain the proper physics of finite propagation speed, and hence stability.
However, the collisional interactions that in transport physics dominate the diffu-
sion limit represent another type of dissipation. The number of particles traveling
in a given direction is reduced by collisions. We propose a method that recovers
the diffusion limit by systematically scaling out the numerical dissipation in re-
gions where scattering collisions dominate. The result is a hybrid method that is
a Riemann solver when the grid resolves a mean-free-path, but which becomes
a centered difference method when when the grid is large. With the use of this
scaling, a proper diffusion limit exists for the modified Roe-type Riemann solver.

4.1 The Discretization of the Pn equations

4.1.1 The Pn Equations

The equations we seek to solve are the one-dimensional, one-speed Pn equations
with isotropic scatter

1

c

∂ψ0

∂t
+

∂

∂x
(B1ψ1) + Σaψ0 =

Q

2
√
π

1

c

∂ψ1

∂t
+

∂

∂x
(Al−1ψl−1 +Bl+1ψl+1) + Σtψl = 0 l = 1 . . . n (4.1.1)

ψn+1 = 0.
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The moments, ψl are defined as

ψl =

∫ 1

−1

Y 0
l ψ(x, µ)dµ (4.1.2)

Y 0
l (µ) =

√
2l + 1

4π
Pl(µ), (4.1.3)

where ψ is the angular flux and Pl is the lth Legendre polynomial. Also,

Al =

√
(l + 1)2

(2l + 3)(2l + 1)
(4.1.4)

Bl =

√
l2

(2l + 1)(2l − 1)
, (4.1.5)

and c is the particle speed, Σa,Σt are the absorption and total cross-sections, and Q
is the inhomogeneous source. We can also write Eq. (4.1.1) as

1

c

∂ψ

∂t
+ A

∂ψ

∂x
+ Sψ = Q (4.1.6)

with ψ the n + 1 length vector of moments ψl, Q is a vector of length n + 1, and A
and S are (n+ 1) × (n+ 1) matrices.

4.1.2 Cell-Averaged Equations and Riemann Solver

Integrating Eq. (4.1.6) over a spatial cell and dividing by the cell width yields

1

c

∂ψi

∂t
+ A

ψi+1/2 − ψi−1/2

∆x
+ Sψi = Qi, (4.1.7)

where

ψi =
1

∆x

∫ xi+∆x

xi−∆x

ψdx. (4.1.8)

Notice that the terms involving ψi±1/2 are not cell-averaged quantities, in fact these
are the values at the cell interfaces. Finding expressions for these terms, which
represent the flow of information from cell to cell, as functions of cell averaged
quantities is the heart of a Riemann solver. To find these values in terms of cell-
averaged quantities we exactly solve a simpler problem. This problem is the Rie-
mann problem in which ψ is treated as an initial constant on each side of the cell
interface. Its exact solution 2 gives

Aψi+1/2 =
∑

λk>0

λklk ·ψirk +
∑

λk<0

λklk ·ψi+1rk. (4.1.9)

2For a thorough discussion of the solution to the Riemann problem in cases such as this see [2].
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where the λk are the eigenvalues of A, with left and right eigenvectors lk, rk re-
spectively. Notice that this solution is up-winded – positive eigenvalues move
information from the left to the right and negative eigenvalues from the right to
the left. We can also rewrite Eq. (4.1.9) as

Aψi+1/2 =
1

2
A (ψi+1 + ψi) − 1

2

∑

λk

|λk|lk · (ψi+1 − ψi) rk (4.1.10)

When Eq. (4.1.10) is introduced into Eq. (4.1.7) the equation will appear to be a
centered difference approximation to the spatial derivative with some added dis-
sipation.

4.1.3 Slope Reconstruction

Equation 4.1.10 will yield a first-order accurate spatial method. To get a higher-
order method we will reconstruct the solution using linear interpolation within a
cell to have a better estimate of the solution at the cell boundary in Eq. (4.1.10). We
seek to prevent the introduction of artificial oscillations into the solution, hence
a nonlinear method must be used to calculate the slope within a cell to achieve
better than first order accuracy. This is a statement of Godunov’s Theorem [18].
The method we use comes from van Leer [33], and on a uniform mesh the equation
for each element of ψi is

ψl,i±1/2 = ψl,i ± ∆x

2
mi, (4.1.11)

where the slope mi is computed as

mi =
|m−|m+ +m−|m+|

|m+| + |m−| , (4.1.12)

with

m− =
ψl,i − ψl,i−1

∆x
(4.1.13)

m+ =
ψl,i − ψl,i−1

∆x
. (4.1.14)

Now Eq. 4.1.10 becomes

Aψi+1/2 =
1

2
A

(
ψi+1 − ∆x

2
mi+1 + ψi +

∆x

2
mi

)

−1

2

∑

λk

|λk|lk ·
(
ψi+1 − ∆x

2
mi+1 − ψi +

∆x

2
mi

)
rk.

(4.1.15)

The way m is calculated ensures that artificial extrema are not introduced at the cell
interface. Also notice that the only difference between Eq. 4.1.10 and Eq. 4.1.15 are
the “m” terms. This is only a small correction to the first-order scheme, a fact that
we shall take advantage of in our implementation.
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4.1.4 Time Integration

Time integration was handled using the backward Euler method in which Eq. 4.1.7
becomes

1

c

ψj+1
i − ψj

i

∆t
+

1

∆x
A
(
ψj+1

i+1/2 − ψj+1
i+1/2

)
= −Sψj+1

i + Qj+1
i , (4.1.16)

The first-order spatial scheme given by Eq. 4.1.10 presents a system of linear equa-
tions that must be solved at each time step. This system is block tridiagonal and
asymmetric with the blocks being square matrices of size (n + 1). The high reso-
lution scheme that results from using Eq. 4.1.15 in Eq. 4.1.16 is a nonlinear system
of equations. Each equation in the system can be represented as a linear part (the
same linear operator from the first-order scheme) plus a nonlinear part that con-
tains the slope reconstruction.

4.2 Implementation

The above scheme was implemented in the computer code ROOSTER (Riemann,
Object-Oriented Solver for the Transport of Energetic Radiation). This is an object
oriented code written in C++ using the Trilinos solver library [14] available from
Sandia National Laboratories. Trilinos’ AztecOO package was used to solve the
linear systems of the first-order scheme using the Generalized Minimal Residual
(GMRES) method. AztecOO is able to exploit the block tri-diagonal nature of this
system.

For the nonlinear system arising from the high resolution scheme, the NOX
package of Trilinos is used. Specifically, the system is solved using a matrix-free
Newton-Krylov method. This method does not require the specification of the
Jacobian of the nonlinear system, instead the Jacobian is approximated by finite
differences. The nonlinear system is solved efficiently by preconditioning the sys-
tem with the matrix from the first-order system. This is an ideal preconditioner
because the high-resolution scheme is basically a correction to that first-order sys-
tem – hence the inverse of the linear system is a good approximate to the inverse
of the nonlinear system. Using this preconditioner causes the solution time of the
nonlinear system to be comparable to that of the linear system.
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Figure 4.1. The scalar flux for the first test problem at T =
10 after the initial pulse

4.3 Test Problems

4.3.1 Plane Source

The first test problem solved using ROOSTER involved a purely scattering medium,
Σs = Σt = 1 in which at time t = 0 a plane pulse of particles is emitted at the ori-
gin (i.e. a problem with initial condition ψ0(x, t = 0) = δ(x)). This problem has
an analytic transport solution due to Ganapol [9] and an analytic P1 solution from
Brunner [2]; both solutions can be seen in Figure 4.3.1.

This problem presents a numerical method with a mare’s nest of difficulties.
Early in time the Pn solution is a series of delta function spikes moving away from
the origin, but as time progresses a smooth solution representing the collided par-
ticles grows in the middle of the domain. Hence, a numerical scheme must capture
both steep gradients (the spikes) and smooth regions. Also the method must move
the uncollided particles at the appropriate speed.
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Table 4.1. Material Layout in Reed’s Problem
Vacuum Scattering Region Vacuum Absorber Strong Source Reflecting

Boundary Boundary
Σa = 0.1 Σa = 5 Σa = 50
Σs = 0.9 Σs = 0 Σs = 0

S = 0 S = 50
S = 0 S = 1

∆x = 2 ∆x = 2 ∆x = 2 ∆x = 1 ∆x = 2

4.3.2 Reed’s Problem

The other test problem is known as Reed’s problem [27], this is a multi-material
problem with a steady-state solution. The problem set up is detailed in Table 4.3.2.
This problem features very distinct material types and provides a way to assess a
method’s ability to handle the interfaces between dissimilar media.

4.4 Results

4.4.1 Plane Source Problem

Figures 4.2 and 4.3 give representative high resolution results from calculations we
have performed on the plane source problem using the high-resolution scheme.
In these figures CFL is an abbreviation of the Courant-Friedrichs-Lewy number
given by CFL ≡ c∆t/∆x, with the so-called CFL limit being CFL ≤ 1 for stability
in explicit schemes.

Figure 4.2 demonstrates that the computed P1 scalar flux is converging, as ex-
pected, to a solution that captures the analytic P1 solution in the middle region of
the problem, but even for large CFL = 50 the numerical solution captures the exact
solution away from the P1 wavefront. The front of the wave of particles with speed
±√(1/3) – which is captured in the analytic solution by a delta function – is not
advected at the proper speed with large time steps. This is not an artifact from the
Riemann solver, rather it arises from the time integration scheme, as can be seen
in [2]. In this reference results for the same problem using explicit time integration
have the wave fronts moving at the appropriate speeds. Increasing the size of the
time step beyond the CFL limit moves particles at the wrong speeds. This effect is
seen in Fig. 4.2, in which we see that as ∆t is reduced (CFL decreases for ∆x fixed)
the wave-front tracks the correct location more accurately.

Figure 4.3(a) gives results from a P5 calculation at T = 10 after the pulse. Re-
sults for time steps much smaller than ten give good agreement with the transport
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Figure 4.2. Results of P1 calculations T = 5 after the initial
pulse of particles is introduced

solution. As the size of the time step becomes on the order of ten, the error in
the middle of the problem grows and the effect of moving particles at the wrong
speeds becomes apparent. The error convergence as the time step is decreased is
also demonstrated in this figure. The linear convergence on a logarithmic scale
(seen in Fig. 4.3(b)) suggests that the time integration scheme is converging lin-
early in ∆t – the expected result for the backward Euler method.

4.4.2 Reed’s Problem

Steady state problems are solved in ROOSTER using what is colloquially referred
to as “time-stepping to steady state.” An initial condition is given and this condi-
tion is propagated forward in time until the solution converges (i.e. the difference
in solution vectors between successive time steps is sufficiently small). The results
for steady state calculations using the high resolution spatial scheme on Reed’s
problem are given in Fig. 4.4. These are P7 solutions obtained using the high res-
olution spatial scheme and ∆t = 10 for various ∆x values. Here we see that our
method is able to handle the sharp changes in solution behavior at the material
interfaces and the solution is fairly insensitive to increasing the spatial grid size.
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(a) The scalar flux for different values of
∆t.

(b) Error convergence as a function of ∆t;
ψref was calculated with ∆t = 0.01.

Figure 4.3. Results from P5 solution at T = 10 after pulse

Also, in Fig. 4.4 the S8 solution using the multidimensional multi-balance method
[13] is shown. The agreement of the solutions suggests that the implicit Riemann
solver is converging to the correct solution.

Figure 4.5(a) shows the solution to Reed’s problem at T = 1. The initial condi-
tion had all moments set to zero and steady state solution “grows” out of this. The
only region where the solution is sensitive to the size of the time step is the region
with non-negligible scattering. This suggests that the scattering source (which is
ignored in deriving the Riemann solver) becomes important with large ∆t and
affects the solution in this area. Finally, Fig. 4.5(b) shows that the method is first-
order in time.

4.5 The Pn equations and Riemann discretization

Just to recall our notation, consider the one-speed transport equation with speed c,
isotropic scattering, and isotropic source

1

c

∂ψ

∂t
+ µ

∂ψ

∂x
+ Σtψ =

Σs

2

∫ 1

−1

ψ dµ+
Q

4π
. (4.5.1)

Here the total and scattering cross sections are Σt and Σs, respectively,Q is the total
source strength (particles per length cubed per second), and all quantities depend
only on the one spatial variable x.
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Figure 4.4. Steady state results from Reed’s problem

We normalize the spherical harmonics Y m
l as in Bell & Glassstone [1],

Y m
l (µ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (µ)eimϕ (4.5.2)

Pm
l (µ) = (−1)m (1 − x2)m/2

2l l!

dl+m

dxl+m
(x2 − 1)l (4.5.3)

and define the moments

ψl = 2π

∫ 1

−1

Y 0
l (µ)ψ(x, µ) dµ . (4.5.4)

The one-group, one-dimensional spherical harmonic or Pn equations with isotropic
scatter are then

1

c

∂ψ0

∂t
+

∂

∂x
(B1ψ1) + Σaψ0 =

Q

2
√
π

1

c

∂ψl

∂t
+

∂

∂x
(Al−1ψl−1 +Bl+1ψl+1) + Σtψl = 0

ψn+1 = 0,

(4.5.5)

with l = 1 . . . n. Here

Al =

√
(l + 1)2

(2l + 3)(2l + 1)
(4.5.6)

Bl =

√
l2

(2l + 1)(2l − 1)
, (4.5.7)
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(a) The scalar flux for different values of
∆t; cell width is ∆x = 0.05.

(b) Error convergence as a function of ∆t;
ψref was calculated with ∆t = 0.01.

Figure 4.5. Time dependent results from Reed’s problem at
T = 1

and note that in our normalization ψ0 =
√
π
∫ 1

−1
ψ(x, µ) dµ and φ = 2π

∫ 1

−1
ψ dµ =

2
√
πψ0. When we wish to write the Pn equations more compactly we will write

them as
1

c

∂

∂t
ψ +

∂

∂x
Aψ = −Sψ + Q, (4.5.8)

where we have collapsed the A and B coefficients into the matrix A, all the inter-
action cross-sections are in the diagonal matrix S, diag(S) = [Σa,Σt,Σt, . . . ]

T and
Q = [Q/(2

√
π), 0, 0, . . . ]T contains the source terms. Here ψ is a vector of angular

moments ascending through l.

The first-order-in-space Riemann discretization of Eq. 4.5.5 [18, 2] is of the form

1

c

∂

∂t
ψi + A

(ψi+1 − ψi−1)

2∆x
− |Λ| (ψi+1 − 2ψi + ψi−1) = −Sψi + Qi(t) . (4.5.9)

Here ψi is a vector of angular moments ascending through l averaged over spatial
cell i, and

|Λ| =
n∑

k=0

rk|λk|lk , (4.5.10)

where we denote the kth right and left eigenvectors (normalized so lk rk = 1) and
eigenvalues of A by rk, lk, and λk respectively. The index k is selected to start at
zero because it corresponds to the index l of the spherical harmonics. This dis-
cretization is upwinded along each characteristic direction of the system and first
order accurate in space. A high-resolution scheme, second order in space, requires
a nonlinear limited averaging process resulting in a significantly more complex
form for the equations. This higher order scheme is described by [4, 6, 2, 18]. We
are more interested in the properties of the discretization in the diffusive limit, and
so will content ourselves with the simpler first order discretization in the analysis
of the next section.
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4.6 Diffusion properties of the Pn equations

Since we study the spherical harmonic equations, we wish to understand their
properties in the diffusion limit.

Let us begin by exploring a diffusion-like solution of the transport equation.3

Suppose that we have a linear-in-space source Q = qx for some constant q, and we
seek a solution of the transport equation that is linear in space x and linear in the
direction cosine µ. Substituting ψ(x, µ) = ax+ bµ into Eq. 4.5.1 we find

µa+ Σt(ax+ bµ) = xΣsa+ x
q

4π
. (4.6.1)

From this we find a = q/(4πΣa) and b = −a/Σt, and thus

ψ(x, µ) =
q

4πΣa

[
x− µ

Σt

]
(4.6.2)

is a special solution of the one-speed transport equation with constant cross-sections
and a linear-in-space isotropic source.

This solution is interesting because it satisfies Fick’s law: in particular, it has

φ = 2π

∫ 1

−1

ψ dµ =
q

Σa

x a linear in space scalar flux, and (4.6.3)

J = 2π

∫ 1

−1

µψ dµ = − q

3ΣaΣt

= − 1

3Σt

∂φ

∂x
a constant current satisfying Fick’s law .

(4.6.4)

Because of this property it has been suggested that a numerical scheme for the
transport equation should capture this solution [13, 17] at least in the diffusion
limit. A method that can produce these linear solutions is said to be linear solution
preserving (LSP). We will see later that the Roe-type Riemann solver for the Pn

equations is LSP, and so is the modified Riemann solver that we propose in this
paper.

4.6.1 Linear solution of the Pn equations

We should like to know if the Pn equations capture the linear-in-space, linear-in-
direction cosine solution just described in Eq. 4.6.2. For that solution we can im-

3This is a simple exercise in the method of manufactured solutions, a technique first suggested
by Lingus [20]
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mediately compute that

ψ0 =
qx

2Σa

√
π

(4.6.5)

ψ1 = − q

2ΣaΣt

√
3π

(4.6.6)

ψl = 0 l > 1 . (4.6.7)

Noting that A0 = B1 = 1/
√

3, and substituting these into Eqs. 4.5.5 along with
Q = qx we discover that they do indeed satisfy the Pn equations. Therefore the Pn

equations have the special solution that represents Fick’s law.

In order for a numerical scheme to capture this solution it is necessary only that
the derivative in the zeroth moment equation map a constant to zero (so it must
be at least zeroth order accurate) and the derivative in the first moment equation
must map a linear function to a constant of the correct value (so it must be at least
first order accurate). These not very demanding conditions will guarantee that a
method for the Pn equations will capture the linear-in-space and linear-in-direction
cosine solution of the Pn equations. We will note below that the Riemann solver
for the Pn equations does have these properties.

We also note in passing that because of the rotational invariance of the spher-
ical harmonic equations, they will in fact have an entire family of linear-in-space
and linear-in-direction cosine solutions resulting from rotations of the special x-
dependent solution just displayed.

4.6.2 Asymptotic Analysis of the Pn equations

To investigate the diffusive limit of the Pn equations, and numerical methods for
them, we want to examine their solution when scattering dominates over absorp-
tion namely, Σt � Σa, and when time variation is negligible, ∂ψl/∂t ≈ 0. To do this
we divide Σt by a small, positive parameter ε and multiply Σa, Q and ∂/∂t by ε as
well, resulting in

ε

c

∂ψ0

∂t
+

∂

∂x
(B1ψ1) + εΣaψ0 = ε

Q

2
√
π

ε

c

∂ψl

∂t
+

∂

∂x
(Al−1ψl−1 +Bl+1ψl+1) +

Σt

ε
ψl = 0

ψn+1 = 0 .

(4.6.8)

We also then postulate a asymptotic expansion for ψl given by

ψl ∼
∞∑

j=0

εjψ
(j)
l (x, t) , ε→ 0 . (4.6.9)
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Next, we present a theorem on the asymptotic behavior of the Pn equations that
we will want to recapture with our modified Riemann solver.

Theorem 1. Let Σt > 0. Then for the asymptotic expansion Eq. 4.6.9 to satisfy the scaled
Pn equations, Eq. 4.6.8, we must have ψ(j)

l = 0 for l > j. In other words, ψl = O
(
εl
)
.

Furthermore, the solution satisfies Fick’s law at leading order,

ψ
(1)
1 = −A0

∂ψ
(0)
0

∂x
(4.6.10)

and
1

c

∂ψ
(0)
0

∂t
− ∂

∂x

A0B1

Σt

∂ψ
(0)
0

∂x
+ Σaψ

(0)
0 =

Q

2
√
π

(4.6.11)

Proof by induction. Substituting Eq. 4.6.9 into Eq. 4.6.8 yields

∞∑

j=1

εj
1

c

∂ψ
(j)
0

∂t
+

∞∑

j=0

εj
∂

∂x

(
B1ψ

(j)
1

)
+
∑

j=1

εjΣaψ
(j−1)
0 = ε

Q

2
√
π

∞∑

j=1

εj
1

c

∂ψ
(j)
l

∂t
+

∞∑

j=0

εj
∂

∂x

(
Al−1ψ

(j)
l−1 +Bl+1ψ

(j)
l+1

)
+

∞∑

j=−1

εjΣtψ
(j+1)
l = 0

∞∑

j=0

εjψ
(j)
n+1 = 0,

(4.6.12)

with l = 1 . . . n. Gathering terms of order ε−1 yields ψ(0)
l = 0 for l > 0. Gathering

terms of order ε0 yields

∂

∂x

(
B1ψ

(0)
1

)
= 0 (4.6.13)

∂

∂x

(
Al−1ψ

(0)
l−1 +Bl+1ψ

(0)
l+1

)
+ Σtψ

(1)
l = 0 (4.6.14)

ψ
(0)
n+1 = 0 . (4.6.15)

Since ψ(0)
1 = 0, Eq. 4.6.13 is automatically satisfied. Eq. 4.6.14 for l = 1 implies

A0∂ψ
(0)
0 /∂x+Σtψ

(1)
1 = 0, which is Fick’s law. Also since ψ(0)

l = 0 for l > 0, Eq. 4.6.14
for l > 1 implies ψ(1)

l = 0 for l > 1.

Repeating the exercise for terms of order ε1 we will discover that

1

c

∂ψ
(0)
0

∂t
+

∂

∂x

(
B1ψ

(1)
1

)
+ Σaψ

(0)
0 =

Q

2
√
π

(4.6.16)

1

c

∂ψ
(0)
l

∂t
+

∂

∂x

(
Al−1ψ

(1)
l−1 +Bl+1ψ

(1)
l+1

)
+ Σtψ

(2)
l = 0 (4.6.17)

ψ
(1)
n+1 = 0 . (4.6.18)
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Equation 4.6.16 combines with Fick’s law to give us the time-dependent diffusion
equation for ψ(0)

0 . From Eq. 4.6.17 with l > 2, and using ψ(1)
l = 0 for l > 1, we see

that ψ(2)
l = 0 for l > 2. Thus we begin to build up an induction on the order j to

show that ψ(j)
l = 0 for l > j.

Suppose that there is a value j such that for all values j′ ≤ j we know ψ
(j′)
l = 0

for l > j′. We need only consider j > 2 since we have already established this for
j ≤ 2. Gathering terms of order εj we have

1

c

∂ψ
(j−1)
0

∂t
+

∂

∂x

(
B1ψ

(j)
1

)
+ Σaψ

(j−1)
0 = 0 (4.6.19)

1

c

∂ψ
(j−1)
l

∂t
+

∂

∂x

(
Al−1ψ

(j)
l−1 +Bl+1ψ

(j)
l+1

)
+ Σtψ

(j+1)
l = 0 (4.6.20)

ψ
(j)
n+1 = 0 . (4.6.21)

Using ψ(j−1)
l = 0 for l > j − 1 and ψ

(j)
l−1 = 0 for l − 1 > j, and hence ψ(j)

l = 0 and
ψ

(j)
l+1 = 0 for l−1 > j, with Eq. 4.6.20 for l > j+1 therefore implies that Σtψ

(j+1)
l = 0,

and hence ψ(j+1)
l = 0 for l > j + 1. This completes the induction.

Note that A0B1 = 1/3, and also recalling that φ = 2
√
πψ0 we see from Eq. 4.6.11

that the scalar flux φ satisfies the time dependent diffusion equation to leading
order in ε. This proof shows that the diffusion limit of the Pn equations is connected
to the angular moments of order l being of order εl, and in the correct Fick’s law
arising at first order in the expansion.

4.7 Diffusion properties of the Riemann discretization

We now want to explore the Riemann solver discretization in the diffusion limit.
We first consider the linear-in-space and linear-in-direction cosine solution, which
in the discrete form should be

ψ0,i =
q i∆x

2Σa

√
π

(4.7.1)

ψ1,i = − q

2ΣaΣt

√
3π

(4.7.2)

ψl,i = 0 l > 1 . (4.7.3)

We wish to see if this solution satisfies Eq. 4.5.9. For this solution we immediately
have (ψ0,i+1 − ψ0,i−1)/2∆x = q/(2Σa

√
π), (ψl,i+1 − ψl,i−1)/2∆x = 0 for l > 0, and
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ψi+1−2ψi +ψi−1 = 0. With these observations it is easy to conclude that this linear-
in-space and linear-in-direction cosine solution is an exact solution of the Riemann
discretized Pn equations. This really was inevitable from the first order accuracy
of the discretization.

However, even though the Riemann discretized Pn equations have this exact
diffusion-like solution (which exactly satisfies Fick’s law, you will recall), it does
not have a good diffusion limit. Introducing the same scaling in ε as for Theorem
1 we write the Riemann discretized equations as

ε

c

dψi

dt
+ A

(ψi+1 − ψi−1)

2∆x
− |Λ| (ψi+1 − 2ψi + ψi−1) =

−

⎛

⎜⎜⎜⎝

εΣa 0 0 . . .
0 Σt/ε 0 . . .
0 0 Σt/ε
...

... . . .

⎞

⎟⎟⎟⎠ψ +

⎛

⎜⎜⎜⎝

εQ/(2
√
π)

0
0
...

⎞

⎟⎟⎟⎠ , (4.7.4)

We once again use the asymptotic expansion ψl,i ∼ ∑∞
j=0 ε

jψ
(j)
l,i (t) and have the

following unfortunate theorem which says the Riemann solver has a poor diffusion
limit.

Theorem 2. Using ψl,i ∼
∑∞

j=0 ε
jψ

(j)
l,i (t) in Eq. 4.7.4 with Σt > 0 we must have ψ(0)

1 = 0

and ψ(0)
0,i+1 − 2ψ

(0)
0,i + ψ

(0)
0,i−1 = 0, so ψ(0)

0,i does not satisfy a discrete diffusion equation.

Proof. Considering first terms of order ε−1, we get contributions only from the right
hand side and when Σt �= 0; these terms imply ψ(0)

l,i = 0, and in particular ψ(0)
1 = 0,

yielding the first claim of the theorem.

Moving on to terms of order ε0 we have

A
ψ

(0)
i+1 − ψ

(0)
i−1

2∆x
− |Λ|

(
ψ

(0)
i+1 − 2ψ

(0)
i + ψ

(0)
i−1

)
=

⎛

⎜⎜⎜⎝

0 0 0 . . .
0 Σt 0 . . .
0 0 Σt
...

... . . .

⎞

⎟⎟⎟⎠ψ
(1)
i . (4.7.5)

This appears to have many terms, but in fact we already know that only ψ
(0)
0,i is

non-zero, and all other ψ(0)
l,i = 0 for l > 0, and so most of the terms on the left are

zero. So consider only the first row

|Λ|0,0

(
ψ

(0)
0,i+1 − 2ψ

(0)
0,i + ψ

(0)
0,i−1

)
= 0 (4.7.6)

where |Λ|0,0 denotes the first row, first column of |Λ|, which corresponds to l = 0,
explaining the zero indexes. So, in order to establish the theorem we need only
show that |Λ|0,0 �= 0.

98



Going back to Eq. 4.5.10, |Λ| =
∑n

k=0 rk|λk|lk, Brunner & Holloway [5, 6] have
previously derived the eigenvectors and eigenvalues of A, and from these re-
sults one can construct |Λ|0,0 and see that it is non-zero. Alternately, noting that
Bl+1 = Al we see that A is symmetric, hence rk = lk. Every term in the sum for
|Λ| is therefore non-negative, and if the first element of rk corresponding to a non-
zero eigenvalue λk is non-zero, then |Λ|0,0 > 0. This is easy to discover from the
structure of A, which has a zero diagonal and non-zeros on the first super and
sub-diagonals. If the first element of an eigenvector is zero then, for a non-zero
eigenvalue, the second element is zero. And if the first and second elements are
zero, the third must be, and so on down the line. Hence the first element of the
eigenvector cannot be zero, so |Λ|0,0 > 0 and the theorem is proved.

So, at first order in ε we discover the equation for the leading order scalar flux
ψ0,i is

ψ0,i+1 − 2ψ0,i + ψ0,i−1 = 0 , (4.7.7)

hence the Götterdämmerung4 of the standard Riemann solver in the diffusion limit.
This equality tells us that the leading order terms will not satisfy the correct dif-
fusion equation. We see this be noting that Eq. 4.7.7 is (within a constant factor)
a finite-difference Laplacian. This Laplacian being zero tells us the leading order
terms are linear in space and satisfy an erroneous diffusion equation ∇2ψ

(0)
0 = 0.

4.8 Modified Riemann Solver in the Diffusive Limit

Riemann solvers were designed to add just the right amount of dissipation to make
the advective terms of a problem upwinded and stable. They treat an idealized
problem (one in which there are no sources or sinks) exactly and use the solution
to this problem to determine the amount of flow across a cell interface. In prob-
lems where the advection of information dominates this is the correct approach.
Transport problems have terms that act as sources, namely collisional interactions
and inhomogeneous source terms. When the mean free path of the particles is re-
solved in a numeric scheme, the Riemann solver’s added dissipation is the correct
amount. However, this dissipation dominates for large cell sizes, so that when
a mean free path is not resolved and the particle streaming is not the dominant
process in the cell, the dissipation is incorrect.

To address this problem we suggest that the Riemann dissipation be scaled out
as the cell size relative to a mean free path grows. In particular we suggest that
the dissipation matrix |Λ| be multiplied by

[
1 + (Σs∆x)

2
]−1, where Σs = Σt − Σa

4Properly translated into English, Götterdämmerung, means “twilight of the gods” and denotes
the turbulent and complete downfall of a regime or institution. The word is the mistranslation into
German of the Old Norse ragnarok (which means “fate of the gods”) and its most famous usage is
by Richard Wagner as the title for the finale of The Ring of the Nibelung.
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is the scattering cross-section. This scaling allows the dissipation to be largely
unchanged when the cell size is smaller than a scattering mean free path, but also
reduces the dissipation acutely when the cell size is larger than the scattering mean
free path. This has the effect of effectively making |Λ|0,0 = O(ε2) as ε → 0 in the
proof of Theorem 2, and thereby this “diffusion correction” removes the problem.

This scaling factor obeys

1

1 + (Σt/ε− εΣa)2∆x2 ∼
{

1 ε→ ∞
ε2

Σ2
s∆x2 ε→ 0 .

(4.8.1)

Using this scaling the order 1/ε equations still yield

ψ
(0)
l,i = 0 (4.8.2)

for l > 0. But the order 1 equations now state

ψ
(1)
1,i =

−1

2∆xΣt

√
3

(
ψ

(0)
0,i+1 − ψ

(0)
0,i−1

)
, (4.8.3)

which recalls Fick’s law. Finally, the order ε equations give

1

c

dψ
(0)
0,i

dt
− 1

3Σt

(
ψ

(0)
0,i+2 − 2ψ

(0)
0,i + ψ

(0)
0,i−2

4∆x

)
+ Σaψ

(0)
0,i =

Qi

2
√
π
. (4.8.4)

This is a discrete diffusion equation with the correct diffusion coefficient D =
1/3Σt. The effect of the scaled dissipation is to convert the solver from an up-
winded Riemann solver when computational cells are on the order of a mean-free-
path or smaller, into a cell-centered diffusion solver when cells are many scattering
mean-free-paths thick.

It should be noted that this diffusion equation is discretized on a mesh that is
of size 2∆x, rather than on the mesh of size ∆x. As written this limit is therefore
yielding two diffusion equations, one on even numbered mesh cells, and one on
odd numbered cells. This arises because in the first-order Riemann solver all quan-
tities are effectively cell-centered. However, as we will show in the results of the
next section, we have not seen a problem with this in practice because the nonlin-
ear interpolation used in a high-resolution Riemann solver does couple neighbor-
ing cells in this limit.

We also note that the scaling of the Riemann dissipation term could have been
of the form

[
1 + (Σt

ε
∆x)2

]−1 based on Σt rather than Σs. Our thinking, however,
was that for a mesh that contains large cells in a strong absorber we should con-
tinue to upwind the solution, rather than allow it to become a centered differ-
ence scheme. However, in problems of thermal radiative transfer the absorp-
tion/reëmission process behaves as effective scattering. In this case the scaling
factor using Σt would be appropriate.
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Figure 4.6. The scalar flux and first moments for the stan-
dard Riemann solver for the linear source problem (cf. Sec.
4.6)

4.9 Computational demonstrations

4.9.1 Preserving Linear Solutions

The ability of the Riemann solver to be LSP both with and without the diffusion
correction is shown in Figs. 4.6 and 4.7. These problems had a source q = Σa

(cf. Eq. (4.6.2)). The linearity in both space and angle is captured both with and
without the diffusion correction. Also, it is evident that the Riemann solver is LSP
in both diffusive and non-diffusive regimes.

4.9.2 Diffusion Correction

We now turn to results detailing the effectiveness of the diffusion correction sug-
gested in Sec. 4.8. Both steady state and time-dependent problems will be used
to explore the properties of the diffusion-corrected Riemann solver with the high
resolution spatial scheme.
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Figure 4.7. The scalar flux and first moments for the
diffusion-corrected Riemann solver for the linear source
problem

4.9.2.1 Steady State Problems

Figure 4.8 presents results from a P5 steady state calculation both with and without
the diffusion correction. The problem has an incident beam at x = 0, a strong
absorbing region from x = 0 to x = 2 and a strong scattering region from x = 2
to x = 7. In the scattering region, where the diffusion approximation is valid,
the uncorrected method (Fig. 4.8(b)) gives different solutions for different mesh
spacings. With the correction added to the dissipation term, the solution does
not vary significantly with changes in the cell size. Even for cells that are large
compared to a mean-free-path the method with a proper diffusion limit still yields
correct results as seen in Fig. 4.8(a).

Figure 4.9 shows a problem of a uniform source embedded in a diffusive ma-
terial with vacuum boundary conditions. Only resolving the diffusion length, the
modified Riemann solver produces a nearly identical solution to the result calcu-
lated with a mesh that resolves a mean free path. The standard Riemann solver
causes the height of the solution “plateau” and the boundary layer to be incorrect
when the mean free path is not resolved.

Another steady state problem used to test the diffusion correction is a modified
version of Reed’s problem [28]. The problem was modified to make the diffusive
region in the problem optically thick. This was in an attempt to gage the ability of
the diffusion correction in problems with a variety of materials. The results in Fig.
4.10 show that in the diffusion correction does indeed improve the calculated flux
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(a) The solution using the diffusion-
corrected Riemann solver

(b) The solution using the standard Rie-
mann solver without the diffusion correc-
tion

Figure 4.8. The P5, steady state solution with incident beam
on the left, and two regions: a strong absorber and a strong
scatterer

in the diffusive region. Moreover, the solution in the strong source and absorber
regions is nearly identical. There does appear to be an issue in the void region. The
scalar flux is too high. This is most likely due to effects at the interface between the
diffusive region and the void – an issue not explored in this paper.

4.9.2.2 Time Dependent Problems

The diffusion correction is also effective in time-dependent problems. One prob-
lem used to test the correction places a plane pulse of particles at the center of a
medium dominated by scattering (Σt = 10,Σs = 9.9). The differences between the
corrected solution and the standard Riemann solver are noteworthy. Figures 4.11
and 4.12 show the P7 and P1 solutions to this problem at t = 35 after the pulse
with ∆t = 0.5. The lack of a diffusion limit in the unaltered Riemann solver leads
to very different solutions with different spatial grids. Figures 4.11(b) and 4.12(b)
show that the width of the pulse in the solution artificially spreads as ∆x increases
in the solution without the diffusion correction. The fact that the diffusion correc-
tion behaves the same both in the P1 approximation and the P7 approximation is
demonstrated by these figures. This is manifest in the fact that the standard Rie-
mann solver solutions are similar for both P1 and P7 and the diffusion corrected
solutions are similar for both angular approximations (i.e. Fig. 4.11(b) is similar to
Fig. 4.12(b) and Fig. 4.11(a) is similar to Fig. 4.12(a)).
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Figure 4.9. The P1, steady-state solution to a uniform
source problem with Q = 1

2π and Σa = 0.01,Σt = 10

4.10 Conclusions and Future Work

We have presented an implicit Riemann solver for one-dimensional Pn transport.
A high resolution spatial scheme is considered with an implicit time integration
method. To make the method both implicit in time and high resolution in space
a system of nonlinear equations must be solved at each time step. We accom-
plish this using a matrix-free Newton-Krylov method that is preconditioned by
the linear system from the first-order spatial discretization. Results from two test
problems – one steady state and the other time independent – demonstrate the ca-
pabilities of this method. For time-dependent problems, computations that violate
the CFL limit still agree with analytic solutions and even far beyond the CFL limit
good qualitative agreement can be seen. In the steady state test problem, results
obtained by ROOSTER were in almost exact agreement with state-of-the-art Sn re-
sults. For transients before the steady state, there is sensitivity to the size of the
time step in regions with significant scattering. It is conjectured that this is due to
the fact that our Riemann solver ignored sources (both collisional and prescribed)
in its derivation.

The authors plan to explore the extension of this implicit Riemann solver to
multiple dimensions and unstructured grids. Along the way capabilities to solve
radiative transfer problems (i.e. problems of photon transport where absorption
and reëmission from the background media is taken into account) will also be
added to the method.
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Figure 4.10. The solution to the modified Reed’s problem.

(a) The solution from the modified Rie-
mann solver

(b) The standard Riemann solver solution

Figure 4.11. The P7 solution at t = 35 after the initial pulse
of particles

In the context of diffusive problems using the Riemann solver developed, this
research gave new insight into the behavior of this method. The LSP property
was shown for the Pn equations both analytically and in numerical simulations us-
ing the standard Riemann solver previously implemented for radiation transport
problems. We then showed that despite being LSP, the standard Riemann solver
discretization does not have a diffusion limit. The dissipation introduced by the
Riemann solver to make the differencing scheme stable requires spatial resolution
of a particle mean free path.
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(a) The solution from the modified Rie-
mann solver

(b) The standard Riemann solver solution

Figure 4.12. The P1 solution at t=35 after the initial pulse
of particles
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