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Abstract

This work focuses on different methods to generate confidence regions for nonlinear pa-
rameter identification problems. Three methods for confidence region estimation are con-
sidered: a linear approximation method, an F–test method, and a Log–Likelihood method.
Each of these methods are applied to three case studies. One case study is a problem with
synthetic data, and the other two case studies identify hydraulic parameters in groundwater
flow problems based on experimental well–test results. The confidence regions for each
case study are analyzed and compared. Although the F–test and Log–Likelihood methods
result in similar regions, there are differences between these regions and the regions gen-
erated by the linear approximation method for nonlinear problems. The differing results,
capabilities, and drawbacks of all three methods are discussed.
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Confidence Region Estimation
Techniques for Nonlinear

Regression: Three Case Studies

1 Introduction

Nonlinear models are frequently used to model physical phenomena and engineering ap-
plications. In this paper, we refer to a nonlinear model very broadly: the output of the
model is a nonlinear function of the parameters (Draper and Smith, 1998). Thus, nonlin-
ear models can include systems of partial differential equations (PDEs). Some examples
include CFD (computational fluid dynamics) (Oberkampf and Barone, 2005), groundwater
flow (Beauheim and Roberts, 2002), heat transport (Stanley, 2001), etc. Nonlinear models
also include functional approximations of uncertain data via regression or response surface
models. Many nonlinear models require the solution of some type of optimization problem
to determine the optimal parameter settings for the model. Statisticians have long worried
about how to determine the optimal parameters for nonlinear regression models (Seber and
Wild, 2003). In the case of nonlinear regression, optimization methods have been used to
determine the parameters which “best fit” the data, according to minimizing a least squares
expression. The optimization methods may not always converge and find the true solu-
tion, although advances in the optimization methods have improved nonlinear least squares
solvers.

In this paper, we are concerned about determining confidence intervals around the pa-
rameter values in a nonlinear model. The parameters may be parameters in an approxi-
mation model such as a regression model, or physics modeling parameters which are used
in physical simulation models such as PDEs. We refer to data as separate from param-
eters: data are physical data which is input either to a regression or physical simulation,
and parameters are variables which are used in the representation and solution of the non-
linear model. For example, in groundwater flow modeling, parameters include hydraulic
conductivity, specific storage, etc. Data may included measured flow rate from well data.
The focus of this paper is on calculating and evaluating joint confidence intervals. A joint
confidence interval is one that simultaneously bounds the parameters; it is also called a
simultaneous confidence interval. It is not a set of individual confidence intervals for each
parameter in the problem. Individual confidence intervals on parameters usually assume
independence of the parameters which may lead to large errors if one is trying to infer a
region where the parameters may jointly exist, for example, with 95% confidence. A joint
confidence interval for a problem with two parameters may be an ellipse, where all points
within the ellipse represent potential combinations of the parameters that fall within the
confidence region.

We are interested in calculating joint confidence intervals to understand the range or
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potential spread in the parameter values. Given various sources of uncertainty, it is un-
likely that the optimal parameters which minimize some least squares formulation are the
only reasonable parameters. There are several sources of uncertainty that can contribute
to difficulty in identifying optimal parameter values in nonlinear problems. The data itself
may have significant uncertainties: there may be missing values, measurement error, sys-
tematic biases, etc. Nonlinear inverse problems may involve discontinuities which result in
multiple values for the optimal parameters, due to complexities in the underlying physics
(e.g., significant heterogeneities in material models). The parameters themselves may have
significant variability as part of their inherent randomness. Finally, model form can also
influence the parameter settings. For these reasons, one should not always trust the optimal
parameter values obtained by a nonlinear least squares solutions. Looking at the joint con-
fidence intervals on parameter values will give a more complete picture about the optimal
values for the parameters, and their correlation.

The question of interest in this paper is: once the optimal parameters have been found,
how does one determine the simultaneous confidence intervals around the parameters? Var-
ious statistical methods have been developed to do this for nonlinear regression problems.
This paper examines three methods for determining joint confidence intervals in nonlinear
models and compares them in case studies. These methods have been developed for the
case where the regression model is a nonlinear model. In two of our cases, the nonlinear
model is a groundwater flow and transport code; it is a set of PDEs. We look at the ap-
plicability of the three methods to PDE-type models, and discuss implementation issues.
The first section of this paper provides background to nonlinear regression and determina-
tion of parameters in nonlinear models. The second section describes three methods which
are used to determine joint confidence intervals for parameters in nonlinear models. The
third section outlines the example problems used in the case studies, and the fourth section
discusses the results, with a fifth section providing conclusions.

2 Nonlinear Regression

Nonlinear regression extends linear regression for use with a much larger and more general
class of functions (Bates and Watts, 1988). Almost any function that can be written in
closed form can be incorporated in a nonlinear regression model. Unlike linear regression,
there are very few limitations on the way parameters can be used in the functional part of
a nonlinear regression model. The way in which the unknown parameters in the function
are estimated, however, is conceptually the same as it is in linear least squares regression.
In nonlinear regression, the nonlinear model of the response y as a function of the n–
dimensional inputs x is given as y � f

�
θ;x ��� ε, where f is the nonlinear model, θ is a

vector of parameters, and ε is the random error term. As an example, one could have
yi

� θ1 � 1 � exp
�
xiθ2 ��� . Note that for nonlinear functions, the derivative of f with respect

to the parameters θ depends on at least one of the parameters of the vector θ. The goal of
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nonlinear regression is to find the optimal values of θ to minimize the function

n

∑
i 	 1

� f � θ;xi �
� yi � 2 �
Nonlinear regression requires an optimization algorithm to find the vector θ that min-

imizes the sum of squares. This is often difficult. Nonlinear least squares optimization
algorithms have been designed to exploit the structure of a sum of the squares objective
function. The objective function can be formulated as:

Minimize S
�
θ � � n

∑
i 	 1

� ri
�
θ ��� 2 �

where ri
�
θ � is the ith least squares term (residual) ri

�
θ � � f

�
θ;xi �� yi. If S

�
θ � is differen-

tiated twice, terms of ri
�
θ � , r � �i � θ � , and � r �i � θ ��� 2 result. By assuming that the residuals ri

�
θ �

are close to zero near the solution, the Hessian matrix of second derivatives of S
�
θ � can be

approximated using only first derivatives of ri
�
θ � .

Optimization methods are used to minimize the sum of squares term S
�
θ � . Note that

these optimization methods work both in the case where the function f is an analytical
model OR in the case where f is a computational simulation model and we are trying
to find the optimal value of the parameters which minimizes the differences between the
model predictions and experimental data. An algorithm that is particularly well-suited to
the small-residual case and the above formulation is the Gauss-Newton algorithm. This
formulation and algorithm combination typically requires the user to explicitly formulate
each term in the least squares (e.g., n terms for n data points) along with the gradients
for each term. This may be very expensive for computationally intensive evaluations of
f . The calculations necessary also will increase as the number of parameters increases.
Additionally, the approximation of gradients in the presence of errors in the problem is
problematic. Often, the gradient approximation has larger errors than the objective function
approximation (Borggaard et al., 2002).

Because of the expense and questionable accuracy of computing gradient approxima-
tions, we choose an optimization algorithm that does not require gradients. The Shuffled
Complex Evolution Method (SCEM) is a hybrid of the Nelder–Mead algorithm and evolu-
tionary algorithms that was developed specifically for nonlinear hydraulic parameter identi-
fication problems (Duan et al., 1992, 1993). Vugrin (2005) contains a complete description
of our application of the SCEM.
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3 Confidence Regions

The term confidence region is often misused, but most people have the sense that they
want to understand the uncertainty in a data point or in a prediction. Confidence regions
are sometimes called inference regions, indicating that these are regions where one infers
something about the likelihood of the parameters existing. This section will discuss two
types of confidence regions: regions for the individual parameters, and simultaneous re-
gions for the joint parameters.

3.1 Confidence Regions for Individual Parameters

One can calculate confidence regions for individual parameters using the t-test statistic. For
a particular confidence level 1 � α, the confidence region for an individual parameter θ j is
given by�

θ j � t � 1 � α
2 ��� n � pσ j � � (1)

where σ j is the standard deviation of parameter θ j, n is the number of data points, and p is
the number of parameters to identify (Neter et al., 1985). The term t � 1 � α

2 ��� n � p is “the per-
centage point of a t-variable with n � p degrees of freedom that leaves a probability of α � 2
in the upper tail, and so 1 � α � 2 in the lower tail” (Draper and Smith, 1998). If one con-
structed confidence bounds for each parameter individually in this way, then merged them
to construct a hypercube, this hypercube would be an incorrect estimate of the confidence
region because it assumes that the inferences about each parameter are made independently
when they are not. For example, if one constructs a 95% confidence region for θ1 and θ2
and defines a rectangle based on the bounds of both, this rectangle does not enclose a 95%
confidence region for the joint distribution of θ1 and θ2. If one assumed independence in
the parameters, the probability that both parameters would be inside the rectangle would
be .95*.95 = .9025. However, they are not independent.

3.2 Confidence Regions for Joint Parameters

This paper explores three methods for constructing simultaneous confidence regions on pa-
rameters from nonlinear models. These methods can be found in Seber and Wild (2003).
The methods are confidence regions based on linear approximation, the F-test, and the
Likelihood ratio. In the various subsections below, the following notation is used:

Given nonlinear model with known functional relationship f,

yi
� f

�
θ;xi ��� εi

� (2)
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E � εi � � 0, Vεi
� σ2, and εi are identical and independently distributed (iid). The least squares

estimator of the true minimum θ � is θ̂, which minimizes the error sum of squares:

S
�
θ � � n

∑
i 	 1

� f � θ;xi ��� yi � 2 �
3.2.1 Linear Approximation Method

We implement the linear approximation method described in Rooney and Biegler (2001)
and Bates and Watts (1988). The linear approximation confidence region is based on a
linear approximation of f . In linear models, the sum of squares function is quadratic, and
contours of constant sums of squares are ellipses or ellipsoid surfaces. In nonlinear models,
if one approximates the nonlinear function with a linear Taylor series expansion about the
parameter estimate θ̂, the sum of squares approximation is then quadratic. This results in
ellipsoid contours centered at θ̂.

In order to implement the linear approximation method, an estimate of the Hessian
matrix of f

�
θ;x � is necessary. Our estimate of the Hessian is based on the optimization ter-

mination point. The first derivative of the numerical model with respect to each parameter
is approximated using the finite difference forward difference scheme. The approximated
vector of first partial derivatives is denoted as F̂ � � F � � θ̂ � . Then, the Hessian matrix is
approximated by

F ��� � θ̂ � � F̂ � � F̂ � (3)

The variance of εi must also be approximated in order to create a linear approximation
confidence region. The formula is

s2 � S
�
θ̂ �

n � p
� (4)

The confidence region is then�
θ :

�
θ � θ̂ � T F ��� � θ̂ � � θ � θ̂ ��� ps2Fα

p � n � p � � (5)

where Fα
p � n � p is the upper α percentage point of the F-distribution.

For linear regression models, the linear approximation confidence regions are exact.
However, for nonlinear models, this approximation may not be very accurate, especially
with small data sets and/or if the model is very nonlinear with respect to one or more of
the parameters. Bates and Watts (1988) state: “We hasten to warn the reader that linear
approximation regions can be extremely misleading.”
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In addition to the concerns about nonlinearity in the model, there is another reason the
linear approximation method may result in incorrect confidence regions. There are two
reasons that the approximation of the Hessian may result in suspicious values. The Hessian
approximation does not include any second order terms. The use of only first order terms
guarantees that the Hessian approximation is positive definite and therefore nonsingular.
However, the approximation may be less accurate without second order derivative terms.
The residuals must be close to 0 for this approximation of the Hessian to be a good one.
Also, the use of finite differences for derivative approximation in finite element models
has been shown to result in very poor approximations of derivatives (Borggaard et al.,
2002). Since the nonlinear regression modeling technique contains sources of errors that
are largely unavoidable, residuals are often not close to 0, and finite difference derivatives
should be used with caution. Clearly, errors in the Hessian approximation will impact
the computed confidence region. Thus, the confidence regions computed with the linear
approximation method may be compromised by highly nonlinear models and small data
sets or poor Hessian approximations.

3.2.2 F-test Method

The second method we investigate is based on the F distribution. This confidence region is
based on the assumption that the error terms εi are jointly normally distributed, or spheri-
cally normal. The confidence region is the intersection of the expectation surface ( f ) with
a sphere centered at y (Bates and Watts, 1988). In the case of the linear model, this is
an ellipse as outlined in the section above. In the nonlinear case, however, it is not. The
confidence region is a set of points for which S

�
θ � is a constant. The formula is given by:�

θ :
S
�
θ �
� S

�
θ̂ �

S
�
θ̂ � � p

n � p
Fα

p � n � p  � (6)

Seber and Wild (2003) claim that equations (5) and (6) both yield confidence regions for
θ which have the asymptotic confidence level of 100

�
1 � α � %. However, these regions may

be different, and equation (6) is recommended. Additionally, equation (6) does not require
the approximation of derivatives or Hessian matrices, so this source of error is avoided.
Note that the F-test and linear approximation confidence regions are the same for linear
models.

3.2.3 Log–Likelihood Method

There is a discussion in Lyman (2003) and in sections 5.3 and 5.9 in Seber and Wild (2003)
about a different confidence region based on likelihood functions. In this approach, L

�
γ �

is the log-likelihood function for a general model with an unknown p-dimensional vector
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parameter γ. In the log-likelihood method, contours of the likelihood function map out con-
fidence regions for the parameters. A hypothesis test can be tested using the statistic LR
(likelihood ratio): LR : � 2 � L � γ̂ ��� L

�
γ0 ��� , where

�
γ̂ � is the maximum likelihood estimate of

γ which maximizes the likelihood L
�
γ � . The test statistic LR is approximately distributed as

a χ2
p when the null hypothesis is true. This can be used to obtain an approximate confidence

interval for γ:
�
γ : 2 � L � γ̂ ��� L

�
γ �!� χ2

p
�
α � � . Finally, under the assumption of normally dis-

tributed residuals, a similar transformation can be used to express this confidence interval
in terms of the SSE:�

θ : n � logS
�
θ ��� logS

�
θ̂ ���"� χ2

p
�
α � � � (7)

where χ2
p
�
α � is the upper α percentage point for the χ2 distribution.

Equation (7) can include a Bartlett correction factor. We use a value of one for this
investigation. See Rooney and Biegler (2001) for further discussion.

4 Test Problems

We calculate confidence regions for three test problems. The first test problem is a linear
parameter identification problem with synthetic data. The other two test problems are non-
linear groundwater parameter identification problems based on experimentally collected
data.

4.1 Test Problem 1: Polynomials

The first test problem is simulation of a fifth degree polynomial. The set of synthetic data
points d1 is generated by evaluating the polynomial p

�
x � � 0 � 15x2 � 0 � 05x5 at 101 evenly

spaced points between 0 and 1. This set of data points is perturbed by adding a noise term
to each data point. The noise terms are chosen from a normal distribution with mean zero
and standard deviation 0.05. Figure 1 is a plot of the original polynomial and the perturbed
data set.

The noisy data set d1 is modeled with the fifth degree polynomial ps
�
θ1

� θ2;x � � θ1x2 �
θ2x5. The optimization problem is then:

Minimize S
�
θ1

� θ2 � � 101

∑
i 	 1

� ps
�
θ1

� θ2;xi �
� d1
i � 2 �

The software we use to simulate the polynomials is paCalc, a parameter identification
framework developed by INTERA Engineering. The paCalc framework is used for data
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Figure 1. Test Problem 1: Underlying Polynomial and Perturbed
Data Set

generation purposes, polynomial evaluations, Hessian approximation, and for application
of the SCEM optimization algorithm.

Because of the construction of this test problem, we know that θ � � �
0 � 15 � � 0 � 05 �

and S
�
θ � � � 0 for the unperturbed problem. However, when optimization algorithms are

applied to the perturbed data set, the termination point is unlikely to be equal to θ � . In order
to generate the value of θ̂, the SCEM is applied to the problem.

For all three test problems, we compute confidence regions at the 95% confidence level;
therefore, α � 0 � 05. The percentage points of the F and χ2 distributions at α � 0 � 05 are
taken from Zar (1984). Table 1 is a summary of the factors that influence confidence region
calculation for test problem 1. Recall that n is the number of points in the data set and p is
the number of parameters. Finally, the Hessian approximation is calculated using equation
(3) and s2 is calculated using equation (4).

4.2 Groundwater Flow Model Parameters

The final two test problems are identification of hydraulic parameters for geologic forma-
tions. Well-test analysis is an inverse-modeling process in which the hydraulic parameters

14



Table 1. Test Problem 1: Factors Affecting Confidence Region
Calculations

Variable Value
p 2
n 101
θ̂1 0.121205
θ̂2 0.008131

S
�
θ̂ � 0.2492

s2 0.00252
F0 # 05

2 � 99 3.098
χ2

2
�
0 � 05 � 5.991

Hessian Approximation:
20.50 13.01
13.01 9.60

of an aquifer are estimated from measured transient pressure and flow rate responses to a
known perturbation. During a constant-pressure (CP) test, the pressure in an isolated sec-
tion (test zone) of a borehole is maintained at a nearly constant pressure that differs from
the surrounding static conditions. The transient flow resulting from this imposed gradi-
ent is measured during this period. Following the CP test, the test zone is shut in and the
pressure in the zone is allowed to recover to static conditions; ie. a pressure buildup (PB)
test. The transient flow rate and pressure responses measured during the CP and PB tests,
respectively, are then used as a data set for a regression procedure.

Values of the hydraulic parameters are estimated using the numerical well-test analy-
sis code, nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator),
developed by Sandia National Laboratories. The nSIGHTS code integrates the ability to
simulate the solution to the numerical model and the SCEM optimization capability. Al-
though the numerical model is quite complicated, there are two primary governing equa-
tions. The first governing equation is the “generalized radial flow equation” from Barker
(1988):

Ss
∂h

�
r� t �

∂t
� K

rn f � 1
∂
∂r $ rn f � 1 ∂h

�
r� t �

∂r % � (8)
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where

Ss
� specific storage (1/m) �

h � hydraulic head (m) �
t � time (s) �

K � hydraulic conductivity (m/s) �
r � radial distance from borehole (m), and

n f
� flow dimension (dimensionless) �

This model is based on conservation of mass and Darcy’s law (Freeze and Cherry, 1979):

Q
�
r � � � K

∂h
∂r

A
�
r � � (9)

where Q is the flow rate (m3/s) and A
�
r � is the flow area (m2) at a distance r from the

borehole. The relationship between hydraulic head and pressure is

p � ρgh � (10)

where p (kPa) is pressure, ρ is the density of water (kg/m3), and g (m/sec2) is the accelera-
tion due to gravity.

The initial condition is

p
�
r� 0 � � p0

�
where p0 is the static formation pressure. The boundary condition at the well is

p
�
0 � t � � pm �

t � �
where pm �

t � is the measured value of the pressure at the well at time t. The boundary
condition at the external boundary is

p
�
rb
� t � � p

�
rb � � p0

�
where rb is the radial distance (m) from the well to the boundary (Avis, 1996). A complete
description of the nSIGHTS governing equations can be found in Pickens et al. (1987),
which discusses the well-test analysis code GTFM (Graph Theoretic Field Model), the
DOS-based precursor to nSIGHTS.
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nSIGHTS applies a Graph Theoretic Field Model to generate an approximate solution
the system of equations. The numerical solution is essentially a finite volume approxima-
tion to the governing equations. See Pickens et al. (1987) and Savage and Kesavan (1979)
for a complete discussion of the Graph Theoretic Field Model. nSIGHTS’s use of the
model is discussed in Avis (1996).

nSIGHTS approximates the Hessian matrix in the same way as paCalc. The forward
difference finite difference scheme is used to approximate the first derivatives of the nu-
merical model with respect to each parameter. Then, equation (3) is applied in order to
approximate the Hessian matrix.

4.3 Test Problem 2: Groundwater Parameters

Test problem 2 is based on a well–test performed as part of Ontario Power Generation’s
Moderately Fractured Rock (MFR) experiment. The well-test used for test problem 2 con-
sists of a combination of a constant-pressure (CP) withdrawal test and pressure-buildup
(PB) test. The MRF experiment was conducted within a 100,000 m3 volume of fractured
crystalline plutonic rock at the 240-m level of Atomic Energy of Canada’s Underground
Research Laboratory. A 30-minute CP test was performed in zone seven of borehole MF16
and was followed by a PB test (Roberts, 2002). We estimate hydraulic parameters by
matching the measured transient flow rates d2 shown in Figure 2. This data set contains
noise, which is especially visible after t � 100.

The two hydraulic parameters that we identify for test problem 2 are conductivity K
and specific storage Ss. Let yn

�
K � Ss; pm � be the nSIGHTS solution to the numerical model

of the problem. The optimization problem is then

Minimize S
�
K � Ss � � 566

∑
i 	 1 & yn

�
K � Ss; pm �

ti �'�
� d2
i ( 2 �

The SCEM optimization algorithm is used to identify K̂, Ŝs, and S
�
K̂ � Ŝs � . Table 2 is a

summary of the values used in confidence region calculations.

4.4 Test Problem 3: Groundwater Parameters

The third test problem is based on data collected as part of the Swedish Nuclear Fuel
and Waste Management Company’s (SKB) Tracer Retention Understanding Experiments
(TRUE) at the Äspö Hard Rock Laboratory (Winberg, 1996). Borehole KXTT2 was one
of five boreholes in the TRUE-1 borehole array drilled in fractured crystalline rock. The
testing sequence consisted of a 30-minute CP withdrawal test followed by a 30-minute PB
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Figure 2. Test Problem 2: Matching Points

test. Hydraulic parameter estimates were obtained by matching the CP flow rates, the PB
pressure data, and the derivative of the PB pressure data. Figure 3 is a plot of the measured
flow rate and Figure 4 is a plot of the measured pressure and its derivative. The vector d3

represents the data points from all three plots.

The two hydraulic parameters that we identify for test problem 3 are again conductivity
K and specific storage Ss. Let yn

�
K � Ss; t � be the nSIGHTS solution to the numerical model

of the problem. The optimization problem is then

Minimize S
�
K � Ss � � 317

∑
i 	 1 & yn

�
K � Ss; ti ��� d3

i ( 2 �
Again, the SCEM is used to identify K̂, Ŝs, and S

�
K̂ � Ŝs � . Table 3 is a summary of the values

used in confidence region calculation.
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Table 2. Test Problem 2: Factors Affecting Confidence Region
Calculations

Variable Value
p 2
n 566
K̂ 2.93E-12
Ŝs 1.96E-6

S
�
K̂ � Ŝs � 17.482
s2 0.031

F0 # 05
2 � 564 3.01

χ2
2
�
0 � 05 � 5.991

Hessian Approximation:
7.52E21 8.92E15
8.92E15 1.19E10

Table 3. Test Problem 3: Values used for Confidence Region
Calculations

Variable Value
p 2
n 317
K̂ 4.09E-10
Ŝs 1.39E-4

S
�
K̂ � Ŝs � 37.528
s2 0.119

F0 # 05
2 � 315 3.024

χ2
2
�
0 � 05 � 5.991

Hessian Approximation:
1.23E21 -8.68E14
-8.68E14 7.58E8
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Figure 3. Test Problem 3: Matching Flow Rate Points
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5 Results and Discussion

5.1 Visualization of Confidence Regions

For each test problem, equations (5), (6), and (7) are used to compute limits that define each
type of confidence region. To be within the confidence region for linear approximation
method, the parameter values must satisfy (5). To be within the confidence region for the
F-test and Log–Likelihood methods, the parameter values must have a fit value lower the
value identified by equations (6) and (7), respectively. Note that it is not a trivial problem
to find the set of parameter values that lie exactly on the boundary of the confidence region.
We did not use any computational geometry techniques, but instead enumerated various
combinations of parameters until we obtained combinations that were very close to the
boundary. The boundary points of the plots of each confidence region depicted in this
section are all less than the identified boundary value and within 0 � 035% of the target
boundary value. Thus, the visualized confidence regions are slightly smaller than the true
regions. However, every point on the boundary and interior of the visualized confidence
regions is within the calculated confidence region.

In order to identify the boundary points for the visualized confidence intervals, pertur-
bations of θ̂ were evaluated until parameter values that were within 0 � 035% of the identified
boundary were found. Once an acceptable point was found (generally by trial and error),
the immediate neighborhood was searched for more points. Once a few boundary points
were established, patterns arose. As more boundary points were discovered, the shape of
the confidence interval could more clearly be seen by graphing, and estimations of bound-
ary points became even easier as visual approximations of points based on the slope of
the graph were possible. The tips of the confidence intervals were established especially
rigorously, with many data points tested. As the number of parameters increases, the iden-
tification and visualization of the joint confidence region becomes a much harder problem.

5.2 Test Problem 1

Figure 5 is a summary of the results for confidence region calculation for test problem 1.
The minimum of the unperturbed problem θ � and the SCEM termination point θ̂ of the per-
turbed problem are both included, along with results from the three different techniques for
estimating confidence regions. For this linear test problem, the three techniques produced
confidence regions that are almost identical. Although it may be difficult to tell by visual
inspection, the confidence region produced by the linear approximation method is slightly
larger than the other two regions, and the confidence region produced by the F–test method
is slightly larger than the confidence region produced by the Log–Likelihood method.

All three confidence regions contain θ̂, which is guaranteed by the construction methods
in equations (5), (6), and (7). All three regions are also exactly ellipses, since test problem
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Figure 5. Test Problem 1: Confidence Regions

1 is linear. All three methods also contain θ � , the true solution to the unperturbed problem.
This is a welcome result, since confidence regions are used to identify a range of parame-
ters that might be good solutions to the underlying (and generally unknown) unperturbed
problem. Clearly, θ � is one such parameter value.

5.3 Test Problem 2

Figures 6 and 7 are summaries of the results for confidence region calculation for test
problem 2. The value for θ̂ is included in the plots. Figure 6 is a plot of the confidence
regions produced by the F–test and Log–Likelihood methods. The two regions are almost
identical, although the F–test region is slightly larger than the Log–Likelihood region. Both
confidence regions are composed of positive values for each parameter. Although the true
values for K � and S �s are unknown, the physics of groundwater flow require that each of
these parameters take on a positive value.

Figure 7 is a plot of all three confidence regions for test problem 2. The difference in
scale between Figures 6 and 7 is very large. The linear approximation confidence region
is so large that the other two confidence regions are not readily visible when the regions
are plotted on the same scale. The linear approximation region contains negative values for
both conductivity and specific storage. In fact, most of the points in the linear approxima-
tion region have negative values for conductivity or specific storage. The immense size of
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Figure 6. Test Problem 2: F–test Method and Log–Likelihood
Confidence Regions

the region and the inclusion of negative parameter values strongly suggests that the linear
approximation method overestimates the confidence region.
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Figure 7. Test Problem 2: Confidence Regions
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5.4 Test Problem 3

Figures 8 and 9 are summaries of the results for confidence region calculation for test
problem 3. Again, θ̂ is included in the plots. Figure 8 is a plot of the confidence regions
produced by the F–test and Log–Likelihood methods. Again, the two regions are almost
identical, although the F–test region is slightly larger than the Log–Likelihood region. Both
confidence regions are composed of positive values for each parameter. For both methods,
the confidence region for test problem 3 is disjoint. The confidence regions are actually
composed of the union of two separate areas. The confidence regions for these two meth-
ods are composed of parameter values with fit values below the thresholds computed in
equations (6) and (7). Test problem 3 has at least two local minima in the plot of fit values.
Each of these two minima are surrounded by an area of parameters with fit values below
the computed thresholds. However, there are parameters in between the two local minima
that have fit values that are well above the threshold values. These parameters are not in-
cluded in the confidence regions, thus producing confidence regions that are composed of
two disjoint pieces.

Figure 9 includes the confidence regions calculated by all three methods. The region
created by the linear approximation method is not disjoint. This method is not able to cre-
ate disjoint confidence regions, since members of the confidence region are included only
based on their parameter values and not on their fit values. Although the linear approxima-
tion confidence region overlaps with the other two confidence regions, there are obvious
differences between the linear approximation region and the other two regions. The regions
are all on the same scale, and none of the regions contain negative values for either of the
two parameters. The regions produced by all three methods seem reasonable.

6 Conclusions

For all three test problems, the F–test and Log–Likelihood Methods have very similar re-
sults. Although we cannot draw the conclusion that these two methods will always pro-
duce similar confidence regions, we are unable to observe differences between these two
methods based on our case studies. The linear approximation method, however, produces
regions that are noticeably different from the other two methods for the two nonlinear test
problems. In test problem 2, the linear approximation region is very large. Since it includes
negative values for the hydraulic parameters, we know that this region includes values that
are physically meaningless. Thus, in this case, the region is too big.

There could be several reasons the linear approximation method fails on test problem
2 and yet produces a reasonable region on test problem 3. One difference between test
problems 2 and 3 became apparent when we looked at three–dimensional plots of the ob-
jective functions versus the parameters. The objective function for test problem 2 increases
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Figure 8. Test Problem 3: F–test Method and Log–Likelihood
Confidence Regions

very steeply with distance from the minimum. The F-test and Log-Likelihood methods
produce confidence regions that follow the contours of the objective function, and these
regions are small for test problem 2. Since the linear approximation region is not based
on objective function values, perhaps it is not surprising that the region computed with this
method is much larger than the other two methods. The objective function for test problem
3, on the other hand, does not increase quite so steeply in the neighborhoods around the
local minima. The contours of the objective function are one possible explanation for poor
performance of the linear approximation region relative to the other two methods.

There are several open questions in the field of confidence region estimation. One is
the determination of which confidence region method to use for general nonlinear mod-
els that are “black box” simulation models. We first thought that the linear approximation
method might be sufficient for a large number of situations, but after performing the case
studies, we believe the F-test and Log-likelihood methods produce more correct results be-
cause they do not rely on a calculation of the Hessian matrix, they are more reflective of
the objective function, and they are able to capture disjoint confidence regions. Note that
the efficacy of any of the methods is not known for very high dimensional problems. The
case studies we are aware of only examine joint confidence regions for a few parameters.
However, most realistic computational models involves dozens to hundreds of parameters.
We easily see the potential for very ill-conditioned Hessian matrices in application of the
linear approximation method. For the F-test and Log-likelihood method, the problem of
finding combinations of parameters which satisfy the constraints in equations (6) and (7)
could become extremely difficult: this is a one–to–many inverse problem which can be very
challenging to solve. The brute-force enumeration approach that we used may not be com-
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Figure 9. Test Problem 3: Confidence Regions

putationally feasible for high-dimensional problems. Another issue that complicates the
visualization of confidence regions occurs when more than two parameters are identified.
Although a three–dimensional graph is possible, the question of how to visualize relation-
ships among more than three parameters is likely to arise. Although a simple calculation
reveals whether a particular parameter combination is inside or outside the confidence re-
gion for all three methods, total representation of the confidence region is a significant
challenge.

The need for calculating joint confidence intervals around parameters in nonlinear mod-
els is common for many scientists and engineers running simulation models. The state of
the art is limited at this point. While some general approaches are available, we do not see
that they can scale up to realistic problem sizes and be computationally feasible to solve
for the interval boundaries. Approximation methods or better ways of “partitioning” the
parameter space so that only subsets of parameters are examined simultaneously may be
paths forward. One approach is to evaluate a conditional likelihood function for a pair of
parameters while holding the others fixed at their least squares estimates. Another approach
is to evaluate what Bates and Watts (1988) call the profile likelihood function, which in-
volves finding the minimum sum of squares over all other parameters for pair of parameters
plotted on a 2-D grid. This approach may become very expensive computationally since
evaluating the profile likelihood function requires solving a P � 2 dimensional nonlinear
least squares problem for each of the points on P

�
P � 1 �'� 2 grids. Bates and Watts propose

the idea of profile traces and profile pair sketches. These approaches also look at pairs
of parameters conditional on the remaining parameters. However, they use some efficient
interpolation schemes to plot the contours defining confidence regions for each pair of pa-
rameters. We have not seen widespread use of the profile trace or profile sketch, but they
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warrant further investigation for parameter spaces of higher dimension.
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