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Abstract

Understanding the properties and behavior of biomembranes is fundamental to many bi-
ological processes and technologies. Microdomains in biomembranes or ‘lipid rafts’ are
now known to be an integral part of cell signaling, vesicle formation, fusion processes, pro-
tein trafficking, and viral and toxin infection processes. Understanding how microdomains
form, how they depend on membrane constituents, and how they act not only has biological
implications, but also will impact Sandia’s effort in development of membranes that struc-
turally adapt to their environment in a controlled manner. To provide such understanding,
we created physically-based models of biomembranes. Molecular dynamics (MD) simu-
lations and classical density functional theory (DFT) calculations using these models were
applied to phenomena such as microdomain formation, membrane fusion, pattern forma-
tion, and protein insertion. Because lipid dynamics and self-organization in membranes
occur on length and time scales beyond atomistic MD, we used coarse-grained models of
double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided
equilibrium information on membrane structure. Experimental work was performed to fur-
ther help elucidate the fundamental membrane organization principles.
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Chapter 1

Introduction

Understanding the properties and behavior of biomembranes, including their bound pro-
teins, is fundamental to many biological processes. For example, microdomains in biomem-
branes or ‘lipid rafts’ are now known to be an integral part of cell signaling, vesicle forma-
tion, fusion processes, protein trafficking, and viral and toxin infection processes. Under-
standing how microdomains form, how they depend on membrane constituents, and how
they act not only has biological implications, but also will impact Sandia’s interest in de-
veloping membranes that structurally adapt to their environment in a controlled manner.
We also seek to understand the effect of membrane proteins on the bilayer structure and
dynamics, and vice versa. This includes protein organization within a bilayer and insertion
into the bilayer.

One of the defining characteristics of biomembranes is their fluidity. The lipid molecules
diffuse within the 2D bilayer. Without fluidity none of the above membrane processes
could occur. In the development of supported bilayers, maintaining fluidity of the bilayer
is viewed as an essential ingredient. The fluid dynamics of bilayers occurs on time scales
beyond the current capability of atomistic simulations. Thus, different models and methods
must be developed in order to treat membrane phenomena.

We propose to create physically-based, coarse-grained models of biomembranes. Using
these models, molecular dynamics (MD) simulations and density functional theory (DFT)
will be applied to phenomena such as microdomain formation, membrane fusion, pattern
formation, and membrane-protein interactions. A key point is that the organization and dy-
namics of membrane constituents can be simulated by MD and DFT using coarse-grained
models. In addition, we will develop the dissipative particle dynamics (DPD) method to
further increase the range of treatable dynamics. While the main focus of this project is
on theoretical understanding and methods, complementary experimental work will be per-
formed. We have performed significant preliminary work to the proposed project. In the
following paragraphs we summarize our efforts for modeling lipid bilayers with MD and
DFT approaches.
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Figure 1.1. Bead-spring model.

To simulate bilayer membranes, a bead-spring model of a double tail lipid molecule has
been tested. In this model a bead corresponds to several atoms in a lipid. The head consists
of three (blue) beads and each tail consists of four (red) beads. Self-assembly is induced by
a simple Lennard-Jones (LJ) potential for the bead-bead interactions. For two beads of the
same type the full LJ potential is used. For two beads of a different type, the LJ potential
is cutoff at the minimum and shifted yielding a purely repulsive interaction. The solvent
is treated as a single bead (cyan) that has the full attractive LJ interaction with the lipid
headgroup and a repulsive interaction with the tail beads.

Using the above model, MD simulations starting from a random configuration of lipids
and water self assemble into a fluid bilayer membrane. Membrane fluidity was demon-
strated by calculations of the lateral diffusion constant and the fact that individual lipid
molecule diffuse completely across the system. We have also started investigations of fu-
sion processes. Initially, two distinct bilayers were created between two solid surfaces a la
supported bilayers (Fig. 1.2(a)). This provides a route to creating fusion intermediates such
as shown in Fig. 1.2(b). Finally, we have also simulated a small vesicle (Fig. 1.2(c)-(d)),
demonstrating that vesicle simulations are feasible, including simulations of two vesicles
fusing.

These simulations are about 1000 times faster than atomistic simulations. This speed-
up is due to the coarse-grained model requiring calculation of fewer interactions and having
fewer particles per volume. The simulation size ranges from about 10,000 beads for a single
bilayer to 200,000 for vesicle simulations. The vesicles simulations used 64 CPlant pro-
cessors while the single bilayer simulations need only a few processors. These simulations
take on the order of 1 day of CPU time.
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(a) (b)

(c) (d)

Figure 1.2. Biomembrane images: a) two bilayers formed be-
tween two solid surfaces; b) two bilayers with connector formed
between two surfaces; c) slice through a spherical vesicle early in
simulation, d) a later image showing growth of bud and e) AFM
image of microdomains. The solvent is transparent in a) and b).
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Chapter 2

Coarse-grained simulations of lipid
bilayers

2.1 Introduction

Lipid bilayers are one of the fundamental components of cell membranes and are the pro-
totypical self-assembly system.[1, 2] Lipid molecules are amphiphiles with a hydrophilic
head group and (typically) two hydrophobic tails. They self assemble into planar bilayers
as well as other structures.[2] There are many biological phenomena for which lipid bilay-
ers are an essential component, for example membrane fusion.[3] Our understanding of the
importance of the cell membrane to biological functions is growing.[4] The cell membrane
used to be viewed as a nonparticipating matrix for membrane proteins which did all the
biological function. More and more examples show that the cell membrane acts as a major
participant in biological function.[5, 4]

The role of lipid membranes should not be a surprise to physical chemists. Work over
the last two decades has shown that the fundamental characteristics of membranes can af-
fect not only the structure of the membrane, but also exert forces on inclusions such as
membrane proteins. [6, 7, 5, 8, 9, 10] The variety of lipid types allows a wide variety
of interactions with other membrane components as well as the variety of self-assembled
structures. From an engineering or evolutionary perspective, much can or has been accom-
plished with this variety.

Lipid bilayers in cell membranes are a two-dimensional (2D) fluid membrane. The
lipid molecules diffuse laterally within the bilayer. This is a essential feature for transport
in cell membranes. While cell membranes are fluid, they maintain a structural integrity with
curvature deformations playing a significant role in bilayer shape. A basic understanding
of the mechanics of lipid bilayers has been developed through theoretical analysis of the
membrane elasticity. [11, 12]
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Molecular simulations offer a means to understand how the dynamics and structure
of lipid bilayer depend on the molecular aspects of the lipid molecules. There have been
many atomistic simulations of lipid bilayers.[13, 14] These simulations have given much
insight into the nature of lipid structure within the bilayer. A key limitation of atomistic
simulations is the slow (lateral) diffusion of lipid molecules within in the bilayer. A typical
diffusion constant for a phosphatidylcholine lipid is about 5 µm2/s which yields about 50
ns for time to diffusion just to the nearest neighbor position. Since the upper range of
atomistic simulations is presently in this range, the dynamics of lipids in the bilayer is
not treatable with atomistic molecular dynamics (MD). Thus, most phenomena of lipid
bilayers which have functional significance are beyond the times accessible by atomistic
MD simulations. This is a similar situation to problems of polymer physics including
entanglement dynamics and protein folding. One of the successful methods of treating long
time dynamics in polymers has been the use of coarse-grained models in simulations.[15,
16] Minimal models for proteins have developed significantly in the last several years.[16,
17] Coarse-grained models of lipid molecules have been recently developed. [18, 19, 20,
3, 21] Simulations using such models have shown that the bilayer can self assemble from
random starting states and that the lipid molecule can diffuse well beyond nearest neighbor
distances.[18]

Here, we present a coarse-grained model of a lipid molecule that was used to study
membrane fusion,[3] and will be used for other membrane problems. The focus here is on
the fundamentals of the model. The interactions within the model are described, including
models for saturated and unsaturated lipids in section 5.2. The main calculations are the
area per lipid as a function of chain length and temperature which are presented in section
5.4. Within these simulations the liquid to gel transition is determined, and the liquid and
gel state structures are characterized. The elastic moduli are also calculated to provide a
connection to membrane elasticity theories. Discussion and conclusions are presented in
section 2.4.

2.2 Simulation Method and Model

The lipid is treated a bead-spring, double tail molecule as shown in Fig. 9.1.1. The model is
based on coarse-grained polymer and related models.[15, 22] This model will work best for
neutral lipids such as phosphatidylcholine lipids. Each tail is composed of NT hydrophobic
beads of type T and the head is composed of three hydrophilic beads of type H. The solvent
(S type) is represented by a single bead; the S and H types are equivalent in this work.
Beads interact through the Lennard-Jones (LJ) potential

uLJ(r) = 4ε[(σ/r)12− (σ/r)6] (2.1)

To keep the model simple, all monomeras interact with the same interaction strength ε.
The TT, HH, HS and SS pair interactions have the LJ potential with the standard cutoff
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Figure 2.1. Schematic of lipid model with NT = 4.

rc = 2.5σ. The hydrophobic HT and TS interactions are taken to be purely repulsive by
using a cutoff rc = 21/6σ. The bond potential is the same as used in many bead-spring
polymer simulations.[23] It is the sum of the attractive finitely extensible, nonlinear elastic
(FENE) potential and the purely repulsive LJ potential uLJ with cutoff equal to 21/6σ,

Ubond(r) = −1
2

k0R2
0 ln(1− r2/R2

0)+uLJ(r), (2.2)

where k0 = 30ε/σ2 and R0 = 1.5σ. This bond potential has the advantage of being inte-
grable with the same time step as the LJ potential. This is in contrast to a similar model
which has a very stiff bond potential that requires a time step 10 times smaller.[18] How-
ever, while computationally there is an advantage with our model, we expect the two mod-
els to yield similar results, since the differences are slight (r−9 vs. r−12 hydrophobic re-
pulsion and cosθ vs. θ2 angle potentials). Angle terms are included via the harmonic
potential

Ubend(θ) = kθ(θ−θ0)2, (2.3)

where θ is the angle between neighboring bonds. To give a persistence length of about 2σ
for the tails kθ = 2ε/rad2 and θ0 = 180◦. Other angle terms are included for the head group
geometry. Following the labeling in Fig. 9.1.1, θ0 = 120◦ for triplet 1-2-3 and θ0 = 105◦
the triplets 2-3-4 and 1-2-8. A double bond is modeled by including a kink in the tail chain.
A harmonic angle term with spring constant kθ = 10ε/rad2 and equilibrium angle of 120◦
is included in the potential energy to yield the kink. This model system spontaneously self-
assembles into a lamellar bilayer when started from a random configuration of lipids and
solvent at appropriate lipid concentrations (see also ref. [18]).

For simulations of the area per lipid A as a function of temperature T , the starting state
is formed by placing the lipids on a triangular lattice with the chosen value of A. The
total number of lipids in the simulation is Nlip. The number of solvent particles Ns was
chosen so that the single bilayer in the simulations was well separated (at least > 10σ)
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from its periodic image. Molecular dynamics (MD) simulations using a Verlet integrator
with a time step of 0.005 τ were performed, where τ is the LJ time unit. Simulations were
primarily performed in the NPT ensemble using the Nosé-Hoover equations of motion.[24]
The pressure is 0.5ε/σ3. This value is chosen to approximate atmospheric pressure. In
our NPT simulations each of the cell dimensions is independently controlled so that the
area per lipid is determined by the interactions and is not dependent on the initial value.
In addition, the surface tension γ is automatically zero in this case consistent with direct
calculations.[25]

The surface tension is directly calculated in NVT simulations using A determined in
NPT simulations. The calculation of the surface tension is through the usual integration of
the local stress tensor components.[18] The local stress can be calculated by more than one
method.[18, 26, 27] They all involve binning the stress components in slabs parallel to the
bilayer. We use the Hardy method[26] as it is generalizable beyond planar geometries.

2.3 Results

A key aspect of coarse-grained simulations of a lipid bilayer is that in the liquid phase dif-
fusion well beyond near neighbor distances should be readily obtainable. Figure 2.2 shows
the mean square displacement for a system with NT = 6 at two different temperatures. In
the liquid state at T = 1.2ε the average displacement is about 9σ within a time period of
5000 τ. The area per lipid at this temperature is A = 3.63σ2. The nearest neighbor distance
is approximately

√
A = 1.9σ. Thus, in this short time, the average lipid has traveled several

nearest neighbor distances. At T = 1.0ε where the bilayer is in a gel state, the diffusion
rate has dropped significantly as expected. The diffusion constant is D = 4 · 10−3σ2/τ at
T = 1.2ε in the liquid state and 9 · 10−4σ2/τ in the gel state at T = 1.0ε. These diffusion
constants were calculated using the 2D mean squared displacement: r2 = 4Dt. At least
for this system, even in the gel state the dynamics beyond the initial starting structure is
obtainable with the bead-spring model.

An approximate map of τ to seconds can be obtained from the diffusion constant. If we
take 5 µm2/s as a typical value of the diffusion constant for dilauroylphosphatidylcholine,[28]
and use σ � 0.5 nm, then τ = 0.20 ns. Thus, 5000 τ corresponds to about 1.0 µ s. Using
this map, our simulations are in the µs to ms time range.

The area per lipid A is a key quantity defining lipid bilayers. The simulation cell area
divided by the number of lipids in one of the leaflets of the bilayer is taken to be A. Fig.
2.3 shows the calculated values of A as a function of temperature for different NT . For a
given NT , A increases linearly as a function of temperature in the liquid phase. There is a
discontinuity at the liquid to gel transition temperature Tm. In the gel phase at T < Tm, A is
basically constant at 2.35 σ2.

In the liquid phase A decreases as NT increases for most temperatures. The longer tails
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Figure 2.2. Plot of mean square displacement (r2) as a function
of time for a NT = 6 simulation of a liquid state (larger slope) at
T = 1.2 and a gel state at T = 1.0. The dotted lines are least square
fits that yield the diffusion constants. Nlip = 448.

Figure 2.3. Plot of area per lipid (A) as a function of temperature
(T ) and of the number of beads in tail (NT ). The solid lines are
least square fits to the liquid state portion of the data. The dashed
line is a guide to the eye for the gel phase data. Nlip = 448 and
Ns = 8728.
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have a larger tail-tail van der Waals attractive energy which promotes denser structures. At
T � 1.17ε, A is approximately equal for all NT , while for T ≥ 1.17ε, A increases with in-
creasing NT . At these temperatures there are strong undulations in the membrane structure
particularly for the shorter lipids. (See the calculation of the bending modulus discussed
below.) In these cases, the contour surface area may be noticably larger than the projected
area and larger for short tails compared to long tails. However, such a ‘correction’ would
imply that A is nonlinear in this regime.

Since the liquid-gel transition exhibits a discontinuity, simulations were performed with
sequentially decreasing and increasing temperature. That is, the starting point in the de-
creasing sequence is the final configuration of the simulation at the temperature just above
it. Figure 2.4 shows the data for NT = 6. There is a large hysteresis which makes the
uncertainty for the liquid-gel transition temperature quite large. In order to reduce this un-
certainty, simulations were performed on a system composed of a half which is ordered and
a half which is liquid. In such a system, the nucleation barrier to create either the liquid or
gel phase is greatly reduced which should reduce the hysteresis.[29] This system was con-
structed by constraining half of the lipids in their initial triangular lattice, while the other
half was equilibrated at T = 1.2ε. This results in a system with the lipids in which half
are in the liquid state and the other half are in an ordered structure. Simulations are then
run at the desired T and the phase at that T determined. Figure 2.4 shows the decreasing
temperature runs are sufficiently accurate in determining the area per lipid. In fact, only the
increasing T data is distinct. The other three data sets are almost identical.

An important issue in simulations involving different phases is the system size depen-
dence. We find that the area per lipid in the liquid phase is not noticeably different for
simulations containing up to 6696 lipids. However, we note that particularly for NT = 8
that structures with some characteristics of a ripple phase occur.[30, 31] To observe a ripple
phase, the simulation cell must be at least the length the wavelength of the ripple structure.
Performing simulations with a large number of wavelengths per cell is difficult. In addition,
issues concerning commensurability with the cell can affect the simulation results. Given
that the interpretation of such simulations raises additional questions, these results are only
noted here.

In Fig. 2.5 the melting temperature is plotted as a function of the number of carbon
atoms N in the lipid tail. The experimental data is for phosphatidylcholine lipids. To
convert the simulation temperature data to units of K, we set ε = 320 K. The mapping
between N and NT is N = 2.4NT . The result is very good with the exception of the NT = 10
point. This map is not unique, for the simulation data can be moved up or down along the
experimental line of data so long as the map preserves the slope. For example, N = 2.0NT

and ε = 300K also give a good fit with the simulation data lower on the fit curve. The
figure shows that the value of the Tm decreases with NT similarly to the experimental data,
and gives a rough mapping of 1 bead to 2 or 2+ CH2 groups per coarsed grained monomer.
This is similar to that found in polymer modeling.[15]

Figure 2.6 shows images of the liquid and gel phase. The higher degree of order and
the presence of a preferred tilt angle in the gel phase is evident from the figure. In the gel
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Figure 2.4. Plot of area per lipid (A/sigma2) and bilayer thick-
ness (h/σ) as a function of temperature for NT = 6. The open cir-
cles represent simulations decreasing in T starting from T = 1.2ε.
The open squares represent runs starting from the T = 0.99ε run
and increasing in temperature. For these two sets Nlip = 448.
The solid circles represent simulations with starting configurations
composed of half solid and half liquid (see text for more details).
For this set Nlip = 3024 and Ns = 50000. The solid squares repre-
sent data of Fig. 2.3 which are often hidden by the solid circles.
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Figure 2.5. Plot of the melting temperature (Tm) as a function
of the number of C atoms in a lipid tail. Solid points are for ex-
perimental data,[32] and the open points are the scaled simulation
data. The solid line is a least square fit to the experimental data.

images the gap between the two leaflets of the bilayer is artifact of the bond representation
for the image; a ball and stick representation shows that volume filled, but also occludes
the gel phase ordering. In the liquid phase, there is some overlap in the density profiles
of the two leaflets. The overlap in the density profile of the top on the bottom leaflet goes
to zero in 2 σ. Thus, there is some overlap of the terminal beads in the tails, but that is
about it. Statistically, the structure of the phases as well as the liquid-gel transition were
examined by calculating such quantities as the tilt angle and radial distribution functions.
The tails straighten as the temperature decreases; this is equivalent to the number of gauche
defects decreasing as the temperature decreases. In the gel state, most of the tails are in
the completely straight, all trans state. The tilt angle is calculated as the average of the
angles between end-to-end vector of each tail with z-axis, the bilayer normal. In the liquid
state there is a very broad distribution of tilt angles. As the temperature decreases the
distribution narrows considerably. In the gel state the tilt angle has a narrow distribution
about 25.5◦ (width at half maximum is 7◦). Experimentally, the tilt angle for dimyristoyl-
phosphatidylcholine varies from 26◦ to 30◦.[33] The value is surprisingly close. The main
physical origin is basically the same; the tilt angle represents the best packing angle for
the bead-spring lipid model. Given the similar values of simulation and experiment, the
effect of the details of the head group interaction appears to be small for the tilt angle. The
distance between the peaks in the density profile for the head group beads is taken to be
the bilayer height or thickness h. The thickness increases as T decreases (see Fig. 2.4).
This is a consequence of A decreasing, the tails straightening and the tilt angle distribution
narrowing as T decreases. Basically, as T decreases, the single chain structure becomes
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Figure 2.6. Images of lipid bilayers using the bond representation
for NT = 6 at (top) T = 1.2ε in the liquid state and at (bottom)
T = 1.0ε in the gel state. The H beads are dark and the tail beads
are light gray. Nlip = 960 and Ns = 18700.

more ordered.

The order among the chains was examined through the bead-bead in-plane radial distri-
bution function gxy(r). In the liquid state, gxy(r) has a correlation hole and no peak. In the
gel state a series of peaks occur at small r corresponding to the ordering of the lipid chains
in the bilayers. Images parallel to the bilayer normal of the gel state show predominantly
a triangular lattice order of the molecules. The order extends beyond the nearest neighbor,
but is not globally present, i.e. not a crystal state.

The structural order within the bilayer can be disrupted by double bonds (unsaturated
bonds) in the lipid tails. Including unsaturated lipids in the membrane is a mechanism for
the cell to control the fluidity of the membrane; unsaturated lipids have lower Tm. Simu-
lations were performed for NT = 6 and Nlip = 448 with a kink angle centered at the third
bead from the top in the tail chain. Simulations were performed with one unsaturated tail
chain and with both tails singly unsaturated. Figure 2.7 shows A and bilayer thickness as a
function of temperature for these two cases along with the case without double bonds. As
the number of double bonds per lipid increases, A increases as the kink requires a larger
area. Similarly, the bilayer thickness decreases as the (almost) all trans state has a shorter
length for unsaturated molecules due to the kink. The liquid to gel transition temperature
(Tm) decreases with increasing number of double bonds, as it should.

Theories of liquid membranes typically start by characterizing the membrane structure
and dynamics in terms of the elastic moduli.[9] In the Monge representation in which the
height function h(x,y) is zero at the bilayer center,[9] the Hamiltonian is

H (h) =
Z

dx [
γ
2
(∇xh)2 +

κ
2
(∇2

xh)2 + . . .]. (2.4)

29



Figure 2.7. The effect of double bonds on the area per lipid and
bilayer thickness for NT = 6 with no double bonds (�), with one
tail with a double bond (�) and with one double bond on each tail
(•).

Here γ is the surface tension and κ is the bending modulus. Calculating γ and κ is conse-
quently fundamental to such theories. The interfacial structure is described in terms of the
height-height correlation in Fourier space,

S(q) ≡ 〈|h(q)|2〉 =
Z

A
dx e−iq·xh(x). (2.5)

Neglecting the higher order terms in Eq. 2.4, one finds

S(q) =
2kBT

γq2 +κq4 +O(q6)
. (2.6)

The height function h(x,y) is calculated separately for the top and bottom interfaces.
The positions of the interfaces are calculated based on solvent positions and head group
positions. The particle positions are binned in a Nx ×Ny grid in the xy-plane. For the
solvent in the top half, we define h(x,y) to be the minimum of the solvent positions in the
(x,y) bin. On the bottom half, the maximum is used. For the head group, we average the
position of all head group beads in the (x,y) bin. The four sets of h(q) are typically very
similar, although there are cases of significant differences.

To calculate h(x,y) we performed NVT simulations with the area per lipid and den-
sity determined from our constant pressure simulations. These NPT simulations yield a
tensionless bilayer.[25] By varying the simulation cell area in NVT simulations nonzero
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Figure 2.8. For NT = 6 the area compressibility is obtained from
the slope of the plot of surface tension γ as a function of the differ-
ential area per lipid (A−A(0))/A(0), where A(0) is the area per
lipid at γ = 0. The symbols represent T = 1.05ε (�), T = 1.11ε
(�) and T = 1.20ε (�). Nlip = 960 and Ns = 18700.

γ are obtained, and the area compressibility kA can be calculated. Near γ = 0 the slope
of γ vs. (A−A0)/A0 is kA, where A0 is the area per lipid at γ = 0. In Fig. 2.8 we plot
γ vs. (A−A0)/A0 for NT = 6 at different temperatures. Table 2.1 gives the values of kA

calculated from this data as well as values of the bending modulus using the formula

κ = kAh2/b (2.7)

where b is a geometrical factor. Here we use b = 48 which has been used in other simulations,[19,
34, 21, 35] Our value of κ are consistent with the coarse-grained simulations.[19] In the
evaluation of experimental data[36] b = 24 has been used. However, the membrane thick-
ness used was h−h0, where h0 = 1 nm is the nondeformable length and determined from
plots of (κ/kA)1/2 vs. h. The effect of using h−h0 instead of h is to reduce the value of κ by
1/2. Thus, using eq. 2.7 with b = 48 yields the same values as using b = 24 and substituting
h−h0 for h. Consequently, the simulation and experimental values are in agreement.[36]
Finally, we note that as the temperature approaches the liquid-gel transition temperature κ
increases which is expected as the bilayer becomes stiffer.[37, 38]

The calculation of κ from the height-height correlation function as outlined above pro-
duces similar values. Figure 2.9 shows a plot of 1/(q2|h(q)|2) vs. q2 for NT = 6 at T = 1.2ε.
The value of κ is kBT times the slope which yields κ = 8kBT . Compared to κ obtained from
Eq. 2.7 given in Table 2.1, this is slightly smaller. For this T we find that |h(q)|2 scales
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Table 2.1. Values of area compressibility for NT = 6. κ1 is cal-
culated from Eq. 2.7. κ2 is calculated from Eq. 2.6.

T (ε) kA(ε/σ2) κ1(kBT ) κ2(kBT )
1.05 9.4 21 26
1.11 7.8 14 14
1.20 6.6 10 8

as q−4.1 at low q which is quite close to the scaling of Eq. 2.6. At T = 1.11ε the value
of κ ranges between 10 and 16 ε depending on the number of points used in the fit; the
average of the two values is given in Table 2.1. Even though the system has a relatively
large number of lipids compared to previous simulations, the small q regime has only a
few points in the q−4 scaling regime at low q which yields a relatively large uncertainty.
To obtain more points at low q would require a system size beyond present resources. For
T = 1.05ε (Tm = 1.025ε) κ1 increases further to 26ε, somewhat larger than calculated from
Eq. 2.7, however the uncertainty is comparable to the difference. Overall, the calculation
of κ using Eqs. 2.6 and 2.7 with b = 48 yield similar values. Using b = 24 yields values of
κ1 smaller than κ2.

The variation of κ with tail length has been calculated at T = 1.2ε using Eq. 2.6. For
NT = 4, 6 and 8, we obtain κ = 4, 8 and 14 kBT , respectively. The data shows that the
bilayer becomes stiffer as the tail becomes longer. As expected, this is consistent with area
per lipid decreasing with NT yielding a tighter, more stiff bilayer.

2.4 Discussion and Conclusions

This work lays a foundation for minimal coarse-grained lipid models and simulations. Such
models are necessary for the treatment of many interesting biophysical problems, including
membrane fusion.[3, 21] In protein simulations minimal models are commonly used and
have reached new levels of sophistication.[16] For lipids, minimal models are just at the be-
ginning, but key aspects of membrane can already be simulated. With coarse-grained lipid
models the fluid character of the lipid dynamics can be explicitly simulated in contrast to
atomistic simulations. This is a very important distinction for coarse-grained simulations,
because the fluidity of the membrane is crucial its many biological functions. This feature
along with the ability to perform simulations in the µs to ms time range are attainable which
opens up many interesting problems.

The perspective for the minimal lipid model presented here is similar to the minimal
models used for proteins (in protein folding simulations). As the development of minimal
lipid models is just beginning, the model is basically at the level of the HP (hydrophobic-
polar) protein models. [39] In this work we determined what can be accomplished with
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Figure 2.9. For NT = 6 at T = 1.2ε the bending modulus κ is
obtained from the slope of the plot of 1/(q2|h(q)|2) vs. q2 at small
q. The circles represent the calculation for top surface and the
squares for the bottom surface. The solid points are for the solvent
defined surface and the open points are for the head group defined
surface. The lines are least square fits to each data set. The average
slope of the lines is 8. Nlip = 3024 and Ns = 50000.
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such a simple model. It is expected that the model will evolve. The simplicity of the model
is partly driven by the need to efficiently integrate to the long time scales necessary for
problems like membrane fusion. Another goal which is intrinsic to minimal models is to
develop a model with only the essential characteristics of lipid molecules for the problems
of interest. One of the main results and advantages of minimal model simulations is the
determination of the essential physical features to be included in the model. By starting
with a very simple model and adding (and subtracting) new features one at a time, one can
determine the necessary features or, in other words, the effect of individual features. Here,
the minimal lipid models contains two main features: the force-field and the molecular
geometry. The force-field consists of just the hydrophobic and hydrophilic interactions
which are essential for self-assembly. The double tail geometry helps stabilize the lamellar
phase. We show in this paper that from this minimal model, a whole set of results follows.
The liquid and gel states of lipid bilayers are present. The area per lipid dependence as
a function of temperature is reasonable. The shape fluctuations and the bending moduli
correspond to experimental ranges and variation with lipid tail length and temperature.

There is a variety of lipid types in cell membranes. Modeling this variety will require
additions and/or variations in the lipid model presented here. Clearly, different models of
the head group will be needed to model the different lipid types. As one example, we have
modeled the double bonds in lipid tails by imposing a kink angle. The effect of the kink is
to reduce ordering within the bilayer which results in an increased area per lipid. Thus, the
kink has successfully modeled the main effects of a single double bond in the tail.

In the vein of minimal models, we can compare the simulation results with experiment.
Several features confirm that the basic model has a good foundation. The area per lipid
data has the correct temperature dependence when compared to experimental data. The T
dependence of A is decreasing and linear in the liquid phase. A discontinuity occurs at the
liquid to gel transition, which is consistent with the second order nature of the phase tran-
sition; however, for simulations to confirm a second order phase transition require system
size studies beyond what is considered here. Finally, the melting temperature decreases
with NT . For fully hydrated phosphatidylcholine lipids, A as a function of T and tail length
has been calculated from NMR data.[40] There is one difference between this experimen-
tal data and the simulation data. The lines for different tail lengths (Fig. 2.3) intersect in
the simulation data, but are parallel in experimental data. The calculations of A from the
experimental data involve various assumptions. In fact, there are two sets of distinct values
of A for two different models used in the calculations. Both yield parallel curves for the
different tail lengths. At this stage it is uncertain whether the intersection is something in
the model that needs improvement, or whether the experimental data needs improvement.

The basic features of the gel phase are consistent with experimental measurements. The
lipid molecules tilt relative to the bilayer normal. The tails are well ordered equivalent to
an all trans state. The bilayer thickness is larger for the gel than the liquid state. Locally
in the bilayer, the lipids have a triangular lattice ordering. The diffusion in the plane is
significantly reduced relative to the liquid state.

Since a key input to the theoretical models of biomembranes is the bending modulus
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κ, we calculated κ for several different systems. In the liquid phase as the temperature
decreases toward the melting temperature, we find that κ increases. One expects the mem-
brane to be stiffer at lower temperatures, and this is observed in experiments.[37, 38] The
experiments also observe a decrease in κ in a narrow range of temperatures at the liquid to
gel transition. Presently, it is difficult to calculate κ accurately. Near a phase transition the
situation is even more difficult due to the strong system size effects. We thus have not made
any attempt to calculate κ near Tm. In addition, our system sizes show small fluctuations
in the gel phase suggesting that experimental observations involve a large scale dynamics
(of domains, possibly?) not present in our systems. Finally, we note that as T increases so
does A; therefore, we also find for constant NT that κ decreases with increasing A which is
consistent with theoretical predictions.[41].

Recently, there have been new simulations of the dependence of κ upon chain length
for surfactants.[42] They find that κ increases with NT as we do. They give an extensive
examination of the functional dependence which is not possible for our data, although our
data does appear quite linear, consistent with surfactant simulations. Overall, we find the
mechanical behavior of the coarse-grained lipid bilayers has correct dependences. These
lipid models can now be used to study more complex phenomena and the prediction of
membrane theories (e.g. membrane inclusions). [43]

With this work, the foundation has been laid for a set of coarse-grained lipid models.
The appropriate lipid per area can now be chosen based on the data provided for simulations
of more complex phenomena such as membrane fusion. The development of minimal
models for different lipid types now has a stronger basis for comparison.
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Chapter 3

Insights into the molecular mechanism
of membrane fusion from simulation:
evidence for the association of splayed
tails

This work done in collaboration with Jan Hoh and Thomas Woolf, Department of Physiol-
ogy, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205

3.1 Introduction

The molecular details of the fusion between two lipid bilayers is one of the most vexing
problems in membrane biophysics today [1, 2]. Fusion models based on continuum me-
chanics predict initial fusion of the outer leaflets to form a stalk-like structure, and the
subsequent merger of the two sides [2, 3, 4]. Here we present coarse-grained simulations
of fusion between two liposomes pushed into contact, from which a detailed picture of lipid
movements emerges. The results have interesting implications for membrane fusion, and
suggest new possibilities for designing molecules that control fusion.

The process of membrane fusion is central to biology, and plays a role in events such
as vesicular trafficking, fertilization, viral entry and mitosis [5, 6]. While fusion between
two biological membranes is normally a process mediated by proteins, many pure lipid
bilayer systems will spontaneously fuse implying important similarities in the underlying
physical chemistry [1, 2, 7]. In addition, mechanisms of fusion between pure lipid systems
have a number of technological applications such as liposome based drug delivery [8, 9],
and the formation of supported lipid bilayer biosensors and other devices [10]. As a result,
fusion between pure lipid membranes has been the subject of a wide range of experimental,
computational and theoretical studies. These efforts have produced a number of models,
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typically involving the local deformation of a membrane, the formation of a hemifused
inverted hexagonal phase like structure as an intermediate, and the subsequent complete
merger of the two sides [2, 3, 4, 11]. In the hemifused intermediate the outer leaflets are
fused while the inner leaflets remain separate, to form a connection between membranes
referred to as a stalk. However, the molecular apects of membrane fusion are not treated
by the continuum models and have yet to be determined experimentally. Here we have
performed molecular dynamics (MD) simulations that suggest new processes in membrane
fusion and reveal novel molecular details of lipid movement.

Experimental measurements of fusion suggest a process that occurs beyond the time-
scale that is available to traditional molecular dynamics methods [1, 12]. Two aspects of our
simulations of liposome fusion are critical for overcoming this time scale difficulty. First,
we coarse grain the system using bead-spring models for the lipid molecule. This approach
has been extensively used in polymer simulations, where these models have been shown to
capture central physical and chemical features [13]. More recently the approach has been
applied to lipids, where it has been shown to reproduce the spontaneous process of lipid
self-assembly into a bilayer [14]. Simulations of trimer amphiphiles without solvent have
produced vesicle fusion [15]. However, even when using coarse grained lipid models, the
time for two liposomes in near contact to spontaneously fuse is prohibitive and to overcome
that barrier we push the liposomes together. This will bias the simulations with respect to
spontaneous fusion, but methods exist to compensate for this biasing [16, 17]. Moreover,
the function of some fusion proteins and other fusion molecules may be to act in lowering
the fusion barrier in a similar manner. There are both qualitative and quantitative aspects to
a full understanding of the process. Here we focus on qualitative mechanistic insights into
the geometry of membranes and the conformational changes of the individual lipids during
fusion, and leave a quantitative analysis for future publication.

3.2 Method

The lipid model used for the simulations is composed of 11 beads, four for each aliphatic
tail (T beads) and three for the headgroup (H beads). The solvent (S beads) is represented
by a single bead. Beads interact through the Lennard-Jones (LJ) potential

uLJ(r) = 4ε[(σ/r)12− (σ/r)6] (3.1)

The size of a single bead is given by the LJ diameter σ which is approximately 0.5 nm
[18]. The TT, HH, HS and SS interactions have the LJ potential with a cutoff rc = 2.5σ.
The HT and TS interactions are purely repulsive with cutoff rc = 21/6σ. The bond potential
[19] is the sum of the attractive finitely extensible, nonlinear elastic (FENE) potential and
the purely repulsive LJ potential uLJ with cutoff equal to 21/6σ,

Ubond(r) = −1/2k0R2
0 ln(1− r2/R2

0)+uLJ(r), (3.2)
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where k0 = 30ε/σ2 and R0 = 1.5σ. Angle terms are included via the harmonic potential

Ubend(θ) = kθ(θ−θ0)2, (3.3)

where θ is the angle between neighboring bonds and kθ = 2ε/rad2 and θ0 = 180◦ to give
a persistence length of about 2σ for the tails. Other angle terms are included for the head
group geometry. This model system spontaneously self-assembles into a lamellar bilayer
when started from a random configuration of lipids and solvent at appropriate lipid concen-
trations (see also ref. [14]). Massively parallel MD simulations using a Verlet integrator
with a time step of 0.005 τ were performed on a CPlant cluster [20]. Simulations were
performed at constant temperature T = 1ε using the Langevin thermostat [21].

To form the starting state, we create a spherical liposome by placing lipids on a sphere
with their tails in contact. For our calculations, we created liposomes with outer diame-
ters D of 30σ and 50σ. The number of lipids is determined by the area per lipid A which
is chosen to be 4.0 σ2, slightly larger than the values obtained in simulations of lamellar
bilayers. Solvent particles are placed randomly in the unoccupied volumes inside and out-
side the liposome. The effective osmotic pressure is controlled through our choice of the
amount of solvent placed in these two regions. A nonzero osmotic pressure was found to
speed up the fusion process. However, zero osmotic pressure simulations yielded the same
qualitative dynamics. For a fusion simulation, this single liposome is first equilibrated for
about 300 µs to ensure stability. The liposome is copied and two equilibrated liposomes
are placed with their outer diameters about 10σ apart along the axis of approach (x-axis).
For liposomes with D = 30σ, the total system has N = 330,000 beads. Two liposomes are
brought together by applying a small biasing force of 0.0025−0.001ε/σ in the x-direction
to each bead in the lipid molecules. Once a few lipids have been exchanged between the
two liposomes, the force is released and the process allowed to proceed. Once contact oc-
curs the work by the biasing forces goes into deforming the liposome and promoting fusion
as well as translation. The total work by the biasing force from contact to initial fusion is
upper bound of the fusion barrier. For the smallest biasing force the total work is 41 kT
which is consistent with calculations [22].

In a typical fusion simulation, the process begins after the liposomes contact and a
flattened contact forms between the liposomes (Fig. 3.1A). This causes membrane bending
at the contact edge bringing two strained points on the membranes into close proximity.
Fusion between the outer membrane leaflets initiates at the edge of the contact surface
(Fig. 3.1B). There are several factors that promote fusion at the contact edge, including
strain that is relieved by fusing with the neighboring liposome and an increase in area
per lipid giving more mobility to molecules in this region. Recent calculations show that
edges in the internal leaflets of membrane greatly reduce the free energy cost of the stable
intermediate [23]. Similar calculations should show that the cost of forming the external
edge is within reason. While this finding of edge originated fusion is intuitive, it offers a
contrasting view to that described in existing models. For example, Kuzmin and coworkers
have suggested that formation of a nipple shaped protrusion in opposing bilayers, serves as
a point of initiation for fusion, and leads to the formation of a stable intermediate [22]. The
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Figure 3.1. Cross sections (10 σ thick) of fusing liposomes show-
ing sequence of events to complete fusion. (A) flat interface at
t = 55µs (B) initial stalk at t = 94µs (C) growth of stalk to other
side with solvent cavity at t = 140µs (D) dissolution of one con-
nector and solvent cavity t = 149µs (E) intermediate fusion state at
t = 204µs (F) complete fusion at t = 231µs (18). Coloring scheme:
right (left) liposome has H blue (cyan) and T red (yellow). Solvent
is not displayed. The system is under osmotic pressure with inter-
nal solvent density 20% larger than external density.
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Figure 3.2. Lipid conformations and associations in the early
stages of fusion. System and coloring scheme is same as in Fig. 1.
The left side is at t = 58µs and right side at t = 66µs. A) and C)
show splaying of lipids that bridges the two outer leaflets. There
is a tendency for the aliphatic tails of the splayed lipids to oppose
each other. B) and D) show association of splayed lipids and the
beginning of a hydrophobic core that spans the space between the
two liposomes. The line in D) is a guide to the eye to indicate
the ordering of the upper bilayer to become part of the stalk. For
evolution beyond t = 66µs the external force was turned off.

present work suggests a second although not mutually exclusive mechanism in which first
a membrane-membrane contact forms (here through an initially applied force). This causes
membrane bending at the contact edge bringing two strained points on the membranes into
close proximity where fusion initiates. Hence the point of fusion can be significantly distal
to the initial point of closest approach.

The simulations also provide direct insight into the dynamics of individual lipids during
the early stages of fusion. To begin with there is a tilting of the lipids at the presumptive
point of fusion, similar to that proposed for the modified stalk model [4, 24] which appears
to be facilitated by the local increase in the area per lipid. The first exchange between the
membranes occurs when an aliphatic tail rotates out of the parent membrane and inserts
into the opposing membrane, resulting in a tilted lipid with the aliphatic tails in a splayed
(trans) conformation that is shared between the two fusing bilayers (Fig. 3.2). This im-
mediately suggests a mechanism for accommodating curvature strain on a molecular level.
The possibility of splayed lipid conformations has been considered in some models for
membrane fusion [25, 26] however the picture that emerges here is distinctly different. In
our simulations the splayed lipids tend to orient such that their aliphatic tails contact each
other, thus creating the beginnings of a new hydrophobic core. As additional (tilted) lipids
associate with the splayed bridging lipids, the aliphatic tails of these molecules extend into
a more cis-like conformation, establishing a hydrophobic core and eventually forming a

43



A B

C D

Figure 3.3. Cross sectional images of fusion in plane of fusion
(yz): A) Initial stalk at time t = 69 µs, growings stalk at B) 86 µs,
C) 108 µs, and D) almost complete fusion of outer leaflets at t =140
µs. Only lipids in outer leaflets are shown and slice is about 10σ
thick.

classical stalk.

A somewhat surprising finding is that following the initial formation of the stalk, this
structure expands highly asymmetrically along the strained membrane at the contact edge
(Fig. 3.3). In current fusion models the stalk forms in a central location and growth occurs
radially outward from the center with cylindrical symmetry. A consequence of fusion along
the contact edge is the formation of a partially confined solvent cavity between the two li-
posomes (see Fig. 3.1C). Some of the confined solvent joins the external solvent, and some
empties into the left liposome as the inner bilayer dissolves and an extended hemifused
structure forms (Fig. 3.1D). We also note that in the simulation of the larger system, mul-
tiple, independent stalks initially formed as one might expect for a system large enough to
allow well separated initiation sites. The dynamics becomes more complex in this case as
stalks merge and dissolve. We present here the simpler, single stalk case whose dynamics
forms the basis of the more complex possibilities contained in larger systems.

3.3 Conclusion

While many of the general features of our simulations agree well with models based on
a continuum mechanics framework, the present work offers significant insights into the
molecular details of the early stages of fusion. In particular the simulations suggest a
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model for specific molecular rearrangements that result in the formation of a stalk (Fig.
3.4). This model builds on the notion of tilted lipids in a strained pre-stalk structure [4, 24],
which here facilitates the splaying of lipids to connect the two fusing membranes. A critical
event is then the association of the aliphatic tails of splayed lipids, which nucleates a new
hydrophobic core that spans the gap between the original membranes. This core grows
as the chains extend and resolves completely the fusion between the outer leaflets. In
addition, the importance of mechanisms that accommodate changes in membrane curvature
is highlighted. Continuum models of the stalk do not provide a clear molecular view of how
the stresses are resolved during the fusion process [23].

A number of interesting considerations arise from these results, including new ways in
which proteins might mediate the fusion process. For example, proteins might act directly
to facilitate splaying of lipid tails or stabilize bridging lipid molecules. Proteins might also
act more indirectly as adhesion molecules that promote the formation of a flat contact that
produces a strained contact edge. In such a picture, proteins would serve a relatively passive
function by keeping liposomes apposed, while fusion occurs away from the actual protein
mediated contact. The results also suggest that conformational properties of lipids that have
not previously been closely examined play an important role in fusion. In that context, it is
interesting to consider the possibility of rationally designing lipids with an improved ability
to adopt splayed conformations, or lipids that can controllably be switched between a cis
and trans conformation of the tails, or other novel molecules that might be used to facilitate
or control membrane fusion.

This work was supported at Sandia (MJS) by the DOE National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory
operated by Sandia Corp., a Lockheed Martin Company, for the DOE. The work at Johns
Hopkins was supported by a grant from the American Cancer Society (ACS-RSG-01-048-
01-GMC) to TBW.
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Figure 3.4. Schematic of the early stages of fusion and asso-
ciation of splayed lipids suggested by the simulations. A) Two
liposomes are brought together and B) a flat contact forms where,
at the edge, the area per lipid in the outer leaflet increases as the
membrane is strained. C) Lipids tilt at strained contact and D)
subsequently the aliphatic tails of some molecules begin to splay.
Although not shown here, lipid exchange occurs early in the pro-
cess. E) Splayed lipids then associate by their tails to form a new
hydrophobic core, F) which expands as the tails extend to form a
classical stalk-like structure.
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Chapter 4

Complementary matching in domain
formation within lipid bilayers

The importance of lipid bilayers in biological processes is being more and more recog-
nized as fundamental to biological function.[1] Structures within the lipid bilayers have
been observed for a while now and have been shown to influence the function of membrane
proteins, for example.[2, 3, 4] The most simple systems that possess domains within bilay-
ers are binary lipid systems in which one lipid type has a bulk liquid phase and the other
lipid type has a bulk gel phase at the given temperature.[5, 6, 7] liquid and gel domains can
occur in such binary systems. The molecular scale structure of these coexisting systems
is not fully understood. Recently, transbilayer complementarity has been demonstrated by
nearest-neighbor recognition (NNR) experiments.[8] This method uses thiolate-disulfide
interchange reactions to effectively take snapshots of the nearest neighbor organization in
membranes.[9] For a binary lipid system with the two lipid types differing only in the tail
length, the NNR method demonstrated a complementary organization across the bilayer.8
Where a long lipid is in one monolayer, a short lipid exists underneath in the bottom mono-
layer (Figure 1A).

In this paper, the dynamics and structure of such mixed bilayers is studied by molec-
ular dynamics simulations that use a coarse grained model of the lipid molecules.[10, 11]
The lipid is treated as a bead-spring molecule. The model is based on coarse-grained
polymer models and related to minimal models used to treat protein folding.[12, 13] The
coarse-graining enables the treatment of long time dynamics such as that in membrane
fusion.[14] The present model works best for neutral lipids such as saturated phosphatidyl-
choline lipids. Each tail is composed of NT hydrophobic beads of type T and the head is
composed of three hydrophilic beads of type H. The solvent is represented by a single bead,
which is equivalent to the head type. The details of the model have been described else-
where, including the calculation of the liquid-gel phase transition for lipid with different
tail lengths.[15] A single tail bead corresponds to about 3 C atoms in a lipid tail.

Simulations of two binary lipid mixtures in a single bilayer have been performed. The
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Figure 4.1. Schematics of possible gel domain structures. (A)
shows the complementary structure of a domain in which a long
tail lipid in the top monolayer has a short tail lipid beneath it and
vice versa. (B) shows the fully phase separated structure with only
long tail lipids in the gel domain with tilt. Both cases are sur-
rounded by the small lipid liquid phase.

two types differ only in their tail length and will be referred to as the short (S) and long
(L) lipid types. Each system is composed of 12096 total lipids and about 300000 solvent
particles. System I has NT = 4 and 8 beads per tail in a 2:1 mixture. System II has NT

= 4 and 6 in a 1:1 mixture. Since ach tail bead corresponds to about 3 C atoms, the NT

= 8 is long with respect to typical bilayers, but the large length difference makes the ef-
fects more pronounced. The second system is one of the experimentally studied systems
(DLPC:DSPC),[5] and demonstrates that complementarity occurs in these simulated sys-
tems as well. Each systems is initially constructed by random placement of the two lipid
types in a bilayer and equilibration at a temperature above the melting temperatures of both
lipid types. This equilibration removes any memory of the initial state. To study the domain
formation dynamics, the system was cooled to a temperature between the melting temper-
atures of the two lipid types. Specifically, we simulated at the temperature T = 1.05Tm,
where Tm is the melting temperature for the NT = 4 lipids.[15] The simulations were run
in the constant pressure and temperature ensemble for about 30 million time steps corre-
sponding to 0.7ms. The lipid dynamics has been visualized in movies, which are available
in the supplemental information. The movie shows multiple, distinct gel domains form and
grow as the simulation progresses. The lipids within a domain move as a collective body
performing Brownian dynamics in the background fluid composed primarily of the short
lipid. Figure 2A shows the state of the final configuration for system I. Only the tails of
the lipids in the top monolayer are shown for visual clarity. The gel domains are visible
in Figure 2A by the clustering of the green tails of the L lipids. Also, Figure 2A shows
there are S lipids within the cluster of L lipids. The movie shows that the S lipids are dy-
namically part of the gel domain, i.e. S lipids move as a unit with the domain. In between
these domains are regions primarily composed of S type lipids in a liquid phase. For these
S lipids in the liquid phase the diffusion is always faster than the L lipids. As the domains
form and grow, the diffusion rate for both types decreases.[7] Since the diffusion rate is
a sum of lipids in the liquid and gel phases, the rate decreases as the gel domains grow
increaasing the smaller contribution of the gel phase. In addition, the path of the S lipids in
the liquid phase is constrained by the gel domains reducing their diffusion rate.
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Figure 4.2. Images of domain formation for system I. (A) shows
only the tail beads of the top monolayer. (B) shows a transmem-
brane slice marked by the two black lines in (A). The subsequent
images show magnified views of this slice. (C) is part of a domain
and exhibits the complementary matching of the lipid types be-
tween monolayers. (D) shows the liquid region is primarily com-
posed of the short lipid. Colors: for NT = 8 lipids, head is cyan
and tail is green; for NT = 4 lipids, head is blue and tail is red.
The image uses smaller spheres (0.7 diameter) than actual size for
clarity.
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The domains are composed of both lipid types in a comple- mentary match between
the two monolayers.[8] Figure 2B shows a slice through the system, which is marked by
the two black lines in Figure 2A. The slice shows the variation in the bilayer thick- ness
as a function of position. Where the long lipids have clus- tered to form the gel domains,
the bilayer is thick. The remaining region primarily composed of the short lipids in the
liquid state is thin. Figure 2C shows a magnification of a gel domain. This thin slice shows
that the lipids in the top and bottom monolayers form a complementary match of the lipid
types: where a L lipid is on the top monolayer, an S lipid occurs on the bottom monolayer
and vice versa as seen in the recent NNR experiments.[8] Figure 3 shows quantitatively the
2D radial distribution functions for a chain of type α in one layer and a type β in the other
layer. In both systems, there is a peak at r = 0 in the S:L distribution demonstrating that
it is more likely that the opposite chain type is below the given chain. The oscillations for
system I in the S:L curve imply that in a layer there is a switching between S and L types
which is confirms the picture given in Fig. 2A. System II, with the shorter L lipid and thus
wearker tail-tail interactions, does not exhibit such longer ranged correlations. In single
lipid simulations at the temperature T , the NT =4 lipid bilayer has a thickness t = 8.0σ,
where σ is the Lennard-Jones particle diameter.[13] For the NT =8 lipid bilayer t = 14.4σ.
Thus, a mixed L-S bilayer (system I) should have t = 11.2σ. However, the thickness of the
gel domains in the binary system is larger, about 13σ, which is between the values given
above. The reason that t > 11.2σ is that the lipids do not tilt in the gel domains of system
I. The combined lengths of the long and short lipids in the gel domain without tilt yield a
thickness closer to that of a gel domain containing only long lipids that tilt. This example
provides a caution that one should take in interpreting experimental thickness data (esp.
AFM) without sufficient other geometrical detail of the molecular orientation.

One of the issues in a system with two coexisting phases is how the boundary struc-
ture ameliorates the cost of the boundary mismatch (cf. Figure 1). With the gel and liquid
phases having different thicknesses, there would be a hydrophobic mismatch at the bound-
ary, unless the boundary structure adapts. Figure 2B shows that in the present case the
boundary structure adapts to yield a smooth head group position that limits the water con-
tact with lipid tails. At the boundaries, the surface of the bilayer is typically more curved
allowing the transition in bilayer thickness to occur smoothly. On the molecular scale, ex-
amination of individual lipid conformations shows that the L lipids near the boundary adopt
the structure of the liquid phase thereby reducing the bilayer thickness.
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 S:S

 S:L
 L:L

Figure 4.3. Radial distribution functions between chain types in
different leaflets of the bilayer. Top figure is for NT =4:8 mixture
(System I) and bottom is for NT =4:6 mixture (System II). Both
cases have at r = 0 a peak in the S:L data showing that it is more
likely to occur.
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Chapter 5

A density functional theory approach for
coarse-grained lipid bilayers

5.1 Introduction

The lipids making up cell membranes play an active role in a variety of biological pro-
cesses. Many of these processes, such as the formation of lipid domains or rafts, the inter-
actions of transmembrane proteins, and membrane fusion, occur on length and time scales
inaccessible to atomistic simulations. As a result, there has been increasing interest in
developing more coarse-grained models for lipid membranes. Many coarse-grained mod-
els have been developed for either molecular dynamics (MD) or Monte Carlo simulations,
ranging from united-atom type models [1, 2, 3], to bead-spring [4, 5] or liquid-crystalline
rigid rod models [6].

Theoretical approaches that can directly calculate the equilibrium structure of model
membranes can be attractive for their low computational cost and clear parsing of the crit-
ical physics. A historically important approach treats membranes as a continuum elastic
sheets [7]. More recently molecular level theories have been proposed. May and Ben-
Shaul [8, 9] studied lipid-protein interactions with a theory that described the lipids with
a phenomenological free energy that included head-group repulsions, a water/membrane
interfacial energy, and a contribution from the configurational entropy of the tails.

Several groups have used self-consistent field (SCF) theory to study lipid phase behav-
ior and membranes. SCF theory is a mean-field theory that in bilayer applications typically
includes van der Waals-type interactions between various species, and the configurational
entropy of the lipid tails. Most often lipids are modeled as infinitely thin “threads” and
the fluid is assumed to be incompressible. Leermakers and coworkers [10, 11, 12] have
developed a lattice SCF theory for lipids that includes chain stiffness and anisotropic inter-
actions between tail segments. They are able to predict a fluid to gel phase transition for
their bilayers. Similar lattice SCF theories are used by other groups [13, 14, 15]. Schick
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and coworkers have studied lipid phase diagrams using off-lattice SCF theories [16, 17].

Another class of theories is based on liquid state theories. In one extreme, Somoza
and coworkers [18] neglected internal degrees of freedom of the lipids, and developed a
density functional theory (DFT) for anisotropic, rigid amphiphilic molecules. They were
able to calculate the structure of bilayers and micelles [18]. Lagüe and coworkers [19, 20,
21] developed an integral equation theory based on the laterally-averaged response of the
lipid hydrocarbon tails (obtained from atomistic MD simulations). They used the theory
to calculate the potential of mean force between transmembrane proteins, modeled as rigid
cylinders. However, the theory neglects the lipid headgroups, the entropy of the tails, and
any fluctuations normal to the bilayer.

In this paper we consider the molecular density functional theory (DFT) of Chandler,
McCoy, and Singer (CMS) [22, 23, 24], as extended to polymeric molecules by McCoy,
Curro and coworkers [25, 26, 27]. We use the implementation first suggested by Donley
et al. and detailed further by Frischknecht et al. [28, 29, 30]. The lipids are modeled as
coarse-grained spherical interaction sites. Like SCF theory, the DFT is a mean-field theory
and includes the energetics of hydrophobic/hydrophilic interactions and the entropy of the
lipid tails. Furthermore both SCF and our DFT approach treat the tail configurations as ran-
dom walks. However, the DFT approach includes compressibility and packing effects via
explicit liquid state structure as determined from an integral equation theory of polymeric
molecules (PRISM theory). Thus the DFT includes two length scales in predicting bilayer
structure, the length scale of the lipid chains and the length scale of the beads on the chain.

We describe our model system in Sec. 5.2 and computational methods in Sec. 6.2. We
present our results for bilayer structure and phase behavior in Sec. 5.4. In this paper we
restrict our results to morphologies that vary in only one dimension, since we are primarily
interested in lipid bilayers. Our implementation of the theory can however treat systems in
two or three dimensions; an example is given in Sec. 5.4.5 where we show some prelimi-
nary results for the effect of an inclusion in the bilayer. Details of the calculations can be
found in the appendices. Finally, comparison of the DFT results found here with molecular
dynamics simulations can be found in the following paper [31].

5.2 The model system

Our approach is to coarse-grain the lipid molecules while retaining both the flexible nature
of the tails as well as the different size and energetic characteristics of hydrocarbon tails
and polar head groups. The lipid molecules consist of freely-jointed, tangent spherical sites
or “beads”. Typical lipids found in biological systems have tails composed of 14-20 carbon
atoms. There are a wide variety of head groups possible both in nature and in engineered
lipid systems. In this work we focus on a specific coarse-grained lipid model in which the
tails are 8 beads long (roughly two CH2 groups per bead), and the head groups are lumped
into two larger beads with energetic properties different from the tail beads. This 8-2-8

57



model is then a linear copolymer chain, as shown in Fig. 5.1. The different sites in the lipid
interact with standard Lennard-Jones (LJ) potentials,

uαβ(r) = uLJ
αβ(r)−uLJ

αβ(rc) (5.1)

uLJ
αβ(r) =

4εαβ

kT

[(σαβ

r

)12

−
(σαβ

r

)6
]

, (5.2)

where rc is the cutoff distance where the potential goes to zero, k is Boltzmann’s constant
and T is the temperature.

We are interested in bilayer-forming lipids and thus chose the ratio of head to tail bead
diameters to be σh/σt = 1.44, giving an overall head group volume fraction of 0.27. On the
basis of simple packing arguments and previous theoretical work on similar lipid models
[17], we expect this ratio to result in lamellar/bilayer-forming lipids. In addition to the
lipid molecules, the model has a single site solvent with diameter σs = σt ≡ σ = 1. We
set the cross-terms in the bead diameters from the usual Berthelot scaling rules, so that
σαβ = 0.5(σα +σβ). The self-assembly of the lipids into bilayers is driven by the various
interactions in the system. We have chosen the tail-solvent and tail-head interactions to be
purely repulsive with rc = 21/6σts and rc = 21/6σth respectively. Solvent-solvent, solvent-
head, head-head, and tail-tail interactions are all uniformly attractive with a cutoff of rc =
3.5σ. Finally, we set all of εαβ ≡ ε = 1. This combination of parameters allows for a self-
assembling bilayer to form. We note that one could choose model parameters in a more
physical way to represent specific lipids, as has been done by others [11]. Here we take
a general approach, inspired by previous coarse-grained MD simulations [4, 5] and SCF
theories [16, 17], and explore the predictions of the DFT for this initial simple model. We
will report all lengths in units of σ and energies in units of ε/kT .

5.3 Methods

The details of the CMS-DFT applied here to coarse-grained lipid models, along with the
numerical methods used to solve the theory, have been enumerated elsewhere [29, 32].
Briefly, the basic quantity in the theory is the inhomogeneous site density profile ρ(r) =
∑α ρα(r), where ρα(r) is the density of site type α at r. The basic idea in CMS-DFT is to
replace the inhomogeneous, interacting system of interest with a reference system of ideal,
noninteracting chains and solvent, in a medium induced potential Uα(r) which captures the
effects of the site interactions. The theory is formulated in the grand canonical ensemble
(GCE), with the grand potential free energy Ω of the inhomogeneous system of interest
measured relative to the free energy Ωb of the bulk, homogeneous lipid-solvent mixture
which serves as the reservoir for the inhomogeneous system. Then the grand potential free
energy difference ∆Ω = Ω−Ωb is given by a Taylor series expansion about the noninter-
acting reference system, truncated at second order. A functional minimization of ∆Ω leads
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to the DFT equations to be solved. For completeness, we review this system of equations
in Appendix A. Here we give details of the calculations presented in this paper.

5.3.1 Density Functional Calculations

A state point in the GCE is specified by µs, µL, V , and T where µs is the solvent chemical
potential, µL is the lipid chemical potential, V is the system volume, and T is the tempera-
ture. The µ variables are defined indirectly in the CMS-DFT by specifying the site number
densities of solvent and lipid in a mixed bulk reservoir fluid. We report here the total site
number density in the reservoir ρb, and the number fraction of solvent, xs, in that reservoir.

There is no way in this grand canonical ensemble to guess a priori how the state vari-
ables {T,ρb,xs} should be chosen in order to obtain a bilayer structure, or furthermore to
guarantee the constraint of zero surface tension that is expected for biologically relevant
structures. For this work, we chose to keep the value of ρb fixed at ρbσ3 = 0.59. We re-
stricted our solutions to have planar symmetry so that the densities were nonuniform only
perpendicular to the bilayer, and analytical integration of the two dimensions parallel to the
bilayer was possible. While a homogeneous solution of mixed lipids and solvent at constant
bulk density is always a stationary state of this DFT approach, it is clearly not the solution
of interest. In order to obtain bilayer-like solutions, suitable initial guesses were required.
Initial guesses consisting of step function density profiles were used (with some trial and
error) to generate a nonuniform bilayer-like solution. Arc-length continuation algorithms
were used to step from one converged solution to another (see Appendix B for more details)
[33]. We performed exhaustive arc-length continuation calculations as a function of T and
xs to find the possible thermodynamic states of the system. Finally, bilayer states of interest
(e.g. zero tension bilayers) were identified.

Most of the calculations presented here had a total computational domain size of 40σ
with reflecting boundary conditions on either side of the domain. Reflecting boundaries
assume ρB+i = ρB−i where B is the node at the boundary, i is an integer, and ρ is any variable
in the calculation. For single bilayer solutions, we often locate the center of the bilayer at
one of the reflecting boundaries. This ensures symmetric bilayer solutions, and removes
any numerical instabilities due to drift of bilayer-solvent interfaces in the computational
domain. Note that in this case the reflecting boundaries result in a periodic stack of bilayers
with neighbors separated by 80σ. This separation is always large enough to ensure that
neighboring bilayers are independent.

5.3.2 Properties of bilayers

Lipid bilayers are inhomogeneous fluids with soft boundaries. An extensive literature exists
that describes the physics of fluids at hard boundaries [34]. Much of the analysis from
those physical systems can be transferred directly to bilayers with the caveat that the Gibbs

59



dividing surface may be trickier to define. In general, the properties of interfacial fluids are
defined by the excess surface free energy (see Eq. (5.15) for the particulars of our theory).
The excess surface free energy Ωex is the free energy difference between the bilayer-solvent
system of interest and a pure solvent. The pure solvent density needed to calculate Ωex

is not known a priori, but is observed as the solvent density far from the bilayer in any
inhomogeneous solution. This excess free energy is also precisely the surface tension, γ,

γ = Ωex =
(∆Ω[ρ(r)]−∆Ωs)

A
, (5.3)

where ∆Ωs is the difference in free energy between the pure solvent and the bulk homoge-
neous reservoir, and A is the total area.

Equation (5.3) is an energetic route to the surface tension. It is also possible to use a
mechanical route to compute the surface tension [35],

γ =
Z ∞

−∞
dxs(x) =

Z ∞

−∞
dx [PN(x)−PT (x)] , (5.4)

where the stress profile across the bilayer is s(x) = PN(x)−PT (x), x is the direction normal
to the bilayer, PN(x) is the normal component of the pressure tensor (a constant for all x as
dictated by mechanical equilibrium), and PT (x) is the tangential component of the pressure
tensor. Thermodynamically, the grand free energy density Ω(x)/V can be identified with
the lateral pressure PT (x) [36, 37], and thus a stress profile is rather straightforward to
compute with DFT (see Appendix A for a precise derivation).

The basic structural quantities that define a given bilayer are the bilayer thickness t and
the density of lipids in the bilayers, usually reported as the area per lipid AL. Reported
thicknesses are given as the distance between head group density peaks, while AL is calcu-
lated from

AL = (ΓL/A)−1 ≡
(

N−1
α

Z
ρα(x)dx

)−1

(5.5)

where ρα(x) is the density profile of any single site type α on the lipid and ΓL is the total
number of lipid molecules in the system.

5.4 Results

While the coarse-grained model presented in section II seems quite simple, the complexity
of the solution space is significant. Appendix B details this complexity, along with compu-
tational strategies for locating solutions of interest. We begin this section with a description
of the most biologically relevant bilayer structures that we find in the model. We then go
on to explore the phase diagram of our model in more detail.
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5.4.1 Bilayer structure

In biological membranes, the surface tension is expected to be zero. The γ = 0 bilayer for
our model at the state point kT/ε = 1.3 and ρbσ3 = 0.59 is shown in Fig. 5.2A. The density
profile across the bilayer has tail beads in the inner part of the bilayer, head groups clustered
at the bilayer-solvent interface, and solvent excluded from the bilayer. The density profiles
do not exhibit significant packing structure indicating that the bilayer is in a fluid state. This
zero tension bilayer is not the only solution of the DFT found for this model at this state
point. Rather, a whole series of solutions are obtained with different integral numbers of
bilayers in the computational domain (see Appendix B). Eventually the space is completely
filled with a lamellar state as is shown in Fig. 5.2B.

We can compare the structure of our model bilayers to experiment by a rough mapping
of the coarse-grained model. The ratio of head group volume to tail volume in our lipid is
similar to that in dipalmitoylphosphatidylcholine (DPPC); if we assume that the volume of
one of our tail beads is equivalent to two CH2 groups in DPPC, we can identify σ = 4.75
Å. Here we have used a volume of 28.1 Å3 for the CH2 groups in DPPC [38]. We can then
compare the thicknesses of our bilayers, measured as the distance between the head group
density peaks, and the areas per lipid with values in the literature. For fully hydrated DPPC
at 50◦C, the head-to-head distance t = 38.3 Å and the area per lipid AL = 64 Å2 [39]. These
conditions should apply to our fluid bilayers at zero tension. Using our mapping for σ, we
find that the thickness for bilayers in this model varies from 38 Å to 35.2 Å and the area per
lipid from 77.4 Å2 to 110.3 Å2 for zero tension bilayers where the temperature ranges from
kT/ε = 0.92 to 1.3. The best fit to the DPPC data is thus at low temperatures in the model,
close to the transition to ordered bilayers (see below). While arguments could be made
for making adjustments to the model (adding stiffness or changing coarsening strategy),
and while we have limited this analysis in phase space by constraining ρbσ3 = 0.59, we
nevertheless see that this model does predict bilayers with properties reasonably close to
experimental lipid bilayers.

In addition to stacked bilayers, we find that the model exhibits a morphology where
two bilayers are fused. Figure 5.3 shows these fused bilayers at the zero tension point for
the assembly. In this case some of the tails leak out beyond the head groups, fusing the
two bilayers together. Note that the chemical potential of the γ = 0 point for the fused
assembly is different than the chemical potential for the γ = 0 point of the independent
bilayers described above.

While zero tension bilayers are clearly important, a variety of experiments on bilayers
or self-assembled monolayer analogs are performed at nonzero tension. The DFT approach
can be used to study expected structural variations in the lipid bilayers away from the zero
tension point. Figure 5.4 shows two extremes in lipid structure when the bilayer is under
either tension (Fig. 5.4A) or compression (Fig. 5.4B). These two extremes in structure were
found at turning points located using arc-length continuation algorithms (see Appendix B).

At low temperatures we obtain bilayers with strongly ordered tails from the DFT. As
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with the fluid systems, the thickness of the bilayers varies with state point. In this case, we
observe an increasing number of ordered peaks as the bilayers become wider. Figure 5.5
shows two examples of ordered profiles. While this order-disorder transition may be akin
to the main gel transition observed in real lipid systems, we note that in contrast to experi-
ments, the character of the transition observed here is continuous (discussed further below).
Furthermore while experimental gel phases are characterized by nearly fully extended lipid
chains, we never observed fully separated leaflets with 16 peaks in the DFT calculations.

The characteristics of our ordered states likely arise from the flexibility in the chains.
Previous theoretical SCF descriptions of the gel phase required the inclusion of both some
stiffness in the lipid tails and an anisotropic packing interaction [10, 40, 41]. Our DFT
does include packing effects and since the theory is nonlocal (in contrast with SCF theo-
ries), one may expect that some anisotropy can arise in highly ordered profiles. However,
the large entropy associated with flexible chains hinders the formation of gel phases; pre-
vious CMS-DFT studies of polyethylene required some chain stiffness in order to obtain a
freezing transition [42]. Thus the ordered phases predicted by our theory are likely driven
by packing effects.

5.4.2 Bilayer Hydration

As is clear from Fig. 5.2, these model systems can exhibit variable amounts of bilayer
hydration. The structure of bilayers is generally studied experimentally by considering
multilamellar assemblies, and using X-ray scattering to measure precise peak positions.
Thus it is quite important to understand bilayer hydration, and any possible transitions
from independent bilayers to interacting lamellar assemblies.

In order to investigate the nature of different hydration states, we considered a computa-
tional domain with periodic boundaries that contained only one bilayer in an infinite stack.
The size of the computational domain was varied in order to determine whether there is a
preferred hydration state with minimal free energy. A first order phase transition requires
that there will be a free energy barrier between competing hydration states that have the
same free energy at the same state point. Thus the repeat period of the stack, λ is the order
parameter of interest.

Figure 5.6 shows Ωex as a function of λ for several {T,xs,ρbσ3 = 0.59} state points
where the lamellar morphology is at γ = 0. There are clearly two competing thermody-
namic phases with an energy barrier in between them in all of the curves [43]. At large
λ, Ωex becomes a constant indicating that the bilayer is fully hydrated and independent
of neighboring bilayers. In an infinite system, the observed spacing between bilayers will
depend only on the amount of solvent in the system. The local minima at smaller λ corre-
spond to the lamellar morphologies. Figure 5.6 shows that lamellar morphologies are stable
at high temperatures, and independent bilayers are stable at low temperatures. Given the
free energy barrier between these two states, the point where the free energies are the same
(kT/ε ≈ 1.154) locates a first order phase transition. This transition occurs at the γ = 0
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point for both the lamellar and bilayer phases where a pure solvent is also stable. Thus this
transition occurs at a triple point.

The distinct nature of these two phases is apparent when bilayer properties such as
the area per lipid and bilayer thickness are plotted as a function of the order parameter
λ. The properties of the lamellar phase are quite sensitive to the order parameter while the
properties of independent bilayers are not. Generally, AL increases and the bilayer thickness
t decreases with decreasing λ in the lamellar phase. Finally, we note that on increasing λ
the bilayer structure is fixed (with AL and t becoming constant) before the total free energy
is minimized in the independent bilayer phase. We conclude that the free energy maximum
that differentiates the lamellar and bilayer phases is primarily due to solvent packing effects
in this model.

Although this phase transition from a lamellar to an independent bilayer phase as the
temperature is lowered is a sort of unbinding transition, it is not the usual unbinding transi-
tion discussed in the literature. Elastic membrane theoretical studies have suggested that on
increasing temperature in the Lα phase, steric undulations should dominate and unbinding
from a lamellar stack to isolated bilayers will occur in a continuous fashion [44]. The tran-
sition found here is by contrast first order and occurs with decreasing temperature. Since
our calculations are based on a mean field theory, unbinding transitions due to steric undu-
lations are not possible, and the membranes are in some sense infinitely rigid. However, an
“anomalous” swelling regime has been documented in experiments where on decreasing
the temperature toward the main (e.g. fluid to gel) transition, the lamellar spacing increases
nonlinearly [45, 46]. This trend is in the same direction as the predictions of the current
theory where we have found that solvent packing effects are important. It remains to be
seen whether this is an artifact of our coarse-grained model or has broader implications for
the experimental systems.

5.4.3 Phase Diagrams

The previous sections present bilayer structures and discuss hydration of bilayers in the
context of biologically relevant structures at zero tension. In this section we take a broader
perspective to discuss the phase behavior of the particular coarse grained model presented
here. Clearly at high enough temperatures, macroscopic mixing must occur, and so there
are limits to the existence of the microstructures presented previously.

In order to construct phase diagrams, it is necessary to identify all possible thermo-
dynamic phases, and then locate coexistence curves as a function of appropriate state pa-
rameters. We have identified 4 distinct fluid phases and a series of ordered phases. On
the fluid side we have the independent bilayer and lamellar microphases presented above,
and two macrophases consisting of a solvent rich homogeneous solution and a lipid rich
homogeneous solution (SRM and LRM respectively).

The phase diagram in the {T,xs} plane for the case where ρbσ3 = 0.59 is shown in

63



Fig. 5.7. At very high temperatures (not shown), all species are mixed in a uniform ho-
mogeneous phase. There is a high temperature critical point (also not shown in plot) at
{kT/ε ≈ 11,xs ≈ 0.75}, above which the system is mixed, and below which the system
phase separates into a SRM and a LRM. An example of an interface between the LRM
and SRM as calculated in the DFT is shown in Fig. 5.8. In this particular density profile,
the total spatial extent of the LRM is quite small, and so interfacial oscillations are seen
throughout the lipid rich domain.

As the temperature is lowered further, the lipids are able to self-assemble into the
microphase-separated states. As discussed above, there is first a lamellar phase, followed
by an independent fluid bilayer phase at lower temperatures. The surface tension is zero
along the coexistence lines between the region of the SRM and either type of microphase,
and a triple point occurs at {kT/ε = 1.154,xs = 0.404}. Another triple point is found at
{kT/ε = 2.15,xs = 0.527} at the coexistence point of the SRM, the LRM, and the lamel-
lar microphase. The SRM-bilayer line enters the ordered regime continously at {kT/ε ≈
0.91,xs = 0.33}. In addition this plot shows several critical points at low temperature that
mark the termination of various otherwise first order layering transitions found for ordered
bilayers.

The nature of the transition between the fluid and ordered bilayers is further demon-
strated in Fig. 5.9. In essence, first order phase transitions between bilayers with different
numbers of peaks in the tail region were found at low temperature. The two-phase en-
velopes for several of these ordering transitions are shown in the figure. The area per lipid
AL is an order parameter much like density for liquid-vapor transitions; the plot shows pairs
of data where each pair is found at the same state point and excess surface free energy, but
has different morphology. As the temperature is increased, these ordering transitions termi-
nate in critical points as the phase envelopes close. We note that phase transitions between
ordered phases with 6 and 7 peaks as well as 10 and 11 peaks were found, but the complete
phase envelopes were not computed.

Figure 5.10 shows arc length continuation calculations using both the chemical poten-
tial variable xs and the temperature as the continuation variables. The lack of discontinu-
ities in the temperature continuation data further confirms that the transition from fluid to
ordered bilayer phases in this theory is continuous (second order). The chemical poten-
tial continuation results highlight the first order transitions among different ordered phases,
demonstrating that there are multiple solutions at many state points, and that various phases
exhibit hysteresis beyond the thermodynamic transitions. As was discussed previously,
stiffness in real lipid systems may preclude the complexity observed here for the ordered
phases.

Finally, in order to facilitate comparison with experiment and other theoretical ap-
proaches in closed ensembles, we have generated a phase diagram in φs −T space where
φs is the number fraction of solvent particles in the solution computed via

φs =
Γs

ΓL +Γs
. (5.6)
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For incompressible models such as those used in self-consistent field theories [17], this
number fraction could be easily converted to a volume fraction.

Figure 5.11 shows this representation of the phase space. This plot was generated by
taking several points along the coexistence curves in Fig. 5.7. At each point, the solvent
number fractions of the two coexisting phases were computed. The solvent fractions for the
independent bilayer phase were computed based on the λ of minimal hydration. This λ was
established by computing Ωex as a function of λ as was done in Sec. 5.4.2. The properties
of the lamellae were also found from the small λ minima in these Ωex vs. λ curves.

We see that at higher temperatures, there is a region of pure lamellae at low solvent frac-
tions, and region of two phase coexistence between lamellae and an excluded SRM phase at
higher φs. This behavior is seen experimentally for aqueous lipid solutions, in which there
is a limit to how much a lamellar phase can be swollen, and beyond which one has a max-
imally hydrated lamellar phase coexisting with excess water [39]. At lower temperatures
and low φs, lamellae are again found. Then with increasing φs, we find lamellae-bilayer
mixtures, pure independent bilayers, independent bilayers swollen with excess solvent, and
eventually pure solvent at φs ≈ 1.

Since we have limited our calculations to planar assemblies, our phase diagrams do not
show 3-dimensional morphologies (e.g. the hexagonal phase) discussed by others. Never-
theless, we can make some comparisons with previous work. Both [16] and [17] used SCF
theory to compute phase diagrams for lipid-like models. In the former case a single tailed
model was used while in the latter case a double tailed lipid was studied. Both studies
found a lamellar phase in a relatively large region of the phase diagram for low φs. In the
work of Li and Schick, the shape of the boundary between lamellar and solvent-lamellar
two phase regions was similar to the shape of the coexistence curve in Fig. 5.11.

5.4.4 Thermodynamic stability of fused bilayers

In Fig. 5.3 we showed a profile for two fused bilayers. Given the above energetic analysis,
it is natural to inquire about the thermodynamic stability of two fused bilayers relative to
two stacked bilayers. Figure 5.12 shows the free energy difference between these two cases
at three temperatures along the γ = 0 coexistence curve (see Fig. 5.7). In all cases the free
energy of the fused state is higher than that of the stacked bilayers, although the fused
system becomes relatively more stable at higher temperatures. This model then indicates
that fused states are metastable and they would exist as fluctuation driven phenomena. For
this model thermal fluctuations could be expected to be sufficient to observe fusion at higher
temperatures. However, higher temperatures would also correspond to bilayers exhibiting
increased undulations (not captured in the present theory) so further investigation of the
interplay between fused states and undulation is required.

Much of the literature on fusion is currently concerned with determination of the struc-
tures that form when biological membranes fuse. The density profiles presented here do not
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give insight into the three-dimensional structure, but do demonstrate that fused structures
are a natural observation in DFT calculations of the coarse grained models considered here.

5.4.5 Inclusions in bilayers

Finally we note that one of the strengths of this DFT approach in comparison with other
theoretical approaches applied to study lipid bilayers is that it can capture both nanostruc-
ture and mesostructure associated with inclusions in the lipid bilayer. As a demonstration,
we have performed a 2-dimensional calculation where a rod-like inclusion was inserted in
the model bilayer. Figure 5.13 shows both the tail density distribution and the head group
density distribution around this inclusion. Clearly, the bilayer bends to accommodate this
large object. In addition, complex structure is found within the tail region of the bilayer
near the inclusion. Although beyond the scope of this paper, various effects of the inclusion
on the bilayer could be calculated from the DFT, such as the elastic length scale associated
with the decay of perturbations away from the inclusion [47], or the details of the tail
configurations and packing near the inclusion. While these results are preliminary, they
demonstrate that this approach may be viable for investigation of a number of complicated
phenomena, from hydrophobic matching to the interactions of membrane-bound proteins.

5.5 Summary

In this paper we present in detail the behavior of a density functional theory approach
to lipid bilayers based on a particular (8-2-8) coarse grained model. We demonstrated
that this theoretical approach may be suitable for studying bilayers as reasonable density
profiles (tail groups to the center of the bilayer, head groups at the tail-solvent interface, and
solvent excluded from the bilayer) are found. Furthermore, calculated properties for fluid
bilayers (thickness and area per lipid) agree reasonably well with experimental systems at
zero tension. At low temperatures, the model predicts ordered bilayers in contrast to earlier
work using self-consistent field theories on flexible chain lipids. This suggests that the
observed ordering results from packing effects not present in the SCF approach.

In addition to studying zero tension bilayers, we considered bilayer hydration, and more
generally the phase diagram of bilayer morphologies that vary only perpendicular to the bi-
layer. We found that there is a first order phase transition from a lamellar phase with low
hydration to an independent bilayer phase with potentially large hydration on lowering
temperature. This cannot be the unbinding transition previously studied in theoretical in-
vestigations, but it may be related to anomalous swelling observed in experiments. We find
that this effect is related to solvent packing.

While this particular model may not ultimately be the ideal choice for studying a par-
ticular lipid-solvent system, the computational techniques and fundamental groundwork
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(including observation of fluid and ordered phases, and elucidation of the model phase di-
agram) provide a fundamental building block for further investigations of different lipid
models, proteins interacting with bilayers, more complete physics (e.g. charged bilayers or
lipid mixtures), and improved density functionals.

5.6 System of Equations

5.6.1 Density Functional Theory

As explained briefly in Sec. 6.2, the basic idea in CMS-DFT is to replace the inhomoge-
neous, interacting system of interest with a reference system of ideal, noninteracting chains
and solvent, in a medium induced potential Uα(r) which captures the effects of the site-site
interactions. This unknown field is the field required for the ideal system to ultimately
have the same density distribution, ρ(r) = ∑α ρα(r), as the system of interest in the known
external field Vα(r).

The theory is formulated in the grand canonical ensemble, with the grand potential free
energy Ω of the inhomogeneous system of interest measured relative to the free energy
Ωb of the bulk, homogeneous system which serves as the reservoir for the inhomogeneous
system. Then the grand potential free energy difference ∆Ω = Ω−Ωb is given by a Taylor
series expansion about the noninteracting reference system, truncated at second order. A
functional minimization of ∆Ω with respect to ρα(r) and µα −Uα(r) leads to

Uα(r) = Vα(r)−∑
β

Z
dr′cαβ(r− r′)(ρβ(r

′)−ρbβ), (5.7)

where µα is the chemical potential of site type α, ρbβ is the bulk density for site type β, and
cαβ is the direct correlation function (DCF) between the α and β site types in the bulk fluid.
The direct correlation function can be calculated from liquid state theory or obtained from
simulations, and essentially describes the packing and interactions between different sites
in the bulk homogeneous fluid. The calculation of cαβ(r) used in this work is described
below in section 5.6.2.

Equation (5.7) has two unknown functions, the density distribution of interest, ρα(r),
and the mean field, Uα(r). Clearly the relationship between the two must be defined. For
the single site solvent, we simply have the usual Boltzmann distribution

ρs(r) = ρb,s exp[−βUs(r)], (5.8)
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where β = 1/kT . For the ideal gas of lipids, this relationship is

ρα(r) =
V
NL

ρb,L

〈
δ(r− rα)exp

[
−β∑

γ
Uγ(rγ)

]〉
S

(5.9)

where NL is the total number of sites in the lipid, ρb,L is the lipid site density in the bulk
reservoir, and the brackets denote a configurational integral over all possible configurations,
{r} = {r1,r2, ...,rNL}, based on the configuration probability S{r}. For a single random
walk chain, the configurational probability can be written as

S(r1, · · · ,rNL) =
NL

∏
s=2

[
ωαβ(rs − rs−1)

]
, (5.10)

where ωαβ(r− r′) is the probability of a bond of a certain length between sites of type α
at r and type β at r′. In this work we will consider freely jointed chains with bond lengths
σαβ, for which we have

ωαβ(r) =
1

4πσ2
αβ

δ(|r|−σαβ). (5.11)

Given the definition for S{r} in Eq.(̃5.10), the density distribution for sites of type α on
a linear chain lipid becomes

ρα(r) =
ρb,α
Nα

∑
s∈α

Gs(r)Ginv
s (r)

exp[−βUα(r)]
, (5.12)

where the sum over s is a sum over all the sites of type α in the molecule, Nα is the
total number of sites of type α, and G and Ginv are propagator functions that describe the
configurational probability based on chain connectivity. The propagator functions in Eq.
(5.12) obey the recursion relations

Gs(r) = exp[−βUα(s)(r)]
Z

dr′ωαβ(r− r′)Gs−1(r′), (5.13)

Ginv
s (r) = exp[−βUα(s)(r)]

Z
dr′ωαβ(r− r′)Gi

s+1(r
′), (5.14)

for the 2...NL sites in the case of Eq. (5.13) and the NL−1...1 sites in the case of Eq. (5.14).
They satisfy the “initial” conditions G1(r) = exp[−βUα(1)(r)] and Ginv

NL
(r) = exp[−βUα(NL)(r)].

Here α(s) indicates the site type of bead s. Note that Eq. (5.12) reduces to Eq. (5.8) in the
case of an atomic liquid. In our calculations, Eqs. (5.7), (5.12), (5.13), and (5.14) for
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the lipid and Eqs. (5.7) and (5.8) for the solvent are solved simultaneously in real space
on a cartesian grid. Our numerical methods have been enumerated extensively elsewhere
[29, 32]; here we simply state that we have used a Newton’s method approach with update
dampening as required for good convergence.

The difference between the free energy of the inhomogeneous system of interest and a
bulk homogeneous system is

∆Ω = −
Z

dr
(
ρs(r)−ρb,s

)− 1
NL

∑
α{L}

Z
dr

(
ρα(r)−ρb,α

)
+

1
2 ∑

αβ

Z Z
drdr′cαβ(r− r′)

[
ρα(r)ρβ(r

′)−ρb,αρb,β
]
, (5.15)

where the second term is summed over all lipid sites and the sum in the last term is over all
species (solvent and lipid). Note that cαβ(r− r′) contains the nonideal interactions of the
model of interest.

The lateral pressure profile across fluid bilayers is thought to play a significant role
in membrane and membrane protein function [13, 48] and is also related to the curvature
elasticity of the membrane, and is hence a quantity of interest (which we explore in the
following paper). Based on Eqs. (5.3), (5.4) and (5.15), we can identify the stress profile
with the excess surface free energy density, i.e. s(x) = Ωex(x) so that

s(x) = −(
ρs(x)−ρb,s

)− 1
NL

∑
α{L}

(
ρα(x)−ρb,α

)
+

1
2 ∑

αβ

Z
dx′cαβ(|x− x′|)[

ρα(x)ρβ(x
′)−ρb,αρb,β

]−S, (5.16)

where S is a constant arising from the pure solvent contribution, and the first sum is taken
over the beads in the lipid. In a pure solvent PT → 0 and so S is the isotropic pressure in a
pure solvent where

−S =
(
ρps,s −ρb,s

)− ρ2
s,ps

2

Z
dx′css(|x− x′|)−

1
2 ∑

αβ

Z
dx′cαβ(|x− x′|)ρb,αρb,β (5.17)

and ρps,s is the density of the solvent in a solution that has a pure uniform solvent.
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5.6.2 Liquid state input

The direct correlation function cαβ(r) in Eq. (5.7) is calculated using the polymer reference
interaction site model (PRISM) liquid state theory with the Percus-Yevick (PY) closure
[49, 50]. In this work we employ a self-consistent version of PRISM theory to calculate
the DCFs. In self-consistent PRISM theory, the intramolecular structure factor ω(k) is de-
termined from a single-chain Monte Carlo (MC) simulation of the system in a solvation
potential which is determined essentially by the intermolecular correlations. The PRISM
equation for the intermolecular correlations is solved using the determined ω(k), and then
the cycle is repeated to convergence. Thus, the intramolecular and intermolecular correla-
tions are calculated self-consistently. This PRISM/MC approach has been shown to be in
good agreement with bulk molecular dynamics simulations for a variety of polymer melts
[51, 52]. Good agreement with simulation was also found for PRISM/MC calculations of
athermal polymer solutions with a single-site solvent such as we use here [53]. We note
that in our work the single-chain structure is not completely consistent as it is taken to be
of freely-jointed form in the DFT but not in the PRISM/MC calculations. A recent study of
the accuracy of this combined “random walk CMS-DFT” (RWCMS-DFT) and PRISM/MC
theory found good qualitative agreement with simulation for density profiles of homopoly-
mer melts near surfaces [54].

In this work we are interested in a wide range of attractive systems, but PRISM theory is
known to be more accurate for harshly repulsive systems. Therefore, we take a perturbation
approach in our treatment of the intermolecular potentials and hence of the direct correla-
tion functions. Specifically, we apply the random phase approximation (RPA) [55]. The
RPA splits c(r) into two parts, a short-range, repulsive core contribution and a long-range
attractive contribution,

cαβ(r) = ccore
αβ (r)−βuatt

αβ(r). (5.18)

The core term, ccore, is calculated from PRISM theory using a repulsive lipid molecule with
the same architecture as the molecule of interest and with purely repulsive interactions set
to urep(r). The long range part is taken to be directly proportional to the attractive part
of the pair interaction potential uatt(r), as is indicated above. Here we define urep(r) and
uatt(r) to be

urep
αβ (r) =

{
uLJ

αβ(r)+ ε, if r ≤ rmin

0, otherwise,

uatt
αβ(r) =

{
0, if r ≤ rmin

uαβ(r), otherwise,

(5.19)

where the minimum of uLJ
αβ is located at r = rmin. Note that a true Weeks, Chandler, An-

derson approximation would instead have, for r ≤ rmin, uatt
αβ(r) =−uαβ(rmin) and urep

αβ (r) =
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uLJ
αβ(r)+ uαβ(rmin) [55, 56]. We do not include the temperature dependence in the calcu-

lation of ccore(r) in order to prevent the need for new PRISM calculations at every tem-
perature and also to ensure that we remain in the harshly repulsive regime appropriate for
PRISM calculations. Given this constraint of fixed ccore(r), it would be difficult to apply the
WCA approximation because then for r ≤ rmin some terms (specifically, solvent-solvent,
head-head, tail-tail, and head solvent) would be shifted significantly, by ε/kT , while the
others would not be shifted at all due to their purely repulsive character (rc = rmin). Shift-
ing the relative interaction strengths for r ≤ rmin significantly affects self-assembly for these
systems. However, using the approximation of Eq. (5.19) is also somewhat problematic
since it results in a small discontinuity at rmin in the c(r) used in the DFT calculations.
While this combination of approximations seems to work adequately for both attractive
homopolymers near attractive walls and for the fluid bilayers we consider here, it still re-
mains to completely quantify the impact of these approximations [57].

5.7 Complexity of the state space

To locate possible solutions for the model lipid system, we applied an arc-length continua-
tion algorithm [33]. Once a solution to the DFT equations has been found, this algorithm
is able to follow that solution, as a function of any continuous system parameter, along sta-
ble, metastable, or unstable solution branches and around turning (spinodal) points. This
algorithm was instrumental in understanding the thermodynamic behavior of our system,
since a given initial guess does not necessarily lead to the lowest free energy solution.

In order to perform these state tracking calculations, each new DFT solution requires a
different ccore(r). Since these enumerations require hundreds to thousands of solutions, it
is not practical to embed the PRISM calculation within the DFT calculation. Therefore as
an approximation, we typically interpolate among four ccore(r) for a given ρbσ3. For all of
the calculations presented here, the four ccore(r) functions were calculated at xs = 0.001,
xs = 0.333, xs = 0.667, and xs = 0.999. As a result, small errors can be expected at the
extremes in xs (xs < 0.01 and xs > 0.99). However, we find that most of the interesting
physics occurs in the region 0.2 < xs < 0.8 where the interpolation should be adequate.
Figure 5.14 shows the core repulsive part of the direct correlation functions at the four
chosen xs values for all of the interactions at ρbσ3 = 0.59 and kT/ε = 1.3. We see that the
changes in ccore(r) with concentration are relatively small for this system.

Figure 5.15 shows arc-length continuation data at the state point kT/ε = 1.3 and ρbσ3 =
0.59 for the excess free energy Ωex as a function of xs. The complex solid curve has three
branches that correspond to solutions with different numbers of bilayers (1, 2, and 3) in the
computational domain. Turning points correspond to the limits of stability of the various
morphologies. The branch where two bilayers are found has two parts. One corresponds to
stacked bilayers, while the other corresponds to fused bilayers (see Fig. 5.3).

Other curves are also included in Fig. 5.15. The excess free energy of a solution con-
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sisting only of solvent is zero by definition (see Eq. 5.3). The lamellar data shown could
not be generated by arc length continuation since the free energy for this phase must be
minimized with respect to the lamellar period, i.e. the computational domain size, which in
our Cartesian coordinate system is not a continuous variable. These data were thus gener-
ated by individual solves of the DFT equations. We note that zero tension assemblies occur
at γ = Ωex = 0 which corresponds to a multinodal point where several branches cross in
this model.

Finally, our code also includes algorithms that track binodal points in parameter space
[33]. The strategy here is to solve for two solutions of differing structure simultaneously
while imposing the constraint that the two solutions have identical free energies. This
allows us to track binodal points, such as the multinodal point between bilayer, lamellar,
and solvent solutions shown in Fig. 5.15, as a function of T . These binodal calculations
are straightforward provided that optimization of the computational domain size is not
required. So, we can easily compute the coexistence curves between solvent rich and lipid
rich macrophases. We can also compute coexistence between bilayers with a large excess
pure solvent region and a pure solvent solution because the bilayers are not constrained by
the computational domain and will find their optimal structure. This allows us to find all
γ = 0 bilayers as a function of temperature in our model in an automated way.
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Figure 5.1. A sketch of the model lipid-solvent system. The tail
beads (white) and the solvent (black) are the same size. The head
group beads (grey) are larger by a factor of 1.44.
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Figure 5.2. Density profiles for zero tension bilayers, showing
the head groups (bold solid curve), tail groups (solid curve), and
solvent (dotted curve). The two cases shown are a single isolated
bilayer (A), and a lamellar stack (B). The lamellar profile has a re-
peat period of λ = 9.05σ. The distance between head group peaks
on either side of the bilayers is found to be 7.4σ for the isolated
bilayer and 7.5σ for the lamellar bilayers. The state point for both
profiles is {xs = 0.415, ρbσ3 = 0.59, kT/ε = 1.3}.
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Figure 5.3. Density profile for two fused bilayers at zero tension
at the state point {kT/ε = 1.3, ρbσ3 = 0.59, xs = 0.465} (curves
as in Fig. 5.2).
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Figure 5.4. Density profiles for lipid bilayers at the two ex-
tremes of stability for kT/ε = 1.3 and ρbσ3 = 0.59. The solvent
fractions and surface tensions at the two extremes are xs = 0.303,
γ = 0.036kT /σ2 (A) and xs = 0.627, γ =−0.300kT /σ2 (B) (curves
as in Fig. 5.2; note that these two states are the two extremes of the
1 bilayer curve shown in Fig. 5.15).
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Figure 5.5. Density profiles for two ordered bilayers. The narrow
bilayer in (A) was found at {kT/ε = 0.877,xs = 0.3,ρbσ3 = 0.59}.
The thicker bilayer in (B) was found at {kT/ε = 0.943,xs =
0.668,ρbσ3 = 0.59} (curves as in Fig. 5.2).
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Figure 5.8. Density profiles demonstrating properties of
the interfaces between coexisting lipid rich and solvent rich
macrophases at kT/ε = 2.2 and xs = 0.5312.
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Figure 5.10. Arc-length continuation calculations highlighting
the nature of the ordered phases exhibited by this model and the-
ory. First order transitions are highlighted by the kT/ε = 0.9427
isotherm in (A) where multiple solutions are shown at many state
points and hysteresis (dotted lines show metastable branches) is
found around thermodynamic transitions. The continuous nature
of the order-disorder transition is shown in (B) where arc-length
continuations in temperature at several xs show no discontinuities.

85



φs

kT
/ε

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

SRM/Lamellar
2-phase region

Lamellar Phase

I II III

Figure 5.11. Phase diagram in the φs − T space. Lamellar and
two phase lamellar-SRM regions are marked. The pure SRM phase
is found on the line φs ≈ 1. Regions I, II, and II were not fully
resolved, and only solid lines are based on data obtained from cal-
culations. Nevertheless it is clear that at these low temperatures,
from left to right there will be a pure lamellar phase, a mixture
of lamellar and independent bilayers (region I), pure bilayers with
minimal hydration (region II), swollen bilayers that take up excess
solvent (region III), and finally the SRM.

kT/ε

(Ω
fu

se
d-

Ω
in

de
p.
)σ

2 /A
kT

0.8 1 1.2 1.4 1.6 1.8 20.0

1.0

2.0

3.0

4.0

Figure 5.12. Free energy difference between stacked bilayers
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Figure 5.13. Density distributions of (A) tail segments and (B)
head segments in the vicinity of a rod-like inclusion. Note that the
white regions are where the respective densities of the two species
are less than ρσ3 = 10−8.

87



Figure 5.14. Direct correlation functions for all αβ pairs as a
function of bulk solvent number fraction xs at a total bulk density
of ρbσ3 = 0.59. Figure A shows the direct interactions, ctt ,chh,css

while figure B shows the cross terms cth,cts,chs. Note that the
subscripts indicate tail beads, head group beads and solvent. The
various curves are for xs = 0.001 (solid line), xs = 0.333 (dashed
line), xs = 0.666 (dotted line), and xs = 0.999 (dashed-dotted line)
for all cases.
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Figure 5.15. Excess free energy per unit volume as a function of
xs for the state point kT/ε = 1.3 and ρbσ3 = 0.59. The numbers in
the figure indicate the number of bilayers in the 40σ computational
domain for various branches. The various curves are as follows:
bilayer solutions are shown in solid lines, space filling lamellar
solutions are shown with dotted lines and are marked for clarity, a
lipid rich uniform macrophase solution is shown in dashed lines,
and the pure solvent solution is the dashed-dot-dot line at Ωex = 0.
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Chapter 6

A comparison of density functional
theory and simulation of fluid bilayers

6.1 Introduction

Lipid bilayer membranes play important functional roles in biological systems. A detailed
understanding of their structure and mechanical properties can help to elucidate the be-
havior of lipid domains and membrane proteins. Since the biologically relevant phase of
lipid bilayers is the disordered, fluid phase, it is difficult to extract detailed information on
bilayer properties from experiment. Computer simulations have played a complementary
role in obtaining and understanding this information. However, atomistic simulations are
limited to space and time scales that are too short to capture many interesting processes and
features of lipid bilayers, such as the formation of lipid domains or rafts, the interactions
of transmembrane proteins, and membrane fusion. As a result, there has been increasing
interest in developing more coarse-grained models to describe lipid membranes [1].

These models have taken a variety of forms. The shapes and internal degrees of free-
dom of the model lipids vary, from rigid spherocylinders or rigid chains of beads with no
internal degrees of freedom, to more flexible chains of spherical beads. Both lattice and
off-lattice simulations have been performed on coarse-grained lipid models. Techniques
include molecular dynamics (MD), Monte Carlo, and dissipative particle dynamics (DPD).
Recently, efforts have been made to build united-atom-type models based on atomistic
force fields, in order to obtain coarse-grained models that can give relatively quantitative
results [2, 3].

A more generic coarse-grained model that maintains the internal degrees of freedom of
the lipids is that introduced (for lipid bilayers) by Goetz and Lipowsky [4]. Their model
consists of chains of spherical interaction sites, which interact through Lennard-Jones in-
teractions, a bonding potential for bonded neighbors, and angle potentials. This model has
been used in both MD and DPD simulations, and has been shown to self-assemble from

90



random initial conditions into bilayers. The model has also been used to obtain bilayer
properties such as the elastic constants, to study the liquid to gel phase transition, and to
simulate vesicle fusion [4, 5, 6, 7, 8].

These kinds of spherical interaction site models can also be treated using classical den-
sity functional theory (DFT). In the previous paper ([9], hereafter referred to as paper I),
we presented a theoretical framework for the equilibrium properties of lipid bilayers that
treats the lipid chains in a coarse-grained molecular fashion using a DFT approach previ-
ously developed for inhomogeneous and self-assembling polymers [10, 11, 12, 13, 14, 15].
In paper I we presented bilayer structures, an analysis of bilayer hydration, and phase dia-
grams based on 1-dimensional morphologies for the model system.

Here we explore the accuracy of the DFT approach by comparison to MD simulations
of flexible chain lipids. To our knowledge, all previous MD simulations of coarse-grained
lipids in the literature [4, 5, 7, 8, 3] have treated the lipid tails as semiflexible, by includ-
ing an angular bending potential between monomers. Since our DFT treats the lipid tails
as freely-jointed, random walks, we need to compare to MD simulations on flexible-tail
lipids. Thus in this paper we perform MD simulations on the model lipid system introduced
in paper I. Section 6.2 provides a summary of the DFT and details of the MD simulations,
Sec. 6.3 presents calculations of lipids and solvated lipids at surfaces along with a discus-
sion of the solvent model, Sec. 6.4 compares bilayer structures predicted from the theory
to MD calculations, and finally Sec. 6.5 compares physical properties of the membrane to
predictions from the DFT. Generally we show that the agreement between the methods is
adequate for fluid bilayers, with room for improvement in the quality of the solvent model.

6.2 Methods

6.2.1 Model system

Our coarse grained lipid model (see paper I for details) consists of a freely-jointed chain
of tangent sites, with a head group and two tails. The tails consist of 8 interaction sites or
“beads” while the head group is composed of 2 larger beads. This 8-2-8 model roughly
groups two CH2 groups per bead, and the ratio of head to tail bead diameters (σh/σt =
1.44) was chosen on the basis of simple packing arguments that predict lamellar or bilayer
assemblies. The model also includes a single site solvent.

The interactions between different site types in the model are based on Lennard-Jones
(LJ) interactions, with the various energetic constants set to bias the system towards self-
assembly. Specifically, the interaction potentials are

uαβ(r) = uLJ
αβ(r)−uLJ

αβ(rc), (6.1)
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uLJ
αβ(r) =

4εαβ

kT

[(σαβ

r

)12

−
(σαβ

r

)6
]

, (6.2)

where rc is the cutoff distance where the potential goes to zero, k is Boltzmann’s constant
and T is the temperature. In addition to the lipid molecules, the model has a single site
solvent with diameter σs = σt ≡ σ = 1. The cross-terms in the bead diameters are found
from the usual Berthelot scaling rules, so that σαβ = 0.5(σα + σβ). The tail-solvent and
tail-head interactions are purely repulsive with rc = 21/6σts and rc = 21/6σth respectively.
Solvent-solvent, solvent-head, head-head, and tail-tail interactions are all uniformly attrac-
tive with a cutoff of rc = 3.5σ. Finally, we set all of εαβ ≡ ε = 1. This combination of
parameters allows for a self-assembling bilayer to form. We will report all lengths in units
of σ and energies in units of ε/kT .

6.2.2 DFT calculations

The DFT is a mean-field theory for inhomogeneous chain liquids, based on the DFT of
Chandler, McCoy, and Singer (CMS) [10, 11, 12]. The properties of the bulk system are
calculated using the polymer reference interaction site model (PRISM) theory [16, 17]. The
direct correlation functions cαβ(r) for the effective interactions between sites in the bulk
fluid are obtained from this theory and used as an input to the CMS-DFT.

The DFT calculations are done in the grand canonical ensemble where the state vari-
ables are the volume V , the temperature T , and the chemical potentials of the solvent and
lipid species, µs and µL respectively. In our formulation, µs and µL are manipulated via a to-
tal site density ρb and the solvent number fraction xs in a bulk reservoir fluid in equilibrium
with the fluid in the computational domain. Given a thermodynamic state, the calculations
produce density profiles, ρt(x), ρh(x), and ρs(x), for tail beads, head beads, and solvent
respectively. Note that x is in the direction of the bilayer normal.

The total density of lipid chains is calculated as the area per lipid chain, AL, via

AL =
(

N−1
α

Z
ρα(x)dx

)−1

(6.3)

where Nα is the number of beads of type α on the lipid chain. The surface tension of a
given bilayer is

γ = (∆Ω[ρα(r)]−∆Ωs)/A, (6.4)

where the ∆ indicates that free energies are measured relative to a homogeneous mixed
lipid-solvent system, Ω is the free energy for the inhomogeneous system containing a bi-
layer, Ωs is the free energy of a pure solvent at the density observed far from the bilayer in
the inhomogeneous system, and A is the total area.
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6.2.3 Molecular Dynamics Simulations

In the MD simulations bonding is enforced with a harmonic bond potential of the form

Vbond,αβ = kb(r−σαβ)
2, (6.5)

where r is the distance between two bonded sites. We set kb = 103εσ−2, of the same
order of magnitude as used by Goetz and Lipowsky [4]. Because we did not constrain
the bond lengths to be rigidly fixed, this model differs slightly from that used in the DFT
calculations; however, with the relatively large value of kb the average bond length is close
to the long time average of σ [4].

MD simulations were carried out using the parallel LAMMPS MD code [18], using 8
processors on the Sandia Cplant cluster. A timestep of 0.005τ (in reduced LJ units) was
used. The temperature T was controlled with a Nose-Hoover thermostat using a coupling
frequency of 10τ−1. Constant-pressure simulations employed an anisotropic Nose-Hoover
barostat which allowed all three box dimensions to fluctuate independently.

We performed two different kinds of simulations. The first set consisted of a liquid of
either melt or solvated lipids near surfaces, which were run in the NVT ensemble. Initial
states for these simulations were prepared by randomly placing lipid molecules and solvent
sites in the simulation box, and overlaps were removed using a soft nonbond potential. The
systems were equilibrated for typically 3×105 time steps, and statistics to obtain smooth
density profiles were collected for 106 to 1.5×106 time steps. The melt lipid/wall systems
consisted of 1000 lipid molecules confined between two surfaces as described below, with
periodic boundaries in the other two directions. The lipid/solvent/wall systems consisted of
600 lipid molecules and 17621 solvents for the repulsive systems, and 400 lipid molecules
with 11747 solvents for the attractive systems.

We also simulated solvated lipid bilayers, using periodic boundary conditions. These
systems were prepared in two ways. First we verified that our lipid model would self-
assemble into a bilayer by starting from random configurations of lipids and solvent. These
systems were run in the NPT ensemble until a bilayer formed. These bilayers were ran-
domly oriented in the simulation box. To extract density profiles, we created initial con-
figurations consisting of a bilayer oriented parallel to two of the simulation box directions,
with the lipids initially packed on a hexagonal lattice. The bilayer was then equilibrated in
the NPT ensemble for up to 2.5× 106 time steps until the system reached its equilibrium
area per lipid. This approach led to a well-equilibrated bilayer that remained parallel to
two of the simulation box directions. We also note that all three box dimensions were in-
dependently controlled. The area per lipid was thus controlled by the interactions and not
by the initial box size. Furthermore, we kept all three components of the pressure tensor
equal (Pxx = Pyy = Pzz) so that the surface tension γ = 0 [19]. Results reported for areas
per lipid are thus for zero tension bilayers. In order to calculate density profiles, we ran the
equilibrated systems in the NVT ensemble for 5×105 timesteps for equilibration, followed

93



by another 8×105 timesteps to collect statistics. We simulated several different sized sys-
tems, consisting of either nL = 220 or nL = 450 lipid molecules and from 50% to 60% site
density of solvent.

6.3 Verifying the approach

There are several possible sources for error in the DFT approach of paper I. While it is
difficult to tease these errors apart to assess them separately, this section explores several
example systems to rigorously test the predictions of the DFT in order to determine the net
effect of the approximations in studies of lipid bilayers. Briefly, we expect discrepancies
could come from the following sources. First, the CMS-DFT is based on a second order
expansion of the free energy, and so precludes liquid-vapor or wetting transitions. Second,
the “HNC” form of the mean field used in the CMS-DFT is known to overpredict struc-
ture in fluids near surfaces. Third, the DFT incorporates liquid state structure from PRISM
theory, and so may have errors that propagate from the liquid state calculations. We note
that errors due to the HNC field and due to approximations in PRISM theory are known to
partially compensate each other [14]. Fourth, attractions are introduced in the DFT calcula-
tions via a perturbation approach with an unshifted core term (see Appendix A of paper I).
Fifth, the chain statistics are not the same in the simulation and the DFT. This is because
the simulations enforce excluded volume, so that the chain statistics are not Gaussian on
short length scales. By contrast, in the DFT the chains follow random walks and thus allow
chain overlaps (although the repulsive part of the LJ interactions will counter this effect).
And finally, while DFT holds bond lengths constant, the MD bonds can fluctuate slightly
(see Eq. (6.5)).

6.3.1 Lipids at surfaces

The CMS-DFT has not previously been used to treat an asymmetric triblock copolymer
such as our model 8-2-8 lipid. As a rigorous test on fluid structure, we performed both
density functional and molecular dynamics calculations of the lipid molecules at surfaces.
In these calculations, the size asymmetry of the head and tail beads is preserved, but the
interactions are all taken to be identical (εαβ = 1, with equal cutoffs rc for all species). Thus
no self-assembly is expected. While previous work found that the CMS-DFT with Lennard-
Jones interactions was accurate in describing the self-assembly of diblock copolymers, both
in the bulk and in thin films [20, 21], only symmetric diblocks were studied in those cases.
Symmetric diblocks are a special case because while the individual ρα(r) show microphase
separation, they are decoupled by symmetry from the total density ∑α ρα(r) which controls
packing effects [22, 21]. Thus we anticipate that there may be more interplay between total
density and concentration effects in our asymmetric lipid model.

We considered three kinds of surface-lipid systems all at kT/ε = 1.0. The first case had
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purely repulsive interactions both between the chains and between the walls and the chains
(case RR). Another calculation had attractive interactions between the chains as well as be-
tween the surfaces and the chains (case AA). A final calculation had attractive chain-chain
interactions, but repulsive chain-wall interactions (case AR). Attractive chain interactions
were generated by setting longer LJ cutoffs for the AA and AR cases. Specifically the AR
and AA cases had rc = 3.5σ while the RR case had rc = 21/6σαβ. Surface-fluid interac-
tions were a function of the distance x between a given point in the fluid and the surface,
and were of an integrated LJ form,

Vα(x) =
2πεwα

3

[ 2
15

(σ12
wα
x9

)
−C

(σ6
wα
x3

)]
, (6.6)

where C = 0 for the RR and AR cases while C = 1 for the AA case. Note that the wall-site
interaction parameters were εwα = 1.0 and σwα = 1.44. The bulk density ρb in the fluid
needed for the DFT calculations was chosen to match the density far from the surfaces in
the MD simulations. The bin size for the MD density profiles and the mesh size for DFT
calculations were both set to ∆x = 0.1.

A comparison of DFT and molecular dynamics calculations is shown in Fig. 6.1. The
DFT reproduces structure reasonably well in both the RR and AA cases. This indicates
that the theory is able to handle the packing of the different size sites in the lipid molecule
correctly. However, in the AR case, the DFT significantly overpredicts structure at the
interface. A similar disagreement has been observed for attractive homopolymers near
repulsive surfaces [23]. In that paper, it was shown that an ad hoc correction of the repulsive
(PRISM) part of the direct correlation functions by a constant factor improved the result. A
similar correction is applied in Fig. 6.1D where the agreement is now quite good. However,
this correction is completely empirical, and so we don’t pursue it further here except to note
that the theory may not work well for lipids near strongly solvophobic surfaces.

Figure 6.2 shows results for a mixture of lipids and solvent next to a surface. Again,
all the site-site interactions were identical so that we are again probing the ability of the
theory to predict packing. Figure 6.2 shows the completely repulsive RR case and the com-
pletely attractive AA case. In both cases, although the shapes of the density profiles are in
agreement with the MD simulations, the DFT predicts a much higher head group peak near
the surface, whereas the MD simulations predict that more of the solvent goes to the sur-
face. The DFT result is somewhat surprising, as one might expect that the lipids could gain
more configurational entropy by not being too close to the surface, but putting the solvent
there instead. The discrepancy is presumably related to the balance of approximations in
the HNC field and the PRISM input, as mentioned above. The agreement is not as good
as for the melt of lipids shown in Fig. 6.1, which must be due to inclusion of the solvent.
We examine the quality of our solvent model in the next section. However, we note that
in lipid bilayers, the solvent is excluded from the bilayer, and so we expect the quality of
the solvent model to be less important for lipid bilayers than it is in the mixtures discussed
here.
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6.3.2 The solvent model

Given the approximations of the DFT detailed above, it is clear that the single site solvent
in this theory will not be the same as the LJ fluid used in simulations. This is illustrated
in Fig. 6.3 where we present pressure-density curves for pure solvents at three different
temperatures. We calculated the DFT solvent pressure using the contact density (P/kT =
ρs(x = 0) [24]) for this solvent at a hard wall. We find that the pressure is significantly
higher in our solvent than it is in a true Lennard-Jones fluid. For liquid-like densities, P
is even higher than in a hard-sphere system described by the Carnahan-Starling equation
of state. This result was noted previously by Hooper et al. for hard-sphere sites, and is
due at least in part to errors in the HNC form of the mean field used in the DFT [14, 25].
Taking both the absence of the liquid-vapor transition in this DFT, and the high pressures
in Fig. 6.3, one concludes that this model solvent will behave more like a purely repulsive
(e.g. hard sphere or WCA) fluid than like a Lennard-Jones fluid.

While these shortcomings of the CMS solvent are no doubt a significant factor in the
poorer performance of the CMS-DFT in Fig. 6.2, there are some advantages to using this
particular solvent model. First, it is computationally simple to implement. While there
are more accurate density functionals available for inhomogeneous Lennard-Jones fluids,
it is not a priori clear how to couple these to the CMS polymer-DFT used here to treat the
lipids. Since we are interested in solutions that exhibit microphase separation, and since we
are principally interested in the structure of the lipid-rich bilayer phase, a highly accurate
solvent treatment may not be required.

6.4 Structure of Lipid bilayers

We now turn to lipid bilayers. It would be reasonable to expect that lipid bilayers based on
flexible lipids would exhibit significant interpenetration of the two bilayer leaflets. How-
ever, this does not appear to be the case. Figure 6.4 shows a snapshot of a lipid bilayer at
temperature kT/ε = 1 and a pressure of P = 0.5ε/σ3 (chosen to approximate atmospheric
pressure). The two different leaflets are colored differently, and we see that they only inter-
penetrate by one or two beads.

For bilayers, attractive interactions drive the self-assembly, creating fluid interfaces
rather than rigid ones. The fluid nature of the interface presents a challenge for comparing
DFT- and MD-generated results explicitly. Specifically, the MD simulations exhibit both
small scale density fluctuations and long range interface fluctuations of the bilayer. As a
result a simple binning of the computational domain to calculate density profiles necessarily
results in structures that are more broad than those found in the mean field DFT.

In order to compare density profiles, we have attempted to correct for the MD interface
fluctuations by averaging density profiles locally based on the center of mass of the bilayer
at a given position (y,z) in space. (Note that x is taken to be the direction perpendicular to
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the bilayer-water interface). The correction was made as follows. For each tail bead, we
find all the headgroups in a cylinder of radius Rcyl parallel to the x axis and centered on
the tail bead. We average the x-positions of the head groups on each side of the bilayer
in this cylinder to produce an average x position xtop for the top leaflet and xbot for the
bottom leaflet of the bilayer, and use these to find the midpoint of the bilayer as xmid =
0.5(xtop + xbot). The x position of the tail bead is then corrected by the difference between
xmid and the actual midpoint of the simulation box. An identical correction is done for all
the solvent molecules. The head group beads are corrected by the same factor as the tail
beads to which they are bonded. This correction procedure is analogous to fitting a surface
over the fluctuating bilayer and then correcting that surface to be flat, and is similar to a
method used previously [6].

We tried several values of the radius of the averaging cylinder. We need Rcyl to be large
enough to contain enough head groups for good statistics, while still being significantly
smaller than the average spatial extent of the interface fluctuations. We found 2 ≤ Rcyl ≤ 4
to give indistinguishable results. A comparison of uncorrected and locally averaged MD
density profiles is shown in Fig. 6.5 for two temperatures, kT/ε = 1 and kT/ε = 1.3. The
local averaging sharpens the density profile of the head groups and the interface between
the lipids and the solvent considerably, and narrows the density profile of the tail beads
slightly as well. In addition, there is an apparent depletion of tail beads in the center of the
bilayer that is not obvious if bilayer midpoint corrections are not applied.

Since DFT and MD calculations are done in different ensembles, it is necessary to
establish a strategy for mapping between ensembles. If the theory were exact we would
expect all possible mapplings to yield identical results; however this is not the case. While
temperature can be set identically for both calculations, the remaining two state variables
(ρb and xs in the DFT calculations) are set based on observables from MD simulations.
Many observables could be used, but we consider (1) the solvent density far from the
bilayer, (2) the constraint of zero surface tension, and (3) the observed AL in the MD bilayer
simulations in Fig. 6.5.

Figure 6.6 provides the data used to identify the DFT state points that correspond most
closely with the MD profiles in Fig. 6.5. Beginning with the solvent density, in the MD
simulations we found that far from the bilayer ρsσ3 = 0.74 at kT/ε = 1.0, and ρsσ3 = 0.61
at kT/ε = 1.3. Figures 6.6A and B show DFT predictions for the variation of the solvent
density far from the bilayer as a function of ρb, xs, and T . Since the solvent density is
relatively insensitive to xs at least over the range 0.2 < xs < 0.8, we use the data in Fig.
6.6A to set ρbσ3 = 0.68 for kT/ε = 1.0, and ρbσ3 = 0.59 for kT/ε = 1.3.

Figure 6.6C shows DFT calculations of the area per lipid as a function of xs while
holding {ρbσ3 = 0.68,T = 1.0} or {ρbσ3 = 0.59,T = 1.3} constant. The MD simulations
had AL = 5.1σ2 at kT/ε = 1 and AL = 6.2σ2 at kT/ε = 1.3. To match these values, Fig. 6.6C
can be used to identify xs = 0.392 and xs = 0.364 for kT/ε = 1.0 and 1.3 respectively.

If we choose instead to constrain the solvent densities to the MD values and the surface
tension to zero, the two state points are found to be {xs = 0.442, ρbσ3 = 0.68, kT/ε = 1}
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and {xs = 0.415, ρbσ3 = 0.59, kT/ε = 1.3}. Paper I discusses the identification of zero
tension bilayers; we just note here that there is only one zero tension point in a fixed {ρb,T}
slice of the phase space.

Finally, Fig. 6.6D shows the area per lipid as a function of ρb for zero tension bilay-
ers at kT/ε = 1.3. This figure shows that the DFT cannot predict areas per lipid as large
as those observed in zero tension MD bilayers. This may be a consequence of the high
solvent pressures in this theory. Therefore, it is not possible to use γ = 0 and AL as simul-
taneous constraints on the mapping of ensembles. However we note that in designing DFT
approaches for bilayers, achieving this mapping would be optimal.

Figure 6.7 shows DFT predictions for the bilayers using the {ρs,AL} and {ρs,γ = 0}
constraints to determine state points as detailed above. These structures should be com-
pared to the MD results in Fig. 6.5. Overall the agreement is quite good. The basic structure
of the bilayer (tails to the center, head groups at the interface, solvent excluded) is found
by both methods. The magnitudes of the density profiles are similar as well, and both cal-
culations predict fluid bilayers. However, there are some notable differences. The DFT
predicts bilayers that are slightly narrower with a higher tail peak density and some addi-
tional structure in the center of the bilayer. These DFT profiles do not have the depletion
of tails observed in the center of mass corrected MD profiles, although such features are
predicted at other state points (see Figs. 2 and 4B of paper I). We expect that an improved
solvent model would have lower pressure at a given bulk density, and would likely result in
bilayers with larger AL.

For more detail on the structure, we compare the densities of the ends of the lipid tails
in the two approaches. The MD snapshot shown in Fig. 6.4 implies that there is only a
small amount of interpenetration of the two leaflets in the bilayer. We infer a similar result
for the DFT bilayers based on the density profiles for the last site in the lipid tails, shown
in Fig. 6.8A. We see that the end densities are qualitatively similar in the DFT and MD
profiles. In particular, there is very little overlap in the distributions of the ends of the tails
and the head groups. This implies that the leaflets cannot be fully interdigitated.

Further evidence for this picture is shown in Fig. 6.8B where we plot the site density
distribution for each of the sites on the chain from the DFT calculations. Note that the chain
is symmetric, and these site densities include contributions from each pair of identical beads
(in the two tails). This figure shows that while the density distributions for beads 1–3 are
overlapping with a single peak in the center of the bilayer, beads 4–8 each have a distinct
peak getting nearer to the head groups. Thus, the bilayer is most mixed in the center, with
overlap of the leaflets most likely between the three end beads of the lipids on opposing
monolayers.

In Fig. 6.9 we show both the area per lipid and the thickness of the bilayer as a function
of temperature. DFT data along the zero tension line as well as along the single bilayer
turning points, which define the limits of stability of the isolated bilayer, are included in
the plots. (See Appendix B of paper I for a description of turning points.) As the bilayer
thickness increases, the area per lipid decreases. For the physically realistic system along
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the γ = 0 line, the area per lipid decreases roughly linearly with temperature in both the DFT
and MD cases, in agreement with experiment [26] and previous simulations [8]. Given the
approximations of the model, the agreement of the γ = 0 DFT bilayer properties with MD
are quite good.

On decreasing temperature below about kT/ε = 0.95, the DFT predicts ordered bilay-
ers (see paper I). The transition from the fluid bilayer phase to the ordered bilayer phase
was continuous, and there were first order phase transitions between ordered bilayers with
different numbers of density peaks in the tail region. We looked for these ordered bilayers
in our MD simulations, but did not find them. Instead, we found that as we lowered temper-
ature the solvent eventually froze into a crystal while the lipid bilayer remained disordered
and fluid.

In order to assess the impact of the approximate solvent model, we ran MD simulations
with purely repulsive interactions for the solvent, at an external pressure of P = 4ε/σ3. At
kT/ε = 0.6, there was a small amount of ordering in the tails, with 9 peaks of amplitude
≈ 0.2ρσ3 in the tail densities. However, this case still had a fairly liquid-like area per lipid
of AL = 3.75σ2.

Finally, we also performed a simulation on one of the stiff 8-bead tail lipids from Ref. 8.
We started the system in the gel phase at kT/ε = 1.05 and then turned off the angle potential
between beads. The bilayer melted. We then began again in the gel phase, lowered the
temperature in the gel phase to kT/ε = 0.75 and then turned off the angle potentials; we
again found that the bilayer melted into a fluid phase. This is clearly seen in the area per
lipid; for the stiff lipids in the gel phase at kT/ε = 0.75 the area per lipid is AL = 2.30σ2

whereas for the flexible lipids at the same conditions we find AL = 3.87σ2.

Thus, it seems that the flexible lipid tails preclude a gel transition in the MD simula-
tions. In comparing ordered DFT predictions with ordered bilayers based on stiff lipids, we
find that ordering in DFT occurs in the same range of temperatures and ordered bilayers
have similar AL as in previously published MD simulations of the gel phase [8]. However,
the stiff lipid MD simulations had bilayers with well separated leaflets where the number
of observed density peaks in the tail region was the same as the number of tail beads from
the end to the head group. We never observed fully separated leaflets with 16 peaks in the
DFT calculations. Thus while ordering is an important feature of lipid bilayers, flexible
chain models are likely not optimal for futher investigations of ordered states.

6.5 Mechanical Properties of Lipid Bilayers

In this section we compare two fundamental mechanical properties of the fluid bilayers
as obtained from the DFT and the MD simulations, namely the lateral stress profiles and
the area compressibility modulus. Other important elastic constants of bilayer membranes
include the bending modulus κ and the splay modulus κ̄. These moduli are related to the
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lateral pressure profiles, but to calculate them from our DFT would require solutions in
curved geometries [27, 28], which is beyond the scope of this paper.

6.5.1 Lateral stress profiles

As described in paper I, the surface tension across the entire bilayer is given by

γ =
Z ∞

−∞
dxs(x) =

Z ∞

−∞
dx [PN(x)−PT (x)] , (6.7)

where the stress profile is s(x) = PN(x)−PT (x), x is the direction normal to the bilayer,
PN(x) is the normal component of the pressure tensor (a constant for all x as it must be
for mechanical equilibrium), and PT (x) is the tangential component of the pressure tensor.
The stress profile itself (or the lateral pressure profile, π(x) = −s(x)) is a quantity of con-
siderable interest because it is related to the curvature elasticity of the membrane [27, 28].
Furthermore, changes in lateral stress in e.g. mixed lipid bilayers affect membrane protein
conformational changes and activity [29, 30].

However, the lateral pressure PT (x) and hence the stress tensor s(x) are not uniquely
defined, as shown by Schofield and Henderson [31]. We can see this by noting the virial
expression for the pressure tensor P:

PV = NkT I+
1
2

N

∑
i=1

N

∑
j=1

〈
fi jri j

〉
(6.8)

where N is the number of particles, I is the unit tensor, and fi j is the force between particles
i and j separated by the vector ri j. The first term above is the kinetic contribution and
the second is the interaction contribution. The nonuniqueness of P arises because the path
between particles is not specified. The surface tension γ is invariant with respect to the
choice of path, but P is not [31]. Choosing a straight line between particles i and j leads
to the Irving-Kirkwood (IK) expression for the pressure [32], which we will use here in
computing PT (x) from our MD results. However, other choices of path are possible.

We calculate the components of the IK pressure tensor directly in the MD simulations,
using the expressions derived by Goetz and Lipowsky [4] to include the many-body terms
in the interaction potentials. The Hardy method [33] is used to bin the stress into slices
perpendicular to the x axis and to determine the contours between pairs of sites. Because
s(x) fluctuates considerably, we calculated it using the small system of 220 lipids, at kT/ε =
1.0 and kT/ε = 1.3, averaging over 107 and 3×107 timesteps, respectively. The resulting
MD stress profiles are shown in Fig. 6.10. We find by integration of s(x) that the surface
tension is essentially zero, γ = −0.037ε/σ2, for kT/ε = 1. For the higher temperature
of kT/ε = 1.3 we find γ = −0.110ε/σ2, so that in this case the bilayer is under a small
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compression. We note that the stress profiles look very similar to that for a bilayer of
more stiff coarse-grained lipids obtained by Goetz and Lipowsky [4]. They considered a
coarse-grained lipid with four tail beads per tail and angle potentials between all sites so
that the tails were semiflexible (they preferred to be straight). For both lipid models, one
finds a total stress profile with several different peaks. The physics underlying the spatial
variations in s(x) is fairly clear. As it must be, the total stress is zero in the solvent region,
and reaches a peak at the solvent/head group interface corresponding to the SH interfacial
tension. The adjacent negative (compressive) region is associated with the attractive HH
potential, and is followed by a second peak at the HT interface corresponding to the HT
interfacial tension. The stress profile in the center of the bilayer tail region is negative,
corresponding to a compression of the tails.

We note that we only expect s(x) to be nonunique on a length scale of the order of
the range of the interparticle interactions. In this work the largest cutoff was 3.5σ, clearly
much shorter than the total thickness of the lipid bilayer. Variations in s(x) on length scales
longer than this should thus be unique. In atomistic simulations of lipid bilayers, the typical
cutoffs for LJ interactions (10-12 Å) are a smaller proportion of typical bilayer thicknesses
(e.g. 60 Å or so) than in this work; thus lateral pressure profiles calculated in atomistic
simulations may be even more physically meaningful than those calculated here. Some
(IK) lateral pressure profiles from atomistic simulations have been published recently in
the literature, and show some of the same qualitative features as the coarse-grained models
[34, 35].

The stress profile can also be calculated using the DFT from the excess surface free
energy, as discussed in paper I. This calculation identifies the surface excess grand free
energy density directly with the stress profile. Due to the nonuniqueness of s(x), it is not a
priori clear that this stress profile will be the same as the IK stress profile derived from the
virial route. However, previous work on mean-field theories found that the same physics
applied to the spatial behavior of PT (x) calculated from the energetic and virial routes [36].
We find that this is also the case here.

Figure 6.11 shows stress profiles calculated from Eq. (A10) in paper I and shifted by a
constant so that s(x) = 0 in the bulk solvent region. The overall shape of the stress profiles
is quite similar to the MD case, with the same number of major peaks. There is more
structure in the profile at kT/ε = 1.0, corresponding to the additional order in the bilayer
itself as seen in Fig. 6.7A,B. In both methods the magnitudes of the peaks decrease with
increasing temperature. For example, for the head groups the height of the peak in s(x)
decreases by a factor of 3.3 for the MD and 3.0 for the DFT calculations on going from
kT/ε = 1.0 to kT/ε = 1.3. However, the magnitudes of the stress are much larger in the
DFT than in the MD. In part this is related to the higher densities of the lipids in the DFT
density profiles as compared to the corresponding MD calculations (see Fig. 6.7). We
also note that no bilayer midpoint corrections were applied in the MD calculation of the
stress profiles, so these must be broadened by transverse fluctuations of the bilayer. From
Fig. 6.7 we see that the broadening effect in the density profiles reduces, for example, the
head group density peaks by factors of about 1.5 and 2 for kT/ε = 1.0 and kT/ε = 1.3,
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respectively. Thus some of the difference in the results is due to interface fluctuations.

Several previous authors have also calculated lateral stress profiles from mean-field
theories of lipid bilayers [37, 38, 29]. All of these theories have assumed that the lipid tails
form an incompressible liquid, and furthermore they calculate only the contribution of the
tails to the lateral pressure profile. The general result is that there is a peak in the lateral
pressure π(x) in the middle of each leaflet of the bilayer, with the lateral pressure falling in
the middle of the bilayer and near the tail/head interface. Recalling that π(x) = −s(x), this
is also what we see in the tail region of the bilayer. In previous work the lateral pressure
is positive (and thus the stress profile is negative) throughout the tail region, as it must be
since it is calculated as the constraint which must be applied to impose incompressibility
and thus a constant density through the tail region. In contrast, we find that the peak in s(x)
in the tail region in the DFT goes above zero for kT/ε = 1.3, indicating that the ends of the
tails are under tension in our model for this state point.

6.5.2 Area compressibility

A final quantity that is straightforward to compare is the area compressibility modulus KA

of the membrane. This modulus can be obtained from the dependence of the surface tension
on the area per lipid near the zero tension point,

γ ≈ KA (AL −AL0)/AL0 (6.9)

for small deviations of AL from its value AL0 at γ = 0.

We performed several MD simulations at kT/ε = 1 and at constant area and constant
normal pressure PNσ3/ε = 0.5 to obtain KA from the variation of γ with AL. The results are
shown in Fig. 6.12A. From the linear fit we obtain KA = 15.2ε/σ2. This value is comparable
with previous results from coarse-grained MD simulations. [4] obtained KA = 14.3ε/σ2 at
kT/ε = 1.35 for their stiff, 4-bead tail lipid. Using a similar model, [8] found a value of
KA = 9.4ε/σ2 for lipids with 6-bead tails at kT/ε = 1.05.

For the DFT calculations, we note that the solvent density far from the bilayer is nearly
constant as we change the area per lipid by changing xs, as shown in Fig. 6.6B. Thus, γ(AL)
can be obtained simply from the arc-length continuations done at constant temperature in
paper I. The results for two different temperatures in the linear region around γ = 0 are
also shown in Fig. 6.12A. For larger magnitudes of γ the curves become nonlinear and
saturate at large values of AL as shown in Fig. 6.12B, a result found previously [4, 6]. We
find that KA = 9.72ε/σ2 for kT/ε = 1.0 and KA = 5.31ε/σ2 for kT/ε = 1.3. As expected,
the compressibility is lower (higher modulus) at lower temperatures. The DFT is more
compressible than the MD calculation, but is of the same order of magnitude. Because
the DFT does not strictly enforce excluded volume in the chain configurations, we would
expect it to yield a somewhat more compressible bilayer.
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6.6 Summary

We have compared results of CMS-DFT and MD calculations for a freely-jointed coarse-
grained model of lipids. The MD simulations showed that these flexible model lipids will
self-assemble into a bilayer, and that the two leaflets of the bilayer are only slightly inter-
digitated. Comparisons of DFT calculations and MD simulations of lipids near surfaces
demonstrated that the theory predicts packing in these asymmetric molecules rather well.
Our single site solvent model is somewhat different than the LJ fluid used in the simula-
tions, but is nevertheless simple to use.

We are able to obtain fluid bilayer solutions of the DFT which are quite similar to the
corresponding MD bilayer profiles, once those profiles have been corrected for transverse
fluctuations of the bilayer. We did not find an ordered or gel phase in the MD simulations,
although ordered phases are predicted by the DFT; thus the theory does not compare well
with simulation at low temperatures. However, the physical properties of the fluid bilayers
are also similar in the DFT and MD calculations, and they do exhibit the same trends with
temperature. Calculation of the lateral stress profile is particularly straightforward with the
DFT and gives similar shapes as the Irving-Kirkwood stress profiles calculated with MD.
We also showed that the area compressibility modulus compares favorably between the
DFT and MD calculations, although the DFT system is somewhat more compressible. The
DFT thus provides an attractive way to calculate mechanical properties of more complex
systems such as mixed lipid bilayers or assemblies of proteins and lipids.
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Figure 6.1. A comparison of density functional (curves) and
molecular dynamics (symbols) calculations on a liquid of model
lipids near surfaces. We show density profiles for the head groups
(plus signs) and tail beads (circles) near a surface located at x = 0.
The various cases are: (A) Repulsive chains at a repulsive wall
with a bulk density of ρbσ3 = 0.711, (B) attractive chains at an
attractive wall with a bulk density of ρbσ3 = 0.695, (C) attractive
chains at a repulsive wall with ρbσ3 = 0.746, and (D) a modi-
fied prediction to the attractive chain repulsive wall case where the
repulsive part of the direct correlation functions were reduced in
magnitude by a factor of 2.5.
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Figure 6.2. A comparison of density functional (solid curves)
and molecular dynamics (symbols) calculations on solvated lipids
near surfaces. The two cases are: RR with a bulk density of
ρbσ3 = 0.709 and a solvent fraction of xs = 0.630, showing A)
headgroups (solid circles) and tails (plus symbols), and B) sol-
vent density profiles (triangles); and AA with a bulk density of
ρbσ3 = 0.683 and solvent fraction xs = 0.635, showing C) head-
groups (solid circles) and tails (plus symobls), and D) solvent den-
sity profiles (triangles).

108



Figure 6.3. Pressure as a function of solvent density for three
temperatures: kT/ε = 0.85 (dashed curves), kT/ε = 1.0 (dotted
curves), and kT/ε = 2.0 (solid curves). The upper curves are cal-
culated with the current DFT theory, the lower set of curves is from
the equation of state for Lennard-Jones fluids determined by sim-
ulation [39], and the dash-dotted curve is the Carnahan-Starling
(CS) equation of state for hard-sphere fluids [40].

Figure 6.4. Snapshot of an MD simulation of a solvated lipid
bilayer at kT/ε = 1.0 and P = 0.5ε/σ3, with nL = 220. The large
blue (dark) spheres are the headgroups, and the smaller cyan (gray)
spheres on the outside of the bilayer are the solvent. The lipid tails
have been colored according to which leaflet they belong to; upper
(red or dark gray) and lower (yellow or light gray) leaflets of the
bilayer only interpenetrate over a small distance in the center of
the bilayer.
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Figure 6.5. Density profiles from two MD simulations. Both
were run at Pσ3/ε = 0.5, but the first (A) and (B) was run at
kT/ε=1.0 while the second (C) and (D) was run at kT/ε = 1.3.
Both (A) and (C) show density profiles calculated by straightfor-
ward binning. (B) and (D) show profiles in which bilayer midpoint
corrections have been applied. In all profiles, the tail beads are
shown in solid lines, the head groups are shown in bold lines, and
the solvent is shown in a dotted line.
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Figure 6.6. Data used to pin the DFT ensemble in order to com-
pare with MD simulations on lipid bilayers. (A) shows the re-
lationship between observed solvent density far from the bilayer
and total density in the bulk fluid for kT/ε = 0.9 (dotted lines),
kT/ε = 1.3 (dashed lines), and kT/ε = 2.5 (solid lines) at both
xs = 0.1 (no symbols) and xs = 0.5 (with symbols). (B) shows the
variation of the solvent density with xs for the particular case of
ρbσ3 = 0.59 and kT/ε = 1.3, (C) shows the relationship between
the area per lipid molecule in the bilayer and the chemical poten-
tial variable xs at the two state points {kT/ε = 1.3, ρbσ3 = 0.59}
(open circles) and {kT/ε = 1.0, ρbσ3 = 0.68} (closed circles), and
(D) shows the area per lipid molecule measured at the point of zero
surface tension varying with total bulk density ρbσ3, when the tem-
perature is held constant at kT/ε = 1.3.
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Figure 6.7. DFT predictions for lipid bilayer profiles for compar-
ison with MD predictions in Figs. 5B and 5D. (A) and (B) show re-
sults for kT/ε = 1.0 while (C) and (D) show results for kT/ε = 1.3.
The DFT state points for (A) and (C) were set based on matching
solvent density far from the bilayer and area per lipid in the ob-
served bilayer. The state points for (B) and (D) were chosen by
matching the solvent density and requiring the bilayer to be at zero
surface tension.
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Figure 6.8. Site density distributions in zero tension bilayers at
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Figure 6.11. Stress profiles calculated from DFT calculations at
(A) {kT/ε = 1,ρbσ3 = 0.68,γ = 0} and (B) {kT/ε = 1.3,ρbσ3 =
0.59,γ = 0}, corresponding to the same state points as Fig. 7.
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Figure 6.12. Surface tension as a function of area per lipid,
relative to the zero tension area per lipid. (A) MD results for
kT/ε = 1.0 (square symbols with best linear fit) and DFT re-
sults for kT/ε = 1.0 (dotted line) and kT/ε = 1.3 (dashed line),
corresponding to the same state points as Fig. 7. (B) shows the
full nonlinear behavior of the DFT results over a wider range of
(AL −AL0)/AL0.
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Chapter 7

Comparisons of different lipid models
with DFT

7.1 Motivation

In this section we examine the effects of varying some of the parameters of the coarse-
grained lipid model used in the DFT calculations. These results should be compared with
those in the section, “A density functional theory approach for coarse-grained lipid bilay-
ers”. We had several motivations to look at different lipid models:

1. Can we find models that give consistent values for lipid properties and that are rea-
sonable models for real lipid bilayers?

2. Can we find a lamellar phase with a reasonable amount of solvent between the bilay-
ers by going to smaller solvent size?

3. What happens to our “unbinding” transition as we change the model?

4. Do we still get ordering with overlapped spheres or was that an artifact of tangent
spheres?

7.2 Models

We attempt to answer these questions by looking at two modifications to the model. Our
original tangent site model with headgroups of size σh = 1.44σ and tail and solvent groups
of sizes σt = σs = σ will be denoted by Model I.
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7.2.1 Model II: Tangent spheres, small solvent

Here we consider lipid chains still consisting of tangent spheres, with σh = 1.44σ and
σt = σ. However, we consider a more realistic size for the solvent spheres. For DPPC, the
total volume of the head group is 320.9 Å3 while the volume of a water molecule is about
30 Å3, so the ratio of water volume to head group volume for this case is about 0.093 [1].
If we enforce the same ratio in our model lipid, we obtain σs = 0.82σ. For simplicity, we
explore this model keeping the total site density fixed at ρbσ3 = 0.59 as before. This means
that at the same value of xs, the actual volume of solvent will be smaller than for the larger
solvent we used previously.

7.2.2 Model III: Overlapped spheres, large solvent

Here we consider lipid chains in which the monomers are allowed to overlap. This should
give a more realistic representation of the lipid molecule, since generally bond lengths are
considerably shorter than van der Waals radii in real molecules. To define the bond length,
we consider the bond length between CH2 groups which is approximately 1.54 Å. Then the
effective bond length between groups of 2 CH2 groups each is about 2.58 Å. Assuming that
each tail bead represents two CH2 groups, we can identify σ = 4.75 Å by equating volumes.
Then we find that a bond length of 2.58 Å corresponds to ltt = 0.54σ. We arbitrarily set
the head-head and head-tail bond lengths to have the same ratio of ltt/σ = 0.54, so that
lhh = 0.78σ and lth = 0.66σ.

The next question is what bulk density to use in this model. Since the sites in the lipid
molecules now overlap, the lipids occupy a smaller total volume than before. The volume
can be calculated following work by Abrams and Kremer [2]. We find for the bead sizes
chosen here, the lipid now has a volume of about 8.26σ3, compared to the tangent site
lipids which have a volume of about 11.5σ3. We attemped to set the bulk site density for
this model by maintaining the same lipid packing fraction as at the bilayer-lamellar-solvent
triple point in the tangent site model. This gives a total site density of ρbσ3 = 0.728.
However, we had some numerical difficulties at this density and so mostly looked at a
system with a higher bulk site density of ρbσ3 = 0.825.

7.3 Results

Here we compare our results to those obtained for Model I. First we note that in all cases,
the direct correlation funactions c(r) are much more concentration dependent than before.
This isn’t surprising since in the original model the solvent was quite similar to the lipid
tails, so the environment in model I in the homogeneous phase was relatively concentration
independent. Fig. 1 shows the c(r)’s for Model II, and Fig. 2 shows those for model III.
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We checked that the interpolation of the c(r)’s made sense by running a few inde-
pendent PRISM calculations, and found quite good agreement for the case of overlapped
spheres and large solvent at ρtσ3 = 0.825, as shown in Fig. 2C,D.

Figure 7.1. Model II: Direct correlation functions for all αβ pairs
as a function of bulk solvent number fraction xs at a bulk density
of ρσ3 = .59. Figure A shows the direct interactions ctt , chh, css,
while figure B shows the cross terms cth ,cts, chs. Note that the
subscripts indicate tail beads, head group beads and solvent. The
various curves are xs =.001 (solid line), xs =.333 (dashed line), xs

=.667 (dotted line) and xs =.999 (dashed-dotted line) for all cases.

7.3.1 Tangent spheres, small solvent

Here the lipid molecules still consist of tangent spheres, but now σs = 0.82σ. In general,
we found that this model behaved quite similarly to Model I. The main results can be
summarized as follows:
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1. We found that both bilayers and lamellar phases look qualitatively similar to those
found from Model I. In particular, the lamellar phase is still not very hydrated, at
least at the binodal point at T = 1.73. See Fig. 3. The density profiles at the two
extremes of the single bilayer stability also looked similar to those in Model I.

2. The continuation curve at T = 1.73 had less structure than that for model I at T = 1.3
(we note that it’s not necessarily clear how the temperatures change with the model).
In particular, we did not find the two fused bilayer state that we found with model I,
although perhaps we looked at the wrong state point. The lamellar phase no longer
crosses through the mulitnodal point as before, but instead occurs slightly to the left
in a plot of free energy vs xs at T = 1.73.

3. The shape of the bilayer binodal line is rather different than before, and in particular it
intersects the high xs curve describing the bilayer limit of stability near T = 2.5. The
binodal appears to become independent of xs at lower temperatures, around T = 1.4.
Thus the range of existence for zero tension bilayers is smaller than before.

4. Elements of the phase diagram are shown in Fig. 4. We still have a critical point
at high temperature. The transition from macrophases to microphases occurs near
T = 2.1, similar to before, but the slopes of the bilayer/solvent and 1 bilayer-3 bilayer
coexistence curves are much more shallow than before, and don’t extend to as low
a value of xs. Also the bilayers seem to stop at higher temperatures. The biggest
change from Model I is that the isolated bilayer phase no longer appears to be lowest
in free energy anywhere; instead we have the lamellar phase. We performed a few
calculations of the excess free energy curves for the lamellar and independent bilayer
states, at temperatures of T = 2.0,1.73,1.46, and in all cases the lamellar phase had
the lower free energy. So, the “unbinding” transition we had before seems to not
exist in this model.

5. Fig. 5 shows some bilayer properties. We see that the area per lipid has similar
magnitudes as in Model I but a different temperature dependence.

6. Finally, at sufficiently low temperatures the lipid chains still order, so this phe-
nomenon was not dependent on having solvent sites of the same size as the tail sites.
We did not explore the ordering in detail.

7.3.2 Model III: Overlapped spheres, large solvent

For the overlapped spheres model, we first look at results for ρbσ3 = 0.825:

1. The continuation curve at T = 2 consists solely of different numbers of bilayer stack-
ings, with no extra loops of any kind, and thus none consisting of fused bilayers.

2. The bilayer profiles are quite narrow and have pronounced depletions in the centers.
The lamellar phase again looks very similar to the bilayer profiles at the multinodal
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point. The densities in the tail regions are high because the bilayers are so narrow.
See Fig. 6.

3. We again found similar behavior for the zero-tension bilayers. The coexistence
curves that we calculated are shown in Fig. 7. We did not examine the relative stabil-
ity of the lamellar and bilayer phases.

4. We hoped that this model might work better for comparing bilayer properties to those
of real lipids, since in this model the volumes and bond lengths in the lipid molecule
are consistent with reasonable values. For zero tension bilayers we find areas per
lipid in the range of AL/σ2 = 3− 4σ2, which corresponds to areas of 67.7 to 90.2
Å2. The thickness of the bilayers is in the range of 5σ, which corresponds to a
thickness of 23.8 Å. The areas per lipid are well within the experimental range for
phospholipids such as DPPC, but the thickness is too small. This is presumably due
to the excess flexibility of our lipid tails. We conclude that simultaneously obtaining
a physically realistic area per lipid and bilayer thickness requires introduction of
some chain stiffness into the model.

Finally, at the lower density of ρbσ3 = 0.728, things become quite different. We initially
had difficulties finding more than one bilayer in the computational domain. We finally did
construct a two-bilayer state and found, at T = 2.3, that the two bilayer branch is completely
disconnected from the single bilayer and solvent branches. This made it more difficult to
sort out the behavior of this model as we had done previously. We thus did not pursue this
further. At this density, the zero-tension single bilayer appeared to be stable over only a
narrow range of temperatures, from about T = 2.2 to T = 2.6.

7.4 Conclusions

To answer the questions originally posed in the motivation section: first, for our coarse-
grained lipid bilayers to have geometrical properties corresponding to real bilayers will
require introducing some chain stiffness into the model. The random-walk chains are too
coiled and lead to overly thin bilayers. In both new models, our lamellar phases were still
not very hydrated in these models, so the solvent size does not appear to have been the
problem. We found that the lamellar to independent bilayer unbinding transition is indeed
model-dependent, as it is absent in Model II where the solvent size is reduced. This is
perhaps not suprising, since this transition appears to be due to packing effects, which
change when one changes the size of the solvent. Finally, although we did not explore this
fully, we did not find clear signs of ordering in the overlapped lipids. This was difficult
to determine however since the overlapped lipids make such thin bilayers even in the fluid
phase.

The calculations presented here were done as a summer project by Julieanne Heffernan,
a student intern at Sandia during the summer of 2004.
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Figure 7.2. Model III: Direct correlation functions for all αβ
pairs as a function of bulk solvent number fraction xs at a bulk den-
sity of ρbσ3 = .825. A) shows the direct interactions ctt , chh, css,
while B) shows the cross terms cth ,cts, chs. The various curves are
xs =.001 (solid line), xs =.333 (dashed line), xs =.667 (dotted line)
and xs =.999 (dashed-dotted line) for all cases. C) and D) show
a comparison between c(r) data generated by PRISM and inter-
polated linearly: xs = .333 (dashed line), xs = .667 (dotted line),
xs = .5 by PRISM (solid line), and xs = .5 interpolated between
the other two (dashed-dotted line).
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Figure 7.3. Model II: Density profiles at the multimodal point
xs = .5439, T = 1.73. The two cases shown are the single isolated
bilayer (A) and the infinite stack of lamellae (B).
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Figure 7.4. Model II: Coexistence lines shown in the T − xs

space at two different resolutions. The various curves show:
1 bilayer-3 bilayer coexistence (solid-line), solvent macrophase-
bilayer coexistence (dash-dotted line) and the solvent macrophase-
lipid macrophase coexistence (dashed-line).

Figure 7.5. Model II: Area per lipid AL and thickness t along
the binodal (solid line) and along the spinodals (dashed lines) for
a single bilayer as a function of temperature.
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Figure 7.6. Model III: Density profiles at the multinodal point
T = 2.0,xs = .3037. The two cases shown are the single isolated
bilayer (A) and the infinite stack of lamellae (B).
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Figure 7.7. Model III: Coexistence curves showing: 1-
bilayer-3bilayer coexistence (solid-line), solvent macrophase-
bilayer coexistence (dotted line) and the solvent macrophase-lipid
macrophase coexistence (dashed-dot-line).
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Chapter 8

Control of Membrane Structure and
Organization through Chemical
Recognition

8.1 Introduction

The recognition of molecules and ions at the cell membrane surface is the basis of cellular
communication. The binding of these analytes from solution typically induces a reorga-
nization of membrane components to form supramolecular structures that direct a specific
membrane function or signaling process. A prominent example of molecular recognition
induced membrane reorganization is the activation of T cells to antigen presenting cells. It
is known that on the T cell membrane a αβ heterodimer, along with other subunits, orga-
nize into a supramolecular structure to recognize and elicit specific immune responses to
the antigen presented.1,2 Furthermore, the signaling from these organized subunits is facil-
itated by the aggregation of peripheral receptors. Aggregation of these receptors into the
so-called “immunological synapse” has been observed at the microscopic scale via fluores-
cent labeling of the receptors.3,4 The aggregation of receptors, either in specific organized
assemblies of a few components or in large, but less well defined structures, is a common
theme for cell-cell and cell-environment communication.

Another type of organized assembly of molecules in cell membranes that has been
linked to specific cellular functions is the lipid raft.5 These sub-micron structures are
composed of various glycosphingolipids, cholesterol, long, saturated phosphatidylcholine
lipids,6 and lipid-modified proteins assembled in ordered, liquid phase structures. These
lipid components typically have elevated crystal (or gel)-to-liquid crystalline phase transi-
tion temperatures (Tm) relative to the rest of the membrane lipids, and their straight chain
structure allows them to pack in ordered assemblies that are resistant to dissolution by de-
tergents. Lipid rafts are believed to be associated with signal transduction7 (e.g., T cells,
Ras signaling, etc.), as well as toxin and pathogen entry8 due to the selective partitioning of
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gangliosides and specific proteins into these ordered liquid phase domains. The formation
of these specialized structures and the trafficking of lipids and proteins into and out of them
have spurred a flurry of recent interest in the biological community.

The chemical and physical properties of membrane components dictate their relative
positioning in the membrane and their inter-molecular associations. Clearly, these asso-
ciations and positions are momentary as signaling and molecular trafficking are dynamic
processes. The binding of specific analytes from solution or, alternatively, the chemical
modification of membrane components, is the trigger that determines the spatial and tem-
poral positioning of these components and the structures they form. Understanding the
forces that drive these reversible reorganizations in lipid membranes would impact not only
the biological sciences but may also provide a means to control nanostructure in a dynamic
medium.

Most of these membrane associations are complex, involving numerous long- and short-
range interactions. A study of these interactions will require a simplification of the system,
both with the membrane component and the guest substrates, to isolate specific interac-
tions. This review describes the study of host-guest systems in lipid membranes using
simple lipid structures to bind metal ions, small molecules, polyeletrolytes, and proteins,
and the reorganization of the membrane components as they respond to the binding event.
Using a variety of techniques it is possible to show that molecular reorganization in lipid
membranes occurs at the micron- to nano-scale. From these studies we can begin to gain in-
sight into the subtle interactions that play various roles in receptor aggregation or even lipid
raft formation, and the temporal and spatial control that is possible with such interactions.
Furthermore, an understanding of such self-organized systems may aid in the development
of unique biocompatible and reversible sensor materials, selective affinity surfaces for sep-
arations, and templates for nanoarchitecture.

8.2 Phase Separation in Phospholipid Membranes Induced
by Cation Binding

As mentioned above, the formation of phase separated domains in cell membranes is known
to be caused by differences in the structures of lipid components. Model studies performed
on Langmuir monolayers9 and lipid bilayers10 have confirmed this in phospholipid films
containing two or more lipid structures. Phase separation can also be induced in mem-
branes with initially miscible components through the binding of cations. This is due to the
changes in the phase transition temperature upon cation binding, charge neutralization of
anionic headgroups, and bridging interactions of those anionic lipids with metal ions.

In general, cation binding with phospholipid membranes increases the phase transition
temperature.11 This effect is attributed to changes in the electrostatic interactions at the
headgroup position, conformation and packing of the lipids, and the headgroup hydration.
Even protonation of the lipid’s headgroup can lead to considerable increases in phase tran-
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sition temperature.12 The transition temperature of dimyristoylphosphatidylethanolamine
(DMPE), for example, exhibits an increase of 30 ◦C upon changing the pH from 13 to 0.
DMPE undergoes two pH dependent transitions corresponding to the two ionizable moi-
eties of the headgroup. Protonation of the amino group increases the Tm from 24 ◦C to 49.5
◦C, while protonation of the phosphate diester, at lower pH, causes a subsequent increase to
54 ◦C. Phosphatidylcholine lipids respond similarly to changes in pH, but experience only
a single change in transition temperature at low pH (< 3) upon protonation of the phospho-
diester. In this case increases of ∼10 ◦C are observed (e.g., dimyristoylphosphatidycholine
[DMPC] ∆Tm = 13 ◦C, dipalmitoylphosphatidylcholine [DPPC] ∆Tm = 8 ◦C).

Both divalent and monovalent cations induce changes of the phase transition tempera-
ture of phospholipid bilayers, although to dramatically different extents. Monovalent ions,
such as Na+, K+, Rb+, and NH4

+, induce small increases in Tm (several degrees) of
phospholipid membranes at concentration levels ≥ 1 M.13 The exception to this is Li+,
which can induce large changes in transition temperatures (∆Tm = 40 – 50 ◦C) for phos-
phatidylserine (PS) bilayers with LiCl concentrations of < 1 M. X-ray diffraction studies
find that Li+ causes a change in packing of the lipids and even induces phase separated
domain formation.14 In contrast, Na+ and K+ ions do not induce any change in membrane
structure indicating relatively weak associations with the lipid headgroups.

The biologically relevant divalent metal ions Ca2+ and Mg2+ have much larger effects
on the membrane’s phase transition compared to monovalent ions, although their binding
constants (Ka) differ by only about an order of magnitude. An example of a large phase
transition change occurs in bilayers of dimyristoylphosphatidylserine (DMPS), which ex-
hibit a Tm of ∼ 40 ◦C in the presence of ammonium ion, but registers an increase to 155
◦C with the addition of 0.5 M CaCl2.15 With Mg2+ the effect is not as pronounced but is
still significantly higher than the monovalent ions. X-ray diffraction, infrared spectroscopy,
and 31P NMR spectrometry have determined that Ca2+ interacts mainly with the phospho-
diester moiety displacing waters of hydration and altering the headgroup conformation.
The interaction of Ca2+ with initially homogeneous lipid bilayers is also believed to cause
phase separation within the membrane leading to fusion of phospholipid vesicles.16

Lateral phase separation in mixed membrane systems induced through Ca2+ or Mg2+

binding has been an important topic of investigation over the past three decades. The intro-
duction of temporal and spatial changes in membrane structure through reversible chemi-
cal ligation is an intriguing possibility as a method to direct and enable specific membrane
function. Thus, a number of studies have been used to evaluate lipid chemistry, membrane
composition, and the effects of metal ion affinity upon phase separation. Some of the first
studies were performed by calorimetry. In these studies17 bilayers composed of 66% PS
lipids with 34% diphosphatidylcholine (DPPC) were found to be initially miscible, exhibit-
ing a broad transition centered around 16 ◦C. Upon the addition of CaCl2 (10 mM) the two
lipids phase separate into pure DPPC domains and areas rich in Ca2+ bound PS lipids.
A similar effect was seen with membranes composed of phosphatidic acid (PA) and PC
lipids.18 Spectroscopic methods provide an alternative means to observe lateral phase sep-
aration phenomena, allowing measurements to be conducted on bilayers containing smaller
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mole fractions of specific lipids. Electron spin resonance (ESR) studies of bilayers contain-
ing spin-labeled PC lipids with unlabeled PS lipid have shown that Ca2+ can cause aggre-
gation of the PS lipids into solid phase domains that excluded the fluid phase PC lipids.19

Fluorescence spectroscopy can detect phase separation of phosphoinositide (PI) lipid in PC
lipid bilayers using the excimer and monomer fluorescence of pyrene-labeled PI lipids.20

Calcium induced clustering of PA lipids in an egg-PC bilayer can even be observed at the
micron level via fluorescence microscopy.21

From the examples mentioned above, and in many others not cited here, it has been
shown that divalent metal ions actuate the phase separation of negatively charged lipids
from charge neutral lipids (Figure 1). The observed phase separation is partially due to the
change in miscibility of the negatively charged lipids as their Tm increases upon metal ion
binding, as described previously. However, another important factor is the neutralization
of anionic charge, which eliminates electrostatic repulsion allowing lipids of like structure
to associate. Additionally, the divalent metal ion can act as an ionic bridge, attracting
and interacting with more than one lipid in a local environment. The interaction of lipid
membranes to divalent metal ions is not limited to Ca2+ and Mg2+. Indeed, as will be
described in the next section, it is possible to tailor the membrane surface to bind an array
of multivalent metal ions with varied membrane reorganizational responses.

8.3 Metal Ion Recognition with Synthetic Lipids

Although metal ion interaction with biological lipids can yield remarkable phase changes,
these naturally occurring lipids possess a limited range of functionality. Tailoring of the
membrane with alternative functionality expands the diversity of membrane interactions
with aqueous phase analytes leading to unique responses and structures formed within the
membrane. Furthermore, labeling of the lipids with fluorophores and chromophores facil-
itates the spectroscopic and microscopic monitoring of the membrane as the lipids change
aggregational state in response to metal ion recognition.

Earlier work by Kunitake22 and Singh23 found that amine functionalized amphiphiles
aggregated via complexation with divalent ions. Their synthetic amphiphiles contained
azobenzene chromophores in the midsection of the hydrophobic tail that report on the lipid
aggregation and packing structure. The diamino-functionalized amphiphile 1, shown in
Figure 2, is initially immiscible in the dihexadecyldimethyl ammonium bromide (3) bi-
layer yielding an absorption maximum (λmax) of 312 nm, indicative of H-like (vertically
oriented, close packing) aggregation of the azobenzene chromophores. Upon protonation
of the amino headgroup with acid the λmax shifts to 355 nm revealing an electrostatically
induced dispersion of 1. Subsequent addition of 0.4 mM CuSO4 to the mixture produces
a reaggregation. For this system, the dianionic sulfate group, not the metal ion, was at-
tributed as the cause of amphiphile aggregation resulting from electrostatic attraction. On
the other hand, an azacrown derivative (2) of the above mentioned azobenzene amphiphile
aggregates in response to the binding of Cu2+ ion. Using the same bilayer matrix lipid 3,
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and the same optical detection scheme, the azacrown amphiphile changes from an initially
dispersed state to one that is aggregated as the metal ion complexes with more than one
amphiphile (bottom of Figure 2).

Converse to the lipid cluster formation observed above, metal ion binding can also
produce lipid dispersion in membranes. A number of lipids with metal ion recognition sites
at the headgroup position have been synthesized in our laboratory. Each of these lipids were
designed to mimic biological lipids with two hydrophobic tails off the C1 and C2 carbon
positions of a glycerol backbone and a hydrophilic spacer and headgroup off the C3 carbon.
The lipids were tagged with a pyrene fluorophore on one of the hydrophobic tails to allow
an evaluation of the aggregational state of these receptor-lipids upon the recognition and
chelation of their target metal ions. By monitoring the changes in the pyrene excimer
(λmax = 470 nm) to monomer (λmax = 375 nm) emission a relative assessment of the lipid
aggregation, or phase separation, could be attained. Some excellent examples using pyrene-
labeled lipids to evaluate phase transition temperatures, phase separation, and diffusion
rates can be found elsewhere.24,25,26

Figure 3 shows the basic lipid structure and the headgroups of three synthetic lipids –
PSIDA, PSDSDA, and PS18C6. Lipid membranes prepared with 5% of a pyrene-labeled
lipid and 95% of distearylphosphatidylcholine (DSPC) exhibited a selective fluorescence
response to particular divalent metal ions. Bilayers prepared with PSIDA27 responded
selectively to the presence of Cu2+, PSDSDA28 was selective for Hg2+, and PS18C629 se-
lective for Pb2+. The sensitivities were in the sub-ppb range with linear responses covering
approximately three orders of magnitude in metal ion concentration. Unlike the previ-
ously mentioned phase separation that occurred upon metal ion chelation with negatively
charge phospholipids, these pyrene-labeled lipids initially form aggregated structures that
dispersed into the DSPC matrix upon metal ion binding. The pyrene-labeled lipids are fluid
phase at room temperature whereas DSPC is in the solid phase (Tm = 55 ◦C), thus the two
lipids spontaneously phase separate into domains. Further, the pyrene-labeled lipids are
charge neutral at ∼ pH 7. Unlike the anionic phospholipids mentioned above, where the
binding of metal ions extinguishes the negative charge repulsion between lipids allowing or
promoting lipid aggregation, instead the headgroups of the pyrene lipids become positively
charged upon metal ion binding. The metal bound lipids thus become electrostatically re-
pulsive resulting in their dispersion into the DSPC matrix. A schematic illustration of the
metal ion induced membrane reorganization is shown in Figure 4.

The nanoscale structural changes in the membrane that were produced with the ad-
dition, and subsequent removal, of metal ions in solution were monitored using in situ
atomic force microscopy (AFM) on supported lipid bilayers. AFM images were obtained
of PSIDA/DSPC30 and PS18C6/DSPC29 bilayers formed on mica via vesicle fusion. The
pyrene-labeled lipids were designed with a triethylene glycol spacer so that the headgroup
may extend 8 – 10Å further into solution from the phosphocholine headgroups of DSPC.
This height difference provided a means to distinguish the areas rich in the pyrene lipids
from those rich in DSPC. Figure 5 shows AFM images of the 20% PS18C6/DSPC bilayer
before and after addition of Pb(NO3)2 at 100 µM. Addition of the metal ion caused a dra-
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matic loss in density and structure of the PS18C6 aggregates, as the metal bound lipids
dispersed into the DSPC matrix. Removal of the Pb2+ ions from the membrane, with the
addition of ethylenediamine tetraacetic acid (EDTA), allowed reaggregation to occur and
many of the nanostructural features in the initial membrane structure were recovered. Such
temporal and spatial control over self-assembled materials may be useful in the develop-
ment of actuated platforms for nanoscale engineering and materials architecture.

These pyrene-labeled membranes respond to different metal ions with sensitivities de-
termined by the affinity of the receptor at the headgroup position.31 Thus, the selectivity of
a membrane can be readily tuned by synthetically substituting the headgroup with function-
ality selective for targets of interest. The bilayers are responsive to di- and trivalent metal
ions, however, no response has been observed for monovalent ions (e.g., Na+, K+, Rb+,
Cs+, Ag+) at concentrations up to 1 M. Apparently, either the headgroup on the membrane
surface has little or no affinity for monovalent ions or the electrostatic charge produced
by the binding of the monovalent ion produces insufficient electrostatic repulsion to over-
come the energetic barrier that separates the fluid from the solid phase domains. Further
details into the mechanism of the metal ion induced lipid dispersion will require efforts in
modeling and simulation to estimate the energetics of interactions within this dynamic and
multi-molecular system.

Association with Small Molecules and Polyelectrolytes

Membrane functionality can be further tailored to selectively bind with small molecules.
Specific interactions that occur between the membrane and the small molecule guests can,
like the metal ions, invoke a change in lipid packing and orientation relative to the interface.
Such structural changes in the membrane can subsequently result in aggregation or fusion
of lipid bilayer vesicles.32 An investigation of the relationship between molecular recogni-
tion on the membrane surface and the organization of lipid components in the membrane,
however, requires analyses at the molecular to nanoscale in contrast to these macroscale
phenomena. Membrane imbibed optical probes provide a means to monitor the structural
changes of the membrane upon host-guest interaction, while scanning probe techniques
could yield information on the nanoscale structural changes. Binding isotherms can also
render insights into the reorganization of membrane components through the associations
between the guest molecule and the membrane. Liposome and supported bilayer studies
are, however, difficult experiments to conduct. So, for ease of study the bulk of previ-
ous investigations have been conducted upon functionalized Langmuir monolayers, which
provide good models for host-guest complexation studies with lipid membranes.

Amphiphiles with a variety of functionalities at the headgroup position and tail struc-
tures, some containing optical reporters, are reported extensively within the literature.
Langmuir monolayer studies offer an array of spectroscopic, microscopic, and other physi-
cal measurements on the film either on the air-water interface or as deposited onto solid sub-
strates as Langmuir-Blodgett films. The surface pressure – area (π-A) isotherm is the most
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common method used to characterize membrane structural change upon substrate binding.
In most cases, molecular recognition results in an expansion of the isotherm indicating a
loss in packing order from the increase in steric bulk at the headgroup as the guest molecule
intimately associates. UV-vis absorption and X-ray diffraction33 are a couple of examples
of spectroscopic techniques that can be applied to the monolayer as it exists at the air-water
interface. In the case of UV-vis absorption, the amphiphile, or host molecule, must con-
tain a chromophore that responds to aggregational change. X-ray diffraction, on the other
hand, does not require any special labeling of either species. However, the technique is
dependent upon specialized high-energy sources. Other techniques, such as Fourier Trans-
form infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning
probe analysis, are conducted upon monolayers transferred onto solid substrates. Although
the data collected from these latter techniques have corresponded well with the general
characterization of the monolayer, they do carry with them the implicit assumption that the
stoichiometry and mode of interaction at the air-water interface has transferred faithfully.

Through careful design to create uniquely functionalized monolayer films, hydrogen
bonding, electrostatic, and van der Waals interactions with aqueous phase guest molecules,
can be probed individually or collectively. Lipids functionalized with nucleobase and nu-
cleoside headgroups have exhibited selective affinity for their complementary base pair
either as substrates dissolved in the subphase34 or through inter-lipid association within the
membrane.35 An expansion of the monolayer indicated the 1:1 binding interaction between
the headgroup and a complementary but sterically bulky nucleobase (Figure 6). Interactions
between the host and guest have also been probed with FT-IR spectroscopy confirming the
tight pairing of melamine-barbituric acid hydrogen bond networks,36 N-heterocycles with
Kemp’s acid derivatives,37 and peptide-peptide interactions,38 to mention just a few exam-
ples.

An excellent illustration of how molecular recognition can influence lipid aggregation is
in the study of monovalent versus multivalent interactions.39,40 A guanidine-functionalized
amphiphile, containing an azobenzene chromophore in the hydrophobic tail, can bind with
guest substrates through electrostatic as well as hydrogen bonding interactions. In the
presence of adenosine monophosphate (AMP) the guanidine-functionalized monolayer ex-
hibited an expansion, as determined by surface pressure measurements and UV-vis spec-
troscopy of the azobenzene chromophores that found the aggregation of the amphiphiles to
be disordered. Adenosine triphosphate (ATP), on the other hand, induced a condensation
in the film and produced H-like aggregation of the amphiphiles. XPS analyses of the films
found that the monolayer binds with a 1:1 stoichiometry of phosphate groups to the guani-
dines. Collectively, the data revealed that the 1:1 interaction with AMP created an increase
in the amphiphile’s molecular area due to the steric bulk of the bound guest molecule,
whereas the 1:3 interaction of ATP to amphiphile produced an aggregation of the lipids as
a result of multiple interactions between the guest molecule and the film (Figure 7).

Multiple-point binding interaction has also been observed with polyelectrolytes binding
to lipid bilayers as liposomes and supported membranes. In one system, polymethacrylic
acid was found to associate with the zwitterionic headgroup of DMPC via localized electro-
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static interactions.41 Infrared spectroscopic analysis of the supported bilayer-polyelectrolyte
complex found evidence of domain formation within the membrane. In another example,
lipid “demixing” was observed in two-component lipid membranes containing an anionic
lipid (i.e., PS, phosphatidylglycerol (PG), phosphatidylinositol 4,5-bisphosphate (PIP2))
and PC lipid upon interaction with polycations.42,43 Initially, the lipids are mixed homo-
geneously in the membrane, but upon association with the oligomers of lysine the an-
ionic lipids aggregated into domains. The oligopeptide complexation and subsequent do-
main formation was followed optically by fluorescence microscopy while the binding stoi-
chiometry and thermodynamics were determined through binding isotherms of the peptide-
membrane complex. Thermodynamic analyses of the data found that the free energy of
electrostatic binding of the polypeptide overrides the loss in free energy produced by the
“demixing” or phase separation of the membrane. Similar data were also found with the
binding of cationically charged proteins, such as MARCKS and cytochrome c.4445 Lipid
demixing upon protein adsorption with these systems has been given in depth theoreti-
cal analysis with consideration of the adsorption free energy and the lateral interaction of
bound proteins and lipids.46

Recognition of Proteins

Protein-membrane recognition in synthetic systems is an effective model to study the com-
plex interactions between two self-organized structures, each composed of an array of
strong and subtle forces. This complexation, albeit simplified from the real biological sys-
tem, is nonetheless complicated by multivalent, multifunctional interactions and dynamic
structural changes in the protein that can introduce subsequent non-specific interactions.
Focusing on the specific interactions and, to simplify matters, disregarding the ever present
possibility of protein denaturation, membrane components can be induced to undergo var-
ious reorganizational processes upon protein recognition. Functionalized lipids that act as
receptors for proteins can change from randomly distributed to aggregated, or clustered,
structures as a result of multivalent interactions. Conversely, proteins can also bring about
the dispersion of initially aggregated lipid species into the membrane as a consequence of
the physical separation of the receptor sites on the protein. These membrane organizational
changes can be most readily monitored spectroscopically,47 although all the techniques
previously mentioned have been applied.

As in the studies with small molecules, the Langmuir monolayer provides a model
system that offers control over the lipid film structure while allowing spectroscopic and
microscopic measurements to be made. Experiments performed at either constant surface
pressure or constant area have indicated that the adsorption and denaturation of proteins to
the monolayer surface is dependent upon the film’s pressure.48 Low film pressure leads to
rapid and extensive denaturation, whereas the protein structure is maintained with higher
pressures. This important finding helped to establish that the membrane structure dictates to
some degree the extent of non-specific interactions, which can dominate protein-membrane
association. A correlated aspect of this finding was the observation that cytochromes b5

136



and c preferentially adsorb to fluid phase portions of phospholipid films existing at the gel-
fluid state.49 The proteins are attracted not only to the chemical nature (i.e., electrostatic
interaction between cytochrome and a dimyristoylphosphatidic acid (DMPA) membrane)
of the surface but also the physical structure, which can promote hydrophobic interactions
between the protein and the membrane.

Protein adsorption to monolayers functionalized with optically-labeled “receptor” lipids
can be used to monitor reorganization of lipid components as the film responds to in-
teractions with specific functionality on the protein surface. Some examples, featuring
lipids with iminodiacetic acid-Cu2+ and mannose headgroups, were monitored by fluo-
rescence microscopy to find that His-tagged and lectin proteins induced receptor aggre-
gation through multivalent interactions.50,51 An important corollary for protein-targeted,
functionalized films is their use as substrates for two-dimensional crystal growth.52 With
controlled surface pressure, strong affinity for proteins, and dynamic restructuring of the
self-organized lipid film Langmuir monolayers provide an excellent medium for crystal
growth of membrane-associated proteins.

Bilayer membranes are, of course, more suitable models for understanding cell membrane-
protein interactions. However, their structure and environmental conditions requires a dif-
ferent set of characterization techniques, which are typically challenging to perform and
the data can be difficult to evaluate. Protein binding to the membrane surface can be de-
tected by a number of methods that measure mass or viscosity changes in the membrane,
but monitoring the change in membrane organization has been mostly limited to spec-
troscopy. Cytochrome c, for example, has been observed by ESR spectroscopy to induce
lateral phase separation of anionically charged phospholipids.53 Solid state NMR has been
used to detect mastoparan (wasp venom) induced phase separation of dimyristoylphos-
phatidylglycerol (DMPG) lipid bilayers.54 And, fluorescently-labeled lipids have served as
excellent probes to monitor domain formation, such as the binding of a virus matrix protein
on a mixed DPPC/DPPG bilayer.55

Membrane reorganization as a response to the binding of specific proteins can be a po-
tent signal transducer of a molecular recognition event on the cell membrane surface. The
biocompatibility of the lipid membrane, the dynamic nature of the membrane components,
and the inherent physical separation of the recognition site (at the aqueous phase) from
the optical signal transducer (in the hydrophobic interior of the bilayer) make the func-
tionalized lipid membrane an ideal sensor material for proteins and cells. Sensor materials
based on fluorescence resonance energy transfer (FRET)56 and fluorescence quenching57

have been developed for the detection of cholera toxin. In these membranes a fluorescent
labeled ganglioside, GM1, aggregates in response to multivalent binding with the B sub-
unit pentamer producing either an increase in the FRET signal or loss of fluorescence due
to quenching, depending on the system used (Figure 8). Another unique sensor material,
based on the color changing property of polydiacetylene, also has its detection scheme
based on the reorganization of membrane components. This sensor material has a num-
ber of versions with different biological and chemical targets. One of the original material
designs, which used a sialic acid functionalized lipid in a bilayer containing the polydi-
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acetylene backbone, illustrates the material properties well.58 Recognition of influenza
virus to the membrane causes membrane reorganization, most likely due to the multivalent
interactions between the virus and membrane, resulting in the reorientation of the ene-yne
backbone of the polydiacetylene and subsequent blue to red color change in the material.

In contrast to the common observation of protein-induced clustering, or phase separa-
tion, of lipids in the bilayer we have recently found that protein binding can also induce a
dispersion of receptor-lipids.59 Liposomes of DSPC and a pyrene-labeled, mannosyl func-
tionalized lipid (PSMU) were analyzed with fluorescence spectroscopy to find that the gly-
colipids spontaneously aggregated within the bilayer, due to differences in their Tm. Upon
addition of Concanvalin A (Con A) to the solution the glycolipids dispersed producing a
large inversion in the excimer to monomer emission ratio. The reason for the lipid disper-
sion is believed to be steric factors. That is, the distance between the mannosyl binding
sites of the Con A tetramer and the sheer steric bulk of the protein structure physically sep-
arate the glycolipids subsequently reducing the collision frequency of pyrene (Figure 9). In
situ AFM imaging discovered that the glycolipids aggregated in 10 – 20 nm wide branched
structures throughout the membrane and that the protein adsorbed preferentially to these
glycolipid-rich areas. These results are some of the first to link the molecular scale and
nanoscale reorganizational events occurring in lipid membranes with protein recognition.

8.4 Summary

Lipid membranes are dynamic systems composed of components that are in constant mo-
tion within the membrane but partition to specific areas as needed. Chemical recognition
provides the means by which these components are directed to those areas while also ac-
commodating for the timing of when those components are needed or when they should
dissipate. In this review it was shown that the recognition of metal ions, small molecules,
polyelectrolytes, and proteins dramatically alter the structure of the membrane and the rel-
ative organization of the components. Electrostatic interactions play an important role in
the phase transition temperature of the membrane, as well as the phase separation within
single component and multi-component bilayer assemblies. Short range, specific interac-
tions, such as hydrogen bonding, van der Waals, and metal ion coordination, also contribute
significantly to the recognition of specific molecular guests and the organization of specific
lipids in the membrane. Whether these host-guest interactions play a role in cellular mem-
brane phenomena, such as lipid raft formation, is yet to be determined. The current focus of
that research still remains on the complex issues of phase separation based upon lipid struc-
ture. But, from the same principals presented in this review ever more complex schemes for
signal transduction in synthetic systems are being developed that integrate transmembrane
structures60 or enzymatic reactions61 showing the versatility of the chemical recognition
concept. The insights gained through these model membrane systems will provide a fun-
damental understanding of cell membrane structure and also aid in the future development
of novel lipid membrane based materials.
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43) Wang J, Gambhir A, Hangyás-Mihályné G, Murray D, Golebiewska U, McLaughlin
S. (2002) Lateral Sequesteration of Phosphatidylinositol 4,5-Bisphosphate by the Basic
Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Is Due to Nonspecific
Electrostatic Interactions. J. Biol. Chem., 277, 34401 - 34412.

44) Heimburg T, Angerstein B, Marsh D. (1999) Binding of Peripheral Proteins to Mixed
Lipid Membranes: Effect of Lipid Demixing upon Binding. Biophys. J., 76, 2575 - 2586.

45) Buser CA, Kim J, McLaughlin S, Peitzsch RM. (1995) Does the binding of clusters
of basic residues to acidic lipids induce domain formation in membranes? Mol. Membr.
Biol., 12, 69 - 75.

46) May S, Harries D, Ben-Shaul A. (2000) Lipid Demixing and Protein-Protein Interac-
tions in the Adsorption of Charged Proteins on Mixed Membranes. Biophys. J., 79, 1747 -
1760.

47) Devaux PF, Seigneuret M. (1985) Specificity of lipid-protein interactions as deter-
mined by spectroscopic techniques. Biochim. Biophys. Acta, 822, 63 - 125.

48) Verger R, Pattus F. (1982) Lipid-Protein Interactions in Monolayers. Chem. Phys.
Lipids, 30, 189 - 227.
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Figure 8.1. Phase separation of a mixed membrane, composed of
anionic and charge neutral lipids, induced by the binding of a di-
valent metal ion. The binding of the metal ion not only neutralizes
the anionic charge at the lipid’s headgroup but also increases the
Tm of the aggregated lipids.

Figure 8.2. Molecular structures of azobenzene containing am-
phiphiles from references 22 and 23. The bottom illustration
shows how metal ion binding results in amphiphile aggregation.
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Figure 8.3. Molecular structures of pyrene-labeled lipids func-
tionalized with metal ion receptors from references 27, 28, and 29.

Figure 8.4. Divalent metal ion recognition with the receptor lipid
creates electrostatic repulsion between metal bound lipids induc-
ing a dispersion of these lipids into the solid phase domains of
DSPC. The decrease in local pyrene concentration from lipid dis-
persion produces a significant decrease in the excimer to monomer
fluorescence ratio.
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Figure 8.5. In situ AFM topographic images of a 20%
PS18C6/DSPC bilayer in an aqueous 0.1 M NaCl solution sup-
ported on mica (A) before and (B) after addition of 0.1 mM
Pb(NO3)2. The lighter, taller areas, representing aggregated
PS18C6 lipids, are rapidly dispersed by the recognition of Pb2+

ion (reference 29). There also appear in the images tall, sharp
peaks that do not correspond to any structures formed by aggre-
gated lipids. The origin of these nanoscale particulates is un-
known, although they were observed sporatically throughout the
membrane and were sometimes in fixed positions relative to the
AFM imaging area, such as the peak located slightly left of center
(for a full set of images see ref. 29).

Figure 8.6. Molecular recognition of adenine at the air-water in-
terface with a uridine functionalized lipid causes an expansion of
the monolayer due to increases in steric interactions at the head-
group position.
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Figure 8.7. Monovalent versus multivalent interactions of a
guanidine functionalized monolayer with nucleotides. Monova-
lent interaction with AMP causes expansion and disorder in the
monolayer, whereas multivalent interactions with ATP induce lipid
aggregation and highly ordered packing.
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Figure 8.8. Ganglioside GM1 (depicted as lipids with diamond-
shaped headgroups), labeled with fluorescent donor and acceptor
probes, mixed homogeneously in a fluid PC bilayer producing lit-
tle fluorescence resonance energy transfer (FRET) upon illumina-
tion. Binding of the cholera toxin pentamer on the membrane sur-
face resulted in the clustering of the gangliosides and a subsequent
increase in FRET as a result of the change in proximity between
the donor and acceptor fluorophores.

Figure 8.9. Initially the glycolipid PSMU phase separates from
the solid phase matrix of DSPC, as shown on the left side of the
figure. Upon recognition of Concanavalin A (Con A) the glycol-
ipids become separated due to specific interactions with widely
separated mannosyl binding sites on the tetrameric protein struc-
ture (right side of figure).
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Chapter 9

Code development

9.1 Point-Dipole Model and Implementation in LAMMPS

One of the goals of this project was to develop and implement a point-dipole model within
Sandia’s molecular dynamics code LAMMPS [1, 2] that would be suitable for coarse-grain
simulations of lipid/solvent mixtures. The motivation for this task is to include interac-
tions between a dipolar solvent (e.g. water) and lipid molecules containing charged sites
(e.g. head groups) in a coarse-grain simulation so that charge and dipole effects on mem-
brane self-assembly, structure, and dynamics can be modeled, similar to the simulation
results presented earlier in the report for uncharged systems. In the following sub-sections
we describe the point-dipole model itself, discuss how LAMMPS was generalized to enable
such models to be added, and present preliminary results for how the model performs.

9.1.1 Point-Dipole Model

A schematic of a system containing charged and dipolar particles is shown in Figure 9.1.1.
In the most general sense an individual particle (atom or coarse-grain entity) can be neu-
tral or charged, non-polar or dipolar, or be assigned both a charge and dipole strength.
Each particle also interacts with its neighbors via the usual Lennard-Jones (VanderWaals)
potential and can be bonded to other particles to form molecules. Computationally, the
VanderWaals, charge, and dipolar interactions between particles are treated as pairwise in-
teractions. When a pair of particles is part of the same molecule, these pairwise terms may
be weighted to adjust for the additional bond, angle, and dihedral terms in the molecular
force field that include the two particles.

Prior to this LDRD, LAMMPS already included force-fields for charged particles in-
teracting via Coulombic potentials which describe the energy E of a system of particles
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Figure 9.1. Individual particles in the simulation domain can be
uncharged/charged, non-polar/dipolar (small arrows), or any com-
bination thereof. Each particle is also assigned VanderWaals pa-
rameters (ε,σ) and can be part of a molecular structure (bonded to
other particles).

as

E = ∑
i

∑
j>i

qiq j

εri j

where qi is the charge on particle i, ri j is the distance between particles i and j, and
ε is the dielectric constant. For a collection of particles in a periodic box, Coulombic
interactions can be computed within a cutoff distance (with various smoothing options) or
without a cutoff (full long-range interactions). The latter option is performed in two parts:
a short-range pairwise portion using the above equation multiplied by an erfc(βrij) term,
and a long-range portion performed via Ewald summation. β is a user-specified parameter
that partitions the work between the two portions. For efficiency LAMMPS has a particle-
particle particle-mesh (PPPM) solver that computes the Ewald summation by interpolating
particle charge to a 3d grid that overlays the simulation domain, solving Poisson’s equation
on the grid via FFTs, and interpolating the grid solution back to the particle positions to
compute energy and force (electric field) on each particle.

As part of this LDRD, two additional Coulombic options were added to LAMMPS. The
first was a distance-dependent dielectric which adds an additional 1/r term to the Coulom-
bic energy formula above. It can be used as a simple implicit solvent model that includes
solvent screening effects to reduce the interaction between distant charged particles without
the computational expense of adding large numbers of explicit water (or other coarse-grain
solvent) molecules to the simulation.
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The second Coulombic option is an implicit solvent model with a Debye potential of
the form

Ei j =
qiq j

εri j
exp(−κri j)

where κ is the Debye length and the exponential term provides a solvent screening
effect.

For dipolar systems, the formulation outlined in [3] was followed, to derive a dipole
force field for implementation in LAMMPS. A brief listing of the resulting equations is
given here.

The potential at a point i due to a charge/dipole particle at point j a distance r away is
given by

Vi = (q j −�p j •∇i)
(

1
r

)

from which the energy of two particles each with their own charge and dipole terms can
be computed as

Ei j = (qi +�pi •∇i)(q j −�p j •∇i)
(

1
r

)

since E = qV for a point charge in a potential V , and E = −�p•�Z =�p•∇V for a point-
dipole in a potential V , where �Z is the electric field induced by the potential.

The various terms of this generalized formula lead to the familiar expressions for charge-
charge (qq), charge-dipole (qd), and dipole-dipole interactions (dd), namely

Eqq =
qiq j

�r

Eqd =
q
r3 (�p•�r)

Edd =
1
r3 (�pi •�p j)− 3

r5 (�pi •�r)(�p j •�r)
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where�r =�ri−�r j is the vector of length ri j from point j to point i. The force�F and torque
�T acting between the charges and dipoles of two particles can be derived from �F = −∇E
and �T =�p×�Z to yield

�Fqq =
qiq j

r3
�r

�Fqd = −qi

r3
�p j +

3qi

r5 (�p j •�r)�r

�Fdd =
3
r5 (�pi •�p j)�r− 15

r7 (�pi •�r)(�p j •�r)�r+
3
r5

[
(�p j •�r)�pi +(�pi •�r)�p j

]

�Tdq =
q j

r3 (�pi ×�r)

�Tdd = − 1
r3 (�pi ×�p j)+

3
r5 (�p j •�r)(�pi ×�r)

which are the force and torque on a charge/dipole at point i due to a charge/dipole at
point j. Note that�F ji = −�Fi j in all 3 cases, but the torque for the dipole/dipole interaction
is not symmetric, namely �T ji �= −�Ti j.

These equations were implemented in LAMMPS with a cutoff as a short-range dipolar
force field. Because the energy due to dipole/dipole interactions falls off relatively slowly
as 1/r3, a long-range option was also implemented. Similar to the PPPM discussion above,
this is done in two parts.

The interactions for the short-range pairwise portion are derived from

Eall = ∑
i j

(qi +�pi •∇i)(q j −�p j •∇i)
erfc(βr)

r

Ewt = −∑
M

(1−wi j)(qi +�pi •∇i)(q j −�p j •∇i)
1
r

where Eall is a sum over all pairwise interactions within the cutoff distance and Ewt is
a sum over only the M interaction pairs with a weighting factor 0 ≤ wi j < 1 applied when
atoms i and j are in the same molecule and are 1, 2, or 3 bonds apart in a topological
sense. These weighting factors are user-specified in LAMMPS. As mentioned above they
are used in conjunction with bond, angle, dihedral potentials to create consistent molecular
force fields.
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Following [3], these equations can be rewritten in the following form

Eall = ∑
i j

wi j [B0G0 +B1G1 +B2G2]

Ewt = ∑
M

(1−wi j) [D0G0 +D1G1 +D2G2]

G0 = qiq j

G1 = −q j(�pi •�r)+qi(�p j •�r)+�pi •�p j

G2 = −(�pi •�r)(�p j •�r)

B0 =
erfc(βr)

r
Bn =

1
r2

[
(2n−1)Bn−1 +

(2β2)n

β
√

π
exp(−β2r2)

]

D0 =
−erf(βr)

r
Dn =

1
r2

[
(2n−1)Dn−1 +

(2β2)n

β
√

π
exp(−β2r2)

]

which is convenient computationally since the Bn and Dn terms are defined recursively.

Force and torques can be similarly derived to yield the force and torque on atom i as

�Falli = ∑
j

wi j [G0B1�r+G1B2�r−B1∇iG1 +G2B3�r−B2∇iG2]

�Fwti = ∑
Mi

(1−wi j) [G0D1�r+G1D2�r−D1∇iG1 +G2D3�r−D2∇iG2]

�Zalli = ∑
j

wi j[q jB1�r−B1�p j +B2(�p j •�r)�r]

�Zwti = ∑
Mi

(1−wi j)[q jD1�r−D1�p j +D2(�p j •�r)�r]

�Ti =�pi × (�Zalli +�Zwti)
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∇iG1 = qi�p j −q j�pi

∇iG2 = −(�p j •�r)�pi − (�pi •�r)�p j

where the 2nd of the �F and �Z equations is now a sum over the bonded neighbors of
atom i.

The long-range portion of the charge/dipole potential is rigorously derived in the Touk-
maji paper [3] for a particle-mesh Ewald implementation (slightly different than the PPPM
algorithm in LAMMPS). It requires many more FFTs than a charge/charge solution (15 vs
4) and thus is expensive, particularly in parallel, due to the poor scalability of 3d FFTs on
many platforms.

For this LDRD, we instead implemented an alternative formulation that is more approx-
imate but was easier to implement and required the same number of FFTs as the standard
charge-charge solution. The basic idea for the approximation is described here. Issues with
its accuracy and performance are discussed below.

In the long-range PPPM solver, point-dipoles are treated as 2 separated point charges.
The user specifies the separation value a and the code sets q for the two positive/negative
charges to give the correct magnitude of the dipole p = aq. This conversion from a point
dipole to a pair of separated charges occurs twice during the PPPM solve. When charge is
interpolated from the particle positions to the grid, each dipole is converted to two point
charges (taking into account the current orientation of the dipole), and their charge is as-
signed to neighboring mesh points. The PPPM Poisson solver then proceeds in the cus-
tomary fashion except that the number and magnitude of the charges (quantities used in
the PPPM equations) are adjusted to account for the extra dipole charges. Following the
FFT-based Poisson solve, the electric field is interpolated from the grid back to the pair of
charges to compute a net force and torque on the dipole.

9.1.2 LAMMPS Implementation

Implementation of the charge/dipolar force field in LAMMPS (or any molecular dynam-
ics code) requires more effort than coding the equations described in the previous section.
Performing dynamics with a collection of point dipoles uses different formulas for time
integration and thermodynamic computations. New boundary conditions (e.g. application
of an external field) are useful. For a parallel code like LAMMPS that uses a spatial de-
composition of the simulation domain to assign particles to processors, there are additional
issues to be addressed. For example, there are new particle attributes (orientation, torque,
etc.) which have to be stored and communicated between processors at different stages of
the simulation as particles move through the domain.

At the beginning of this LDRD, we recognized various drawbacks to implementing
dipoles and their force fields in our current Fortran version of LAMMPS which was de-
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signed originally to do a single kind of simulation with various options (particles inter-
acting via Lennard-Jones potentials with optional Coulombic and molecular potentials).
While adding dipoles was possible it would make the code considerably more complex
and create a variety of new tests and dependencies that would potentially slow down or
introduce bugs in existing capabilities.

We instead took the opportunity afforded by this LDRD (and other related funding) to
create a new version of LAMMPS that was designed from the outset with more flexibility
and modularity in mind. The new version was written in C++, which allows different
categories of capabilities to be written so that individual options within a category have no
interaction with each other, either in terms of their coding or their execution. The former
means less bugs; the latter means fast code no matter how many options are eventually
implemented.

As a concrete example pertinent to this LDRD, there is an “atom style” defined in the
new LAMMPS version that the user specifies and which determines what attributes are
stored with a particle. All styles store common attributes such as particle type, coordinates,
and velocities. The vanilla “atomic” style stores nothing else. The “molecular” style stores
additional bond, angle, and dihedral topology information with each particle. The “dipole”
style stores charge and dipole orientation information with each particle, as well as arrays
for rotational velocity and torque accumulation. The C++ class for each “atom style” does
more than allocate and store atom attributes; it also contains functions specific to that style
to read particle attributes from LAMMPS input data files, to communicate atom attributes
when forces are computed, and to bundle atom attributes into buffers when atoms migrate
to other processors, etc. This organization of LAMMPS into categories of related func-
tionality was done for several kinds of molecular simulation features: integrator styles,
boundary condition styles, thermodynamic output styles, force field styles, etc.

At a low-level, the data structures and algorithms were retained that made the original
LAMMPS version fast and scalable. These include data structures for numeric particle
attributes, neighbor lists, and molecular connectivities, as well as algorithms for neighbor-
list construction, force evaluation, and parallel data exchanges.

The result is new version of LAMMPS that retains the features and speed of the older
version, while adding considerable new functionality. Metals, granular materials, and now
dipoles can be modeled, a variety of new pairwise potentials are available, and various
new boundary conditions and simulation styles (parallel tempering, targeted molecular dy-
namics) have been added. The new code has also been made open-source and is freely dis-
tributed under the GNU Public License (GPL) from this WWW site: www.cs.sandia.gov/ sj-
plimp/lammps.html. The site also contains extensive documentation, example inputs and
simulation output, and serves as an archive for papers and simulation results produced us-
ing the code. The various versions of LAMMPS have been downloaded 3200 times since
the open-source distribution began a year ago in September 2004.

The specific features added to this new version of LAMMPS pertinent to the point-
dipole model are as follows:
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• Dipolar atom style that stores and communicates dipolar attributes with other pro-
cessors and files.

• Short-range dipolar force fields with cutoff or long-range corrections, as outlined in
the previous section.

• Long-range dipolar PPPM solver using the separated-charge approximation described
in the previous section.

• Time integrator for constant NVE simulation with dipoles that includes rotational
degrees of freedom for dipole particles with an appropriate moment of inertia.

• Boundary conditions for applying an external field that interacts with particle dipoles.

• New commands for assigning dipole magnitudes to atom types.

• Thermodynamic computations and output that include dipolar rotational energies.

• Options to include dipolar orientation and torque in output snapshot files.

9.1.3 Current Status

All of the dipole options described in the previous sections are implemented in the current
version of LAMMPS, including the pairwise charge/dipole and dipole/dipole potentials
with both cutoff and long-range options. Testing of the pairwise force-field implementation
was done by comparing LAMMPS snapshot output that included per-particle force and
torque quantities to independent implementations of the formulas listed above in Python
scripts (separate from LAMMPS), as well as by energy conservation tests of LAMMPS
dynamics.

The long-range PPPM dipole implementation has been more problematic, both to test
for correctness and to judge its accuracy. We have made comparisons with simulations
using very-long cutoff pairwise simulations as well as two-particle dipole models (using
SHAKE constraints to keep the dipole’s bond-length constant) as part of this testing, but
the results are still inconclusive.

One key unanticipated issue is that the separated-charge approximation, while simple,
appears to contribute to poor energy conservation, particularly at the cutoff distance where
the pairwise point dipole (short-range) is converted to two separated charges (long-range).
When the separation parameter is decreased, this transition error at the cutoff is decreased,
but then large, closely-spaced charge pairs are being mapped to the PPPM grid. This de-
creases the accuracy of PPPM itself, through the β factor which depends on the sum of
squared charge values, and through the interpolation of values to and from the mesh. This
can be partly compensated for by using finer grids, but that can incur a significant compu-
tational cost which negates the benefit of the approximation as originally designed! The
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current status is that we are still trying to work out the trade-offs between these various pa-
rameter choices to see if the method can be made sufficiently accurate. If not, a new Sandia
post-doc (Ahmed Ismail) has been working through the details of a true point-dipole long-
range PPPM solution, which may be the alternative we end up choosing over the current
separated-charge approximation.

Unfortunately, without a fully operational long-range component of the force field
we have not yet been able to perform long-timescale energy-conserving simulations of
a coarse-grained dipolar membrane system, as originally planned in our LDRD goals.
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