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Abstract 
 

This report examines a number of hardware circuit design issues associated with 
implementing certain functions in FPGA and ASIC technologies.  Here we show 
circuit designs for AES and SHA-1 that have an extremely small hardware footprint, 
yet show reasonably good performance characteristics as compared to the state of the 
art designs found in the literature.  Our AES performance numbers are fueled by an 
optimized composite field S-box design for the Stratix chipset.  Our SHA-1 designs 
use register packing and feedback functionalities of the Stratix LE, which reduce the 
logic element usage by as much as 72% as compared to other SHA-1 designs. 
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Chapter 1

Small Circuits for Cryptography

1.1 Introduction

In the world of network communications there seems to be an ever increasing appetite for
bandwidth and throughput. New applications require more bandwidth and users simply
require more data to satisfy their needs. This means that there is a good deal of pressure
placed on the networking community to build faster networks. The faster networks are
built with new hardware and software products designed specifically to handle the latest
and greatest speeds.

The networking community realizes the need for security in digital data communications.
Cryptographic processes that are applied to networking technologies must be able to support
the ever increasing network speeds. Thus the cryptographic community follows the typical
trend to build extremely fast cryptographic primitives and to develop creative optimizations
of existing primitives.

In software, there are a number of design principles that can allow software implementa-
tions to be slower or faster. One such principle is memory usage. Typically one may trade
computations for a series of look ups. Look up tables tend to be fast provided that they
are not too big, but with each cryptographic design there are trade-offs as to when a table
look up is more efficient than just doing the calculation. In software, memory usage is not
an overly large concern. Typical computing platforms have plenty of memory available.

With today’s small feature sizes, ASIC and FPGA designers have a great deal of freedom
to build very large, very fast circuits that will keep up with the network speed requirements.
Some of the design trade-offs found in software are also found in hardware. One may trade
calculations for memory look-ups. Depending on the trades one will increase speed by using
more silicon and power.

In typical applications the drive for speedier cryptographic applications makes sense and
the fact that more memory or power is used to accomplish that goal is acceptable because
memory and power are typically cheap and plentiful. It is interesting to note that the typ-
ical commercial problem of pushing for ever increasing speeds has left somewhat of a void
on the other end of the spectrum. Little research has been conducted in the cryptographic
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community to optimize modern cryptographic primitives in a resource constrained environ-
ment. Thus non-standard applications that have highly limiting constraints are not as well
supported as one may like.

The focus of this report is to examine hardware implementations of modern crypto-
graphic primitives that may be more suited to hardware devices with little available memory
and limited power usage. Indeed, we focus on the Advanced Encryption Standard (AES)
and the Secure Hashing Algorithm (SHA-1). Both algorithms are standards supported by
the National Institute of Science and Technology (NIST) and are suitable for, and in some
cases required for, sensitive but unclassified government data transactions.

Our hardware designs have two flavors. The first is Field Programmable Gate Arrays
(FPGA) and the second is Application Specific Integrated Circuits (ASIC). The reasoning
behind focusing our research effort in two different directions is that we feel that most
custom applications with extreme resource constraints will be implemented in an ASIC.
However, designing with FPGAs is cheaper, and more accessible than going straight to ASIC
technologies. Provided one looks toward the eventual ASIC design, FPGA technologies seem
to be a wonderful environment for research, development, and conducting experiments in.
Indeed, they provide a logical stepping stone along the path to ASIC development and
optimization. With ASIC development in mind, our designs attempt to minimize overall
circuit size and power consumption, while at the same time sacrificing as little of the speed
as is possible.

The report proceeds as follows: Section 1.2 continues with a description of the Stratix
FPGA device family. Chapter 2 discusses implementation strategies and details of AES.
Similarly, Chapter 3 discusses SHA-1.

1.2 Stratix Architecture

The Stratix FPGA device family incorporates a number of different technologies in its archi-
tecture. It contains embedded DSP blocks, phase lock loops, configurable logic, and three
different types of memory. The DSP blocks can implement shift registers and multipliers
up to 36× 36 bits, which make them ideal for signal processing applications. The memory
sizes come in 512, 4K, and 512K bits, each supporting a variety of configurations. The
Stratix devices are set up in a row and column based layout. The different components
on the chipset are connected through row and column interconnects. These links establish
communication pathways between the configurable logic in the logic array blocks (LABs),
DSP blocks, and memories.

The most basic component in the Stratix chipset is a logic element (LE). An LE can
implement both synchronous and asynchronous types of logic. Each LE contains a reconfig-
urable 4-1 lookup table (LUT) and 1-bit programmable register. There are 10 LEs per logic
array block which are interconnected through local connection lines. Fig. 1.1 illustrates a
Stratix LE operating in normal mode. Each LE has three outputs which are independently
driven by either the LUT or register. This feature is called register packing and is designed
to improve logic utilization. The register has clock, clock enable, and clear inputs and can
be driven by either internal logic or I/O pins. To speed up register feedback operations
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addnsub

Figure 1.1. Stratix LE in normal mode

each LE has a register feedback line driving the 4-1 LUT as a muxed input. The reg-
ister may also be synchronously driven by either the LUT or directly by the LE inputs.
Besides normal mode an LE can also be reconfigured to operate in dynamic arithmetic
mode. Dynamic arithmetic mode offers dynamic addition and subtraction, and supports
clock/counter enable, and clear/load inputs. For a more detailed description of these types
of modes see [18].

In our implementation we used a Stratix EP1S40F780C5 FPGA chip. It contains 41250
logic elements, 384 512, 183 4K, and 4 512K RAM blocks. We synthesized and compiled our
architectures using Altera’s Quartus II 5.0 software. Our circuit descriptions were written
in Verilog HDL code.
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Chapter 2

Advanced Encryption Standard
(AES)

The Advanced Encryption Standard (AES) was selected in 2000 by the US National In-
stitute of Standards and Technologies as a replacement to the DES block cipher. AES
has grown in popularity over the past few years and has been accepted as the de facto
standard in the cryptographic community. AES is based on Rijndael [6], a multi-round
iterated block cipher with key and block lengths ranging from 128, 192, and 256 bits in
size. There have been numerous research proposals on various hardware implementations
of the AES block cipher. Most hardware implementations have focused on developing archi-
tectures that maximize data throughput. These architectures usually utilize fast unrolled
pipelines with algorithmic optimizations made to the AES S-boxes. Recently, attention
has grown to developing compact implementations of AES with the goal of reducing logic
area [5, 8, 15, 13, 17]. These implementations are ideal for low power embedded applications
that require cryptographic security. We explore various techniques in compacting the AES
algorithm and develop a AES architecture for both FPGA and ASIC technologies.

Our analysis begins by examining the structure of the AES block cipher. We will focus
on the 128-bit version of AES due to its popularity. We follow our discussion with a careful
examination of various algorithmic enhancements. We incorporate these enhancements into
our architecture and conduct a performance comparison to other designs contained in the
literature. Our architecture was developed around the Stratix FPGA chipset, therefore all
of our techniques and optimizations are based on 4-1 LUTs. Since gates are much smaller
than their LUT counterparts this approach may not be optimal for ASIC technologies. The
difference between any area discrepancies should be rather small, therefore the proposed
architecture should provide near optimal results.

2.1 AES Architecture

The encryption round transformation is comprised of four basic components ShiftRow, Byte-
Sub, MixColumn, and AddRoundKey. The individual order of each component is important
with the exception of ByteSub and ShiftRow which can be reversed. The 128-bit version
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AES128(M,K)

Key Scheduler(K)
Let W0.W1.W2.W3 ← K
for i← 4 to 43 do

temp←Wi−1

If i = 0 mod 4
temp← ByteSub(RotByte(temp))⊕Rcon(i/4)

Wi ←Wi−4 ⊕ temp
for t← 0 to 10 do

RoundKey t← (W4t,W4t+1,W4t+2,W4t+3)

Encrypt(M,RoundKey 0, . . . , RoundKey 10)
Let State←M ⊕RoundKey 0
for t← 1 to 9 do

State← RoundTransform(State,RoundKey t)
State← FinalRound(State,RoundKey 10)
return Ciphertext← State

Figure 2.1. AES encryption

of AES consists of 10 rounds of round transformation. The first 9 rounds apply ShiftRow,
ByteSub, MixColumn, and AddRoundKey while the final round applies all operations ex-
cept MixColumn. For distinction these are labeled as RoundTransform and FinalRound
respectively, see Fig. 2.1 for an illustration.

The round structure implementation of AES has several basic architectures to choose
from. The fastest of these architectures unrolls the AES algorithm and applies pipeline
stages to maximize the clock rate. This architecture achieves high data throughput at the
expense of more resource utilization. The size of the architecture can be reduced by rolling
the AES algorithm into a single round. This allows processing over a smaller number of logic
resources. The AES round structure allows for even further size reduction. It is possible
to break up the ByteSub and MixColumn components into four equal pieces and apply a
single piece iteratively over 4 clock cycles. This can effectively reduce the circuit size by
approximately 75% with an order of 4x cost in speed. The authors in [8] go one step further
and break the ByteSub component into sixteen pieces. This configuration requires more
control logic and does not reduce the circuit to 1/16 its size. A careful balance between the
extra control logic and ByteSub reduction must be applied.

For our design we implemented a 4 clock per round rolled architecture. The 128-bit
AES state is stored in a 128-bit shift register and shifted every clock by 32 bits. The round
keys are precomputed by the circuit and stored in memory. It does not make sense from an
efficiency standpoint to compute the round keys on the fly, since most encryption schemes
do not update their symmetric keys after each block cipher instantiation. For additional
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Figure 2.2. Architecture of AES

logic savings the key scheduler is integrated with the round computation by sharing the
ByteSub component. The top level design is shown in Fig. 2.2. The Data Unit contains the
integrated key scheduler and round computation.

2.2 Round Component Optimizations

The state table is comprised of 16 bytes of state table elements ai,j , see Fig. 2.3. Each AES
component transforms the state table elements using byte operations which are based on
arithmetic in the finite field,

F28
∼= F2[x]/(x8 + x4 + x3 + x + 1) (2.1)

Depending on the AES component these operations may act on the state table rows,
columns, or individual table elements.

The ByteSub component is comprised of sixteen 8-bit non-linear transformations op-
erating on the state of the cipher. Each table element ai,j is transformed using the map
ai,j �→ A(a−1

i,j ) + b, where A is a fixed linear transformation, b a fixed 8-bit vector, and a−1
i,j

denotes multiplicative inversion modulo x8 + x4 + x3 + x + 1. The individual 8-bit opera-
tions are referred to as AES S-boxes and are the most computationally expensive part of
the cipher. For that reason the ByteSub component is more expensive than any other AES
round component. The size of the ByteSub component is dependent on the optimization
technique used. The fastest technique uses a large look up table to compute the entire oper-
ation. This particular method is quite expensive because it requires a large number of gates
to implement. Furthermore it lacks in versatility since it is nearly impossible to pipeline.
For a Stratix chipset an 8-bit S-box using look up tables requires 208 logic elements. Given
that there are 16 8-bit S-boxes for one round of AES, the table lookup method is not a
particularly attractive option. Several authors have implemented the 8-bit S-boxes using
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low-order a0,0 a0,1 a0,2 a0,3

bytes a1,0 a1,1 a1,2 a1,3
⇓

a2,0 a2,1 a2,2 a2,3 high-order⇑
a3,0 a3,1 a3,2 a3,3 bytes

Figure 2.3. State table for 128-bit AES

memory [5, 10, 11, 13] for FPGA devices, but loses its appeal when transferred to ASICs,
since memories utilize large areas. Therefore we do not apply this technique in our design.

There has been considerable improvement in the design of AES S-boxes using composite
fields [9]. Composite field techniques provide an alternative representation of the 8-bit
field elements shown in equation 2.1. Using a subfield F24 we can represent any 8-bit
field element by two 4-bit strings. This is equivalent to having an isomorphism φ mapping
F2[x]/(x8+x4+x3+x+1)→ F24[y]/p(y) for some irreducible polynomial p(y) = y2+αy+λ.
The benefit of working with this new representation is that multiplicative inversions are
much more efficient. The multiplicative inversion of a field element a1y + a0, a1, a0 ∈ F24 is
given by,

(a1y + a0)−1 =
a1

(a2
0λ + a0a1α + a2

1)
· y +

a0 + a1α

(a2
0λ + a0a1α + a2

1)
. (2.2)

The addition and multiplication operations given in equation 2.2 are 4-bit operations over
the field F24

∼= F2[x]/q(x). Using the isomorphism φ we can transform an AES S-box to
the equivalent computation (Aφ−1)(φ(ai,j)−1) + b. Choosing appropriate polynomials p(y)
and q(x), and an isomorphism φ the size of a AES S-box can be minimized using,

(φ∗, p∗(y), q∗(x)) := arg min
φ,p(y),q(x)

(
cost(φ) + cost(Aφ−1) + cost(MultInverse)

)
. (2.3)

where cost is the number of logic elements needed to implement this operation for a Stratix
FPGA. This minimization was performed over the subclass of isomorphisms φ, that are also
linear transformations. This reduces the composition Aφ−1 to a linear transformation T
whence the cost(Aφ−1) := cost(T ). Based on these considerations it can be shown that
the irreducible polynomials p∗(y) = y2 + y + 9, q∗(x) = x4 + x + 1 and isomorphism,

φ∗ =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

1 1 0 0 0 1 0 0
0 0 1 1 0 0 0 1
0 1 1 1 1 0 0 0
0 1 0 1 1 1 0 1
0 0 1 1 1 0 1 1
0 0 1 1 0 1 0 1
0 1 0 0 1 1 1 0
0 0 0 0 0 1 0 1

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

(2.4)

minimize equation 2.3. The total number of logic elements needed to perform an AES S-
box using composite fields is 62. This is a considerably less than the table look up method
which required 208 LEs. In our architecture we implement 4 AES S-boxes in parallel over
the columns of the state table. This requires a total of 4 clocks per round.
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Figure 2.4. AES 32-bit Data Unit

The ShiftRow operation shifts the rows of the state table cyclically to the left by either 0,
1, 2, or 3 bytes. The number of bytes a row is shifted is determined by the rows label. The
first row is shifted 0 bytes while the last row is shifted 3 bytes. In our implementation the
128-bit register storing the cipher state is multiplexed with ShiftRow & Shift 32 and Shift 32.
This allows for dynamic selection of the ShiftRow operation so that the key schedule can be
computed.

The MixColumn operation applies a fixed linear transformation to each column of the
state table. Each column is independently processed using the invertible linear transforma-
tion, ⎡

⎢⎢
⎢
⎣

a
′
0,i

a
′
1,i

a
′
2,i

a
′
3,i

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

a0,i

a1,i

a2,i

a3,i

⎤

⎥⎥
⎦ (2.5)

For additional logic savings we replace the multiplication of 3 in the MixColumn trans-
formation to 2 + 1 so that the output byte a

′
0,i = 2a0,i + 3a1,i + a2,i + a3,i becomes

2a0,i + 2a1,i + a1,i + a2,i + a3,i. In our architecture a single MixColumn transformation
is applied every clock directly after the 4 AES S-boxes.

The final component AddRoundKey is the bit wise exclusive or of the round key. The
round keys are derived using the key scheduler which is driven by the AES symmetric
key. The key scheduler algorithm shares the AES S-boxes with the round computation.
This allows a further reduction in logic resources. The Data Unit containing the round
transformation and integrated key scheduler is shown in Fig. 2.4.

2.3 Performance and Analysis

Our compact implementation of AES encryption is based on a 4 clock per round looped
architecture. To help reduce logic area we developed composite field optimizations to the
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Table 2.1. AES performance figures for various cores

Area Max Clock ThroughputDesign Device
LE Block RAMs (MHz) (Mbps)

Our Stratix-5 569 1 M4K 71 207
Helion Tech Stratix-5 630 3 M4K 138 360
Helion Tech Stratix-5 1023 10 M4K 122 1400
Iguchi et al. [11] Stratix-5 5142 40 M4K 39 5080
Iguchi et al. [11] Stratix-5 12560 80 M4K 160 20480

AES S-boxes. All of our optimizations were based on the Stratix FPGA chipset. We
compiled our design using Altera’s Quartus II 5.0 software with a speed grade set to 5.
Table 2.1 provides a performance comparison to other AES architectures contained in the
literature. We restricted our comparisons to other Altera devices since they shared a similar
logic structure.

Our implementation was the smallest of the AES cores that contained both encryption
and key scheduling. As a comparison we listed several high throughput implementations.
These provide an idea of the various performance tradeoffs of speed vs. area.

The size of our architecture could have been further reduced by replacing the 4 AES
composite field S-boxes with 4 lookup tables. These lookup tables could have been im-
plemented using 2 M4K dual-port RAMs. The size of our design would be reduced to
321 = 569−4∗62 logic elements and 3 M4K RAM blocks. This design would have required
a much larger logic area for an ASIC implementation. The size of an 8-bit AES S-box
using table lookups in CMOS7 is 909 equivalent gates. Using our composite field design
we are able to reduce the area by more than 40% to 371 gates. This provides considerable
savings if multiple AES S-boxes are used. For additional performance the composite field
AES S-boxes can be pipelined. This is not true when using table lookups.

17



Chapter 3

Secure Hash Algorithm (SHA-1)

In 1995, NIST introduced SHA-1 as the secure hash standard. The SHA-1 design is based
on the Merkle-Damg̊ard iterative hash structure [7]. The SHA-1 hash transformations were
designed for 32-bit platforms and can accept any message input up to 264 bits in length.
The output produces a 160-bit output called a message digest.

The architecture for SHA-1 can be broken into two separate stages, one for preprocessing
and the other for hash computations. The preprocessing stage prepares the message into
a block format by appending padding at the end. Padding bits are added until the new
message can be parsed into 512-bit message blocks Mi, i = 1, . . . , N . The second stage
takes the message blocks and iteratively applies round mixing operations. Internally these
mix operations use five hash values, each 32-bits a piece. At the start of the computation
the five hash values are initialized with five 32-bit word constants H

(0)
j , j = 0, . . . , 4. The

first message block and initialized hash values are processed through 80 rounds of mixing
and produce a 160-bit output. The output of each mix operation is used to reinitialize the
hash values with five new constants. This process continues for each of the N successive
message blocks. An illustration of the second stage of SHA-1 is shown in Fig. 3.1.

The SHA-1 mixing operations Round Mix uses two main processes in its computation.
The first process called the Message Scheduler expands a message block Mi into 80 32-

M 1

512

H , . . . , H(0)
0

(0)
4

160

160

M 2

512

160

. . .

160

M N

512

160

Message Digest

80 Round
Mix

80 Round
Mix

80 Round
Mix

SHA-1 Constants

Figure 3.1. SHA-1 Top Level Description
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Round Mix(Mi,H
(i−1)
0 , . . . ,H

(i−1)
4 )

Message Scheduler(Mi)
Let M

(0)
i · · ·M (15)

i ←Mi

for t← 0 to 15 do
Wt ←M

(t)
i

for t← 16 to 79 do
Wt ← ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

Mix(Wt,H
(i−1)
0 , . . . ,H

(i−1)
4 )

Let (a, b, c, d, e) ← (H(i−1)
0 ,H

(i−1)
1 ,H

(i−1)
2 ,H

(i−1)
3 ,H

(i−1)
4 )

for t← 0 to 79 do
T ← ROTL5(a) + ft(b, c, d) + e + Kt + Wt

e← d
d← c
c← ROTL30(b)
b← a
a← T

return (H i
0,H

i
1,H

i
2,H

i
3,H

i
4)← (a + H

(i−1)
0 , b + H

(i−1)
1 , c + H

(i−1)
2 ,

d + H
(i−1)
3 , e + H

(i−1)
4 )

Figure 3.2. Round Mix operation

bit words Wt, t = 0, . . . , 79. The initialization hash constants H
(i)
j and words Wt supply

the inputs for the second process, called Mix. The Mix operation uses five 32-bit working
variables a, b, c, d, and e. The hash value inputs initialize the working variables at the start
of the Mix computation. During each round the working variables are mixed using logic
functions, shift rotations, and constant additions. At the end of the eightieth round the
working variables are added to the initial hash values to form the output. For more details
see Round Mix algorithm in Fig. 3.2.

There are a number of different strategies to consider when developing a SHA-1 imple-
mentation. The most commonly used architectures are designed to maximize data through-
put. These designs usually implement the five working variables in a parallel fashion [14].
This offers a considerable amount of speed and is well suited for ASIC hardware.

The round structure of the Round Mix operation reveals a great deal of parallelism. The
Message Scheduler and Mix processes may be parallelized to shorten the critical path and
increase the clock rate. The addition of the constant Kt may also be pushed over into the
Message Scheduler process. This balances the work load between the Message Scheduler
and Mix processes since they now both operate on five variables. By moving the constant
Kt over to the Message Scheduler process a straightforward serial implementation of SHA-1
can be developed. Instead of processing the hash variables in parallel, the variables can
now be called from memory and computed serially. This increases the number of clocks per
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round from one to five. This feature is employed in our design.

The benefit of going from a parallel to serial design in an ASIC is minimal at best,
since the registers are swapped for a memory based configuration. The benefits of a serial
implementation for an FPGA on the other hand, are quite noticeable. As we will show a
significant reduction in resources can be achieved employing this particular method. Using
the configurable logic of an FPGA for storing register variables, is an inefficient use of the
logic resources.

3.1 SHA-1 Architecture

Our approach in developing a compact version of SHA-1 for FPGAs remained simple. The
goal of our design was to reduce the number of logic resources by effectively using the FPGA
technology. We did this by incorporating lookup tables in our development process. This
allowed us to manage the size and speed of our design at each stage of our development.
When appropriate we also take advantage of the Stratix LE architecture by employing
register packing and feedback techniques. Since most FPGAs utilize 4-1 LUTs in their
construction our design will provide the same resource benefits as that achieved for the
Stratix chipset. We begin our analysis by reviewing the SHA-1 algorithm in more depth.
We will focus our attention on the size requirements and implementation features of SHA-1
for FPGA devices.

A large fraction of SHA-1’s size can be attributed to the storage of 32-bit variables.
The Message Scheduler and Mix operations alone contribute to at least 35 = 19 + 16 32-bit
variables for computation. If Stratix LEs were the only available storage resource, it would
require at least 1120 logic elements to store all these variables, since each LE contains
a single 1-bit programmable register. This is not the most efficient use of the LE logic
resources since the majority of the combinatorial functionality will remain unused. To
utilize the logic more efficiently we propose to store these variables in two M4K 128×32 bit
memory blocks, one assigned to both the Message Scheduler and Mix operations. The Mix
operation memory stores the initialization constants H

(0)
0 , . . . ,H

(0)
4 ,H

(i−1)
0 , . . . ,H

(i−1)
4 and

the working variables a, b, c, d, and e. While the Message Scheduler memory stores the four
constants Kt and sixteen of the Wt variables. To efficiently use the memory bandwidth and
increase circuit speed the constant variable Kt is be integrated into the Message Scheduler
algorithm. The Message Scheduler returns Wt + Kt instead of Wt. This saves us one clock
of computation.

For rounds t ≥ 16 the Message Scheduler takes five clocks to load the 32-bit variables
Wt−3,Wt−8,Wt−14,Wt−16, and Kt. The value Wt + Kt is computed at the end of the fifth
clock cycle. In a similar fashion it takes the Mix operation five clocks to load the working
variables a, b, c, d, and e to compute ROTL5(a) + ft(b, c, d) + e. For increased throughput
the Message Scheduler is pipelined to delay the arrival of Wt + Kt to the beginning of the
5th clock of the Mix operation. This allows the new value of a to be computed without
delay by combining the Message Scheduler and Mix operation calculations. This gives fives
clocks per round for a total of 401 clocks over 80 rounds, with one extra clock accounting for
the pipelined delay. When setup and load times are accounted for the Mix Round operation
takes a total of 415 clocks. The proposed architecture for our design is shown in Fig. 3.3.
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Figure 3.3. Architecture of SHA-1

The memory controller for the mix operation memory uses a cyclic addressing scheme.
In SHA-1 the working variables b, d, and e are updated using enew ← dold, dnew ← cold,
and bnew ← aold. The memory controller shifts the labeling of the addresses cyclically by
one after each round of computation. Since only a few registers are updated every clock,
this conserves power consumption. The main controller in the circuit controls the clock
enables for all the registers and mux channel selections. The size of the controllers size
were minimized by assigning don’t cares to transitions that had no effect on the main
computation. This allowed us to find the smallest combinatorial implementation using 4-1
lookup tables.

3.2 Implementation of the Logic Functions

SHA-1 uses three combinatorial logic functions to compute the Round Mix operations. In
this section we develop a compact implementation of these logic functions optimized for
the Stratix LE architecture. Our design uses register feedback and packing functionalities
built into the logic element structure. This helps improve on both speed and logic resource
utilization.

The function ft is a family of three combinatorial functions. The Mix process compu-
tation uses the three functions over 20 consecutive rounds a piece, with one function being
used twice. The function ft is defined as follows:
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Figure 3.4. Implementation of ft using Stratix logic elements

ft(x, y, z) :=

⎧
⎨

⎩

(xy)⊕ (xz) , 0 ≤ t ≤ 19
x⊕ y ⊕ z , 20 ≤ t ≤ 39, 60 ≤ t ≤ 79
(xy)⊕ (xz)⊕ (yz), 40 ≤ t ≤ 59

Using a modification we can decompose the logic function ft into two smaller functions.
In order to best utilize the 4 inputs of a 4-1 LUT, we break the variable t down from 7 to 2
bits. This can be accomplished be defining t′ := (t′1, t

′
0) to be (0, 0) when 0 ≤ t ≤ 19, (0, 1)

when 20 ≤ t ≤ 39, (1, 0) when 40 ≤ t ≤ 59, and (1, 1) when 60 ≤ t ≤ 79. If we take,

F0(x, y, z, t) :=
{

x(y ⊕ z), t = 0
x⊕ y , t = 1

and

F1(x, y, z, t) :=
{

x⊕ z , t = 0
x⊕ (yz), t = 1

we can reconstruct ft using the composition F1(F0(x, y, z, t′0), y, z, t′1t′0). This construction
is shown in Fig. 3.4 using Stratix logic elements. The registers in F0 are used to store the
working variable d when it is loaded from the mem1 output. Similarly the registers in F1

are used to store c. When working variable b arrives, the registers in F0 and F1 feed their
values back through the 4-1 lookup tables to compute ft. This construction uses only 64
logic elements, which is the minimum for a Stratix chipset.
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Table 3.1. SHA-1 performance figures for various cores

Area Max Clock ThroughputDesign Device
LE Block RAMs (MHz) (Mbps)

Our Stratix-5 401 2 M4K 159 197
Aldec Inc. APEX20K-1 1413 - 64 404
Alma Tech. APEX20KE 1329 - 64 404
Cast Stratix-5 1621 - 107 676
Ning et al. [14] ACEX-1 1622 - 43 269

3.3 Performance and Analysis

There is surprisingly little information contained in the literature on compact implementa-
tions of SHA-1 in FPGAs. The designs that we encountered were optimized for maximum
throughput, and take only one clock cycle per round . While fast, this design strategy is not
the best for utilizing the FPGA resources efficiently. This significantly wastes combinatorial
logic, since most of the logic elements are used in storing registered variables only. In our
approach we applied an iterative loop architecture to both the Message Scheduler and Mix
processes. This saves a considerable amount of logic, since most of the registered variables
could be pushed into memory. Furthermore we optimized our algorithms around the logic
element structure which helped reduce size and increase throughput.

In our analysis we conducted a comparison of several SHA-1 cores. We restricted our-
selves to the Stratix, APEX, and ACEX device families, since they all shared a similar
logic element structure. The APEX and ACEX logic elements do not incorporate register
feedback and use an older manufacturing process, therefore an implementation on these
devices will be slightly larger and slower. We compiled our design using Altera’s Quartus
II 5.0 software with a speed grade set to 5. To ensure design accuracy the Quartus chip
editor was used as a comparison.

Among the compared architectures, our design had the smallest resource utilization.
We were able to reduce LE resources by as much as 72%. Our data throughput was slower
than the other designs, since our Round Mix operation takes five clock cycles rather than
one. The performance figures for all the implementations are shown in Table 3.1.

In addition to the above comparisons we also compared the Throughput/DesignCost
ratio for each of the above designs. Assigning cost metrics CLE and CM4K to LEs and M4K
RAMs, we can compute the resource cost of a design using the formula,

DesignCost := (#LEs) · CLE + (#M4K) · CM4K .

Out of all the designs our SHA-1 architecture showed the best Throughput/DesignCost ratio
whenever CM4K < 35 · CLE . Considering that a Stratix EP1S40 device contains 183 M4K
RAM blocks, this condition should hold true for many designs.
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Chapter 4

Concluding Remarks

We have shown new design strategies applicable to AES and SHA-1. The resulting cir-
cuits have an extremely small hardware footprint yet do not overly sacrifice in terms of
speed. The developed, optimized S-box composite field technologies have led to the small-
est Stratix FPGA implementation for AES encryption with integrated key scheduler. The
same technology applied to ASIC technology reduces an AES S-box from 909 gates using
table lookups to 371 gates in CMOS7.

Our SHA-1 architecture is optimized for the Stratix FPGA chipset. We employed reg-
ister packing and feedback functionalities for optimal performance and size. This reduces
logic element usage by as much as 72% as compared to other highly optimized designs found
in the literature. Our architecture provides the best Throughput/DesignCost ratio over any
design found in the literature.
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