
SANDIA REPORT
SAND2005-6007
Unlimited Release
Printed October 2005

C break nd ase Surveillance

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process. or
service by trade name, trademark, manufacturer, or othepvise, does not necessarily
constitute or imply its endorsement, recommendation. OT favoring by the United States
Government, any agency thereof, OT any of 'their contractors or subcontractors. The
views and opinions expressed h e i n do not necesdly state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. ?is report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

-'

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reuorts C?adonk.osti.gov
Online ordering: ~tto:/lwww.osti.eovhrid@

Available to the public from
C.S. Department of Commerce
Sational Technical Information Senice
5285 Port Royal Rd
Springfield. VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900 . ,
E-Mail: orders@ntis.fedworld.gov
Online order: htto://www.ntis.eov/hel~lo~ermethodr.as~ ?loc=7-4-C#onling

2

http://C?adonk.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2005-6007
Unlimited Release

Printed October 2005

Implementation of a Data Fusion
Algorithm for RODS, a Real-time

Outbreak and Disease Surveillance
System

Douglas Brown
Genetha Anne Gray

Computational Sciences and Mathematical Research
Sandia National Laboratories

P.O. Box 969, Mail Stop 9159
Livermore, CA 9455 1-0969

Abstract
Due to the nature of many infectious agents, such as anthrax, symptoms may
either take several days to manifest or resemble those of less serious illnesses
leading to misdiagnosis. Thus, bioterrorism attacks that include the release of
such agents are particularly dangerous and potentially deadly. For this reason,
a system is needed for the quick and correct identificatian-&f disease outbreaks.
The Real-time Outbreak Disease Surveillance System (RODS), initially
developed by Carnegie Mellon University and the University of Pittsburgh,
was created to meet this need. The RODS software implements different
classifiers for pertinent health surveillance data in order to determine whether
or not an outbreak has occurred. In an effort to improve the capability of
RODS at detecting outbreaks, we incorporate a data fusion method. Data
fusion is used to improve the results of a single classification by combining the
output of multiple classifiers. This paper documents the first stages of the
development of a data fusion system that can combine the output of the
classifiers included in RODS.

Acknowledgments

We would like to thank Keith Vanderveen for his invaluable assistance with the RODS
software. We also thank David Gay and Ken Sale for their work in researching data
fusion methods. We are grateful to the Computational & Information Sciences LDRD
program for funding this work.

4

Contents

1 .
2 .
3 .
4 .
5 .
6 .

Introduction .. 7
Data Fusion ... 7
Implementation of the Unweighted Voting Algorithm 8
Current RODS Base Classifiers .. 10
Example .. 14
Conclusion ... 14

References ... 15
Appendix A: Installing and Running RODS ... 16

A . l . Installing RODS .. 16
A.2. Running RODS ... 16

Figures

Figure 1: The output of RLS .. 11

Figure 3: The output of WAD ... 13
Figure 4: An example of the syndromic data ... 13
Figure 5: Example of code that uses the data fusion application 14

Figure 2: The output of CuSum ... 12

5

Ab brevi at i ons

CuSum Cumulative Sum
DHS Department of Homeland Security
DTRA Defense Threat Reduction Agency
RLS Recursive Least Squares
RODS Real-time Outbreak Disease Surveillance
WAD Wavelet-based Anomaly Detection
XML extensible Markup Language

6

1. Introduction

A person infected by a life threatening bio-agent, such as anthrax, often exhibits the
symptoms of a much less serious ailment (e.g. influenza), or shows no symptoms at all
for several days [11. Thus, infected individuals may receive treatment for other, minor
illnesses and or may refrain from seeking treatment until more severe symptoms
develop. Moreover, by the time a patient has been diagnosed as having been infected
with anthrax, he is often near death or already dead. This is one reason that biological
attacks are of particular concern; a terrorist release of anthrax or smallpox into the air
could result in a high number of casualties simply because of diagnosis difficulties [2].
In order combat this problem and assist healthcare practitioners in making quick
determinations when an outbreak of a disease has occurred, either due to a biological
attack or some other means, the Real-time Outbreak and Disease Surveillance System
(RODS) [3] was developed.

RODS is an open-source public health surveillance software package that is the result
of a collaboration between the University of Pittsburgh and Carnegie Mellon
University and funding from numerous federal agencies and state health departments.
The software includes a variety of tools for the collection and analysis of disease
surveillance data. The purpose of developing such software was to make
improvements on current methods of outbreak detection such as human collection and
surveillance of health data [I]. Such methods can be ineffective due to the time and
effort needed to collect and analyze data. Often, it is too late to effectively treat
victims by the time the necessary data collection and analysis has been completed.
The RODS system was designed to consider existing data from disparate sources, such
as absenteeism records from local schools and sales of over the counter drugs, in
judging whether or not an epidemic outbreak has occurred in a particular geographic
area [4]. Using detection algorithms such as the Recursive-hast-Squares adaptive
filters [5] and the “What’s Strange About Recent Events” heuristic [5] , RODS
analyzes different sets of data to try to determine if a biological attack has occurred. If
any “abnormalities” are found in the given data, such as a recent spike in the number
of bottles of cough syrup purchased, an alert is produced. These alerts are e-mailed to
the system administrator who then decides what action, if any, to take.

Sandia has leveraged the RODS software package in its execution of the goals of the
BioNet program (funded by DTRA and DHS), and the subsequent development of
Bio-DAC, a decision analysis center for biological attacks. Our goal is to assist these
efforts by implementing an automated method of heterogeneous data fusion within the
RODS framework.

2. Data Fusion

Although RODS can be an effective method of outbreak detection, it does not
currently include an automated method of data fusion. Data fusion is based on the
principle that combining data sources should give better inferences than using one

7

source alone. Moreover, data fusion is a form of ensemble classification and may
improve on the effectiveness of RODS [6]. Classifier ensembles are used to improve
the classification results of a single classifier [7] . Each of the underlying or base
classifiers are trained individually and then used to classify one data set. Next, an
ensemble classifier or fusion algorithm is used to combine the results of these base
classifications in some way. The resulting combined output is often referred to as a
decision. Most classifier ensembles combine the results of classifications of the same
data sets using different base classification methods to arrive at a decision. In contrast,
this work uses the ensemble classifier for disparate, but related, data sets. The data is
obtained from different sources, and the fusion algorithm is used to provide a decision
related to of the data collected in the RODS framework.

There are several existing techniques of data fusion. One of the most common is
called voting [8, 91. In voting, each classifier casts a “vote” with its classification of
the data. Then, each vote may be counted equally, or the “expertise” of the classifier
may be considered in order to make its vote worth more or less than other votes. The
classification that receives the most votes is used as the decision of the ensemble. The
simplest voting algorithm is unweighted majority voting [8]. Simply stated, the
algorithm is as follows: Given n base classifications, a decision is accepted if at least k
of these classifications agrees where

k = n12 + 1, if n is even
k = (n+1)12, if n is odd.

It should be noted that within the multiple classifier community, it is common practice
to compare any new fusion algorithm to unweighted voting. Therefore, we
implemented the unweighted voting algorithm as a comparison tool. It was also used
as a simple means of identifying and trouble-shooting any software integration
problems.

3. Implementation of the Unweighted Voting Algorithm

In order to incorporate a data fusion method in the RODS framework, the unweighted
majority voting algorithm was implemented in Java. It consists of the following six
classes:

0 Vote
0 Classifier
0 RODSClassifier
0 DataFusion
0 Voting

UnweightedMajorityVoting

Each is described in detail in this section.

The Vote class simply represents the output of a base classifier included in the
ensemble. It consists of the name of the classifier that produced the output, the
decision of this classifier, and the weight of the decision, if any. Weighting is not used

8

in the unweighted majority algorithm so the value of the decision weight is always
one. However, this field was included to simplify future work with similar algorithms
such as weighted majority voting. It can be easily changed.

The Classifier class is an abstract class that any base classifier to be used in the
ensemble must extend. This class is used to greatly simplify the implementation of the
unweighted majority algorithm through the use of polymorphism. The Classifier
class was also implemented to increase the flexibility of the data fusion application.
There is nothing in this class tying it directly to RODS, so any application could
potentially use it. Since all classifiers associated with the application must extend
from this class, new classifiers can be easily added to the system with out having to
change any of the data fusion algorithm code. The Classifier class contains fields
that store the classifier’s name, usually just the name of the class that implements the
classifying algorithm, and a weight that determines the weight that the classifier’s
decision should have with respect to the consensus of the ensemble. It also provides
methods that allow the field values to be retrieved and changed and includes two
abstract methods. The first, getDecision, retrieves the base classifier’s decision. The
second is the run method which executes the base classification algorithm.

The RODSClassif ier is an abstract class which is a subclass of Classifier.
This class represents any base classifier to be used with RODS and implements some
functionality specific to RODS. This class contains a List field which is used to store
alerts produced by the classifier and a method to retrieve this field.
RODSClassif ier also contains methods that allow uses to add alerts to the List
field (addAZert) and implements the getDecision method declared as abstract in the
Classifier class. This method checks the List field in order to see if any alerts
have been produced by the classifier. If an alert has been produced, “Yes” is returned.
Otherwise, “NO” is returned. This data is returned in the form of a Vote object which
contains the classifier’s name, weight, and the String object which contains either
“Yes” or “NO.” This method is used by the data fusion algorithm to determine the
consensus of the algorithm.

The DataFusion class is an abstract class that represents any data fusion algorithm
to be used with RODS. This class has a Map field that maps the name of a classifier to
a reference to Classifier object associated with that name. This class contains a
method that can be used to retrieve the Map field and an addclassifier method that
allows users to add classifiers to the Map object. The addCZassifier method throws an
exception if more than one classifier with the same name is added. For this reason, it
may be necessary to change the name field of the Classifier object to something
besides its class name. This class also has an abstract method, run, that should be
implemented in any subclass of DataFusion. This method is used to implement the
actual data fusion algorithm used to combine the output of an ensemble of classifiers.

The Voting class is a subclass of DataFusion. This class is an abstract class that
represents any data fusion algorithm that uses voting to determine the decision of an
ensemble of classifiers. This class contains two fields, a Map object which maps each

vote to the number of times it was cast and a List object which stores each vote cast.
In addition to the two fields, the class also implements the abstract run method from
DataFusion. The method is implemented to sequentially execute each classifier and
store the decision of the classifier in the Voting class’s Map field. The class also
contains two abstract methods: addvote, which should implement how votes are to be
added to the Map field of any subclasses of Voting, and vote, which should
implement a Voting subclass’s voting algorithm.

The UnweightedMajorityVoting class is a subclass of Voting. The class
implements the unweighted majority voting algorithm that serves as a point of
comparison with other algorithms in the data fusion application. Since this class
extends from both Voting and DataFusion, it inherits the run and addCZassifier
methods, along with the methods to used to access the fields of those two classes. In
addition, the class implements the two abstract methods from the Voting class:
addvote and vote. This class’s implementation of addvote simply adds a casted vote
to both the List and Map objects inherited from the Voting class. This method first
checks the Map object to see if the vote being added has already been cast. If it has,
the count for that particular vote is incremented; otherwise, a new entry in the Map is
created for the new vote, and its counts it set to 1. The vote method included in
UnweightedMa j orityvot ing looks at the results of each classifier and passes
them to the addvote method. The method then looks at the Map object and tries to
determine what the consensus of the ensemble is by looking at the decision that has the
highest number of votes. If this number is greater than or equal to n/2+1 for an even
number of classifiers or (n+1)/2 for an odd number, the decision is returned.
Otherwise, a String object containing the text “No consensus reached’ is returned.

4. Current RODS Base Classifiers

The RODS source code contains implementations for three different classifying
algorithms: Recursive Least Square (RLS), Cumulative Sum (CuSum) [5, 101, and
Wavelet-based Anomaly Detection (WAD) [101. These three classes were altered
slightly so that they extend the abstract Classifier class and can more easily be
incorporated in a data fusion algorithm. Each classifying algorithm uses a different
method of classifying data.

The RLS classifier uses the RLS adaptive filter to search for data anomalies. In the
context of disease outbreak surveillance, this algorithm attempts to predict the
numbers associated with a particular syndrome or illness based on the counts of
previous days. If the count on any given day is greater than the 95% confidence
interval of the classifier prediction, an alarm is fired. This method requires less
historical data than most other classification methods. Figure 1 gives an example of
the output generated by the RLS classifier.

10

In Figure 1, the x value is the normalized number of reported cases of a particular
syndrome that have been counted on a particular day; the raw x value is the non-
normalized count value. The y value is the number of counts predicted by the algorithm

SyndrorccRash ayntlrm m=4, count size-21.
INFO : 07/12 x-14908.0.
IliM : 07/12/2005 13:53:43 y=23252.71i32608319.
INFO : 07/12/2005 13:43:43 m u x.149OB.O.
IliM : 07/12/2005 13:53:43 .em 02 last 30 days =25943.3E16952380954.
IRm : 07/12/2005 I 3 1 5 3 : U TneS OF TSPESlWLD- 3.0.
IllFo : 07/12/2005 13:53:U Threshold- 23201.71381487237.
IRFO : 07/12/2005 13:53:43 Prediction error. -8344.711325011319.
mm : 0 7 m m m 13:53:43 Tima of error slD= -1.0789763J64120295.

FIGURE 1: The output of RLS.

for a particular day. This number is subtracted from the x value to find the
“Prediction error.” The “TIMES OF THRESHOLD” value is used to determine
whether or not an alarm will be fired. This value is multiplied by the standard deviation
for the count value to get the value for “Threshold”. If the prediction error is greater
than this threshold value, an alarm is fired. The “Times of error STD” value is
the number of standard deviations away from the predicted value the actual counted
value is, and the “mean of last 30 days” is the average count over the past 30
days for a particular syndrome.

The CuSum classifier uses the cumulative sum algorithm in an attempt to identify any
anomalies. Unlike RLS which focuses on values from a single day, CuSum looks for
gradual changes in the mean values of the counts for syndromes and illnesses. This is
accomplished by looking at the amount that daily counts differ from their expected value
over a period of time. These amounts are summed, and an alarm is fired if these
amounts go above a particular value known as the threshold. Sample output generated
by the &Sum classifier is shown in Figure 2.

For the CuSum classifier, the syndrome I D (in Figure 2, it is 4) is used to identify a
particular syndrome within RODS, and in this case, the syndrome ID represents
rashes. The count size is the number of days’ worth of data being analyzed by
this algorithm. The x value is the normalized number of cases of rashes found in a
particular region, and the raw x value is the non-normalized number. The “cusum
std dev” value represents the standard deviation of the count data. The “cusum
threshold” is the value that the count must exceed in order for an alarm to be fired.
The eligibility determines whether or not an alarm will be fired; a value 1.0
means that the data represents an abnormal condition where an alarm should be fired,
and a value of 0.0 means that no alarm should be fired. The “mean of last 30
days” is the mean value of the raw x over the last 30 days of data. The information
that follows ”****** Prodrome=4 N o . of days = 21” is an example of the
type of data contained in a CuSum alarm. The alarm consists of the date the alarm

11

was generated, the syndrome ID, the count that led to the alarm’s generation, and the
threshold value. This information is sent to the system administrator in an e-mail.

: 08/02/2005 13:26:09 in S t a t e W.
3yw&o..il\..a 8zn&au ID-4, c d t s~KwIL.
IlW8 : 08/01/2005 l3:26:09 x . ~ . 7 9 7 1 9 3 1 3 ~ 6 2 3 1 5 ~ 3 M .

The WAD classifier uses wavelets to detect anomalies by subtracting long term trends
from time series data. The values left over after subtracting long term trends are
known as residuals. In the case of RODS, an example of a long term trend would be
an increase in the number of bottles of cough syrup purchased due to an increase in the
number of brands being sold. The algorithm then checks the residual values for the
days in the time series to see if any of them exceeds the WAD threshold value; if the
residual exceeds this value, an alarm is fired. An example of WAD output is displayed
in Figure 3.

12

kOO5-08-08 11:22:51,031 Srm
2005-OL-08 11:22:51,031 m0
2W5-08-08 11:222:51,031 Srm [nmUAD] x(n)- 1.18426311Z9.

[nmW] **** sta~cing syndrae -6.
[nm!JAD] All --prodrorc:6 mfst..6.

2005-01-08 14: 22: SLO31 X W O [IullU&Dr] L P - W - 4.92502671817291~.
2005-08-08 14:228S1,031 XE?’O [Z W] K C s i w - 6.917602(01~2706~8.
2005-08-08 14:22:51,046 UDIQ RsD_sID* 5.6071446614S452QL.
2005-08-08 14:22:S1,01B [Z W] TES-sID~1.233712133268355~.

2005-08-08 14: 22: 51,016 IWU (runlW] crr=6.917602U11827065El.

2005-08-08 14:22:51,04S ZWO [runW] colmtlhLeshold*stdlrr.2.803572~307271l

FIGURE 3: The output of WAD.
In Figure 3, the syndrome number is used to identify a particular syndrome within
RODS. The x (n) value is the count for the number of recorded instances of a
syndrome on a particular day. The LP MEAN represents the expected value for a
particular day. Both the r e s i d u a l a n d e r r values give the residual value for the
previous day obtained by subtracting long term trends from data. The RSD-STD
value gives the standard deviation of the residual values. The TIMES-STD value is
the number of standard deviations between the residual value and the predicted value.
The “ c o u n t T h r e s h o l d * s t d E r r ” is the threshold that the residual value must
exceed in order for an alert to be fired.

The data used to test all three classifiers is syndromic data stored in an XML file.
Figure 4 shows an example of some of the data.

<syndrone-cim.
< julianDapia</julimDap.
<Gasuo~Pct_ER>6.OP89966555183JK/Gast~o~Pc t-ER,.

Pct-EBl. 8722U180267559c/C~
Pc t-m8. bS306577480491c/Resp

ash_Pct_ER>I.672%408026755JK/Ras
emorr_Pct_ER>M/Bemorr-Pc t-ER,.

<Botulin-Pct-~5~/Botulin~Pct-E~.
4Ieurol~Pct~ER>l1.917168336907S</Neurol~P
<Pct-EER-VlSit>l. UO25399145518-02</PQt-E

<lsyndrome-cim.

FIGURE 4: An example of the syndromic data

The first element in Figure 4 (j u l i a n D a y) represents the day of the year being
observed. The next seven elements represent the types of health problems under
surveillance: gastrointestinal, constitutional, respiratory, rash, hemorrhagic, botulinic,
and neurological, respectively. The value stored in each of these elements is the
number of cases of each syndrome discovered in a particular area on the day specified
by the julianday element. By classifying the data obtained over several days, a
determination can be made as to whether or not any of the counts should be cause for
alarm. If any of the counts are abnormally high, the classifier will produce an alert
and notify the administrators of the system of the problem so that they can take

13

appropriate actions. The final element in the syndromic data (Pct-ER-Visit) list
represents the total percentage of the population hospitalized for any of these ailments.

In addition to syndromic data shown here, the three classifiers can also be applied used
to data related to absenteeism in schools, emergency room visits, and the sales of over
the counter drugs.

5. Example

Using the data fusion application is simple. In order to use it within RODS, first
declare a subclass of DataFusion such as UnweightedMajorityVoting.
Next, add the classifiers to be rn as part of an ensemble with the DataFusion
class’s uddCZassifier method. Finally, run the ensemble using the run method
included in the DataFusion class. The return value contains the decision of the
ensemble. Figure 5 is an example of code that uses the data fusion application. It uses
the UnweightedMajorityVoting class as its data fusion algorithm and creates
an ensemble using the results of the RLS, WAD, and CuSum classifiers.

FIGURE 5: Example of code that uses the data fusion application.

6. Conclusion

This application was written in a way that potentially allows it to be used anywhere
that requires an ensemble of classifiers. Since the only class that contains any RODS
specific code is RODSClassif ier, anyone who wishes to incorporate data fusion
may be able to use this application. However, an application specific subclass of
Classifier may have to be created in order to implement any application specific
functionality for the application where data fusion is being used.

14

References

[l] F. Tsui, J. U. Espino, V. M. Dato, P. H. Gestlande, J. Hutman, and M. M.
Wagner, “Technical Description of RODS: A Real-time Public Health Surveillance
System,” J Am Med Inform Assoc, 399-408, 2003.

[2]
M. A. Musen, “Knowledge-Based Bioterrorism Surveillance,”

D. L. Buckeridge, J. K. Graham, M. J. O’Connor, M. K. Choy, S. W. Tu, and
Proc M I A Symp

2002,76-80,2002.

[3]
Biomedical Informatics, University of Pittsburgh, 2005, http://rods.health.pitt.edu.

“RODS Laboratory, Real-time Outbreak and Disease Surveillance,” Center for

[4] M. R. Sabhnani, D. B. Neill, A. W. Moore, F. Tsui, M. M. Wagner, and J. U.
Espino, “Detecting Anomalous Patterns in Pharmacy Retail Data,” KDD-2005
Workshop on Data Mining Methods for Anomaly Detection, Chicago, IL, August
2005,
http://rods. health.pitt.edu/LIBRARY/2005%20kdd_workshop_otc_submitted.pdf.

[5] A. M. Moore, G. Cooper, R. Tsui, and M. Wagner, “Summary of
Biosurveillance-relevant Statistical and Data Mining Technologies,” RODS Technical
Report, 2003.

[6] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird, “The Collection Fusion
Problem,” in D. K. Harman, ed., The Third Text REtrieval Conference (TREC-3),
Gaithersburg, MD, (in press), National Institute of Standards and Technology, 500-
525,2005.

[7]
Journal of Artificial Intelligence Research, 1 1 : 169-198, 1999.

D. Optiz, R. Maclin, “Popular Ensemble Methods: An Empirical Study,”

[8] A. F. R. Rahman, H. Alam, and M. C. Fairhurst, “Multiple Classifier
Combination for Character Recognition: Revisiting the Majority Voting System and
its Variations,” BCL Technologies, Inc. (USA) and the University of Kent at
Canterbury, www.bcltechnologies.com/rd/literature/Fuad_DAS.PPT.

[9] B. Zenko, L. Todorovski, S. Dzeroski, “A Comparison of Stacking with MDTs
to Bagging, Boosting, and Other Stacking Methods,’’ Josef Stefan Institute, Slovenia,
2003, http://ai.ij s.si/bernard/mdts/pub03 .html.

[lo] S . L. Rizzo, V. V. Grigoryan, G. L. Wallstrom, W. R. Hogan, and M. M.
Wagner, “Using Case Studies to Evaluate S yndromic Surveillance,” Technical Report,
April 2005;
http://rods. health.pitt.edu/Technical%20Reports/2005 %20Rizzo-tech-paper%2OUsing
%20Case%20Studies.pdf.

15

http://rods.health.pitt.edu
http://rods
http://ai.ij
http://rods

Appendix A: Installing and Running RODS

A. 1. Installing RODS

1.

2.
3.

4.
5.

6.
7.

8.

9.

Download and install Java 1.4 or higher. Create the environment variable
JAVA HOME and set it to the base directory of the Java installation (for
example, C : \Program Files\Java\jdkl. 5.0 - 03).
Add JAVA HOME\bin to your PATH environment variable.
Download and install J2EE 1.4. Create the environment variable
J2EE - HOME and set it to the base directory of the J2EE installation (for
example C : \Sun\AppServer).
Add J2EE HOME\bin to your PATH environment variable.
Download &d install Apache Ant version 1.6.5. Create the environment
variable ANT - HOME and set it to the base directory of the Ant installation (for
exampleC:\apache-ant-1.6.5).
Add ANT HOME\bin to your PATH environment variable.
Create theenvironment variable RODS - HOME and set it to the directory where
you plan to copy all of the RODS code and data (for example C : \RODS).
Install MaxDB database using a Windows command window. The setup file,
sdbinstall .bat is located in the directory RODS/install/maxdb/ .
Create RODS database by executing the createdb batch file located at
RODS/install/maxdb/createdb. bat from the command line.

10. Build RODS code. The ant build. xml script is located in RODS/src.

A.2. Running RODS
The rodsdata .bat should automatically rebuild RODS, start up JBoss and the
HL7Server, and run the classifiers. However, if you wish to do this manually, execute
the following steps.

1. If RODS has been changed since the last time it was run, execute Ant. Make
sure that JBoss and the HL7Server have been shut down or else Ant will not
be able to run. The build. xml file is in the RODS/src directory.

2. Wait for Ant to finish executing and then execute the runrods .bat batch
file. This will start up JBoss and the HL7Server.

3. In order to run the classifiers, execute the rodsdatal .bat batch file. This
will recompile BackgroundLoader, BackgroundDataManager, and
RodsData, and will execute the RodsData class.

16

Distribution

a 1 MS0188
1 MS0370
1 MS0370
1 MS9154
1 MS9159

10 MS9159
1 MS9159
1 MS9201
1 MS9292
1 MS9292

2 MS9018
2 MS0899

D. Chavez, LDRD Office, 1030
Dave Gay, 141 1
Scott Mitchell,1411
Keith Vanderveen, 8 1 12
Heidi Ammerlahn, 8962
Genetha Anne Gray, 8962
Pam Williams, 8962
Marion Martin, 81 14
Ken Sale, 8321
Malin Young, 8321

Central Technical Files, 8945-1
Technical Library, 4536

17

This page intentionally left blank.

18

	Implementation of a Data Fusion Algorithm for RODS, a Real-Time Outbreak and Disease Surveillance System
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Abreviations
	1. Introduction
	2. Data Fusion
	3. Implementation of the Unweighted Voting Algorithm
	4. Current RODS Base Classifiers
	References
	Appendix A: Installing and Running RODS
	A.l Installing RODS
	A.2 Running RODS

	Distribution

