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Abstract 
The thermal challenge problem has been developed at Sandia National Laboratories as a 
testbed for demonstrating various types of validation approaches and prediction methods.   
This report discusses one particular methodology to assess the validity of a computational 
model given experimental data.  This methodology is based on Bayesian Belief Networks 
(BBNs) and can incorporate uncertainty in experimental measurements, in physical 
quantities, and model uncertainties.  The approach uses the prior and posterior 
distributions of model output to compute a validation metric based on Bayesian 
hypothesis testing (a Bayes’ factor).  
 
This report discusses various aspects of the BBN, specifically in the context of the 
thermal challenge problem.  A BBN is developed for a given set of experimental data in a 
particular experimental configuration.   The development of the BBN and the method for 
“solving” the BBN to develop the posterior distribution of model output through Monte 
Carlo Markov Chain sampling is discussed in detail.  The use of the BBN to compute a 
Bayes’ factor is demonstrated. 
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Validation of the Thermal Challenge Problem  
Using Bayesian Belief Networks 

 
 
1. Introduction  
 
This report investigates the use of a validation methodology based on Bayesian Belief 
Networks (BBNs), applied to a specific problem of interest to Sandia National 
Laboratories.  The validation methodology has been developed by Dr. Mahadevan and 
Ramesh Rebba at Vanderbilt University [Mahadevan and Rebba, 2005].  The idea is to 
use Bayesian statistics to compare the prior density of the model-based predictions with 
the posterior density of these predictions, after they are updated based on the 
experimental results.  The methodology can account for uncertainties in both the 
experimental results and the model, including several sources of uncertainty that may 
affect the model prediction.  The ratio of the relative likelihoods of the null hypothesis 
(that the data supports the proposed model) to the alternative hypothesis (the data does 
not support the proposed model) is called the Bayes’ factor.  If the Bayes’ factor is 
greater than one, the data is said to favor the null hypothesis that the model prediction is 
true.  If the Bayes’ factor is smaller than one, the data is said to favor the alternative 
hypothesis that the model prediction is not true.  A unique aspect of the methodology 
outlined in this paper is that the Bayes’ factor is calculated as the result of a Bayesian 
Belief Network.    The BBN shows the relationships between experimental results, the 
model prediction, and various parameters associated with the problem.   
 
In this report, we develop a BBN for the thermal challenge problem.  This problem has 
been developed by Kevin Dowding, Martin Pilch, and Richard Hills at SNL [Dowding et 
al., 2005] as a realistic test problem with features that represent a real-world situation 
facing experimentalists and modelers when developing and interpreting validation 
experiments.   The thermal challenge problem involves transient heat conduction through 
the slab.  The reader is presented with a variety of experimental configurations involving 
different heat flux initial conditions, different slab lengths, etc.  Both experimental results 
and model results (based on the governing differential equations) are presented, and the 
reader must make an assessment of the accuracy and validity of the model as applied to 
the existing experimental data, and for a new experimental configuration which is outside 
the parameter space of the first set of experiments.   The model has specifically been 
designed to have incomplete physics in the sense that the thermal parameters are 
considered constant when in fact they vary as a function of temperature.   
 
The outline of the report is as follows:  Section 2 covers the basics of Bayesian inference, 
Bayesian Belief networks, and the Markov Chain Monte Carlo (MCMC) methods which 
are used to calculate posterior densities when closed form solutions are not available.  
Section 3 discusses the thermal challenge problem in more detail, and presents the BBN 
for this model validation problem.  Section 4 provides the results of testing the proposed 
validation metric on a particular experimental observation, and Section 5 summarizes the 
work and provides some thoughts about future research directions.   
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2. Background 
 

2.1.  Bayesian Inference  
Bayes’ rule relates the posterior density of a parameter to the likelihood function and the 
prior density of that parameter.  In the discrete case, the Bayesian formulation for the 
posterior probability density function h is: 
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θθθ
θθθθ
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where x1,…xN are independent and identically distributed observable random vector 
variables with probability mass function f(x|θ) [Press, 1989].  Note that f(x|θ) denotes the 
mass function of random vector x conditional upon another variable Θ = θ.  Θ is assumed 
to be unobservable, and θ denotes the numerical value at which Θ is conditioned.  In this 
case, we are assuming that Θ is discrete, and g(θ) is the probability mass function.  The 
posterior probability density function of θ for a given set of observed data is h(θ|x).   
  
Note that the denominator of (1) only depends on the xi’s and not on θ.  Bayes formula is 
often written as: 
 
 )()|,...,(),...,|( 11 θθθ gLh NN xxxx ∝ , (2) 
 
where L(x1,…xN |θ) = f(x1|θ) *…*  f(xN|θ) = the likelihood function of the data given the 
parameter θ for independent data.  The expression (2) is a statement that the posterior 
distribution is proportional to the likelihood times the prior distribution.  

 
2.2. Continuous Case 

The formulation is identical to (1), only the parameter θ is now a continuous parameter 
with prior density g(θ).   An alternative approach to expressing equation (1) is to use the 
likelihood function L(x1,…xN |θ)  instead of the conditional probability density functions 
f(xi|θ).  So, one way of expressing Bayes’ Theorem in the continuous case is:  
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The Bayesian framework allows one to integrate observed data and prior knowledge.  In 
the case where one has no data or very little data, the posterior distribution is equal to or 
very close to the prior distribution and we haven’t learned that much.  In the case where 
there is a lot of data, and especially in the case where the likelihood function differs from 
the prior distribution, the posterior distribution is dominated by the likelihood function 
and it might be better to use a maximum likelihood approach.  The ideal case for 
Bayesian methods are situations where one acquires information over time.  
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One criticism of Bayesian statistics is the formulation of the prior distribution.  Ideally, 
the prior distribution is supposed to be obtained from subjective judgment and previous 
experience.  In practice, the prior is often chosen from a family of distributions that 
makes the calculation of the posterior distribution tractable.  These families are called 
“conjugate prior” distributions and will be discussed below in more detail.   
 

2.3. Hypothesis Testing  
Bayesian analysis can be useful for hypothesis testing, particularly when comparing two 
competing hypotheses.  For example, consider comparing two competing hypotheses, H0 
and H1.  Let D be a test statistic based on a sample of N observations, D ≡ D(x1,…xN).  
Then Bayes’ Theorem states that 
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where P(H0) and P(H1) denote the prior probabilities of H0 and H1 (these probabilities 
sum to one).  
 
Likewise, for the alternate hypothesis, we have:  
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Taking the ratio of 4 and 5, we have:  
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This is interpreted as the posterior odds ratio in favor of H0 is equal to the product of the 
prior odds ratio and the likelihood ratio.  The “Jeffreys’ Hypothesis Testing Criterion” 
states that if the posterior odds ratio exceeds one, we accept H0, otherwise we accept H1.  
In addition, the ratio of the posterior odds to the prior odds of the hypotheses is known as 
the “Bayes’ factor”.  The Bayes’ factor is also used to compare competing hypotheses.  
Note that the Bayes’ factor is equal to the second term on the right hand side of Eq. (6), 
and thus it does not depend on the (subjective) prior weighting of the hypotheses.  Also 
note that when the hypotheses are given equal weights, the Bayes’ factor is equal to the 
posterior odds ratio.  In Bayesian hypothesis testing, there is no notion of a significance 
level, which is a typical ambiguity that arises in classical hypothesis testing. 
 
If H0 and H1 are simple hypotheses, as in 00  : θθ =H  and 11  : θθ =H , then the Bayes’ 
factor reduces to the likelihood ratio of the data under the hypotheses, which is also a 
frequentist test statistic for comparing two simple hypotheses.  Instead of a point 
hypothesis, we could have H1, for example, specified as a composite hypothesis, such as 

01  : θθ ≠H .  In this case, we would also need to specify a probability distribution on the 
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parameter θ.  The corresponding term in the Bayes’ factor would then be equal to 

, where ( ) ( ) ( )∫
+∞

∞−

= θθθ dgDfHDP || 1 ( )θ|Df  is the likelihood function associated with 

the observation D, and g(θ) is the prior distribution of θ under H1.  This is known as an 
averaged or marginal likelihood of the observations under H1. 
 
Mahadevan and Rebba (2005) formulated a method for applying Bayesian hypothesis 
testing when we want to assess the predictive capability of a single model.  As above, we 
use the notation that the model response is given by θ, and we have a set of (uncertain) 
experimental observations characterized by a test statistic D.  For the model input 
parameters corresponding to the observations in D, we denote the model prediction by θp.  
Thus, the null hypothesis, pH θθ = :0 , is used.  When dealing with only one model, the 
difficulty is in formulating the alternative hypothesis.  When no extra information is 
available, Mahadevan and Rebba propose using the composite hypothesis, pH θθ ≠ :1 , 
with g(θ) under H1 given by the probability distribution of θ based on the simulation 
model and the uncertainty of the input parameters. 
 
Thus, the Bayes’ factor becomes 
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where we have assumed the prior odds ratio for the two hypotheses to be unity.  As 
shown by Mahadevan and Rebba, Eq. (7) reduces to 
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which is the ratio of the posterior probability of θ to the prior probability of θ, evaluated 
at θp. 
 
As a side note, consider what would happen if a non-informative, or diffuse prior 
distribution were used for the alternative hypothesis, such that we have ( ) cg ∝θ , where 
c is an arbitrary constant.  From Eq. (7), we have for the Bayes’ factor, 
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, which depends on the arbitrary constant, c.  Thus, 

the Bayes’ factor will be arbitrarily large or small depending on the constant.  This is the 
typical problem which generally prohibits the use of non-informative priors for 
hypothesis testing.  For a more detailed discussion, refer to Press (2003) and Robert 
(2001). 
 
Testing a point null hypothesis, as in Eq. (7), is often controversial because it may be 
possible that the model is rejected even though the difference between the prediction and 
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the observations is small enough for practical purposes.  Although the point null 
hypothesis is used in this report (for illustration) to analyze the challenge problem, an 
interval hypothesis can be accommodated with the Bayesian framework.  If we want to 
test εθθ <− pH  :0 , the Bayes’ factor becomes 
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Note that by applying Bayes’ theorem, Eq. (9) can be reduced to 
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which is a ratio of areas of the posterior density of θ.  This is an entirely different 
formulation then that of the point hypothesis, and it will not recover the expression of Eq. 
(8) as ε goes to 0. 
 
 

2.4. Bayesian Belief Networks 
A Bayesian Belief Network (BBN) is a graphical network that represents probabilistic 
relationships among variables.  BBNs enable reasoning under uncertainty.  With BBNs, it 
is possible to articulate expert beliefs about the dependencies between different variables 
and to propagate consistently the impact of evidence on the probabilities of uncertain 
outcomes, such as ‘future system reliability.’ 
 
A BBN is a special type of diagram (called a graph) together with an associated set of 
probability tables. The graph is made up of nodes and arcs where the nodes represent 
uncertain variables and the arcs the causal/relevance relationships between the variables. 
The main use of BBNs is in situations that require statistical inference: in addition to 
statements about the probabilities of events, the user knows some evidence, that is, some 
events that have actually been observed, and wishes to infer the probabilities of other 
events, which have not as yet been observed.   A BBN uses conditional probability tables 
to calculate the probabilities of various possible causes being the actual cause of an event 
[Jensen, 2001]. 
 
A major benefit of Bayesian inference over ‘classical statistical inference’ (which deals 
with confidence levels rather than statements of probability) is that it explicitly describes 
the fact that observation alone cannot predict the probability of unobserved events.  In the 
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Bayesian interpretation, a probability describes the strength of the belief which an 
observer can justifiably hold that a certain statement of fact is true (subjective 
probability). The subject, after observing the outcome of an ‘experiment’ (i.e., collecting 
new data), updates the belief held before the experiment (the ‘prior probability’), 
producing a ‘posterior probability’. The need to assume prior beliefs is a key part of 
Bayesian inference. The conditional probability tables must be filled in with reasonable 
estimates, and it is not always easy to obtain sensible prior probabilities, even from 
domain experts.  
 
Until recently, the computation necessary to calculate the posterior probabilities for a 
BBN were quite difficult to implement, even for small problems.   The general problem 
of performing such computations is known to be intractable (formally, it is known to be 
an NP-hard problem).  The 1990s has seen the development of many tools which 
incorporate fairly efficient solution algorithms for BBNs.  The computational aspect of 
calculating posterior distributions in discussed in more detail in the following section 2.5. 
 
In specifying a Bayesian network, each node is given a corresponding probability 
distribution conditional on its “parent” nodes.  A useful relation when analyzing the 
network with MCMC sampling (see Section 2.5) is that the full conditional density of any 
node is proportional to the product of all densities in the network which contain that 
particular variable. 
 

2.5. Markov Chain Monte Carlo methods 
Many times the calculation of the posterior density function involves complex 
integration.   To calculate the posterior distribution for higher dimensions, some type of 
Monte Carlo method is often used to generate samples over which the integrand is 
calculated.  A popular method for doing this is called Markov Chain Monte Carlo 
(MCMC), where one wants to generate a sampling density that is approximately equal to 
the posterior density.   
 
The idea behind Monte Carlo Markov Chain is to construct a Markov Chain such that its 
stationary distribution is exactly the same as the distribution of interest.  A stationary 
distribution of a Markov chain with transition probability matrix P(x,y) is f if:   

fY (y) = fX (x)
x
∑ P(x, y)  

for a discrete state chain.  The continuous state equation relates the state of the system 
after n steps to the state of the system at n-1 steps:  

fY
n (y) = p(x, y) fX

n −1(x)
−∞

∞

∫ dx  

 
The point of using MCMC methods is to generate a Markov Chain {X0, X1, X2, …} where 
Xk+1 only depends on Xk.  Note that the Markov chain needs to reach stationarity to 
produce a useful posterior distribution.  The distribution of Xk will approach a stationary 
form as k gets large, but in practice, one has to ignore the first M iterations.  That is:  
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There are several methods for generating the Markov chain that has a stationary 
distribution with the properties of interest.  Two of the most commonly used are the 
Metropolis algorithm and Gibbs sampling.  The Metropolis algorithm can be used for 
both univariate and multivariate densities, while Gibbs sampling applies only to 
multivariate densities.  For the purpose of analyzing Bayesian networks, the Metropolis 
algorithm with component transition kernels is often the most convenient (although this is 
very similar to Gibbs sampling). 
 
The Metropolis algorithm relies on three basic steps: 

1. Generate a candidate perturbation for the uncertain parameter of the current 
location within the Markov Chain. 

2. Define a transition probability associated with the candidate move. 
3. Accept the candidate move with a probability equal to the transition 

probability defined in Step 2. 
Step 1 is accomplished with the use of what is known as a proposal density.  The 
proposal density, denoted by ( )XXq |∗ , defines a probability density that generates 
random moves X* based on the current point X.  In theory, the only restriction on the 
choice of proposal density q is that it is symmetric with respect to its arguments, i.e. the 
probability of going from X to X* is the same as that of going from X* to X.  An extension 
of this algorithm, known as the Metropolis-Hastings algorithm, allows the proposal 
density to have any form. 
 
For Step 2 above, the Metropolis algorithm automatically defines the transition 

probability, often called the acceptance ratio, as ( )
( )Xf
Xf ∗

=α , where  denotes the 

target density.  Thus, the univariate Metropolis algorithm is given below: 

( )⋅f

 
 Metropolis Algorithm 

Set i = 0 
Choose a starting value, X0
Repeat until converged:  

1.  Sample a candidate X* from the proposal density function ( )iXXq |∗  

2. Calculate the acceptance ratio ⎥
⎦

⎤
⎢
⎣

⎡
=

∗

)(
)(,1min

Xf
Xfα  

3. Sample a uniform (0,1) random variable U 
4. If U < α, set Xi+1 = X*, else set Xi+1 = Xi. 
5. Increment i.  
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When using the Metropolis-Hastings algorithm, the acceptance ratio is calculated as 
( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
= ∗

∗∗

XXqXf
XXqXf
|)(
|)(,1minα , and it is not required that q is symmetric. 

 
In general, the user must only specify the starting value and the proposal density, q.  
Unfortunately, the performance of the algorithm can be sensitive to both of these choices, 
particularly the choice of proposal density.  The most commonly used proposal density is 
the random walk density, where the candidate point is given by , where ξ is a 
random variable chosen to be symmetric about the origin.  The choice of the variance of ξ 
is critical to the performance of the algorithm.  If the moves are very small and the 
acceptance probability is very high, most moves will be accepted but the chain will take a 
large number of iterations to converge.  If the moves are large, they are likely to fall in 
the tails of the posterior distribution and result in a low value of the acceptance ratio.   
One wants to cover the parameter space in a computationally efficient fashion.  Many 
studies have been done on optimal acceptance rates, and the results seem to indicate that 
0.45 - 0.5 is the optimal acceptance rate for 1-dimensional problems, whereas 0.23 - 0.25 
is the optimal acceptance rate for high-dimensional problems [Gilks et al., 1997]. 

ξ+=∗ XX

 
When the target density is multivariate, candidate moves can be made on all components 
simultaneously.  Choosing a joint proposal density that is a good approximation to the 
target is often a difficult task, and the added complexity of working with multivariate 
densities often makes this method impractical.  A component-wise scheme discussed by 
Hastings (1970) allows candidate moves to be made on each component independently.  
A proposal density is specified for each component of X, and the acceptance ratio for a 

particular move is given by ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

−

−
∗

ii

ii
i Xf

Xf
X
X

|
|,1minα , where ( )iiXf −X|  denotes the full 

conditional density of the ith component.  Thus, the components of X are sampled 
sequentially from their respective full conditional densities.  This method is very similar 
to Gibbs sampling, and it is often referred to as Metropolis-within-Gibbs.  
 
Recall that when the model is specified as a Bayesian network, there is a simple result 
stating that the full conditional density of any variable is proportional to all terms in the 
network containing that variable.  This makes the component-wise Metropolis algorithm 
a natural choice when analyzing a Bayesian network with MCMC sampling. 
 
Although it can be shown that the Markov chain generated by the Metropolis algorithm 
will converge to the target distribution for any symmetric proposal density (or any 
proposal density when using the Metropolis-Hastings algorithm), there is still the issue of 
how many samples it takes before the chain reaches the stationary distribution.  Assessing 
convergence of an MCMC sampling scheme is a very difficult topic to which much work 
has been devoted.  Although monitoring a function of one of the components (like the 
mean or variance) can be useful for diagnosing when the chain has not converged, it is 
not a rigorous method for confirming convergence.  One of the most popular methods 
used in practice is that developed by Gelman and Rubin (1992).  They propose running a 
small number of parallel sampling chains and comparing the across chain variance of a 
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given parameter to its within chain variances. A simpler, but less rigorous method is 
given by Geweke (1992), where the output from one chain is split into two parts, e.g. the 
first 10% and the final 50%.  For stationarity, the means of the two samples must be the 
same. A modified z-test can also be used to compare the two samples.  Another simple 
method often used in practice is to run a small number of parallel chains with 
overdispersed starting values and monitor how long it takes before the statistical 
properties of the chains are equivalent. 
 
 
3. BBN Development and Implementation 
 

3.1. Thermal Challenge Problem Description 
 
The thermal validation challenge problem describes a candidate model for predicting the 
transient temperature in a slab for 1-D heat conduction.  The model is a simple analytical 
expression, but it can be thought of as representing a possibly expensive finite element or 
other computer simulation.  In addition to the model, a set of hypothetical experimental 
observations are described.  The database of experimental observations is divided into 
two regimes:  a validation regime and an application regime.  Eight experiments were 
conducted in the validation regime, and one in the application regime.  The hypothetical 
purpose of the model and experiments is to assess whether or not regulatory compliance 
will be achieved within the application regime; that is, within the application regime, the 
probability of exceeding a threshold temperature must be sufficiently low.  This 
assessment must take into account certain uncertainties present in the model inputs as 
well as the experimental observations. 
 
In addressing the challenge problem, three objectives are specified: 

1. Determine the accuracy of the model for predicting the eight experimental 
outcomes within the validation regime. 

2. Determine the accuracy of the model for predicting the single experimental 
outcome within the application regime. 

3. Assess whether or not regulatory compliance will be achieved within the 
application regime. 

Thus, the first two objectives fall into the category of model validation under uncertainty, 
and the third is related to prediction.  The report addresses only the first two, and will 
employ the use of Bayesian networks (Section 2.4) in support of computing a Bayesian 
metric for model validation (Section 2.3). 
 

3.2. Development of Bayesian Network Representation 
 
The first step in addressing the challenge problem using the Bayesian framework is to 
formulate the Bayesian model, in this case the Bayesian belief network.  This involves 
stating the random variables, describing the conditional relationships between them, and 
formulating prior probability distributions for each.  There are three primary types of 
random variables associated with this particular problem:  input parameters (material 
properties and boundary conditions), output responses (temperature), and experimentally 
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observed quantities.  The input parameters are q (applied heat flux), k (thermal 
conductivity of the specimen), ρC (specific heat capacity of the specimen), and L (length 
of the specimen).  The output response, T, is a function of time, and thus for discrete time 
intervals, T, can be considered as multivariate.  For each experiment, measurements are 
taken on the applied heat flux and the temperature at various time intervals.  The random 
variables associated with these measurements will be noted Dq and DT for data on q and 
data on T, respectively. 
 
The governing partial differential equation for one-dimensional heat conduction through 
the cylinder in this problem is given by: 

 )0)(0(      )( ><<
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x
Tk
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where k and/or ρCp are functions of temperature for the true model. These properties are 
constants for the approximate model to be tested. The boundary conditions are a 
prescribed constant flux on one surface and adiabatic on the other 
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A constant initial condition is prescribed 
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=0

. 
 
The relationship between the underlying random variables is shown by the network in 
Figure 1.  The variable L, the length of the specimen, is not included in the model 
because for any particular experiment it is known with certainty (i.e., it is deterministic).  
Note that the variable q denotes the true applied heat flux, which has inherent 
randomness associated with experiment-to-experiment variability.  For the data nodes, 
note the directionality is from the true value to the observation.  Hence, the probability 
associated with the observation is conditional on the true value.  A square is used to 
represent the node T because for a given set of inputs, the model gives a single, 
deterministic prediction of T.  Hence, conditional on the inputs, T is not a random 
variable.  For this formulation of the model, the network is specified for a particular 
experimental configuration (a particular value of L, a nominal value of q, and 
corresponding experimental observations of q and T).  Developing a Bayesian model 
which accounts for all experimental configurations simultaneously is an area for future 
study. 
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Figure 1.  Bayesian network for primary random variables. 

 
The challenge problem specifies two probabilistic components associated with the 
measurement error of q and T:  a “random” component and a “bias” component.  Our 
interpretation of these is as follows:  The “random” component describes the probability 
distribution of the measurement error, ε, based on a particular “target” value of the 
quantity being measured.  The “target” value of the measured quantity is actually equal to 
the true value plus a random “bias” component.  The bias component is assumed to be 
uniformly distributed on the interval specified.  Thus, two additional nodes are added to 
the network in Figure 1 to account for the bias components.   Triangles are used to denote 
that these bias components are given fixed probability distributions, and thus they are not 
updated by the addition of experimental observations.  The resulting network is given in 
Figure 2. 
 

 
Figure 2.  Complete Bayesian network for the challenge problem. 

 
The Bayes’ factor proposed by Mahadevan and Rebba, as given in Eq. (8), is used for the 
purpose of assessing the agreement between the model prediction and the experimental 
observations.  Thus, the probability distribution for the alternative hypothesis, g(T), is 
constructed by propagating the uncertainties on q, k, and ρC through the simulation 
model. 
 
Because temperature is a function of time, and experimental observations are made at 
multiple time instances, the random variable T is in a sense multivariate (a collection of 
correlated random variables).  Evaluating Eq. (8) by discretizing T in accordance with the 
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experimental observations would require working with the joint probability density 
function of T.  The complexity of such an analysis is beyond the scope of this paper (see 
for example, Srivastava, 2002).  Thus, for illustration, Eq. (8) will be evaluated at one 
time instance.  A similar comparison could be made for each time instance which has a 
corresponding experimental observation.  Such an analysis neglects the correlation 
structure of T.  However, for this particular problem, the correlation structures of both the 
experimental observations and the model predictions are essentially identical, indicating 
that univariate comparisons are sufficient. 
 
The formulations of the prior probability distributions for each of the random variables in 
the network of Figure 2 will now be discussed.  Recall that the network corresponds to 
one particular experimental configuration.  We will consider configuration 1, experiment 
1.  The nominal value of q is 1000 W/m2.  Thus, we assume a prior distribution for q as 
( ) ( )qnomqNqf σ,~ , which states that the true value of applied heat flux follows a normal 

distribution with a mean given by the nominal value (1000 W/m2) and a standard 
deviation of σq.  Specification of σq is based somewhat on the stated observations of q, 
but it is still a subjective decision.  Here, σq is specified as 3% of the nominal value (30 
W/m2).  A more complete model might treat σq

 as a random variable with a suitably 
vague prior distribution. 
 
The prior distributions for the material properties, k and ρC, are developed based on the 
material characterization experiment.  The material characterization experiment consists 
of six observations of each property.  Two specimens were tested at three different 
temperatures.  The random variables for each property are assumed to follow a normal 
distribution with parameters estimated for the results of the characterization experiment.  
Thus, we again assume normal distributions and specify the priors for k and ρC as:  

W/mC and ( ) )0087.0 ,0639.0(~ Nkf ( ) ( )55 10172.0 ,102.4~ ××NCf ρ  J/m3C.  The 
purpose of these probability distributions is to account for the unit to unit variability 
present in the slabs being tested, as well as the uncertainty derived from the temperature-
dependence of these material properties. 
 
The prior distributions for the experimental observations are formulated based on the 
specified experimental uncertainties.  In accordance with the previously discussed 
interpretation of the “random” and “bias” measurement error components, the probability 
distributions for Dq and DT are given by:  ( ) ( )nomqqqNqqDqf 015.0 ,~,| δδ +  and 
( ) (( )25005.0 ,~,| )−+ TTTNTTDTf δδ . 

 
3.3. Markov Chain Monte Carlo Analysis 

 
Because the Bayesian model we are dealing with involves several correlated variables, 
direct calculation of the posterior probability densities is not practical.  For this reason, a 
Markov Chain Monte Carlo sampling scheme for computing the posterior probability 
distributions is needed.  Recall from Sections 2.4 and 2.5 that the componentwise 
Metropolis algorithm provides a convenient method for analyzing a Bayesian network. 
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We first specify the full conditional densities for each of the random variables that we are 
sampling from.  We now apply the result from Section 2.4 that the full conditional 
density of any variable is proportional to all terms in the network containing that variable.  
Because T is a deterministic function of q, k, and ρC, we include terms containing T in 
the full conditional densities of its inputs.  Thus, we have: 
 
 ( ) ( ) ( ) ( )TTDTfqqDqfqfqf δδ ,|,|...| ××∝  
 ( ) ( ) ( TTDTfkfkf )δ,|...| ×∝  

( ) ( ) ( TTDTfCfCf )δρρ ,|...| ×∝  
 
Next, we specify the proposal density for each component.  Random walk proposal 
densities are used for each.  The noise terms, ξ, were chosen to be normally distributed 
with means of 0.  The variance of each noise term was adjusted to provide an average 
acceptance rate for that variable of approximately 0.5.  The componentwise Metropolis 
algorithm was then implemented as described in Section 2.5.  As an example, consider an 
updating step for the variable k: 
 
 Generate a candidate perturbation, ξk 

 The candidate value is  kikk ξ+=∗

Calculate the acceptance ratio:

 

( )
( )

( ) ( )
( ) ( )

( ) (( )
( ) (( )

)
)25005.0,|00837,.0639.0|

25005.0,|00837,.0639.0|   

,|
,|

...|
...|

−+×
−+×

=

×
×

==

∗∗∗

∗∗∗

ii

ii

TTTDTk
TTTDTk

TTDTfkf
TTDTfkf

kf
kf

δφφ
δφφ

δ
δα

  

where ( )σμφ ,|x  denotes the normal PDF evaluated at x with mean μ and 
standard deviation σ, and T* is the valued given by the simulation model 
with the input k* 

Sample a uniform (0,1) random variable u 
If u < α, 

 ki+1 = k*

T = Model(qi, ρCi, ki+1) 
(Ti+1 is only updated after a complete scan of all other variables)  

Else ki+1 = ki 

 
Note that each time one of the input random variables is updated, a new value for T must 
also be generated.  This is done by evaluating the simulation model to compute T 
whenever one of the input parameters changes.  However, sample draws of T are only 
stored each time the algorithm has parsed all of the random variables. 
 
The above process is repeated for each component to draw a vector of samples.  In order 
to approximate the posterior probability distributions, a large number of samples must be 
drawn from each component.  For this study, 50,000 samples were generated for each 
variable.  The first 1,000 samples were discarded to deemphasize the effect of the starting 
values (in other words, to allow the chain to reach its stationary distribution). 
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4. Results 
 
 
For the purpose of illustration, first consider the results for configuration 1, experiment 1, 
with temperature predictions compared at time = 100s.  A graphical representation of the 
uncertainties associated with the model predictions and experimental observations of 
temperature for this particular configuration is given in Figure 3.  The curves representing 
the model predictions were obtained by propagating the uncertainties on q, k, and ρC 
through the model.  For this plot the heat flux, q, was assumed to be normally distributed 
with a mean given by the experimental observation and a variance equal to the total 
variance specified by the experimental uncertainty.  Note that this probability distribution 
for q is not the same as the one used in the Bayesian network.  Also note that Figure 3 is 
not the result of a Bayesian analysis, and is only given for the purpose of illustrating the 
uncertainties present in the problem.  A close-up of the uncertainty associated with the 
observation of T at 100 seconds is given in Figure 4. 
 

 
Figure 3.  Uncertainties for configuration 1, experiment 1. 
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Figure 4.  Uncertainty for configuration 1, experiment 1, at 100 seconds. 

 
The graphical depiction of measurement uncertainty in Figures 3 and 4 should be 
interpreted very loosely.  The standard deviation used to compute the 95% confidence 
bounds on the observations of temperature was calculated as the sum of the standard 
deviation of the “random” and “bias” components.  The standard deviation for the “bias” 
component came from the assumed uniform distribution.  Simply adding these two 
uncertainties is not correct, and as seen in the following Bayesian analysis, this is a 
significant overestimate of total measurement uncertainty.  
 
The model assessment corresponding to the observation shown in Figure 4 was carried 
out using the methodology described in Section 3.  The objective is to compare the 
posterior distribution of T to the prior distribution, in order to compute the Bayes’ factor 
as described in Section 2.3.  Thus, we calculate the Bayes’ factor using Eq. (8), where the 
numerator is approximated using the Metropolis algorithm, and the denominator is 
approximated using an uncertainty quantification where the distributions for the input 
parameters are as specified in Section 3.2.  The two distributions are compared at the 
model prediction, i.e. T = 95.5 C.  Note that the corresponding experimental observation 
is T = 106.43 C which is not close to the model prediction with respect to measurement 
uncertainty. 
 
The approximated densities for the prior and posterior distributions of T are plotted in 
Figure 5.  Note that the Bayes’ factor is approximately equal to 0 because the posterior 
density is approximately equal to 0 at the temperature predicted by the model.  This 
indicates that given the specified uncertainties, the observations of T and q do not support 
the corresponding model prediction of T = 95.5 C. 
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Figure 5.  Prior and posterior distributions for config. 1, exp. 1, at 100 seconds. 

 
As a second example, now consider a case where the model prediction and the 
experimental observation are closer.  For configuration 2, experiment 2, the model 
predicts T = 91.0 C at t = 100s, and the corresponding experimental observation is T = 
93.0 C.  The approximated prior and posterior densities are shown in Figure 6.  The 
Bayes’ factor of Eq. (8) is approximately 0.644, indicating insufficient support for the 
point null hypothesis that the model prediction is correct.  Although the prediction is 
close to the observation for this case, the Bayes’ factor does not accept the model because 
the measurement uncertainty for temperature is so low.  Without considering the 
ambiguous “bias” term, the standard deviation of measurement error for this observation 
is 0.34 C. 
 

 
Figure 6.  Prior and posterior distributions for config. 2, exp. 2. 
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Finally, consider the effect of altering the prior probability distribution of T.  Note, that 
the prediction of temperature is very sensitive to the values of the material properties, k, 
and ρC.  Thus, for illustration, the effect of increasing the uncertainty on these variables 
is considered.  The prior standard deviations for both k, and ρC are increased by a factor 
of 1.5, and we again consider configuration 2, experiment 2.  The resulting distributions 
on T are shown in Figure 7, and the Bayes’ factor is estimated as 1.18, indicating a small 
degree of support for the model prediction.  The primary effect is that the prior 
distribution of T has become flatter, or more diffuse, while the posterior has remained 
essentially the same. 
 

 
Figure 7.  Effect of increased prediction uncertainty for config. 2, exp. 2. 

 
 
This result is related to the discussion of Section 2.3 regarding hypothesis testing with 
non-informative prior information.  The null hypothesis will always be accepted at some 
level, as the prior becomes more and more diffuse.  This is because the Bayesian metric is 
taking into account uncertainty associated with the model prediction.  However, if the 
uncertainty associated with the model prediction is extremely high, attempting to validate 
it with experimental observations makes little sense.  Thus, the Bayes’ factor metric is 
sensitive to the specified prediction uncertainty.  When applying this metric, if a model is 
accepted, it would be wise to confirm that it is not simply because the prediction 
uncertainty is “too high”. 
 
As previously discussed, the methodology outlined in Section 3 constrains the analysis to 
deal with only one experimental setup at a time.  Likewise, for a particular experiment, a 
univariate comparison methodology was chosen, so that the model predictions of 
temperature are compared to the experimental observations at each time step 
independently.  Repeated applications of this model validation methodology would give a 
spectrum of validation assessments corresponding to various conditions.  Clearly, an 
approach which allows for all experiments and all predictions to be compared 
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simultaneously is desirable.  Such an approach is within the capabilities of the Bayesian 
framework, and is an area for future study. 
 
5. Summary 
 
The purpose of this report is to introduce and demonstrate a candidate metric for 
assessing the predictive capability of a model based on experimental observations (model 
validation).  It was shown that the statistical metric based on Bayesian hypothesis testing 
can provide a quantitative assessment of the candidate predictive model, while 
accounting for both model parameter uncertainty and experimental uncertainty.  The 
method was demonstrated on the Sandia thermal challenge problem by assessing the 
agreement between one particular experimental observation and the corresponding model 
prediction. 
 
There are several weaknesses with the methodology implemented in Section 3.  First of 
all, the Bayesian model formulation of Figures 1 and 2 is specific to a particular 
experimental configuration.  That is, the formulation of the model is specific to a 
particular nominal value of applied heat flux and a particular value for the length of the 
test specimen.  Changing either of these values, as is the case with each of the 
experimental setups described by the challenge problem, requires altering the Bayesian 
network.  The result is that the model assessment given by the Bayes’ factor of Eq. (8) 
must be computed independently for each experimental observation corresponding to a 
different experimental setup. 
 
The second weakness of the methodology is that because no other information is 
available, the alternate hypothesis must be constructed based on the simulation model.  
Recall that the null hypothesis is the point hypothesis that the true temperature is equal to 
the value predicted by the model, corresponding to the input conditions of the 
experiment.  The alternative hypothesis is that the temperature has the probability 
distribution given by a propagation of the input uncertainties through the simulation 
model (the red curve in Figure 5).  However, choosing an appropriate alternative 
hypothesis is the typical difficulty when assessing the predictive capabilities of a single 
model, and it may be the case that no better choices are available.  Also, because 
evaluation of the simulation model was built into the formulation of the Bayesian 
network, computation of the numerator in Eq. (8) requires numerous evaluations of the 
simulation model (see Section 3.3).  For many real world applications, this may be 
impractical due to the high cost associated with evaluations of the simulation model.  
However, a surrogate model could be used to reduce the number of evaluations of the 
simulation model. 
 
The third weakness is the use of a point null hypothesis.  It is often argued that the use of 
a point hypothesis is not warranted because it may cause the model to be rejected when in 
fact the prediction is close enough to the experimental observation for practical purposes.  
This may be true, and the formulation of an interval hypothesis for Bayesian hypothesis 
testing is given in Section 2.3. 
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Future work in the area of Bayesian model validation may want to focus on some of the 
issues discussed above.  Particularly, a different formulation of the null and alternate 
hypotheses may allow for a metric which gives a model assessment based on all 
experimental data.  For example, such a formulation might involve building a relatively 
objective Bayesian model of the experimental data.  A nonlinear model could be 
proposed for T, in which the coefficients are given suitably vague probability 
distributions.  A hierarchical structure might assign several levels of uncertainty to the 
model to increase the level of objectivity.  The model would then be “updated” based on 
the experimental observations, and compared against the simulation model for the 
purpose of validation.  Such a formulation may also reduce the number of evaluations of 
the simulation model required to compute the validation metric.

 24



 
6. References 
 
Berger, J. O.  Statistical Decision Theory and Bayesian Analysis.  Springer-Verlag, 1985.  
 
Dowding, K. J., M. Pilch, and R. G. Hills.  Thermal Validation Challenge Problem.  SAND 
XXX-2005. 
 
Gamerman, D. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 
Chapman and Hall/CRC, Boca Raton, 1997. 
 
Gelman, A. J., B. Carlin, H. S. Stern and D. B. Rubin.  Bayesian Data Analysis, 2nd edition. 
Chapman and Hall/CRC, Boca Raton, 2004. 
 
Gelman, A. J. and D. Rubin.  “Inference from iterative simulation using multiple sequences (with 
discussion),” Statistical Science.  7(1992):457-511. 
 
Geweke, J.  “Evaluating the accuracy of sampling-based approaches to the calculation of 
posterior moments.”  In: Bayesian Statistics 4, Oxford University Press, Oxford, 1992, pp. 169-
193. 
 
Gilks, W. R., S. Richardson, and D. J. Spiegelhalter.  Markov Chain Monte Carlo in Practice.  
Chapman and Hall/CRC, Boca Raton, 1996. 
 
Hastings, W. K.  “Monte Carlo sampling methods using Markov chains and their applications,”  
Biometrica.  57(1970): 97-109. 
 
Jensen, F. V.  Bayesian Networks and Decision Graphs, Statistics for Engineering and 
Information Science Series, Springer-Verlag, 2001. 
 
Mahadevan, S. and R. Rebba.  “Validation of Reliability Computational Models using Bayes 
Networks,” Reliability Engineering and System Safety. 87(2005): 223-232.  
 
Press, S. J.  Bayesian Statistics:  Principles, Models, and Applications.  Wiley, 1989.  
 
Press, S. J.  Subjective and Objective Bayesian Statistics: Principles, Methods and Applications, 
2nd edition, Wiley, New York, 2003. 
 
Robert, C. P.  The Bayesian Choice, 2nd ed.  Springer-Verlag, New York, 2001. 
 
Srivastava, M. S.  Methods of Multivariate Statistics.  John Wiley, New York, 2002. 
 
 
 

 25



 
7. Distribution 
 
1 MS1415 Normand Modine 01112 
1 MS1056 Sam Myers  01112 
 
1 MS1167 Kevin Horn   01343 
 
1 MS0370 Michael Eldred 01411 
1 MS0370 Scott Mitchell  01411 
4 MS0370 Laura P. Swiler 01411 
1 MS0370 Timothy Trucano 01411 
 
1 MS0828 Kevin Dowding 01533 
1 MS0828 Anthony Giunta 01533 
1 MS0828 Richard G. Hills 01533 
1 MS0779 Jon Helton  01533 
1 MS0828 William Oberkampf 01533 
1 MS0828 Martin Pilch  01533 
1 MS0828 Vicente Romero 01533 
1 MS9159 Monica Martinez-Canales   08962 
 
1 MS0748 David G. Robinson 06861 
1 MS0829 Floyd Spencer  12337 
 
1 MS0123 LDRD Office  01011 
1 MS9018 Central Technical File 08945-1 
2 MS0899 Technical Library 09616 
1 MS0612 Review & Approval Desk 09612 
             for DOE/OSTI 
 
 
 
 

 
 

 26


	Validation of the Thermal Chanllenge Problem Using Bayesian Belief Networks
	Abstract
	Table of Contents
	1. Introduction 
	2. Background
	2.1.  Bayesian Inference 
	2.2. Continuous Case
	2.3. Hypothesis Testing 
	2.4. Bayesian Belief Networks
	2.5. Markov Chain Monte Carlo methods

	3. BBN Development and Implementation
	3.1. Thermal Challenge Problem Description
	3.2. Development of Bayesian Network Representation
	3.3. Markov Chain Monte Carlo Analysis

	4. Results
	5. Summary
	6. References
	7. Distribution

