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Abstract

It is commonly believed that scale-free networks are robust to massive numbers of random
node deletions. For example, Cohen et al. in (1) study scale-free networks including some
which approximate the measured degree distribution of the Internet. Their results suggest
that if each node in this network failed independently with probability0.99, most of the
remaining nodes would still be connected in a giant component. In this paper, we show that
a large and important subclass of scale-free networks arenot robust to massive numbers of
random node deletions. In particular, we study scale-free networks which have minimum
node degree of1 and a power-law degree distribution beginning with nodes of degree1
(power-law networks). We show that, in a power-law network approximating the Internet’s
reported distribution, when the probability of deletion of each node is0.5 only about25%
of the surviving nodes in the network remain connected in a giant component, and the giant
component does not persist beyond a critical failure rate of0.9. The new result is partially
due to improved analytical accommodation of the large number of degree-0nodes that re-
sult after node deletions. Our results apply to power-law networks with a wide range of
power-law exponents, including Internet-like networks. We give both analytical and empir-
ical evidence that such networks are not generally robust to massive random node deletions.

1 Introduction

Scale-free networks (SFNs) are massive networks whose node-degree distribution
follows a power law in the tail of the distribution (2; 3). Power-law networks (PLNs)
are the class of scale-free networks which have a minimum degree of1 and which
follow a power law beginning at degree1. Many real-world networks—such as
the Internet, the web graph, and many social networks—have been observed to be
scale-free (4; 5; 6; 7; 8). Because of the prevalence of these networks, the rela-
tionship between a network’s degree distribution and its robustness to random node

Preprint submitted to Elsevier Science 19 September 2005

ayoutzy
Typewritten Text
SAND2005-5925Unlimited ReleasePrinted September 2005



deletions has been studied, and the common belief is that scale-free networks are
very robust to this kind of failure. The original work on this subject (1) led to the
claim that the Internet would retain a giant component even if99% of its nodes
were removed at random.

To study this desirable property of scale-free networks, we modeled the effects
of random failures on a graph’s degree distribution. This revealed that power-law
networks arenotgenerally robust to random node failures. In the case of the widely-
cited Internet resilience result (1) of a power-law network with slope parameter
β = 2.5 and minimum degree1 (4; 5), high failure rates lead to the orphaning
of a large fraction of the surviving nodes, and to the complete disintegration of
the giant component after90% of the network has failed. This high critical failure
rate may appear to suggest robustness, but as the failure rate increases, the giant
component captures a diminishing fraction of the surviving nodes. For example,
whenβ = 2.5, a PLN’s giant component initially represents60% of the network
but comprises only25% of the surviving network by the time half the network has
failed. Asβ increases this decay becomes more dramatic, and the critical failure
rate decreases.

The main results of this paper are as follows. Our analytical results estimate the
surviving degree distribution of a PLN after random node deletions. The graph
that remains after random node deletions is approximately a PLN, and its degree
distribution can be conservatively estimated with similar parameters. We show ana-
lytically how to derive these parameters from the initial PLN slopeβ and the failure
ratep, and use these parameters to identify the critical failure rate for a PLN. Our
empirical results validate and expand these analytical results by showing when sim-
ulated PLNs break down and how the giant component decays as a function ofp.

We conclude that a large and important class of scale-free networks is not generally
resilient to such massive random failures. In practice, dynamic failures are likely to
be of more interest when considering a real network’s resilience, but the simultane-
ous random failure model is applicable to studying the structure of subpopulations
in a network. Our result is applicable to the study of distributed collaborative filters
(9), robust networks, and epidemiology. If real-world PLNs such as the Internet
and disease pathway networks exhibit robustness, we do not believe it is because of
their power-law distribution, and further explanations must be sought. More highly
assortative networks with similar distributions but in which connectivity is biased
in favor of connecting similar nodes (10) may be worth further study.

2 Related Work

A large body of work has been published on graphs and their properties, and our
work builds upon the work in scale-free networks. The formal treatments are based
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in physics, statistical mechanics, computer science, and mathematics (1; 2; 3; 11;
12; 13; 14; 15) and describe mathematical properties of graphs, including those
derived from the assumption that SFN node-degree distributions follow a power
law in the tail. The empirical work (4; 5; 6; 7; 8) is aimed at capturing or sampling
the degree distribution and other properties of real-world networks such as Internet
routing, web pages, or social networks in order to determine whether the observed
systems are scale free, and to compare observations to the theoretical properties.
Many authors observe that Internet communities tend to form scale-free networks,
although for the Internet itself this empirical work is based on traceroute sampling,
which has been called into question (16).

Scale-free networks were originally of interest to us because of their published re-
silience to random failures (1; 8), which implied that random subpopulations in
a SFN had a good chance of being highly connected. Our interest in subpopula-
tion lies in distributed multi-agent systems and distributed recommender systems,
wherein it is desirable that disinterested parties not be required to process or for-
ward messages (9; 17). The spread of information and pathogens has also been
studied, as have many other families of graphs (3; 18; 19; 20).

It is important to be precise in comparing our work with the result in (1). That result
holds for SFNs with some “small” minimum degree, but does not hold for PLNs of
minimum degree1 (as they seem to imply, and as many workers in the field have
come to assume). We seek to correct the generalization and understand the effects
of failures in this latter case.

3 Random Failures in Power-Law Networks

We consider the class of scale-free networks with minimum degree1 whose de-
gree distributions begin following a power law at degree1. We refer to these as
power-law networks, or PLNs. PLNs have been analyzed in some detail (2; 21) but
we further wish to understand the properties of the subgraph which remains after
random node deletions. Let the number of nodes of degreek in an initial graphG
bec(G, k) = eαk−β, with power-law slopeβ (0 < β < β0 = 3.47875...), scale pa-
rameterα, and minimum degree1 (2). For PLNs there is no giant component when
β > β0 (2). We denote the total number of vertices of degreek ≥ 1 in G as|G|, and
count degree-0nodes separately as they appear. Given the parameters forG, and a
failure probabilityp, it is reasonable to ask whether the surviving graphG′ is a PLN.
If so, we wish to know its corresponding parametersα′ andβ′, and whetherG′ has
a giant component (i.e., a connected portion of the graph withΘ(|G′|) nodes). IfG′

is a PLN (apart from orphaned nodes) withβ′ < β0 then a giant component almost
surely exists, so it suffices to show when this condition holds. Our derivations in-
dicate critical failure rates (psuch thatβ′ = β0) only appear whenβ > 2, and we
restrict ourselves to that case here.
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Fig. 1. The degree distribution of the remaining graph when a fractionp = 5%–95% of the
nodes in a PLN have failed, forβ = 2.5 andα chosen such that the maximum degree was
130. The graph follows a rough power law with an increase in slope and a growing rolloff.

Our initial numerical and experimental work indicated that whenG is a PLN, the
number of surviving nodes inG′ of degreek ≥ 1 follow an approximate power-law
degree distribution (Figure 1). The observed rolloffs in these distributions make the
graph less robust—the rolloff is comparable to targeted attacks, which cause SFNs
to collapse more quickly (22; 23). Using a power law approximation with no rolloff
will thus give us an upper bound on robustness to random failures.

The number of nodes|G| in a PLN withβ > 1 is approximatelyζ(β)eα (2), using
the Riemann Zeta functionζ(t) = Σ∞

n=1
1
nt . This gives the expected number of

nodes of degreek ≥ 1 in G andG′. ForG′ we will also account for orphaned nodes
(nodes which have not failed but whose neighbors have all failed, leaving them with
degree0). For us this is crucial—orphans should not be considered faulty, as they
are only isolated members of the subpopulation of interest.

AssumingG′ is suitably approximated with a power-law, it remains to derive the
parameters ofG′ and determine fromβ andp whenβ′ < β0. If failures occur with
failure probabilityp in a graph with degree distributionc(G, k) = eαk−β the new
degree distribution (tightly bounded around its expectation) will be

c(G′, k) = (1− p)
e

α
β∑

k0=k

eα

kβ
0

(
k0

k

)
(1− p)kpk0−k.

Which for degree0 and1 reduce to
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c(G′, 0) = (1− p)eαχ, χ
def
=

e
α
β∑

k0=1

1

kβ
0

pk0, and

c(G′, 1) = (1− p)eαξ, ξ
def
=

e
α
β∑

k0=1

1

kβ
0

k0(1− p)pk0−1

(noting the definitions ofχ andξ). Estimating the new distribution with a power
law c(G′, k) ≈ eα′k−β′ givesc(G′, 1) ≈ eα′ = (1 − p)eαξ and we directly obtain
α′ = α + ln((1 − p)ξ). To findβ′, note that of the original|G| nodes there are an
expectedp|G| failed nodes,c(G′, 0) orphaned nodes, and|G′| nodes captured by
the size estimate of the new graph given the new parameters. Forβ > 1,

|G|= p|G|+ |G′|+ c(G′, 0)

ζ(β)eα = pζ(β)eα + ζ(β′)eα′ + (1− p)eαχ

ζ(β)eα = pζ(β)eα + ζ(β′)(1− p)eαξ + (1− p)eαχ

and solving forβ′ gives

(1− p)ζ(β)eα = ζ(β′)(1− p)eαξ + (1− p)eαχ

ζ(β) = ζ(β′)ξ + χ

β′ = ζ−1

(
ζ(β)− χ

ξ

)
.

Numerical estimation shows thatβ′ > β, and this difference varies withp. Figures 2
and 3 show that forβ > 2 there are critical failure ratespc for which β′ = β0,
beyond which the surviving graph will not have a giant component. This shows
that power-law networks are not generally robust to random node failures. How-
ever, our result depends upon a potentially coarse approximation and (although we
have noted this approximation should certainly result in an upper bound onpc) we
would like an indication of how accurate our bounds are, and some validation of
our methodology. The next section will present additional evidence gathered by
observing failures in simulated graphs.

4 Simulation Methods and Results

Using c(G, k) = eαk−β we generated node-degree histograms matching a power
law, and recorded (β, α) pairs that produced histograms averaging one million
nodes. The histograms were used to populate an array of vertex-numbered “edge
stubs,” the stubs were permuted randomly to create a random configuration (24),
and pairs of stubs were added as edges in a multigraph.
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Fig. 2. The functionβ′(β, p) for 1 < β ≤ 3.5 and0 < p ≤ 99%. For β′ ≥ β0 (above
intersecting plane), no giant component exists inG′. An Internet-like PLN withβ = 2.5
will cease to have a giant component whenp = 89.8% (point emphasized).
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Fig. 3. The critical failure ratep for which β′(β, p) = β0, for 2 < β < β0. The critical
points for the curves ofβ = 2.5 (p = 89.8%), 3.0 (p = 58.0%), and3.3 (p = 25.4%) are
emphasized for their correspondence with empirically studied real networks (6; 7; 8).

The random configuration produces multigraphs which match a node degree distri-
bution, but it is reasonable to wonder if redundant arcs and self-arcs are frequent
enough to conflict with the assumptions of independence implicit in our derivations.
From (2) we estimated their likelihood given the number of edges in the graph and
the highest expected degree, and established that they are infrequent. Forβ > 2
the likelihood of an individual edge of the highest-degree node being a self-arc is

2/ζ(β − 1)e
β−1

β
α, which approaches zero in large PLNs.

We used an iterated 3-coloring algorithm to identify the giant and secondary com-
ponents inG. To simulate failures, nodes were pre-colored with probabilityp and
the algorithm run again to collect the components ofG′. For eachβ andp twenty
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Fig. 4. Simulation results forβ = 2.5, andα chosen such thatn ≈ 106. Initial giant
component size and critical failure rate vary withβ but this behavior is representative of
2 < β < β0. Note the decreasing fractional size of the giant component#, and the increas-
ing population of orphans� and nodes in small components in generalM.

independent graphs were created, with mean and standard deviations collected for
several statistics.

For 2 ≤ β ≤ 3.5 and0 ≤ p ≤ 0.99 we computed the size of the first and second
largest components, the number of surviving nodes outside the largest component,
and the number of orphans. The range was chosen to include2, a transition point
of interest in regards to the density of edges in a PLN (2), and3.5, to demonstrate
random failures in a graph with no giant component. Forβ = 2.5 the data can be
seen in Figure 4.

For those familiar with the literature, the initial size of the giant component in
Figure 4 may come as a surprise. The fraction of the graph in the giant component
is indirectly given in (21), and it is known to comprise virtually the entire graph
for β < 2. The probability that a random PLN node is in the giant component is
approximately1 − 2 log α

α
for β = 2 and approximately1 − Θ

(
exp[− (2−β)

(3−β)β
α]
)

for β < 2, both of which approach1 in the limit.1 For 2 < β < β0 no such
equation has published, but in simulations the fractional size of the giant component
decreases prior to its complete dissolution atβ0 as shown in Figure 5, subject to
some scale effects. We have not seen this published elsewhere and the result was
somewhat unexpected, so we include it here.

Figure 6 presents the central result of our simulations against our mathematical
predictions. The solid lines depict|G′|/|G| (i.e. (1 − p)ζ(β′)eαξ/ζ(β)eα for se-
lect values ofβ—the difference between these curves and the ideal (the diagonal,
(1 − p)|G|) is the number of orphaned nodes. These curves are terminated and
vertical lines are drawn at the point whenβ′ = β0. Over these curves are plotted

1 Originally published with a typographic error, as confirmed by the authors in (25).
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Fig. 5. The fraction of nodes in the giant component (in simulation) for2 ≤ β < β0,
whenn ≈ 106. These numbers varied withα; for β = 2 the fraction of nodes in the giant
component approaches 1 in the limit (21), but for practical purposes (and possibly in the
limit) the giant component forβ > 2 can be a small fraction of the graph.

observations of these quantities in simulations with a million nodes. The match is
virtually exact, as one might expect—the combinatorics of the predictions is simply
being exercised stochastically in the simulation. Finally and most importantly, Fig-
ure 6 plots the decreasing size of the giant component in the graph for comparison
with the vertically distinguished critical failure rates. In this case the simulation is
being compared to our approximation, and we see that the giant component falls
away to virtually nothing as the failure rate approaches the predicted critical point.

We conclude with a graph emphasizing the decay of the giant component itself,
Figure 7. Whileβ′ < β0 some constant-order (although potentially small) fraction
of the edge-bearing nodes inG′ will almost surely remain in a giant component. Let
m be the size of the giant component inG andm′ its size inG′. Then ideallym′ =
(1−p)m, but this is clearly not the case. This graph also magnifies the disintegration
of the giant component shown in Figure 6, particularly in the extreme case ofβ =
3.3. In this case, the giant component is a small (but constant-order) fraction of the
graph to begin with, and as the graph decays it is subject to greater uncertainty in
its fate (this curve was the only one with a substantive standard deviation), so that
it is not clear that it decays. For this case, we include the average size of the second
largest componentφ, divided bym (this value is graphically indistinguishable from
zero in the other three cases). Through comparison ofm′/m with φ/m it appears
that the giant component has lost its status by the predicted critical point.

5 Conclusions and Future Work

It is probably clear to any network administrator that static graph theory has little
to say about the resilience of the Internet to random failures over time: the Internet
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For β = 3.3 the giant component is a fairly small fraction of the graph, and the giant
component’s disintegration is shown by observing the fractional size of the second largest
component falls within this range by the predicted critical failure rate of25.4%. For beta =
3.0 and 3.3 the plots are truncated for clarity at 75% and 50%, respectively.
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is a massive computer network with people responsible for repairing faults as they
occur. Nevertheless, the random simultaneous failure model is appropriate when
reasoning about the connectivity of randomly distributed subpopulations in the net-
work. We believe we have shed some light on the subtleties of a result that has been
applied too generally. By explicitly considering orphans in the failure process of a
PLN, and by eplicitly considering graphs of minimum degree 1, we have refined
the Internet resilience result of (1). Thus we have better estimated when such a net-
work would completely disintegrate as a function of its initial slope parameter and
failure rate. In particular we have what we believe to be a more accurate critical
failure rate for the Internet, and we show that this is not as resilient as originally
suggested.

Because we are citing it so extensively, it is worth stating two additional errata
we perceive in (1), to avoid confusion. Cohen et al. make casual reference to the
breakdown of the SFN giant component under moderate failure levels whenβ =
3.5. Although reasonable in general, in pure power-law networks there is no giant
component whenβ > β0 = 3.47875 (2). Also confusing is their graph of the
fractional size of the giant component remaining as a function of the failure ratep,
whenβ = 2.5 (a graph analogous to our Figure 7). This ratio is graphed in such
a way that it appears to very closely follow, and even exceed,(1 − p)n. In other
words, the surviving component’s size appears to exceed the expected number of
survivors. In fact the figure graphs this quantitydivided by(1 − p), 2 and thus in
fact matches our results in Figure 7 for the values ofβ they present (2.5and3.5).
This graph has been reproduced in several places without elaboration (3).

We have analytically considered these matters for PLNs under the full range0 <
β < β0, but have not yet confirmed our results in simulation forβ < 2. Doing
so will require a more substantial simulation than we have implemented. Beyond
pure power-law degree distributions, a more general class of PLNs with rolloff and
offset terms should also be studied. In particular, most real world networks that
approximate a power law exhibit a rolloff. Finally, for2 < β < β0 we have been
unable to find a derivation of the fractional size of the giant component of the graph;
although we have shown this quantity experimentally, a formula would be of more
interest.
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