
SANDIA REPORT 
SAND2005-5307 
Unlimited Release 
Printed September 2005 

Extreme InputdOutputs for Multiple 
Input Miltiple Output Linear Systems 

red by 
3 National Laboratoi 

Albuquerque, New Memcc 

Sand a s a mulr prc--- - 
a -0cnheed Manin 
halionat Nxlear St 



Issued by Sandia N~tional Laboratories, operated for the United States DeWhnent ofEnagy by 
Sandia Corporation. 

NOTICE This report was prepared 88 an account of work spscged by an agency of the United 
States Government. Neither the United States Government, nor any agency thereof, IKU any of 
their employees, nor any of their conuactors, subcakam, or their employees, make any 
wannnty, express 01 implied, or assume any legal liability OT responsibility for the ~ccllr~cy, 
completeness, a usefulness of any information, apparatus, pmducr a process disclosed, or 
represent that its use would not infrhge privately owned rights. Refmct!  herein to any Specfi 
commercial prodm p e s s ,  or service by nade name. trademark, manufacm, or othawise, 
does not necessarily constitute 01 imply its endormem, recommendation. or favoring by the 
united stam Govanme3lr any agency thereof, or any Of their Contractors or subcontractors. The 
views and opinions expressed haein do not necessarily state or reflect those of the United States 
Government, any sgency thmf,  or any of their ContrsctOrs. 

Rinted in the United States of Amaica. This repon bas been reproduced directly hum the best 
available copy. 

Available to DOE and DOE ConMLCtas from 
US. Department of energy 
Office of Scientific and Technical Information 
P.O. Box 62 
OakRidge, TN 37831 

Telephone: (865)576-8401 
~acsimile: ( a65p76-57~  
E-Mail . ' v  
online ordering: h~Jlwww.o&g&&l& 

Available to the public from 
u.S. Department of Commerce 
N ~ t i d  Technical Information Service 
5285 port Royal Rd 
SprQjield, VA 22161 

Telephone: (800)553-6847 

's.fedworld.gov Frm ordm@nti 
Onlineorder -74-&+~nW 

Facsimile: (703)605-6900 

- 

. 

2 

http://s.fedworld.gov


SAND 2005-5307 
Unlimited Release 

Printed September 2005 

. 

Extreme InputslOutputs for Multiple Input 
Multiple Output Linear Systems 

David 0. Smallwood 
Structural Dynamics Research 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, New Mexico 871 85-0553 

Abstract 
A linear structure is excited at multiple points with a stationary normal random process. 
The response of the structure is measured at multiple outputs. If the auto spectral 
densities of the inputs are specified, the phase relationships between the inputs are 
derived that will minimize or maximize the trace of the auto spectral density matrix of the 
outputs. If the autospectral densities of the outputs are specified, the phase relationships 
between the outputs that will minimize or maximize the trace of the input auto spectral 
density matrix are derived. It is shown that other phase relationships and ordinary 
coherence less than one will result in a trace intermediate between these extremes. Least 
favorable response and some classes of critical response are special cases of the 
development. It is shown that the derivation for stationary random waveforms can also be 
applied to nonstationary random, transients, and deterministic waveforms. 
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1. Introduction 

The application of multiple inputs, in both test and analysis, to excite a single structure is 
becoming more common. In general a stationary random excitation of this nature requires 
the specification of the complete cross spectral density matrix of the inputs. If the inputs 
are transients the specification of the complex Fourier spectra is required. However, 
many times little is known about the exact nature of the inputs. Often, the only known 
information is the desired autospectra (or Fourier magnitude for transients) at the inputs 
or at the response points. 

For example, the response of a structure at one or several points has been measured in 
field experiments and the desire is to replicate the response in a laboratory test. Or in the 
case of analysis, to excite a model of the system that will replicate the field measured 
response. In general there are multiple solutions to the problem. This paper will explore a 
specific class of solutions. 

In other cases the autospectral densities at several inputs are specified. The inputs can be 
measured experimental inputs or envelopes derived from a variety of sources. 
Inconsistencies in these specifications can arise from a variety of sources. The source 
could be noisy. The source could be a composite of several experiments. The test item or 
model may differ from the system from which the source was derived resulting in shifting 
of modal frequencies and mode shapes. In any of these cases the specification of the 
phase relationships between the inputs is difficult or impossible. Certain phase relations 
may result in unrealistic inputs or responses. These inputs in essence impose boundary 
conditions on the model or experiment to force the desired response. 

A simple example is a rod excited in the axial direction with forces at the two ends. 
Intuition tells us that the bar must move as a rigid body at very low frequencies. If the 
required motion at two response points is not identical, large input forces can result, 
because higher modes must also be excited to achieve the desired response. As the 
frequency increases excitation of the higher modes becomes easier and the achievement 
of different motion at two points becomes easier as a combination of the rigid body 
translation and higher modes. At low frequencies the rigid body mode is excited most 
efficiently with the forces at the end in phase. Near the first longitudinal mode the bar is 
excited most efficiently with forces at the two ends out of phase. The forces required to 
achieve a given response is influenced by the crossover frequency where the excitation is 
changed from in-phase to out-of-phase. 

This paper attempts to find a rational solution to minimize the forces required to achieve 
a specified response. For the case of specified response auto spectra density, the solution 
suggested is the solution that minimizes the trace of the input auto spectral density 
matrix. The solution that maximizes the trace of the input auto spectra is also derived. 
The minimum trace solution is a reasonable excitation because it excites the structure in a 
manner consistent with the dynamic properties of the structure and does not require 
unreasonable boundary conditions for the structure under test or analysis. It is shown that 
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any other solution will result in a trace between the minimum and maximum solution. 
The problem has been solved for a square system (the number of inputs equals the 
number of response points) [Smallwood, 19861. This paper will generalize the results and 
extend the results to rectangular systems. 

The case of the transient input with a single input and a single output (SISO) has been 
solved [Drenick, 1970 and Shinozuka, 19701 and is called the least favorable response. 
Other cases with single inputs and responses have also been studied are called the critical 
response [Lopez et al, 2000 and 2001, Baratta et al, 1998, Takewaki, 20011. 

In the examples of this paper the input is force and the output is acceleration. But it is 
important to understand that the method is much more general. For example, the input 
could be voltage into a power amplifier driving a shaker. The output could be stress or 
strain. Any pair of quantities for which linear inputloutput relationships can be derived or 
measured can be used. 

Several related problems involving a multiple-input, multiple-output (MIMO) system are 
discussed in this paper. In general these problems fall into three classes: 1) the number of 
inputs exceeds the number of outputs, 2) the number of inputs is the same as the number 
of inputs, and 3) the number of outputs exceeds the number of inputs. All are discussed. 

First class of problems discussed is where the auto spectral densities of the outputs are 
specified, but the output cross spectral densities are free variables. The problem is to 
derive a set of inputs that will produce the required output auto spectral densities. The 
solution is not unique. The solution derived for the output cross spectral densities 
minimizes (or maximizes) the sum of the input auto spectral densities (the trace of the 
input cross spectral density matrix). Other solutions are shown to be intermediate to these 
two extremes. A geometric interpretation of the solution is given. 

The second related class of problems where the input auto spectral densities are specified, 
but where the input cross spectral densities are free variables. Similar to the first problem, 
the solution derived generates the input cross spectral densities that will minimize (or 
maximize) the sum of the output auto spectral densities. 

It is then shown how the random solution can be applied to other related problems: 1) a 
transient input, 2) the method of least favorable (or critical response), 3) a pseudo random 
input, 4) a deterministic input. 

Two special cases of a multiple input single output (MISO) systems are then discussed. 
The first is the case where the single output is a quadratic combination of linear outputs 
that can be decomposed into a linear MIMO system using Cholesky decomposition. Von 
Mises stress is an example of such a single output. The other case discussed is a method 
to evaluate the equivalence between three single axis vibration tests and a single multiple 
input vibration test. 

. 

The last section includes many examples to illustrate the solutions derived. 
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2. Derivation of the Minimum/Maximum Input Trace 

As a practical matter most of the derivations are in the frequency domain. It is assumed 
that the inputs and responses are sampled at equal time intervals and the random spectra 
are specified at finite number of evenly spaced frequency lines between zero and half the 
sampling frequency (the Nyquist frequency). For transients, the spectra are specified 
using the discrete Fourier transform as an approximation of the continuous transform. 

A general multiple input multiple output (MIMO) linear system is represented in Figure 
2.1. 

f Structure I 

[ '' Response 
at K points I 

Inp;lt at J locations 

Figure 2.1 General multiple-input, multiple-output (MIMO) linear system 

The inputs can be represented as a vector and the outputs as another vector. Each element 
in the vectors is time history. The elements in the vectors can also be represented in the 
frequency domain by the Fourier transform. 

This integral does not strictly exist for a stationary random signal and a limiting operation 
must be defined. To simplify the notation let 

S,, = E[='] (2.4) 
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where X is a column vector of the discrete Fourier transforms of a realization of a column 
vector of the time histories, x. Justification for this simplification is contained in [Bendat 
and Piersol, 20001. Let H represent a matrix of frequency response functions relating the 
inputs to the outputs of a MIMO system. The cross spectral density matrix of the outputs, 
S,, , can be stated in terms of the cross spectral density matrix of the inputs, S, , as 

S,, = HSxxH' 

Define G as the Moore-Penrose pseudo inverse of H 

G = pinv(H) (2.6) 

If H is square and non-singular the pseudo inverse is the same as the matrix inverse. For 
the cases where H is rectangular or square and singular the Moore-Penrose pseudo 
inverse produces the result 

HGH = H 
GHG = G 
GH and HG are Hermitian. 

(2.7) 

Let norm(H) be defined as the largest singular value of H. If H has more rows than 
columns (more outputs than inputs) or is square and singular then the inverse of H does 
not exist. In these cases pinv(H) has some, but not all, of the properties of the inverse of 
H. If H has more rows than columns, then the overdetermined least squares problem 

minimize norm(HX-Y) (2.8) 

does not have a unique solution. The solution 

X = pinv(H) Y (2.9) 

is the solution for which the norm(X) is the smallest. 

If H has more columns than rows (the number of inputs exceeds the number of outputs) 
there are many solutions to the problem 

HX-Y = 0 (2.10) 

The solution of the off-diagonal terms of SYY that minimizes the trace of SXX when the 
diagonal elements of Syy are specified will be derived. The case where H is square and 
full rank is a special case of this problem. In this case G is just the inverse of H. 

b 

The spectral density matrix of the input can now be expressed in terms of the spectral 
density matrix of the output as 
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S, =GSyyG' (2.1 1) 

As a side note: If the complete cross spectral density matrix of the output is specified (not 
just the diagonal autospectra), Equation 2.11 is used to compute the required input cross 
spectral density matrix. 

Define a measure of the spectral input to the system as the sum of the autospectra of the 
inputs 

P = trace (SXX) (2.12) 

This will be called the input power. It is not physical power except in special cases. One 
of the special cases comes from transmission theory using constant real impedance 
transmission lines, and hence the name). Using Equations (2.11 and 2.12) 

P = trace (GS,,G') 

(2.13) 
j=1 k=l m=l 

where J is the number of inputs, K is the number of outputs. It is important to note that 
W S h  appears in the above equation only as a linear term. Cross products of wS, do not 
appear. This implies that the surface of P above each complex YYSkm is a plane with a 
constant gradient. If we specify the autospectra of the outputs, YYS,, the range of YYSkm 
is restricted to 

The gradient of P is constant, therefore the minimum and maximum will occur on the 
boundary of the range of the cross-spectrum. Zero is a trivial result, therefore set 

Interchanging the order of summation in Eq. (2.13) 

(2.15) 

(2.16) 

Let 
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F = G ' G  
or 

Fmk = C G J m G j k  
J 

m = 1  ... K ,  k = l  ... K 
,=I 

(2.17) 

Substituting (2.17) into (2.16) gives 

K K  

' = c c Y Y s h F m k  (2.18) 
k=l m=I 

Using the fact that both SYY and F are Hermitian (2.18) can be expressed as 

This expression can be written as 

where 

t 

(2.20) 

(2.21) 

P will be a minimum when all the terms in the second double sum of (2.20) are negative. 
The maximum will occur when all the terms are positive. The minimum will occur when 

or 

a j i k  = 7T + b ,  k = l . . . K ,  j = l . . . K  (2.23) 

The maximum will occur when 

aik = bik 

The minimum P is given by 

K K-l K 
P =  W S j j F j j  -2c wfyi?4 

k=l k=l j = k + l  

(2.24) 

(2.25) 

(2.26) 
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The maximum is given by 

(2.27) . 
To summarize, when the output autospectra are specified, the input with the minimum 
trace is given by 

- 
S,, =GS,,G' (2.28) 

- 
where S,, is specified by Equations (2.21) and (2.23). The response to this input is 
given by 

s,, = HS,,H'= HGS,,G'H' (2.29) 

The individual input pairs are fully coherent, which means the vector input can be 
specified with a single random noise source 

s,, =XWX' (2.30) 

where X is now a deterministic complex column vector that is a function of frequency. W 
is the auto spectrum of a white noise source with a unity spectral density. W is a real 
scalar function of frequency (i.e. W = l), which could be factored out. However to keep 
Eq. (2.30) as the same form as Eq. (2.28) this will not be done. 

When the number of inputs exceeds the number of outputs the maximum input has a 
special meaning. It is not the maximum input that could be derived, which is speculated 
to be unbounded. It is the maximum input that can be achieved within the constraints of 
the pseudo inverse, which minimizes the trace of the input spectral density matrix. 

For the special case of a single output, F is a scalar and the maximum and minimum 
inputs are the same. The pseudo inverse will result in the input spectral density matrix 
with the minimum trace. 

2.1 Geometric interpretation of input requirement 

For simplicity, first consider the case of two inputs and two outputs at one frequency. The 
auto spectral densities of the two outputs are specified and we want to find the input auto 
spectral densities for all possible values of the cross spectrum between the outputs. In this 
example, the magnitude of the auto spectral densities of the two outputs is assumed to be 
the same. We will construct a three-dimensional plot where the first axis represents the 
real part of the cross spectral density, the second axis represents the imaginary part of the 
cross spectral density, and the third axis represents the power (P, the sum of the two input 
auto (power) spectral densities, the trace of the input spectral density matrix). The 
allowable output spectra are represented by the interior of a circle on the x-y plane. Points 
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on the circle represent unity coherence of the outputs with the phase of the cross spectral 
density between varying. Points in the interior of the circle will represent cross spectral 
densities with less than unity coherence. A point at the center of the circle will represent 
zero coherence between the two outputs. The gradient of P is constant, and is therefore a 
tilted plane above the x-y plane. The circle of allowable outputs is projected as an ellipse 
on the power plane. Figure 2.1.1 illustrates the plot. Points on the power plane within the 
ellipse represent the input power for a specific complex cross spectral density between 
the outputs. One phase angle of the output cross spectral density will represent the lowest 
part of the ellipse on the power plane. This is the minimum power. Add pi radians to 
establish the point of maximum power. Because in Eq. (2.13) P is linear in terms of the 
response cross spectral density matrix, the case for more than two inputs can be 
interpreted as a series of plots similar to Figure 2.1.1. Each figure represents one of the 
terms in the summation. The total power is the sum of the individual terms. 

Maximum drive power 
Possible drive power within ellipse 

I \ \  20- 

I 51 

h ive  power 

3 10 
0 /’” I 

2, 

Allowable values for output cross- : I  \ // 
J -----7 . --_I-- 

// 10 
5\ Phase angle to maximum drive 

0 5 

real( output( CSD ) 
i m ag (0 ut p u t (CS D )) -5 

-10 -10 

Figure 2.1 .I Geometric interpretation of input requirement 

2.2 Summary given the auto spectra of the outputs 

Find the phase of the output spectra that will maximize or minimize the trace of 
the input spectra. 
Find the cross spectral density matrix of the outputs by combining the derived 
phase with the given output auto spectra for a l l l y  coherent input. 
Find the input spectral density matrix from S xx = GS yyG’ . 
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3. Derivation of the Minimum/Maximum Output Trace 

In this section we assume the auto spectral densities of the inputs are specified and we 
want to find the input cross spectral densities that minimizes or maximizes the trace of 
the output auto spectral densities. The development is essentially the same as in the 
previous section. Equation 2.12 is the starting point. The trace of the matrix of output 
spectral densities is given by 

= trace(S,,) (3.1) 

Using Equation (2.5) 

< = trace (HS,,H') 

As before the gradient of Py is constant, therefore the minimum will occur on the 
boundary of the range of allowable values of the input cross spectral density matrix. Zero 
is a trivial result, therefore set 

Interchanging the order of summation yields 

Let 

FH =H'H 
or ( 3 - 5 )  

As in the previous section let 

15 



The minimum trace of the output spectral density matrix is given by the input spectral 
density matrix where 

a, = n + bmJ (3.7) 

The maximum occurs when 

= b??ZJ 

3.1 Summary given the autospectra of the inputs 

(3.9) 

Find the phase of the input spectra that will maximize or minimize the trace of the 
output spectra. 
Find the cross spectral density matrix of the inputs by combining the derived 
phase with the given input auto spectra for a fully coherent input. 
Find the output spectral density matrix from S yy = HS xx H' . 

4. Application to Transient and Sine Data 
If the input is a deterministic transient or steady state sine the response can be written in 
the frequency domain as 

Y = H X  (4.1) 

Y is now a complex quantity that gives the amplitude and phase of the outputs. H is the 
same as before. X is a complex quantity giving the amplitude and phase of the inputs. For 
a transient X and Y are the Fourier transforms of the transient time histories. For a sine 
the phase is relative to some arbitrary reference. Some matrix spectral relations are 
analogous to the definition of cross spectral density (Eq. 2.4). 

Sxx=XX'  
s,, = YY' 

These equations do not require the use of the expectation operator because the functions 
are deterministic. The diagonal terms of the spectral matrix are the amplitudes squared of 
the sine (or Fourier) components. The off diagonal terms define the phase relationships 
between pairs of signals. Equations 2.5 and 2.11 still apply. The development for the 
deterministic case is the same as for the random waveforms. When the output amplitudes 
are specified Equations 2.23-2.27 define the relative phase between the outputs. When 
the input spectral amplitudes are specified, Equations 3.6-3.8 define the relative phase 
between the inputs. The phase of one of the inputs or outputs must still be defined. If the 
inputs are specified the outputs are determined from Equation 2.5. If the outputs are 
specified the inputs are determined from Equation 2.11. 
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4.1 Least favorable transient response 

. 

If the system is a single input single output (SISO) system, a input transient that forces all 
the output frequency domain components to have zero phase results in the least favorable 
response [Drenick, 1970, Shinozuka, 19701. This is the largest possible peak output for 
any input with a spectral envelope equal to or less than a specified envelope. Other 
authors [Baratta et al, 1998, Lopez et al, 2000 and 2001, Takewaki, 20011 call this the 
critical response. In summary the least favorable response is given by 

m m 

where 

and 

~ ( f )  the Fourier transform of the input time history, x ( t )  , and (x(f)l is the magnitude of 
the input Fourier spectrum amplitude. 

If the system is a multiple input single output (MISO) system the results derived in the 
previous section are a generalization of the least favorable response. 

Consider the contribution of an input X I  to the output. Just as for the single input least 
favorable response set 

where Hi  (f) =/ H I  (f) 1 e i f i ( f )  (4.5) 

which results in 

The contribution of x ~ ( t )  to the total response will be the same as given by equation 4.3. 
The relative phases between the inputs are given by FH. For the single output case, the 
relative phase between Xn and X I  is given by (- p,, + p, ). The absolute phase of the Xn 
input is then given by (- p,, + PI - p, = -p, ). 

This results in the contribution from the Xn input to the output as 
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The responses caused by the various inputs are all maximum and positive at t = 0. 
Therefore, superposition will occur and the total response will be the maximum possible 
response, the least favorable response generalized for the MIS0 case. 

For the transient case with a single output the minimization of the Fourier magnitude of 
the output (Section 2) does not seem to be particularly useful as a limiting case. 

If the system has multiple inputs and outputs the phase of one of the inputs or outputs 
must be specified. A single set of inputs that maximizes the response of all the outputs 
does not exist. If the phase of one of the inputs is known, a single set of inputs that 
maximizes the trace of the output spectra does exist. If the phase of one of the outputs can 
be specified (as for example zero phase that results in maximizing the response of that 
output at t = 0) a set of inputs can be found that produces that response and also 
maximize the trace of the spectra of all the responses. 

5.0 The special cases of multiple inputs and a single 
output 

If there is only one output the problem reduces to the superposition of the response to J 
inputs. If the maximum or minimum response is desired the inputs will be fully 
correlated. If the auto spectral densities of the inputs are specified, Section 3 is used to 
determine the phase angles between the inputs for the minimum and maximum output 
spectral density. If the output auto spectrum is specified, Section 2, Equation 2.28 is used 
to derive the inputs to minimize or maximize the trace of the input spectral density 
matrix. 
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4.2 Pseudo random input 

Whenever we seek to define a pseudo-random input, the phase of the first input can be 
randomized. If we want to define a pseudo-random signal with a specified temporal 
modulated envelope, we can generate a pseudo-random signal, transform to the time 
domain, multiply by a suitable temporal window, and transform back to the frequency 
domain. This is frequently referred to as a product model. The phases of the remaining 
inputs are then defined relative to the first windowed signal. 

4.3 A deterministic time history for the first input or output 

We can also define the first response (or input) as a specified time history. The FFT of 
the time history will define the amplitude and phase of the first input (or response) time 
history. The Fourier magnitude of the remaining inputs (or responses) can be defined 
independently or can be a defined as a hnction of the Fourier magnitude of the first 
signal. The algorithm to minimize the input (or output) defines amplitude and phase of 
the inputs (or responses) and the phase of the remaining responses (or inputs). 



If the input is a transient, Section 4.1 has already discussed the solution as a 
generalization of least favorable response. 

5.1 Von Mises stress as the output variable 

Consider the von Mises stress that is a quadratic combination of six stress components 

For the square of the von Mises stress the quadratic combination is 

Consider quadratic functions of stress, written in the following form 

p 2  = G' AG 

For von Mises stress, A is [Segalman et al, 20001 

1 1 -1/2 -1 /2 0 0 0 

-1/2 1 -1 /2 0 0 0 I 
0 3 0 0  

-1 /2 -1 /2 1 
A-1 0 0 

(5.3) 

0 O 0 0 3  0 3 0 1  1 :  0 
0 

The matrix A can be factored using a modified Cholesky decomposition [Smallwood and 
Paez, 19931 into 

A = B ' B  

B =  

1 -1/2 -112 0 0 0 
0 & I 2  - 4 3 2  0 0 0 

0 0  0 4 5 0 0  
0 0  0 o & o  
0 0  0 0 0 4 5  

0 0  0 0 0 0  
(5.6) 

B has a row of zeros because A is singular and has a rank of 5. 
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Let 

q = B a  

Then 

(5.7) 

Because B is not a function of time, but just a matrix of real constants, transforming to 
the frequency domain gives 

Q = B S  (5.9) 

S = H X  (5.10) 

which gives 

Q = BHX (5.1 1) 

where Q is the Fourier transform of q, and S is the Fourier transform of c. The stress 
response is a linear function of the excitation. 

p 2  = Q'Q = ~ Q ; Q ,  

where $ is a spectral measure of the von Mises stress. 

6 

(5.12) 
j= l  

Consider the multiple input multiple output (MIMO) system,QQ'. Noting that for any 
column vector Q, Q'Q = trace(QQ') , the trace of this system is the same as the above 
equation 

6 

P 2  = trace(QQ') = x Q j Q ;  
j= l  

(5.13) 

Thus Q defines a system with six responses and J inputs that is equivalent to the 
statement of the von Mises stress. 

Combining B and H reduces the problem to the MIMO problem already studied. For 
random vibration, the spectrum of the von Mises stress can be found for inputs with any 
cross spectral density matrix. If only the input auto spectral densities are given, cross 
spectral densities of the inputs can be found that will minimize or maximize the root- 
mean-square (rms) von Mises stress. Once the cross spectral density matrix of the inputs 
are known the individual stresses can be derived from Equation 2.5, S,, = HS,,H'. 
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5.2 Multiple axis vibration tests 

An issue of interest in random vibration or sine testing is the equivalence or severity of a 
multiple axis vibration test (all three axes excited simultaneously) relative to three single 
axis tests. The response to each of the three single axis tests can be found from a standard 
single input single (or multiple) output analysis. The response to the multiple axis test can 
be handled as a three input single (or multiple) output system. Standard methods allow 
the determination of the response to any specified input cross spectral density matrix. The 
methods in this paper also allow the determination of the specific input cross spectral 
densities that will result in the maximum and minimum spectrum of the response (or the 
trace of the output spectra for the multiple output case). To determine the severity of the 
tests a damage criteria must be used which relates the combination of response spectra 
and duration of the test to damage. If such a model exists the tests can be compared. 

6. Examples of Stationary Random 

To illustrate the method a simple free-free bar is excited axially under various conditions 
(Examples 1-8). The bar has its first resonance at 100 Hz. The damping is set at 1% for 
all modes. The input points are various combinations of force excitations at 0, .6, and 1 
times the length of the bar. The acceleration responses are measured at the same 
locations. The mass of the bar is 1000 lb. This bar could represent a slip table excited at 
various points. The 3 by 3 matrix of frequency response functions (g/pound) is plotted at 
Figures 6.0.1 (magnitude) and 6.0.2 (phase). Reciprocity holds for this system, therefore 
the frequency response function matrix is symmetric. For the various examples the input 
and response locations are stated in terms of their location as a fraction of the total bar 
length. The desired response is a flat spectrum of 0.01 g2/Hz from 10 to 1000 Hz. 
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Figure 6.0.1 FRF's, 1000 Ib 
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10' 1 o2 
Frequency (Hz) 

bar, magnitude (g/lb) 

Bar FRF, Inputsloutputs at 0. 6.1 

10' 1 oz 1 o3 1 o1 1 o2 1 o3 

10' 1 o2 
Frequency (Hz) 

Figure 6.0.2 FRF's, 1000 Ib bar, phase (degrees) 
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6.1 Example 1, Input at point 0, response at location 1 

Notice from Figure 6.0.1 (H( 1,3)) that no antiresonances exist at the response location (1) 
when the bar is driven at the 0 end. The input required to achieve the desired response is 
shown in Figure 6.1.1. Notice that no large peaks in the input are required because of the 
absence of antiresonances. 

6.2 Example 2, Input at point 0, response at location .6 

The required input is shown in Figure 6.2.1. Notice that now a large input is required at 
the antiresonances of 112 and 670 Hz. 

3 
10 L:= 

--+---1- 

1 
10 i:: - -  

I O 0  L 
1 o1 

Figure 6.1.1 The required input at point 0 to achieve the desired response 
at point 1. 

23 



1 o6 

Frequency (Hz) 

Figure 6.2.1 The required input at point 0 to achieve the desired response 
at point .6 

6.3 Example 3, Input at points 0 and 1, response at location 1 

In this example two inputs are used at points 0 and 1. The response is controlled at one 
point. Figure 6.3.1 shows the required inputs. The methods derived in Section 2 were 
used to derive the inputs with the minimum trace. The coherence between the inputs is 
unity. The phase between the two inputs is shown in location (2,l) of the plot. Notice that 
the phase changes 180" as a resonance is approached. These phase changes provide the 
minimum input to achieve the desired response. 
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1 o1 1 o2 1 o3 
Frequency(H2) 

1 o2 1 o3 
Frequency(H2) 

Figure 6.3.1 Inputs at points 0 and 1, response at point 1 

6.4 Example 4, Input at points 0 and 1, response at location .6 

The required minimum input is shown in Figure 6.4.1. Note that the peak required input 
has been reduced more than an order of magnitude from the single input case, and the 
peaks in the input at the antiresonant frequencies have been eliminated. At low 
frequencies the inputs are in phase and shared equally. Above the first resonant frequency 
the input phase has been shifted 180". 

Examples 3 and 4 illustrate how multiple inputs can overcome the antiresonance problem 
of driving a system with a single input. The antiresonance for each of the inputs with 
respect to the output will generally occur at different frequencies, allowing the system to 
be more easily driven. 

6.5 Example 5, Input at points 0 and 1, response at locations 0 
and 1 

The results are shown as Figures 6.5.1 and 6.5.2. The desired output has been achieved at 
both response points at all frequencies. The phase between the outputs changes as a 
resonance is approached. The phase of the inputs is changed to achieve the minimum 
input. 
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Examples 4 and 5 illustrate how to phase the inputs to achieve the desired outputs with a 
minimum input. Intuition tells us the inputs should be in phase at low frequencies and out 
of phase when the first resonant frequency dominates. The method provides a logical 
procedure for choosing the crossover frequencies. 

~ L I I  
l o 2  

l o o t -  
10' 

Frequsncy(Hz) 

'I 1 d 

Figure 6.4.1 Inputs at 0 and 1, output at .6 

- a 

+ 
3 

I 
1 o2 1 oJ 10' 1 o2 i o 3  

I o3 1 o1 1 o2 
Frequency (Hz) 

Figure 6.5.1 Input force, inputs at 0 and 1; outputs at 0 and 1 case 
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Figure 6.5.2 Output acceleration, inputs at 0 and 1; outputs at 0 and 1 

6.6 Example 6, Two inputs, two outputs, different autospectrum 

This example is the same as example 5 except the desired spectrum at point 1 will be 
increased to .011 g2/Hz. This causes problems at some frequencies dominated by a single 
mode. Low frequencies are dominated by the rigid body mode is an example. The results 
are shown as Figures 6.6.1-6.6.3. As can be seen the desired results are achieved at the 
cost of increased force. Recognizing the problem and increasing the tolerance for 
rejecting singular values in the pseudo inverse can reduce the force. At frequencies where 
the frequency response functions are near singular the small singular values are set to 
zero. The result is smaller force at the expense of an exact solution. The results are shown 
in Figures 6.6.4-6.6.6. As can be seen the maximum force is reduced particularly at low 
frequencies. The solution is scaled such that the sum of the squares of the response auto 
spectral densities are as close to the sum of the squares of the desired solution as possible. 

If the coherence is reduced to near zero Figures 6.6.7-6.6.9 show the results. As can be 
seen comparing Figures 6.6.1 6.6.4 and 6.6.7 considerable more force is required to keep 
the response coherence near zero. Notice that with the increased tolerance for rejecting 
singular values, the coherence at low frequencies is not near zero. The response is 
dominated by the single rigid body mode and the two response points will be in phase 
unless very large forces are applied. As the frequency decreases large increases in force 
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are evident in Figures 6.6.7 and 6.6.9 until a singular value is rejected at about 24Hz. The 
force is then reduced, but the coherence is no longer near zero. 

Figure 6. -6. 

0'- 
1 o1 

LU --I 

1 o2 

,I Input force spectra 

I l l  I I I I I I I I ;  
I. u 
1 o2 I o3 

I O '  1 o2 I o3 1 o1 1 o2 I o3 

Figure 6.6.2 Response acceleration spectra 
Frequency (Hz) Frequency (Hz) 

28 



I o5 

1 o4 

10' 

I , , , I l l  

1 oo 
10' 1 o2 I o3 

Frequency (Hz) 

Figure 6.6.3 Sum of input spectra 
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Figure 6.6.4 Input force spectra, increased tolerance 
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6.7 Example 7, Three inputs at 0, .6, 1; Two outputs at 0,l 

This example uses three inputs and two response points. An infinite number of solutions 
provide the correct responses. The procedure proposed here provides the solution with 
the minimum sum of the input auto spectral densities. The input auto spectral densities 
are shown in Figures 6.7.1 and 6.7.2. Only the upper triangle part of the matrix is shown 
because the lower half is the complex conjugate of the upper part. The magnitude is 
shown in Figure 6.7.1 and the phase in Figure 6.7.2. Note that the inputs are all in phase 
and about equal magnitude at the low frequencies. This is the desired result. At higher 
frequencies the amplitudes and phases between the inputs changes, but are kept within 
reasonable bounds. The output spectral density matrix is shown in Figures 6.7.3 and 
6.7.4. The output spectra are maintained at the desired level at all frequencies. The phase 
between the outputs varies to keep the input trace a minimum. The trace of the input auto 
spectral densities is shown as Figure 6.7.5. 
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Figure 6.7.1, Three inputs at 0, .6, 1; Two outputs at 0,1, input amplitude 
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Frequency(Hz) 

Figure 6.7.2, Three inputs at 0, .6, 1; Two outputs at 0,l; input phase 
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Figure 6.7.3, Three inputs at 0, .6, 1; Two outputs at 0,l; output amplitude 
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Figure 6.7.4, Three inputs at 0, .6, 1; Two outputs at 0,l; output phase 
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t - - - -  

Figure 6.7.5, Three inputs at 0, .6, 1; Two outputs at 0,l; trace of inputs 

6.8 Example 8, Two inputs at 0, 1; Three outputs at 0, 0.6, and 1 

In this example it is not clear that a solution will exist which can maintain three outputs 
using only two inputs. A previous paper (Paez, et al, 1987) has shown that it is sometimes 
possible to control the autospectrum at n2 points with n inputs. The desired input is 0.01 
g2/Hz at the three output points. Figures 6.8.1-6.8.6 show the result using the minimum 
input method. In this case it is not possible to achieve the desired results as Figure 6.8.3 
illustrates. The responses are near the desired level at low frequencies where the rigid 
body mode dominates. At higher frequencies the responses deviate significantly from the 
desired response. However, the sum of the outputs (the trace, Figure 6.8.6) is maintained 
at the desired level. Notice that the inputs are essentially in phase at the low frequencies 
(Figure 6.8.1, subplot 1,2), suggesting that the rigid body mode is dominate. In summary, 
for the case where the number of outputs exceeds the number of inputs, the method gives 
the minimum input that will control the trace of the outputs. If you want to minimize the 
error (the difference between the achieved output and the desired output) a different 
method will have to be used. 
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Figure 6.8.1 Two inputs, three outputs; input spectral amplitudes 
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Figure 6.8.2 Two inputs, three outputs; input spectral phase 
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Figure 6.8.3 Two inputs, three outputs; output spectral amplitudes 

F W W W  

Figure 6.8.4 Two inputs, three outputs: output spectral phase 
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6.9 Example 9 A beam driven transversely at both ends 

In this example a free-free beam is excited in the transverse (lateral) direction. The beam 
is of unit length. The first free-free bending response is at 300 Hz. The input is force at 
the two extreme ends (x = 0 and 1). The response is acceleration at the same locations. 
The beam has a mass of 1000 Ib. This system has two rigid body modes at zero frequency 
(translation and rotation). With two inputs and two responses the matrix of frequency 
response functions should not be singular at any frequency. The modal damping is set at 
1%. The two by two matrix of frequency response functions is shown as Figure 6.9.1 

0.15- 

-0.05 1 - - - - -  

-0.1 L 
I O 2  ." 

Frequency (Hz) Frequency (Hz) 

Figure 6.9.1 Beam frequency response functions 

The output auto spectral densities are specified as 0.01  HZ from 100 to 1000 Hz. The 
minimum and maximum input auto spectral densities to achieve this level were 
calculated. The input and output spectral density matrices are shown in Figures 6.9.2 and 
6.9.3. The trace of the input spectral density matrix (P) is shown as Figure 6.9.4. This 
curve is hard to trace with a black and white plot as the curve alternately follows the 
minimum and maximum curves. There are several items of interest in this example. 
First, the rigid body rotation mode is easier to excite than the rigid body translation at low 
frequencies, therefore the minimum input results in the input forces with a phase angle of 
180' below about 120 Hz. The maximum input at low frequencies occurs with the input 
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forces in phase. The third curve plotted on Figure 6.9.4 is the trace of the inputs required 
to keep the outputs in phase over the whole frequency range. Note the input required is 
minimum at the free-free resonances of the beam as expected. The phase of the inputs is 
always near 0' or 180' with a fast transition between the two values. This is because of 
the low damping. The large peak in the maximum input (the input to keep the responses 
in phase) near 147 Hz deserves an explanation. Figure 6.9.5 plots the operating shape at 
this fiequency when the inputs are in and out of phase. When the inputs are out of phase 
the shape is primarily rigid body rotation with a little of the first bending mode is excited. 
The rigid body translation is suppressed. When the inputs are in phase the shape is like 
the first bending mode of a pinned-pinned beam. Forcing the responses to be in phase has 
the effect of imposing a pinned-pinned boundary condition on the beam. The input source 
must look like large impedance to the beam to enforce this condition. 

Other input conditions, (other phase angle andor coherence of less than one) will result 
in the trace of the inputs between the two extremes of minimum and maximum 
conditions. The input trace is bounded between these two extremes. 

The input auto spectral densities could also be specified and the extremes of the response 
auto spectra densities calculated. These extremes bound the responses for any inputs with 
the specified auto spectral densities. 

Frequency (Hz) Frequency (Hz) 

Figure 6.9.2 input spectral density matrix 
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Figure 6.9.4 Trace of the input spectral density matrix 
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Figure 6.9.5 Operating shape of the beam near 47 Hz. 

7. Examples of Transient Excitations and Responses 

The same model as was used for the random examples 1-8 will be used. 

7.1 Example 1, Input at points 0 and 1, response at locations 0 
and 1, Response 1 is a decaying sinusoid at 100 Hz. 

The desired response at point one (Figure 7.1.1) is defined as a exponentially decaying 
sinusoid at a 100 Hz, where a compensating waveform at 10 Hz has been added to force 
the initial and final, acceleration, velocity, and displacement to zero. The decay rate of 
the 100 Hz component is 2%. The decay rate of the compensating waveform is 1. This 
waveform will have most of its energy in a band of frequencies near 100 Hz. The second 
response is defmed as having the same Fourier magnitude as the first response. The 
system is essentially a rigid body near 100 Hz. Therefore we would expect the inputs to 
be nearly in phase and the response of point 2 to be similar to the response at point 1. The 
inputs and responses for minimum input trace are shown in Figures 7.1.2-7.1.3. 
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7.2 Example 2, Input at points 0 and 1, response at locations 0 
and 1, Response I is a decaying sinusoid at 400 Hz. 

The desired response at point one (Figure 7.2.1) is defined as a exponentially decaying 
sinusoid at a 400 Hz, where a compensating waveform at 10 Hz has been added to force 
the initial and final acceleration, velocity, and displacement to zero. The decay rate of the 
400 Hz component is 2%. The decay rate of the compensating waveform is 1. This 
waveform has most of its energy in a band of frequencies near 400 Hz. The second 
response is defined as having the same Fourier magnitude as the first response. The 
system is dominated by the first mode near 400 Hz. Therefore we would expect the inputs 
to be nearly out phase and the response of point 2 to be similar to the response at point 1 
but inverted. The inputs and responses for minimum input trace are shown in Figures 
7.2.2-7.2.3. 
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Figure 7.1.1 Desired response 1, 100 Hz exponentially decaying sinusoid 
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Figure 7.1.2 Input waveforms, 100 Hz exponentially decaying sinusoid 
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Figure 7.2.1 Desired response 1,400 Hz exponentially decaying sinusoid 
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Figure 7.2.2 Response waveforms, 100 Hz exponentially decaying sinusoid 
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Figure 7.2.3 Input waveforms, 400 Hr exponentially decaying sinusoid 

7.3 Example 3, Input at points 0 and 1, response at locations 0 
and 1, Response 1 is a pseudo-random waveform with a t exp(- 
at) window. 

For this example a realization of a stationary normal random process multiplied by a 
window function is used for the desired response at point 0. The window is defmed 
a t e - " .  The desired auto spectral density is shown in Figure 7.3.2 as a solid line. An 
estimate of the spectrum for a single realization is shown as a dotted line. A realization of 
the response at point 0 is shown in Figure 7.3.1. The desired auto spectral density at point 
1 is the same as the desired auto spectral density as point 0. The inputs and responses for 
minimum input are shown in Figures 7.3.4 and 7.3.5. Notice that the response envelope at 
point 1 (shown in Figure 7.3.3) also has the character as a te-* envelope even though it 
was not specified. 
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Figure 7.3.2 Desired spectrum envelope at point 0 and 1, and realized 
spectrum at point 0 for a single realization 
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Figure 7.3.4 Input force at points 0 and 1. 
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Figure 7.3.5 Response at points 0 and 1 for a second realization 

Conclusions 
A method has been derived for computing the minimum and maximum input (or the 
minimum and maximum output) for the multiple input, multiple output problem. The 
method has wide application for problems involving stationary random, nonstationary 
random, sine, and transient inputs. The method can be used in dynamic testing situations 
or dynamic simulations. 
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